NICKEL-ALKALI HETEROBIMETALLIC CATALYSTS FOR ETHYLENE POLYMERIZATION

by Thi Viet Tran

A dissertation submitted to the Department of Chemistry, College of Natural Sciences and Mathematics in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Chemistry

Chair of Committee: Dr. Loi H. Do

Committee Member: Dr. Olafs Daugulis

Committee Member: Dr. Eva M. Harth

Committee Member: Dr. Thomas S. Teets

Committee Member: Lars C. Grabow

University of Houston August, 2020 Copyright 2020, Thi Viet Tran

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my thesis advisor, Professor Loi Do, for patiently guiding, encouraging, and supporting me throughout my Ph.D. studies. As a member of the Do Research Group, I will always keep in mind Dr. Do's reminder that we should strive for the absolute best in our work and in our scientific presentations. I can proudly say that my time at the Dr. Do's Group has been an intellectually and personally enriching experience. I would like to thank all my committee members, Dr. Daugulis, Dr. Harth, Dr Teets, and Dr. Ghabow for many insighful suggestion and for the tough questions which motivated me to enhance my knowledge and broaden my research perspectives. I also want to acknowledge Dr. Daugulis, Dr. May, Dr. Wu, Dr. Coltart, Dr. Miljanic, and Dr. Cai, for fantastic chemistry lectures.

My sincere thanks also go to my group members: Amy, Dawei, Anh, Mike, Sohini, Huong, Dat, Eryn, and Abhipsa. My research and my life would have been more challenging without their generous helps.

My decision to come to US to pursue an advance degree in chemistry was largely due to the encouragement of my undergraduate mentors at BKU, Dr. Thanh Truong, Dr. Nam Phan, Dr. Tung Nguyen, Dr. Chung Nguyen, and Dr. Thai-Anh Nguyen. I am extremely grateful to them for the wonderful time we had together at BKU. Many thanks to my friends Quan Tran, Huong Nguyen, Trang Nguyen, and Ky Le.

Special thanks to Yennie, my wife, for coming into my life.

Finally, I would like to dedicate this thesis to my family and my in-laws. Words can not express how grateful I am to their continuous and unparalleled love, help and support.

ABSTRACT

Polyethylene (PE) is one of the most commonly used plastics in our society due to the lowcost of ethylene and their diverse applications. The physical, chemical, and mechanical properties of PE are influenced by its molecular weight, molecular weight distribution, and morphology. Production of PE using single-site transition metal based catalysts is advantageous over processes based on free radial chemistry because it allows synthesis of well-defined polymers. However, single site catalysts typically afford one type of polymer under a given set of reaction condition. To obtain different PE products, it is necessary change the reaction conditions or chemically modify the steric or electronic properties of the catalyst. The former could be difficult to do in an industrial plant setting, whereas the latter may consume a tremendous amount of labor, cost, and time.

To overcome these drawbacks, our group has been developing stimuli-responsive catalysts that are capable of yielding different polyethylene product from a universal catalyst platform. We have created several Ni or Pd catalysts that could switch reactivity by interchanging their pendant secondary cations.

In this thesis, we have prepared a new class of nickel phosphine-phenolate complexes bearing a pendant polyethylene glycol (PEG) chain to provide a binding pocket for secondary metals. In the presence of secondary alkali cations such as Li⁺, Na⁺, K⁺, and Cs⁺, our heterobimetallic complexes displayed significant enhancement in catalytic activity and thermal stability compared to that of their parent monometallic complex and afforded different types of PE depending on the alkali ions used. The nickel-lithium complex showed extraordinary activity at 40 °C and the nickelcesium displayed a high thermal stability at 90 °C. We also took advantage of the tunability of our nickel complex to synthesize bimodal PE in one-pot reactions. Polymerization of ethylene using our nickel complex in the presence of a mixture of Li/Na afforded polyethylene with bimodal molecular weight distributions, which was confirmed by GPC characterization.

Lastly, we have prepared a bulky variant of our nickel phosphine-phenolate-PEG catalyst. The introduction of bulkier substituents into the phosphine donor has led to a significant enhancement in catalyst thermal stability and polymer molecular weight.

ACKNOWLEDGMENTS	iii
ABSTRACT	iv
LIST OF ABBREVIATIONS	ix
LIST OF FIGURES	xi
LIST OF SCHEMES	XX
LIST OF TABLES	xxi
Chapter 1. Catalyst Tuning Strategies	1
1.1. Introduction	1
1.2. Altering Reaction Conditions	
1.3. Redox-switching	7
1.3.1. Redox-Active Palladium Catalysts for Ethylene Polymerization	
1.3.2. Redox-Active Nickel Catalysts for Ethylene Polymerization	
1.4. Lewis-Acid Binding	14
1.4.1. Boron Lewis Acid Binding	15
1.4.2. Secondary Metal Binding	19
1.5. Self-Assembly of Caged Catalysts	
1.6. Chain Transfer Agents	
1.7. Our Catalyst Design Approach	
1.8. Scope of the Dissertation	
Chapter 2. Development of Highly Productive Nickel-Sodium Phenoxyphosphir Polymerization Catalysts and Their Reaction Temperature Profiles	1e Ethylene 29
2.1. Introduction	
2.2. Synthesis of Nickel Phenoxyphosphine-Polyethylene Glycol Complexes	
2.2.1. Ligand Synthesis	
2.2.2. Catalyst Synthesis	
2.3. Metal Binding Study	
2.4. Ethylene Polymerization Study	
2.5. Conclusion	39
2.6. Experimental	40

TABLE OF CONTENTS

2.7. Crystallographic Data	65
2.8. Spectral Characterization	67
Chapter 3. One Catalysts Many Materials: Using Alkali Ions to Control Polymerization Catalysts	Ethylene 80
3.1. Introduction	80
3.2. Secondary Alkali Ion Complexation	80
3.2.1. X-ray Characterization	80
3.2.2. Metal Binding Study by UV-Vis Absorption Spectroscopy	81
3.3. Ethylene Polymerization	85
3.4. Structure-Activity Correlation	
3.4.1. Steric Influence	
3.4.2. Electronic Influence	101
3.5. Catalyst Stability	103
3.5.1. Post-Activation Study	103
3.5.2. UV-Vis Absorption Spectroscopy	105
3.5.3. Activation Study	107
3.6. Mechanistic Implications	108
3.6.1. cis/trans Isomerization	108
3.6.2. Ethylene Insertion Energy Barrier	112
3.7. Conclusion	115
3.8. Experimetal	116
3.9. X-ray Data Collection and Refinement	137
3.10. Decomposition study by UV-Vis	139
3.11. DFT Calculation Data	144
3.12. Spectral Characterization	148
Chapter 4. Nickel-Alkali Catalysts for Controlled Synthesis of Bimodal Polyethyle	nes169
4.1. Introduction	169
4.2. Synthesis of Bulky Catalyst	170
4.3. Ethylene Polymerization	171
4.4. Conclusion	175

4.5. Experimental	
4.6. Spectra Charaterization	
Chapter 5. Evaluation of Dicopper Azacryptand Complexes in Aquand Their Tolerance Toward Biological Thiols	ueous CuAAC Reactions 194
5.1. Introduction	
5.2. Copper Catalyst Selection and Synthesis	
5.3. CuAAC Reaction	
5.3.1. Comparison of Catalyst Activity	
5.3.2. Comparison of Thiol Tolerance	
5.3.3. Copper Azacryptand vs. TBTA Complexes	
5.4. Conclusions	
5.5. Experimental	
5.6. Spectra Characterization	
BIBLIOPGRAPHY	

LIST OF ABBREVIATIONS

acac	acetylacetonate
BAr^{F_4}	tetrakis(3,5-trifluoromethylphenyl)borate
Bu	butyl
BHT	butylated hydroxytoluene
CF ₃	trifluoromethyl
COD	1,5-cyclooctadiene
CuAAC	Copper-catalyzed azide-alkyne cycloaddition
d	doublet
DCM	dichloromethane
DMSO	dimethyl sulfoxide
DSC	differential scanning calorimetry
equiv	equivalence
Et	ethyl
ESI	electrospray ionization
FID	flame ionization detector
GC	gas chromatography
GPC	gel permeation chromatography
HRMS	high resolution mass spectroscopy
HDPE	high density polyethylene
IR	infrared (spectroscopy)
J	coupling constant
LDPE	low density polyethylene
m	multiplet or milli
m	meta
<i>m/z</i> ,	mass to charge ratio
Me	methyl
MeCN	acetonitrile
M_n	the number average molecular weight
min	minute
ml	millliter
mp	melting point

mass spectral detector
the weight average molecular weight
nuclear magnetic resonance
nitro
ortho
methoxyl
alkoxy
para
polyethylene
polyethylene glycol
Cross-link polyethylene
phenyl
parts per million
polyolefin
pyridine
quartet
singlet
tert
tris(benzyltriazolemethyl)amine
1,2,4-trichlorobenzene
tetrachloroethane
turnover number
turnover frequency
ultra-high molecular weight polyethylene

LIST OF FIGURES

Figure 1.1. Representative examples of Ni and Pd based α-diimine complexes
Figure 1.2. Strain at break of HDPE, LDPE, blend and compatibilised blend strained at a rate of
100% min ⁻¹ . ²⁰
Figure 1.3. Ni and Pd complexes bearing ferrocene moieties introduced by the Gibson group 8
Figure 1.4 Long's redox active Pd catalysts for ethylene polymerization
Figure 1.5 Ni complex used in Long's study Table 1.1 Polymerization study for complex 20 in the
presence and absence of cobalt reductant
Figure 1.6 Ni complexes bearing two ferrocenyl side-arms
Figure 1.7. Branching density of PE produced by complexes 21, 22, and 23 in the
presence/absence of an oxidant (AgBAr ^F ₄) or a reductant (Cp ₂ Co). ³³ Polymerization conditions:
5.0 µmol catalyst, 98 mL of toluene, 2 mL of dichloromethane, 20 °C, 15 psi ethylene, 15 min,
and 500 equiv of MMAO
Figure 1.8. Plot of PE branching density versus light exposure time for polymerization containing
fac-Ir(ppy). ³⁴
Figure 1.9. Phosphine Pd complex bearing both sulfonate and phosphonate moieties
Figure 1.10. Pyridazine imine Ni complexes
Figure 1.11 Phosphine-sulfonate Pd and Ni catalysts bearing carbazolyl and pyrrolyl substituents.
Figure 1.12. Examples of Ni bimetallic catalysts for olefin polymerization reported by Brookhart
and co-workers. ⁵⁴
Figure 1.13 Azanickellacyclic complex
Figure 1.14. Ni complexes supported by phenoxy imine backbone bearing 2,2'-bipyridine pendent
moiety
Figure 1.15. Ni and Pd complexes containing PEG chain side-arms
Figure 1.16. Ni carboxamidate triazole complexes and Ni carboxamidate triazole complexes
bearing a pendent picolyl donor as a secondary binding site
Figure 1.17. GPC data fitting of PEs produced by 44a/ZnCl ₂ after 2h. ⁴⁸ Reproduced with
permission from Xiao, D.; Do, L. H. Organometallic 2018, 37, 3079-3085.
DOI:10.1021/acs.organomet.8b00454. Copyright © 2018 American Chemical Society
Figure 1.18. Self-assembled Pd caged complexes introduced by the Jordan group
Figure 1.19. Dialkyl zinc and silane compounds as effecient CTAs for group 10 transition-metal
based catalysts
Figure 1.20. General structure of Ni phenoxyphosphine PEG complexes used in this study 28
Figure 2.1. UV-vis absorbance spectra of complex Ni11 (100 µM in Et ₂ O) after the addition of
various aliquots of NaBAr ^F ₄ . The starting trace of Ni11 is shown in black and the final trace $(+1.0)$
equiv of Na ⁺ relative to Ni) is shown in red
Figure 2.2. Job Plot showing the coordination interactions between complex Ni11 and NaBAr ^F ₄ .
The peak maximum occurs at $\gamma Ni = 0.5$, which suggests that the optimal nickel: sodium binding

stoichiometry is 1:1. The y-axis value (Aobs $-\epsilon h \cdot [H]t$) is proportional to the concentration of the nickel-sodium complex Ni11-Na. The x-axis is the molar ratio of nickel ($\chi Ni =$ Figure 2.3. X-ray structure of complex Ni11-Na (ORTEP view, displacement ellipsoids drawn at 50% probability level). Hydrogen atoms and the $BAr_{4}^{F_{4}}$ anion have been omitted for clarity. ... 34 Figure 2.4. X-ray structure of complex Ni'Bu (ORTEP view, displacement ellipsoids drawn at 50% probability level). Hydrogen atoms and pentane solvent have been omitted for clarity. Atom Figure 2.5. UV-vis absorbance spectra of complex Ni'Bu (100 µM in Et2O) after the addition of 4 equiv of NaBAr^F₄. The starting trace of **Ni'Bu** before and after the addition of Na are identical, Figure 2.6. Plots showing the reaction temperatures (black dots) and polymer yields (red triangles) by the Nill-Na complex at 100 µM (A) and 50 µM (B) catalyst concentrations. When external temperature control was applied (C), the Ni11-Na (5 µM) catalyst gave increasing amounts of PE up to the 2 h polymerization time. All reactions were performed under 450 psi of ethylene...... 39 Figure 2.7. Comparison of catalyst activity between Ni'Bu and Ni11 with and without the addition Figure 2.8. Activity vs. pressure plot of catalyst Ni11-Na in ethylene polymerization at 450 psi. Figure 2.9. Activity vs. time plot of catalyst Ni11-Na in ethylene polymerization at 150 psi. The activity remained relatively constant over a 3 h time course. Full data shown in Table 2.5...... 58 Figure 2.10. Activity vs. time plot of catalyst Ni11-Na in ethylene polymerization under optimal reaction conditions. The activity decreased gradually over the 2 h time course. Full data shown in Figure 2.11. Activity vs. temperature plot of catalyst Ni11-Na in ethylene polymerization at 150 Figure 2.12. Activity vs. temperature plot of catalyst Ni11-Na in ethylene polymerization at 450 Figure 2.13. Temperature profile of ethylene polymerization (450 psi) by Ni11-Na (100 µM) over the course of 1 h. The temperature values represent the internal reactor temperatures and were Figure 2.14. Temperature profile of ethylene polymerization (450 psi) by Ni11-Na (50 µM) over the course of 1 h. The temperature values represent the internal reactor temperatures and were

Figure 2.20. ¹³ C NMR spectrum (CDCl ₃ , 101 MHz) of compound L64	69
Figure 2.21. ³¹ P NMR spectrum (CDCl ₃ , 202 MHz) of compound L64	70
Figure 2.22. ¹ H NMR spectrum (CDCl ₃ , 500 MHz) of compound 56	70
Figure 2.23. ¹³ C NMR spectrum (CDCl ₃ , 126 MHz) of compound 56	71
Figure 2.24. ¹ H NMR spectrum (CDCl ₃ , 500 MHz) of compound 57	71
Figure 2.25. ¹³ C NMR spectrum (CDCl ₃ , 126 MHz) of compound 57	72
Figure 2.26. ³¹ P NMR spectrum (CDCl ₃ , 202 MHz) of compound 57	72
Figure 2.27. ¹ H NMR spectrum (CDCl ₃ , 500 MHz) of compound 59.	73
Figure 2.28. ¹³ C NMR spectrum (CDCl ₃ , 126 MHz) of compound 59	73
Figure 2.29. ³¹ P NMR spectrum (CDCl ₃ , 202 MHz) of compound 59	74
Figure 2.30. ¹ H NMR spectrum (CDCl ₃ , 500 MHz) of compound 63	74
Figure 2.31. ¹³ C NMR spectrum (CDCl ₃ , 126 MHz) of compound 63.	75
Figure 2.32. ¹ H NMR spectrum (CDCl ₃ , 126 MHz) of compound L61	75
Figure 2.33. ¹³ C NMR spectrum (CDCl ₃ , 126 MHz) of compound L61	76
Figure 2.34. ³¹ P NMR spectrum (CDCl ₃ , 162 MHz) of compound L61	76
Figure 2.35. ¹ H NMR spectrum (C ₆ D ₆ , 400 MHz) of complex Ni'Bu.	77
Figure 2.36. ¹³ C NMR spectrum (C ₆ D ₆ , 100 MHz) of complex Ni ^t Bu.	77
Figure 2.37. ³¹ P NMR spectrum (C ₆ D ₆ , 162 MHz) of complex Ni'Bu	78
Figure 1.58. ¹ H NMR spectrum (C ₆ D ₆ , 400 MHz) of complex Ni11	78
Figure 2.39. ¹³ C NMR spectrum (C_6D_6 , 126 MHz) of complex Ni11	79
Figure 2.40. ³¹ P NMR spectrum (C ₆ D ₆ , 162 MHz) of complex Ni11.	79
Figure 3.1. X-ray structure of complex Ni11-M (ORTEP view, displacement ellipsoids draw	vn at
50% probability level). Hydrogen atoms have been omitted for clarity	81
Figure 3.2. Job plots for complex Ni11 with $MBAr^{F_4}$, $M = Li^+$ (blue squares), Na ⁺ (orange circ	eles),
K^+ (red triangles), Cs^+ (green rhombus) in a mixture of Et_2O and toluene (1:1) at 25 °C	83
Figure 3.3. UV-vis absorbance spectra of complex Ni11 after the addition of various aliquo	ts of
MBAr ^F ₄	84
Figure 3.4. Ni'Bu and NiC ₆ F ₅ complexes used as standards in this study for comparison	85
Figure 3.5. Ethylene polymerization using Ni11-alkali metals bimetallic complexes	and
monometallic nickel complexes at 30 °C	87
Figure 3.6. Molecular weight and branching density of polyethylenes produced by Ni11-a	lkali
metals bimetallic complexes and monometallic nickel complexes at 30 °C.	87
Figure 3.7. Ethylene polymerization study for bimetallic complexes in benzene.	90
Figure 3.8. Ethylene polymerization study for bimetallic complexes in dichloromethane	91
Figure 3.9. Temperature study of Ni11-Li in ethylene polymerization.	92
Figure 3.10. Optimizing study for Ni11-Li complex in ethylene polymerization at 40 °C	93
Figure 3.11. Ethylene polymerization study for Ni11-Li in different solvents	94
Figure 3.12. Counteranion effect study for Ni11-Li in ethylene polymerization in toluene wit	hout
temperature control.	95

Figure 3.13. Counteranion effect study for Ni11-Li in ethylene polymerization in a mixture of Figure 3.14. Time-Dependent catalyst activity of Ni11-Li (5 µM). The temperature values represent the internal reactor temperatures and were recorded manually by reading the digital Figure 3.15. Front view and side view of Ni^tBu and NiC₆F₅. Atom colors: green = nickel, orange = phosphorus, purple = alkali metal, red = oxygen, white = carbon, yellow = fluorine. The alkyl Figure 3.16. Front view and side view of X-ray structures of bimetallic nickel complexes. Atom colors: green = nickel, orange = phosphorus, purple = alkali metal, red = oxygen, white = carbon. Figure 3.17. Steric map and %V_{bur} of Ni'Bu and NiC₆F₅ complexes calculated based on their respective X-ray structures using SambVca 2.1 software program.¹⁰¹⁻¹⁰³ The Ni-atom is placed at the center of the xyz coordinate system. The P-Ni-O plane is placed in the xz-plane with the zaxis bisecting the P-Ni-O angle. The y-axis represents the axial position of the xz-plane containing the Pd center. The phenyl and trimethylphosphine groups were omitted for the analysis of the steric maps. Atom colors: green = nickel, orange = phosphorous, purple = alkali metal, red = oxygen, yellow = fluorine, black = carbon. *X-ray data of **Ni'Bu** complex was adopted from our previous publication.⁵⁸ **For NiC₆F₅ complex calculation, a similar X-ray structure was utilized.⁶⁶ Figure 3.18. Cyclic voltammograms of a nickel complexes, recorded at 0.2 V/s in acetonitrile with 0.09 M *n*Bu₄NBPh₄ supporting electrolyte, a glassy carbon working electrode, a platinum wire counter electrode, and a silver wire pseudoreference. Potentials are referenced to an internal standard of ferrocene, and currents are normalized to bring all of the traces onto the same scale. Figure 3.21. UV-Vis absorption data for nickel bimetallic complexes after addition of phosphine Figure 3.22. Proposed *cis/trans* isomerization of square planar nickel and palladium complexes. Figure 3.23. cis/trans isomerization of palladium complexes studied by Jordan's group...... 109 Figure 3.25. Free energy profile of Ni11-Li in ethylene coordination/insertion polymerization. Figure 3.26. Free energy profile of Ni11-Na in ethylene coordination/insertion polymerization. Figure 3.27. Free energy profile of Ni'Bu in ethylene coordination/insertion polymerization. 115

Figure 3.28. UV-vis absorbance spectra of complex Ni11 (100 µM in Et ₂ O) after the addition of
various aliquots of LiOTf. The starting trace of Ni11 is shown in black and the final trace (+ 1.0
equiv of Li ⁺ relative to Ni) is shown in red
Figure 3.29. UV-vis absorbance spectra of complex Ni11 (100 µM in MeCN) after the addition
of various aliquots of $LiBAr^{F_{4}}$. The starting trace of Ni11 is shown in black and the final trace (+
15.0 equiv of Cs ⁺ relative to Ni) is shown in red
Figure 3.30. UV-vis absorbance spectra at the wavelength of 340 nm of complex Ni11 after
activating by $B(C_6F_5)_3$
Figure 3.31. UV-vis absorption spectra of Ni11 at 50 °C. Kinetic scan was run for 3 h 140
Figure 3.32. UV-vis absorption spectra of Ni11 after activating with B(C ₆ F ₅) ₃ at 50 °C. Kinetic
scan was run for 3 h 140
Figure 3.33. UV-vis absorption spectra of Ni11-Li after activating with B(C ₆ F ₅) ₃ at 50 °C. Kinetic
scan was run for 6 h 141
Figure 3.34. Kinetic traces of Ni11-Li: A) within 51 min and B) after 51 min. Data obtained from
Figure 3.39
Figure 3.35. UV-vis absorption spectra of Ni11-Na after activating with B(C ₆ F ₅) ₃ at 50 °C. Kinetic
scan was run for 6 h 142
Figure 3.36. UV-vis absorption spectra of Ni11-K after activating with B(C ₆ F ₅) ₃ at 50 °C. Kinetic
scan was run for 6 h 142
Figure 3.37. UV-vis absorption spectra of Ni11-Cs after activating with $B(C_6F_5)_3$ at 50 °C. Kinetic
scan was run for 6 h 143
Figure 3.38. Ground state energy for <i>cis/trans</i> isomers of nickel complexes
Figure 3.39. Free energy profile of NiC ₆ F ₅ in ethylene coordination/insertion polymerization.
Figure 3.40. Free energy profile of Ni11-K in ethylene coordination/insertion polymerization.
Figure 3.41. Free energy profile of Ni11-Cs in ethylene coordination/insertion polymerization.
Figure 3.42. ¹ H NMR spectrum (C ₆ D ₆ , 500 MHz) of compound L70 148
Figure 3.43. ¹³ C NMR spectrum (C ₆ D ₆ , 125 MHz) of compound L70
Figure 3.44. ¹⁹ F NMR spectrum (C ₆ D ₆ , 470 MHz) of compound L70 149
Figure 3.45. ³¹ P NMR spectrum (C ₆ D ₆ , 202 MHz) of compound L70 149
Figure 3.46. ¹ H NMR spectrum (C ₆ D ₆ , 500 MHz) of complex NiC₆F ₅
Figure 3.47. ¹³ C NMR spectrum (C ₆ D ₆ , 100 MHz) of complex NiC ₆ F ₅
Figure 3.48. ¹⁹ F NMR spectrum (C ₆ D ₆ , 470 MHz) of complex NiC₆F ₅
Figure 3.49. ³¹ P NMR spectrum (C ₆ D ₆ , 202 MHz) of NiC₆F ₅ complex
Figure 3.50. ¹ H NMR spectrum (C ₂ D ₂ Cl ₄ , 500 MHz, 120 °C) of polyethylene produced by Ni11-
Li at 30 °C (Table 3.1, entry 2)

Figure 3.51. ¹ H NMR spectrum (C ₂ D ₂ Cl ₄ , 500 MHz, 120 °C) of polyethylene produced by Ni11-
Cs at 30 °C (Table 3.1, entry 5) 152
Figure 3.52. ¹ H NMR spectrum (C ₂ D ₂ Cl ₄ , 500 MHz, 120 °C) of polyethylene produced by Ni ^{<i>t</i>} Bu
at 30 °C (Table 3.1, entry 6)
Figure 3.53. ¹ H NMR spectrum ($C_2D_2Cl_4$, 500 MHz, 120 °C) of polyethylene produced by NiC ₆ F ₅
at 30 °C (Table 3.1, entry 7)
Figure 3.54. ¹ H NMR spectrum (C ₂ D ₂ Cl ₄ , 600 MHz, 120 °C) of polyethylene produced by Ni11-
Li in pentane (Table 3.11, entry 1) 154
Figure 3.55. ¹ H NMR spectrum (C ₂ D ₂ Cl ₄ , 600 MHz, 120 °C) of polyethylene produced by Ni11-
Li in hexane (Table 3.11, entry 2) 154
Figure 3.56. ¹ H NMR spectrum (C ₂ D ₂ Cl ₄ , 600 MHz, 120 °C) of polyethylene produced by Ni11-
Li in benzene (Table 3.11, entry 3)155
Figure 3.57. ¹ H NMR spectrum (C ₂ D ₂ Cl ₄ , 500 MHz, 120 °C) of polyethylene produced by Ni11-
Li in toluene (Table 3.11, entry 4) 155
Figure 3.58. ¹ H NMR spectrum (C ₂ D ₂ Cl ₄ , 600 MHz, 120 °C) of polyethylene produced by Ni11-
Li in DCM (Table 3.11, entry 5)
Figure 3.59. ¹ H NMR spectrum (C ₂ D ₂ Cl ₄ , 600 MHz, 120 °C) of polyethylene produced by Ni11-
Li in diethyl ether (Table 3.11, entry 6)
Figure 3.60. ¹ H NMR spectrum (C ₂ D ₂ Cl ₄ , 600 MHz, 120 °C) of polyethylene produced by Ni11-
Li(BARF) (Table 3.14, entry 1)
Figure 3.61. ¹ H NMR spectrum (C ₂ D ₂ Cl ₄ , 600 MHz, 120 °C) of polyethylene produced by NiL-
Li(TPFB) (Table 3.14, entry 2)
Figure 3.62. ¹ H NMR spectrum (C ₂ D ₂ Cl ₄ , 600 MHz, 120 °C) of polyethylene produced by NiL-
Li(BPh ₄) (Table 3.14, entry 3)
Figure 3.63. A) GPC chromatograms of the polyethylene obtained in Table 3.1, Entry 2. B)
Normalized chromatograms showing the peaks corresponding to the polyethylene product and the
molecular weight range (black line). The data were acquired using a triple detector system: red =
refractive index, green = right angle light scattering, blue = viscometer. The peak at \sim 31 mL
retention volume marked with an asterisk (*) is derived from a contaminant in the GPC column,
not the sample itself
Figure 3.64. A) GPC chromatograms of the polyethylene obtained in Table 3.1, Entry 3. B)
Normalized chromatograms showing the peaks corresponding to the polyethylene product and the
molecular weight range (black line). The data were acquired using a triple detector system: red =
refractive index, green = right angle light scattering, blue = viscometer. The peak at \sim 31 mL
retention volume marked with an asterisk (*) is derived from a contaminant in the GPC column,
not the sample itself
Figure 3.65. A) GPC chromatograms of the polyethylene obtained in Table 3.1, Entry 4. B)
Normalized chromatograms showing the peaks corresponding to the polyethylene product and the
molecular weight range (black line). The data were acquired using a triple detector system: red =

refractive index, green = right angle light scattering, blue = viscometer. The peak at ~ 31 mL
retention volume marked with an asterisk (*) is derived from a contaminant in the GPC column,
not the sample itself
Figure 3.66. A) GPC chromatograms of the polyethylene obtained in Table 3.1, Entry 5. B)
Normalized chromatograms showing the peaks corresponding to the polyethylene product and the
molecular weight range (black line). The data were acquired using a triple detector system: red =
refractive index, green = right angle light scattering, blue = viscometer. The peak at ~31 mL
retention volume marked with an asterisk (*) is derived from a contaminant in the GPC column,
not the sample itself
Figure 3.67. A) GPC chromatograms of the polyethylene obtained in Table 3.1, Entry 6. B)
Normalized chromatograms showing the peaks corresponding to the polyethylene product and the
molecular weight range (black line). The data were acquired using a triple detector system: red =
refractive index, green = right angle light scattering, blue = viscometer. The peak at ~31 mL
retention volume marked with an asterisk (*) is derived from a contaminant in the GPC column,
not the sample itself
Figure 3.68. A) GPC chromatograms of the polyethylene obtained in Table 3.1, Entry 7. B)
Normalized chromatograms showing the peaks corresponding to the polyethylene product and the
molecular weight range (black line). The data were acquired using a triple detector system: red =
refractive index, green = right angle light scattering, blue = viscometer. The peak at ~ 31 mL
retention volume marked with an asterisk (*) is derived from a contaminant in the GPC column,
not the sample itself
Figure 3.69. ¹ H NMR of Ni11 complex before and after adding $B(C_6F_5)_3$ at 30 °C
Figure 3.70. ³¹ P NMR of Ni11 complex before and after adding $B(C_6F_5)_3$ at 30 °C
Figure 3.71. ¹ H NMR of Ni11 -Li complex before and after adding $B(C_6F_5)_3$ at 30 °C
Figure 3.72. ³¹ P NMR of Ni11 -Li complex before and after adding $B(C_6F_5)_3$ at 30 °C
Figure 3.73. ¹ H NMR of Ni11 complex before and after adding [LiBAr ^F ₄ + B(C ₆ F ₅) ₂] at 30 °C.
Figure 3.74 ³¹ P NMR of Ni11 complex before and after adding [LiBAr ^F ₄ + B(C ₆ F ₅) ₂] at 30 °C
164
Figure 3.75. ¹ H NMR of Ni11 -Li before and after adding $B(C_6F_5)_3$ at 50 °C
Figure 3.76. ³¹ P NMR of Ni11-Li before and after adding B(C ₆ F ₅) ₃ at 50 °C 165
Figure 3.77. ¹ H NMR of Ni11 -Na before and after adding $B(C_6F_5)_3$ at 30 °C
Figure 3.78. ³¹ P NMR of Ni11-Na before and after adding $B(C_6F_5)_3$ at 30 °C
Figure 3.79. ¹ H NMR of Ni11 -K before and after adding B(C ₆ F ₅) ₃ at 30 °C
Figure 3.80. ¹ H NMR of Ni11 -K before and after adding $B(C_6F_5)_3$ at 30 °C
Figure 3.81. ¹ H NMR of Ni11 -Cs before and after adding $B(C_6F_5)_3$ at 30 °C
Figure 3.82. ³¹ P NMR of Ni11-Cs before and after adding $B(C_6F_5)_3$ at 30 °C
Figure 4.1. ¹ H NMR spectrum (CDCl ₃ , 400 MHz) of compound 71
Figure 4.2. ¹³ C NMR spectrum (CDCl ₃ , 101 MHz) of compound 71

Figure 4.3. ³¹ P NMR spectrum (CDCl ₃ , 162 MHz) of compound 71	186
Figure 4.4. ¹ H NMR spectrum (CDCl ₃ , 500 MHz) of compound 73	186
Figure 4.5. ¹³ C NMR spectrum (CDCl ₃ , 126 MHz) of compound 73.	187
Figure 4.6. ³¹ P NMR spectrum (CDCl ₃ , 202 MHz) of compound 73	187
Figure 4.7. ¹ H NMR spectrum (C_6D_6 , 500 MHz) of compound L75	188
Figure 4.8. ¹³ H NMR spectrum (C ₆ D ₆ , 101 MHz) of compound L75	188
Figure 4.9. ³¹ P NMR spectrum (C ₆ D ₆ , 162 MHz) of compound L75	189
Figure 4.10. ¹ H NMR spectrum (C_6D_6 , 500 MHz) of complex Ni21	189
Figure 4.11. ³¹ P NMR spectrum (C ₆ D ₆ , 162 MHz) of complex Ni21	190
Figure 4.12. GPC chromatograms of the polyethylene obtained in Table 4.1, Entry 1. The pea	ık at
~22 mL retention volume marker with an asterisk (*) is derived from a contaminant in the C	GPC
column, not the sample itself.	190
Figure 4.13. GPC chromatograms of the polyethylene obtained in Table 4.1, Entry 2. The pea	ık at
~22 mL retention volume marker with an asterisk (*) is derived from a contaminant in the C	GPC
column, not the sample itself.	191
Figure 4.14. GPC chromatograms of the polyethylene obtained in Table 4.1, Entry 3. The pea	ık at
~22 mL retention volume marker with an asterisk (*) is derived from a contaminant in the G	GPC
column, not the sample itself.	191
Figure 4.15. GPC chromatograms of the polyethylene obtained in Table 4.1, Entry 4. The pea	ık at
~22 mL retention volume marker with an asterisk (*) is derived from a contaminant in the C	GPC
column, not the sample itself.	192
Figure 4.16. GPC chromatograms of the polyethylene obtained in Table 4.1, Entry 5. The pea	ık at
~22 mL retention volume marker with an asterisk (*) is derived from a contaminant in the C	GPC
column, not the sample itself.	192
Figure 4.17. GPC chromatograms of the polyethylene obtained in Table 4.2	193
Figure 5.1. Reaction of complex Cu2a (50 μ M) with biological thiols (100 μ M). Plots A an	nd B
show the UV-vis absorption spectra (H ₂ O) of $Cu2a$ /glutathione and $Cu2a$ /cysteine, respective	ely.
The dotted trace shows the spectrum of Cu2a without any additives. The solid black traces v	vere
obtained right after mixing Cu2a with either glutathione or cysteine and the solid red traces v	vere
obtained after ~60-80 min. Plot C shows the NMR spectra (D ₂ O/CD3CN:1/2, 600 MHz) of Cu	u2a,
Cu2a/glutathione and Cu2a/cysteine as indicated.	203
Figure 5.2. Reaction of complex Cu1a (50 μ M) with biological thiols (100 μ M). Plots A an	nd B
show the UV-vis absorption spectra (H ₂ O) of Cu1a/glutathione and Cu1a/cysteine, respective	ely.
The dotted trace shows the spectrum of Cu1a without any additives. The solid black traces v	vere
obtained right after mixing Cu1a with either glutathione or cysteine and the solid red traces v	vere
obtained after ~60-80 min. Plot C shows the NMR spectra (D_2O , 500 MHz) of C	u1a,
Cu1a/glutathione and Cu1a/cysteine as indicated.	221
Figure 5.3. Reaction of complex Cu3a (50 μ M) with biological thiols (100 μ M). Plots A an	nd B
show the UV-vis absorption spectra (H ₂ O) of Cu3a/glutathione and Cu3a/cysteine, respectiv	ely.

The dotted trace shows the spectrum of Cu3a without any additives. The solid black	k traces were
obtained right after mixing Cu3a with either glutathione or cysteine and the solid re-	d traces were
obtained after ~60-80 min. Plot C shows the NMR spectra (D ₂ O, 500 MHz	z) of Cu3a ,
Cu3a/glutathione and Cu3a/cysteine as indicated.	
Figure 5.4. ¹ H NMR spectrum (CDCl ₃ , 400 MHz) of complex Cu1a	223
Figure 5.5. ¹³ C NMR spectrum (CD ₃ CN, 126 MHz) of complex Cu1a	223
Figure 5.6. ¹ H NMR spectrum (CD ₃ CN, 400 MHz) of complex Cu1b.	
Figure 5.7. ¹ H NMR spectrum (CD ₃ CN, 400 MHz) of complex Cu2a	
Figure 5.8. ¹³ C NMR spectrum (CD ₃ CN, 100 MHz) of complex Cu2a	225
Figure 5.9. ¹ H NMR spectrum (CD ₃ CN, 400 MHz) of complex Cu2b. The broad p	eaks suggest
that the complex undergoes dynamic structural changes in solution	
Figure 5.10. ¹³ C NMR spectrum (CD ₃ CN, 100 MHz) of complex Cu2b	
Figure 5.11. ¹ H NMR spectrum (CD ₃ CN, 400 MHz) of complex Cu3a	
Figure 5.12. ¹³ C NMR spectrum (CD ₃ CN, 126 MHz) of complex Cu3a	227
Figure 5.13. ¹ H NMR spectrum (CD ₃ CN, 400 MHz) of complex Cu3b.	227
Figure 5.14. ¹³ C NMR spectrum (CD ₃ CN, 100 MHz) of complex Cu3b	

LIST OF SCHEMES

Scheme 1.1. Mechanism of chain walking in ethylene polymerization
Scheme 1.2. Influence of reaction temperature and ethylene pressure on the branching structure of
polymers produced. ¹⁹
Scheme 1.3. Synthesis of multiblock copolymer using "sandwich"-type Ni complex 7
Scheme 1.4. Pd ferrocene-bridged catalysts and their benzene-bridged analogues
Scheme 1.5. Pd complexes bearing two ferrocenyl moieties introduced by Chen's group 10
Scheme 1.6. Zwitterionic isomers of Ni complex introduced by Bazan's group
Scheme 1.7. Phosphine sulfonate and phosphine phosphonate Pd complexes
Scheme 1.8. Pd complexes that are able to switch between different species with different
nuclearity
Scheme 1.9. Proposed interaction of second metal cation and polar functional group in the
copolymerization of ethylene and polar monomer
Scheme 2.1. Synthesis of ligand L61 and compound 62 and 63
Scheme 2.2. Synthesis of nickel phenoxyphosphine complexes. Step a: 1) NaH, THF, 2)
NiPhBr(PMe ₃) ₂ ; Step b: NaBAr ^F ₄ . PEG3 = CH ₂ (OCH ₂ CH ₂) ₃ OCH ₃
Scheme 2.3. Synthesis of ligand L64
Scheme 3.1. Synthesis of NiC ₆ F ₅ complex
Scheme 4.1. Synthesis of nickel phenoxyphosphine complexes
Scheme 4.2. Synthesis of ligand L72 and compound 73 178
Scheme 5.1. A) General reaction scheme for copper-catalysed azide-alkyne cycloaddition
(CuAAC); and B) proposed application of caged catalysts to prevent inhibition by biological thiols.
Scheme 5.2. Synthesis of the copper azacryptand complexes. The curved lines between the
aldehyde group represent either the 1,3- or 1,4- benzene spacers
Scheme 5.3. Structure of the tris(benzyltriazolemethyl)amine ligand (TBTA) and its Cu(I)
complex
Scheme 5.4. Procedures for the synthesis of ligands Lig2, Lig3, Lig4, and Lig6
Scheme 5.5. Procedures for the synthesis of copper complexes Cu1-Cu3

LIST OF TABLES

Table 1.1 Polymerization study for complex 20 in the presence and absence of cobalt	reductant.
Table 1.2 Ethylene polymerization using Ni precatalyst 32 and 33. ^a	
Table 2.1. Ethylene Polymerization Data ^a	
Table 2.2. Data and Calculations Used for Job Plot ^a	
Table 2.3. Comparison of Nickel Catalyst Activity ^a	
Table 2.4. Pressure Study of Ethylene Polymerization by Ni11-Na ^a	
Table 2.5. Time Study of Ethylene Polymerization by Ni11-Na at 150 psi ^a	
Table 2.6. Time Study of Ethylene Polymerization by Ni11-Na at Optimal Reaction C	onditions ^a
Table 2.7. Temperature Study of Ethylene Polymerization by Ni11-Na at 150 psi ^a	
Table 2.8. Temperature Study of Ethylene Polymerization by Ni11-Na at 450 psi ^a	
Table 2.9. Time-Dependent Catalyst Activity of Ni11 -Na (100 μM) ^a	
Table 2.10. Time-Dependent Catalyst Activity of Ni11 -Na (50 μM) ^a	
Table 2.11. Comparison of Nickel Ethylene Polymerization Catalysts Reported in the	Literature
Table 2.12. Crystal Data and Structure Refinement for Ni'Bu and Ni11-Na	
Table 3.1. Polymerization Screening for Ni11 with Different Alkali Metals a	t Various
Temperatures ^a	
Table 3.2. Summary of oxidation potential for seven nickel complexes	103
Table 3.3. Summarized data for activation study of nickel complexes	108
Table 3.4. Summarized data for <i>cis/trans</i> isomerization study.	110
Table 3.5. Job Plot Data and Calculations Used for NiL-Li ^a	123
Table 3.6. Job Plot Data and Calculations Used for NiL-Na ^a	123
Table 3.7. Job Plot Data and Calculations Used for NiL-K ^a	
Table 3.8. Job Plot Data and Calculations Used for NiL-Cs ^a	
Table 3.9. Ethylene Polymerization Study of Ni11-M Bimetallic Complexes in Ber	nzene and
DCM ^a	127
Table 3.10. Temperature Study for Ni11-Li Complex in Ethylene Polymerization ^a	
Table 3.11. Solvent Study for Ni11-Li in Ethylene Polymerization ^a	129
Table 3.12. Salt/Catalyst Ratio Screening for Ni11 in Ethylene Polymerization ^a	
Table 3.13. Counteranion Effect Study of Ni11-Li in Ethylene Polymerization in Toluen	e Without
Temperature Control ^a	
Table 3.14. Counteranion Effect Study for Ni11-Li in Ethylene Polymerization in a N	Mixture of
Toluene and Et ₂ O (1:1) With Temperature Control ^{<i>a</i>}	
Table 3.15. Time-Dependent Catalyst Activity of Ni11-Li (5 μM) ^{<i>a</i>}	
Table 3.16. Additional Study of Ni11 in Ethylene Polymerization ^a	
Table 3.17. Comparison of Nickel Catalysts Reported in the Literature	135

Table 3.18. Comparison of Ni11-Cs Complex and Selected Highly Active Nickel E	Ethylene
Polymerization Catalysts Reported in the Literature at High Temperature	136
Table 3.19. Crystal Data and Structure Refinement for NiL-Li, NiL-Na, NiL-K and NiL-	-Cs. 138
Table 4.1. Polymerization Study for Ni41-M at Different Temperature ^a	173
Table 4.2. Ethylene Polymerization Study for Ni11 in the presence of a mixture of Li/Na.	175
Table 5.1. Comparison of Copper Catalysts ^a	200
Table 5.2. Comparison of Copper Catalysts in the Presence of Biological Thiols ^a	202
Table 5.3. Comparison of Copper Catalyst Concentrations ^a	207
Table 5.4. Comparison of Copper Catalyst Concentrations in the Presence of Thiols ^a	207
Table 5.5. Comparison of Cu Catalysts in Water/Acetone ^a	211
Table 5.6. Additional CuAAC Reactions ^a	212

Chapter 1. Catalyst Tuning Strategies

1.1. Introduction

Polyolefins (PO) are among some of the most commonly used plastics in our society with an annual production of about 150 million tons.¹ In general, POs possess many advantages in comparison with other natural or man-made materials such as their high tensile strength, chemical stability, corrosion resistance, innocuousness, lightweightness, flexibility, low production cost, and recyclability. These properties make POs suitable for numerous applications, such as packaging materials, storage containers, pipes, electronics, fabrics, and foams.²⁻⁴

Within the PO class of materials, polyethylene (PE) is manufactured with the largest volume, comprising more than 70 million tonnes produced yearly. The low-cost of ethylene and the diverse properties of PE make these polymers highly useful in commercial products. For example, in the packaging sector, high-density polyethylene (HDPE) is commonly used as containers and low-density polyethylene (LDPE) is commonly used as plastic wraps.⁵⁻⁶ The applications of PE are strongly dependent on its physical, chemical, and mechanical properties. These properties are heavily influenced by the molecular weight distribution (MWD) and polymer microstructure (branching type, branching density, and block structure).^{2, 7-9}

Greater than 70% of PE is being produced via transition metal catalyzed reactions.⁹ Although early transition metal catalysts (e.g., Ti, Hf, Zr) have been used with much success, interests in late transition metal catalysts, particularly Ni and Pd, have increased due to their greater potential in copolymerizing ethylene with polar monomers.^{3-4, 10-13} Ni and Pd-based catalysts have provided unique access to a variety of PE topologies ranging from highly linear crystalline to hyperbranched

amorphous polymers using only ethylene as a raw material.¹⁴⁻¹⁵ Although heterogeneous catalysts are most commonly used in industry, single-site homogeneous catalysts have emerged as attractive alternatives due to their ability to access PEs with precise molecular weight and microstructures.¹⁶ Brookhart's seminal report in 1995 that Ni and Pd diimine complexes are capable of producing branched high molecular weight polyethylene with activities rivaling many early transition metal counterparts (Figure 1.1)¹⁷ has inspired researchers to develop improved variants. As a result, hundreds of new catalyst structures have been disclosed in the last two decades. Recently, research interests have shifted toward controlling the MWD and microstructures of PEs to broaden their commercial applications.¹

Figure 1.1. Representative examples of Ni and Pd based α -diimine complexes.

In general, single site catalysts produce one type of polymer under a given set of reaction conditions. Typically, to obtain different polymer products, the steric and electronic properties of the metal catalysts are tuned by modifying their supporting ligands. Unfortunately, this process can be labor, cost, and time intensive. To diversify polyethylene products from a common catalyst, researchers have developed several strategies to influence the polymerization process, including altering the reaction conditions (e.g., changing temperature, ethylene pressure), switching redox

states, adding Lewis acids, adding chain transfer agents, and controlling catalyst nuclearity. In this chapter, we will summarize the various strategies used by researchers to obtain tailor-designed POs from metal-catalyzed polymerization. We will then describe our group's catalyst design rationale and the main goals to be achieved in this research thesis.

1.2. Altering Reaction Conditions

Changes in reaction conditions such as temperature and ethylene pressure can significantly impact the polymerization process. For most Ni(II) and Pd(II) complexes with common chelating [N,N], [N,O], [N,P], and [O,P] ligands, increasing the reaction temperature increases catalytic activity and decreases polymer molecular weight, while increasing ethylene pressure tends to increase both activity and molecular weight. For Ni and Pd α -diimine complexes, the metal centers are able to "walk" on the growing polymer chains through rapid β -H elimination reaction and reinsertion with opposite regio-chemistry. This process is so-called "chain walking" and is competitive with ethylene binding (Scheme 1.1). Increasing temperature typically increases the rate of chain-walking (a first-order process) relative to ethylene binding (a second-order process).¹⁸ Therefore, the branching structure of the resulting polymer can be controlled by adjusting the reaction temperature and ethylene pressure (Scheme 1.2).¹⁹

Scheme 1.1. Mechanism of chain walking in ethylene polymerization.

Scheme 1.2. Influence of reaction temperature and ethylene pressure on the branching structure of polymers produced.¹⁹

Coates' group has taken advantage of reaction condition switching to synthesize linear and branched multiblock copolymers directly from ethylene.²⁰ Using fluorinated aryl naphthyl α -diimine Ni complex **7** that is capable of performing living polymerization, they found that at high ethylene pressure and low reaction temperature (6 atm, -35 °C), complex **7** produced highly linear PE (LPE) (9 branches/1000 C, T_m = 128 °C). In contrast, at lower ethylene pressure and higher reaction temperature (1 atm, 20 °C), highly branched, amorphous PE (BPE) (112 branches/1000 C) was observed. By alternating between these two reaction conditions, they obtained the tetrablock copolymer LPE₅₅BPE₆₂LPE₅₈BPE₆₁ (the subscript specifies the M_n kg mol⁻¹ of each individual PE block) with unique tensile strength (Scheme 1.3). This tetrablock copolymer can act as a compatibiliser for an 80:20 LDPE/HDPE blend. With an addition of just 5% of LPE₅₅BPE₆₂LPE₅₈BPE₆₁, the strain at break of the blend dramatically increased 553% in comparison to that of the uncompatibilised mixture, while maintaining similar yield stress at 13 MPa, (Figure 1.2).

Scheme 1.3. Synthesis of multiblock copolymer using "sandwich"-type Ni complex 7.

Figure 1.2. Strain at break of HDPE, LDPE, blend and compatibilised blend strained at a rate of 100% min⁻¹.²⁰

1.3. Redox-switching

Redox control catalysis has been applied successfully in numerous metal catalyzed organic transformation, including polymerization.²¹⁻²³ The most common ligand design for redox-active complexes usually incorporates ferrocene (Fc) groups since they can be reversibly oxidized and reduced by conventional reagents such as AgOTf/FcBAr^F₄ as oxidant or Cp*₂Fe/Cp₂Co as reductant. Intriguing results in lactide homo(co)polymerization catalyzed by many transition metal complexes, such as those based on yttrium, indium, cerium, titanium, zirconium, and iron, have been reported by Diaconescu, Byers, and Long.²⁴⁻²⁷ Gibson et al. were among the first to introduce the concept of redox control in olefin polymerization (Figure 1.3).²⁸ ²⁹⁻³⁰ Unfortunately, their Pd complexes and bis-ligand Ni complexes 12 were found to be inactive in ethylene polymerization. Although some Ni complexes were quite active, they produced butenes with trace amounts of higher oligomers (C₆ and C₈) instead of PE. Complex 9a was the most active, displaying a TON of about 19.14×10^3 (mol ethylene/mol of catalyst). The oxidized form of **9a** exhibited similar reactivity as that of its parent, producing butenes with a TON of 16.43×10^3 (mol ethylene/mol of catalyst). Thus, negligible change in reactivity was observed upon redox switching. Gibson proposed that the MAO used to activate the pre-catalyst might have reduced the cationic iron(III)ferrocene back to its neutral iron(II) form, which was confirmed by their control experiments.

8a M = Ni; R = H; X = Y = Br 8b M = Ni; R = Me; X = Y = Br 8c M = Pd; R = H; X = Y = CI 8d M = Pd; R = H; X = CI, Y = Me

10a M = Ni; X = Y = Br 10b M = Pd; X = Y = CI **10c** M = Pd; X = Cl, Y = Me

12a R = R' = H **12b** R = H, R' = 9-Anthracenvl

Figure 1.3. Ni and Pd complexes bearing ferrocene moieties introduced by the Gibson group.

1.3.1. Redox-Active Palladium Catalysts for Ethylene Polymerization

In 2015, Chen and his coworkers reported a series of Pd complexes bearing ferrocene-bridged phosphine sulfonate ligands with phenyl and o-MeO-C₆H₄ substituents (Scheme 1.4A).³¹ For comparison, they also studied benzene-bridged phosphine-sulfonate Pd analogues for (Scheme 1.4B). Based on their cyclic voltammetry results, only the iron centers showed reversible redox activity. The Pd centers were not oxidized by treatment with AgOTf. In ethylene polymerization, both neutral (14a-16a) and oxidized (14a^{ox}-16a^{ox}) forms demonstrated high activity. They all produced linear PE (5-13 branches/1000 C) with narrow PDI. It has been shown previously that for Pd phosphine-sulfonate catalysts, electron poor complexes tend to undergo faster chain transfer than their electron rich counterparts, which leads to PE with lower molecular weight. Unfortunately, in this case, the oxidized complexes showed dramatic decrease in both activity (4-6 fold) and molecular weight (3-5 fold). Because Pd black was observed after polymerization when the oxidized complexes were used, the authors hypothesized that the oxidation species is probably less stable than the neutral species at elevated reaction temperature (80 °C).

14a, 14a^{ox} R = Ph; 15a, 15a^{ox} R = *o*-MeO-C₆H₄; 16a, 16a^{ox} R = Cy

Scheme 1.4. Pd ferrocene-bridged catalysts and their benzene-bridged analogues.

In 2017, Chen's group introduced a Pd α -diimine catalyst bearing two ferrocenyl moieties which could be sequentially oxidized by AgBAr^F₄ (Scheme 1.5).³² The oxidized species were analyzed in situ by NMR and IR spectroscopy and cyclic voltammetry. All three complexes were active in ethylene polymerization, affording the highest activity and PE molecular weight at 40 °C. The activity trend followed the order 17-CN > [17-CN]⁺ > [17-CN]²⁺, whereas the polymer molecular weight trend followed the order [17-CN]⁺ > 17-CN > [17-CN]²⁺. Because polymer molecular weight is determined by the relative rates of ethylene insertion over the rates of chain transfer. It is likely that these two events are affected differently in the different complexes

Scheme 1.5. Pd complexes bearing two ferrocenyl moieties introduced by Chen's group.

Later, in 2019, the Long group reported similar Pd complexes bearing different backbone and linkers (Figure 1.4). These complexes were also active and possess redox switchable behavior in ethylene polymerization, showing trends similar to those reported by Chen.

Figure 1.4 Long's redox active Pd catalysts for ethylene polymerization.

1.3.2. Redox-Active Nickel Catalysts for Ethylene Polymerization

Redox switching in olefin polymerization was successfully demonstrated using Ni complexes Long's group in 2016.¹⁵ Their Ni α -diimine complex **20** (Figure 1.5) produced high molecular weight PE with ~30% more branches (114 branches/ 1000 C) than that produced by **20** (88 branches/ 1000C) in the presence of 1 equiv of cobaltocene as a reductant. The reduced catalyst gave polymers with increased methyl branches (54.9% \rightarrow 62.8%) and branches that were six carbons or longer (9.2% \rightarrow 10.4%), while the percentage of *sec*-butyl branches decreased (5.3% \rightarrow 0.9%). Furthermore, the branching density was found to decrease almost linearly upon the addition of reductant (Table 1). Interestingly, the polymer molecular weight was highest when 0.75 equiv of cobaltocene was added (M_w = 274 kg/mol), 26% higher than that produced by the Ni catalyst only (M_w = 217 kg/mol). However, the polymer MW decreased when more reductant was added (M_w = 200 kg/mol) (Table 1, entry 5).

Figure 1.5 Ni complex used in Long's study

entry	[Co] ^b (equiv)	yield (g)	$M_{\rm w}{}^c$ (kg/mol)	$M_{ m w}/M_{ m n}{}^c$	\mathbf{B}^d
1	0	1.75	217	1.54	114 (±1.9)
2	2.5	1.94	254	1.65	109 (±3.0)
3	5.0	1.95	271	1.77	104 (±0.5)
4	7.5	2.38	274	1.72	99 (±0.7)
5	10.0	1.78	200	2.04	88 (±2.8)

Table 1.1 Polymerization study for complex 20 in the presence and absence of cobalt reductant.

^{*a*}Polymerization conditions: 10.0 μ mol Ni catalyst, 148 mL of toluene, 2 mL of DCM, 20 °C, 15 psi ethylene, 30 min and 92 equiv of PMAO-IP. ^{*b*}[Co] = cobaltocene. ^{*c*}Determine using triple detection GPC at 140 °C in 1,2,4-trichlorobenzene. ^{*d*}Branches per 1000 carbons.

In 2017, Long's group reported a series comprising three Ni complexes bearing two ferrocenyl moieties (Figure 1.6).³³ Although the pendant ferrocenyl substituents displayed sharp reversible peaks, the main ligand backbones showed different electrochemical properties: complex **21** displayed a quasi-reversible peak, complex **22** showed an irreversible reduction peak and complex **23** showed no significant electrochemical activity. These complexes were next investigated in ethylene polymerization. Upon addition of 2 equiv of AgBAr^F₄ as oxidant, the polymerization activity increased slightly. In contract, upon addition of 1 equiv of Cp₂Co as reductant, the activity dropped dramatically. The polymers produced by the catalysts in different oxidation states had similar molecular weight and branching density except for precatalyst **21**, which showed that the neutral and oxidized forms produced polymers with more branches (~40 branches/1000 C) (Figure 1.7).

Figure 1.6 Ni complexes bearing two ferrocenyl side-arms.

Figure 1.7. Branching density of PE produced by complexes **21**, **22**, and **23** in the presence/absence of an oxidant (AgBAr^F₄) or a reductant (Cp₂Co).³³ Polymerization conditions: 5.0 μ mol catalyst, 98 mL of toluene, 2 mL of dichloromethane, 20 °C, 15 psi ethylene, 15 min, and 500 equiv of MMAO

Later, in 2018, Long's group introduced photoredox catalysis in olefin polymerization. They employed **20** as a catalyst, tris[2-phenylpyridinato-C²,N] iridium(III) (*fac*-Ir(ppy)₃) as a photoreductant, and blue light as an external stimulus.³⁴ The polymerization of ethylene by precatalyst **20** was unaffected by the presence or absence of light and the resulting polymers displayed similar molecular weights. However, the branching density decreased as light exposure time increased (113 \rightarrow 93 branches/ 1000 C) (Figure 1.8).

Figure 1.8. Plot of PE branching density versus light exposure time for polymerization containing fac-Ir(ppy).³⁴

1.4. Lewis-Acid Binding

Lewis-acid assisted catalysis has been demonstrated to be highly versatile in various organic transformations. For example, the use of Lewis acid additives has been shown to improve the efficiency of Ru-catalyzed ring-closing metathesis reaction,³⁵ Pd-catalyzed C-N bond formation and C-H activation,³⁶⁻³⁷ Ni-catalyzed cyanoesterification and cyanocarbamoylation,³⁸ Fe-catalyzed dehydrogenation,³⁹ and Co-catalyzed hydrogenation.⁴⁰⁻⁴¹ Lewis acids can interact with substrates to activate strong bonds, which can promote bond breaking or nucleophilic attack. Furthermore, when properly positioned, Lewis acids could help improve product selectivity.⁴² The concept of Lewis acid-assisted catalysis has also been explored in olefin dimerization, oligomerization, and homo- and co-polymerization.^{37, 43-48} Because the applications of Lewis acid additives in olefin polymerization is still limited, we would like to simply classify this strategy into two main categories: metal cation Lewis acids and boron Lewis acids.
1.4.1. Boron Lewis Acid Binding

In 2007, Bazan and coworkers reported a Ni alkoxy imine complex that can form a mixture of two zwitterionic isomers upon addition of 2 equiv of $B(C_6F_5)_3$ (Scheme 1.6).⁴⁹ The notable feature of the Ni center is that it is supported by a C=C double bond that was further confirmed by X-ray characterization. Ethylene polymerization results showed that pre-catalyst **24** is not active, while the mixture of complexes **25a** and **25b** produced linear PE with a TOF of 450 (kg polymer mol_{Ni}⁻¹ h⁻¹) and a broad PDI (5.8). Surprisingly, an additional of 6 equiv of $B(C_6F_5)_3$ resulted in a fourfold increase in catalytic activity and significantly reduced PDI (2.5). The authors hypothesized that excess $B(C_6F_5)_3$ could scavenge impurities in the reaction mixture. However, recent publications showed that the η^3 -allyl Ni bond is relatively stable under high reaction temperature and ethylene pressure, thus, $B(C_6F_5)_3$ in this case may also serve as an activator.

Scheme 1.6. Zwitterionic isomers of Ni complex introduced by Bazan's group.

In 2012, Jordan's group introduced Pd complexes bearing [P,O] ancillary ligands (Scheme 1.7)⁵⁰⁻⁵¹ that are able to react with B(C₆F₅)₃ to switch the hybridization of the O donors from sp³ to sp², leading to a significant change in catalytic reactivity. The borane adducts **26b** and **27b** were characterized by X-ray crystallography to confirm their proposed zwitterion structures. The coordination of B(C₆F₅)₃ is suggested to weaken the Pd-O bonds and increase the degree of

positive charge on the Pd centers, resulting in enhancement of both chain growth and chain transfer rates. This hypothesis was supported by ethylene polymerization studies using complex **26b**, which showed an increase in polymer yield and significant decrease in polymer molecular weight compared to that by **26a**. Interestingly, addition of borane to the Pd phosphine phosphonate complex **27a** resulted in significant improvement in both catalytic activity and PE molecular weight. Several possibilities can account for these observations, such as the chain growth rate increased more than the chain transfer rate or the catalyst lifetime is longer compared to that of **27a** without borane.

Scheme 1.7. Phosphine sulfonate and phosphine phosphonate Pd complexes.

In 2014, Jordan reported a novel Pd phosphine complex that contains both sulfonate and phosphonate ester moieties (Figure 1.10).⁴⁴ Without coordination of $B(C_6F_5)_3$, the sulfonate group is better donor than the phosphonate ester because the anionic sp³ O donor is more Lewis basic than the neutral sp² O donor of the phosphonate group. When $B(C_6F_5)_3$ was added, it formed an

adduct with the sulfonate group and generated the phosphine phosphonate chelated complex **28b**. The structures of complex **28a** and its adduct **28b** were characterized by NMR spectroscopy and X-ray crystallography. Ethylene polymerization studies showed that both complexes afforded oligomers comprising both toluene-soluble and toluene-insoluble fractions with similar activity.

Figure 1.9. Phosphine Pd complex bearing both sulfonate and phosphonate moieties.

The phosphine sulfonate ligand above both bind borane at positions that are relatively far away from the active metal centers. Therefore, the catalyst tuning effect of boranes is primarily electronic in nature. In 2019, M. Chen et. al. reported pyridazine imine Ni complexes that have a boron coordination site adjacent to the metal center (Figure 1.11).⁵² Chen's complexes displayed low activity and produced PE products with medium molecular weights, low branching density, and broad PDI. In general, addition of Lewis acid additives enhanced the polymerization rate, reduced polymer molecular weight, increased branching density and narrowed the PDI (Table 1.2). The steric hindrance at the Ni centers is increased by chelation of the boron agents.

Figure 1.10. Pyridazine imine Ni complexes.

entry	cat.	additive ^b	activity ^c	$M_{\rm n}{}^d (10^3)$	$M_{ m w}/M_{ m n}^{d}$	B ^e
1	29	-	120	23.8	9.6	13
2	29	BCl ₃	300	9.6	3.3	50
3	29	BF ₃ .Et ₂ O	1920	4.2	2.6	65
4	29	$B(C_{6}F_{5})_{3}$	580	7.8	3.2	54
5	30	-	60	21.2	6.9	25
6	30	BCl ₃	80	8.2	3.4	29
7	30	BF ₃ .Et ₂ O	1160	4.5	3.2	71
8	30	$B(C_{6}F_{5})_{3}$	500	7.9	3.0	45

Table 1.2 Ethylene polymerization using Ni precatalyst 32 and 33.^a

^{*a*}Polymerization conditions: 10.0 μ mol Ni precatalyst, 2 mL CH₂Cl₂, 18 mL toluene, 250 equiv MAO, ethylene 8 atm, 1 h, 30 °C. ^{*b*}10 equiv boron additive. ^{*c*}kg polymer mol_{Ni}⁻¹ h⁻¹. ^{*d*}Determined by GPC using polystyrene standards.^{*e*}B = branches/1000 C, determined by ¹H NMR in C₂D₂Cl₄ at 120 °C.

Recently, Changle Chen reported two examples of Ni and Pd complexes bearing phosphine sulfonate supporting ligands (Figure 1.12).⁵³ Similar to Min Chen's complexes, Changle Chen's complexes enhanced productivity and reduced PE molecular weight upon addition of $B(C_6F_5)_3$. For Ni catalyst **32a**, increase in branching density was also observed (12 \rightarrow 28 branches/1000 C). For Pd catalyst **31a**, up to a 670-fold increase in chain transfer rate was observed in ethylene polymerization upon addition of $B(C_6F_5)_3$.

Figure 1.11 Phosphine-sulfonate Pd and Ni catalysts bearing carbazolyl and pyrrolyl substituents.

1.4.2. Secondary Metal Binding

The concept of secondary metal binding was explored in the early days by Brookhart and coworkers. In 2003, they reported several Ni complexes that are capable of chelating Li cation to their pendant methoxy ether moieties (Figure 1.12).⁵⁴ In ethylene homopolymerization studies, they observed that bimetallic complexes **33** and **34** were more productive than monometallic complex **33**. A similar trend was observed for the copolymerization of ethylene and hexyl acrylate. The incorporation of LiCl (complex **33**) was proposed to increase the electrophilicity of the Ni center, which led to higher catalyst activity. To enhance the electrophilicity of catalyst **33** even further, anion exchange was conducted with NaB(C₆F₅)₄ to give complex **34**, which displayed greater activity than that of its parent. The structure of **34** was confirmed by X-ray crystallography.

Figure 1.12. Examples of Ni bimetallic catalysts for olefin polymerization reported by Brookhart and co-workers.⁵⁴

In 2005, Nagashima and co-workers introduced a azanickellacyclic complex bearing a second diimino chelation site (Figure 1.13).⁵⁵ Introduction of secondary metals to this diimine moiety resulted in formation of heterobimetallic complexes which displayed different behaviors toward ethylene polymerization. Upon activation by MAO (200 equiv), Ni-ZnBr₂ and Ni-CoBr₂ bimetallic complexes (**37a** and **37b**) produced PE with increased yields and molecular weights, giving

monomodal molecular weight distributions. In contract, polymerizations catalyzed by Ni-FeBr₂ and Ni-NiBr₂ gave bimodal distributions, and polymers with reduced yield and molecular weight compared to that of their mononuclear counterpart **36**. The bimodal polymer profiles suggested that both Fe and Ni centers were capable of polymerization. For this ligand design, the primary benefit of second metal coordination was proposed to increase the catalyst's stability by making its structure more rigid.

Figure 1.13 Azanickellacyclic complex.

Later, in 2016, Tonks and co-workers observed similar trends in ethylene polymerization with phenoxy imine Ni complexes containing a 2,2'-bipyridine pendant group (Figure 1.14).⁵⁶ Polymer yield and molecular weight were found to increase in the presence of excess amounts of ZnCl₂, which presumably abstracted pyridine and increased the steric bulk of the Ni center by chelating to the bipyridine. Other Lewis acids such as AlCl₃ and CuCl₂ were also tested and found to be less effective. The polymerization activity of these mono- and bimetallic complexes, in general, are quite poor (maximum-10 kg PE $mol_{Ni}^{-1} h^{-1}$).

Figure 1.14. Ni complexes supported by phenoxy imine backbone bearing 2,2'-bipyridine pendent moiety.

From 2015 to 2019, the Do group introduced a series of Ni and Pd complexes supported by conventional ligand platforms that feature mono or bis polyethylene glycol (PEG) side chains (Figure 1.15).^{46, 57-60} The PEG chains were designed to selectively capture alkali cations (Li⁺, Na⁺, K⁺, and Cs⁺).

Figure 1.15. Ni and Pd complexes containing PEG chain side-arms.

All of the nickel complexes exhibited unique changes to their reactivity upon addition of different alkali metals. Complexes **40** became more active and produced PEs with distinct properties, and complexes **41** displayed greater thermal stability. Complex **42** was capable of chelating many other cations such as Mg^{2+} , Ca^{2+} , Co^{2+} , Cu^{2+} , Sn^{2+} , Al^{3+} , Bi^{3+} , Ga^{3+} , Sc^{3+} , and La³⁺ in tetrahydrofuran. In most cases, the recruitment of secondary metals resulted in increased

polymer yield. However, the polymer products displayed similar properties (molecular weight, branches, and PDI). Co^{2+} and Zn^{2+} were found to provide the most favorable effects for **42**, giving a 10.6- and 6.7-fold enhancement in ethylene polymerization activity in THF, respectively. In addition, the impact of different counteranions was also examined. Interestingly, $CoCl_2$ was found to be less active than $Co(OTf)_2$, while $ZnCl_2$ was more active than $Zn(OTf)_2$. These results demonstrated that the broad chelation ability of PEG chains allows the generation of a diverse assortment of heterometallic species, which could all display unique and distinct catalytic properties.

In 2018, the Do group introduced a series of Ni carboxamidate triazole catalysts that were active for ethylene polymerization (Compound **43**, Figure 1.6).⁶¹ Based on this platform, they incorporated a pendant picolyl donor ring to create a binding pocket for secondary metals (Figure 1.6).⁴⁸ Polymerization studies for complex **44a** by itself furnished PE with molecular weight of about 2.8×10^3 kg/mol. Surprisingly, the incorporation of ZnCl₂ into **44a** generated PEs with multimodal molecular weight distributions after 2 h. GPC analysis of the polymer products showed that the mixtures contained three main peaks: peak I associated with M_w = up to ~10³ kg/mol, peak II associated with M_w = up to ~10⁴ kg/mol and peak III associated with M_w = up to ~10⁵ kg/mol (Figure 1.17). Prolonging the reaction time increased both catalytic activity and amount of higher molecular weight polymers.

Figure 1.16. Ni carboxamidate triazole complexes and Ni carboxamidate triazole complexes bearing a pendent picolyl donor as a secondary binding site.

Figure 1.17. GPC data fitting of PEs produced by **44a**/ZnCl₂ after 2h.⁴⁸ *Reproduced with permission from Xiao, D.; Do, L. H. Organometallic* **2018,** *37,* 3079-3085. DOI:10.1021/acs.organomet.8b00454. Copyright © 2018 American Chemical Society.

1.5. Self-Assembly of Caged Catalysts

This strategy was first introduced in ethylene polymerization by Jordan's group in 2010. Their Pd phosphine sulfonate complex was able to convert between complexes with different nuclearity (Scheme 1.8).⁶² In toluene, tetranuclear complex **46** generated low MW PEs ($M_w = 7.87 \times 10^3$ kg/mol) with a narrow PDI (2.6). However, in hexane, **46** gave polymer products containing primarily high MW components (M_w up to 1×10^6 kg/mol) with minor amounts low MW components and broad PDI (60). It was proposed that the tetranuclear structure **46** was maintained in hexane, but in toluene it most likely dissociated into mononuclear complexes **45** that have poor steric shielding of the Pd centers. The extremely broad PDI of **46** in hexane, suggested that perhaps

an equilibrium mixture of catalyst species might exist in solution.⁶¹ Interestingly, after treating with cryptand Krypt211 to trap the lithium cation, complex **46** dissociated into mononuclear species **47** which afforded only ethylene oligomers (C₄-C₁₈). The authors proposed that the free $ArSO_3^-$ moiety in complex **47** has significantly enhanced its chain transfer rate in ethylene homopolymerization.

Scheme 1.8. Pd complexes that are able to switch between different species with different nuclearity.

Based on this platform, many interesting Pd caged catalysts for ethylene polymerization was reported by Jordan's group in the past several years (Figure 1.18).⁶³⁻⁶⁴ Derivatives **48** and **49** displayed similar behavior in ethylene polymerization to that of compound **46** (Figure 1.18A). The zinc cage complex **49** showed improvement in thermal stability in comparison with previous lithium analogues **46**, **48** and **49**. However, because of the reactivity of zinc with Lewis bases, cage complex **50** is chemically more susceptible to disassembly. For instance, in methanol, the tetranuclear complex **50** was completely converted into trinuclear complex **51** with the ancillary 4-*tert*-butylpyridine shifted from palladium to zinc (Figure 1.18B).

Figure 1.18. Self-assembled Pd caged complexes introduced by the Jordan group.

In 2019, Jordan group reported a novel tetrameric caged structure with a rhomboidal Li₂Cl₂ unit inserted within a cluster (Figure 1.18C).⁶⁵ The caged complex **52** was found to be more robust in ethylene polymerization (hexane, 80 °C, 410 psi ethylene), producing high MW PE (M_w up to 1.47×10^{6}) with narrower PDI (2.3), in comparison to previous caged compounds ($6.6 \le PDI \le 60$).

1.6. Chain Transfer Agents

Chain transfer agents (CTAs) have been successfully applied in ethylene polymerization for many early transition and lanthanide metal catalysts, particularly for living catalysts to increase the number of polymer chains generated per active metal center. CTAs are not commonly used for group 10 transition-metal based catalysts. However, Tonks et. al. reported the use of dialkyl zinc reagents as CTAs for Ni diimine complexes in 2014 (Figure 1.19A) and Guironnet (Figure 1.19B) introduced silanes as CTAs for Pd diimine complexes in 2017. Tonks' group demonstrated that complex **53b** in the presence of various concentration of ZnEt₂ and ethylene pressure can fine-tune the molecular weight of PEs across extremely wide ranges ($M_n = 5400 - 140000 \text{ kg/mol}$). In work by Guironnet's group, they showed that precise control over the rate of chain transfer of Pd catalyst **54** in ethylene polymerization could be achieved by varying the concentration and substituents of the silane. In both cases, zinc-based and silane-based CTAs are highly efficient, giving no negative impact on catalytic reactivity.

Figure 1.19. Dialkyl zinc and silane compounds as effecient CTAs for group 10 transition-metal based catalysts.

1.7. Our Catalyst Design Approach

Of the strategies discussed above, we favor the cation-switching approach because it provides the broadest range of catalyst tuning capability. Borane-tuning has limited range because only a handful of trisubstituted boranes are commercially available. Redox-tuning can usually only toggle between 2-3 oxidation states. Catalyst self-assembly is highly solvent dependent and can be difficult to control. Finally, use of CTAs can change polymers' MW but not their microstructure or MW distribution. One of the major challenges in designing cation-switchable catalysts is to create metal binding groups that give robust/predictable structures and position secondary cations in close proximity to the catalyst center. Once a suitable catalyst design is achieved, interchanging cations is operationally simple. In addition, we also proposed that the secondary cations can serve as binding sites for polar functional groups in the copolymerization of ethylene and polar monomers (Scheme 1.9). However, copolymerization studies are beyond the scope of this dissertation.

Scheme 1.9. Proposed interaction of second metal cation and polar functional group in the copolymerization of ethylene and polar monomer.

1.8. Scope of the Dissertation

In this work, we focused on bimetallic structures in which the metal centers are bridged by phenolate donors to enforce short metal-metal distances and enable cooperative reactivity. Specifically, we have designed a series of Ni catalysts supported by phenoxyphosphine ligands featuring polyethylene glycol (PEG) chains as secondary metal binding groups (Figure 1.20). The phenoxyphosphine ligand was chosen because the corresponding nickel complexes are known to produce polymers and copolymers with high activity. The PEG was chosen because it can selectively chelate alkali metals over nickel. The following chapters will describe synthesis and characterization of Ni catalysts, olefin polymerization studies, and efforts to synthesize bimodal PE.

Figure 1.20. General structure of Ni phenoxyphosphine PEG complexes used in this study.

Chapter 2. Development of Highly Productive Nickel-Sodium Phenoxyphosphine Ethylene Polymerization Catalysts and Their Reaction Temperature Profiles

This work have been previously published.

Reproduced with permission from Tran, T. V.; Nguyen, Y. H.; Do, L. H. *Polym. Chem.*, **2019**, *10*, 3718-3721. DOI:10.1039/C9PY00610A.

Copyright © 2019 the Royal Society of Chemistry.

2.1. Introduction

As discussed in Chapter 1, to enable the incorporation of pendant alkali ions to nickel phenoxyphosphine complexes, we attached polyethylene glycol (PEG) chains to the *ortho* positions of their phenolate rings (Scheme 2.1). We preferred using alkali cations as the secondary metal because alkali ions are redox inactive and do not compete with nickel for ethylene binding. Furthermore, because they are hard Lewis acids, they are capable of forming relatively stable metal-ligand interactions with hard Lewis-bases such as those present in polar monomers. We propose that this alkali-polar functional group interaction could open up the stable six-membered metallocyclic species formed during ethylene and polar olefin copolymerization (Scheme 1.9). In this chapter, the secondary metal investigation was focused on sodium ions due to their favorable properties.^{46, 57}

2.2. Synthesis of Nickel Phenoxyphosphine-Polyethylene Glycol Complexes

2.2.1. Ligand Synthesis

A) Synthesis of Phenoxyphosphine-Polyethylene Glycol Ligand L61

Scheme 2.1. Synthesis of ligand L61 and compound 62 and 63.

The multi-step synthesis of dinuclearting phenoxyphosphine-PEG ligand **61** was outlined in Scheme 2.1.⁴⁶ Starting from 2,6-dibromo-4-methylphenol **55**, we first protected the phenol group with 2-methoxyethoxymethyl ether (MEM) to give compound **56**. The resulting product was then lithiated with 1 equiv of *n*BuLi and treated with **62** to give phosphine **57**. Lithiation of **57**, followed by nucleophilic attack of DMF and reduction with sodium borohydride yielded alcohol **59**. Finally, alkylation with compound **63**, followed by deprotection with HCl in Et₂O afforded the final ligand **L61** with an overall yield of about 7-11 %.

2.2.2. Catalyst Synthesis

To obtain nickel complex **Ni11**, **L61** was deprotonated by sodium hydride in THF and then reacted with NiPhBr(PMe₃)₂ to afford the desired product as a yellow solid in gram scale and good yield (1.12 g, 75 %). For control studies, we also prepared the conventional nickel phenoxyphosphine complex featuring *ortho tert*-butyl group (**Ni'Bu**) using the same metallation procedure (Scheme 2.2).⁶⁶

Scheme 2.2. Synthesis of nickel phenoxyphosphine complexes. Step a: 1) NaH, THF, 2) NiPhBr(PMe₃)₂; Step b: NaBAr^F₄. PEG3 = CH₂(OCH₂CH₂)₃OCH₃.

2.3. Metal Binding Study

To determine whether Na⁺ can coordinate to Ni11, we carried out metal titration studies by UV-visible absorption spectroscopy. We observed that when aliquots of NaBAr^F₄ (where BAr^F₄⁻ = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate)⁶⁷ were added to a solution of Ni11 in Et₂O, the optical band at ~370 nm gradually decreased while the optical band at ~330 nm increased (Figure 2.1). The appearance of isosbestic points at 326 and 359 nm suggests that the addition of Na⁺ to Ni11 led to the formation of a new optically active species. The optimal Ni:Na binding stoichiometry was determined to be 1:1 by Job Plot studies (Figure 2.2).⁶⁸

Figure 2.1. UV-vis absorbance spectra of complex **Ni11** (100 μ M in Et₂O) after the addition of various aliquots of NaBAr^F₄. The starting trace of **Ni11** is shown in black and the final trace (+ 1.0 equiv of Na⁺ relative to Ni) is shown in red.

Figure 2.2. Job Plot showing the coordination interactions between complex **Ni11** and NaBAr^F₄. The peak maximum occurs at $\chi Ni = 0.5$, which suggests that the optimal nickel:sodium binding stoichiometry is 1:1. The y-axis value (Aobs – $\epsilon h \cdot [H]t$) is proportional to the concentration of the nickel-sodium complex **Ni11**-Na. The x-axis is the molar ratio of nickel ($\chi Ni = [Ni11]/([Ni11]+[Na^+])$). The full data is given in Table 2.2.

To obtain structural characterization, we grew single crystals of the nickel-sodium complex by layering pentane over a toluene/Et₂O solution of **Ni11** and NaBAr^F₄ (1:1). Its X-ray structure revealed a heterobimetallic complex with the composition NiNa(phenoxyphosphine-PEG)Ph(PMe₃) (**Ni11**-Na, Figure 2.3). The Ni centre is four-coordinate, in which the phenyl group is coordinated *trans* relative to the phosphorus donor P1. Presumably, this orientation is preferred due to metal- π interactions between the adjacent sodium ion and phenyl ring (C30–C31). The sodium is ligated by four PEG oxygen atoms and a phenolate donor.

Figure 2.3. X-ray structure of complex **Ni11**-Na (ORTEP view, displacement ellipsoids drawn at 50% probability level). Hydrogen atoms and the $BAr_{4}^{F_{4}}$ anion have been omitted for clarity.

Although complex **Ni11** itself could not be crystallized for X-ray diffraction analysis, the structure of the related mononickel **Ni'Bu** showed that the Ni centre is square planar but the coordinated phenyl group is *cis* relative to P1 (Figure 2.4). Interestingly, when a solution of **Ni'Bu** in Et₂O was treated with up to 4 equiv of NaBAr^F₄, no UV-visible absorption changes were observed (Figure 2.5), indicating that there are no coordination interactions between complex **Ni'Bu** and Na⁺.

Figure 2.4. X-ray structure of complex **Ni'Bu** (ORTEP view, displacement ellipsoids drawn at 50% probability level). Hydrogen atoms and pentane solvent have been omitted for clarity. Atom colors: green = nickel, orange = phosphorus, red = oxygen, black = carbon.

Figure 2.5. UV-vis absorbance spectra of complex **Ni'Bu** (100 μ M in Et2O) after the addition of 4 equiv of NaBAr^F₄. The starting trace of **Ni'Bu** before and after the addition of Na are identical, suggesting that sodium does not bind to the nickel complex.

2.4. Ethylene Polymerization Study

With our Ni complexes in hand, we tested their catalytic performance by first activation using $Ni(COD)_2$ (COD = 1,5-cyclooctadiene) and then exposure to 450 psi of ethylene at 30 °C for 1 h

in toluene. To minimize catalyst thermal decomposition, the polymerization studies in Table 2.1 were performed using a low catalyst concentration of 5 μ M and with manual external cooling to maintain the desired reaction temperature. Under these conditions, complex **Ni'Bu** produced linear polyethylene (PE) with an activity of 2.12×10^3 kg/mol·h (Table 2.1, entry 1). The addition of NaBAr^F₄ to **Ni'Bu** had negligible effects on polymerization (activity = 1.88×10^3 kg/mol·h, entry 2), which further supports our observation that Na⁺ does not bind to **Ni'Bu**.

Entry	Complex	Pressure	Time	Initial Temp.	Activity
		(Psi)	(h)	(°C)	(Kg/Mol·h)
1	Ni ^t Bu	450	1	30	2120
2	Ni^tBu /Na ⁺	450	1	30	1880
3	Ni11	450	1	30	0
4	Ni11 -Na	150	1	20	3780
5	Ni11 -Na	300	1	20	8840
6	Ni11 -Na	450	1	20	10800
7	Ni11 -Na	450	0.5	30	25300
8	Ni11 -Na	450	1	30	18100
9	Ni11- Na	450	2	30	15080
10	Ni11 -Na	450	1	20	10800
11	Ni11 -Na	450	1	40	14700
12	Ni11- Na	450	1	50	13000
13	Ni11 -Na	450	1	60	9380

Table 2.1. Ethylene Polymerization Data^{*a*}

^{*a*}Conditions: Ni catalyst (0.5 μ mol), NaBAr^F₄ (1 μ mol, if any), Ni(COD)₂ (4 μ mol), 100 mL toluene. Temperature was controlled by manual external cooling when necessary to ensure that the reaction temperature does not exceed greater than 5°C from the starting temperature.

Surprisingly, when **Ni11** was tested under the same conditions as above, no polyethylene was obtained (Table 1, entry 3). We hypothesized that the free PEG chain in **Ni11** can self-inhibit by occupying open coordination sites at the Ni centre. However, when NaBAr^F₄ was added to **Ni11**, the resulting nickel-sodium **Ni11**-Na showed a remarkably activity of 1.81×10^4 kg/mol·h (entry

8), which is a ~8.5× increase in comparison to that of **Ni'Bu**. The PE produced by **Ni'Bu** and **Ni11**-Na both have low molecular weight ($M_n = \sim 10^3$) and narrow polydispersity ($M_w/M_n = < 2.0$), which is typical for this class of catalysts.^{66, 69}

A comparison with several different Ni systems reported in the literature indicates that Ni1-Na is among one of the most *productive* (Table 2.11, note: different studies used different polymerization conditions).⁶⁹⁻⁷⁷ Although the Ni diimine (Ni1)⁷⁰ and Ni tris(adamantyl)phosphine (Ni9)⁷⁷ complexes are extraordinarily active, our Ni11-Na complex achieved the highest turnover number (TON). For example, the TON for Ni11-Na was 646×10^3 , whereas the TON for Ni1 and Ni9 were 400×10^3 and 216×10^3 , respectively. Interestingly, catalysts Ni1 and Ni9 furnished PE with significantly higher molecular weights ($M_n \ge 10^5$) than Ni11-Na ($M_n \approx 10^3$). However, it is well established that higher M_n polymers could be obtained by increasing the steric bulk of the catalyst structure.^{31, 78}

To investigate the polymerization behaviour of **Ni11**-Na further, we evaluated its reactivity as a function of pressure, time, and temperature. We found that when the ethylene pressure was increased from $150 \rightarrow 300 \rightarrow 450$ psi (Table 2.1, entries 4-6), the catalyst activity also increased. The approximately linear correlation between pressure and polymerization rate suggests that the reaction is first-order in ethylene. At 150 psi and 20°C (Table 2.5), **Ni11**-Na showed relatively constant activity (average = 3.3×10^3 kg/mol·h) up to 3.0 h. However, at 450 psi and 30°C (Table 2.1), the activity gradually decreased from 2.5×10^4 (entry 7) to 1.5×10^4 kg/mol·h (entry 9) over the course of 2 h, which could be indicative of either catalyst decomposition or mass transport limitations. In the latter case, it is well documented that for highly active catalysts, precipitation of large amounts of polymer inside the reactor could dramatically slow down the polymerization process.^{71,77} Finally, when we performed polymerizations at different temperatures (20 to 60°C, entries 8 and 10-13), we observed that the optimal temperature was 30 °C. We noted, however, that for some reactions the initial temperature spiked abruptly and were difficult to control. This large exotherm only occurred when the Ni11-Na complex was used. Polymerizations using the monometallic Ni10 and Ni11 complexes did not generate any additional heat.

To evaluate the thermal stability of the **Ni11**-Na complex, we measured the reaction temperature and polymer yields as a function of time. When a 100 μ M toluene solution of the nickel-sodium catalyst was treated with Ni(COD)₂ and then exposed to 450 psi of ethylene, the reaction temperature rose from 20 to 159 °C in 4 min (Figure 2.6A). After this initial temperature increase, the solution cooled slowly back down to ~20 °C after 60 min. Interestingly, when the product yields were determined at 4 and 60 min, similar amounts of polymer were obtained (~10.4 and ~11.3 g, respectively), suggesting that the **Ni11**-Na catalyst was deactivated shortly after ~4 min. When the **Ni11**-Na concentration was lowered to 50 μ M, the maximum reaction temperature was observed to be 122 °C after 5 min (Figure 2.6B). The rate of polymer formation remained relatively constant from 0-7 min but then dropped precipitously thereafter. In contrast, when the reactor temperature was maintained at 30°C during a 2 h polymerization run using 5 μ M **Ni11**-Na, the amount of PE produced increased steadily (Figure 2.6C), suggesting that an appreciable amount of the catalyst loaded was still active after 2 h.

Figure 2.6. Plots showing the reaction temperatures (black dots) and polymer yields (red triangles) by the **Ni11**-Na complex at 100 μ M (A) and 50 μ M (B) catalyst concentrations. When external temperature control was applied (C), the **Ni11**-Na (5 μ M) catalyst gave increasing amounts of PE up to the 2 h polymerization time. All reactions were performed under 450 psi of ethylene.

2.5. Conclusion

In summary, we have synthesized a new class of Ni phenoxyphosphine complexes featuring PEG side arms that can chelate secondary sodium ions. We have found that the **Ni11**-Na complexes are remarkably efficient catalysts for ethylene polymerization, demonstrating once again that the use of pendant Lewis acids is an effective strategy to enhance catalyst performance. This work also illustrates the importance of conducting detailed temperature studies to optimize polymerization processes. Although there are many reports that highly active catalysts can exhibit large exotherms,^{71, 77, 79-80} seldom are their reaction temperature profiles provided. This information is useful because it allows us to predict the best reaction conditions to use for a given

catalyst. For example, by knowing the temperature threshold above which **Ni11**-Na decomposes, we were able to adjust our polymerization conditions to achieve one of the highest TON reported for a nickel catalyst. Although it is standard practice to disclose only the reactor temperature at the start of a reaction, we recommend also providing temperature data for the full polymerization time to gain insights into a catalyst's true thermal stability.

2.6. Experimental

General Procedures

Commercial reagents were used as received. All air- and water-sensitive manipulations were performed using standard Schlenk techniques or under a nitrogen atmosphere using a drybox. Anhydrous solvents were obtained from an Innovative Technology solvent drying system saturated with argon. High-purity polymer grade ethylene was obtained from Matheson TriGas without further purification. The NaBAr^F₄ salt was prepared according to a literature procedure.⁶⁷

NMR spectra were acquired using JEOL spectrometers (ECA-400, -500, and -600) and referenced using residual solvent peaks. All ¹³C NMR spectra were proton decoupled. ³¹P NMR spectra were referenced to phosphoric acid. ¹H NMR spectroscopic characterization of polymers: each NMR sample contained ~20 mg of polymer in 0.5 mL of 1,1,2,2-tetrachloroethane- d_2 (TCE- d_2) and was recorded on a 500 MHz spectrometer using standard acquisition parameters at 120 °C. High-resolution mass spectra were obtained from the mass spectral facility at the University of Houston. Elemental analyses were performed by Atlantic Microlab. Gel permeation chromatography (GPC) data were obtained using a Malvern high temperature GPC instrument equipped with refractive index, viscometer, and light scattering detectors at 150 °C with 1,2,4-trichlorobenzene (stabilized with 125 ppm BHT) as the mobile phase. A calibration curve was

established using polystyrene standards in triple detection mode. All molecular weights reported are based on the triple detection method.

Synthesis and Characterization

Ligand L64 was synthesized as depicted in Scheme 2.3 below:

Scheme 2.3. Synthesis of ligand L64.

Preparation of Compound 62. This synthesis was modified from a reported procedure.⁸¹ A 200 mL Schlenk flask was charged with magnesium turnings (1.2 g, 50 mmol, 2.5 equiv) under nitrogen in 50 mL of dry THF. The compound 2-bromoanisole (5.2 mL, 40 mmol, 2.0 equiv) was added to the reaction mixture and then stirred at RT for 3 h until

the solution turned dark gray. The resulting Grignard reagent was slowly cannula transferred over a period of 45 min to a solution of PCl₃ (1.6 mL, 20 mmol, 1.0 equiv) in 100 mL of dry THF at -78 °C. After the addition was complete, the heterogeneous mixture was continued stirring and allowed to warm up to RT overnight. Finally, the solvent was removed under vacuum and the crude product was used in the next step without further purification. ³¹P NMR (CDCl₃, 162 MHz): δ (ppm)= 69.94 (s), 62.56 (s).

Preparation of Compound 66. This synthesis was modified from a literature procedure.⁸² The OH Br H Br H Br H Bu Compound 2-*tert*-butyl-4-cresol (6.73 g, 40.95 mmol, 1.05 equiv) was dissolved in 100 mL of dry DCM in a 200 mL Schlenk flask. The flask was covered with aluminum foil and cooled to 0 °C. Bromine (2 mL, 39 mmol, 1.00 equiv) was added dropwise to

the reaction flask and the mixture was allowed to warm to RT and stirred overnight. The reaction was quenched by the slow addition of cold H₂O (75 mL) and was then extracted into DCM (2×150 mL). The organic layers were combined, washed with aqueous NaHCO₃ (2×100 mL), H₂O (2×100 mL), dried over Na₂SO₄, filtered, and evaporated to dryness. The crude material was purified by silica gel column chromatography (20:1 hexane: ethyl acetate) to afford a white solid (9.50 g, 39.07 mmol, 95%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) = 7.16 (s, 1H), 7.01 (s, 1H), 5.64 (s, 1H), 2.26 (s, 3H), 1.40 (s, 9H). ¹³C NMR (CDCl₃, 101 MHz): δ (ppm) = 148.21, 137.24, 130.30, 129.69, 127.46, 111.97, 35.36, 29.47, 20.68.

Preparation of Compound 67. To a mixture of **66** (9.50 g, 39.07 mmol, 1.0 equiv) in 100 mL of $\mathbf{Br} + \mathbf{F} + \mathbf{Bu}$ dry THF in a 200 mL Schlenk flask under nitrogen at -0 °C, small aliquots of NaH (60%, 2.34 g, 58.6 mmol, 1.5 equiv) were added and the mixture was stirred at RT for 2 h. The reagent 2-methoxyethoxymethyl chloride (MEMCl) (5.5 mL, 44.93 mmol, 1.15 equiv) was added and the solution was stirred overnight. The reaction was quenched by the slow addition of H₂O and the product was extracted into Et₂O (2×150 mL). The organic layers were combined, washed with H₂O (2×75 mL), dried over Na₂SO₄, filtered, and evaporated to dryness. The crude material was purified by silica gel column chromatography (20:1 hexane: ethyl acetate) to afford a colorless oil (6.91 g, 20.86 mmol, 53%). ¹H NMR (CDCl₃, 400 MHz): δ (ppm) = 7.22 (d, J_{HH} = 1.8 Hz, 1H), 7.07 (d, J_{HH} = 1.8 Hz, 1H), 5.27 (s, 2H), 4.05 (m, 2H), 3.65 (m, 2H), 3.41 (s, 3H), 2.26 (s, 3H), 1.40 (s, 9H). ¹³C NMR (CDCl₃, 101 MHz): δ (ppm) = 150.46, 145.06, 134.56, 132.14, 127.69, 117.74, 98.21, 71.72, 69.45, 59.18, 35.65, 30.94, 20.83. HRMS–ESI(+): Calc. for C₁₅H₂₃BrO₃ [M+Na]⁺ = 353.0728, Found = 353.0853.

Preparation of Compound 68. To a solution of compound 67 (6.62 g, 20 mmol, 1.0 equiv) in 50 mL of dry THF in a 100 mL Schlenk flask under nitrogen at -78 °C, nBuLi (1.6 M in hexanes, 12.8 mL, 20.5 mmol, 1.02 equiv) was added dropwise using a syringe pump. The reaction mixture was stirred at -78 °C for 40 min. A solution

of P(2-MeOPh)₂Cl (5.05 g, 18 mmol, 0.9 equiv) in 50 mL of dry THF was cannula transferred into the reaction mixture and stirred for another 40 min at -78 °C, followed by naturally warming to RT. The reaction was quenched by the slow addition of H₂O and the product was extracted into Et₂O (3×75 mL). The organic layers were combined, washed with H₂O (2×50 mL), dried over Na₂SO₄, filtered, and evaporated to dryness. The crude material was purified by silica gel column chromatography (4:1 hexane: ethyl acetate) to afford a colorless oil (4.02 g, 8.09 mmol, 40%). This compound was used directly in the next step without further purification.

Preparation of Compound L64. Compound 68 (1.24 g, 2.5 mmol, 1.0 equiv) was dissolved in

100 mL of MeOH and then 10 mL solution of 2 M HCl in Et₂O was added. The reaction mixture was stirred at RT overnight and then dried to remove solvent. The product was dissolved in 200 mL of EtOAc along and then

combined with 50 mL of 1 M aqueous NaHCO₃. The mixture was stirred at RT for 30 min and the

product was extracted into Et₂O (2×100 mL). The organic layers were combined, washed with H₂O (2×100 mL), dried over Na₂SO₄, filtered, and evaporated to dryness. The crude material was purified by silica gel column chromatography (4:5 hexane: ethyl acetate) to afford a white solid (0.69 g, 1.68 mmol, 67%). ¹H NMR (CDCl₃, 500 MHz): δ (ppm) = 7.40 (d, *J*_{HH} = 11.5 Hz, 1H), 7.19 (ddd, *J*_{HH} = 7.4, 5.6, 1.7 Hz, 2H), 7.13 (d, *J*_{HH} = 1.8 Hz, 1H), 7.02 (td, *J*_{HH} = 8.1, 1.5 Hz, 2H), 6.97 (dd, *J*_{HH} = 5.4, 1.6 Hz, 1H), 6.70 (t, *J*_{HH} = 7.5 Hz, 2H), 6.37 (dd, *J*_{HH} = 8.1, 5.1 Hz, 2H), 3.07 (s, 6H), 1.92 (s, 3H), 1.51 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) = 161.04 (d, *J*_{CP} = 15.1 Hz), 156.56 (d, *J*_{CP} = 19.7 Hz), 135.36, 133.23, 133.0.3 (d, *J*_{CP} = 3.2 Hz), 130.24, 129.53, 128.42, 123.09 (d, *J*_{CP} = 2.8 Hz), 120.96, 119.28, 110.30, 55.71, 34.79, 29.54, 20.88. ³¹P NMR (CDCl₃, 162 MHz): δ (ppm) = -51.71. HRMS–ESI(+): Calc. for C₂₅H₂₉O₃P [M+Na]⁺ = 431.1752, Found = 431.1887.

Preparation of Compound 56. Solid 2,6-dibromo-4-methylphenol (6.65 g, 25 mmol, 1.0 equiv) $\mathbf{Br} \leftarrow \mathbf{Fr}$ was dissolved in 100 mL of dry THF in a Schlenk flask under nitrogen and cooled to 0 °C. Small aliquots of NaH (60%, 1.48 g, 37 mmol, 1.5 equiv) were added and the mixture was stirred at room temperature for 1 h. The reagent 2-methoxyethoxymethyl chloride (MEMCl) was added and the resulting solution was stirred overnight. The reaction was quenched by the slow addition of H₂O and the products were extracted into Et₂O (2×100 mL). The organic layers were combined, washed with H₂O (2×50 mL), dried over Na₂SO₄, filtered, and evaporated to dryness. The crude material was purified by silica gel column chromatography (2:1 hexane: ethyl acetate) to afford a clear oil (7.66 g, 21.64 mmol, 86%). ¹H NMR (CDCl₃, 500 MHz): δ (ppm) = 7.29 (s, 2H), 5.20 (s, 2H), 4.08 (m, 2H), 3.61 (m, 2H), 3.38 (s, 3H), 2.24 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz): δ (ppm) = 149.04, 136.91, 133.35, 117.97, 98.36, 71.77, 69.89, 59.19, 20.29. HRMS–ESI(+): Calc. for C₁₁H₁₄Br₂O₃ [M+Na]⁺ = 374.9202, Found = 374.9332.

Preparation of Compound 57. To a solution of 56 (7.08 g, 20 mmol, 1.0 equiv) in 50 mL of dry THF in a Schlenk flask under nitrogen at -78 °C, nBuLi (1.6 M in hexanes, 12.8 mL, 20.5 mmol, 1.02 equiv) was added dropwise using a syringe pump. The reaction mixture was then stirred at -78 °C for 40 min. A solution of P(2-

MeOPh)₂Cl (5.05 g, 18 mmol, 0.9 equiv) in 50 mL of dry THF was cannula transferred to the reaction mixture and stirred for another 40 min at -78 °C, followed by naturally warming to RT. The reaction was quenched by the slow addition of H₂O and the products were extracted into Et₂O (3×75 mL). The organic layers were combined, washed with H₂O (2×50 mL), dried over Na₂SO₄, filtered, and evaporated to dryness. The crude material was purified by silica gel column chromatography (3:1 hexane: ethyl acetate) to afford a colorless oil (6.82 g, 13.16 mmol, 73%). ¹H NMR (CDCl₃, 500 MHz): δ (ppm) = 7.36 (s, 1H), 7.32 (t, *J*_{HH} = 7.5 Hz, 2H), 6.86 (m, 3H), 6.83 (d, *J*_{HH} = 5.2 Hz, 1H), 6.63 (m, 2H), 6.49 (m, 1H), 5.30 (s, 2H), 4.02 (t, *J*_{HH} = 4.8 Hz, 2H), 3.72 (s, 6H), 3.52 (t, *J*_{HH} = 4.5 Hz, 2H), 3.34 (s, 3H), 2.12 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz): δ (ppm) = 161.33 (d, *J*_{CP} = 16.5 Hz), 161.20 (d, *J*_{CP} = 20.9), 154.24, 154.07, 135.61, 134.78, 134.50, 133.86, 132.94 (d, *J*_{CP} = 17.4 Hz), 132.81, 130.34, 124.31, 124.20 (d, *J*_{CP} = 4.3 Hz), 59.07, 55.75, 20.66. ³¹P NMR (CDCl₃, 162 MHz): δ (ppm) = -35.90. HRMS–ESI(+): Calc. for C₂₅H₃₀BrO₅P [M+Na]⁺ = 541.0750, Found = 541.0940.

Preparation of Compound 58. To a solution of 57 (6 g, 11.58 mmol, 1.0 equiv) in 50 mL of dry

THF in a Schlenk flask under nitrogen at -78 °C, nBuLi (1.6 M in hexanes, 8.4 mL, 13.44 mmol, 1.16 equiv) was added dropwise using a syringe pump. The reaction mixture was stirred at -78 °C for 40 min. Dry DMF (5 mL, 65 mmol,

5.6 equiv) was added to the reaction mixture and stirred for another 40 min at -78 °C, followed by naturally warming up to RT. The reaction was quenched by the slow addition of H₂O and the product was extracted into Et₂O (3×75 mL). The organic layers were combined, washed with H₂O (2×50 mL), dried over Na₂SO₄, filtered, and evaporated to dryness. The crude material was purified by silica gel column chromatography (3:2 hexane: ethyl acetate) to afford a light yellow oil (4.67 g, 9.98 mmol, 86%). This compound was used directly in the next step without further purification.

Preparation of Compound 59. Compound 58 (4.67 g, 9.98 mmol, 1.0 equiv) was dissolved in

400 mL of MeOH and 80 mL of THF. Small aliquots of NaBH₄ (2 g, 54 OH mmol, 5.4 equiv) were added and the mixture was stirred at RT overnight. The reaction solvent was removed under vacuum and the residue was

redissolved in Et₂O (100 mL). The ether layer was washed with H₂O (2×100 mL), dried over Na₂SO₄, filtered, and evaporated to dryness. The crude material was purified by silica gel column chromatography (1:3 hexane: ethyl acetate) to afford a white solid (3.8 g, 8.08 mmol, 81%). ¹H NMR (CDCl₃, 600 MHz): δ (ppm) = 7.33 (t, *J*_{HH} = 7.6 Hz, 2H), 7.20, (s, 1H), 6.87 (dd, *J*_{HH} = 8.4, 5.5 Hz, 2H), 6.84 (t, *J*_{HH} = 7.4 Hz, 2H), 6.62 (m, 2H), 6.51 (m, 1H), 5.29 (s, 2H), 4.62 (s, 2H), 3.88 (m, 2H), 3.72 (s, 6H), 3.57 (m, 2H), 3.36 (s, 3H), 2.14 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz): δ (ppm) = 161.21 (d, *J*_{CP} = 16.6 Hz), 157.74 (d, *J*_{CP} = 20.6 Hz), 135.24, 134.73, 134.37, 133.78,

132.59, 130.25, 129.79 (d, $J_{CP} = 12.2 \text{ Hz}$), 124.29 (d, $J_{CP} = 12.3 \text{ Hz}$), 121.08, 110.15, 99.92 (d, $J_{CP} = 13.1 \text{ Hz}$), 71.50, 69.16, 61.02, 59.11, 55.74, 20.94. ³¹P NMR (CDCl₃, 162 MHz): δ (ppm) = - 38.50. HRMS-ESI(+): Calc. for C₁₄H₂₀O₆ [M+Na]⁺ = 493.1751, Found = 493.1925.

Preparation of Compound 63. Triethylene glycol monomethyl ether (2.63 g, 16 mmol, 1.0 equiv) was dissolved in 100 mL of dry THF in a Schlenk flask under

nitrogen and cooled to 0 °C. Small aliquots of NaH (60%, 1 g, 25 mmol, 1.56 equiv) were added and the mixture was stirred at RT

for 1 h. The reagent 2,4,6-triisopropylbenzenesulfonyl chloride (6.1 g, 20 mmol, 1.25 equiv) was added and the solution was stirred overnight. The reaction was quenched by the slow addition of H₂O and the product was extracted into Et₂O (2×100 mL). The organic layers were combined, washed with H₂O (3×50 mL), dried over Na₂SO₄, filtered, and evaporated to dryness. The crude material was purified by silica gel column chromatography (5:1 hexane: ethyl acetate to 1:3 hexane: ethyl acetate) to afford a colorless oil (5.14 g, 11.95 mmol, 75%). ¹H NMR (CDCl₃, 500 MHz): δ (ppm) = 7.16 (s, 2H), 4.14 (m, 4H), 3.71 (t, *J*_{HH} = 4.8 Hz, 2H), 3.59 (m, 6H), 3.50 (m, 2H), 3.34 (s, 3H), 2.89 (sep, *J*_{HH} = 6.9 Hz, 1H), 1.24 (m, 18H). ¹³C NMR (CDCl₃, 126 MHz): δ (ppm) = 153.77, 150.93, 129.35, 123.84, 71.96, 70.78, 70.64, 68.87, 68.22, 59.12, 34.34, 29.67, 24.80, 23.65. HRMS–ESI(+): Calc. for C₂₂H₃₈O₆S [M+Na]⁺ = 453.2287, Found = 453.2442.

solution of compound **63** (5.23 g, 12.15 mmol, 1.5 equiv) in 50 mL of THF was cannula transferred into the reaction mixture and then stirred at RT overnight. The reaction was quenched by the slow addition of cold H₂O and the product was extracted into Et₂O (3×100 mL). The organic layers were combined, washed with H₂O (2×75 mL), dried over Na₂SO₄, filtered, and evaporated to dryness. The crude material was purified by silica gel column chromatography (1:1 hexane: ethyl acetate to 1:4 hexane: ethyl acetate) to afford a colorless oil (3.95 g, 6.07 mmol, 75%). This compound was used directly in the next step without further purification.

Preparation of Compound L61. Compound 60 (3.95 g, 6.07 mmol, 1 equiv) was dissolved in

100 mL of MeOH and then treated with 10 mL of 2 M HCl in Et₂O. The reaction mixture was stirred at RT overnight. The solvent was removed under vacuum and the product

was dissolved in 200 mL of EtOAc. A 50 mL solution of 1 M NaHCO₃ in H₂O was then added. The mixture was stirred at RT for 30 min and the product was extracted into Et₂O (2×100 mL). The organic layers were combined, washed with H₂O (2×100 mL), dried over Na₂SO₄, filtered, and evaporated to dryness. The crude material was purified by silica gel column chromatography (1:3 hexane: ethyl acetate) to afford a white waxy solid (2.9 g, 5.49 mmol, 90%). ¹H NMR (CDCl₃, 500 MHz): δ (ppm) = 7.32 (td, *J*_{HH} = 7.7, 1.5 Hz, 2H), 7.23 (d, *J*_{HH} = 1Hz, 1H), 6.97 (d, *J*_{HH} = 1.7 Hz, 1H), 6.85 (m, 4H), 6.77 (m, 2H), 6.52 (m, *J*_{HH} = 5.1, 1.9 Hz, 1H), 4.66 (s, 2H), 3.73 (s, 6H), 3.68 (m, 2H), 3.66 (m, 2H), 3.60 (m, 2H), 3.58 (m, 4H), 3.49 (m, 2H), 3.35 (s, 3H), 2.11 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz): δ (ppm) = 161.53 (d, *J*_{CP} = 26.8 Hz), 161.40 (d, *J*_{CP} = 5.5 Hz), 155.96 (d, *J*_{CP} = 29.7 Hz), 155.87, 134.34, 133.74 (d, *J*_{CP} = 6.6 Hz), 130.62, 130.22, 129.04 (d, *J*_{CP} = 9.6 Hz), 123.91, 122.57 (d, *J*_{CP} = 6.1 Hz), 121.04, 110.32, 71.98, 70.99, 70.76, 70.61, 70.40, 69.73, 59.11, 55.81, 20.71. ³¹P NMR (CDCl₃, 162 MHz): δ (ppm) = -44.09. HRMS–ESI(+): Calc. for C₂₉H₃₉O₇P [M+Na]⁺ = 551.2175, Found = 551.2362.

Preparation of Complex NiPhBr(PMe)₂. This synthesis was modified from a literature p_{Me_3} procedure.⁸³ Inside the glovebox, Ni[COD]₂ (1.10 g, 4 mmol, 1 equiv) and PMe₃ $m_{e_3}p^{-}$ Br (1 M in THF, 10 mL, 10 mmol, 2.5 equiv) were dissolved in 50 mL of dry Et₂O. PhBr (0.94 g, 6.0 mmol, 1.5 equiv) was added and the reaction mixture was stirred at RT for 6 h. The solution was filtered to remove a black solid and the filtrate was then dried completely under vacuum. The crude material was washed with cold Et₂O (-30 °C, 4×4 mL) to afford a bright orange solid (1.02 g, 3.17 mmol, 79%). ¹H NMR (C₆D₆, 500 MHz): δ (ppm) = 7.28 (dd, J_{HH} = 7.7, 1.1 Hz, 2H), 6.91 (t, J_{HH} = 7.5 Hz, 2H), 6.75 (m, 1H), 0.78 (t, J_{HH} = 3.9 Hz, 18H). ³¹P NMR (C₆D₆, 202 MHz): δ (ppm) = -14.78.

Preparation of Complex Ni^tBu. Inside the glovebox, ligand L64 (0.164 g, 0.4 mmol, 1.0 equiv)

was dissolved in 10 mL of THF. Small aliquots of NaH (60%, 0.32 g, 0.8 mmol, 2.0 equiv) were added and the mixture was stirred at RT for 2 h. The solution was filtered to remove excess NaH and then combined with a

solution of NiPhBr(PMe₃)₂ (0.122 g, 0.38 mmol, 0.95 equiv) in 5 mL of benzene. The resulting mixture was stirred at RT overnight. The precipitate formed was removed by filtration and the filtrate was dried under vacuum. The crude material was dissolved in a mixture of 15 mL of pentane and 2 mL of toluene and the solution was filtered once again before evaporating to dryness. Finally, the resulting solid was washed with pentane (3×2 mL) and dried under vacuum to afford a yellow powder (0.11 g, 0.17 mmol, 45%). ¹H NMR (C₆D₆, 500 MHz): δ (ppm) = 7.56 (ddd, *J*_{HH})

= 11.1, 7.5, 1.3 Hz, 2H), 7.23 (d, J_{HH} = 7.5 Hz, 2H), 7.14 (d, J_{HH} = 2.0 Hz, 1H), 7.04 – 6.98 (m, 2H), 6.97 – 6.92 (m, 1H), 6.71 (t, J_{HH} = 7.4 Hz, 2H), 6.63 (t, J_{HH} = 7.5 Hz, 2H), 6.58 (d, J_{HH} = 7.3 Hz, 1H), 6.38 (dd, J_{HH} = 8.1, 4.4 Hz, 2H), 2.98 (s, 6H), 2.04 (s, 3H), 1.69 (s, 9H), 0.81 (d, J_{HH} = 8.8 Hz, 9H). ¹³C NMR (C₆D₆, 152 MHz): δ (ppm) = 174.11 (d, J_{CP} = 26.3 Hz), 160.74 (d, J_{CP} = 5.5 Hz), 150.92 (d, J_{CP} = 32.6 Hz), 137.70 (d, J_{CP} = 9 Hz), 137.09 (d, J_{CP} = 2.8 Hz), 133.99 (d, J_{CP} = 5.4 Hz), 130.85, 130.72, 130.47, 125.22, 121.86 (d, J_{CP} = 6.8 Hz), 120.47 (d, J_{CP} = 8.3 Hz), 120.29, 119.86, 118.69, 118.20, 110.66 (d, J_{CP} = 4.4 Hz), 54.88, 35.13, 29.54, 20.60, 12.47 (d, J_{CP} = 23.8 Hz). ³¹P NMR (C₆D₆, 202 MHz): δ (ppm) = 15.08 (d, J_{PP} = 320.9 Hz), -13.64 (d, J_{PP} = 320.7 Hz). Anal. Calcd for C₃₄H₄₂NiO₃P₂: C, 65.94; H, 6.84. Found: 65.68; 6.99.

Preparation of Complex Ni11. Inside the glovebox, ligand **L61** (1.12 g, 2.11 mmol, 1.0 equiv) was dissolved in 50 mL of dry THF. Small aliquots of NaH (60%, 0.17g, 4.22 mmol, 2.0 equiv) were added and the mixture was stirred at RT for 2 h. The mixture was filtered to remove excess NaH and then a solution of NiPhBr(PMe₃)₂ (0.65 g, 2.02 mmol, 0.96 equiv) in 20 mL of benzene was added. The resulting mixture was stirred at RT overnight. The next day, the solution was filtered to remove the precipitate and the filtrate was dried completely under vacuum. The crude material was dissolved in a mixture of 40 mL of pentane and 4 mL of benzene. Another filtration was performed to remove the precipitate and the filtrate was dried once again. Finally, the resulting solid was washed with pentane (3×5 mL) and dried to under vacuum to afford a yellow powder (1.12 g, 1.51 mmol, 75%). ¹H NMR (C₆D₆, 500 MHz): δ (ppm) = 7.64 (m, 2H), 7.37 (d, J_{HH} = 1.7 Hz, 1H), 7.24 (d, J_{HH} = 7.7 Hz, 2H), 7.06 (dd, J_{HH} = 8.0, 4.4 Hz, 1H), 7.02 (m, 2H), 6.74 (t, J_{HH} = 7.4 Hz, 2H), 6.66 (t, J_{HH} = 7.5 Hz, 2H), 6.61 (m, 1H), 4.87 (s, 2H), 3.74 (m, 2H), 3.60 (m, 2H), 3.50 (m, 2H), 3.44 (m, 4H),
3.30 (m, 2H), 3.07 (s, 3H), 2.95 (s, 6H), 2.03 (s, 3H), 0.81 (d, 9H). ¹³C NMR (C₆D₆, 152 MHz): δ (ppm) = 173.39 (d, J_{CP} = 26.8 Hz), 160.77 (d, J_{CP} = 4.8 Hz), 150.91 (d, J_{CP} = 29.7 Hz), 137.05, 133.93 (d, J_{CP} = 6.3 Hz), 132.86, 131.74, 131.00, 127.16 (d, J_{CP} = 9.5 Hz), 125.22, 120.46, 120.39, 120.31, 120.07, 119.71, 117.92, 117.54, 110.52 (d, J_{CP} = 3.8 Hz), 72.09, 70.99, 70.85, 70.80, 70.63, 69.89, 69.82, 58.42, 54.81, 20.45, 11.50 (d, J_{CP} = 24.7 Hz). ³¹P NMR (C₆D₆, 202 MHz): δ (ppm) = 13.74 (J_{PP} = 319.5 Hz), -12.74 (J_{PP} = 318.1 Hz). Anal. Calcd for C₃₈H₅₂NiO₇P₂: C, 61.72; H, 6.82. Found: 61.63; 6.96.

Metal-Binding Studies

UV-Vis Absorption Spectroscopy: Metal Titration. Stock solutions of Ni11 and NaBAr^F₄ were prepared inside an inert nitrogen-filled glovebox. A 500 μ M stock solution of Ni11 were obtained by dissolving 25 μ mol of Ni11 in 50 mL of Et₂O. A 10 mL aliquot of this 500 μ M solution was diluted to 50 mL using a volumetric flask to give a final concentration of 100 μ M. The 3.0 mM stock solution of NaBAr^F₄ was obtained by dissolving 30 μ mol of NaBAr^F₄ in 10 mL of Et₂O using a volumetric flask. A 3.0 mL solution of Ni11 was transferred to a 1 cm quartz cuvette and then sealed with a septum screw cap. A 100 μ L airtight syringe was loaded with the 3.0 mM solution of NaBAr^F₄. The cuvette was placed inside a UV-vis spectrophotometer and the spectrum of the Ni11 solution was recorded. Aliquots containing 0.1 equiv of NaBAr^F₄ (10 μ L), relative to the nickel complex, were added and the solution was allowed to reach equilibrium before the spectra were measured (about 20–30 min). The titration experiments were stopped after the addition of up to 1.0 equiv of NaBAr^F₄. *UV-Vis Absorption Spectroscopy: Job Plot Studies*. Stock solutions of Ni11 (500 μ M) and NaBAr^F₄ (500 μ M) in Et₂O were prepared in separate volumetric flasks inside the drybox. Stock solutions of Ni11 and NaBAr^F₄ were combined in different ratios to give 10 different samples, each having a final volume of 3.0 mL. The samples were recorded by UV-vis absorption spectroscopy at RT.

The UV-vis spectral data were analyzed according to the method reported by Hirose.⁶⁸ In our case, the host (H) is **Ni11**, the guest (g) is Na⁺, and the complex (C) is **Ni11**-Na. Since the sodium salt has no absorption in the 300-500 nm range, we used this simplified expression to analyze the data: $A_{obs} - \varepsilon_h \cdot [H]_t = (\varepsilon_C - a \cdot \varepsilon_h) \cdot [C]$, where $A_{obs} =$ observed absorbance, a = constant, $\varepsilon_h =$ molar absorptivity of host **Ni11**, $\varepsilon_C =$ molar absorptivity of **Ni11**-Na, $[H]_t =$ starting concentration of host **Ni11**, and [C] = observed concentration of **Ni11**-Na. Since [C] is proportional to $A_{obs} - \varepsilon_h \cdot [H]_t$, a Job Plot was constructed by plotting $A_{obs} - \varepsilon_h \cdot [H]_t$ vs. χ_{Ni} (the mole ratio of **Ni11** = [**Ni11**]/([**Ni11**]+[Na⁺])).

χni	Volume of Stock Soln of H (mL)	Amount of H Added (mol)	Final Conc. of H (M)	Ah (calculated)	Aobs (@330 nm)	A _{obs} -A _h
1.0	3.000E-03	1.500E-06	5.000E-04	2.663E+00	2.663E+00	-2.040E-04
0.9	2.700E-03	1.350E-06	4.500E-04	2.396E+00	2.350E+00	4.576E-02
0.8	2.400E-03	1.200E-06	4.000E-04	2.130E+00	1.966E+00	1.637E-01
0.7	2.100E-03	1.050E-06	3.500E-04	1.864E+00	1.653E+00	2.108E-01
0.6	1.800E-03	9.000E-07	3.000E-04	1.598E+00	1.308E+00	2.896E-01
0.5	1.500E-03	7.500E-07	2.500E-04	1.331E+00	1.008E+00	3.234E-01
0.4	1.200E-03	6.000E-07	2.000E-04	1.065E+00	8.275E-01	2.375E-01
0.3	9.000E-04	4.500E-07	1.500E-04	7.988E-01	6.497E-01	1.491E-01
0.2	6.000E-04	3.000E-07	1.000E-04	5.325E-01	4.393E-01	9.315E-02
0.1	3.000E-04	1.500E-07	5.000E-05	2.663E-01	2.714E-01	-5.174E-03
1				1 1 0	1 1	

 Table 2.2. Data and Calculations Used for Job Plot^a

^{*a*}The molar absorptivity of H (ϵ_h) at 330 nm = 5325 M⁻¹cm⁻¹. Stock solution of H is 500 μ M.

Polymerization Studies

General Procedure for Ethylene Polymerization.

Inside the drybox, the Ni complex Ni11 (0.5 μ mol) and NaBAr^F₄ (1 μ mol) were dissolved in 10 mL of toluene in a 20 mL vial and stirred for 10 min. Solid Ni(COD)₂ (4 µmol) was added and stirred until a clear solution was obtained (4–5 min). The mixture was loaded into a 10 mL syringe equipped with an 8-inch stainless steel needle. The loaded syringe was sealed by sticking the needle tip into a rubber septum and brought outside of the drybox. To prepare the polymerization reactor, 90 mL of dry Ar-saturated toluene was placed in an empty autoclave. The autoclave was pressurized with ethylene to 80 psi, stirred for 5 min, and then the reactor pressure was reduced to 5 psi. This process was repeated three times to remove trace amounts of oxygen inside the reaction vessel. The reactor was then heated to the desired temperature and the catalyst solution was injected into the autoclave through a side arm. The autoclave was sealed and purged with ethylene at 40 psi (no stirring) three times. Finally, the reactor pressure was increased to the desired pressure, and the contents were stirred vigorously. To stop the polymerization, the autoclave was vented and cooled in an ice bath. A solution of MeOH (600 mL) was added to precipitate the polymer. The polymer was collected by vacuum filtration, rinsed with MeOH, and dried under vacuum at 80 °C overnight. The reported yields are average values obtained from duplicate or triplicate runs.

Special Notes:

• To obtain consistent polymer yields from run to run, the amount of catalyst used in each run must be kept as consistent as possible. Since 0.5 μmol of the **Ni11** catalyst weighs only 0.37 mg, it is extremely difficult to weigh out exactly this amount using a standard analytical balance.

To minimize errors due to weighing inconsistencies, we used a batch catalyst preparation method. First, we weighed out 37 mg (50 μ mol) of the catalyst and then dissolved it into 50 mL of toluene. This solution was divided equally into 10 vials so that each vial contained 5 μ mol of catalyst. Next, we combined each 5 μ mol of catalyst with 20 mL of toluene and partitioned this 25 mL mixture into 10 vials so that each vial contained 0.5 μ mol of catalyst. Finally, each vial was dried completely under vacuum and stored in a refrigerator inside the drybox until ready for use.

• For all polymerization reactions, except ones that were performed to determine the temperature profiles, the reaction temperature was controlled by manual cooling of the reactor with an air stream when the reactor increases more than 5°C above the starting temperature.

• To clean the Parr reactor, the vessel was washed with hot toluene (80 °C) to remove the polymer sample from the previous run and rinsed with acetone before drying under vacuum for at least 1 h to remove trace amounts of water.

		Activity			
Catalyst	Run 1	Run 2	Run 3	Average	(kg PE/mol Ni•h)
Ni10	0.89	1.22	-	1.06	2120
Ni10/NaBAr ^F 4	1.17	0.72	-	0.94	1880
Ni11	0	0	0	0	0
Ni11/NaBAr ^F 4	8.95	8.85	9.41	9.07	18100

Table 2.3. Comparison of Nickel Catalyst Activity^a

^{*a*}Polymerization conditions: Ni catalyst (0.5 μ mol), NaBAr^F₄ (1 μ mol, if any), Ni(COD)₂ (4 μ mol), 100 mL toluene, 450 psi ethylene, 30 °C for 1 h.

Figure 2.7. Comparison of catalyst activity between Ni'Bu and Ni11 with and without the addition of NaBAr^F₄. Full data shown in Table 2.3.

Ducasuno		Activity			
Pressure -	D 1	D 0	D 2	A	(kg PE/mol
(psi)	Run I	Run 2	Kun 3	Average	Ni•h)
150	2.34	1.81	1.52	1.89	3780
300	4.77	4.86	3.62	4.42	8840
450	4.59	5.72	5.91	5.41	10800

Table 2.4. Pressure Study of Ethylene Polymerization by Ni11-Na^a

^{*a*}Polymerization conditions: Ni catalyst (0.5 μ mol), NaBAr^F₄ (1 μ mol), Ni(COD)₂ (4 μ mol), 100 mL toluene, 20°C for 1 h at various ethylene pressures. Temperature controlled by manual external cooling when necessary.

Figure 2.8. Activity vs. pressure plot of catalyst **Ni11**-Na in ethylene polymerization at 450 psi. The highest activity was observed at 450 psi. Full data shown in Table 2.4.

—		Yiel	d (g)	Activity	M_n^b	an lan b	
Time	Run 1	Run 2	Run 3	Average	Ni•h)	(×10 ³)	
0.25 h	0.425	0.418	0.356	0.400	3200	1420	1.4
1 h	2.34	1.81	1.52	1.89	3780	1590	1.4
2 h	3.08	3.75	3.19	3.34	3340	1550	1.5
3 h	4.21	3.63	5.45	4.43	2950	1580	1.4

Table 2.5. Time Study of Ethylene Polymerization by Ni11-Na at 150 psi^a

^{*a*}Polymerization conditions: Ni catalyst (0.5 μ mol), NaBAr^F₄ (1 μ mol), Ni(COD)₂ (4 μ mol), 100 mL toluene, 150 psi ethylene, 20°C for various times as indicated. Temperature controlled by manual external cooling when necessary. ^{*b*}Determined by GPC in trichlorobenzene at 150 °C.

Figure 2.9. Activity vs. time plot of catalyst **Ni11**-Na in ethylene polymerization at 150 psi. The activity remained relatively constant over a 3 h time course. Full data shown in Table 2.5.

		Yield (g)							
Time	Run 1	Run 2	Run 3	Average	- (kg PE/mol Ni∙h)				
0.5 h	6.92	5.71	-	6.32	25300				
1 h	8.95	8.85	9.41	9.07	18100				
2 h	14.37	15.80	-	15.08	15080				

Table 2.6. Time Study of Ethylene Polymerization by Ni11-Na at Optimal Reaction Conditions^a

^{*a*}Polymerization conditions: Ni catalyst (0.5 μ mol), NaBAr^F₄ (1 μ mol), Ni(COD)₂ (4 μ mol), 100 mL toluene, 450 psi ethylene at 30 °C for various times as indicated. Temperature controlled by manual external cooling when necessary.

Figure 2.10. Activity vs. time plot of catalyst **Ni11**-Na in ethylene polymerization under optimal reaction conditions. The activity decreased gradually over the 2 h time course. Full data shown in Table 2.6.

		Yiel	d (g)	Activity	b		
(°C)	Run 1	Run 2	Run 3	Average	PE/mol Ni •h)	M_n^o (×10 ³)	M_w/M_n^b
RT	2.34	1.81	1.52	1.89	3780	1590	1.4
30	4.06	4.14	2.86	3.69	7380	1400	1.3
40	3.81	3.63	4.26	3.90	7800	1380	1.4
50	4.27	5.24	4.21	4.57	9140	850	1.6
60	2.52	3.86	3.14	3.17	6340	830	1.7

Table 2.7. Temperature Study of Ethylene Polymerization by Ni11-Na at 150 psi^a

^{*a*}Polymerization conditions: Ni catalyst (0.5 μ mol), NaBAr^F₄ (1 μ mol), Ni(COD)₂ (4 μ mol), 100 mL toluene, 150 psi ethylene, 1 h at various temperatures. Temperature controlled by manual external cooling when necessary. ^{*b*}Determined by GPC in trichlorobenzene at 150 °C.

Figure 2.11. Activity vs. temperature plot of catalyst **Ni11**-Na in ethylene polymerization at 150 psi. The activity was optimal at ~50 °C. Full data shown in Table 2.7.

		Yiel	d (g)	Activity	h		
(°C)	Run 1	Run 2	Run 3	Average	PE/mol Ni •h)	M_n^{b} (×10 ³)	M_w/M_n^b
RT	4.59	5.72	5.91	5.41	10800	1550	1.4
30	9.41	8.95	8.85	9.07	18100	1710	1.5
40	6.89	6.64	8.51	7.35	14700	1210	1.5
50	6.32	6.29	6.96	6.52	13000	1260	1.4
60	4.91	4.63	4.53	4.69	9380	1090	1.2

Table 2.8. Temperature Study of Ethylene Polymerization by Ni11-Na at 450 psi^a

^{*a*}Polymerization conditions: Ni catalyst (0.5 μ mol), NaBAr^F₄ (1 μ mol), Ni(COD)₂ (4 μ mol), 100 mL toluene, 450 psi ethylene, 1 h at various temperatures. Temperature controlled by manual external cooling when necessary. ^{*b*}Determined by GPC in trichlorobenzene at 150 °C.

Figure 2.12. Activity vs. temperature plot of catalyst **Ni11**-Na in ethylene polymerization at 450 psi. The activity was optimal at ~30 °C. Full data shown in Table 2.8.

Time	Temperature		Yield (g)	Activity	
(min)	(°C) –	Run 1	Run 2	Average	(kg PE/mol Ni · h)
4	159	10.80	9.90	10.35	31050
60	29	10.97	11.70	11.34	2268

Table 2.9. Time-Dependent Catalyst Activity of Ni11-Na (100 µM)^a

^{*a*}Polymerization conditions: Ni catalyst (5.0 μ mol), NaBAr^F₄ (10.0 μ mol), Ni(COD)₂ (20.0 μ mol), 50 mL toluene, 450 psi ethylene, start reaction at 20 °C. Temperature *was not* controlled by manual external cooling.

Figure 2.13. Temperature profile of ethylene polymerization (450 psi) by **Ni11**-Na (100 μ M) over the course of 1 h. The temperature values represent the internal reactor temperatures and were recorded manually by reading the digital temperature gauge.

Time	Temperature		Yield (g)	Activity	
(min)	(°C)	Run 1	Run 2	Average	(kg PE/mol Ni • h)
4	60	5.60	6.30	5.95	17800
5	122	11.70	13.30	12.50	30000
5.5	110	13.70	14.90	14.30	31200
7	98	18.90	21.50	20.20	34630
60	35	20.70	18.80	19.75	3950

Table 2.10. Time-Dependent Catalyst Activity of Ni11-Na (50 µM)^a

^{*a*}Polymerization conditions: Ni catalyst (5.0 μ mol), NaBAr^F₄ (10.0 μ mol), Ni(COD)₂ (20.0 μ mol), 100 mL toluene, 450 psi ethylene, start reaction at 20 °C. Temperature *was not* controlled by manual external cooling.

Figure 2.14. Temperature profile of ethylene polymerization (450 psi) by **Ni11**-Na (50 μ M) over the course of 1 h. The temperature values represent the internal reactor temperatures and were recorded manually by reading the digital temperature gauge.

Table 2.11. Comparison of Nickel Ethylene Polymerization Catalysts Reported in the Literature

Complex (conc.)	C2H4 Press. (psi)	Temp. (°C)	Time (min)	Activity (kg PE/mol Ni∙h)	TON (×10 ³ mol ethylene/ mol Ni)	M_n	$\frac{M_n}{M_w}$	Reference (Compound name in original reference)
Ni1 (0.83 µmol/200 mL)	200	35	10	67200	400	337000	1.8	Brookhart (4g) ⁷⁰
Ni2 (1.57 µmol/100 mL)	100	100	10	2856	17	422000	1.2	Long $(2b)^{71}$
Ni3 (5.00 µmol/20 mL)	118	25	60	260	9	188900	2.5	Chen (Ni4) ⁷²
Ni4 (20.0 µmol/30 mL)	300	25	120	163	12	1500	-	Jordan (4a) ⁷³
Ni5 (10.0 µmol/25 mL)	118	25	40	1184	28	6700	1.8	Marks (1b) ⁷⁴
Ni6 (5.00 µmol/100 mL)	580	30	40	1218	29	466100	1.6	Mecking (2- CF ₃ / P _y) ⁸⁴
Ni7 (5.00 μmol/100 mL)	145	30	20	2100	25	398000	1.5	Li (2c) ⁶⁹
Ni8 (2.5 µmol/8.5 mL)	580	30	30	1000	18	84000	2.0	Nozaki (7c) ⁸⁵
Ni9 (0.50 µmol/150 mL)	400	10	3.5	103600	216	1390000	1.4	Daugulis/Brookhart (6) ⁷⁷
Ni11 -Na (0.50 µmol/100 mL)	450	30	60	18100	646	1710	1.5	This work

2.7. Crystallographic Data

X-ray Data Collection and Refinement

Single crystals suitable for X-ray diffraction studies were picked out of the crystallization vials and mounted onto Mitogen loops using Paratone oil. The crystals were collected at a 6.0 cm detector distance at -150 °C on a Brucker Apex II diffractometer using Mo K α radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods using the program SHELXT and refined by SHELXLE. Hydrogen atoms connected to carbon were placed at idealized positions using standard riding models and refined isotropically. All non-hydrogen atoms were refined anisoptriocally.

Crystals of complex **Ni'Bu** were grown by layering of pentane into a solution of the complex in toluene at -30 °C. The three methyl carbons (C32-C34) attached to the phosphine atom were refined in two parts due to positional disorder. The solvent molecule pentane was refined successfully without the use of any structural restraints.

Crystals of complex **Ni11** were grown by layering of pentane into a solution of the complex and NaBAr^F₄ in a mixture of toluene and Et₂O at -30 °C. The fluorine atoms attached to carbons C54, C61, and C69 were refined using positional disorder due to free rotation of the CF₃ groups.

	Ni ^t Bu·C ₅ H ₁₂	Ni11-Na
Empirical Formula		NiNaC ₃₈ H ₃₀ O ₇ P ₂
	$NC_{34}\Pi_{42}O_{3}P_{2}C_{5}\Pi_{12}$	$(BC_{32}H_{12}F_{24})$
Formula Weight	691.47	1625.64
Temperature (°C)	-150	-150
Wavelength (Å)	0.71073	0.71073
Crystal System	Triclinic	Monoclinic
Space Group	P_{-1}	$P2_1/c$
Unit Cell Dimensions		21 7805(17)
<i>a</i> (Å)	11.0922(13)	21.7803(17) 17 3222(14)
<i>b</i> (Å)	11.6999(14)	17.3222(14) 19.7901(16)
<i>c</i> (Å)	15.9470(19)	90
α (°)	72.2620(10)	102 5400(10)
β (°)	71.2670(10)	90
γ (°)	81.6330(10)	<i>J</i> 0
Volume (Å ³)	1864.1(4)	7288.4(10)
Z , Calculated Density (Mg/m ³)	2, 1.232	4, 1.481
Absorption Coefficient (mm ⁻¹)	0.640	0.429
F(000)	740	3312
Theta Range for Data Collection	1 403 to 25 027	1 516 to 27 554
(°)	1.403 to 25.027	1.510 to 27.554
Limiting Indices	$-13 \le h \le 10$	$-23 \le h \le 28$
	$-13 \le k \le 13$	$-24 \le k \le 22$
	$-18 \le l \le 18$	$-25 \le 1 \le 25$
Reflections Collected/ Unique	9114/ 6404	43028/16670
	[R(int) = 0.0106]	[R(int) = 0.0181]
Data/ Restraints/ Parameters	6404 / 30 / 418	16670 / 57 / 944
Goodness of Fit on F ²	1.085	1.053
Final R Indices	$R_1 = 0.0466$	$R_1 = 0.0666$
$[I > 2\sigma(I)]$	$wR_2 = 0.1590$	$wR_2 = 0.1861$
R Indices (All Data)*	$R_1 = 0.0556$	$R_1 = 0.0779$
	$wR_2 = 0.2051$	$wR_2 = 0.2007$
Largest Diff. Peak and Hole (e $Å^{-3}$)	1.339 and -0.821	1.893 and -1.533

Table 2.12. Crystal Data and Structure Refinement for Ni'Bu and Ni11-Na

*R₁ = $\Sigma ||F_o| - |F_o|| / \Sigma |F_o|$; wR₂ = $[\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)_2]]^{1/2}$; GOF = $[\Sigma [w(F_o^2 - F_c^2)_2] / (n-p)]^{1/2}$, where *n* is the number of reflections and *p* is the total number of parameters refined

2.8. Spectral Characterization

Figure 2.15. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 66.

Figure 2.16. ¹³C NMR spectrum (CDCl₃, 101 MHz) of compound 66.

Figure 2.17. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 67.

Figure 2.18. ¹³C NMR spectrum (CDCl₃, 101 MHz) of compound 67.

Figure 2.19. ¹H NMR spectrum (CDCl₃, 500 MHz) of compound L64.

Figure 2.20. ¹³C NMR spectrum (CDCl₃, 101 MHz) of compound L64.

Figure 2.21. ³¹P NMR spectrum (CDCl₃, 202 MHz) of compound L64.

Figure 2.22. ¹H NMR spectrum (CDCl₃, 500 MHz) of compound 56.

Figure 2.23. ¹³C NMR spectrum (CDCl₃, 126 MHz) of compound 56.

Figure 2.24. ¹H NMR spectrum (CDCl₃, 500 MHz) of compound 57.

Figure 2.25. ¹³C NMR spectrum (CDCl₃, 126 MHz) of compound 57.

Figure 2.26. ³¹P NMR spectrum (CDCl₃, 202 MHz) of compound 57.

Figure 2.27. ¹H NMR spectrum (CDCl₃, 500 MHz) of compound 59.

Figure 2.28. ¹³C NMR spectrum (CDCl₃, 126 MHz) of compound 59.

Figure 2.29. ³¹P NMR spectrum (CDCl₃, 202 MHz) of compound 59.

Figure 2.30. ¹H NMR spectrum (CDCl₃, 500 MHz) of compound 63

Figure 2.31. ¹³C NMR spectrum (CDCl₃, 126 MHz) of compound 63.

Figure 2.32. ¹H NMR spectrum (CDCl₃, 126 MHz) of compound L61.

Figure 2.33. ¹³C NMR spectrum (CDCl₃, 126 MHz) of compound L61.

Figure 2.34. ³¹P NMR spectrum (CDCl₃, 162 MHz) of compound L61.

Figure 2.35. ¹H NMR spectrum (C₆D₆, 400 MHz) of complex Ni^{*t*}Bu.

Figure 2.36. ¹³C NMR spectrum (C₆D₆, 100 MHz) of complex Ni'Bu.

Figure 2.37. ³¹P NMR spectrum (C₆D₆, 162 MHz) of complex Ni'Bu.

Figure 2.38. ¹H NMR spectrum (C₆D₆, 400 MHz) of complex Ni11.

Figure 2.39. ¹³C NMR spectrum (C₆D₆, 126 MHz) of complex Ni11.

Figure 2.40. ³¹P NMR spectrum (C₆D₆, 162 MHz) of complex Ni11.

Chapter 3. One Catalysts Many Materials: Using Alkali Ions to Control Ethylene Polymerization Catalysts.

3.1. Introduction

In Chapter 2, we showed that chelation of sodium to nickel phenoxyphosphine polyethylene glycol complex **Ni11** led to extraordinary increase in catalytic activity. However, its polymer molecular weight and catalyst thermal stability was limited. In this chapter, we expanded our study of **Ni11** with other alkali metals such as Li, K, and Cs. We performed detailed structural studies of the nickel-alkali resulting bimetallic complexes and mechanistic experiments to investigate the cooperative roles of secondary metals in ethylene polymerization.

3.2. Secondary Alkali Ion Complexation

3.2.1. X-ray Characterization

To obtain structural characterization, we grew single crystals of the nickel-alkali complexes by layering pentane over a toluene/Et₂O, toluene/THF, or benzene/Et₂O solution of **Ni11** and $MBAr^{F_4}$ (M = Li⁺, Na⁺, K⁺, and Cs⁺). The **Ni11**-M structures revealed that the nickel centers all adopt square planar arrangements and their phosphine groups are *trans* to each other, except for sodium (Figure 3.1). Each nickel complex is coordinated to an alkali ion, which is ligated by oxygen atoms from PEGs and the bridging phenolate. For potassium and cesium, due to their large cation size, they are found to also coordinate with an extra solvent molecule, THF in **Ni11**-K and benzene in **Ni11**-Cs.

Figure 3.1. X-ray structure of complex **Ni11**-M (ORTEP view, displacement ellipsoids drawn at 50% probability level). Hydrogen atoms have been omitted for clarity.

3.2.2. Metal Binding Study by UV-Vis Absorption Spectroscopy

Even though their solid-state structures showed 1:1 Ni:M binding, additional studies of Ni11-M were carried out to confirm this stoichiometry in solution. Our experiments were conducted in a mixture of Et_2O and toluene due to the low solubility of the alkali BAr^{F_4} salts in non-polar solvents. However, we hypothesized that in neat toluene, which is the solvent used in our polymerization studies, the nickel-alkali binding stoichiometry does not change. Being able to form discrete 1:1 nickel-alkali species in solution is important to having single site catalysts that could produce narrowly dispersed polymers. Polydispersity is a crucial material characteristic because it contributes to its physical and mechanical properties.

3.2.2.1 Job Plots

To establish the binding stoichiometry of **Ni11** and alkali ions, we employed the method of continuous variation. For these studies, stock solution of **Ni11** (500 μ M) and MBAr^F₄ (500 μ M) (M = Li⁺, Na⁺, K⁺, and Cs⁺) were prepared separately in a mixture of toluene/Et₂O (1:1). Eleven samples with different ratios of **Ni11:M** in a total volume of 3.5 mL were prepared UV-Vis cuvettes and their UV-vis spectra were recorded at room temperature. The full data and calculations are shown in Tables 3.5-3.8. Our results showed that the peak maxima all occur at *X*_{Ni} = 0.5, which means that the optimal binding of **Ni11** with M⁺ is 1:1 (Figure 3.2). The slopes of the four plots suggest that the alkali ion affinity of **Ni11** follows the order Li⁺ > Na⁺ \approx K⁺ > Cs⁺. This trend is most likely due to the size matching of the alkali ion with the binding pocket provided by the PEG chain and phenolate donor. Similar observations have been reported in the literature.⁸⁶⁻⁸⁹

Figure 3.2. Job plots for complex **Ni11** with $MBAr^{F_4}$, $M = Li^+$ (blue squares), Na^+ (orange circles), K^+ (red triangles), Cs^+ (green rhombus) in a mixture of Et₂O and toluene (1:1) at 25 °C.

3.2.2.2 Metal Titration

Next, we performed metal ion titration studies to probe the coordination chemistry of Ni11 in more detail. To carry out these experiments, solutions containing 100 μ M Ni11 in Et₂O/toluene (1:1) were treated with aliquots of 0.1 equiv of MBAr^F₄ salts (M⁺ = Li⁺, Na⁺, K⁺, and Cs⁺) and then allowed to equilibrate for ~20–30 min before recording the spectral changes. The MBAr^F₄ was added up to 1 equiv relative to the nickel complex. Upon addition of the alkali salts, we observed clear isosbestic points that suggest simple A \rightarrow B transformations (Figure 3.3), the starting trace of Ni11 is shown in black and the final trace (after 1.0 equiv of M⁺ was added) is shown in red.

Figure 3.3. UV-vis absorbance spectra of complex Ni11 after the addition of various aliquots of $MBAr^{F_{4}}$.

3.3. Ethylene Polymerization

We first screened **Ni11** for ethylene homopolymerization activity in the presence of different alkali cations (Table 3.1). We compared our heterobimetallic complexes with monometallic **Ni'Bu** and **NiC₆F₅**, which possess different electronic and steric properties and do not have secondary coordination sites (Figure 3.4).

Figure 3.4. Ni'Bu and NiC₆F₅ complexes used as standards in this study for comparison.

Interestingly, we observed that the polymerization behavior of **Ni11** is dramatically altered in the presence of cations. Complex **Ni11** itself was catalytically inactive, affording a trace amount of polymer after 1 h (Table 3.1, entry 1). We surmised that its free PEG chain can self-inhibit by occupying open coordination sites at the nickel center. However, in our previous studies on a family of nickel phenoxyimine-polyethylene glycol complexes, the pendent PEG chains neither promote nor inhibit polymerization.⁴⁶ As expected, recruitment of alkali cations by **Ni11** led to formation of highly active single-site catalysts for olefin polymerization. At 30 °C in toluene under 450 psi of ethylene, we found that **Ni11**-Li was the most productive catalyst, affording a TOF of up to 35.3×10^3 kg/(mol Ni·h) and highly linear polyethylene with an average M_n of ~40.1×10³ g/mol and M_w/M_n of ~1.3. The second most active catalyst was **Ni11**-Na, which afforded a TOF of about 18.14×10³ g/mol. In comparison to the standard catalysts **Ni'Bu** and **NiC₆F5**, our **Ni11**-Li and **Ni11**-Na bimetallic complexes are far more active (Figure 3.5). To understand the effects of

alkali ions, we compared their physical properties such as atomic size ($r_{Li+} = 76$ pm, $r_{Na+} = 102$ pm, $r_{K+} = 138 \text{ pm}$, and $r_{Cs+} = 167 \text{ pm}$) and ionic potential ($\Phi_{Li+} = 1.66, \Phi_{Na+} = 1.04, \Phi_{K+} = 0.76$, and $\Phi_{Cs+} = 0.55$).⁹⁰⁻⁹¹ We found that the high activity of **Ni11**-Li complex correlates well with the high binding affinity of **Ni11** for Li⁺ and ionic potential of Li⁺. Our results are consistent with literature reports that showed electron-deficient nickel catalysts tend to give higher activity and polymer molecular weight in ethylene polymerization than their electron-rich counterparts.⁹²⁻⁹⁵ The TOF decrease in the other Ni11-Li > Ni11-Na > Ni11-K > Ni11-Cs is in agreement with their Lewis acid strengths and Ni11 binding affinities order $Li^+ > Na^+ > K^+ > Cs^+$. However, the polymer molecular weight followed a different trend Ni11-Li > Ni11-Cs > Ni11-K > Ni11-Na (Table 1, entries 2, 3, 4, and 5). Because molecular weight is influenced by both electronic (Lewis acid strength of the alkali cations) and steric (cation size) effects, the observed catalyst behavior reflects a combination of these factors. Branching analysis revealed that all of the polymers produced by Ni11-M are highly linear, which is typical for this class of catalysts.⁹⁶⁻⁹⁷ However, it is interesting to note that Ni11-Na and Ni11-K produced polyethylene with branching density of ~26/1000 C, whereas Ni11-Li and Ni11-Cs gave branching density of $\sim 10/1000$ C (Figure 3.6).

Figure 3.5. Ethylene polymerization using **Ni11**-alkali metals bimetallic complexes and monometallic nickel complexes at 30 °C.

Figure 3.6. Molecular weight and branching density of polyethylenes produced by **Ni11**-alkali metals bimetallic complexes and monometallic nickel complexes at 30 °C.

To study temperature effects, we screened our catalysts from 30 °C to 90 °C. In general, increasing reaction temperature increased catalyst activity and decreased polyethylene molecular weight, but branching density was unaffected (Table 3.1).

Entry	Cat.	Salt	Temp. (^O C)	Polymer Yield (g)	Activity $(\frac{kg}{mol \cdot h})$	Branches ^b (/1000 C)	$\frac{M_n^c}{(\times 10^3)}$	$\frac{M_{\rm n}}{M_{\rm w}}$
1	Ni11	none	30	trace	0	-	-	_
2^d	Ni11	Li ⁺	30	3.53	35300	12	40.1	1.3
3	Ni11	Na^+	30	9.07	18140	27	1.72	1.4
4	Ni11	\mathbf{K}^+	30	1.46	2920	25	4.53	1.6
5	Ni11	Cs^+	30	0.18	360	9	33.93	1.5
6	Ni ^t Bu	none	30	1.32	2640	15	5.2	1.9
7	NiC ₆ F ₅	none	30	0.77	1540	9	3.06	2.1
8^d	Ni11	Li ⁺	50	3.84	38400	7	12.1	1.3
9	Ni11	Na^+	50	6.52	13040	30	1.6	1.2
10	Ni11	\mathbf{K}^+	50	2.73	5460	9	11.5	1.5
11	Ni11	Cs^+	50	0.72	1440	8	34.98	1.3
12^{d}	Ni11	Li ⁺	70	1.82	18200	10	6.2	1.3
13	Ni11	Na^+	70	4.61	9220	27	1.03	1.4
14^e	Ni11	\mathbf{K}^+	70	2.89	11560	27	1.39	1.3
15^{e}	Ni11	Cs^+	70	9.12	36480	9	15.12	1.7
16^d	Ni11	Li ⁺	90	1.31	13100	17	2.09	2.2
17	Ni11	Na^+	90	2.41	4820	30	0.86	1.5
18^{e}	Ni11	\mathbf{K}^+	90	2.49	9960	29	1.06	1.6
19 ^e	Ni11	Cs^+	90	5.73	22920	10	15.74	1.4
20	Ni ^t Bu	none	90	12.8	25600	12	1.46	3.4
21	NiC ₆ F ₅	none	90	10.3	20600	15	0.97	3.7

Table 3.1. Polymerization Screening for Ni11 with Different Alkali Metals at Various Temperatures^a

^{*a*}Polymerization conditions: catalyst (0.5 µmol), MBAr^F₄ (1 µmol, if any), Ni(COD)₂ (4 µmol), ethylene (450 psi), 100 mL toluene, 1h. Temperature was controlled by manual external cooling when necessary to ensure that the reaction temperature does not exceed greater than 5°C from the starting temperature. ^{*b*}The total number of branches per 1000 carbons was determined by ¹H NMR spectroscopy. ^{*c*}Determined by GPC in trichlorobenzene at 140 °C. ^{*d*}Ni11 (0.1 µmol), MBAr^F₄ (0.2 µmol, if any), Ni(COD)₂ (0.8 µmol). ^{*e*}Reaction was run for 30 min. *Ni'Bu and NiC₆F₅ were tested as standards for comparison.

It is interesting to note that each complex has different optimal working temperatures. Ni11-Li was most active at 50 °C, Ni11-Na at 30 °C, and Ni11-K and Ni11-Cs at 70 °C, affording TOFs of about 38.4×10^3 , 18.14×10^3 , 11.56×10^3 , and 36.48×10^3 kg/(mol Ni·h), respectively. For complexes Ni11-Li, Ni11-Na and Ni11-K, they were highly sensitive to elevated reaction temperatures. At 70 °C, their polymer products displayed significant reduction in molecular weight of about $6.5 \times$, $1.7 \times$, and $3.7 \times$ for Li⁺ (entry 12), Na⁺ (entry 13) and K⁺ (entry 14) respectively, in comparison to those obtained at 30 °C. At 90 °C, the molecular weight decreased further, M_n $\sim 2.09 \times 10^3$ g/mol for Ni11-Li (entry 16), $\sim 0.86 \times 10^3$ g/mol for Ni11-Na (entry 17), and $\sim 1.06 \times 10^3$ g/mol for Ni11-K (entry 18). The broad polydispersity of Ni11-Li ($M_w/M_n \sim 2.2$) at this high temperature suggested that more than two active species were present in the reaction mixture that might result from the slow decomposition of bimetallic structure. These observations were matched closely with many previous reports on the temperature sensitivity of Ni(II) systems in olefin polymerization.

Surprisingly, our Ni11-Cs complex demonstrated extraordinary thermal stability. At 70 °C, the catalytic rate enhanced about $101 \times (\text{TOF} = 36.48 \times 10^3 \text{ kg/(mol Ni} \cdot \text{h}))$, in comparison to that at 30 °C (TOF = $0.6 \times 10^3 \text{ kg/(mol Ni} \cdot \text{h})$), but the resulting polyethylene molecular weight was reduced by half ($M_n \sim 33.93 \times 10^3 \text{ g/mol}$ at 30 °C, $M_n \sim 15.12 \times 10^3 \text{ g/mol}$ at 70°C) (entries 5 and 15). Further increasing reaction temperature to 90 °C led to a slight decrease in catalytic activity but polymer molecular weight and polydispersity were maintained. Although Ni'Bu and NiC₆Fs complexes also displayed high activities at 90 °C, their resulting polydispersity increased, up to 3.7, indicating partial decomposition of the catalysts. Our Ni11-Cs complex is among one of a few Ni systems that can produce polyethylene with moderate molecular weight and extremely high activity at temperature as high as 90 °C (entry 19). In comparison with other thermally robust Ni

systems, including those based on the well-established α -diimine platforms, **Ni11**-Cs complex is more active and productive (higher TOF and TON) (Table 3.18).

Next, we proceeded to evaluate the effects of solvents on the reactivity of **Ni11**-M toward ethylene polymerization. We performed reactions in benzene and dichloromethane at 30 °C. Generally, the nickel-alkali complexes showed similar productivity in benzene and toluene, which have similar chemical properties and polarity. However, **Ni11**-K's activity was found to increase $\sim 4.9 \times$, giving a TOF of 14.4×10^3 kg/(mol Ni·h), which was similar to that of **Ni11**-Na (Figure 3.7).

Figure 3.7. Ethylene polymerization study for bimetallic complexes in benzene.

In dichloromethane, the catalytic activities decreased several folds compared to in toluene. In general, the polymerization processes are commonly inhibited in halogenated solvents due to interaction of halogen atoms with metal catalysts. In our study, **Ni11**-Li in CH₂Cl₂ was still the most productive catalyst, yielding polymer with medium molecular weight and high activity. Interestingly, the activity of **Ni11**-Cs increased about $2\times$, while the resulting polymer molecular weight decreased $3\times$ compared to those recorded in toluene (Figure 3.8). Since the interaction of

solvents with the metal centers is complicated, it is difficult to draw any conclusions without further experimental studies.

Figure 3.8. Ethylene polymerization study for bimetallic complexes in dichloromethane.

Due to the extremely high catalytic rate of the **Ni11**-Li complex in ethylene polymerization at 30 °C, we hypothesized that, similar to many common systems, its catalytic activity will get benefits from high temperature, thus we anticipated that the maximum TOF may be much greater at the optimal working condition. Screening the **Ni11**-Li in ethylene polymerization from 30 to 90 °C, we observed that the optimal temperature was 40 °C (TOF = 51.8×10^3 kg/(mol Ni·h), M_n ~25.8×10³ g/mol) (Figure 3.9). Its activity decreased gradually at higher temperature, which is most likely due to either catalyst decomposition or change in cation binding affinity. In the former case, the formation of nickel-bis(ligand) species or reprotonation of the ligand could be a possible off-cycle pathway.⁹⁸ In the latter case, we have observed similar phenomenon as with the palladium phosphine phosphonate ester complexes.⁵⁹ These results further confirm the importance of having suitably strong secondary metal chelators to prevent dissociation of the heterobimetallic structures.

Figure 3.9. Temperature study of Ni11-Li in ethylene polymerization.

We further optimized the reaction conditions for Ni11-Li at 40 °C. We hypothesized that because mass transport could be a limiting factor due to its extremely high activity, we tested Ni11-Li with shorter reaction time and under more dilute catalyst concentration. In both cases, our results showed that the catalytic activity increased, suggesting that the productivity of Ni11-Li complex was most likely limited because of precipitation of insoluble polymer rather than decomposition of the active species (Figure 3.10). Under diluted catalyst condition, our Ni11-Li complex polymerized ethylene with extraordinary activity (TOF = 89.4×10^3 kg/(mol Ni·h)), affording polyethylenes with an $M_n \sim 21.7 \times 10^3$ g/mol. To the best of our knowledge, this heterobimetallic complex could rival some of the best transition-metal catalysts reported to date in ethylene polymerization (Table 3.17).

Figure 3.10. Optimizing study for Ni11-Li complex in ethylene polymerization at 40 °C.

We next investigated the catalytic behavior of **Ni11**-Li in a wide range of solvents. In nonpolar solvents such as pentane, hexane, benzene, and toluene, **Ni11**-Li complex gave similar results. However, we found that hexane was the best solvent, giving a $\sim 1.5 \times$ increase in activity and $\sim 2.0 \times$ increase in polymer molecular weight, in comparison to those performed in toluene (Figure 3.11). We hypothesized that hexane solubilized the catalyst/polymer best and enabled tighter metal binding. The catalyst also showed greater tolerance towards diethyl ether than dichloromethane. In acetonitrile, polymerization was completely shut down, which was consistent with our NMR titration studies, showing that heterobimetallic species do not form in CH₃CN (Figure 3.35). The correlation between the stability of bimetallic species and polymerization activity is supported experimentally.

Figure 3.11. Ethylene polymerization study for Ni11-Li in different solvents.

To examine the effect of counteranions on catalyst performance, we tested **Ni11** in combination with various lithium salts: LiBAr^F₄, LiTPFB, LiBPh₄, and LiOTf. First, we performed polymerization reactions in neat toluene without temperature control. Our results showed that the BAr^F₄⁻ anion was the most suitable. In the presence of LiBAr^F₄, **Ni11** polymerized ethylene at the fastest rate, in comparison with the other Li salts (Figure 3.12). Second, to determine whether counteranions are directly involved in polymerization or just influence the salt's solubility, we conducted these reactions in a mixture of toluene/diethyl ether (1:1). Under these conditions, the polymerization rates were slower but still in the same order LiBAr^F₄ > LiTPFB > LiBPh₄, >> LiOTf ~0 (Figure 3.13). We further proposed that the inactivity of **Ni11** with LiOTf salt may result from the chelation of the sp²-oxygens (S=O) to the nickel centre.⁴⁷ Therefore, having weakly coordinating counteranions such as BAr^F₄⁻ or TPFB⁻ is important to ensure catalyst high productivity.

Figure 3.12. Counteranion effect study for Ni11-Li in ethylene polymerization in toluene without temperature control.

Figure 3.13. Counteranion effect study for Ni11-Li in ethylene polymerization in a mixture of toluene and Et_2O (1:1).

Finally, to evaluate the thermal stability of the Ni11-Li complex, we measured the reaction temperature and polymer yield as a function of time. When a 5 μ M toluene solution of the nickellithium catalyst was treated with Ni[COD]₂ followed by exposure to 450 psi of ethylene, the reaction temperature slowly increased from 31 to 34 °C after the first 7 min, then quickly rose to 86 °C for another 7 min concomitant with a rapid increase in polymerization rate. Once the exotherm reached a maximum, the solution gradually cooled back down to \sim 35 °C after 60 min (Figure 3.14). During the first 36 min, an appreciable amount of polymer formed, which suggested the presence of active catalyst. These results indicated that our most active **Ni11**-Li catalyst is quite thermally robust. A pre-activation phase was also observed for several electron-poor nickel complexes.⁹⁴

Figure 3.14. Time-Dependent catalyst activity of **Ni11**-Li (5 μ M). The temperature values represent the internal reactor temperatures and were recorded manually by reading the digital temperature gauge.

3.4. Structure-Activity Correlation

3.4.1. Steric Influence

The steric environment of a catalysts primary coordination sphere is known to directly impacts its catalytic performance. Steric effects could lead to changes in polymer molecular weight, microstructure, catalyst activity, and catalyst thermal stability. To investigate the steric influence of secondary metals on **Ni11**, we have calculated the percentage buried volume ($%V_{bur}$) in the nickel-alkali structures using the program SambVca 2.1. We assessed the possible correlation between V_{bur} and catalyst reactivity.⁹⁹⁻¹⁰⁰ The structures of our bimetallic catalysts were also compared with monometallic complexes **Ni'Bu** and **NiC₆F**₅. The X-ray structure of a nickel complex similar to **NiC₆F**₅ was used in our V_{bur} calculations.⁹⁷

By comparing the mononickel versus nickel-alkali structures, we found that the alkali-PEG units are positioned above the d_z orbital of the nickel centers, which provides steric protection of the axial sites (Figure 3.16). In contrast, the *t*-butyl substituent of **Ni***C*₆**F**₅ do not provide the same d_z orbital protection (Figure 3.15). It is difficult to synthetic asymmetric ligands like phenoxyphosphines, that can efficiently shield the axial position of square planar nickel and palladium complexes. However, installing pendent chelators to recruit secondary metals can be a useful strategy to achieve efficient steric protection.

On the basic of their topographical steric maps (Figure 3.17) and X-ray structures, we found that the steric bulk of Ni11-M followed the order Ni11-Na < Ni11-Li < Ni11-K < Ni11-Cs (Figure 3.16). The %V_{bur} of the bimetallic complexes were higher than those of the monometallic complexes, which further suggested that they have more steric hindrance than their mononuclear counterparts. It has typically been observed that bulkier catalysts tend to produce higher polymer molecular weight, while less bulky catalysts tend to be more active. At low temperature, the activity trend followed the order Ni11-Na < Ni11-K < Ni11-Na < *Ni11-Li*, whereas molecular weight followed a different order Ni11-Na < Ni11-K < Ni11-Cs < *Ni11-Li*. At elevated temperature, the trends could change, because more stable catalysts tend to give higher activity and molecular weight.¹⁰⁰ Our polymerization results at 90 °C showed that the activity and molecular weight both followed the order <u>Ni11-Na</u> < <u>Ni11-K</u> < *Ni11-Li* < <u>Ni11-Cs</u>. Overall, for <u>Ni11-Na</u>, <u>Ni11-K</u>, and <u>Ni11-Cs</u>, we found that their catalytic performance correlated well with their steric congestion. The extraordinary stability of Ni11-Cs, which is quite rare for nickel-based

systems, is most likely due to the efficient shielding of the PEG/Cs⁺ substituent towards the nickel center. Similarly, the poor steric shielding of the nickel center in **Ni11**-Na, particularly at the top hemisphere (O side), may account for its low stability at elevated temperature. Interestingly, **Ni11**-Li complex did not follow the steric trend, and displayed highest productivity at low temperature, yielding polymer with highest molecular weight and activity. Since the reactivity of polymerization catalysts are affected by both steric and electronic, we propose that the electronic effect of Li⁺ has a greater influence on **Ni11**-Li, which might have overridden steric effects.

Figure 3.15. Front view and side view of **Ni^tBu** and **NiC₆F5**. Atom colors: green = nickel, orange = phosphorus, purple = alkali metal, red = oxygen, white = carbon, yellow = fluorine. The alkyl group and labile ligands were omitted for clarity.

Figure 3.16. Front view and side view of X-ray structures of bimetallic nickel complexes. Atom colors: green = nickel, orange = phosphorus, purple = alkali metal, red = oxygen, white = carbon. The phenyl group and the labile ligand PMe₃ were omitted for clarity.

Figure 3.17. Steric map and % V_{bur} of **Ni'Bu** and **NiC₆F**⁵ complexes calculated based on their respective X-ray structures using *SambVca* 2.1 software program.¹⁰¹⁻¹⁰³ The Ni-atom is placed at the center of the xyz coordinate system. The P–Ni–O plane is placed in the xz-plane with the z-axis bisecting the P–Ni–O angle. The y-axis represents the axial position of the xz-plane containing the Pd center. The phenyl and trimethylphosphine groups were omitted for the analysis of the steric maps. Atom colors: green = nickel, orange = phosphorous, purple = alkali metal, red = oxygen, yellow = fluorine, black = carbon. *X-ray data of **Ni'Bu** complex was adopted from our previous publication.⁵⁸ **For **NiC₆F**⁵ complex calculation, a similar X-ray structure was utilized.⁶⁶

3.4.2. Electronic Influence

To probe the electronic effect of M^+ on the nickel complexes, we conducted electrochemical measurements using cyclic voltammetry (CV). Due to solubility reasons, THF was used as the electrochemical solvent. To prevent the interactions of external anions with alkali metals, we chose *n*Bu₄NBPh₄ as a supporting electrolyte. The CV spectrum are shown in Figure 3.18 and summarized data are shown in Table 3.2. In the absence of M⁺, Ni11 displayed an anodic peak at -0.049 V (vs ferrocene/ferrocenium), which we have tentatively assigned to oxidation of the Ni(II) center. The Ni'Bu complex also displayed a peak at -0.051 V, which is close to that of Ni11. This result suggested that the nickel centers of these two complexes have similar electron density. The cyclic voltammograms of Ni11-Li, Ni11-Na, Ni11-K, and Ni11-Cs showed irreversible peaks at approximately +0.055, -0.014, -0.016, and -0.024, respectively, and were ascribed to Ni-centered reduction processes in the heterobimetallic species. This trend is consistent with the electrophilicity of the alkali ions,¹⁰⁴ which would be expected to cause a decrease in the electron density at the nickel core through electronic induction.¹⁰⁵ The oxidation peak for NiC₆F₅ occurred at +0.026, indicating that its nickel core is less susceptible to oxidation than that of Ni'Bu, which is expected for an electron poor complex. Generally, for Ni-[P,O] systems, electron-withdrawing substituents at the *ortho* position of the phenolate ring give catalysts with enhanced activity. In our bimetallic systems, the activity trend and the electronic trend followed same other Ni11-Li > Ni11-Na > Ni11-K > Ni11-Cs, which was in accordance with many reported literatures.¹⁰⁶ Interestingly, the monometallic complex NiC_6F_5 , which was more electron deficient than the Ni11-Na, gave an activity of about 8-times lower than that of the Ni11-Na. We do not fully understand the origins of the electronic effect induced by a highly electronegative substituent versus an alkali cation,

however, we suggested that in the latter case, there could be several cooperative interactions occurred during the polymerization process.

Figure 3.18. Cyclic voltammograms of a nickel complexes, recorded at 0.2 V/s in acetonitrile with 0.09 M nBu_4NBPh_4 supporting electrolyte, a glassy carbon working electrode, a platinum wire counter electrode, and a silver wire pseudoreference. Potentials are referenced to an internal standard of ferrocene, and currents are normalized to bring all of the traces onto the same scale.

	$(E vs. Fc^+/Fc)/V$	(E vs. Ni11)/V
Ni11	-0.049	0
Ni11-Li	0.055	+0.104
Ni11-Na	-0.014	+0.035
Ni11 -K	-0.016	+0.033
Ni11-Cs	-0.024	+0.025
NiC ₆ F ₅	0.026	+0.075
Ni ^t Bu	-0.051	-0.002

 Table 3.2. Summary of oxidation potential for seven nickel complexes

3.5. Catalyst Stability

3.5.1. Post-Activation Study

As mentioned above, for many highly active catalysts, they could be deactivated due to decomposition or precipitation of insoluble polymer. To clarify these two possibilities, we carried out stability studies. Our experiment was performed in a mixture of toluene/ether (8:2) to ensure complete solubility of the reactants. After combining the catalyst, MBAr^F₄ salt, and borane activator B(C₆F₅)₃, the solution was kept for variable amounts of time (off-time) under a low pressure of ethylene (~3 psi) at 50 °C. Subsequently, the reactor was pressurized with 450 psi ethylene and run for 1 h. The polymer yields were then used for calculation of percentage catalyst active. Our results showed that the stability trend followed the order: Ni11-Cs > Ni11-K ~ Ni11-Li > Ni11-Na (Figure 3.19), which is in accordance with the steric trend.

Figure 3.19. Comparison of Ni complexes in decomposition study.

For Ni11-Li, we noticed that, in the first 20 min, its activity decreased only slightly, which correlated with more than 90% catalyst active. Since our temperature profile study above showed that Ni11-Li has an activation period, we proposed that during the first 20 min the amount of active species decomposed was compensated by formation of new active species; thus, the overall activity remained constant. Long induction periods for nickel catalysts have been observed previously. For example, Grubbs and coworkers reported that when they combined their salicylaldiiminato Ni(II) complex Nia3 with a phosphine scavenger, a 5-8 min induction period was required before rapid ethylene uptake and temperature increase was observed. When an electron deficient complex such as Nib3 was used, the induction period was found to increase to be ~20 min (Figure 3.20).⁹⁴ The activity of Nib3 was about $9\times$ greater than that of Nia3. They proposed that their observations were consistent with a mechanism in which phosphine dissociation is the rate-limiting step, since electron-withdrawing ligands strengthen the Ni-PPh₃ bond.

Figure 3.20. Salicylaldiimino nickel complexes studied by Grubbs et. at.

3.5.2. UV-Vis Absorption Spectroscopy

To further understand the stability of the active species, we attempted to monitor their decomposition rate by UV-Vis absorption spectroscopy. To carry out these experiments, 3.0 mL solutions containing 100 μ M Ni11 in toluene/Et₂O (8:2) and 5 equiv of MBAr^F₄ salts (if any) were placed in a 1 cm quartz cuvette. Next, aliquots containing 3.0 equiv of B(C₆F₅)₃ was added, followed by vigorously mixng and then the mixture was allowed to equilibrate for ~3 min before recording the spectral changes at 50 °C under nitrogen. The kinetic scan was set for every 3-minute interval and the experiments was monitored up to 6 h. After treating with B(C₆F₅)₃, the activated nickel species would be susceptible to thermal decomposition and thus, changes in absorbance over time was expected. The slopes of the single wave plots suggest that the decomposition rates followed the order: Ni11-Cs < Ni11-K < Ni11-Li ~ Ni11-Na (Figure 3.21). This outcome was consistent with the off-time polymerization studied above. Full kinetic scans were showed in Figure 3.36-3.43.

Figure 3.21. UV-Vis absorption data for nickel bimetallic complexes after addition of phosphine scavenger $B(C_6F_5)_3$ at the single wave-length that gave the most change in absorbance.

Moreover, the abruptly decomposition of Ni11-K within the first few minutes observed in the off-time polymerization studies was also in agreement with the absorbance change of Ni11-K at 335 nm. Interestingly, the slow activation of Ni11-Li, which was observed in the off-time polymerization and reaction temperature profile studies above, was clearly indicated in this study. The change in absorbance of Ni11-Li at 323 nm could be considered in two stages: the first 50 minutes, involved activation of the nickel complexes, followed by catalyst decomposition

3.5.3. Activation Study

To obtain addition data on the activation step, we used NMR spectroscopy to investigate the reaction of $B(C_6F_5)_3$ with Ni11-M. As shown in Table 3.3, our results demonstrated that the $B(C_6F_5)_3$ has a strong affinity for trimethylphosphine, giving complete reactions within several minutes. The facile abstraction of trialkyl- or triaryl-phosphine by boranes has been reported previously.¹⁰⁷ The exceptional stability of Ni11-Li at 30 °C further confirmed since the activation of Ni11-Li took about 2 h to complete. However, at 50 °C, the reaction time was reduced to 30 min. These observations were in agreement with our UV-Vis and off-time polymerization studies above, indicating that the Ni11-Li complex was exceptionally more stable than the other complexes. To demonstrate further that the stability of Ni11 was enhanced by chelation of LiBAr^F₄, we repeated the reaction of Ni11-Li with borane. However, instead of premixing Ni11 with LiBAr^F₄, we added a mixture of LiBAr^F₄ and borane to a solution of Ni11 complex. Our result showed that without coordination of Li, Ni11 react with $B(C_6F_5)_3$ within 5 minutes, indicating that chelation of Li was crucial to enhance the stability of the Ni-PMe₃ bonds.

Entry	Complex	Temp. (°C)	Time Needed for Complete Activation
1	Ni11	30	less than 5 min
2	Ni11-Li	30	up to 2h
3^b	Ni11 + LiBAr ^F ₄	30	less than 5 min
4	Ni11-Li	50	less than 30 min
5	Ni11 -Na	30	less than 5 min
6	Ni11-K	30	less than 5 min
7	Ni11-Cs	30	less than 5 min

 Table 3.3. Summarized data for activation study of nickel complexes

^{*a*}Activation study: nickel complex **Ni11** and alkali salts were premixed in a mixture of toluene- d_8/Et_2O in a NMR tube, followed by addition of borane activator (if any). Then the NMR tube was sealed and shaken vigorously before analysis by NMR (¹H & ³¹P). ^{*b*}This experiment was conduct without premixing of **Ni11** and LiBAr^F₄.

3.6. Mechanistic Implications

3.6.1. cis/trans Isomerization

Because the bidentate [P,O] ligands are asymmetric, in theory, the nickel square plane of **Ni11** could exist in two isomeric forms (Figure 3.22). The energy difference between the *cis* and *trans* isomers will determine their relative ratios in solution. Cis/trans isomerization of square planar palladium [P,O] complexes has been studied using DFT calculations by Nozaki and coworkers.¹⁰⁸ Later, Jordan's group demonstrated that the *cis/trans* ratio of palladium [P,O] complexes could be quantified by ¹H NMR spectroscopy, using excess P(O-*o*-tolyl)₃ to promote isomerization (Figure 3.23). They also found that substituting alkyl or aryl moieties with chlorine also helped facilitate isomerization because the *trans*-influence of chlorine is much weaker than that of aryl- and alkyl-

moieties.¹⁰⁹ Observations of *cis* and *trans* isomers have also been reported for Pd(II) [N,O] "sandwich" complexes by Daugulis/Brookhart and co-workers.¹¹⁰

Figure 3.22. Proposed *cis/trans* isomerization of square planar nickel and palladium complexes.

Figure 3.23. *cis/trans* isomerization of palladium complexes studied by Jordan's group.

Our nickel complex **Ni11** showed only one conformation by ¹H and ³¹P NMR spectroscopy. Interestingly, upon addition of secondary alkali metals, we detected two species. We assigned the isomer with a smaller J_{PP} coupling constant as the "*cis*-isomer" since the two phosphine groups are *cis* relatively to each other. The species with the larger J_{PP} coupling constant was assigned as the "*trans*-isomer" (Figure 3.24). The J_{PP} coupling constants of "*cis*" and "*trans*" square planar metal complexes have been reported in the literature.¹¹¹ **Ni'Bu** and **NiC₆Fs** also showed only trans isomers in solution, which was in agreement with DFT calculations performed in collaboration with the Wu group showing that the *cis* isomers had a ground state energy of at least 6.2 kcal/mol higher than that of the *trans* isomers. The *trans* configuration is more thermodynamically favored because it avoids d orbital sharing between the strong σ -donors phosphine and alkyl/aryl groups.^{80,} ^{96-97, 112-113} The *trans* conformation are also dominant in most complexes based on [N,O] or [C,O] ligands.^{17, 85, 114} Suprisingly, the *cis* isomer of **Ni11**-Li complex was only 2.0 kcal/mol higher than its *trans* isomer, which is consistent with the 8:92 *cis/trans* ratio observed by NMR. Interestingly, for **Ni11**-Na and **Ni11**-K, the *cis* conformations were more favorable than the *trans* with the *cis/trans* ratio of about 90:10 and 88:12, respectively. These ratios correspond to their calculated values of 2.8 kcal/mol and 1.3 kcal/mol lower in energy for *cis* than for *trans*, respectively. Good correlations were obtained for the experimentally determined *cis/trans* ratio and ground state energy calculations for **Ni11**-Cs complex. Because solvent interaction was omitted in our DFT calculations and the electron density of Cs was approximated, calculated energies for **Ni11**-Cs may not be accurate. However, based on the consistency of our NMR spectroscopic data with DFT calculations, we have concluded that interactions of secondary metals with **Ni11** significantly changed the electronic and steric properties of the resulting nickel complexes. For the first time the existence of *cis* for nickel phenoxyphosphine complexes were observed experimentally.

Entry	Complex	<i>cis/trans</i> ratio (determined by ³¹ P NMR)	Ground State Energy (kcal/mol) (determined by DFT Calculation)		
			cis	trans	
1	Ni11	0:100	6.2	0.0	
2	Ni11 -Li	8:92	2.0	0.0	
3^b	Ni11- Na	90:10	0.0	2.8	
4	Ni11-K	88:12	0.0	1.3	
5	Ni11-Cs	35:65	3.3	0.0	
6	Ni ^t Bu	0:100	6.6	0.0	
7	NiC ₆ F ₅	0:100	9.3	0.0	

Table 3.4. Summarized data for *cis/trans* isomerization study.

Figure 3.24. ³¹P NMR spectrum of nickel complexes.

3.6.2. Ethylene Insertion Energy Barrier

We conducted further DFT calculations to probe the effect of secondary metals on the coordination/insertion process. To be consistent with the *cis/trans* isomerization nomenclature used above, we have assigned the conformation having the alkyl group *trans* to the oxygen donor as *trans* isomer and the other is *cis*. Our result showed that Ni11-Li favored a different reaction pathway than the other nickel complexes (Figure 3.25), which might account for its unusually high activity. As described in the previous section, the **Et**-trans intermediates, which have the alkyl groups *trans* to the oxygen donors instead of the phosphines, tends to have lower energy than their cis counterparts. However, the transition state TS-trans for ethylene insertion is higher than TScis by at least ~5 kcal/mol for Ni11-Na complex (Figure 3.26) and up to ~12 kcal/mol for Ni'Bu complex (Figure 3.27). Because ethylene insertion involves migration of the alkyl group to ethylene, the strong *trans* effect of the phosphorus atom could enhanced the migrating ability of the alkyl group resulting in a lower reaction barrier. Our DFT calculations showed that after coordination of ethylene, the resulting intermediate Et-trans would be formed more favorably than **Et-cis.** Insertion then occurs through higher energy transition state **TS**-*trans*, which was also the rate-determining step. This trend has been observed for all monometallic and bimetallic complexes except for Ni11-Li, which showed that the Et-trans and Et-cis isomers were nearly equal in energy, indicating that these isomers could readily interconvert between each other. Therefore, after Ettrans forms, it could isomerize to Et-cis, which would undergo the lower energy transition state **TS**-*cis* to insert ethylene. Hence, the overall catalytic rate of **Ni11**-Li would be must faster than the other nickel complexes, which is in agreement with our experimental.

Reaction Coordinate

Figure 3.25. Free energy profile of Ni11-Li in ethylene coordination/insertion polymerization.

Reaction Coordinate

Figure 3.26. Free energy profile of Ni11-Na in ethylene coordination/insertion polymerization.

Figure 3.27. Free energy profile of Ni'Bu in ethylene coordination/insertion polymerization.

3.7. Conclusion

In summary, we have demonstrated that diverse group of functionally distinct catalysts could easily be accessed form a common parent nickel complex. The catalyst's activity, thermal stability, and polymer molecular weight can be fine-tuned by pairing it with a suitable secondary alkali metal. This work illustrates the importance of using weakly coordinating counteranions to enable high catalytic activity by avoiding coordination inhibition. To maximize electronic effects, the two metals should be positioned in close proximity to each other. The ultra-high activity of the **Ni11**-Li complex and thermal stability of the **Ni11**-Cs complex demonstrate the usefulness of our "mixand-match" polymerization strategy. Furthermore, the detailed temperature studies should be taken into serious consideration when optimizing polymerization processes to achieve the best results. We also conducted experimental studies and DFT calculations to probe the cooperative role of secondary metals, which revealed that chelation of Li⁺ to nickel altered the thermodynamics of key reaction intermediates and opened up lower energy pathways for polymerization. In the presence of alkali metals, we were able to observe *cis/trans* isomers in solution by ¹H and ³¹P NMR spectroscopy, which has not been demonstrated for their monometallic complexes.

3.8. Experimetal

General Procedures

Commercial reagents were used as received. All air- and water-sensitive manipulations were performed using standard Schlenk techniques or under a nitrogen atmosphere using a drybox. Anhydrous solvents were obtained from an Innovative Technology solvent drying system saturated with argon. High-purity polymer grade ethylene was obtained from Matheson TriGas without further purification. The LiBAr^F₄, NaBAr^F₄, KBAr^F₄ and CsBAr^F₄ salts were prepared according to literature procedures.^{67, 115}

NMR spectra were acquired using JEOL spectrometers (ECA-400, -500, and -600) and referenced using residual solvent peaks. All ¹³C NMR spectra were proton decoupled. ³¹P NMR spectra were referenced to phosphoric acid. ¹H NMR spectroscopic characterization of polymers: each NMR sample contained ~20 mg of polymer in 0.5 mL of 1,1,2,2-tetrachloroethane- d_2 (TCE- d_2) and was recorded on a 500 MHz spectrometer using standard acquisition parameters at 120 °C.

Gel permeation chromatography (GPC) data were obtained using a Malvern high temperature GPC instrument equipped with refractive index, viscometer, and light scattering detectors at 150 °C with 1,2,4-trichlorobenzene (stabilized with 125 ppm BHT) as the mobile phase. A calibration

curve was established using polystyrene standards in triple detection mode. All molecular weights reported are based on the triple detection method.

Synthesis and Characterization

Nickel NiC₆F₅ was synthesized as depicted in Scheme 3.1 below:

Scheme 3.1. Synthesis of NiC₆F₅ complex.

Preparation of Compound 69. This synthesis was modified from a literature procedure.¹¹⁶ To a

solution of compound **57** (4.64 g, 8.92 mmol, 1.0 equiv) in 100 mL of dry THF in a 200 mL Schlenk flask under nitrogen at -78 °C, *n*BuLi (1.6M in hexanes, 6.67 mL, 10.7 mmol, 1.2 equiv) was added dropwise using a

syringe pump. The reaction mixture was stirred at -78 °C for 40 min. Then C_6F_6 (3.32 g, 2.1 mL, 17.87 mmol, 2.0 equiv) was added dropwise via syringe. The resulting mixture was naturally warmed to room temperature and stirred overnight. The reaction was quenched by the slow

addition of H₂O and the products were extracted into Et₂O (3×100 mL). The organic layers were combined, washed with H₂O (2×100 mL), dried over Na₂SO₄, filtered, and evaporated to dryness. The crude material was purified by silica gel column chromatography (3:1 hexane: ethyl acetate), followed by washing with pentane (2×10 mL) to afford a white solid (3.1 g, 5.11 mmol, 57%). This compound was used directly in the next step without further purification.

Preparation of Compound L70. This synthesis was modified from a literature procedure.¹¹⁶ Compound 69 (3.1 g, 5.11 mol, 1.0 equiv) was dissolved in 50 mL of MeOH and then 50 mL solution of 2M HCl in Et₂O was added. The reaction mixture was stirred at room temperature overnight and then dried to remove

solvent. The product was dissolved in 200 mL of EtOAc along and then combined with 50 mL of 1M aqueous NaHCO₃. The mixture was stirred at room temperature for 30 min and the product was extracted into Et₂O (3×100 mL). The organic layers were combined, washed with H₂O (2×100 mL), dried over Na₂SO₄, filtered, and evaporated to dryness. The crude material was purified by silica gel column chromatography (3:1 hexane:ethyl acetate). The resulting product was further recrystallized using a mixture of pentane and dichloromethane to afford a white solid (1.9 g, 3.66 mmol, 72%). ¹H NMR (500 MHz, Benzene-*d*₆): δ 7.27 – 7.17 (m, 3H), 7.07 – 6.99 (m, 3H), 6.80 (s, 1H), 6.70 (t, *J* = 7.4 Hz, 2H), 6.36 (dd, *J* = 8.1, 5.0 Hz, 2H), 3.09 (s, 6H), 1.82 (s, 3H). ¹³C NMR (126 MHz, Benzene-*d*₆): δ 161.35, 161.23, 155.93, 137.96, 137.87, 133.98, 133.28, 130.64, 122.72, 121.48, 121.23, 113.17, 110.42, 54.88, 19.95. ¹⁹F NMR (470 MHz, Benzene-*d*₆): δ -140.43 (dd, *J* = 24.7, 6.9 Hz), -156.43 (t, *J* = 21.5 Hz), -163.32 – -163.53 (m). ³¹P NMR (202 MHz, Benzene-*d*₆) δ -47.26.

Preparation of Complex NiC₆F₅. Inside the glovebox, ligand L67 (0.193 g, 0.37 mmol, 1 equiv)

was dissolved in 10 mL of THF. Small aliquots of NaH (60%, 0.3 g, 0.74,
^{3F5} 2.0 equiv) were added and the mixture was stirred at room temperature for 2h. The solution was filtered to remove excess NaH and then

combined with a solution of NiPhBr(PMe₃)₂ (0.121 g, 0.33 mmol, 0.9 equiv) in 5 mL of benzene. The resulting mixture was stirred at room temperature overnight. The precipitate formed was removed by filtration and the filtrate was dried under vacuum. The crude material was dissolved in a mixture of 5 mL of pentane and 5 mL of toluene and the solution was filtered once again before evaporating dryness. Finally, the resulting solid was washed with pentane (5×3 mL) and dried under vacuum to afford a yellow powder (0.153 g, 0.21 mmol, 64%). ¹H NMR (500 MHz, Benzene-*d*₆) δ 7.53 – 7.44 (m, 2H), 7.14 (d, *J* = 7.4 Hz, 2H), 7.09 (d, *J* = 11.1 Hz, 2H), 7.02 (t, *J* = 7.8 Hz, 2H), 6.90 (s, 1H), 6.68 (t, *J* = 7.4 Hz, 2H), 6.62 (t, *J* = 7.4 Hz, 2H), 6.57 (t, *J* = 7.1 Hz, 1H), 6.36 (dd, *J* = 8.0, 4.6 Hz, 2H), 3.01 (s, 6H), 1.91 (s, 3H), 0.55 (d, *J* = 9.3 Hz, 9H). ¹³C NMR (101 MHz, Benzene-*d*₆) δ 170.72, 170.45, 158.58, 158.53, 134.79, 131.74, 129.16, 123.22, 120.18, 120.12, 118.46, 118.38, 112.76, 108.48, 108.45, 52.69, 17.86, 8.94, 8.69. ¹⁹F NMR (470 MHz, Benzene-*d*₆) δ -138.98 (dd, *J* = 24.8, 6.3 Hz), -159.39 (t, *J* = 21.5 Hz), -165.02 (td, *J* = 22.3, 6.5 Hz). ³¹P NMR (202 MHz, Benzene-*d*₆) δ 10.57 (d, *J* = 288 Hz), -15.12 (d, *J* = 288 Hz).

Metal-Binding Studies

UV-Vis Absorption Spectroscopy: Metal Titration. Stock solutions of Ni11 and MBAr^F₄ were prepared inside an inert nitrogen-filled glovebox. A 500 μ M stock solution of Ni11 were obtained by dissolving 25 μ mol of Ni11 in 50 mL of Et₂O. A 10 mL aliquot of this 500 μ M solution was diluted to 50 mL using a volumetric flask to give a final concentration of 100 μ M. The 3.0 mM

stock solution of MBAr^F₄ was obtained by dissolving 30 µmol of MBAr^F₄ in 10 mL of Et₂O using a volumetric flask. A 3.0 mL solution of **Ni11** was transferred to a 1 cm quartz cuvette and then sealed with a septum screw cap. A 100 µL airtight syringe was loaded with the 3.0 mM solution of MBAr^F₄. The cuvette was placed inside a UV-vis spectrophotometer and the spectrum of the **Ni11** solution was recorded. Aliquots containing 0.1 equiv of MBAr^F₄ (10 µL), relative to the nickel complex, were added and the solution was allowed to reach equilibrium before the spectra were measured (about 20–30 min). The titration experiments were stopped after the addition of up to 1.0 equiv of MBAr^F₄.

Figure 3.28. UV-vis absorbance spectra of complex **Ni11** (100 μ M in Et₂O) after the addition of various aliquots of LiOTf. The starting trace of **Ni11** is shown in black and the final trace (+ 1.0 equiv of Li⁺ relative to Ni) is shown in red.

Figure 3.29. UV-vis absorbance spectra of complex **Ni11** (100 μ M in MeCN) after the addition of various aliquots of LiBAr^F₄. The starting trace of **Ni11** is shown in black and the final trace (+ 15.0 equiv of Cs⁺ relative to Ni) is shown in red.

UV-Vis Absorption Spectroscopy: Job Plot Studies.

Stock solutions of **Ni11** (500 μ M) and MBAr^F₄ (500 μ M) (M = Li, Na, K and Cs) in Et₂O were prepared in separate volumetric flasks inside the drybox. Stock solutions of **Ni11** and MBAr^F₄ were combined in different ratios to give 10 different samples, each having a final volume of 3.0 mL. The samples were recorded by UV-vis absorption spectroscopy at RT.

The UV-vis spectral data were analyzed according to the method reported by Hirose.⁶⁸ In our case, the host (H) is **Ni11**, the guest (g) is M⁺, and the complex (C) is **Ni11**-M. Since the alkali salt has no absorption in the 300-500 nm range, we used this simplified expression to analyze the data: $A_{obs} - \varepsilon_h \cdot [H]_t = (\varepsilon_C - a \cdot \varepsilon_h) \cdot [C]$, where $A_{obs} =$ observed absorbance, a = constant, $\varepsilon_h =$ molar absorptivity of host **Ni11**, $\varepsilon_C =$ molar absorptivity of **Ni11**-M, $[H]_t =$ starting concentration of host **Ni11**, and [C] = observed concentration of **Ni11**-M. Since [C] is proportional to $A_{obs} - \varepsilon_h \cdot [H]_t$, a Job Plot was constructed by plotting $A_{obs} - \varepsilon_h \cdot [H]_t$ vs. χ_{Ni} (the mole ratio of **Ni11** = [**Ni11**]/([**Ni11**]+[Na⁺])).
Xni	Volume of Stock Soln of H (mL)	Amount of H Added (mol)	Final Conc. of H (M)	A _h (calculated)	Aobs (@379 nm)	$\mathbf{A}_{\mathbf{obs}} ext{-}\mathbf{A}_{\mathbf{h}}$
1.0	3.000E-03	1.500E-06	5.000E-04	1.482E+00	1.482E+00	0.000E+00
0.9	2.700E-03	1.350E-06	4.500E-04	1.334E+00	1.295E+00	3.873E-02
0.8	2.400E-03	1.200E-06	4.000E-04	1.186E+00	1.028E+00	1.582E-01
0.7	2.100E-03	1.050E-06	3.500E-04	1.038E+00	7.182E-01	3.195E-01
0.6	1.800E-03	9.000E-07	3.000E-04	8.894E-01	4.922E-01	3.972E-01
0.5	1.500E-03	7.500E-07	2.500E-04	7.412E-01	2.411E-01	5.001E-01
0.4	1.200E-03	6.000E-07	2.000E-04	5.929E-01	1.442E-01	4.488E-01
0.3	9.000E-04	4.500E-07	1.500E-04	4.447E-01	1.031E-01	3.416E-01
0.2	6.000E-04	3.000E-07	1.000E-04	2.965E-01	6.749E-02	2.290E-01
0.1	3.000E-04	1.500E-07	5.000E-05	1.482E-01	3.717E-02	1.111E-01
^{<i>a</i>} The mola	r absorptivity	of H (Eh) at 37	79 nm = 2965	M ⁻¹ cm ⁻¹ . Stoc	k solution of I	Η is 500 μM.

Table 3.5. Job Plot Data and Calculations Used for NiL-Li^a

Table 3.6. Job Plot Data and Calculations Used for NiL-Na^a

χni	Volume of Stock Soln of H (mL)	Amount of H Added (mol)	Final Conc. of H (M)	A _h (calculated)	Aobs (@379 nm)	Aobs-Ah
1.0	3.000E-03	1.500E-06	5.000E-04	1.238E+00	1.238E+00	0.000E+00
0.9	2.700E-03	1.350E-06	4.500E-04	1.115E+00	1.059E+00	5.543E-02
0.8	2.400E-03	1.200E-06	4.000E-04	9.908E-01	8.340E-01	1.568E-01
0.7	2.100E-03	1.050E-06	3.500E-04	8.669E-01	5.645E-01	3.024E-01
0.6	1.800E-03	9.000E-07	3.000E-04	7.431E-01	3.553E-01	3.877E-01
0.5	1.500E-03	7.500E-07	2.500E-04	6.192E-01	1.951E-01	4.241E-01
0.4	1.200E-03	6.000E-07	2.000E-04	4.954E-01	1.578E-01	3.376E-01
0.3	9.000E-04	4.500E-07	1.500E-04	3.715E-01	1.149E-01	2.567E-01
0.2	6.000E-04	3.000E-07	1.000E-04	2.477E-01	7.796E-02	1.697E-01
0.1	3.000E-04	1.500E-07	5.000E-05	1.238E-01	4.617E-02	7.768E-02

^{*a*}The molar absorptivity of H (ϵ_h) at 379 nm = 2477 M⁻¹cm⁻¹. Stock solution of H is 500 μ M.

Xni	Volume of Stock Soln of H (mL)	Amount of H Added (mol)	Final Conc. of H (M)	A _h (calculated)	Aobs (@379 nm)	$\mathbf{A}_{\mathbf{obs}} ext{-}\mathbf{A}_{\mathbf{h}}$
1.0	3.000E-03	1.500E-06	5.000E-04	1.201E+00	1.201E+00	0.000E+00
0.9	2.700E-03	1.350E-06	4.500E-04	1.081E+00	1.073E+00	7.443E-03
0.8	2.400E-03	1.200E-06	4.000E-04	9.606E-01	8.741E-01	8.649E-02
0.7	2.100E-03	1.050E-06	3.500E-04	8.406E-01	6.233E-01	2.172E-01
0.6	1.800E-03	9.000E-07	3.000E-04	7.205E-01	4.245E-01	2.959E-01
0.5	1.500E-03	7.500E-07	2.500E-04	6.004E-01	2.225E-01	3.779E-01
0.4	1.200E-03	6.000E-07	2.000E-04	4.803E-01	1.635E-01	3.168E-01
0.3	9.000E-04	4.500E-07	1.500E-04	3.602E-01	1.167E-01	2.435E-01
0.2	6.000E-04	3.000E-07	1.000E-04	2.402E-01	8.181E-02	1.583E-01
0.1	3.000E-04	1.500E-07	5.000E-05	1.201E-01	4.852E-02	7.156E-02
^a The mola	r absorptivity	of H (ε_h) at 37	79 nm = 2402	M ⁻¹ cm ⁻¹ . Stoc	k solution of I	Η is 500 μΜ

Table 3.7. Job Plot Data and Calculations Used for NiL-K^a

Table 3.8. Job Plot Data and Calculations Used for NiL-Cs^a

_	χni	Volume of Stock Soln of H (mL)	Amount of H Added (mol)	Final Conc. of H (M)	A _h (calculated)	A obs (@379 nm)	Aobs-Ah
	1.0	3.000E-03	1.500E-06	5.000E-04	1.248E+00	1.25E+00	0.00E+00
	0.9	2.700E-03	1.350E-06	4.500E-04	1.123E+00	1.077E+00	4.655-02
	0.8	2.400E-03	1.200E-06	4.000E-04	9.986E-01	8.902-01	1.083-01
	0.7	2.100E-03	1.050E-06	3.500E-04	8.738E-01	7.320-01	1.417-01
	0.6	1.800E-03	9.000E-07	3.000E-04	7.489E-01	5.451-01	2.038-01
	0.5	1.500E-03	7.500E-07	2.500E-04	6.241E-01	3.829-01	2.412-01
	0.4	1.200E-03	6.000E-07	2.000E-04	4.993E-01	3.0169-01	1.976-01
	0.3	9.000E-04	4.500E-07	1.500E-04	3.745E-01	2.421-01	1.323-01
	0.2	6.000E-04	3.000E-07	1.000E-04	2.496E-01	1.557-01	9.391-02
	0.1	3.000E-04	1.500E-07	5.000E-05	1.248E-01	8.926-02	3.556-02

^{*a*}The molar absorptivity of H (ϵ_h) at 379 nm = 2500 M⁻¹cm⁻¹. Stock solution of H is 500 μ M.

Polymerization Studies

General Procedure for Ethylene Polymerization.

Inside the drybox, the nickel complex Ni11 and $MBAr_{4}^{F_{4}}$ (if any) were dissolved in a mixture of 8 mL of toluene and 2 mL of Et₂O (if any) in a 20 mL vial and stirred for 10 min. Solid Ni(COD)₂ (8 equiv relative to nickel) was added and stirred until a clear solution was obtained (4-5 min). The mixture was loaded into a 10 mL syringe equipped with an 8-inch stainless steel needle. The loaded syringe was sealed by sticking the needle tip into a rubber septum and brought outside of the drybox. To prepare the polymerization reactor, 90 mL of dry toluene was placed in an empty autoclave. The autoclave was pressurized with ethylene to 80 psi, stirred for 5 min, and then the reactor pressure was reduced to 5 psi. This process was repeated three times to remove trace amounts of oxygen inside the reaction vessel. The reactor was then heated to the desired temperature and the catalyst solution was injected into the autoclave through a side arm. The autoclave was sealed and purged with ethylene at 40 psi (no stirring) three times. Finally, the reactor pressure was increased to the desired pressure, and the contents were stirred vigorously. To stop the polymerization, the autoclave was vented and cooled in an ice bath. A solution of MeOH (700 mL) was added to precipitate the polymer. The polymer was collected by vacuum filtration, rinsed with MeOH, and dried under vacuum at 80 °C overnight. The reported yields are average values obtained from duplicate or triplicate runs.

Special Notes:

• To obtain consistent polymer yields from run to run, the amount of catalyst used in each run must be kept as consistent as possible. Since 0.5 µmol of the **Ni11** catalyst weighs only 0.37 mg, it is extremely difficult to weigh out exactly this amount using a standard analytical balance.

To minimize errors due to weighing inconsistencies, we used a batch catalyst preparation method. First, we weighed out 37 mg (50 μ mol) of the catalyst and then dissolved it into 50 mL of toluene. This solution was divided equally into 10 vials so that each vial contained 5 μ mol of catalyst. Next, we combined each 5 μ mol of catalyst with 20 mL of toluene and partitioned this 25 mL mixture into 10 vials so that each vial contained 0.5 μ mol of catalyst. Finally, each vial was dried completely under vacuum and stored in a refrigerator inside the drybox until ready for use.

• For reactions using 0.1 µmol of the **Ni11** catalyst, the catalyst preparation was similar to the procedure mentioned above.

• For all polymerization reactions, except ones that were performed to determine the temperature profiles, the reaction temperature was controlled by manual cooling of the reactor with an air stream when the reactor increases more than 5 °C above the starting temperature.

• To clean the Parr reactor, the vessel was washed with hot toluene (80 °C) to remove the polymer sample from the previous run and rinsed with acetone before drying under vacuum for at least 1 h to remove trace amounts of water.

		solvent		nolymer	activity	M b		
Entry	Complex	benzene (mL)	DCM (mL)	yield (g)	(kg/mol·h)	$(\times 10^3)$	M_w/M_n^b	
1	Ni11 -Li	100	-	4.3	43000	35.76	1.3	
2	Ni11 -Na	100	_	8.4	16800	1.9	1.4	
3	Ni11 -K	100	_	7.2	14400	6.06	1.6	
4	Ni11-Cs	100	_	0.13	260	48.17	1.3	
5	Ni11 -Li	_	100	1.53	3060	39.3	1.3	
6	Ni11-Na	_	100	0.25	500	1.06	1.4	
7	Ni11 -K	_	100	0.61	1220	5.86	1.3	
8	Ni11-Cs	_	100	0.22	440	15.99	1.3	

Table 3.9. Ethylene Polymerization Study of Ni11-M Bimetallic Complexes in Benzene and DCM^a

^{*a*}Polymerization conditions: **Ni11** (0.5 µmol), MBAr^F₄ (1 µmol, if any), Ni(COD)₂ (4 µmol), ethylene (450 psi), 100 mL toluene, 30 °C, 1h. Temperature was controlled by manual external cooling when necessary to ensure that the reaction temperature does not exceed greater than 5 °C from the starting temperature. ^{*b*}Determined by GPC in trichlorobenzene at 140 °C. ^{*c*}**Ni11** (0.1 µmol), MBAr^F₄ (0.2 µmol, if any), Ni(COD)₂ (0.8 µmol). ^{*d*}2 mL of Et₂O was added to help dissolving the alkali salts.

Entry	Temp. (°C)	Polymer yield (g)	Activity (kg/mol·h)	$\frac{M_n{}^b}{(\times 10^3)}$	$M_w/M_n{}^b$
1	30	3.53	35300	40.1	1.3
2	40	5.18	51800	25.8	1.3
3 ^{<i>c</i>}	40	6.97	69700	25.0	1.4
4^d	40	4.47	89400	21.7	1.2
5	50	3.84	38400	12.1	1.3
6	60	2.29	22900	10.5	1.3
7	70	1.82	18200	6.2	1.3
8	80	1.89	18900	3.1	2
9	90	1.31	13100	2.09	2.2

Table 3.10. Temperature Study for Ni11-Li Complex in Ethylene Polymerization^a

^{*a*}Polymerization conditions: **Ni11** (0.1 µmol), LiBAr^F₄ (0.2 µmol), Ni(COD)₂ (0.4 µmol), ethylene (450 psi), 100 mL toluene, 1h. Temperature was controlled by manual external cooling when necessary to ensure that the reaction temperature does not exceed greater than 5 °C from the starting temperature. ^{*b*}Determined by GPC in trichlorobenzene at 140 °C. ^{*c*}200 mL of toluene solvent was used. ^{*d*}Reaction was run for 0.5 h.

Entry	Solvent	Polymer yield (g)	Activity (kg/mol·h)	Branches ^b (/1000 C)	M_n^c (× 10 ³)	M_w/M_n^c
1	Pentane	4.5	45000	4	44.02	1.4
2	Hexane	5.5	55000	4	68.15	1.4
3	Benzene	5.3	53000	6	35.76	1.3
4	Toluene	3.53	35300	12	33.93	1.5
5^d	DCM	1.53	3060	7	39.3	1.3
6 ^{<i>e</i>}	Et ₂ O	10.8	10800	6	37.86	1.6
7^e	MeCN	trace	0	_	_	_

Table 3.11. Solvent Study for Ni11-Li in Ethylene Polymerization^a

^{*a*}Polymerization conditions: **Ni11** (0.1 µmol), LiBAr^F₄ (0.2 µmol), Ni(COD)₂ (0.8 µmol), ethylene (450 psi), 100 mL solvent, 1h. Temperature was controlled by manual external cooling when necessary to ensure that the reaction temperature does not exceed greater than 5 °C from the starting temperature. ^{*b*}The total number of branches per 1000 carbons was determined by ¹H NMR spectroscopy. ^{*c*}Determined by GPC in trichlorobenzene at 140 °C. ^{*d*} **Ni11** (0.5 µmol), LiBAr^F₄ (1 µmol), Ni(COD)₂ (4 µmol). ^{*e*} **Ni11** (1 µmol), LiBAr^F₄ (2 µmol), Ni(COD)₂ (8 µmol).

Entry	Catalyst amount (µmol)	Ni[COD] 2 (µmol)	Salt	Salt equiv	Polymer yield (g)	Activity (kg/mol·h)
1	0.5	4	$LiBAr^{F_4}$	2	2.03	12180
2	0.5	4	LiBAr ^F 4	10	3.38	20280
3	0.5	4	LiBAr ^F 4	20	3.54	21240
4	5	20	NaBAr ^F ₄	2	2.1	1260
5	5	20	NaBAr ^F ₄	10	4.53	2718
6	5	20	NaBAr ^F ₄	20	6.6	3960
7	5	20	$\mathrm{KBAr}^{\mathrm{F}_{4}}$	2	0.49	294
8	5	20	KBAr ^F ₄	10	2.62	1572
9	5	20	KBAr ^F 4	20	3.05	1830

Table 3.12. Salt/Catalyst Ratio Screening for Ni11 in Ethylene Polymerization^a

^{*a*}Polymerization conditions: ethylene (450 psi), 50 mL toluene/50 mL Et₂O, 20 min, 30 °C. Temperature was controlled by manual external cooling when necessary to ensure that the reaction temperature does not exceed greater than 5 °C from the starting temperature.

Entry	Salt	Polymer	Activity	M_n^c		Branches ^b	
Entry	(2 equiv)	yield (g)	(kg/mol·h)	$(\times 10^{3})$	1 VII w/1 VII n ⁻	(/1000 C)	
1	$LiBAr^{F_4}$	12.08	24160	13.3	1.7	-	
2	LiTPFB	10.05	20100	11.6	1.4	_	
3	LiBPh ₄	5.36	10720	15.6	1.3	_	
4	LiOTf	trace	0	_	_	_	

Table 3.13. Counteranion Effect Study of Ni11-Li in Ethylene Polymerization in Toluene WithoutTemperature Control^a

^{*a*}Polymerization conditions: **Ni11** (0.5 μ mol), Ni[COD]₂ (4 μ mol), ethylene (450 psi), 100 mL toluene, 1 h, start reaction at 30 °C. Temperature *was not* controlled by manual external cooling.

Entry	Salt (2 equiv)	Polymer yield (g)	Activity (kg/mol·h)	$\frac{M_n^c}{(\times 10^3)}$	M_w/M_n^c	Branches ^b (/1000 C)
1	LiBArF ₄	8.96	17920	27.2	1.4	10
2	LiTPFB	8.01	16020	29.2	1.4	8
3	LiBPh ₄	3.89	7780	32.19	1.3	4
4	LiOTf	trace	0	_	_	_

Table 3.14. Counteranion Effect Study for **Ni11**-Li in Ethylene Polymerization in a Mixture of Toluene and $Et_2O(1:1)$ With Temperature Control^{*a*}

^{*a*}Polymerization conditions: **Ni11** (0.5 µmol), Ni[COD]₂ (4 µmol), ethylene (450 psi), 50 mL toluene/50 mL Et₂O, 1 h, 30 °C. Temperature was controlled by manual external cooling when necessary to ensure that the reaction temperature does not exceed greater than $10^{\circ}C$ from the starting temperature.

Entry	Time (min)	Polymer yield (g)	Activity (kg/mol·h)	$\frac{M_n^c}{(\times 10^3)}$	M_w/M_n^c	Branches ^{b} (/1000 C)
1	8	2.8	42000	_	_	_
2	13	7.26	67015	_	_	_
3	14	8.93	76543	_	_	_
4	19	9.59	60568	_	_	_
5	27	13.74	61067	_	_	_
6	60	12.08	24160	_	_	_

Table 3.15. Time-Dependent Catalyst Activity of Ni11-Li (5 µM)^a

^{*a*}Polymerization conditions: **Ni11** (0.5 μ mol), Ni[COD]₂ (4 μ mol), ethylene (450 psi), 100 mL toluene, 1 h, start reaction at 30 °C. Temperature *was not* controlled by manual external cooling.

	Solvent			Salt Polymer		Activity	Mc	Mc
Entry	Tol. (mL)	Et ₂ O (mL)	THF (mL)	(equiv)	yield (g)	(kg/mol·h)	$(\times 10^3)$	$\frac{M_n}{M_w}$
1	90	10	_	$\begin{array}{c} \text{KBAr}^{\text{F}_{4}} \\ \text{(2)} \end{array}$	8.1	3240	16.7	1.5
2	90	10	_	KBAr ^F ₄ (8)	26.76	10704	5.6	1.6
3	90	_	10	KBAr ^F ₄ (8)	1.55	620	13.6	1.3
4	90	_	10	NaBAr ^F ₄ (8)	6.44	2576	2.4	1.4
5	90	_	10	NaBAr ^F ₄ (30)	13.22	5288	1.57	1.3
6	80	_	20	NaBAr ^F ₄ (30)	0.32	128	5.1	1.4
7	80	_	20	LiBAr ^F 4 (30)	1.2	480	11.1	1.4

Table 3.16. Additional Study of Ni11 in Ethylene Polymerization^a

^{*a*}Polymerization conditions: **Ni11** (5 μmol), Ni[COD]₂ (20 μmol), ethylene (150 psi), 100 mL solvent, 1 h, 50 °C. Temperature *was not* controlled by manual external cooling.

Table 3.17. Comparis	son of Nickel	Catalysts Re	eported in the	Literature
----------------------	---------------	--------------	----------------	------------

P N Ni P Ni P Ni P Ni P Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni	Ph Ph N N N Ph Ph Ph Ph Ph Ar	Ph - P $Ph' - P$ $Ph' - P$ $Ph' - Ph'$ $Ph' - Ph$ $Ph' - Ph$ $Ph' - Ph$ $Ph' - Ph'$ Ph		NIA NIA NIA NIA NIA NIA NIA NIA	Me, PMe ₃ Ni H Ph tBu Ni5	h $Ar' = 3,$	Pyr Ni6 5-(CF ₃) ₂ C ₆ H ₃	
Complex (conc.)	C2H4 Pressur e (psi)	Tem p. (°C)	Time (min)	Activity (kg PE/mol Ni•h)	TON (×10 ³ mol ethylene/ mol Ni)	M_n	$\frac{M_n^c}{M_w}$	Reference (Compound name in original reference)
Ni1 (0.83 µmol in 200 mL)	200	35	10	67200	400	337000	1.8	Brookhart $(4g)^{70}$
Ni2 (1.57 µmol in 100 mL)	100	100	10	2856	17	422000	1.2	Long $(2b)^{71}$
Ni3 (5.00 µmol in 20 mL)	118	25	60	260	9	188900	2.5	Chen (Ni4) ⁷²
Ni4 (20.0 µmol in 30 mL)	300	25	120	163	12	1500	_	Jordan (4a) ⁷³
Ni5 (10.0 µmol in 25 mL)	118	25	40	1184	28	6700	1.8	Marks (1b) ⁷⁴
Ni6 (5.00 µmol in 100 mL)	580	30	40	1218	29	466100	1.6	Mecking (2- CF ₃ /Py) ⁸⁴
Ni7 (5.00 µmol in 100 mL)	145	30	20	2100	25	398000	1.5	Li $(2c)^{100}$
Ni8 (2.50 µmol in 8.5 mL)	580	30	30	1000	18	84000	2.0	Nozaki (7c) ⁸⁵
Ni9 (0.50 µmol in 150 mL)	400	10	3.5	103600	216	1390000	1.4	Daugulis/Brook hart (6) ⁷⁷
NiL -Na (0.50 µmol in 100 mL)	450	30	60	18100	646	1710	1.5	Do (Ni11- Na)
NiL -Li (0.10 µmol in 200 mL)	450	40	60	69700	2484	25000	1.4	This work
NiL-Cs (0.50 µmol in 100 mL)	450	70	30	36480	650	15120	1.7	This work

Table 3.18. Comparison of **Ni11**-Cs Complex and Selected Highly Active Nickel Ethylene Polymerization Catalysts Reported in the Literature at High Temperature.

3.9. X-ray Data Collection and Refinement

Single crystals suitable for X-ray diffraction studies were picked out of the crystallization vials and mounted onto Mitogen loops using Paratone oil. The crystals were collected at a 6.0 cm detector distance at -150° C on a Brucker Apex II diffractometer using Mo K α radiation (λ = 0.71073 Å). The structures were solved by direct methods using the program SHELXT and refined by SHELXLE. Hydrogen atoms connected to carbon were placed at idealized positions using standard riding models and refined isotropically. All non-hydrogen atoms were refined anisoptriocally.

Crystals of complex Ni11-Li, Ni11-Na, Ni11-K, and Ni11-Cs were grown by layering of pentane into a solution of the complex and LiBAr^F₄, NaBAr^F₄, KBAr^F₄ and NaBAr^F₄, respectively, in a mixture of toluene and Et₂O at -30 °C. The fluorine atoms of the MBAr^F₄ were refined using positional disorder due to free rotation of the CF₃ groups. X-ray data for NiL-Na complex was obtained from our previous publication.⁵⁸

	NiL-Li	NiL-Na	NiL-K	NiL-Cs
Empirical Formula	NiLiC ₅₀ H ₇₀ O ₇ P ₂	NiNaC ₃₈ H ₃₀ O ₇ P ₂	NiKC47H70O8P2	NiCsC44H56O7P2
-	$(BC_{32}H_{12}F_{24})$	$(BC_{32}H_{12}F_{24})$	$(BC_{32}H_{12}F_{24})$	$(BC_{32}H_{12}F_{24})$
Formula Weight	1773.87	1625.64	1860.00	1813.67
Temperature (°C)	-150	-150	-150	-150
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Crystal System	Triclinic	Monoclinic	Triclinic	Monoclinic
Space Group	ΡĪ	$P2_1/c$	ΡĪ	P2(1)/n
Unit Cell Dimensions	14 2490(12)	21.7905(17)	12 151(2)	17 2656(15)
<i>a</i> (Å)	14.2469(12) 14.2542(12)	21.7803(17) 17.2222(14)	13.131(3) 12.256(3)	17.5050(15) 22.606(2)
<i>b</i> (Å)	14.2342(12) 20.5259(19)	17.3222(14) 10.7001(16)	13.330(3)	25.000(2) 20.2261(18)
<i>c</i> (Å)	20.3336(16)	19.7901(10)	24.365(0)	20.3201(18)
α (°)	86.0020(10)	102 5400(10)	80.239(2) 81.170(3)	103 6820(10)
β (°)	86.2420(10)	00	87.805(3)	90
γ (°)	80.2420(10)	50	87.895(5)	90
Volume (Å ³)	4137.1(6)	7288.4(10)	4256.1(17)	8095.9(12)
Z, Calculated Density (Mg/m ³)	2, 1.424	4, 1.481	2, 1.394	4, 1.488
Absorption Coefficient (mm ⁻¹)	0.38	0.429	0.418	0.828
F(000)	1820	3312	1836	3656
Theta Range for Data Collection (°)	1.671 to 24.713	1.516 to 27.554	0.840 to 25.350	1.344 to 24.711
Limiting Indices	$-15 \le h \le 16$	$-23 \le h \le 28$	$-15 \le h \le 15$	$-20 \le h \le 20$
	$-15 \le k \le 16$	$-24 \le k \le 22$	$-16 \le k \le 16$	$-24 \le k \le 27$
	$-14 \le 1 \le 24$	$-25 \le 1 \le 25$	$-29 \le 1 \le 29$	$-19 \le 1 \le 23$
Reflections Collected/Unique	20662/13855	43028/16670	50354/15533	40225/13791
	[R(int) = 0.0177]	[R(int) = 0.0181]	[R(int) = 0.0429]	[R(int) = 0.0259]
Data/ Restraints/ Parameters	13855 / 203 / 1005	16670 / 57 / 944	15533 / 213 / 998	13791 / 2257 / 962
Goodness of Fit on F ²	1.030	1.053	1.038	1.035
Final R Indices	$R_1 = 0.0706$	$R_1 = 0.0666$	$R_1 = 0.0985$	$R_1 = 0.1011$
$[I > 2\sigma(I)]$	$wR_2 = 0.1979$	$wR_2 = 0.1861$	$wR_2 = 0.2889$	$wR_2 = 0.2712$
R Indices (All Data)*	$R_1 = 0.0809$	$R_1 = 0.0779$	$R_1 = 0.1301$	$R_1 = 0.1203$
	$wR_2 = 0.2086$	$wR_2 = 0.2007$	$wR_2 = 0.3224$	$wR_2 = 0.2907$
Largest Diff. Peak and Hole (e Å ⁻³)	1.483 and -0.975	1.893 and -1.533	2.294 and -2.017	2.761 and -1.275

Table 3.19. Crystal Data and Structure Refinement for NiL-Li, NiL-Na, NiL-K and NiL-Cs.

*R₁ = $\Sigma ||F_o| - |F_o|| / \Sigma |F_o|$; wR₂ = $[\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)_2]]^{1/2}$; GOF = $[\Sigma[w(F_o^2 - F_c^2)_2] / (n-p)]^{1/2}$, where *n* is the number of reflections and *p* is the total number of parameters refine

3.10. Decomposition study by UV-Vis

Ni11 complex (1 equiv) and MBAr^F₄ alkali salt (5 equiv, if any) was dissolved in a mixture of toluene/diethyl ether (80:20) inside an inert nitrogen-filled glovebox. Next, a 3.0 mL of the resulting solution was transferred to a 1 cm quartz cuvette and then sealed with a septum screw cap. The cuvette was then placed inside a UV-Vis spectrophotometer and heated up to 50 °C with stirring. The spectrum of the solution was recorded. Aliquots containing 3 equiv of $B(C_6F_5)_3$ were added and the spectra were measured every three minutes. The experiment was stopped after 3 hours. The spectra were compared to evaluate the stability of the Ni complexes.

Figure 3.30. UV-vis absorbance spectra at the wavelength of 340 nm of complex Ni11 after activating by $B(C_6F_5)_3$.

Figure 3.31. UV-vis absorption spectra of Ni11 at 50 °C. Kinetic scan was run for 3 h.

Figure 3.32. UV-vis absorption spectra of **Ni11** after activating with $B(C_6F_5)_3$ at 50 °C. Kinetic scan was run for 3 h.

Figure 3.33. UV-vis absorption spectra of **Ni11**-Li after activating with $B(C_6F_5)_3$ at 50 °C. Kinetic scan was run for 6 h.

Figure 3.34. Kinetic traces of **Ni11**-Li: A) within 51 min and B) after 51 min. Data obtained from Figure 3.39.

Figure 3.35. UV-vis absorption spectra of **Ni11**-Na after activating with $B(C_6F_5)_3$ at 50 °C. Kinetic scan was run for 6 h.

Figure 3.36. UV-vis absorption spectra of **Ni11**-K after activating with $B(C_6F_5)_3$ at 50 °C. Kinetic scan was run for 6 h.

Figure 3.37. UV-vis absorption spectra of **Ni11**-Cs after activating with $B(C_6F_5)_3$ at 50 °C. Kinetic scan was run for 6 h.

3.11. DFT Calculation Data

Figure 3.38. Ground state energy for *cis/trans* isomers of nickel complexes.

Figure 3.39. Free energy profile of NiC_6F_5 in ethylene coordination/insertion polymerization.

Figure 3.40. Free energy profile of Ni11-K in ethylene coordination/insertion polymerization.

Figure 3.41. Free energy profile of Ni11-Cs in ethylene coordination/insertion polymerization.

3.12. Spectral Characterization

Figure 3.42. ¹H NMR spectrum (C_6D_6 , 500 MHz) of compound L70.

Figure 3.43. 13 C NMR spectrum (C₆D₆, 125 MHz) of compound L70.

Figure 3.44. ¹⁹F NMR spectrum (C_6D_6 , 470 MHz) of compound L70.

Figure 3.45. ³¹P NMR spectrum (C_6D_6 , 202 MHz) of compound L70.

Figure 3.46. ¹H NMR spectrum (C₆D₆, 500 MHz) of complex NiC₆F₅.

Figure 3.47. ¹³C NMR spectrum (C₆D₆, 100 MHz) of complex NiC₆F₅.

Figure 3.48. ¹⁹F NMR spectrum (C₆D₆, 470 MHz) of complex NiC₆F₅.

Figure 3.49. ³¹P NMR spectrum (C₆D₆, 202 MHz) of NiC₆F₅ complex.

Figure 3.50. ¹H NMR spectrum ($C_2D_2Cl_4$, 500 MHz, 120 °C) of polyethylene produced by Ni11-Li at 30 °C (Table 3.1, entry 2).

Figure 3.51. ¹H NMR spectrum ($C_2D_2Cl_4$, 500 MHz, 120 °C) of polyethylene produced by Ni11-Cs at 30 °C (Table 3.1, entry 5).

Figure 3.52. ¹H NMR spectrum (C₂D₂Cl₄, 500 MHz, 120 °C) of polyethylene produced by **Ni'Bu** at 30 °C (Table 3.1, entry 6).

Figure 3.53. ¹H NMR spectrum (C₂D₂Cl₄, 500 MHz, 120 °C) of polyethylene produced by NiC₆F₅ at 30 °C (Table 3.1, entry 7).

Figure 3.54. ¹H NMR spectrum (C₂D₂Cl₄, 600 MHz, 120 °C) of polyethylene produced by **Ni11**-Li in pentane (Table 3.11, entry 1).

Figure 3.55. ¹H NMR spectrum (C₂D₂Cl₄, 600 MHz, 120 °C) of polyethylene produced by **Ni11**-Li in hexane (Table 3.11, entry 2).

Figure 3.56. ¹H NMR spectrum (C₂D₂Cl₄, 600 MHz, 120 °C) of polyethylene produced by **Ni11**-Li in benzene (Table 3.11, entry 3).

Figure 3.57. ¹H NMR spectrum (C₂D₂Cl₄, 500 MHz, 120 °C) of polyethylene produced by **Ni11**-Li in toluene (Table 3.11, entry 4).

Figure 3.58. ¹H NMR spectrum (C₂D₂Cl₄, 600 MHz, 120 °C) of polyethylene produced by **Ni11**-Li in DCM (Table 3.11, entry 5).

Figure 3.59. ¹H NMR spectrum (C₂D₂Cl₄, 600 MHz, 120 °C) of polyethylene produced by **Ni11**-Li in diethyl ether (Table 3.11, entry 6).

Figure 3.60. ¹H NMR spectrum (C₂D₂Cl₄, 600 MHz, 120 °C) of polyethylene produced by **Ni11**-Li(BARF) (Table 3.14, entry 1).

Figure 3.61. ¹H NMR spectrum (C₂D₂Cl₄, 600 MHz, 120 °C) of polyethylene produced by **NiL**-Li(TPFB) (Table 3.14, entry 2).

Figure 3.62. ¹H NMR spectrum (C₂D₂Cl₄, 600 MHz, 120 °C) of polyethylene produced by **NiL**-Li(BPh₄) (Table 3.14, entry 3).

Figure 3.63. A) GPC chromatograms of the polyethylene obtained in Table 3.1, Entry 2. B) Normalized chromatograms showing the peaks corresponding to the polyethylene product and the molecular weight range (black line). The data were acquired using a triple detector system: red = refractive index, green = right angle light scattering, blue = viscometer. The peak at ~31 mL retention volume marked with an asterisk (*) is derived from a contaminant in the GPC column, not the sample itself.

Figure 3.64. A) GPC chromatograms of the polyethylene obtained in Table 3.1, Entry 3. B) Normalized chromatograms showing the peaks corresponding to the polyethylene product and the molecular weight range (black line). The data were acquired using a triple detector system: red = refractive index, green = right angle light scattering, blue = viscometer. The peak at ~31 mL retention volume marked with an asterisk (*) is derived from a contaminant in the GPC column, not the sample itself.

Figure 3.65. A) GPC chromatograms of the polyethylene obtained in Table 3.1, Entry 4. B) Normalized chromatograms showing the peaks corresponding to the polyethylene product and the molecular weight range (black line). The data were acquired using a triple detector system: red = refractive index, green = right angle light scattering, blue = viscometer. The peak at ~31 mL retention volume marked with an asterisk (*) is derived from a contaminant in the GPC column, not the sample itself.

Figure 3.66. A) GPC chromatograms of the polyethylene obtained in Table 3.1, Entry 5. B) Normalized chromatograms showing the peaks corresponding to the polyethylene product and the molecular weight range (black line). The data were acquired using a triple detector system: red = refractive index, green = right angle light scattering, blue = viscometer. The peak at ~31 mL retention volume marked with an asterisk (*) is derived from a contaminant in the GPC column, not the sample itself.

Figure 3.67. A) GPC chromatograms of the polyethylene obtained in Table 3.1, Entry 6. B) Normalized chromatograms showing the peaks corresponding to the polyethylene product and the molecular weight range (black line). The data were acquired using a triple detector system: red = refractive index, green = right angle light scattering, blue = viscometer. The peak at ~31 mL retention volume marked with an asterisk (*) is derived from a contaminant in the GPC column, not the sample itself.

Figure 3.68. A) GPC chromatograms of the polyethylene obtained in Table 3.1, Entry 7. B) Normalized chromatograms showing the peaks corresponding to the polyethylene product and the molecular weight range (black line). The data were acquired using a triple detector system: red = refractive index, green = right angle light scattering, blue = viscometer. The peak at ~31 mL retention volume marked with an asterisk (*) is derived from a contaminant in the GPC column, not the sample itself.

Figure 3.69. ¹H NMR of Ni11 complex before and after adding $B(C_6F_5)_3$ at 30 °C.

Figure 3.70. ³¹P NMR of **Ni11** complex before and after adding $B(C_6F_5)_3$ at 30 °C.

Figure 3.71. ¹H NMR of **Ni11**-Li complex before and after adding B(C₆F₅)₃ at 30 °C.

Figure 3.72. ³¹P NMR of **Ni11**-Li complex before and after adding B(C₆F₅)₃ at 30 °C.

Figure 3.73. ¹H NMR of **Ni11** complex before and after adding [LiBAr^F₄ + B(C₆F₅)₃] at 30 °C.

Figure 3.74. ³¹P NMR of **Ni11** complex before and after adding [LiBAr^F₄ + B(C₆F₅)₃] at 30 °C.

Figure 3.75. ¹H NMR of Ni11-Li before and after adding $B(C_6F_5)_3$ at 50 °C.

Figure 3.76. ³¹P NMR of **Ni11**-Li before and after adding B(C₆F₅)₃ at 50 °C.

Figure 3.77. ¹H NMR of Ni11-Na before and after adding $B(C_6F_5)_3$ at 30 °C.

Figure 3.78. ³¹P NMR of **Ni11**-Na before and after adding B(C₆F₅)₃ at 30 °C.

Figure 3.79. ¹H NMR of Ni11-K before and after adding $B(C_6F_5)_3$ at 30 °C.

Figure 3.80. ¹H NMR of Ni11-K before and after adding B(C₆F₅)₃ at 30 °C.

Figure 3.81. ¹H NMR of **Ni11**-Cs before and after adding B(C₆F₅)₃ at 30 °C.

Figure 3.82. ³¹P NMR of **Ni11**-Cs before and after adding B(C₆F₅)₃ at 30 °C.

Chapter 4. Nickel-Alkali Catalysts for Controlled Synthesis of Bimodal Polyethylenes

4.1. Introduction

In Chapter 3, we showed that **Ni11** paired with different secondary cations gave functionally distinct catalysts. In this chapter, we have created a bulkier variant of **Ni11** and developed a "mix" metal strategy to synthesize polymers with bimodal molecular weight distribution in one-pot reactions.

Increasing steric hindrance around nickel catalysts is known to increase their catalyst thermal stability and polymer molecular weight. Inspired by Shimizu and coworkers' results, which showed that 2,6-dimethoxyphenyl attached to phosphine could significant enhance the steric congestion of SHOP-type nickel catalysts,⁶⁶ we have incorporated this substituent into our catalyst to create **Ni21**.

Polyethylene with bimodal molecular weight distribution is of interest to material scientists because they possess combined advantages of two types of different polyethylene, which are necessary for specific application.¹²² For example, high density polyethylene (HDPE) resins possess high strength and stiffness, however, those properties result in poor stress crack resistance and difficult process ability, while medium density polyethylene (MDPE) resins are softer but possess better shock and drop resistance properties and are much easier to process than HDPE. The combination of these two polyethylene resins benefit from their bimodality by having the strength and stiffness of HDPE, while incorporating the high stress resistance and processability

of MDPE. This class of bimodal polyethylene resins is ideally fitted with the application demands of pipes for gas and water distribution.¹²³⁻¹²⁵ Blending with other low MW polyethylene has also been widely used to improve the processability of ultra-high molecular weight polyethylene (UHMWPE).¹²⁶ UHMWPE has been known for its predominant mechanical properties compared to many conventional polyolefins such as extremely high impact strength and crack resistance.¹²⁷⁻¹²⁸ However, their ultra-high molecular weight results in ultrahigh melt viscosity and high degree of chain entanglements, which prohibit them from being processed via conventional melt extrusion of injection molding.¹²⁹⁻¹³⁰ Similar to HDPE case, to overcome this issue, scientists have blended UHMWPE with another low molecular weight polyethylene (PE) to improve it processability.^{126,131-133}

Several methods for synthesizing bimodal polyethylenes have been developed, including physical blending of two polyethylene resins with different molecular weight,¹³⁴ using cascade reactor processes,¹³⁵⁻¹³⁶ and mixing different catalysts in one-pot.¹³⁷⁻¹⁴¹ Some of the drawbacks of these methods include gelation, high cost, and complex manipulation. Since **Ni11** is capable of binding different cations, we took advantage of this property to use two different metals in various ratios in a single pot to control the molecular weight distribution.

4.2. Synthesis of Bulky Catalyst

Ligand **L75** was synthesized using a procedure similar to that described in Scheme 2.1 with an overall yield of about 9% (Scheme 4.1). To obtain nickel complex **Ni21**, **L75** was deprotonated by sodium hydride in THF, followed by treatment with NiPhBr(PMe₃)₂ to furnish the desired product as a yellow solid in moderate yield (0.35 g, 45 %) (Scheme 4.1).

Scheme 4.1. Synthesis of nickel phenoxyphosphine complexes.

4.3. Ethylene Polymerization

We first screened our nickel **Ni21** complexes from 30 °C to 90 °C to study temperature effects (Table 4.1). At 30 °C, **Ni21** displayed moderate activity (entry 1, activity = 279 kg/(mol·h)), affording polymer with molecular weight of ~270 kg/mol. Upon addition of secondary cations, the activity and molecular weight both increased, while polydispersity decreased. Similar to **Ni11**-M, the activity of **Ni21**-M decrease in the other **Ni21**-Li > **Ni21**-Na > **Ni21**-K > **Ni21**-Cs, which is in agreement with the Lewis acid strengths of their alkali ions, while the polymer molecular weight followed a different trend **Ni21**-Cs > **Ni21**-Na > **Ni21**-K > **Ni21**-Li. It is interesting to note that both **Ni21** and **Ni21**-Cs produced about one polymer chain per nickel center. This result suggests that chelation of Cs only speeds up insertion rate (~ $5.3 \times$) and does not affect chain transfer rate. **Ni21**-Na and **Ni21**-K afforded similar results, giving around two polymer chain per nickel center. However, the polymer molecular weight and catalyst activity of **Ni21**-Na are higher than that of **Ni21**-K, which means that Na⁺ enhanced insertion rate to a large degree than K⁺. This effect could be attributed to the stronger Lewis acid strength of Na⁺ compared to K⁺. Because the catalyst productivity (polymer molecular weight, activity) is influenced by both steric and

electronic effects, our polymerization results suggests that chelation of secondary metals to **Ni21** simultaneously altered its steric and electronic properties.

We observed that increasing reaction temperature decreased polymer molecular weight but increased catalytic activity. At 50 °C, Ni21-Li, Ni21-Na, and Ni-K produced polythylenes with similar molecular weight, but their activity trend (Ni21-Li > Ni21-K > Ni21-Na) is slightly different than that observed at 30 °C. Surprisingly, Ni21 and Ni21-Cs still afforded similar numbers of polymer chain per nickel center (4.5 chains/nickel). Increase the temperature further to 90 °C, we found that the activity significantly increased while polymer molecular weight (entry 15). We observed that when 0.2 µmol of Ni11-Cs was used, the polymerization was highly exothermic with a reaction temperature increase up to 114 °C within several minutes after injection into the reaction. Because the nickel catalysts are sensitive to elevated temperatures, we hypothesize that if the reaction exotherm is too large, the catalyst could decompose due to the heat generated. Thus, the corresponding results may not reflect accurately the catalytic behavior.

When the amount of Ni11-Cs was reduced to 0.1 µmol, the reaction temperature was able to be controlled within 5 °C deviation. At this lower catalyst loading, the activity of Ni11-Cs was found to have an activity of 33000 kg/(mol·h) and the polymer molecular weight was 185.2 kg/mol, while the polydispersity are still narrow ($M_n/M_w = 1.5$). This result is exciting because most nickel complexes decompose at elevated temperatures, resulting in significant reduction in both activity and molecular weight and broad PDI.

Entry	Cat.	Salt	Temp. (^O C)	Polymer Yield (g)	Activity $(\frac{kg}{mol \cdot h})$	$\begin{array}{c} M_n{}^b \\ (\times 10^3) \end{array}$	$\frac{M_{\rm n}^b}{M_{\rm w}}$	PE Chain Ni Center
1	Ni21	none	30	0.279	279	270.7	2.0	1.0
2	Ni21	Li ⁺	30	2.94	2940	684.9	1.5	4.3
3	Ni21	Na^+	30	2.43	2400	1234	1.3	1.9
4	Ni21	\mathbf{K}^+	30	1.88	1880	948.5	1.4	2.0
5	Ni21	Cs^+	30	1.26	1260	1415	1.6	0.9
6 ^{<i>c</i>}	Ni21	none	50	0.105	525	115.5	2.2	4.5
7^c	Ni21	Li ⁺	50	6.2	31000	181.6	1.6	170.7
8^c	Ni21	Na^+	50	1.13	5650	198.7	1.6	28.4
9^c	Ni21	\mathbf{K}^+	50	1.7	8500	196.4	1.6	43.3
10^{c}	Ni21	Cs^+	50	0.64	3200	707.9	1.4	4.5
11^{c}	Ni21	none	90	4.6	23000	40.6	2.0	566.5
12^{c}	Ni21	Li^+	90	9.9	49500	15.2	2.6	3256.6
13 ^c	Ni21	Na^+	90	11.7	58500	30.7	1.8	1905.5
14 ^c	Ni21	\mathbf{K}^+	90	3.7	18500	49.8	1.6	371.5
15 ^c	Ni21	Cs^+	90	4.7	23500	117.3	1.7	200.3
16^{d}	Ni21	Cs^+	90	3.3	33000	185.2	1.5	178.2

Table 4.1. Polymerization Study for Ni41-M at Different Temperature^a

^{*a*}Polymerization conditions: catalyst (1.0 µmol), MBAr^F₄ (5.0 µmol, if any), Ni(COD)₂ (8 µmol), ethylene (450 psi), 98 mL toluene/2 mL Et₂O, 1h. Temperature was controlled by manual external cooling when necessary to ensure that the reaction temperature does not exceed greater than 5 °C from the starting temperature. ^{*b*}Determined by GPC in trichlorobenzene at 140 °C. ^{*c*}Ni21 (0.2 µmol), MBAr^F₄ (1 µmol, if any), Ni(COD)₂ (1.6 µmol), temperature quickly increased to 114 °C after addition of catalyst mixture. ^{*d*}Ni21 (0.1 µmol), MBAr^F₄ (0.5 µmol, if any), Ni(COD)₂ (0.8 µmol). Because our nickel-alkali complexes provided different types of polymer under the same reaction condition, we took advantage of this property to produce polyethylene with bimodal molecular weight distributions. We hypothesize that upon mixing our nickel complex with a mixture of two alkali metals, we will obtain two types of bimetallic complexes, which will polymerize ethylene at different rates and produce different types of polymer products. Our study was conducted with **Ni11** and mixtures of Na and Li because **Ni11**-Na and **Ni11**-Li displayed much different in productivity (activity, polymer molecular weight, branching density), which will be facile for data characterization and analysis. Furthermore, these two catalysts are highly active so they can perform at low reaction temperature that will make polymerization process easy to control.

Upon testing **Ni11** for ethylene polymerization in the presence of various ratios of Na/Li mixtures, we obtained polyethylenes with broad polydispersity. Characterization of these polymers by gel permeation chromatography showed two distinct peaks (Figure 4.17), indicating that two types of polyethylene were produced. The high-MW fraction with less branches was most likely formed by **Ni11**-Li and the low-MW fraction with more branches was most likely formed by **Ni11**-Na. As shown in Table 4.2, the relative ratios of the polymer peaks correlated well with the Na⁺/Li⁺ ratios used. Increasing amount of Li⁺ over Na⁺ gave increased polymer yield, greater fractions of high molecular weight polymer and lower branching density. Our results showed that when the Na⁺/Li⁺ ratio was 5:1, the amount of polymer generated by **Ni11**-Na was equal to that produced by **Ni11**-Li, which is consistent with the relative reactivity of the **Ni11**-M species and the binding affinity of **Ni11** for Li⁺ versus Na⁺.

Our results suggest that because two distinct PEs were formed, the interconversion rate between the wo active species Ni11-Li and Ni11-Na is relatively slow compared to their chain

propagation rates. If the interconversion rate was faster than that of chain growth, a monomodal MW distribution would be expected.

Entry	Na/Li ratio	Polymer Yield (g)	Activity $(\frac{kg}{mol \cdot h})$	$\begin{array}{c} \boldsymbol{M_n}^{\boldsymbol{b}} \\ (\times 10^3) \end{array}$	$\frac{M_{\rm n}^b}{M_{\rm w}}$	Branches ^c (/1000C)
1	100:0	0.83	16600	1.54	1.73	27
2	20:1	0.85	17000	2.19	3.94	25
3	10:1	0.91	18200	2.99	4.88	17
4	5:1	1.14	22800	4.62	5.13	15
5	2:1	1.26	25200	10.29	3.65	10
6	1:1	1.33	26600	14.02	2.55	9
7	0.5:1	1.65	33000	18.59	2.28	8
8	0.25:1	1.95	39000	21.17	1.97	7
9	0:100	2.14	42800	31.13	1.65	11

Table 4.2. Ethylene Polymerization Study for Ni11 in the presence of a mixture of Li/Na.

^{*a*}Polymerization conditions: catalyst (0.1 μ mol), LiBAr^F₄ (0.2 μ mol), NaBAr^F₄ (varied), Ni(COD)₂ (0.8 μ mol), ethylene (450 psi), 100 mL toluene, 0.5 h. Stock solutions of Na/Li mixture were prepared in Et₂O, in which the concentration of Li was kept at 1 M. Temperature was controlled by manual external cooling when necessary to ensure that the reaction temperature does not exceed greater than 5°C from the starting temperature. ^{*b*}Determined by GPC in trichlorobenzene at 140 °C. ^{*c*}Determined by ¹H NMR in trichlorobenzene at 120 °C.

4.4. Conclusion

In summary, we have successfully expanded our study of nickel phenoxyphosphine-PEG complexes to include structurally bulky derivatives, which showed significant improvement in catalyst thermal stability and polymer molecular weight. Complex **Ni21**-Cs is among rare examples of nickel based systems that can perform well at temperatures as high as 90 °C. We also took advantage of the switchable capability of our nickel catalysts to synthesize polyethylene with bimodal molecular distribution in one-pot reactions.

In summary, we have demonstrated that heterobimetallic complexes are excellent catalysts for olefin polymerization. In future work, we can replace the PEG chelator with other metal binding groups to expand the range of secondary metals that are compatible with our catalyst. It is also possible to apply similar design strategies to other well-established ligand platforms. Furthermore, the mix metal polymerization method can be applied to produce polymer blends or polymer with novel morphologies depending on the secondary metal exchange dynamics and living versus non-living catalyst behavior. We anticipate that this work will open up new opportunities in catalyst design and provide novel method to access new type of polyolefins.

4.5. Experimental

General Procedures

Commercial reagents were used as received. All air- and water-sensitive manipulations were performed using standard Schlenk techniques or under a nitrogen atmosphere using a drybox. Anhydrous solvents were obtained from an Innovative Technology solvent drying system saturated with argon. High-purity polymer grade ethylene was obtained from Matheson TriGas without further purification. The LiBAr^F₄, NaBAr^F₄, KBAr^F₄ and CsBAr^F₄ salts were prepared according to literature procedures.^{67, 115}

NMR spectra were acquired using JEOL spectrometers (ECA-400, -500, and -600) and referenced using residual solvent peaks. All ¹³C NMR spectra were proton decoupled. ³¹P NMR spectra were referenced to phosphoric acid. ¹H NMR spectroscopic characterization of polymers: each NMR sample contained ~20 mg of polymer in 0.5 mL of 1,1,2,2-tetrachloroethane- d_2 (TCE- d_2) and was recorded on a 500 MHz spectrometer using standard acquisition parameters at 120 °C.

Gel permeation chromatography (GPC) data were obtained using a Malvern high temperature GPC instrument equipped with refractive index, viscometer, and light scattering detectors at 150 °C with 1,2,4-trichlorobenzene (stabilized with 125 ppm BHT) as the mobile phase. A calibration curve was established using polystyrene standards in triple detection mode. All molecular weights reported are based on the triple detection method.

Synthesis and Characterization

A) Synthesis of Phenoxyphosphine-Polyethylene Glycol Ligand L72

Scheme 4.2. Synthesis of ligand L72 and compound 73.

Preparation of Compound 71. To a solution of 56 (7.08 g, 20 mmol, 1.0 equiv) in 70 mL of dry

[(MeO)₂Ph]₂P Br THF in a Schlenk flask under nitrogen at -78 °C, nBuLi (1.6 M in hexanes, 12.8 mL, 20.5 mmol, 1.02 equiv) was added dropwise using a syringe pump. The reaction mixture was then stirred at -78 °C for 40 min. A solution of **73**

(6.13 g, 18 mmol, 0.9 equiv) in 50 mL of dry THF was cannula transferred to the reaction mixture and stirred for another 40 min at -78 °C, followed by warming naturally to RT. The reaction was quenched by the slow addition of H₂O and the products were extracted into Et₂O (3×75 mL). The organic layers were combined, washed with H₂O (2×50 mL), dried over Na₂SO₄, filtered, and evaporated to dryness. The crude material was purified by silica gel column chromatography (1:1 hexane: ethyl acetate) to afford a colorless oil (6.78 g, 11.7 mmol, 65%). ¹H NMR (CDCl₃, 400 MHz) δ 7.21 (d, *J* = 9.1 Hz, 3H), 6.72 (s, 1H), 6.48 (d, *J* = 8.2 Hz, 4H), 5.24 (s, 2H), 3.84 (t, *J* = 4.8 Hz, 2H), 3.49 (d, *J* = 4.1 Hz, 14H), 3.33 (s, 3H), 2.13 (s, 3H). ¹³C NMR (CDCl₃, 101 MHz) δ 162.77, 162.68, 134.00, 132.46, 132.41, 130.12, 115.81, 113.19, 112.97, 104.64, 97.25, 97.17, 71.90, 69.04, 69.01, 59.03, 56.02, 20.78. ³¹P NMR (CDCl₃, 162 MHz) δ -49.99.

Preparation of Compound 72. To a solution of 71 (6.78 g, 11.7 mmol, 1.0 equiv) in 70 mL of dry THF in a Schlenk flask under nitrogen at -78 °C, *n*BuLi (1.6 M in hexanes, 7.7 mL, 12.29 mmol, 1.05 equiv) was added dropwise using a syringe pump. The reaction mixture was stirred at -78 °C for 40 min. Dry

DMF (5 mL, 65 mmol, 5.6 equiv) was added to the reaction mixture and stirred for another 40 min at -78 °C, followed by naturally warming to RT. The reaction was quenched by the slow addition of H₂O and the product was extracted into Et₂O (3×75 mL). The organic layers were combined, washed with H₂O (2×50 mL), dried over Na₂SO₄, filtered, and evaporated to dryness to afford a light yellow oil (4.83 g, 9.13 mmol, 78%). This compound was used directly in the next step without further purification.

Preparation of Compound 73. Compound 72 (4.83 g, 9.13 mmol, 1.0 equiv) was dissolved in

400 mL of MeOH and 80 mL of THF. Small aliquots of NaBH₄ (1.04 g, 27.4 mmol, 3 equiv) were added and the mixture was stirred at RT overnight. The reaction solvent was removed under vacuum and the

residue was redissolved in Et₂O (100 mL). The ether layer was washed with H₂O (2×100 mL), dried over Na₂SO₄, filtered, and evaporated to dryness. The crude material was purified by silica gel column chromatography (2:3 hexane: ethyl acetate) to afford a white solid (2.52 g, 4.75 mmol, 52%). ¹H NMR (CDCl₃, 500 MHz) δ 7.21 (t, *J* = 8.3 Hz, 2H), 7.01 (d, *J* = 2.2 Hz, 1H), 6.85 – 6.81 (m, 1H), 6.47 (dd, *J* = 8.2, 2.8 Hz, 4H), 5.16 (s, 2H), 4.55 (d, *J* = 7.1 Hz, 2H), 3.86 – 3.80 (m, 2H), 3.72 (t, *J* = 7.1 Hz, 1H), 3.58 – 3.53 (m, 2H), 3.46 (s, 12H), 3.35 (s, 3H), 2.15 (s, 3H). ¹³C NMR (CDCl₃, 126 MHz) δ 162.71, 162.64, 133.92, 133.13, 132.75, 130.64, 129.96, 104.47, 99.02, 98.93, 71.49, 68.76, 61.35, 59.10, 55.90, 21.02. ³¹P NMR (CDCl₃, 202 MHz) δ -52.61.

 colorless oil (1.51 g, 2.23 mmol, 47%). This compound was used directly in the next step without further purification.

Preparation of Compound L75. Compound 74 (1.51 g, 2.23 mmol, 1 equiv) was dissolved in

100 mL of MeOH and then treated with 10 mL of 2 M HCl in
³ Et₂O. The reaction mixture was stirred at RT overnight. The solvent was removed under vacuum and the product was

dissolved in 200 mL of EtOAc. A 50 mL solution of 1 M NaHCO₃ in H₂O was then added. The mixture was stirred at RT for 30 min and the product was extracted into Et₂O (2×100 mL). The organic layers were combined, washed with H₂O (2×100 mL), dried over Na₂SO₄, filtered, and evaporated to dryness. The crude material was washed with hexane to afford a white waxy solid (1.12 g, 1.9 mmol, 85%). ¹H NMR (C₆D₆, 500 MHz) δ 7.63 (d, *J* = 2.3 Hz, 1H), 7.60 (d, *J* = 2.4 Hz, 1H), 7.53 (d, *J* = 2.1 Hz, 2H), 7.18 (d, *J* = 2.2 Hz, 2H), 6.99 (t, *J* = 8.2 Hz, 4H), 6.21 (dd, *J* = 8.1, 2.8 Hz, 9H), 4.62 (s, 3H), 3.46 (dd, *J* = 5.9, 3.9 Hz, 5H), 3.43 – 3.36 (m, 18H), 3.29 (dd, *J* = 5.8, 4.0 Hz, 4H), 3.13 (s, 25H), 3.07 (s, 5H), 2.09 (s, 6H). ¹³C NMR (C₆D₆, 101 MHz) δ 162.00, 161.91, 154.86 (d, *J* = 8.2 Hz), 135.10, 134.79, 129.78, 127.49, 127.38, 122.51, 112.97, 112.78, 104.33, 72.01, 70.72, 70.69, 70.61, 69.55, 59.14, 55.85, 20.73. ³¹P NMR (C₆D₆, 162 MHz) δ - 59.76.

Preparation of Complex Ni21. Inside the glovebox, ligand L72 (0.62 g, 1.05 mmol, 1.0 equiv)

was dissolved in 50 mL of dry THF. Small aliquots of NaH (60%, 0.08 g,
2.10 mmol, 2.0 equiv) were added and the mixture was stirred at RT for 2
h. The mixture was filtered to remove excess NaH and then a solution of

NiPhBr(PMe₃)₂ (0.3 g, 0.95 mmol, 0.9 equiv) in 20 mL of benzene was added. The resulting mixture was stirred at RT overnight. The next day, the solution was filtered to remove the precipitate and the filtrate was dried completely under vacuum. The crude material was dissolved in a mixture of 10 mL of pentane and 5 mL of benzene. Another filtration was performed to remove the precipitate and the filtrate was dried once again. Finally, the resulting solid was washed with pentane (3×5 mL) and dried to under vacuum to afford a yellow powder (0.35 g, 0.43 mmol, 45%). ¹H NMR (C₆D₆, 500 MHz) δ 7.54 (d, *J* = 10.0 Hz, 1H), 7.30 (s, 1H), 7.20 (d, *J* = 7.3 Hz, 2H), 6.97 (t, *J* = 8.2 Hz, 2H), 6.72 (t, *J* = 7.4 Hz, 2H), 6.61 (t, *J* = 7.2 Hz, 1H), 6.15 (dd, *J* = 8.4, 3.5 Hz, 4H), 4.90 (s, 2H), 3.77 (t, *J* = 5.3 Hz, 2H), 3.62 (t, *J* = 5.3 Hz, 2H), 3.48 – 3.43 (m, 4H), 3.30 (dd, *J* = 12.0, 7.3 Hz, 4H), 3.08 (s, 13H), 2.15 (s, 3H), 0.87 (d, *J* = 8.8 Hz, 9H). ³¹P NMR (C₆D₆, 162 MHz) δ -3.97 (d, *J* = 317.0 Hz), -15.24 (d, *J* = 317.0 Hz).

Preparation of Compound 75. This synthesis was modified from a reported procedure. A 200

mL Schlenk flask was charged with magnesium turnings (1.2 g, 50 mmol, 2.5 equiv) under nitrogen in 50 mL of dry THF. The compound **2-bromo-3-methoxyanisole** (8.68 g, 40 mmol, 2.0 equiv) was added to the reaction mixture

and then stirred at RT for 3 h until the solution turned dark gray. The resulting Grignard reagent was slowly cannula transferred over a period of 45 min to a solution of PCl₃ (1.6 mL, 20 mmol,

1.0 equiv) in 100 mL of dry THF at -78 °C. After the addition was complete, the heterogeneous mixture was continued stirring and allowed to warm up to RT overnight. Finally, the solvent was removed under vacuum and the crude product was used in the next step without further purification.

Polymerization Studies

General Procedure for Ethylene Polymerization.

Inside the drybox, the nickel complex (Ni11 or Ni21) and $MBAr_{4}^{F_{4}}$ (if any) were dissolved in a mixture of 8 mL of toluene and 2 mL of Et₂O (if any) in a 20 mL vial and stirred for 10 min. Solid Ni(COD)₂ (8 equiv relative to nickel) was added and stirred until a clear solution was obtained (4–5 min). The mixture was loaded into a 10 mL syringe equipped with an 8-inch stainless steel needle. The loaded syringe was sealed by sticking the needle tip into a rubber septum and brought outside of the drybox. To prepare the polymerization reactor, 90 mL of dry toluene was placed in an empty autoclave. The autoclave was pressurized with ethylene to 80 psi, stirred for 5 min, and then the reactor pressure was reduced to 5 psi. This process was repeated three times to remove trace amounts of oxygen inside the reaction vessel. The reactor was then heated to the desired temperature and the catalyst solution was injected into the autoclave through a side arm. The autoclave was sealed and purged with ethylene at 40 psi (no stirring) three times. Finally, the reactor pressure was increased to the desired pressure, and the contents were stirred vigorously. To stop the polymerization, the autoclave was vented and cooled in an ice bath. A solution of MeOH (700 mL) was added to precipitate the polymer. The polymer was collected by vacuum filtration, rinsed with MeOH, and dried under vacuum at 80 °C overnight. The reported yields are average values obtained from duplicate or triplicate runs.

Special Notes:

• To obtain consistent polymer yields from run to run, the amount of catalyst used in each run must be kept as consistent as possible. To minimize errors due to weighing inconsistencies, we used a batch catalyst preparation method. First, we weighed out 50 μ mol of the catalyst and then dissolved it into 50 mL of toluene. This solution was divided equally into 10 vials so that each vial contained 5 μ mol of catalyst. Next, we combined each 5 μ mol of catalyst with 20 mL of toluene and partitioned this 25 mL mixture into 10 vials so that each vial contained 0.5 μ mol of catalyst. Finally, each vial was dried completely under vacuum and stored in a refrigerator inside the drybox until ready for use.

• For all polymerization reactions, except ones that were performed to determine the temperature profiles, the reaction temperature was controlled by manual cooling of the reactor with an air stream when the reactor increases more than 5°C above the starting temperature.

• To clean the Parr reactor, the vessel was washed with hot toluene (80 °C) to remove the polymer sample from the previous run and rinsed with acetone before drying under vacuum for at least 1 h to remove trace amounts of water.

4.6. Spectra Charaterization

Figure 4.1. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 71.

Figure 4.2. ¹³C NMR spectrum (CDCl₃, 101 MHz) of compound 71.

Figure 4.3. ³¹P NMR spectrum (CDCl₃, 162 MHz) of compound 71.

Figure 4.4. ¹H NMR spectrum (CDCl₃, 500 MHz) of compound 73.

Figure 4.5. ¹³C NMR spectrum (CDCl₃, 126 MHz) of compound 73.

Figure 4.6. ³¹P NMR spectrum (CDCl₃, 202 MHz) of compound 73.

Figure 4.7. ¹H NMR spectrum (C_6D_6 , 500 MHz) of compound L75.

Figure 4.8. 13 H NMR spectrum (C₆D₆, 101 MHz) of compound L75.

Figure 4.9. 31 P NMR spectrum (C₆D₆, 162 MHz) of compound L75.

Figure 4.10. ¹H NMR spectrum (C₆D₆, 500 MHz) of complex Ni21.

Figure 4.11. ³¹P NMR spectrum (C_6D_6 , 162 MHz) of complex Ni21.

Figure 4.12. GPC chromatograms of the polyethylene obtained in Table 4.1, Entry 1. The peak at ~22 mL retention volume marker with an asterisk (*) is derived from a contaminant in the GPC column, not the sample itself.

Figure 4.13. GPC chromatograms of the polyethylene obtained in Table 4.1, Entry 2. The peak at ~22 mL retention volume marker with an asterisk (*) is derived from a contaminant in the GPC column, not the sample itself.

Figure 4.14. GPC chromatograms of the polyethylene obtained in Table 4.1, Entry 3. The peak at ~22 mL retention volume marker with an asterisk (*) is derived from a contaminant in the GPC column, not the sample itself.

Figure 4.15. GPC chromatograms of the polyethylene obtained in Table 4.1, Entry 4. The peak at ~22 mL retention volume marker with an asterisk (*) is derived from a contaminant in the GPC column, not the sample itself.

Figure 4.16. GPC chromatograms of the polyethylene obtained in Table 4.1, Entry 5. The peak at ~22 mL retention volume marker with an asterisk (*) is derived from a contaminant in the GPC column, not the sample itself.

Figure 4.17. GPC chromatograms of the polyethylene obtained in Table 4.2.

Chapter 5. Evaluation of Dicopper Azacryptand Complexes in Aqueous CuAAC Reactions and Their Tolerance Toward Biological Thiols

This work has been previously published.

Reproduced with permission from Tran, T. V.; Couture, G.; Do, L. H. *Dalton Trans.*, **2019**, *48*, 9751-9758. DOI:10.1039/C9DT00724E.

Copyright © 2019 Royal Society of Chemistry.

5.1. Introduction

Copper-catalysed azide-alkyne cycloaddition (CuAAC)¹⁴²⁻¹⁴³ is undoubtedly one of the most versatile reactions in the bioorthogonal chemistry toolbox (Scheme 5.1A).¹⁴⁴⁻¹⁴⁶ It has been used extensively in chemical biology research, ranging from the conjugation of biomolecules with fluorescent tags¹⁴⁷ to the study of biomolecule-drug interactions.¹⁴⁸ Although the application of copper complexes for CuAAC reactions inside living cells has also been achieved,¹⁴⁹⁻¹⁵² their catalytic efficiency in vivo is extremely low.¹⁵³ It is believed that the copper complexes are prone to catalyst inhibition via coordination by endogenous nucleophiles (Scheme 5.1B, left). More recently, there have been exciting advances in *copper-free* azide-alkyne cycloaddition reactions.¹⁵⁴ However, these methods typically require the use of specialized strained alkynes as coupling partners, which can add to the cost and labour required to prepare the desired reaction substrates.
Inspired by Nature's strategy of using substrate gating in metalloenzymes to prevent active site deactivation by intracellular species,¹⁵⁵⁻¹⁵⁶ we sought to mimic this capability in small-molecule complexes. We were fascinated by examples in the literature in which molecular cages were used successfully to carryout metal-catalysed processes in environments that are typically unfavourable for such reactions.¹⁵⁷⁻¹⁶⁰ Presumably, such complexes can provide a confined space that promotes selective bimolecular reactions¹⁶¹ and shield their metal centres from undergoing deactivation pathways.

A) Copper-catalysed azide-alkyne cycloaddition (CuAAC)

Scheme 5.1. A) General reaction scheme for copper-catalysed azide-alkyne cycloaddition (CuAAC); and B) proposed application of caged catalysts to prevent inhibition by biological thiols.

To determine whether molecular caging could be a viable approach toward more biocompatible CuAAC catalysts, we sought to explore the reactivity of dicopper azacryptand complexes in water.¹⁶²⁻¹⁶⁴ We hypothesized that the sterically protecting azacryptand structure might allow passage of small neutral substrates into the catalyst interior but could exclude larger molecular species from entry (Scheme 5.1B). Using benzyl azide and phenylacetylene as model substrates,¹⁶⁵ we compared the performance of various copper catalysts in the presence and absence of biological thiols.¹⁶⁶ Although these studies were carried out in the reaction flask rather than inside living cells, our results will help to inform ongoing efforts to design better catalysts for in vivo applications.¹⁶⁷

Chart 5.1. Structures of monocopper (Cu1) and dicopper complexes (Cu2-3) used in this study.

5.2. Copper Catalyst Selection and Synthesis

A variety of copper complexes have been tested previously for aqueous CuAAC reactions,¹⁶⁸⁻¹⁶⁹ including those containing dendrimers¹⁷⁰ and organic nanoparticles.¹⁷¹⁻¹⁷² The criteria we used for selecting possible CuAAC catalysts were that the metal centres must be encapsulated within a

caged structure and the supporting ligands should be easy to synthesize. In this regard, the dicopper(I) azacryptand complexes seemed to satisfy these requirements (Chart 5.1).^{164, 173} The azacryptand ligands can have either tris(imino)amine (**Cu2a/Cu3a**) or tris(amino)amine chelators (**Cu2b/Cu3b**) for copper, which provide different electronic donor abilities and ligand flexibility. The benzene spacers in the azacryptands could be attached to the tetradentate chelators via either 1,3- or 1,4-linkages, which leads to differences in the Cu–Cu distance and active site accessibility of the corresponding metal complexes.

Scheme 5.2. Synthesis of the copper azacryptand complexes. The curved lines between the aldehyde group represent either the 1,3- or 1,4- benzene spacers.

Rather than generating the copper(I) catalysts in situ for reaction studies, we first prepared the metal complexes using one of the procedures outlined in Scheme 2.¹⁶⁴ For the Schiff base complexes, a one pot synthesis procedure was carried out by combining tris(2-aminoethyl)amine, isophthalaldehyde (for **Cu2a**) or terephthalaldehyde (for **Cu3a**), and

Cu(MeCN)₄PF₆ in MeCN/MeOH. To synthesize complexes **Cu2b** and **Cu3b**, the corresponding apo azacryptand ligands were treated with 2.0 equiv of Cu(MeCN)₄PF₆ to provide the desired products. The dicopper(I) complexes **Cu2a** and **Cu3a** are much less sensitive toward air oxidation than **Cu2b** and **Cu3b**,¹⁷⁴ respectively, presumably because their more rigid structures prevent reaction of the copper(I) ions with dioxygen.¹⁷³ Several dicopper(I) tris(imino)amine¹⁷⁵⁻¹⁷⁷ and dicopper(II) tris(amino)amine^{163, 178} cryptand complexes have been characterized structurally by X-ray crystallography.

As mononuclear analogues of the azacryptand complexes, we also prepared Cu(I) species using tripodal tetradentate ligands (**Cu1a/Cu1b**, Chart 5.1).¹⁷⁹⁻¹⁸⁰ The synthesis of these compounds is described in Schemes 5.4 and Schemes 5.5. Complex **Cu1b** was found to spontaneously disproportionate in solution, however, as indicated by the gradual formation of a red precipitate over time.^{165, 179}

5.3. CuAAC Reaction

5.3.1. Comparison of Catalyst Activity

To evaluate their catalytic performance, we tested complexes **Cu1-3** in the reaction between benzyl azide and phenylacetylene in water at 37 °C for 24 h (Table 5.1). A slight excess of phenylacetylene was used to promote the formation of Cu(I)-acetylide σ complexes.¹⁸¹ Sodium ascorbate was also added to prevent oxidation of Cu(I) to Cu(II) since the reactions were performed in air.¹⁸² At a catalyst concentration of 50 µM, which is approximately 0.05 mol% catalyst loading relative to benzyl azide, all of the copper complexes gave quantitative yields. When the catalyst concentration was lowered to 5 µM (0.005 mol% catalyst loading relative to benzyl azide), complexes **Cu1b** (77%, entry 2), **Cu2a** (87%, entry 3), and **Cu2b** (94%, entry 4) gave good yields. However, complexes **Cu1a** (entry 1), **Cu3a** (entry 5), and **Cu3b** (entry 6) only provided moderate amounts (~50%) of 1-benzyl-4-phenyltriazole (**P4**). In comparison, the reaction of benzyl azide and phenylacetylene under similar conditions using CuSO₄ salt gave only 29% yield at 50 μ M of copper and <5% yield at 5 μ M of copper (entry 7). It has been reported that in the absence of supporting ligands, Cu(I) is prone to be oxidized to Cu(II) and to form catalytically inactive metal-acetylide clusters. The addition of β -cyclodextrin (β -CD), which has been shown to improve aqueous CuAAC reactions,¹⁸³ did not appear to help at 5 μ M copper salt concentration (entry 8).

Several interesting observations were made in the experiments above. First, all of the copper complexes tested showed excellent to moderate activity in water and under air using relatively low catalyst loading. We found that no special additives or "catalyst enhancements" were needed to achieve high catalytic activity. Second, it appears that dicopper azacryptand complexes **Cu2a** and **Cu2b** are slightly more active than their monocopper counterparts **Cu1a** and **Cu1b**, respectively. Although the dicopper complexes have twice as many equivalences of copper atoms as that of the monocopper complexes, it is not clear whether both copper sites in the dicopper systems are involved in catalysis. Different mechanistic pathways have been proposed for CuAAC reactions, ¹⁸⁴ including those based on monometallic, ¹⁸⁵ bimetallic, ¹⁸⁶ and polymetallic¹⁸⁷⁻¹⁸⁸ active species. Without conducting further mechanistic studies, we are uncertain which is the preferred mechanism for dicopper azacryptands. Third, our results suggest that the dicopper

complexes with 1,3-benzene linkers (**Cu2a/Cu2b**) are more efficient catalysts than those with 1,4-benzene linkers (**Cu3a/Cu3b**). Perhaps the more open catalyst structures in **Cu3a** and **Cu3b** provide less steric protection of the copper ions compared to those in **Cu2a** and **Cu2b**, respectively.

Table 5.1. Comparison of Copper Cata	alysts ^a	
--------------------------------------	---------------------	--

	Ph—	Cu complex sodium ascorbate			
	$N_3 + H - H$	H ₂ O, 37 °C, 24 h	P4		
Entry	Complex —	GC Yi	GC Yield (%) ^b		
		50 µM Complex	5 µM Complex		
1	Cu1a	99	50		
2	Cu1b	99	77		
3	Cu2a	99	87		
4	Cu2b	99	94		
5	Cu3a	99	54		
6	Cu3b	99	51		
7	CuSO ₄	29	<5		
8	$CuSO_4/$ β - CD^c	40	<5		

^{*a*}Reaction conditions: benzyl azide (1.00 mmol), phenylacetylene (1.37 mmol), Cu (0.5 or 0.05 μ mol), sodium ascorbate (0.15 mmol) in H₂O (10 mL) at 37 °C for 24 h. ^{*b*}Average GC yields from duplicate runs. ^{*c*}Abbreviation: β -CD = β -cyclodextrin.

5.3.2. Comparison of Thiol Tolerance

Given the favourable results in Table 5.1, we next examined whether the copper complexes are inhibited by biological thiols (Table 5.2).¹⁸⁹⁻¹⁹⁰ We found that in the presence of 100 μ M of glutathione, all of the copper complexes (50 μ M) afforded quantitative yields of the CuAAC product **P4**. In contrast, the addition of 100 μ M of cysteine to the benzyl azide, phenylacetylene, and copper mixture, led to significant decrease in yields. For

complexes **Cu1a** (entry 1), **Cu 3a** (entry 6), and **Cu 3b** (entry 7), the yields were observed to be <20%. For the more active catalysts, **Cu 1b** (entry 2), **Cu 2a** (entry 3), and **Cu 2b** (entry 4), about ~30-40% yields of **P4** were obtained. To evaluate the effects of pH, we carried out CuAAC using benzyl azide, phenylacetylene, and complex **Cu 2b** in phosphate buffered saline (PBS, pH = 7.4). We observed that in the presence of 100 μ M of glutathione, quantitative amounts of **P4** were obtained. However, once again, the addition of cysteine instead of glutathione afforded a lower yield (79%), albeit higher than that obtained when the reaction was performed in pure water (cf. entry 4 vs. 5). Interestingly, our results suggest that the caged complexes **Cu2a** and **Cu2b** *do not* provide greater protection of the catalyst than the tripodal complex **Cu1b** since all three catalysts performed similarly in the presence of the sulphur-containing amino acid. However, it is worth noting that in the biological milieu, the concentration of glutathione can be as high as 10 mM¹⁹¹ whereas that of free cysteine is several orders of magnitude lower.¹⁹² Thus, CuAAC catalysts that are not inhibited by glutathione could be useful for intracellular applications.

	^{Рh—} + н Рh	Cu complex sodium ascorbate thiols	
	Complex	$\frac{\mathbf{P4}_{2}, \mathbf{P4}_{2}, \mathbf{P4}_{2}}{\mathbf{GC Yield } (\%)^{b}}$	
Entry	(50 uM)	Glutathione	Cysteine
	(30 µM)	(100 µM)	(100 µM)
1	Cula	99	18
2	Cu1b	99	37
3	Cu2a	99	30
4	Cu2b	99	41
5^c	Cu2b	99	79
6	Cu3a	99	18
7	Cu3b	99	13

Table 5.2. Comparison of Copper Catalysts in the Presence of Biological Thiols^{*a*}

^{*a*}Reaction conditions: benzyl azide (1.00 mmol), phenylacetylene (1.37 mmol), Cu (0.5 μ mol), sodium ascorbate (0.15 mmol), thiol (1.0 μ mol) in H₂O (10 mL) at 37°C for 24 h. ^{*b*}Average GC yields from duplicate runs. ^{*c*}This reaction was performed in PBS buffer (pH = 7.4) rather than in pure water.

Our surprising observation that the copper complexes are more tolerant of glutathione than cysteine warranted further investigations. To determine whether the thiol additives bind to copper we first carried out metal binding studies by UV-vis absorption spectroscopy (Figures 5.1, Figure 5.2 and Figure 5.3). When a 50 μ M aqueous solution of **Cu2a** was treated with 2 equiv of either glutathione (Figure 5.1A) or cysteine (Figure 5.1B), the optical band at ~360 nm decreased instantaneously and continued to diminish over the course of ~1 h. To gain further insights into the interactions between **Cu2a** and thiols, additional studies by ¹H NMR spectroscopy were performed. As shown in Figure 1C, the peaks corresponding to the cryptand ligands in **Cu2a**/glutathione and **Cu2a**/cysteine were shifted in comparison to those in **Cu2a**. The NMR spectrum of **Cu2a**/cysteine showed more peaks than that of Cu2a/glutathione, perhaps suggesting that more than one chemical species might be present in the latter.

A) UV-vis Absorption Spectra of Cu2a/Glutathione

Figure 5.1. Reaction of complex Cu2a (50 µM) with biological thiols (100 µM). Plots A and B show the UV-vis absorption spectra (H₂O) of Cu2a/glutathione and Cu2a/cysteine, respectively. The dotted trace shows the spectrum of Cu2a without any additives. The solid black traces were obtained right after mixing Cu2a with either glutathione or cysteine and the solid red traces were

obtained after ~60-80 min. Plot C shows the NMR spectra ($D_2O/CD3CN:1/2$, 600 MHz) of Cu2a, Cu2a/glutathione and Cu2a/cysteine as indicated.

Similar results were obtained in the study of the monocopper **Cu1a** complex (Figure 5.2) and the dicopper **Cu3a** complex (Figure 5.3) with thiols. Taken together, these data clearly indicate that sulfur-containing biomolecules readily coordinate to the copper complexes, regardless of whether they are supported by cryptand or tripodal ligands. However, the exact nature of the copper-thiol interaction cannot be deduced from these spectroscopic data.

In light of the observations above, it is difficult to rationalize why the CuAAC reaction is so much less efficient in the presence of cysteine compared to glutathione since they both bind copper ions. Perhaps an important clue is our observation that metal precipitation might be occurring. For example, we found that when aqueous solutions containing high concentrations (6.7 maM) of **Cu2a** were mixed with 2 equiv of glutathione, a light yellow solid had formed, which could be redissolved with prolonged stirring. Characterization of this yellow material by NMR spectroscopy in DMSO- d_6 revealed that it contained the reaction components. Interestingly, when cysteine was added to **Cu2a** instead of glutathione, a dark colored material quickly precipitated out of solution over the course of several minutes. This precipitate was washed with acetonitrile to remove organic soluble species and then the dark insoluble fraction was dissolved in DMSO- d_6 . Analysis by NMR spectroscopy showed that this sample does not give any proton signals, which suggest that it most likely contains copper metal. Under our experimental CuAAC conditions (Table 5.2), the catalyst (50 μ M) and thiol (100 μ M) concentrations were significantly lower so we would not likely be able to detect any copper-containing precipitates if such species were formed. At this time, we

tentatively attribute the different effects of thiols to their differences in modes of action. However, further evidence must be obtained to support this working hypothesis.

5.3.3. Copper Azacryptand vs. TBTA Complexes

One of the most successful catalysts for aqueous CuAAC are copper tris(benzyltriazolemethyl)amine (Cu-**TBTA**) complexes.^{165, 169} The commercially available **TBTA** ligand (Scheme 5.3) was shown to protect Cu(I) from oxidation and disproportionation and at the same time, enhance its catalytic activity. To determine how the dicopper azacryptands measure up to the well-known Cu-**TBTA** complexes, we decided to perform additional reactivity studies.

Scheme 5.3. Structure of the tris(benzyltriazolemethyl)amine ligand (TBTA) and its Cu(I) complex.

First, we evaluated the reaction of benzyl azide and phenylacetylene using low catalyst concentrations under our standard conditions. As shown in Table 5.3, decreasing the amount of **Cu2b** from 20 to 5 μ M still gave high yields of compound **P4** (>90%, entries 1-3). At 2 μ M catalyst loading, however, the yield dropped to about 71% (entry 4). In comparison, when 20 μ M of Cu-**TBTA** was generated in situ by combining Cu(MeCN)₄PF₆ and **TBTA** (1:1), about 80% yield of **P4** was obtained (entry 5). Decreasing the Cu-**TBTA**

concentration to 2 μ M led to an appreciable decrease in yield (~44%, entry 8). Although these results might suggest that dicopper azacryptands are more active than Cu-**TBTA**, it should be noted once again that **Cu2b** has two copper atoms per complex whereas Cu-**TBTA** has only one. Without knowing the nuclearity of the active catalysts, it is not meaningful to make activity comparisons on the basis of copper rather than catalyst concentrations.

Interestingly, we observed that the CuAAC reactions seemed to be significantly faster in pure water compared to in mixtures of aqueous/non-aqueous solvents.¹⁷¹ For example, Fokin and coworkers reported that Cu-**TBTA** at 1.0 mol% in tBuOH/H₂O (2:1) provided compound **P4** in 84% yield after 24 h.¹⁶⁵ However, when we used pure water as the reaction solvent, we could obtain similar yields by lowering the **Cu-TBTA** catalyst loading down to 0.02 mol% (Table 5.3, entry 5). The effects of solvent were also significant for the azacryptand catalyst **Cu2b**. We found that about 10 mol% of **Cu2b** (10 mM) was needed to obtain complete reaction between benzyl azide and phenylacetylene in acetone/water (2:3) after 24 h (Table 5.5, entry 4), whereas only 0.05 mol% (50 μ M) of catalyst was needed in water alone (Table 5.1, entry 4). We postulate that the formation of hydrophobic aggregates between substrates and catalysts is more greatly enhanced in water than in water/organic solvent mixtures. Reaction rate acceleration in water due to the hydrophobic effect has been documented in a variety of chemical processes, such as pericyclic reactions, Claisen rearrangements, and Michael addition.¹⁹³

	Ph + H=	$= Ph \qquad \frac{Cu2b}{sodium} \\ H_2O, 37$	r Cu/TBTA ascorbate [™] °C, 24 h	N=N Ph P4
Entry	Complex	Conc. (µM)	GC Yield (%) ^b	Isolated Yield (%) ^b
1	Cu2b	20	97	95
2	Cu2b	10	93	92
3	Cu2b	5	94	90
4	Cu2b	2	71	63
5	Cu/ TBTA ^c	20	80	-
6	Cu/ TBTA ^c	10	67	-
7	Cu/ TBTA ^c	5	49	-
8	Cu/ TBTA ^c	2	44	-

Table 5.3. Comparison of Copper Catalyst Concentrations^a

^{*a*}Reaction conditions: benzyl azide (1.00 mmol), phenylacetylene (1.37 mmol), Cu (varies), sodium ascorbate (0.15 mmol) in H₂O (10 mL) at 37°C for 24 h. ^{*b*}Average yields from triplicate runs. ^{*c*}A 1:1 ratio of Cu(MeCN)₄PF₆:**TBTA** was used.

Table 5.4. Comparison of Copper Catalyst Concentrations in the Presence of Thiols^a

Ph-	∼ <u>, , , , , , , , , , , , , , , , , , ,</u>	Cu2b sodiur t	or Cu/TBTA n ascorbate hiols	N=N N_Ph	
	Ν ₃	H ₂ O, 3	7 ºC, 24 h	P4	
		Como	GC Yiel	GC Yield (%)	
Entry	Complex		Glutathione	Cysteine	
		(μΜ)	(1.0 mM)	(1.0 mM)	
1	Cu2b	500	97	71	
2	Cu2b	200	97	46	
3	Cu2b	100	94	33	
4	Cu2b	50	86	20	
5	Cu/TBTA ^c	500	-	99	
6	Cu/TBTA ^c	200	-	99	
7	Cu/ TBTA ^c	100	-	67	
8	Cu/TBTA ^c	50	-	11	

^{*a*}Reaction conditions: benzyl azide (1.00 mmol), phenylacetylene (1.37 mmol), Cu (varies), sodium ascorbate (0.15 mmol), and thiols (10.0 mmol) in H₂O (10 mL) at 37°C for 24 h. ^{*b*}Average yields from triplicate runs. ^{*c*}A 1:1 ratio of Cu(MeCN)₄PF₆:**TBTA** was used. Finally, since we are ultimately interested in carrying out CuAAC reactions inside living cells, we wanted to determine what concentrations of copper catalyst are required to achieve high catalytic conversion in the presence of high concentrations of biological thiols (Table 5.4).¹⁶⁶ We found that for **Cu2b**, at least 100 μ M of catalyst was necessary to obtain greater than 90% yield of the CuAAC product in the presence of 1.0 mM glutathione (entry 3). When 1.0 mM of cysteine was used instead of glutathione, 500 μ M of catalyst was needed to give only a 71% yield (entry 1). Interestingly, the monocopper complex **Cu-TBTA** was more tolerant of cysteine than **Cu2b**. For example, **Cu-TBTA** gave quantitative yields of compound **P4** at 200 μ M catalyst in the presence of cysteine (entry 6). However, at lower concentrations of **Cu-TBTA**, the reaction conversions were significantly decreased (entries 7-8). In terms of the biological relevance of these results, the use of >50 μ M of catalyst is typically considered quite high. Of course, the acceptable catalyst concentrations for biological studies would depend on the copper complexes' cytotoxicity.¹⁹⁴⁻¹⁹⁵ However, such studies are beyond the scope of this work.

5.4. Conclusions

In summary, we have evaluated the competency of dicopper azacryptand complexes as catalysts for aqueous CuAAC. In the absence of biological nucleophiles, they can exhibit high catalytic activity at concentrations as low as 5 μ M. Interestingly, the dicopper catalysts are not as strongly inhibited in the presence of glutathione as compared to in the presence of cysteine (Table 5.2). Control studies using either **Cu1a/Cu1b** or Cu-**TBTA** showed that, in many cases, the mononuclear catalysts had similar reactivity in comparison to that of the

dinuclear catalysts. Our general observation that the copper complexes are more susceptible toward inhibition by cysteine rather than glutathione is intriguing and warrants further investigation to elucidate their catalyst deactivation mechanisms. Unfortunately, our results seem to suggest that the azacryptands do not provide any substantial benefits over conventional tripodal ligands in terms of their ability to provide greater active site protection. We believe, however, that because the azacryptands are amendable to further synthetic modifications, it might be possible to develop new caged ligand structures that are more effective at substrate gating than their parent ligands. Furthermore, since metal azacryptands have so far been underexplored as intracellular catalysts, we anticipate that much exciting chemistry is still yet to be discovered.

5.5. Experimental

General Procedures.

Commercial reagents were used as received. All air- and water-sensitive manipulations were performed using standard Schlenk techniques or under a nitrogen atmosphere using a drybox. Anhydrous solvents were obtained from an Innovative Technology solvent drying system saturated with argon. The ligands Lig2,¹⁹⁶ Lig3,¹⁹⁷⁻¹⁹⁸ Lig4,¹⁹⁸ and Lig6¹⁹⁹ were synthesized according to literature procedures. The copper catalysts were prepared as described below.^{197, 200}

NMR spectra were acquired using JEOL spectrometers (ECA-400, -500, and -600) and referenced using residual solvent peaks. Gas chromatographic (GC) analyses were performing using an Agilent 7820E spectrometer equipped with both a 5977A extractor mass spectral detector (MSD) and a flame ionization detector (FID). All substrate quantification measurements were conducted by integrating peaks in their GC-FID chromatograms and corrected based on their experimental GC response factors. Biphenyl was used as an internal standard in GC studies. ESI-MS analyses were performed using a Thermo Exactive Nano-ESI Mass Spectrometer.

Procedure for CuAAC Reactions.

In a 20 mL disposable scintillation vial, benzyl azide (125 μ L, 1 mmol) and phenyl acetylene (150 μ L, 1.37 mmol) were added to a 10 mL aqueous mixture containing a copper complex (various amounts), sodium ascorbate (30 mg, 0.15 equiv) and bioadditive (if tested). After the reaction was heated to $37\pm5^{\circ}$ C and stirred for 24 h, water (50 mL) was

added and the resulting mixture was extracted into CH_2Cl_2 (2×50 mL) and dried over Na_2SO_4 . *To obtain isolated yield*: the combined organic layers were concentrated in vacuo. The residue was then purified by column chromatography on silica gel column (70-230 mesh) eluted with hexane:ethyl acetate 4:1. *To obtain GC yield*: a known amount of biphenyl was added to an aliquot of the organic layer. This mixture was analyzed by GC-FID. GC yields were calculated based on the integrated area between the internal standard and product peaks, corrected by their corresponding GC response factors. Using excess sodium ascorbate helps to maintain the copper complexes in the +1 oxidation state and improve their products yields. Data for the reactions performed in the absence of sodium ascrobate or copper are provided in Table 5.6.

Ph+	Cu comple sodium ascor H-=-Ph H ₂ O/acetor 37°C 24	$ \begin{array}{ccc} PA \\ \hline Ph \\ \hline Ph \\ Ph \\ \hline Ph \\ Ph \\ Ph \\ P$
Entry	Cu Complex	GC Yield $(\%)^b$
1	Cu1a	43
2	Cu1b	6
3	Cu2a	20
4	Cu2b	95
5	Cu3a	trace
6	Cu3b	trace
7	CuSO ₄	73

 Table 5.5. Comparison of Cu Catalysts in Water/Acetone^a

^{*a*}Reaction conditions: benzyl azide (1.00 mmol), phenylacetylene (1.37 mmol), Cu (0.10 mmol, 10 mM), sodium ascorbate (1.50 mmol) in H₂O/acetone (3:2, 10 mL) at 37 °C for 24 h. ^{*b*}Average yields from duplicate runs.

Ph-	u — ph	Cu complex or ligand sodium ascorbate (if any)	N=N
N ₃	⊦ n- <u>—</u> -Pii	H₂O 37°C, 24 h	PnN_/ Pn P4 4
Entry	Compound	d Ascrobate	GC Yield (%)
1	Cu1a	No	22
2	Cu1b	No	99
3	Cu2a	No	82
4	Cu2b	No	99
5	Cu3a	No	34
6	Cu3b	No	44
7	Cu-TBTA	No	99
8	Lig3 ligand	d Yes	0
9	TBTA ligar	nd Yes	0

 Table 5.6.
 Additional CuAAC Reactions^a

^{*a*}Reaction conditions: benzyl azide (1.00 mmol), phenylacetylene (1.37 mmol), Cu (0.5 μ mol) or ligand alone (0.5 μ mol), sodium ascorbate (0.15 mmol, if any) in H₂O (10 mL) at 37 °C for 24 h.

Scheme 5.4. Procedures for the synthesis of ligands Lig2, Lig3, Lig4, and Lig6.

Scheme 5.5. Procedures for the synthesis of copper complexes Cu1-Cu3.

Preparation of Cu1a. Inside the glovebox, benzaldehyde (0.318 g, 3 mmol), tris(2-aminoethyl)amine (0.146 g, 1 mmol), and Cu(MeCN)₄PF₆ (0.373 g, 1 mmol) were dissolved in 50 mL of MeCN/MeOH (1:1) in a Schlenk flask. The flask was taken outside of the glovebox and the reaction was stirred under reflux overnight to give a yellow precipitate. This material was collected by filtration and then washed with cold methanol to afford the desired product (0.34 g, 0.79 mmol, 79%).¹H NMR (CD₃CN, 400 MHz): δ (ppm) = 8.48 (s, 3H), 8.03 (d, *J*_{HH} = 8 Hz, 6H), 7.37 (t, *J*_{HH} = 7.6 Hz, 3H), 6.88 (t, *J*_{HH} = 7.6 Hz, 6H), 3.82 (t, *J*_{HH} = 5.2 Hz, 6H), 3.10 (t, *J*_{HH} = 6 Hz, 6H). ¹³C NMR (CD₃CN, 126 MHz): δ (ppm) = 163.02, 133.96, 132.12, 128.67, 128.48, 60.29, 52.31. HRMS–ESI(+): Calc. for C₂₇H₃₀CuN₄ m/z = 473.1767, Found = 473.1929. FT-IR: 2841 (v_{CHN}), 1636 (v_{CN}) cm⁻¹.

Preparation of Cu1b. Inside the glovebox, ligand **Lig2** (0.75 g, 2 mmol) and Cu(MeCN)₄PF₆ (0.746 g, 2 mmol) were combined in a 20 mL scintillation vial along with 10 mL of MeCN/MeOH (1:1). The reaction mixture was stirred at RT for 24 h. The solvent was then removed and the resulting green solid was collected and washed with a small amount of methanol (0.39 g, 0.88 mmol, 44%) ¹H NMR (CD₃CN, 400 MHz): δ (ppm) = 7.31-7.24 (m, 9H), 7.18-7.16 (m, 6H), 3.63 (m, 6H), 2.70-2.68 (m, 6H), 2.62-2.60 (m, 6H). *Note: This copper(I) species is prone to air oxidation and disproportionation.*^{165, 179}

Preparation of Cu2a. Inside the glovebox, isophthalaldehyde (0.40 g, 3.00 mmol), tris(2-aminoethyl)amine (0.29 g, 2.0 mmol), and Cu(MeCN)₄PF₆ (0.75 g, 2.00 mmol)

were combined with 50 mL of MeCN/MeOH (1:1) in a Schlenk flask. The flask was taken outside of the glovebox and the reaction was stirred under reflux overnight to give a yellow precipitate. This material was collected by filtration and then washed with cold methanol to afford the desired product (0.54 g, 0.75 mmol, 75%).¹H NMR (CD₃CN, 400 MHz): δ (ppm) = 9.88 (s, 3H), 8.47 (s, 6H), 7.76 (d, $J_{HH} = 7.6$ Hz, 6H), 7.68 (t, $J_{HH} = 7.2$ Hz, 3H), 3.27 (d, $J_{HH} = 7.2$ Hz, 12H), 3.14 (d, $J_{HH} = 13.6$ Hz, 6H), 2.68-2.60 (m, 6H).¹³C NMR (CD₃CN, 100 MHz); δ (ppm) = 165.22, 136.77, 133.98, 129.82, 117.92, 62.08, 57.90. HRMS–ESI(+): Calc. for C₃₆H₄₁Cu₂N₈ m/z = 356.1057, Found = 356.1180. FT-IR: 2870 (v_{CHN}), 1637 (v_{CN}) cm⁻¹.

Preparation of Cu2b. Inside the glovebox, ligand **Lig4** (0.24 g, 0.40 mmol) and Cu(MeCN)₄PF₆ (0.30 g, 0.80 mmol) were dissolved in 10 mL of MeCN in a scintillation vial and then stirred at RT for 24 h. After removal of solvent, a pale green solid was obtained. The solid was washed with a small amount of MeOH to afford the desired product (0.44 g, 0.60 mmol, 76%) ¹H NMR (CD₃CN, 400 MHz): δ (ppm) = 8.10 (s, 3H), 7.36 (t, *J*_{HH} = 7.4 Hz, 3H), 7.19 (d, *J*_{HH} = 7.2 Hz, 6H), 3.59 (m, 12H), 2.68 (s, 12H), 2.56 (s, 12H). ¹³C NMR (CD₃CN, 100 MHz): δ (ppm) = 139.44, 129.98, 127.13, 54.98, 51.57, 49.66. *Note: Because this copper(I) species was very sensitive to air oxidation, it could not be analyzed by ESI-MS*.

Preparation of Cu3a. Inside the glovebox, teraphthalaldehyde (0.40 g, 3.00 mmol), tris(2-aminoethyl)amine (0.29 g, 2.00 mmol), and Cu(MeCN)₄PF₆ (0.75 g, 2.00 mmol)

were combined in 50 mL of MeCN/MeOH (1:1). The flask was taken outside of the glovebox and the reaction was stirred under reflux overnight to give a yellow precipitate. This material was collected by filtration and then washed with cold methanol to afford the desired product (0.51 g, 0.71 mmol, 71%).¹H NMR (CD₃CN, 400 MHz): δ (ppm) = 8.55 (s, 6H), 7.70 (s, 12H), 3.83 (t, *J*_{HH} = 5.4 Hz, 12H), 3.12 (m, 12H).¹³C NMR (CD₃CN, 126 MHz); δ (ppm) = 163.15, 137.11, 128.56, 60.46, 50.83. HRMS–ESI(+): Calc. for C₃₆H₄₁Cu₂N₈ m/z = 356.1057, Found = 356.1179. FT-IR: 2901 (v_{CHN}), 1640 (v_{CN}) cm⁻¹.

Preparation of Cu3b. Inside the glovebox, ligand **Lig6** (0.12 g, 0.20 mmol) and Cu(MeCN)₄PF₆ (0.15 g, 0.40 mmol) were combined in 10 mL of MeCN/MeOH (1:1) and then stirred at RT for 24 h. After removal of solvent, a white solid was obtained. The product was recrystallized by CH₃CN/Et₂O (0.10 g, 0.14 mmol, 35%). ¹H NMR (CD₃CN, 400 MHz): δ (ppm) = 6.84 (s, 12H), 3.86-3.56 (br, 12H), 3.19 (m, 6H), 2.87 (s, 12H), 2.76-2.74 (m, 12H). ¹³C NMR (CD₃CN, 100 MHz); δ (ppm) = 137.26, 127.37, 55.09, 50.78, 49.98. *Note: Because this copper(I) species was very sensitive to air oxidation, it could not be analyzed by ESI-MS*.

Preparation of Lig2. This synthesis was modified from a literature procedure.²⁰¹ Benzaldehyde (3.0 g, 28.3 mmol) wad added to a mixture of tris(2-aminoethyl)amine (0.73 g, 5.0 mmol) in 100 mL of ethanol. The mixture was stirred under reflux overnight. It was then cooled to RT, treated with solid NaBH₄ (1.0 g, 26.4

mmol), and then continued to reflux for another 24 h. The volatiles were removed by rotary evaporation and the residues were dissolved in CH₂Cl₂ (100 mL). An aqueous solution of NaHCO₃ (10%, 50 mL) was added and the mixture was shaken. The organic layer was separated, washed with H₂O (100 mL), dried over Na₂SO₄, filtered, and then evaporated to dryness. The crude product was purified by column chromatography using basic alumina (Act. I, 50-200 mess) and eluted with CH₂Cl₂/MeOH/NEt₃ (95.5/4.0/0.5) to afford a light yellow oil (0.41 g, 1.1 mmol, 22%). The NMR spectra of the product matches those reported previously.²⁰¹ ¹H NMR (CDCl₃, 400 MHz): δ (ppm) = 7.35-7.20 (m, 15H), 3.73 (s, 6H), 2.66 (t, *J*_{HH} = 6Hz, 6H), 2.56 (t, *J*_{HH} = 6Hz, 6H).

Preparation of Lig3. This synthesis was modified from a literature procedure.¹⁹⁷⁻¹⁹⁸ To a stirred

solution of tris(2-aminoethyl)amine (20 mmol, 2.92 g) in MeCN (250 mL) was added dropwise a mixture of isophthalaldehyde (30 mmol, 4.03 g) in MeCN (150 ml) over a period of 1 h at RT. After stirring for additional 24 h, a large amount of a white precipitate had formed. The solid was isolated by filtration and then

washed with Et₂O to afford the desired product (5.34 g, 9.1 mmol, 91%). The NMR spectra of the product matches those reported previously.¹⁹⁷⁻¹⁹⁸ ¹H NMR (CDCl₃, 400 MHz): δ (ppm) = 8.18 (dd, $J_{\text{HH}} = 7.7, 1.6$ Hz, 6H), 7.57 (s, 6H), 7.52 (t, JHH = 8 Hz, 3H), 5.31 (m, 3H), 3.77-2.69 (m, 24H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) = 160.81, 136.94, 132.46, 129.10, 127.46, 60.09, 56.07.

Preparation of Lig4. This synthesis was modified from a literature procedure.¹⁹⁸ Solid NaBH₄ (1

g, 26.4 mmol) was added slowly portion-wise over 15 min to a stirred solution of **Lig3** (1.1 g, 1.88 mmol) in methanol (100 mL) at RT. The mixture was refluxed under nitrogen overnight. The solution was then cooled to RT and the solvent was removed by rotary evaporation. The residue was dissolved in CH_2Cl_2

(100 mL) and combined with aqueous NaHCO₃ (10%, 50 mL). The product was extracted into CH₂Cl₂, washed with H₂O (50 mL), and then dried over Na₂SO₄. Removal of solvent afforded a white sticky solid (0.51 g, 0.85 mmol, 45%). The NMR spectra of the product matches those reported previously.¹⁹⁸ ¹H NMR (CDCl₃, 500 MHz): δ (ppm) = 7.21-7.13 (m, 9H), 7.07 (s, 3H), 3.60 (m, 12H), 2.62-2.60 (m, 12H), 2.57-2.55 (m, 12H).

ΗŇ

Preparation of Lig6. This synthesis was modified from a literature procedure.¹⁹⁹ Terephthaldehyde (2.01 g, 15.0 mmol) was dissolved in 150 mL of ethanol in a 500 mL three-neck round bottom flask. The flask was equipped with a reflux condenser on one neck and an addition funnel on another. The solution was

heated to 78°C while tris(2-aminoethyl)amine (1.46 g, 10.0 mmol) in 50 mL of ethanol was added slowly dropwise using the addition funnel. The reaction mixture was then refluxed overnight. The next day, the solution was filtered to remove insoluble materials and the filtrate was transferred to another round bottom flask. The mixture was then treated with solid NaBH₄ (2 g, 10.5 equiv). The solution was refluxed overnight and cooled to RT. The volatiles were removed by rotary evaporation and the residue was dissolved in CH₂Cl₂ (200 mL). The organic layer was combined with aqueous NaHCO₃ (10%, 100 mL) and shaken. The organic layer was separated, washed with H₂O (100 mL), dried with Na₂SO₄, removed solvent and recrystallized with toluene/hexane to afford solid white product (0.42 g, 0.7 mmol, 14%). NMR spectroscopic characterization of the product matches that measured previously.¹⁹⁹ ¹H NMR (CDCl₃, 400 MHz): δ (ppm) = 6.87 (s, 12H), 3.68 (s, 12H), 2.83-2.81 (m, 12H), 2.67-2.65 (m, 12H).

A) UV-vis Absorption Spectra of Cu1a/Glutathione .

Figure 5.2. Reaction of complex Cu1a (50 µM) with biological thiols (100 µM). Plots A and B show the UV-vis absorption spectra (H₂O) of Cu1a/glutathione and Cu1a/cysteine, respectively. The dotted trace shows the spectrum of Cu1a without any additives. The solid black traces were obtained right after mixing Cu1a with either glutathione or cysteine and the solid red traces were obtained after ~60-80 min. Plot C shows the NMR spectra (D₂O, 500 MHz) of Cu1a, Cu1a/glutathione and Cu1a/cysteine as indicated.

A) UV-vis Absorption Spectra of Cu3a/Glutathione ₆ B) UV-vis Absorption Spectra of Cu3a/Cysteine

Figure 5.3. Reaction of complex **Cu3a** (50 μ M) with biological thiols (100 μ M). Plots A and B show the UV-vis absorption spectra (H₂O) of **Cu3a**/glutathione and **Cu3a**/cysteine, respectively. The dotted trace shows the spectrum of **Cu3a** without any additives. The solid black traces were obtained right after mixing **Cu3a** with either glutathione or cysteine and the solid red traces were obtained after ~60-80 min. Plot C shows the NMR spectra (D₂O, 500 MHz) of **Cu3a**, **Cu3a**/glutathione and **Cu3a**/cysteine as indicated.

5.6. Spectra Characterization

Figure 5.4. ¹H NMR spectrum (CDCl₃, 400 MHz) of complex Cu1a.

Figure 5.5. ¹³C NMR spectrum (CD₃CN, 126 MHz) of complex Cu1a.

Figure 5.6. ¹H NMR spectrum (CD₃CN, 400 MHz) of complex Cu1b.

Figure 5.7. ¹H NMR spectrum (CD₃CN, 400 MHz) of complex Cu2a.

Figure 5.8. ¹³C NMR spectrum (CD₃CN, 100 MHz) of complex Cu2a.

Figure 5.9. ¹H NMR spectrum (CD₃CN, 400 MHz) of complex **Cu2b**. The broad peaks suggest that the complex undergoes dynamic structural changes in solution.

Figure 5.10. ¹³C NMR spectrum (CD₃CN, 100 MHz) of complex Cu2b.

Figure 5.11. ¹H NMR spectrum (CD₃CN, 400 MHz) of complex Cu3a.

Figure 5.12. ¹³C NMR spectrum (CD₃CN, 126 MHz) of complex Cu3a.

Figure 5.13. ¹H NMR spectrum (CD₃CN, 400 MHz) of complex Cu3b.

Figure 5.14. ¹³C NMR spectrum (CD₃CN, 100 MHz) of complex Cu3b.

BIBLIOGRAPHY

- 1. Stürzel, M.; Mihan, S.; Mülhaupt, R., *Chemical Reviews* **2016**, *116* (3), 1398-1433.
- 2. Gentekos, D. T.; Sifri, R. J.; Fors, B. P., Nature Reviews Materials 2019, 4 (12), 761-774.
- 3. Malpass, D. B., Wiley, Hoboken, NJ, USA 2010, 85-97.
- 4. Mark A. Spalding, A. M. C., *Wiley-VCH*, *Weinheim* **2017**.
- 5. Mitchell, N. E.; Long, B. K., *Polymer International* **2019**, *68* (1), 14-26.
- 6. Geyer, R.; Jambeck, J. R.; Law, K. L., *Science Advances* **2017**, *3* (7), 1-5.
- 7. Sifri, R. J.; Padilla-Vélez, O.; Coates, G. W.; Fors, B. P., *Journal of the American Chemical Society* **2020**, *142* (3), 1443-1448.

8. Rosenbloom, S. I.; Gentekos, D. T.; Silberstein, M. N.; Fors, B. P., *Chemical Science* **2020**, *11* (5), 1361-1367.

9. Klosin, J.; Fontaine, P. P.; Figueroa, R., *Accounts of Chemical Research* **2015**, *48* (7), 2004-2016.

- 10. Nakamura, A.; Ito, S.; Nozaki, K., Chemical Reviews 2009, 109 (11), 5215-5244.
- 11. Chen, Z.; Brookhart, M., Accounts of Chemical Research 2018, 51 (8), 1831-1839.
- 12. Sauter, D. W.; Taoufik, M.; Boisson, C., Polymers 2017, 9 (6), 185.
- 13. Chum, P. S.; Swogger, K. W., Progress in Polymer Science 2008, 33 (8), 797-819.

14. Wang, Y.; Vignesh, A.; Qu, M.; Wang, Z.; Sun, Y.; Sun, W.-H., *European Polymer Journal* **2019**, *117*, 254-271.

15. Anderson, W. C.; Rhinehart, J. L.; Tennyson, A. G.; Long, B. K., *Journal of the American Chemical Society* **2016**, *138* (3), 774-777.

- 16. Stalzer, M. M.; Delferro, M.; Marks, T. J., *Catalysis Letters* **2015**, *145* (1), 3-14.
- 17. Liang, T.; Goudari, S. B.; Chen, C., *Nature Communications* **2020**, *11* (1), 372.

18. Zhang, D.; Nadres, E. T.; Brookhart, M.; Daugulis, O., *Organometallics* **2013**, *32* (18), 5136-5143.

- 19. Wang, F.; Chen, C., *Polymer Chemistry* **2019**, *10* (19), 2354-2369.
- 20. Padilla-Vélez, O.; O'Connor, K. S.; LaPointe, A. M.; MacMillan, S. N.; Coates, G. W., *Chemical Communications* **2019**, *55* (53), 7607-7610.
- 21. Luca, O. R.; Crabtree, R. H., Chemical Society Reviews 2013, 42 (4), 1440-1459.
- 22. Kaiser, J. M.; Long, B. K., Coordination Chemistry Reviews 2018, 372, 141-152.
- 23. Wei, J.; Diaconescu, P. L., Accounts of Chemical Research 2019 52 (2), 415-424.
- 24. Wang, X.; Thevenon, A.; Brosmer, J. L.; Yu, I.; Khan, S. I.; Mehrkhodavandi, P.;

Diaconescu, P. L., Journal of the American Chemical Society 2014, 136 (32), 11264-11267.

25. Broderick, E. M.; Guo, N.; Vogel, C. S.; Xu, C.; Sutter, J.; Miller, J. T.; Meyer, K.;

Mehrkhodavandi, P.; Diaconescu, P. L., *Journal of the American Chemical Society* **2011**, *133* (24), 9278-9281.

26. Broderick, E. M.; Guo, N.; Wu, T.; Vogel, C. S.; Xu, C.; Sutter, J.; Miller, J. T.; Meyer, K.; Cantat, T.; Diaconescu, P. L., *Chemical Communications* **2011**, *47* (35), 9897-9899.

27. Biernesser, A. B.; Li, B.; Byers, J. A., *Journal of the American Chemical Society* **2013**, *135* (44), 16553-16560.

28. Gregson, C. K. A.; Gibson, V. C.; Long, N. J.; Marshall, E. L.; Oxford, P. J.; White, A. J. P., *Journal of the American Chemical Society* **2006**, *128* (23), 7410-7411.

- 29. Gibson, V. C.; Halliwell, C. M.; Long, N. J.; Oxford, P. J.; Smith, A. M.; White, A. J. P.; Williams, D. J., *Dalton Transactions* **2003**, (5), 918-926.
- 30. Gibson, V. C.; Gregson, C. K. A.; Halliwell, C. M.; Long, N. J.; Oxford, P. J.; White, A. J. P.; Williams, D. J., *Journal of Organometallic Chemistry* **2005**, *690* (26), 6271-6283.
- 31. Chen, M.; Yang, B.; Chen, C., *Angewandte Chemie International Edition* **2015**, *54* (51), 15520-15524.
- 32. Zhao, M.; Chen, C., Acs Catalysis 2017 Ethylene, 7 (11), 7490-7494.
- 33. Anderson, W. C.; Park, S. H.; Brown, L. A.; Kaiser, J. M.; Long, B. K., *Inorganic Chemistry Frontiers* **2017**, *4* (7), 1108-1112.
- 34. Kaiser, J. M.; Anderson, W. C.; Long, B. K., *Polymer Chemistry* **2018**, *9* (13), 1567-1570.
- 35. Yang, Q.; Xiao, W.-J.; Yu, Z., Organic Letters 2005, 7 (5), 871-874.
- 36. Shen, Q.; Hartwig, J. F., *Journal of the American Chemical Society* **2007**, *129* (25), 7734-7735.
- 37. Jiang, Y. J.; Tu, Y. Q.; Zhang, E.; Zhang, S. Y.; Cao, K.; Shi, L., *Advanced Synthesis & Catalysis* **2008**, *350* (4), 552-556.
- 38. Hirata, Y.; Yada, A.; Morita, E.; Nakao, Y.; Hiyama, T.; Ohashi, M.; Ogoshi, S., *Journal of the American Chemical Society* **2010**, *132* (29), 10070-10077.
- 39. Bielinski, E. A.; Lagaditis, P. O.; Zhang, Y.; Mercado, B. Q.; Würtele, C.; Bernskoetter, W. H.; Hazari, N.; Schneider, S., *Journal of the American Chemical Society* **2014**, *136* (29), 10234-10237.
- 40. Tokmic, K.; Jackson, B. J.; Salazar, A.; Woods, T. J.; Fout, A. R., *Journal of the American Chemical Society* **2017**, *139* (38), 13554-13561.
- 41. Maity, A.; Teets, T. S., *Chemical reviews* **2016**, *116* (15), 8873-8911.
- 42. Becica, J.; Dobereiner, G. E., *Organic & Biomolecular Chemistry* **2019**, *17* (8), 2055-2069.
- 43. Delferro, M.; Marks, T. J., *Chemical Reviews* **2011**, *111* (3), 2450-2485.
- 44. Contrella, N. D.; Jordan, R. F., Organometallics 2014, 33 (24), 7199-7208.
- 45. McInnis, J. P.; Delferro, M.; Marks, T. J., *Accounts of chemical research* **2014**, *47* (8), 2545-2557.
- 46. Cai, Z.; Xiao, D.; Do, L. H., *Journal of the American Chemical Society* **2015**, *137* (49), 15501-15510.
- 47. Chiu, H.-C.; Koley, A.; Dunn, P. L.; Hue, R. J.; Tonks, I. A., *Dalton Transactions* **2017**, 46 (17), 5513-5517.
- 48. Xiao, D.; Do, L. H., Organometallics **2018**, *37* (18), 3079-3085.
- 49. Chen, Y.; Boardman, B. M.; Wu, G.; Bazan, G. C., *Journal of Organometallic Chemistry* **2007**, *692* (21), 4745-4749.
- 50. Cai, Z.; Shen, Z.; Zhou, X.; Jordan, R. F., ACS Catalysis 2012, 2 (6), 1187-1195.
- 51. Johnson, A. M.; Contrella, N. D.; Sampson, J. R.; Zheng, M.; Jordan, R. F., *Organometallics* **2017**, *36* (24), 4990-5002.
- 52. Wang, G.; Li, M.; Pang, W.; Chen, M.; Tan, C., *New Journal of Chemistry* **2019**, *43* (34), 13630-13634.
- 53. Tan, C.; Qasim, M.; Pang, W.; Chen, C., Polymer Chemistry 2020, 11 (2), 411-416.
Johnson, L.; Wang, L.; McLain, S.; Bennett, A.; Dobbs, K.; Hauptman, E.; Ionkin, A.;
 Ittel, S.; Kunitsky, K.; Marshall, W.; McCord, E.; Radzewich, C.; Rinehart, A.; Sweetman, K. J.;
 Wang, Y.; Yin, Z.; Brookhart, M., Copolymerization of Ethylene and Acrylates by Nickel
 Catalysts. In *Beyond Metallocenes*, American Chemical Society: 2003; Vol. 857, pp 131-142.
 Tanabiki, M.; Tsuchiya, K.; Motoyama, Y.; Nagashima, H., *Chemical Communications* 2005, (27), 3409-3411.

56. Smith, A. J.; Kalkman, E. D.; Gilbert, Z. W.; Tonks, I. A., *Organometallics* **2016**, *35* (15), 2429-2432.

57. Cai, Z.; Do, L. H., Organometallics **2017 - Ethylene**, *36* (24), 4691-4698.

- 58. Tran, T. V.; Nguyen, Y. H.; Do, L. H., *Polymer Chemistry* **2019**, *10* (27), 3718-3721.
- 59. Cai, Z.; Do, L. H., Organometallics 2018, 37 (21), 3874-3882.

60. Xiao, D.; Cai, Z.; Do, L. H., *Dalton Transactions* **2019 - Ethylene**, *48* (48), 17887-17897.

- 61. Xiao, D.; Do, L. H., Organometallics **2018**, *37* (2), 254-260.
- 62. Shen, Z.; Jordan, R. F., Journal of the American Chemical Society 2010, 132 (1), 52-53.
- 63. Wei, J.; Shen, Z.; Filatov, A. S.; Liu, Q.; Jordan, R. F., *Organometallics* **2016**, *35* (20), 3557-3568.

64. Liu, Q.; Jordan, R. F., Organometallics 2018, 37 (24), 4664-4674.

65. Liu, Q.; Jordan, R. F., *Journal of the American Chemical Society* **2019**, *141* (17), 6827-6831.

66. Xin, B. S.; Sato, N.; Tanna, A.; Oishi, Y.; Konishi, Y.; Shimizu, F., *Journal of the American Chemical Society* **2017**, *139* (10), 3611-3614.

- Brookhart, M.; Grant, B.; Volpe, A. F., Jr., *Organometallics* 1992, *11* (11), 3920-3922.
 Hirose, K., *Journal of inclusion phenomena and macrocyclic chemistry* 2001, *39* (3), 193-209.
- 69. Zhang, Y.; Mu, H.; Pan, L.; Wang, X.; Li, Y., ACS Catalysis 2018, 8, 5963-5976.
- 70. Gates, D. P.; Svejda, S. A.; Oñate, E.; Killian, C. M.; Johnson, L. K.; White, P. S.; Brookhart, M., *Macromolecules* **2000**, *33* (7), 2320-2334.

71. Rhinehart, J. L.; Brown, L. A.; Long, B. K., *Journal of the American Chemical Society* **2013**, *135* (44), 16316-16319.

72. Chen, M.; Chen, C., *Angewandte Chemie International Edition* **2018**, *57* (12), 3094-3098.

- 73. Zhou, X.; Bontemps, S.; Jordan, R. F., *Organometallics* **2008**, *27* (19), 4821-4824.
- 74. Delferro, M.; McInnis, J. P.; Marks, T. J., Organometallics **2010**, *29* (21), 5040-5049.

75. Kenyon, P.; Wörner, M.; Mecking, S., *Journal of the American Chemical Society* **2018**, *140* (21), 6685-6689.

- 76. Noda, S.; Kochi, T.; Nozaki, K., Organometallics 2009, 28 (2), 656-658.
- 77. Kocen, A.; Brookhart, M.; Daugulis, O., *Nature Communications* **2019**, *10*, 438.
- 78. Dai, S.; Zhou, S.; Zhang, W.; Chen, C., *Macromolecules* **2016**, *49* (23), 8855-8862.
- 79. Younkin, T. R.; Connor, E. F.; Henderson, J. I.; Friedrich, S. K.; Grubbs, R. H.; Bansleben, D. A., *Science* **2000**, *287* (5452), 460-462.

80. Zhang, Y.-P.; Li, W.-W.; Li, B.-X.; Mu, H.-L.; Li, Y.-S., *Dalton Transactions* **2015**, *44* (16), 7382-7394.

- 81. Mokhadinyana, M. S.; Maumela, M. C.; Mogorosi, M. M.; Overett, M. J.; Van Den Berg, J.-A.; Janse Van Rensburg, W.; Blann, K. Tetramerisation of Ethylene. Int. Patent WO/2014/181250, November 12, 2014, 2014.
- 82. Egami, H.; Ide, T.; Kawato, Y.; Hamashima, Y., *Chemical Communications* **2015**, *51* (93), 16675-16678.
- 83. Carmona, E.; Paneque, M.; Poveda, M. L., *Polyhedron* **1989**, 8 (3), 285-291.
- 84. Kenyon, P.; Mecking, S., *Journal of the American Chemical Society* **2017**, *139* (39), 13786-13790.
- 85. Tao, W.-j.; Nakano, R.; Ito, S.; Nozaki, K., *Angewandte Chemie International Edition* **2016**, *55* (8), 2835-2839.
- 86. Tsuda, A.; Fukumoto, C.; Oshima, T., *Journal of the American Chemical Society* **2003**, *125* (19), 5811-5822.
- 87. Krebs, F. C.; Spanggaard, H., *The Journal of Organic Chemistry* **2002**, *67* (21), 7185-7192.

88. van Truong, N.; Norris, A. R.; Shin, H. S.; Buncel, E.; Bannard, R. A. B.; Purdon, J. G., *Inorganica Chimica Acta* **1991**, *184* (1), 59-65.

- 89. Nishi, N.; Murakami, H.; Imakura, S.; Kakiuchi, T., *Analytical Chemistry* **2006**, *78* (16), 5805-5812.
- 90. Collin, R. J.; Smith, B. C., Dalton Transactions 2005, (4), 702-705.
- 91. Lang, P. F.; Smith, B. C., *Dalton Transactions* **2010**, *39* (33), 7786-7791.
- 92. Klabunde, U.; Mulhaupt, R.; Herskovitz, T.; Janowicz, A. H.; Calabrese, J.; Ittel, S. D., *Journal of Polymer Science Part A: Polymer Chemistry* **1987**, *25* (7), 1989-2003.
- 93. Klabunde, U.; Itten, S. D., Journal of Molecular Catalysis 1987, 41 (1), 123-134.
- 94. Wang, C.; Friedrich, S.; Younkin, T. R.; Li, R. T.; Grubbs, R. H.; Bansleben, D. A.; Day,
- M. W., Organometallics 1998, 17 (15), 3149-3151.
- 95. Gao, H.; Ke, Z.; Pei, L.; Song, K.; Wu, Q., Polymer 2007, 48 (25), 7249-7254.
- 96. Zhang, Y.; Mu, H.; Pan, L.; Wang, X.; Li, Y., ACS Catalysis 2018, 8 (7), 5963-5976.
- 97. Chen, Z.; Leatherman, M. D.; Daugulis, O.; Brookhart, M., Journal of the American
- Chemical Society 2017, 139 (44), 16013-16022.
- 98. Connor, E. F.; Younkin, T. R.; Henderson, J. I.; Waltman, A. W.; Grubbs, R. H., *Chemical Communications* **2003**, (18), 2272-2273.
- 99. Ota, Y.; Ito, S.; Kuroda, J.-i.; Okumura, Y.; Nozaki, K., *Journal of the American Chemical Society* **2014**, *136* (34), 11898-11901.
- 100. Zhang, W.; Waddell, P. M.; Tiedemann, M. A.; Padilla, C. E.; Mei, J.; Chen, L.; Carrow, B. P., *Journal of the American Chemical Society* **2018**, *140* (28), 8841-8850.
- 101. Poater, A.; Cosenza, B.; Correa, A.; Giudice, S.; Ragone, F.; Scarano, V.; Cavallo, L., *European Journal of Inorganic Chemistry* **2009**, *2009* (13), 1759-1766.
- 102. Poater, A.; Ragone, F.; Giudice, S.; Costabile, C.; Dorta, R.; Nolan, S. P.; Cavallo, L., *Organometallics* **2008**, *27* (12), 2679-2681.
- 103. Poater, A.; Ragone, F.; Mariz, R.; Dorta, R.; Cavallo, L., *Chemistry A European Journal* **2010**, *16* (48), 14348-14353.
- 104. Brown, I. D.; Skowron, A., *Journal of the American Chemical Society* **1990**, *112* (9), 3401-3403.

105. Delgado, M.; Ziegler, J. M.; Seda, T.; Zakharov, L. N.; Gilbertson, J. D., *Inorganic Chemistry* **2016**, *55* (2), 555-557.

106. Liang, T.; Chen, C., *Inorganic Chemistry* **2018**, *57* (23), 14913-14919.

107. Welch, G. C.; Holtrichter-Roessmann, T.; Stephan, D. W., *Inorganic Chemistry* **2008**, 47 (6), 1904-1906.

108. Noda, S.; Nakamura, A.; Kochi, T.; Chung, L. W.; Morokuma, K.; Nozaki, K., *Journal of the American Chemical Society* **2009**, *131* (39), 14088-14100.

109. Conley, M. P.; Jordan, R. F., *Angewandte Chemie International Edition* **2011**, *50* (16), 3744-3746.

110. Tran, Q. H.; Brookhart, M.; Daugulis, O., *Journal of the American Chemical Society* **2020**.

111. Chalmers, B. A.; Nejman, P. S.; Llewellyn, A. V.; Felaar, A. M.; Griffiths, B. L.;

Portman, E. I.; Gordon, E.-J. L.; Fan, K. J. H.; Woollins, J. D.; Bühl, M.; Malkina, O. L.; Cordes, D. B.; Slawin, A. M. Z.; Kilian, P., *Inorganic Chemistry* **2018**, *57* (6), 3387-3398.

112. Konishi, Y.; Tao, W.-j.; Yasuda, H.; Ito, S.; Oishi, Y.; Ohtaki, H.; Tanna, A.; Tayano, T.; Nozaki, K., *ACS Macro Letters* **2018**, *7* (2), 213-217.

113. Zhang, Y.; Zhang, Y.; Chi, Y.; Jian, Z., Dalton Transactions 2020, 49 (8), 2636-2644.

114. Tan, C.; Chen, C., Angewandte Chemie International Edition 2019, 58 (22), 7192-7200.

115. Carreras, L.; Rovira, L.; Vaquero, M.; Mon, I.; Martin, E.; Benet-Buchholz, J.; Vidal-

Ferran, A., RSC Advances 2017, 7 (52), 32833-32841.

116. Shimizu, F. X., S.; Tanna, A.; Goromaru. S.; Matsubara, K., 2013.

117. Camacho, D. H.; Salo, E. V.; Ziller, J. W.; Guan, Z., *Angewandte Chemie International Edition* **2004**, *43* (14), 1821-1825.

118. Liu, F.-S.; Hu, H.-B.; Xu, Y.; Guo, L.-H.; Zai, S.-B.; Song, K.-M.; Gao, H.-Y.; Zhang,

- L.; Zhu, F.-M.; Wu, Q., *Macromolecules* **2009**, *42* (20), 7789-7796.
- 119. Chen, M.; Chen, C., ACS Catalysis 2017, 7 (2), 1308-1312.
- 120. Fu, X.; Zhang, L.; Tanaka, R.; Shiono, T.; Cai, Z., *Macromolecules* **2017**, *50* (23), 9216-9221.

121. Chen, Z.; Zhao, X.; Gong, X.; Xu, D.; Ma, Y., *Macromolecules* **2017**, *50* (17), 6561-6568.

122. Li, L.; Wang, Q., *Journal of Polymer Science Part A: Polymer Chemistry* **2004**, *42* (22), 5662-5669.

- 123. Moyassari, A.; Gkourmpis, T.; Hedenqvist, M. S.; Gedde, U. W., *Macromolecules* **2019**, *52* (3), 807-818.
- 124. Fan, Y.; Xue, Y.; Nie, W.; Ji, X.; Bo, S., Polymer Journal 2009, 41 (8), 622-628.
- 125. Men, Y. F.; Rieger, J.; Enderle, H. F.; Lilge, D., *The European Physical Journal E* **2004**, *15* (4), 421-425.
- 126. Diop, M. F.; Burghardt, W. R.; Torkelson, J. M., Polymer 2014, 55 (19), 4948-4958.
- 127. Kurtz, S. M.; Muratoglu, O. K.; Evans, M.; Edidin, A. A., *Biomaterials* **1999**, *20* (18), 1659-1688.
- 128. Nakayama, K.; Furumiya, A.; Okamoto, T.; Yagi, K.; Kaito, A.; Choe, C. R.; Wu, L.;

Zhang, G.; Xiu, L.; Liu, D.; Masuda, T.; Nakajima, A., **1991**, *63* (12), 1793.

129. Ferry, J. D., Viscoelastic properties of polymers. John Wiley & Sons: 1980.

- 130. Rastogi, S.; Lippits, D. R.; Peters, G. W. M.; Graf, R.; Yao, Y.; Spiess, H. W., *Nature Materials* **2005**, *4* (8), 635-641.
- 131. Ahmad, M.; Wahit, M. U.; Kadir, M. R. A.; Dahlan, K. Z. M.; Jawaid, M., **2013**, *33* (7), 599.
- 132. Bin, Y.; Ma, L.; Adachi, R.; Kurosu, H.; Matsuo, M., Polymer 2001, 42 (19), 8125-8135.
- 133. Ruff, M.; Lang, R. W.; Paulik, C., *Macromolecular Reaction Engineering* **2013**, *7* (7), 328-343.
- 134. Cho, K.; Lee, B. H.; Hwang, K.-M.; Lee, H.; Choe, S., *Polymer Engineering & Science* **1998**, *38* (12), 1969-1975.
- 135. Alt, F. P.; Böhm, L. L.; Enderle, H.-F.; Berthold, J., *Macromolecular Symposia* **2001**, *163* (1), 135-144.
- 136. Zacca, J. J.; Debling, J. A.; Ray, W. H., *Chemical Engineering Science* **1997**, *52* (12), 1941-1967.
- 137. Lopez-Linares, F.; Barrios, A. D.; Ortega, H.; Matos, J. O.; Joskowicz, P.; Agrifoglio, G., *J. Mol. Catal. A-Chem.* **2000**, *159* (2), 269-272.
- 138. Cho, H. S.; Chung, J. S.; Lee, W. Y., *Journal of Molecular Catalysis A: Chemical* **2000**, *159* (2), 203-213.
- 139. D'Agnillo, L.; Soares, J. B. P.; Penlidis, A., *Journal of Polymer Science Part A: Polymer Chemistry* **1998**, *36* (5), 831-840.
- 140. Liu, J.; Rytter, E., Macromolecular Rapid Communications 2001, 22 (12), 952-956.
- 141. Cho, H. S.; Chung, J. S.; Han, J. H.; Ko, Y. G.; Lee, W. Y., *Journal of Applied Polymer Science* **1998**, *70* (9), 1707-1715.
- 142. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., Angew. Chem. Int. Ed. **2002**, *41* (14), 2596-2599.
- 143. Tornøe, C. W.; Christensen, C.; Meldal, M., J. Org. Chem. 2002, 67 (9), 3057-3064.
- 144. Yang, M.; Yang, Y.; Chen, P. R., Top. Curr. Chem. 2016, 374 (1), 2.
- 145. Li, L.; Zhang, Z., Molecules 2016, 21 (10), 1393.
- 146. Hein, J. E.; Fokin, V. V., Chem. Soc. Rev. 2010, 39 (4), 1302-1315.
- 147. McKay, C. S.; Finn, M. G., Chem. Biol. 2014, 21 (9), 1075-1101.
- 148. Zhong, W.; Sun, B.; Lu, C.; Yu, H.; Wang, C.; He, L.; Gu, J.; Chen, S.; Liu, Y.; Jing, X.;
- Bi, Z.; Yang, G.; Zhou, H.; Sun, T.; Yang, C., Sci. Rep. 2016, 6, 35579.
- 149. Beatty, K. E.; Xie, F.; Wang, Q.; Tirrell, D. A., J. Am. Chem. Soc. 2005, 127 (41), 14150-14151.
- 150. Deiters, A.; Schultz, P. G., Bioorgan. Med. Chem. 2005, 15 (5), 1521-1524.
- 151. Miguel-Ávila, J.; Tomás-Gamasa, M.; Olmos, A.; Pérez, P. J.; Mascareñas, J. L., *Chem. Sci.* **2018**, *9*, 1947-1952.
- 152. Clavadetscher, J.; Hoffmann, S.; Lilienkampf, A.; Mackay, L.; Yusop, R. M.; Rider, S. A.; Mullins, J. J.; Bradley, M., *Angew. Chem. Int. Ed.* **2016**, *55* (50), 15662-15666.
- 153. Li, S.; Wang, L.; Yu, F.; Zhu, Z.; Shobaki, D.; Chen, H.; Wang, M.; Wang, J.; Qin, G.; Erasquin, U. J.; Li, R.; Yingjun, W.; Chengzhi, C., *Chem. Sci.* **2017**, *8* (3), 2107-2114.
- 154. Lutz, J.-F., Angew. Chem. Int. Ed. **2008**, 47 (12), 2182-2184.
- 155. Fontecilla-Camps, J. C., *Structure and Mechanism of Metalloenzyme Active Sites*. Wiley-VCH Verlag GmbH & Co.: Weinheim, 2006.

- 156. Schwizer, F.; Okamoto, Y.; Heinisch, T.; Gu, Y.; Pellizzoni, M. M.; Lebrun, V.; Reuter, R.; Köhler, V.; Lewis, J. C.; Ward, T. R., *Chem. Rev.* **2018**, *118* (1), 142-231.
- 157. Kuijpers, P. F.; Otte, M.; Dürr, M.; Ivanović-Burmazović, I.; Reek, J. N. H.; de Bruin, B., *ACS Catal.* **2016**, *6* (5), 3106-3112.
- 158. Leung, D. H.; Fiedler, D.; Bergman, R. G.; Raymond, K. N., *Angew. Chem. Int. Ed.* **2004**, *43* (8), 963-966.
- 159. Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond, K. N., *Acc. Chem. Res.* **2005**, *38* (4), 351-360.
- 160. Kaphan, D. M.; Levin, M. D.; Bergman, R. G.; Raymond, K. N.; Toste, F. D., *Science* **2015**, *350* (6265), 1235-1237.
- 161. Mouarrawis, V.; Plessius, R.; van der Vlugt, J. I.; Reek, J. N. H., *Frontiers Chem.* **2018**, 6, 623.
- 162. Bond, A. D.; Derossi, S.; Harding, C. J.; McInnes, E. J.; McKee, V.; McKenzie, C. J.; Nelson, J.; Wolowska, J., *Dalton Trans.* **2005**, (14), 2403-2409.
- 163. Dussart, Y.; Harding, C.; Dalgaard, P.; McKenzie, C.; Kadirvelraj, R.; McKee, V.; Nelson, J., *J. Chem. Soc., Dalton Trans.* **2002**, (8), 1704-1713.
- 164. Drew, M. G. B.; Harding, C. J.; Howarth, O. W.; Lu, Q.; Marrs, D. J.; Morgan, G. G.; McKee, V.; Nelson, J., *J. Chem. Soc., Dalton Trans.* **1996**, (14), 3021-3030.
- 165. Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V., *Org. Lett.* **2004**, *6* (17), 2853-2855.
- 166. Wilson, Y. M.; Dürrenberger, M.; Nogueira, E. S.; Ward, T. R., *J. Am. Chem. Soc.* **2014**, *136* (25), 8928-8932.
- 167. Ngo, A. H.; Bose, S.; Do, L. H., Chem. Eur. J. 2018, 24 (42), 10584-10594.
- 168. Wang, C.; Wang, D.; Yu, S.; Cornilleau, T.; Ruiz, J.; Salmon, L.; Astruc, D., *ACS Catal.* **2016**, *6* (8), 5424-5431.
- 169. Presolski, S. I.; Hong, V.; Cho, S.-H.; Finn, M. G., J. Am. Chem. Soc. **2010**, *132* (41), 14570-14576.
- 170. Deraedt, C.; Pinaud, N.; Astruc, D., J. Am. Chem. Soc. 2014, 136 (34), 12092-12098.
- 171. Bai, Y.; Feng, X.; Xing, H.; Xu, Y.; Kim, B. K.; Baig, N.; Zhou, T.; Gewirth, A. A.; Lu, Y.; Oldfield, E.; Zimmerman, S. C., *J. Am. Chem. Soc.* **2016**, *138* (35), 11077-11080.
- 172. Fu, F.; Martinez, A.; Wang, C.; Ciganda, R.; Yate, L.; Escobar, A.; Moya, S.; Fouquet, E.; Ruiz, J.; Astruc, D., *Chem. Commun.* **2017**, *53* (39), 5384-5387.
- 173. Lu, Q.; Latour, J.-M.; Harding, C. J.; Martin, N.; Marrs, D. J.; McKee, V.; Nelson, J., *J. Chem. Soc., Dalton Trans.* **1994,** (9), 1471-1478.
- 174. Qin, L.; McCann, M.; Nelson, J., J. Inorg. Biochem. 1993, 51 (3), 633-639.
- 175. Drew, M. G. B.; Farrell, D.; Morgan, G. G.; McKee, V.; Nelson, J., *J. Chem. Soc., Dalton Trans.* **2000**, (9), 1513-1519.
- 176. Sato, T.; Suzuki, A.; Sakai, K.; Tsubomura, T., *Bull. Chem. Soc. Jpn.* **1996,** *69* (2), 379-388.
- 177. Youinou, M.-T.; Suffert, J.; Ziessel, R., Angew. Chem. Int. Ed. 1992, 31 (6), 775-778.
- 178. Yang, L.-Z.; Li, Y.; Zhuang, X.-M.; Jiang, L.; Chen, J.-M.; Luck, R. L.; Lu, T.-B., *Chem. Eur. J.* **2009**, *15* (45), 12399-12407.
- 179. Schatz, M.; Becker, M.; Walter, O.; Liehr, G.; Schindler, S., *Inorganica Chim. Acta* **2001**, *324* (1), 173-179.

180. Donnelly, P. S.; Zanatta, S. D.; Zammit, S. C.; White, J. M.; Williams, S. J., *Chem. Commun.* **2008**, (21), 2459-2461.

181. Makarem, A.; Berg, R.; Rominger, F.; Straub, B. F., *Angew. Chem. Int. Ed.* **2015**, *54* (25), 7431-7435.

- 182. Presolski, S. I.; Hong, V. P.; Finn, M. G., Curr. Protoc. Chem. Biol. 2011, 3, 153-162.
- 183. Shin, J.-A.; Lim, Y.-G.; Lee, K.-H., J. Org. Chem. 2012, 77 (8), 4117-4122.
- 184. Meldal, M.; Tornøe, C. W., Chem. Rev. 2008, 108 (8), 2952-3015.
- 185. Ikhlef, D.; Wang, C.; Kahlal, S.; Maouche, B.; Astruc, D.; Saillard, J.-Y., *Comput. Theor. Chem.* **2015**, *1073*, 131-138.
- 186. Jin, L.; Tolentino, D. R.; Melaimi, M.; Bertrand, G., Sci. Adv. 2015, 1 (5), e1500304.
- 187. Chen, H.; Soubra-Ghaoui, C.; Zhu, Z.; Li, S.; Albright, T. A.; Cai, C., *J. Catal.* **2018**, *361*, 407-413.

188. Chen, H.; Cai, C.; Li, S.; Ma, Y.; Luozhong, S.; Zhu, Z., *Chem. Eur. J.* **2017**, *23* (19), 4730-4735.

189. Rubino, J. T.; Chenkin, M. P.; Keller, M.; Riggs-Gelasco, P.; Franz, K. J., *Metallomics* **2011**, *3* (1), 61-73.

- 190. Poole, L. B., Free Radical Biol. Med. 2015, 80, 148-157.
- 191. Lushchak, V. I., J. Amino Acids 2012, 736837.
- 192. Brigham, M. P.; Stein, W. H.; Moore, S., J. Clin. Invest. 1960, 39 (11), 1633-1638.

193. Lubineau, A.; Augé, J.; Scherrmann, M.-C., Organic Chemistry in Water. In *Aqueous Phase Oragnometallic Catalysis*, Cornils, B.; Herrmann, W. A., Eds. Wiley-VCH: Weinheim, 2004; pp 27-43.

194. Massoud, S. S.; Louka, F. R.; Ducharme, G. T.; Fischer, R. C.; Mautner, F. A.; Vančo, J.; Herchel, R.; Dvořák, Z.; Trávníček, Z., *J. Inorg. Biochem.* **2018**, *180*, 39-46.

195. Jopp, M.; Becker, J.; Becker, S.; Miska, A.; Gandin, V.; Marzano, C.; Schindler, S., *Eur. J. Med. Chem.* **2017**, *132*, 274-281.

196. Charalambidis, G.; Ladomenou, K.; Boitrel, B.; Coutsolelos, A. G., *Eur. J. Org. Chem.* **2009**, (8), 1263-1268.

197. MacDowell, D.; Nelson, J., Tetrahedron Lett. 1988, 29 (3), 385-386.

198. Möller, F.; Merz, K.; Herrmann, C.; Apfel, U. P., *Dalton Trans.* **2016**, *45* (3), 904-907.

199. Whiteford, J. A. Bridged Polycyclic Compound Based Compositions for the Inibition and Amelioration of Disease. US 2008/0275141 A1, Nov. 6, 2008, 2008.

- 200. Chen, D.; Martell, A. E., *Tetrahedron* **1991**, *47* (34), 6895-6902.
- 201. Charalambidis, G.; Ladomenou, K.; Boitrel, B.; Coutsolelos, A. G., *Eur. J. Org. Chem.* **2009**, *2009* (8), 1263-1268.