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Abstract

The intention to move from single core to multicore architectures has been to

increase the performance of a system and hence increase the performance of an

application. However, obtaining the optimal application performance on multicore

architectures is found to be not that trivial and still remains as unsolved problem

due to the multiple challenges the multicore architectures face. The main reason for

all the challenges that the multicore systems face is the inability to utilize the system

resources well enough. Ineffective utilization or poor coordination of resources may

create performance bottlenecks and overheads on the system that ultimately affects

the overall performance of an application. We have identified three main causes of

performance degradation on multicore architectures; these are false sharing, memory

bandwidth, and shared last level cache contention. Knowing the degree to which an

application performance would degrade due to these three issues would give an idea

to an application programmer or compiler as to which code transformation is needed

in order to decrease this negative performance impact. Unfortunately, the current

state-of-the-art compilers such as Open64 and GNU are oblivious to these perfor-

mance bottlenecks stated above. Even though these compilers, especially Open64,

have a very robust optimization and code transformation phases, they are all limited

to sequential programs and simple architectures with single processor units. This

limitation makes their optimization phases less accurate on multicore architectures.

In order to improve compilers’ code transformation and optimization phases, com-

pilers’ cost models that guide optimizations should be extended to consider these

performance bottlenecks that can occur on multicore architectures. Therefore, the
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goal of this dissertation is to develop compile time models that quantitatively esti-

mate the impact caused from these three performance degrading bottlenecks to the

overall application performance, and that can be used as extensions to the existing

compilers’ cost models when guiding certain optimizations and/or code transforma-

tions targeting multicore architectures.
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Chapter 1

Introduction

Compiler cost models [60], or performance models, are analytical models to esti-

mate the cost of executing a specific section of code, such as computation-intensive

loops. It is often used in the compiler to decide whether certain optimization has

performance benefits, thus to guide the optimization. For example, in an optimizing

compiler, loop nest optimizations (LNO) such as loop interchange, tiling, and un-

rolling, are widely used techniques for improving the performance of loops. Compiler

transformations in LNO phase improve spatial locality of loops by changing the loop

structures and the order of iterations. The locality and performance benefits from

LNO depend largely on the parameters of loop transformations such as the unrolling

factor, the tile size. Poorly chosen parameters will degrade the performance of a

loop.

One approach for choosing good parameters is to use a cost model. Before apply-

ing a specific transformation with certain parameters, the compiler uses analytical
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models to estimate the costs of executing the loops in its original version and in the

transformed version. The compiler then decides whether the transformation is bene-

ficial or not by comparing the two costs. The costs are often calculated as CPU cycles

needed to execute two versions of the loop, considering hardware architectures and

software environment that affect the loop performance, such as cache organization,

processor frequency, and runtime overhead.

Multicore processors have become ubiquitous and are used by many different

users, ranging from inexperienced programmers to professionals and scientists. Par-

allel programming, once considered for the high-end computing, is now becoming a

common practice and required expertise for average programmers. Multithreaded

programming APIs such as OpenMP [8] provide a productive programming environ-

ment for creating parallel programs from the sequential versions. However, obtaining

scalable performance on large parallel machines still requires significant amount of

effort in performance tuning, especially with regards to data locality. It becomes

necessary for programmers to understand concepts such as caches and locality, data

and work sharing, and synchronizations in order to write parallel programs that will

deliver good performance.

The only drawback of compiler cost models is that they target single processor

architectures, and are not very useful for state-of-art architectures such as multicore

and many-core systems. Multicore and manycore computer architectures include

various hardware resources that are shared by processing cores, e.g., shared cache,

memory bandwidth, and interconnects. Efficient use of these shared resources is cru-

cial to the overall system and application performance. It requires both to maximize
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the sharing of these resources among concurrent threads, and also to minimize the

contentions and conflicts of using them. Existing compiler cost models do not take

into account the performance impact from the interference or contention for these

shared resources such as false sharing effects, the competition to use shared cache

or memory bus. On these systems, shared resource interference and contention will

have significant performance impacts for applications. Thus, it is very important for

compilers’ and performance estimating tools’ cost models to accurately estimate the

execution performance of applications on these architectures by considering concur-

rent utilization of limited shared resources.

1.1 Research Goals and Contributions

The goal of this work is to extend existing compiler cost models by defining new

compile time models for data parallel applications with regards to the impact of

contention caused by using shared resources on current many-core and multicore

platforms, including the shared cache and memory bandwidth.

In data parallel OpenMP applications, OpenMP loops play a significant role for

overall performance of the program. By analyzing the concurrent execution of itera-

tions of the loop by threads and by knowing the layout of the underlying architecture,

new cost models will be used to predict additional CPU cycles needed to execute the

loop due to multithreading. This information will be used by compilers to guide

the parallel loop transformations by obtaining more accurate timing estimations for

the loops. Compilers will also be able to use information from models to perform
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automatic optimizations, such as changing the loop iteration behavior or data align-

ment to eliminate or minimize these negative performance impacts. These modeling

and estimation results could also be useful for programmers for performance tuning

and locality optimizations. Runtime systems could use information from new cost

models for runtime dynamic or feedback-driven optimizations. The quantitative per-

formance impact information will be especially helpful when tuning an application

for specific hardware architectures.

Our work makes the following contributions:

1. Build a model to output the total number of false sharing cases that will occur

during execution of the parallel loop and to analyze the performance impact

of false sharing on a parallel loop as a percentage of execution time.

2. Introduce a linear regression model to reduce the false sharing modeling time

by approximation without impacting its accuracy.

3. Introduce a modified STREAM kernel that is used with the curve fitting tech-

nique to derive the statistical memory bandwidth model for a particular system

with regards to the parallelism and concurrent cache misses.

4. Build compile time statistical model that can be used to predict the memory

bandwidth requirement of parallel loops when being executed with specific

number of threads.

5. Introduce a new method to predict number of cache misses that would happen

due to cache sharing and/or contention when multiple threads are co-scheduled

4



to execute simultaneously.

1.2 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 explains the general

motivation behind this dissertation. Chapter 3 presents background information

about Open64 compiler and its cost models. Chapter 4 describes the false sharing

concept and explains our model of estimating the false sharing impact on a parallel

loop. Off-chip memory bandwidth modeling is presented in Chapter 5. Chapter 6

explains the details of modeling cache contention and/or sharing impact at compile

time. Lastly, we conclude the dissertation with our findings in Chapter 7.
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Chapter 2

Motivation

The evolution of multicore processors has started due to the growing demand for

faster computing performance. A solution for improving the performance of single

core processors was to increase the processor frequency which would enable the pro-

cessor to execute instructions in much quicker time. This trend was followed only

until 2002 because system designers hit a power wall i.e. when processor’s power con-

sumption increases exponentially with each increase of the processor frequency [55].

In order to overcome this limitation of single core processors, vendors have switched

the trend to produce multicore processors where multiple less powerful processors

are combined on the same die instead of having a single high performing processor.

Multicore processors have proven to boost the application performance over single

cores [24, 25, 65, 55]. The reason for this performance boost is not that the cores on

multicore processor are clocked at a higher frequency rate, but instead is the abil-

ity to execute multiple programs independently and concurrently which ultimately
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contributes to the overall performance.

In spite of the many advantages of multicore processors, obtaining the maximum

performance out of an application and the system still remains a big challenge. This

is due to the fact that the difference between single core and multicore processors

is not only in the number of cores they possess, but also in memory hierarchy, the

interaction between on-chip components such as dedicated caches, and presence of

commonly shared components [52]. Assuming that a sequential program obtains X

performance when executed on one of the cores of multicore architecture, one would

be mistaken to expect 4X performance by running four different sequential programs

concurrently on four cores of the architecture. This is because of scalability issues

that multicore processors face. The main cause of poor scalability on multicore

processors is the inability to utilize the resources on the chip well enough. Ineffective

coordination of resources may create performance bottlenecks and overheads on the

system that ultimately affects the overall performance of an application. Thus, the

most important question one needs to ask is how to rearrange an application or

in which configuration to run the application so that the application achieves full

performance on multicore processor.

Modifying an application code and/or finding the best configuration to run the

application with may be needed to prevent performance degrading bottlenecks that

are caused by either poorly coordinated accesses to both private and shared resources

or over-demanding the already limited amount of shared resources on multicore ar-

chitectures. This is the main reason why there has been so many studies focusing

on identification of the causes of system bottlenecks and estimation of the degree of
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the effect it would cause on the application performance [25, 55, 28, 14]. Memory

controller, memory bus, and last level cache are all identified as causes of perfor-

mance degradation on multicore architectures and have been thoroughly studied in

the literature [65, 28, 14]. Knowing the degree to which an application performance

would degrade quantitatively due to poor utilization of these resources would give

an idea to an application programmer or compiler to perform some kind of code

transformations that would decrease this negative performance impact.

In addition to performing code rearrangements to decrease the negative perfor-

mance impact, one could decide on the optimal execution configuration to run the

application with, such as deciding on the optimal number of threads, placement

of threads on cores, decision of how a multithreaded or multi-tasking application be

distributed to threads, or how to optimally schedule independent tasks of an applica-

tion in order to avoid performance bottlenecks and achieve the highest performance.

These decisions are hard to make unless one has comparable results from different

execution configurations. Therefore, it would be useful for an application program-

mer and/or compiler to know approximate estimations regarding the performance

impact a certain bottleneck would cause. Based on these estimations, they would

make a decision of how to modify/rearrange the code or how to run it in order to

prevent the bottleneck and ultimately get rid of the negative performance impact.

Authors of [14] studied traditional single core measurements that guide compiler

optimizations, predict application performance, and showed how these measurements

can be deceptive in a multicore based systems. Their work demonstrates that anal-

yses and optimizations to identify and mitigate performance bottlenecks on single

8



core architectures are inadequate for multicore architecture [17]. Moreover, they

state that the same optimization can give different outcomes in single core and mul-

ticore architectures. For example, an optimization that increases performance on

single core may decrease it on multicore system and vice versa.

In single core architecture, L1 and L2 cache miss ratios provide an idea about

the degree of a memory bottleneck. However, on multicore architecture, concluding

about the memory bottleneck due to high L1 and L2 cache miss ratios won’t be

quite accurate because of the other factors, such as last level cache miss ratios that

should be taken into account. On the other hand, an application may exhibit great

L1 performance due to the hardware/software prefetching, but severely suffer from

lower memory bottlenecks [14]. Therefore, this study also proves the necessity of

modeling shared resources on multicore processors in order to accurately estimate

the application performance and/or performance bottleneck.

Overall, obtaining a good application performance on multicore architecture is

not a trivial job, because one has to effectively utilize all the private and shared

resources on the system in order to eliminate any system bottleneck from happening.

Therefore, there have been many different studies in the literature that have focused

on helping an application programmer to prevent a bottleneck or to analyze how well

a certain resource is being used by an application.

Quite a large amount of work has been done in investigating contention aware

scheduling techniques that would decrease the causes of performance degradation

due to contention for shared resources on multicore processors [65, 3, 41, 13]. These

studies have identified various shared resources that would cause contention, such as
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memory controller, memory bus, and prefetching hardware, as well as last level cache,

and proposed solutions on the optimal thread scheduling techniques to mitigate the

contention as much as possible.

Memory bus or bandwidth contention has also been agreed by many studies

to cause performance bottlenecks on multicore architectures [28, 14, 24, 43]. In

[14] authors in fact show that memory bandwidth contention is the primary source

of damage to the application performance when moving from single to multicore

based systems. In order to eliminate the memory bandwidth contention, the au-

thors suggest application developers understand that the high percentage of peak

performance can be achieved only by arranging the data to be cache friendly. In

addition to memory bus contention, several other studies have identified shared last

level cache capacity as one of the performance bottlenecks in multicore based sys-

tems [32, 58, 47, 63, 66, 7]. Some of these works focused on finding techniques to

reduce the last level cache contention using different scheduling order [58], Utility

Page Partitioning [47] and Page Coloring [63]. The application performance may

also suffer from high cache coherency overhead on multicore processors [24, 25, 45].

Cache coherency overhead is caused due to high false sharing cases that happen

throughout the program execution. Mitigating or eliminating false sharing has been

widely studied as well in the literature.

In this dissertation, we focus on three concepts that have been commonly accepted

by many existing research works (as discussed above) to cause performance degrada-

tion on multicore architectures which are false sharing overhead, memory bandwidth

and last level cache contention. The very broad contribution of the dissertation is

10



to model these three issues at compile time for OpenMP parallel loops, and quan-

titatively analyze how these issues impact the overall performance of parallel loops.

We believe that the information provided by our models can be extremely useful

for application programmers, compilers, and performance tuning tools in deciding

or guiding code transformations and optimizations that would mitigate the possible

performance impact from these three bottlenecks on multicore architectures.

11



Chapter 3

Background

In this chapter, we introduce Open64 compiler [60] and the cost models used in the

compiler to drive loop nest optimizations.

3.1 Open64 Compiler

Open64 compiler suite is an open source state-of-art compiler that supports programs

in Fortran 90/95, C and C++ including OpenMP directives. The compiler consists

of several independent modules that interact via a common intermediate represen-

tation (IR) called WHIRL as shown in Figure 3.1. There are different levels of IR

that are being used by the modules during compilation. Front-end of the compiler

generates very high-level IR from the input source code, which is used as an input

to the Very High-Level Optimizer. Back-end of the compiler is divided into interpro-

cedural analysis and optimization, loop nest optimization, global optimization and

12



code generation components where each of these components take a different level

of IR as an input. The interprocedural analysis performs symbol analysis, constant

global identification, array sections, and code layout for locality to gather information

about the code. Optimizations such as procedure inlining, intrinsic function inlining,

cloning for constants, dead function and dead variable elimination and interprocedu-

ral constant propagation are then applied based on the interprocedural analysis. The

loop nest optimization (LNO) phase performs data dependence analysis to check if

there is any data dependence issue in a loop. At this phase, compiler cost models

determine what transformations should be applied to the loop such as loop fission,

loop fusion, loop interchange, loop tiling, loop peeling, loop unrolling. If desired,

automatic parallelization with OpenMP directives is performed as well. The global

optimization phase creates control flow graph (CFG), converts IR to static single as-

signment (SSA) form, performs dead code elimination, dead store elimination, copy

propagation, SSA pointer alias analysis, CFG optimization, strength reduction and

aggressive code motion on SSA form, and translates back to IR after optimizations

are performed. The code generation phase performs software pipelining, global code

motion between basic blocks, and peephole optimizations.

3.2 Cost Models

As discussed previously, Open64 compiler uses a set of cost models to decide on

what transformations to perform on a loop during the LNO phase. In this section,

we introduce these cost models in more details and explain their responsibilities

13



Figure 3.1: The components of the Open64 compiler.

during the LNO phase. There are three cost models in Open64 compiler which are

Processor, Cache, and Parallel models.

3.2.1 Processor Model

The processor model estimates the time, in CPU cycles, needed to execute one itera-

tion of the loop (Machinec per iter) by modeling computational resources, registers,

and operation latencies, as shown in Equation 3.1. The model tries to predict the

scheduling of instructions (Resourcec) given the available amount of resources such as

arithmetic/floating point units, memory and issue units. It considers the dependen-

cies (Dependency latencyc) among instruction/memory operations and estimates the

processor stalls caused by latencies. The Open64 compiler uses the processor model

to make decisions regarding the best loop unrolling factor to apply to the loop.
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Machinec per iter = Resourcec +Dependency latencyc +Register spillingc

Resourcec = maximum(Opc,MEM refc, Issuec)

MEM refc = (Num fp refs+Num int refs)/Num mem units

Issuec = Num inst/Issue rate

Dependency latencyc = maximum(Sum of latenciesi/Sum of distancesi)

Register spillingc = (Reg used− Target regs) ∗

(Num reg refs/(Scalar regs+ Array regs))

Reg used = Base regs+ Scalar regs+ Array regs

(3.1)

3.2.2 Cache Model

The cache model predicts the number of cache misses and estimates additional cycles

needed to execute one iteration of an inner loop. In addition, the model is responsible

for identifying the best possible loop block size for loop tiling. The number of cache

misses is determined by summing up the footprints at the loop level [60]. The

footprint is the number of bytes of single data reference in a cache. Due to spatial

data locality, footprints of consecutive array references are counted only once. For

example, references a[i] and a[i+1] lie in the same reference group, thus have only one

footprint. When there is a reference to a[i], the cache line containing a[i] would be

placed in a cache. The unused data in the same cache line would also be considered

when counting the footprints. When the total amount of footprints is gathered, the

model compares whether the footprint size is larger than the cache size; if so, a cache

miss is considered to occur.
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Equation 3.2 shows the equations of the cache model. The Translation Look-aside

Buffer (TLB) cost is computed in the same way as the cache cost, because the TLB

is modeled as another level of cache.

if(Num array ref − TLB entries > 0)

TLB miss = Num array ref − TLB entries

TLBc = TLB miss penalty ∗ TLB miss

Cachec =
∑Levels

i (Clean footprinti ∗ Clean penaltyi

+Dirty footprinti ∗Dirty penaltyi)

(3.2)

3.2.3 Parallel Model

The parallel model helps the compiler to decide whether the parallelization of a

loop is possible and if so which loop level is the best candidate for parallelization.

The model makes use of the Processor and Cache models that are discussed in

the previous sections, and also considers the cost of loop and parallel overheads as

shown in Equation 3.3. The loop overhead considers the time needed to increment

the loop indices, to check the loop boundary condition for each iteration which are

aggregated into Loop overhead per iteri. The parallel overhead is the time taken

to actually execute the parallel loop. It includes overheads due to parallel startup,

scheduling iterations, synchronizations and worksharing between threads [29]. In

this work, the parallel overhead will refer to the OpenMP overhead incurred when

parallelizing the loop via OpenMP constructs.
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Totalc = Machinec + TLBc + Cachec + Loop Overheadc + Parallel Overheadc

Machinec = Machinec per iter ∗Num loop iter/Num threads

Loop overheadc = Loop overhead per iteri ∗Num loop iter/Num threads

Parallel overheadc = Parallel startupc + Parallel const factorc ∗Num threads

(3.3)

As discussed in Sections 3.2.1, 3.2.2, and 3.2.3, the Processor model evaluates the

resource utilization cost, the Cache model analyzes the spatial and temporal local-

ity of single thread execution, while the Parallel model focuses on the worksharing

benefits from concurrent execution of threads. However, neither of them, nor their

combination takes into account the performance impact from the interference or con-

tention for resources between parallel threads such as the false sharing effects, the

competition to use shared cache or memory bus. With increasing number of cores

and the decrease of average memory and bus bandwidth per cores as in multicore and

many-core architectures, such interference and contention will have significant per-

formance impacts for applications. Therefore, it is very important for compilers’ and

performance estimating tools’ cost models to accurately estimate the execution per-

formance of applications on these architectures by considering concurrent utilization

of limited shared resources.
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Chapter 4

False Sharing Modeling

In this section, we first explain the false sharing concept and its performance impact

on parallel applications. We then discuss our approach of modeling false sharing

impact at compile time. Lastly, we present our model validation results.

4.1 Introduction

False sharing (FS) occurs when two or more threads access the same cache line, but

different elements of the line and at least one of these accesses is a write operation [4].

For example, consider two threads A and B executing on two distinct cores of a

parallel system where cache coherency is maintained by a write-invalidate protocol.

If the threads perform memory references that cause the processor to fetch the same

cache line to their private caches, and when one thread modifies some element on the

cache line, the state-of-the line stored in the other thread’s private cache becomes
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invalid due to the protocol. Right after the invalidation, when the second thread

accesses any element of the invalidated cache line, a cache miss occurs. The second

thread will unnecessarily have to fetch the line from memory, even if the requested

elements were not modified. If FS happens frequently during the execution of the

program, then the overhead caused by the problem will significantly decrease the

overall performance of the program.

The FS problem is a well-known performance degrading issue in parallel programs,

whose performance impact when executing a victim1 loop may be as astonishing high

as 60% [59]. It occurs at the cache line granularity and closer to the architecture

level; detection of it is not obvious for both average and experienced programmers.

It is related to private caches and the cache coherency protocol that enforces a

consistent view of the memory by all private caches, concepts that are often hard to

understand for average programmers. FS reflects performance degrading data access

pattern, but can only reveal such pattern after program execution. It is often hidden

from programmers’ view during the program creation and it is hard to correlate the

performance degradation to FS when a program becomes very large, and even harder

to identify the data structure and codes that cause the FS.

Figure 4.1 shows an OpenMP version of one of the Phoenix benchmarks2 [48], the

linear regression kernel. The schedule(static,chunk size) clause on the loop directive

causes the iterations of the loop to be distributed to threads in a round-robin fashion,

where each thread gets chunk size number of iterations of the outer loop at a time.

1data object or codes from which false sharing occurs
2Phoenix benchmarks implement MapReduce for shared memory systems.
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#define N 9600

#define M 28887

#pragma omp parallel for private(i,j) schedule(static ,1)

for(j=0; j<N; j++)

for (i = 0; i < M/num_threads; i++)

{

tid_args[j].SX += tid_args[j]. points[i].x;

tid_args[j].SXX += tid_args[j]. points[i].x *

tid_args[j]. points[i].x;

tid_args[j].SY += tid_args[j]. points[i].y;

tid_args[j].SYY += tid_args[j]. points[i].y *

tid_args[j]. points[i].y;

tid_args[j].SXY += tid_args[j]. points[i].x *

tid_args[j]. points[i].y;

}

Figure 4.1: OpenMP version of the linear regression kernel

Figure 4.2 shows the execution time of the linear regression kernel with different

chunk size configurations. The kernel clearly exhibits FS impact on performance

because of the small chunk size. Since the chunk size is 1, threads execute consecutive

iterations of the outer loop. Therefore, each thread accesses consecutive element of

the tid args array which causes FS. However as we increase the chunk size value, the

execution time gradually decreases because threads will be accessing non-neighbor

elements of the array. By increasing the values of the chunk size from 1 to 30, we

are reducing the FS overhead and improving the execution time of the kernel by up

to 30%.

Several different approaches have been taken in the area of detecting FS in a pro-

gram. One approach is via cache simulation and memory tracing [35, 38, 30, 26, 22].

In this approach, compiler instruments the binary code with tracing routines, and a
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Figure 4.2: Execution time vs. chunk size of linear regression kernel.

tracing tool then captures the memory accesses performed at runtime and stores the

tracing information for offline simulation. The tracing file is fed to a simulation tool

which in turn simulates caches in the modeled architecture and determines the types

and degree of cache misses that occurred during the simulation. However, tracing

every memory reference performed during the execution of a program can degrade

the overall execution performance greatly.

Analyzing performance of a program using hardware performance counters is

another approach taken to detect false sharing in the code [59, 36]. Performance

counters are used to detect the major bottleneck in the program and to identify rea-

sons for the bottleneck. The main drawback of this approach is that the programmer

has to understand the results obtained from the performance counters and manually

identify the source of the problem in the code.

FS detection techniques implemented in [54] and [64] differ greatly from previous

approaches. The technique in [54] write-protects the shared data; when a process

attempts to write to the shared data, a page fault occurs, the tool copies the page and
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the process accesses the local copy of the page. The tool detects FS by observing

every word modified in local copies of pages that processes access. The approach

in [64] uses a memory shadowing technique to track the cache access patterns.

There have been also research efforts to provide techniques for eliminating FS [23,

11]. In [11], the authors show how to mitigate FS by changing the scheduling param-

eters such as chunk size and chunk stride for parallel loops. In [23] several compiler

transformations are described such as array padding and memory alignment that

optimize the layout of data and decrease the possibility of FS to occur.

The goal of this work is to develop a compile-time cost model [29] for FS, and

to estimate the performance impact of FS on parallel loops using the defined model.

With the help of cost models, the compiler is able to estimate whether the specific

transformation is profitable in terms of execution time and determine the optimal

level of the transformation, if applied.

The FS cost model defined in this work features:

1. Ability to output the total number of FS cases that will occur during execution

of the parallel loop

2. Ability to analyze the performance impact of FS on a parallel loop as a per-

centage of execution time

3. A linear regression model to reduce the modeling time by approximation with-

out impacting its accuracy
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4.2 Methodology

Our FS cost model estimates the number of FS cases in a parallel loop at compile-

time, and computes the overhead cost incurred by the problem on the whole execution

of the loop. For wide applicability, we use OpenMP parallel loops in this model.

Given an OpenMP parallel loop, there are four steps to analyze the cost incurred by

FS:

1. Obtain array references made in the innermost loop of a loop nest

2. Generate a cache line ownership list for each thread

3. Apply a stack distance analysis to each cache line ownership list

4. Detect false sharing

As we mentioned, FS is often only revealed at runtime and is sensitive to lots

of details about how the program is being executed, e.g. the alignment of allocated

memory, the number of threads working on the victim data, and other background

applications that may compete for the cache resources. It is necessary to supply

enough runtime information to the compiler when estimating the FS effects. In this

model, the compiler needs information about the number of threads executing the

loop, loop boundaries, step sizes, index variables, and the chunk size, if specified,

for the OpenMP parallel loop. The chunk size is the number of iterations of a

loop that are distributed to each thread. We assume that chunks of a loop are

distributed to threads in a round-robin fashion. If the loop boundaries are not

known at compile-time, the model only outputs the FS rate estimated per full cycle
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of iterations executed by all of the threads. One full cycle of iterations executed by

the thread team is the sum of iterations executed by each thread in one chunk size.

4.2.1 Obtain Array References from the Source Code

Our FS model identifies FS caused by only array references made in the innermost

loop. The details about each array reference such as array base name, indices, type

of access (read/write) are collected by a compiler and stored in an array reference

list. However, more specific information such as which thread will access which

region/elements of an array will be generated automatically in the next step of the

model.

4.2.2 Generate a Cache Line Ownership List

At each iteration of a chunk of a loop a cache line ownership list is generated using

the array reference list and the new values of loop indices. The cache line ownership

list contains information about which cache line is being read/written by a thread

at that specific iteration. The assumption we make at this step is that all array

variables are aligned with the cache line boundary, so that it would be possible to

know the relative cache lines on which array elements are located at compile-time.
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4.2.3 Apply a Stack Distance Analysis

We create a separate cache state for each thread at the beginning of our FS modeling

technique. The cache states store the current state of private caches that threads

operate upon. When a new cache line ownership list is generated for each thread (in

the previous step), we update the cache states with new cache line ownership lists

and apply a stack distance analysis on cache states. The stack distance [51] is the

number of distinct cache lines accessed between two accesses to the same cache line.

The distance of the stack is the total number of cache lines for a fully associative

cache or number of lines in one set for a set associative cache. Basically, the stack

distance analysis simulates the least recently used (LRU) cache and outputs the

state of the cache at each distinct point of time. Before one element of the cache

line ownership list is inserted into the cache state, the analysis checks whether the

cache line already exists in the cache state or not. If so, the analysis moves the

position of the existing cache line to the top of the stack; otherwise, it simply inserts

the cache line at the top of the stack. If the number of distinct cache lines exceeds

the stack size, the analysis evicts the cache line placed on the bottom of the stack,

which is the LRU cache line. For FS model, the stack distance analysis simulates

the fully associative cache. We simulate fully associative caches because modeling

the fully associative cache is mostly valid especially for caches with a high level of

associativity [50].

When the cache line is inserted into the cache state, our FS cost model proceeds

to the next step which is to determine the number of FS cases that would occur at

that specific iteration.
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4.2.4 Detect False Sharing

Our model determines whether FS happens by performing a 1-to-All comparison

between the newly inserted cache line and the cache lines that other cache states

already contain. For that purpose assume the following:

csk ∈ S

cli ∈ CLOLk, k = 0, 1, 2, .., num of threads
(4.1)

where csk is a cache state of thread k; S is a set of all cache states; CLOLk is a cache

line ownership list of thread k; and cli is a cache line element of CLOLk. We define

a function ϕ(csk, cli) as

ϕ(csk, cli) =

 1, if(cli ∈ csk and csclik = W )

0, otherwise
(4.2)

which returns 1 if a cache state csk includes the cache line cli and the state of the

cache line in the cache state - csclik is modified; otherwise the function returns 0.

Using the function ϕ(csk, cli) our model determines whether FS happened or not.

In order to compute the number of FS cases that would occur during one iteration,

the model needs to execute the function until all cache lines in all threads’ CLOLk

lists are evaluated. Thus the number of FS cases occurring at one iteration can be

determined using Equation 4.3.
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false sharingiter =
k−1∑
j=0

n∑
i=0

ϕ(csj, cli)×mask(csj, cli)

mask(csj, cli) =

 0, if(cli ∈ CLOL
csj
j )

1, otherwise

(4.3)

Themask(csj, cli) function ensures that the newly inserted cache line is not compared

with the cache lines of the same cache state.

In order to estimate the total number of FS cases that would occur throughout

the whole loop, our model needs to evaluate All num of iters
num of threads

number of iterations where

for each iteration it needs to perform the steps 2-4 and store the FS cases estimated

at that iteration.

4.2.5 Prediction of False Sharing using Linear Regression

Model

When the number of iterations of a loop is large, our FS model might take quite a

long time to estimate the total number of FS cases. This is because the model needs

to evaluate All num of iters
num of threads

number of iterations.

To overcome this limitation, we propose a FS prediction model that predicts the

total number of FS cases by evaluating fewer iterations in much less time. The pre-

diction model uses a linear regression model [18]. Figure 4.3 shows that the estimated

number of FS cases increases linearly when different chunk runs are evaluated, where

a single chunk run refers to chunksize×num of threads iterations. Since the relation
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between chunk runs and the estimated FS cases is linear, the linear regression model

is suitable for use in our cost model.

Figure 4.3: The linear increase of false sharing cases with the number of chunk runs

The prediction of the total number of FS cases using the linear regression model

is as follows:

• We denote n iterations already evaluated by the model as
⇀
x = {x1, ..xn}; and

estimated FS cases in n iterations as
⇀
y = {y1, ..yn}.

• The FS prediction can be modeled via
⇀
y = a

⇀
x + b where initial

⇀
y and

⇀
x are

known.

• We want our predicted results to be very close to the estimated results i.e. the

error between predicted and estimated be minimal. The Least Square Solution

therefore suggests the function to be f =
∥∥a⇀x + b− ⇀

y
∥∥
2

= (a
⇀
x + b− ⇀

y)T (a
⇀
x+

b− ⇀
y).

• We have to find a and b such that the result of the function f is minimal which

is a, b = arg min
a,b

f(a, b) = (a
⇀
x + b− ⇀

y)T (a
⇀
x + b− ⇀

y).

• Thus we differentiate the function f with respect to a and b and obtain a =∑n−1
i=0 xiyi/

∑n−1
i=0 (xi)

2, b =
∑n−1

i=0 yi −
a
n

∑n−1
i=0 xi.
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• After we compute a and b, we can predict ymax, which is the total number of FS

cases, using ymax = axmax + b where xmax is represented either as the maximum

number of iterations or chunk runs of a loop.

4.3 Evaluation and Results

The false sharing cost model was implemented within the Open64 compiler’s LNO

phase. We implemented a separate compiler pass that is applied to the high level

IR to collect information needed to perform the modeling, including the information

about the parallel OpenMP loop nest as well as memory loads/stores performed in the

body of the innermost loop. The details about the loop nest include loop boundaries,

step sizes, loop index variables and the chunk size, if specified, for OpenMP loops.

Memory load/store information is collected by traversing the IR and obtaining array

reference details such as array base name, array index, and memory offsets for arrays

storing structured data types. The analysis we implemented did not require any

modification to the compiler’s IR, and the information about loop nest and memory

operations are generally available in most compiler IRs. Thus we believe that our

cost model can be implemented in other compilers with a similar approach as well.

4.3.1 Methodology for Accuracy and Efficiency Evaluation

Our FS cost model is evaluated in terms of both accuracy and efficiency. To demon-

strate the accuracy, we compared the percentages of measured and modeled FS
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overhead costs on the total loop execution time. We expect that the measured per-

centage of FS overhead should be close to the percentage of FS overhead modeled

by our FS cost model as shown in Equation 4.4.

Tfs measure − Tnfs measure
Tfs measure

≈ Nfs model −Nnfs model

N∗fs model
(4.4)

where Tfs measure is the measured time needed to execute a loop exhibiting FS;

Tnfs measure is the measured time needed to execute the same, but optimized, loop

that does not incur any FS; Nfs model is the number of FS cases estimated by our

model on a loop exhibiting FS; Nnfs model is the number of FS cases estimated by our

model on an optimized loop; N∗fs model is a normalized value for FS cases estimated

by our model on a loop incurring FS.

The measured FS overhead cost is obtained by executing a kernel loop with two

different chunk sizes and calculating the percentage as follows:

Tfs measure − Tnfs measure
Tfs measure

Two different chunk sizes represent a loop with FS and non-FS cases. For example,

for one kernel in our experiments we are using chunk sizes 1 and 64, where a loop

with chunk size=1 represents a loop with FS case, and a loop with chunk size=64

refers to a loop with non-FS case. A loop with FS case heavily suffers from FS,

whereas a loop with non-FS case incurs less (or no) false sharing because we believe
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that increasing the chunk size decreases the FS. The execution times of the loop with

FS and non-FS cases are represented by Tfs measure and Tnfs measure, respectively.

The modeled FS overhead cost is obtained by our FS cost model, which evaluates

All num of iters
num of threads

iterations of a loop to compute the total number of FS cases for both

FS and non-FS case loops. The computed percentage value is then calculated as

follows:

Nfs model −Nnfs model

N∗fs model

To demonstrate the efficiency of our FS prediction model, which uses the linear

regression model, we compare the predicted amount of FS cases when a very small

number of iterations are evaluated against the modeled total amount of FS cases

when All num of iters
num of threads

iterations are evaluated. The smaller the difference between the

predicted and the modeled values, the more efficient our prediction model is.

4.3.2 Experimental Results

Our experiments are conducted on a system with four 2.2 GHz 12-core processors

(48 cores in total). Each core has dedicated L1 and L2 caches of 64KB and 512KB

respectively; L3 cache of 10240KB size is shared among 12 cores. All the caches at

the three levels have the same cache line size, 64 bytes, which satisfies the assumption

in our cost model.

We have used OpenMP versions of heat diffusion [5], discrete fourier trans-

form (DFT) [46] and linear regression [48] programs for our experiments. The
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computation-intensive loop kernels of these programs, when parallelized with OpenMP,

exhibit extensive data accesses to the boundary of each data segment that is pro-

cessed by each OpenMP thread. These accesses could incur large occurence of FS

during program execution if parameters such as the chunk size are not properly

chosen when parallelizing the code.

Table 4.1: Comparison of % of false sharing overheads incurred in heat diffusion
kernel

# of
threads

Measured Time
with chunk
size=1 FS case
(sec)

Measured Time
with chunk
size=64 non-FS
case (sec)

Measured FS ef-
fect on execution
time (%)

Modeled FS
cases effect
(%)

2 0.3593 0.2901 19.2% 6.9%
4 0.2263 0.1646 27.2% 6.9%
8 0.1639 0.156 4.8% 6.9%
16 0.6586 0.6205 5.7% 7.0%
24 1.0049 0.9564 4.8% 7.1%
32 1.4671 1.3608 7.2% 7.2%
40 1.8455 1.6130 12.5% 7.2%
48 2.247 2.1501 4.3% 7.2%

Tables 4.1, 4.2 and 4.3 show the results of our model compared to the measured

FS effect. The measured execution times of the heat diffusion kernel with FS and

non-FS cases are depicted in the second and third columns of Table 4.1, respectively.

Using the execution time information, the measured FS effect (on the total execution

time of the kernel) is calculated and shown in the fourth column of the table. The

last column, on the other hand, shows the FS effect modeled by our cost model. The

accuracy of the model is assessed by comparing the fourth and fifth columns against

each other. The closer the values in both columns are, the more accurate our cost

model is.
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Table 4.2: Comparison of % of false sharing overheads incurred in DFT kernel

# of
threads

Measured Time
with chunk
size=1 FS case
(sec)

Measured Time
with chunk
size=16 non-FS
case (sec)

Measured FS ef-
fect on execution
time (%)

Modeled FS
cases effect
(%)

2 2.0978 1.7624 15.9% 32.0%
4 1.762 0.9618 45.4% 31.6%
8 0.8976 0.6033 32.7% 31.5%
16 0.599 0.3688 38.4% 33.2%
24 0.5041 0.3163 37.2% 32.8%
32 0.4727 0.2827 40.1% 35.6%
40 0.4792 0.2669 44.3% 36.7%
48 0.4664 0.279 40.1% 35.8%

An important point worth mentioning here is that loop kernels in heat diffusion

and DFT programs are parallelized at the innermost loop level, while the loop kernel

in linear regression program is parallelized at the outermost loop level. Results for

heat diffusion and DFT kernels given in Tables 4.1 and 4.2, show that the modeled

FS overhead percentages estimated by our cost model are close to the measured

FS overheads, indicating that by modeling FS, we can accurately estimate the FS

overhead cost at compile-time. However, due to the difference in loop parallelization

style, we see that the modeled and the measured FS overhead percentage results

for the linear regression kernel depicted in Table 4.3 are not close to each other.

Moreover, one can observe that the modeled FS cases effect decreases proportionally

with increasing number of threads. This is due to the fact that the total number of

chunk runs that threads will execute in linear regression kernel is

xmax = m/(num of threads ∗ chunk size)
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Table 4.3: Comparison of % of false sharing overheads incurred in linear regression
kernel

# of
threads

Measured Time
with chunk
size=1 FS case
(sec)

Measured Time
with chunk
size=10 non-FS
case (sec)

Measured FS ef-
fect on execution
time (%)

Modeled FS
cases effect
(%)

2 0.4302 0.4135 3.8% 16.1%
4 0.118 0.1074 9.0% 14.7%
8 0.0421 0.0331 21.2% 9.0%
16 0.02 0.0182 8.8% 4.9%
24 0.0116 0.01 13.9% 3.3%
32 0.0079 0.0068 13.4% 2.5%
40 0.0062 0.0051 18.0% 2.0%
48 0.0055 0.0046 15.6% 1.7%

whereas in heat diffusion and DFT is

xmax = (m ∗ n)/(num of threads ∗ chunk size)

where m and n are the upper bounds of the outer and inner loops, respectively. Thus,

in the loop kernel of the linear regression program, the number of chunk runs and

consequently the total number of FS cases are directly dependent on the number of

threads.

Results in Tables 4.4, 4.5 and 4.6 show the comparison between FS effects ob-

tained from both the FS model and the FS prediction model, which uses the linear

regression model. When modeling the effects with predictions, the number of FS

cases is estimated with fewer iterations. For example, when the heat diffusion kernel

is executed with 8 threads, with chunk run=20 and chunk sizes 1 and 64, our predic-

tion model evaluates 8*1*20 and 8*64*20 iterations, respectively. On the other hand,

without the prediction model, our FS model would evaluate All num of iters
num of threads

iterations.
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Table 4.4: Comparison of predicted vs. modeled false sharing cases and their over-
head %’s in heat diffusion kernel

# of
threads

Pred. #
of FS
cases
chunk
size=1
(chunk
run=20)

Pred. # of
FS cases
chunk
size=64
(chunk
run=20)

Pred.
FS cases
effect

Modeled #
of FS cases
chunk
size=1

Modeled #
of FS cases
chunk
size=64

Modeled
FS cases
effect

2 91,991K 1,595K 6.8% 94,421K 2,107K 6.9%
4 92,979K 1,625K 6.8% 94,446K 2,145K 6.9%
8 93,496K 1,702K 6.8% 94,458K 2,070K 6.9%
16 93,990K 1,724K 6.9% 96,043K 1,888K 7.0%
24 94,155K 1,609K 6.9% 96,938K 1,699K 7.1%
32 93,986K 1,456K 6.9% 97,159K 1,509K 7.2%
40 94,286K 1,826K 6.9% 97,730K 1,889K 7.2%
48 94,319K 1,107K 7.0% 97,935K 1,126K 7.2%

Thus, if there were 5000*5000 iterations in total, our model would need to evaluate

3,125,000 iterations to compute the total number of FS cases. However, with the FS

prediction model we would need to evaluate only 160 or 10,240 iterations, for chunk

sizes 1 and 64 respectively. Our prediction model clearly facilitates the process of

estimating the number of FS cases. The percentage results of predicted and mod-

eled FS impacts depicted in Tables 4.4, 4.5, and 4.6 are very close to each other,

indicating that our FS prediction model is accurate and efficient.

We have also included Figures 4.4 and 4.5 that show the false sharing effects

(percentage of execution time) obtained through the execution measurement, the

compile-time modeling, and the modeling using linear regression predictions. These

results demonstrate the effectiveness of the model.
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Table 4.5: Comparison of predicted vs. modeled false sharing cases and their over-
head %’s in DFT kernel

# of
threads

Pred. #
of FS
cases
chunk
size=1
(chunk
run=50)

Pred. # of
FS cases
chunk
size=16
(chunk
run=50)

Pred.
FS cases
effect

Modeled #
of FS cases
chunk
size=1

Modeled #
of FS cases
chunk
size=16

Modeled
FS cases
effect

2 52,233K 26,468K 32.4% 53,058K 27,358K 32.0%
4 52,697K 26,491K 32.8% 53,088K 27,702K 31.6%
8 52,928K 26,612K 32.8% 53,311K 27,882K 31.5%
16 52,936K 26,526K 32.9% 54,411K 27,257K 33.2%
24 52,967K 27,475K 31.8% 54,956K 28,003K 32.8%
32 52,983K 25,523K 34.2% 55,245K 25,865K 35.6%
40 53,077K 24,895K 35.1% 55,510K 25,154K 36.7%
48 52,998K 25,649K 34.1% 55,542K 25,878K 35.8%

To summarize, we validated our model by comparing the FS overhead percentages

obtained by measuring from the execution time against the ones computed by our

model. The modeling results are comparable to the real execution behavior from

2 to 48 threads tested, showing the model can accurately quantify the FS impact

at compile-time. The FS cost model will be used by compilers to guide the parallel

loop transformations by providing more accurate timing estimation for parallel loops.

Compilers will also be able to use information from our model to perform automatic

optimizations, such as changing the loop iteration behavior or data alignment to

eliminate FS or minimize its impacts. These modeling and estimation results could

also be useful for programmers for performance tuning and locality optimizations.

The quantitative performance impact information will be especially helpful when

tuning an application for specific hardware architectures.
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Table 4.6: Comparison of predicted vs. modeled false sharing cases and their over-
head %’s in linear regression kernel

# of
threads

Pred. #
of FS
cases
chunk
size=1
(chunk
run=10)

Pred. # of
FS cases
chunk
size=10
(chunk
run=10)

Pred.
FS cases
effect

Modeled #
of FS cases
chunk
size=1

Modeled #
of FS cases
chunk
size=10

Modeled
FS cases
effect

2 85,592K 703 16.0% 86,315K 719 16.1%
4 77,561K 720 14.7% 77,685K 678 14.7%
8 47,473K 840 9.5% 44,545K 791 9.0%
16 24,804K 900 5.2% 23,274K 855 4.9%
24 16,778K 920 3.6% 15,771K 874 3.3%
32 12,667K 930 2.7% 11,907K 899 2.5%
40 10,172K 936 2.2% 9,579K 897 2.0%
48 8,497K 940 1.8% 7,987K 893 1.7%

Figure 4.4: Comparison of %’s false sharing effects vs. different number of threads
for heat diffusion kernel.
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Figure 4.5: Comparison of %’s false sharing effects vs. different number of threads
for DFT kernel.
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Chapter 5

Off-Chip Memory Bandwidth

Modeling

In this section, we discuss the importance of effectively using shared resources on

an underlying architecture, specifically focusing on shared memory bus. We then

introduce our approach of modeling the memory bandwidth utilization by parallel

OpenMP applications at compile time. Finally, we discuss the experimental setup

and the results obtained from evaluation of the model.

5.1 Introduction

Multicore and multiprocessor systems are designed to allow clusters of cores to share

various hardware resources such as caches, memory bandwidth, and interconnects.
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Efficient use of these resources requires both to maximize the sharing of these re-

sources among concurrent threads, and also to minimize the contentions and conflicts

of using them. Software tools including compiler and runtime systems play a very im-

portant role in optimizing and scheduling an application with regards to the resource

sharing and usage conflicts.

There has been a large amount of previous work that focus on increasing the

sharing of resources by runtime co-scheduling with the help of compiler optimiza-

tions [15, 16, 23, 40]. However, with the increase of the number of cores in a system,

and the increasing depth of memory hierarchy that comes with higher non-uniformity

of memory access, the inter-core resource conflict and contention increase as well. Re-

ducing the conflict use of shared resources becomes critical when dealing with parallel

applications on multicore and parallel systems. It is very important that an appli-

cation does not demand resources more than the architecture can supply. If this is

the case, the application may unnecessarily stall due to unavailability (contention)

of some resources.

Off-chip memory bus is a shared resource that is commonly used among different

cores on the same processor. Increasing the number of cores for a parallel application

may not necessarily increase the performance of the application if the application

requires more data than the memory bus can transfer at a time. High contention

for memory bandwidth may even cause a significant performance degradation in

parallel applications [61, 34]. This situation is often referred to as memory bandwidth

bottleneck [16].

In order to prevent any kind of bottleneck from happening, it is crucial to tune
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the application behavior to fit the architectural characteristics. On multicore system,

it is important for threads to not interfere with each other, but instead to collaborate

and orchestrate with each other. Code optimizations should not optimize for single-

threaded performance on multicore architecture because it will cause bottlenecks

on the system. Instead, optimizations should focus on improving multi-threaded

performance by balancing the utilization of shared resources efficiently.

The topic of improving the efficiency of memory bandwidth has been studied quite

extensively in the literature. Reducing the memory bandwidth of applications has

been studied in [1], [16], [37]. Compiler optimizations/techniques such as loop fusion,

store elimination, storage reduction are one of the methods that are referred in those

works for reducing the memory bandwidth pressure to the system. Techniques to

improve overall system performance, such as optimal memory bandwidth partitioning

techniques, have also been studied in [31], [42], [57].

Closely related work on modeling the off-chip memory bandwidth analytically or

statistically has been performed in [27], [33, 34], [61]. Authors of [34] have used

pChase benchmark to perform experimental multi-socket, multicore memory band-

width study, using which they developed an analytical memory bandwidth model.

The model characterizes memory bandwidth performance at three levels which are

bandwidth per core, socket and node levels. The authors compared the experimental

results obtained from the pChase benchmark against the modeled results for several

multi-socket, multicore architectures. Their goal was to model bandwidth perfor-

mance for various architectures by generating a model using the pChase benchmark
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and comparing the model against the pChase benchmarking results for different ar-

chitectures. In our work we aim at modeling bandwidth performance for various loop

kernels by generating a model based on the STREAM benchmark and predicting the

bandwidth performance based on a loop signature (# of threads and # of concurrent

cache misses).

Authors of [33] analyzed the effect of memory controllers on a local and remote

memory bandwidth performance, and developed a model to evaluate the performance

of on-chip and cross-chip interconnect of a multicore processor. Their model predicts

the memory bandwidth performance based on the number of processes running on

local and remote nodes. Authors showed that in some cases, accessing data via the

cross-chip interconnect may be more advantageous than accessing it from the local

node in terms of the bandwidth usage. Our work at this time does not consider cases

when the data is accessed both locally and remotely. Nevertheless, we are planning

to work on the idea in the near future.

Authors of [61] proposed a performance model for OpenMP, MPI, and hybrid

applications based on the memory bandwidth contention and communication time.

The model predicts the execution time of an application. The authors first measured

the memory bandwidth for one and two cores using the STREAM benchmark. Using

the performance data obtained from one and two cores, referred as baseline values,

the model predicts the execution time of an application on higher number of cores.

Their model, essentially, relies on the memory bandwidth ratio of higher cores to

baseline values. However, we believe that the memory bandwidth ratio does not

increase linearly as the number of active cores increases. Therefore, our model does
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not rely on initial baseline values when predicting for higher number of cores.

In [27] an analytic model to estimate the optimal cache size and the memory

bandwidth for many-core based systems is proposed. The model is used to estimate

the lower-level memory bandwidth given the upper-level cache size and the statistical

behavior of a program. The model uses central limit theorem and the stochastic

behavior of cache misses that is generated using traces during simulation.

In this chapter, we present an off-chip memory bandwidth model developed to

estimate the bandwidth requirement of a parallel loop at runtime. This mechanism

uses statistical polynomial curve fitting technique on a set of bandwidth measuring

data to derive the model that can be applied to other applications. The main support

for our model is provided by a compiler analysis to estimate the number of memory

accesses that would result in a cache miss.

We make the following contributions:

• We introduce a modified STREAM kernel that is used with the curve fitting

technique to derive the statistical memory bandwidth model for a particular

system with regards to the parallelism and concurrent cache misses.

• We propose a compile-time statistical model that can be used to predict the

memory bandwidth requirement of parallel loops when being executed with

specific number of threads.

The model can serve as a cost model to determine an optimal configuration of

concurrent memory accesses and the number of threads to run a memory-intensive
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loop with in order to prevent the memory bandwidth bottleneck. Knowing maxi-

mum number of concurrent memory accesses per thread would help programmers,

compilers as well as performance tuning tools to evaluate the benefits of certain level

of compiler optimizations. Knowing the memory bandwidth performance with re-

spect to the number of threads would also help in deciding the best configuration of

threads to run the application with.

5.2 Methodology

5.2.1 Memory Bandwidth Analysis

Computer vendors often provide a theoretical (peak) bandwidth of the memory sys-

tem of a machine, and practically, the sustainable bandwidth is used to represent

performance of a memory system. The sustainable bandwidth could be determined

by performing benchmarking experiments with varied number of threads and num-

ber of memory accesses, for example, using the Triad kernel from STREAM bench-

mark [39] shown in Figure 5.1. The sustainable memory bandwidth is computed

using the Equation 5.1 where T2 − T1 is the time it takes to run the kernel.

Bandwidth =
Datatransferred

T2 − T1
(5.1)

The sustainable memory bandwidth represents the maximum bandwidth of the

memory system that is available to applications. However, an application often

exhibits different memory bandwidths during its execution within the sustainable
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double a[N]; double b[N]; double c[N];

T1 = tick()

#pragma omp parallel for

for (i=0; i<N; i++) {

a[i] = b[i] + q*c[i];

}

T2 = tock()

Figure 5.1: Original STREAM Triad kernel

bandwidth. To create a model for measuring the application memory bandwidth,

we slightly modified the STREAM Triad kernel to allow us to control the number of

memory accesses, as shown in Figure 5.2. Let us assume that the default cache line

size is 64 bytes. Figure 5.2 shows that three array references of each iteration of the

parallel loop will result in three cache misses, referred to as concurrent cache misses

of each thread. Then in the Equation 5.1, the total amount of data transferred would

be equal to N * # of concurrent misses * cache line size.

double a[N][100]; double b[N][100]; double c[N][100];

T1 = tick()

#pragma omp parallel for

for (i=0;i<N;i++) {

a[i][0] = b[i][0] + q*c[i][0];

}

T2 = tock()

Figure 5.2: Our version of STREAM Triad kernel

Unlike the original Triad kernel, using the concurrent cache misses approach, we

are able to co-relate the required memory bandwidth to the number of cache misses

happened in one iteration of the loop by each thread. This is an important parameter
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that reflects the data access pattern of arrays in the loop. Programmers can change

the access pattern of the loop body, thus to exhibit different memory bandwidth

requested. In our example, in order to observe different memory bandwidth require-

ments, one needs to increase the number of concurrent cache misses per iteration

by duplicating the statement in the loop block and changing the array indices as in

Figure 5.3.

double a[N][100]; double b[N][100]; double c[N][100];

#pragma omp parallel for

for (i=0;i<N;i++) {

a[i][0] = b[i][0] + q*c[i][0];

a[i][16] = b[i][16] + q*c[i][16];

a[i][32] = b[i][32] + q*c[i][32];

...

}

Figure 5.3: The STREAM Triad kernel with increased number of concurrent cache
misses

By duplicating the statements in the loop block as in Figure 5.3, we increase

the number of concurrent cache misses to be 9 for this case, since all of the array

references made in the loop block will result in a cache miss. In this way, we are

subsequently increasing the memory bandwidth requirement per iteration.

Using the modified Triad kernel in Figure 5.3, we measured the memory band-

width performance with regards to the number of threads and the number of concur-

rent cache misses, and also studied the effect of data and thread placement on the

overall bandwidth performance. All experiments were performed on a Non-Uniform
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Memory Access (NUMA) system whose architecture is depicted in Figure 5.4. The

system has two 2.2GHz 12-core AMD Opteron processors, where each processor has

two 6-core CPU chips. The four CPU chips are inter-connected through cache-

coherent HyperTransport (HT) links, HT1, HT2 and HT3. The three HT links differ

in size such as HT3 = HT2
2

= HT1
3

where HT3, HT2 and HT1 links connect node0 to

node3, node0 to node2 and node0 to node1, respectively.

Figure 5.4: Memory bandwidth evaluation platform

Figure 5.5a shows the memory bandwidth measured on a local memory channel

when threads access the data located on the same NUMA node. This is achieved

by executing the program via numactl –cpunodebind=0 –membind=0 ./executable

command where we deliberately specify both the data and the threads to run on the

same node. Figures 5.5b, 5.6a, 5.6b show the bandwidth performance achieved via

each of the three HT links, i.e. when threads access the data located on another
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node of the NUMA system. The bandwidth performance results in these figures are

represented with respect to the number of threads executed the loop and the number

of concurrent cache misses occurred per iteration of the loop.

These experimental results showed that, in general, the maximum memory band-

width can be reached quite easily with a small number of threads and a small number

of concurrent cache misses. When this happens, increasing the number of threads

and/or the number of concurrent cache misses won’t necessarily increase the mem-

ory performance, but perhaps degrade the performance due to the resource con-

tention. Therefore, knowing when the sustainable memory bandwidth is reached

when executing a parallel loop under specific configurations (number of threads and

memory accesses in our example) would be helpful for programmers, compilers, and

performance tuning tools to determine an optimal configuration of execution, thus

improving the resource utilizations.

5.2.2 Memory Bandwidth Model

The experimental data obtained from benchmarking our modified Triad kernel al-

lows us to correlate the parallelism (number of threads) and the data access patterns

(concurrent cache misses) to the memory bandwidth required at a particular point of

execution of an application. Using those data, we are able to derive a memory band-

width model that accurately represents such correlation. Our proposed bandwidth

model is based on a polynomial curve fitting technique [12]. In this approach, the

results of our bandwidth experiments are considered as a collection of data that can
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(a)

(b)

Figure 5.5: Memory bandwidth measured using modified Triad kernel through (a)
local memory and (b) HT-1 links for different number of threads and cache misses.
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(a)

(b)

Figure 5.6: Memory bandwidth measured using modified Triad kernel through (a)
HT-2 and (b) HT-3 links for different number of threads and cache misses.
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be represented as a function or a curve of interest. Using the curve fitting technique,

we generate the best fit function of bandwidth to the input experimental data. Let

τ represent the number of threads executing the loop and µ represent the number of

concurrent cache misses occurring per iteration of the loop. Using the curve fitting

technique, we determine the polynomial coefficients P of the curve.

fτ (µ) = p1µ
n + p2µ

n−1 + ...+ pnµ+ pn+1 (5.2)

Given P = {p1, p2...pn+1} where n refers to the polynomial degree, in our case

n = 5, our model can predict the required memory bandwidth fτ for given number

of threads and the number of concurrent cache misses using Equation 5.2.

For a given computer system, by performing the experimental analysis using our

modified Triad kernel in Figure 5.3 and collecting memory bandwidth measurements,

then applying the curve fitting technique, we can obtain a distinct function that

becomes a memory bandwidth model of the system. Using the generated model in a

compiler or performance estimating tool, we can predict the maximum sustainable

bandwidth that an OpenMP loop can achieve for the given system.

We made the following assumptions in our model:

• Memory access dominates the execution time of the loop body, thus the time

spent to perform other instructions are neglected in this model. Since memory

access latencies are normally in hundreds of CPU cycles, this assumption is

valid for scientific kernels that exhibit up to moderate computation intensity.
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• When relying on compiler analysis to obtain the concurrent cache misses for a

given loop, we assume the cache line size is 64 bytes and array variables used

inside the loop are declared cache aligned.

• The cache is fully associative. Set associative caches are complicated due to

the reason that knowing the corresponding line in a set an array reference will

be placed at compile time is very challenging. Moreover, assuming the fully

associative caches is mostly valid for high level associative caches [50].

We have also observed that the memory bandwidth does not depend on the number

of iterations of the loop due to the Equation in 5.3.

Bandwidth = data/time

= (total iters ∗ bytes per iter)/(time per iter ∗ (total iter/#threads))

= (# threads ∗ bytes per iter)/time per iter

(5.3)

The Equation 5.3 in fact shows that the bandwidth depends solely on the number

of threads, and the amount of data being transferred in one iteration as well as the

time spent to execute one iteration of the loop. According to the equation, the

sustainable bandwidth is not related to the number of iterations of a loop. If this

assumption is correct, then using the same Triad kernel, which is a singly nested loop,

we will be able to model memory bandwidth performance for other types of loops such

as doubly and triply nested loops. This means that by obtaining experimental data

using Triad kernel, we can use the same data to predict memory bandwidth for any
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loop for a given system. We conducted a set of experiments to validate whether this

assumption is satisfied in practice i.e. whether the memory bandwidth performance

is really dependent on the number of iterations or not. The experimental results

given in Table 5.1 show that our theoretical assumption is correct. This allows us to

use the experimental data obtained from benchmarking Triad kernel in predictions

of all other types of loops on the same system.

Table 5.1: Bandwidth versus I*J number of iterations

I (M=106,
K=103)

J Bandwidth
(GB/s)

1.4 M 100 12.7
1.4 M 200 12.9
1.2 M 100 12.7
1.2 M 200 12.9
1 M 100 12.5
1M 200 12.9
800 K 100 12.9
800 K 200 12.9
600 K 100 12.6
600 K 200 12.7
400 K 100 12.9
400 K 200 12.7

The model predicts the bandwidth performance for one loop iteration i.e. the

results are obtained for a specific iteration at a time. Accurately predicting an

average bandwidth performance for all iterations combined is very challenging if

there is large divergence of the behaviors of the loop body. In other words, a loop

can exhibit high memory bandwidth requirement during some iterations, and require

less bandwidth during other iterations. In this case, taking an average of these two
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cases and outputting a single bandwidth performance for all the iterations would be

inaccurate, because we would be missing the high memory bandwidth case. Instead,

our model identifies the specific iterations where the bandwidth performance may

change drastically, and outputs the predictions for these identified iterations only.

For a given OpenMP parallel loop, the concurrent cache misses are obtained via

the same compiler analysis that was discussed in Section 4.2.

5.3 Evaluation and Results

Our model is evaluated in terms of both technical accuracy and prediction accuracy.

To demonstrate the technical accuracy, we compared the measured and the modeled

bandwidth results obtained from the Triad kernel experiments.

Figures 5.7 and 5.8 show the comparison of both the measured and the modeled

bandwidth values for modified STREAM Triad kernel for different number of con-

current cache misses. The number of threads used in this experiment is 4. For this

experiment, we first collected experimental bandwidth measurement data by running

the modified Triad kernel with different numbers of concurrent cache misses. Then

we generated a model using the curve fitting technique. We then obtained predicted

bandwidth results for the same kernel using the generated model. In this way we

assessed whether the curve fitting technique is appropriate and accurate enough to

be used in our model. The closer the values between the measured and the modeled

bandwidth results, the more suitable the technique is for our model. One can see

that the curve fitting technique used in the model is very accurate, thus making the
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(a)

(b)

Figure 5.7: Comparison of measured and modeled bandwidths for modified STREAM
Triad kernel via (a) local memory and (b) HT-1 links.

55



(a)

(b)

Figure 5.8: Comparison of measured and modeled bandwidths for modified STREAM
Triad kernel via (a) HT-2 and (b) HT-3 links.
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technical accuracy of the model very high.

To demonstrate the prediction accuracy, we evaluated our model using OpenMP

parallel loops from several widely known applications including Jacobi method [49],

Scalar Penta-diagonal solver (SP) and Multigrid kernel (MG) from NAS bench-

marks [2]. We compared the measured bandwidth results obtained by running the

applications against the bandwidth results estimated by our model. The modeled

bandwidth results for the three applications are obtained using the same model that

was generated from Triad kernel’s bandwidth measurement data. Our model predicts

bandwidth only for certain iterations of the loop. It is very challenging to accurately

predict the bandwidth utilization for the whole execution time period of the loop

at compile time. This is because the bandwidth utilization can change through-

out the execution of the loop. Therefore, the model does not estimate the average

bandwidth utilization; instead it estimates the memory bandwidth requirement for

specific iterations at a time.

The Jacobi kernel is a doubly nested OpenMP loop, hence the number of cache

misses per iteration varies based on the iteration being executed. Let (i,j) be a

notation to represent an iteration where the outer and inner loops’ indices are i and

j, respectively. For the Jacobi loop, at the very first iteration (1,1), considered that a

cache line size is 64 bytes and array elements are of size 8 bytes, four concurrent cache

misses will occur. For period of (1,2) - (1,7) iterations, there will not be any cache

misses. At (1,8) or any (1,m) iteration, where m is a multiple of 8, there will be four

cache misses again. This pattern is continued till the loop reaches (2,1) or any (*,1)

iteration. At each iteration our model re-analyzes the number of concurrent cache
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misses based on the current cache states of each thread. As one can see, in the Jacobi

kernel, not all iterations cause cache misses to happen, thus not all of the iterations

require back and forth memory accesses. Therefore, it would be technically incorrect

to estimate the memory bandwidth performance for all the iterations as a whole.

Instead, our model estimates the bandwidth performance for specific iterations such

as (1,1),(1,2),(1,8) etc. where the number of concurrent cache misses change, hence

the bandwidth performance changes. Moreover, since (1,1) and (1,8) incur the same

number of concurrent cache misses, we consider only one of them and eliminate the

other. Iteration (1,2) does not incur any cache misses, thus the model does not

perform any bandwidth predictions. In this way, our model estimates the bandwidth

performance for (1,1) iteration only, which is depicted in Figures 5.9 and 5.10.

Figures 5.9 - 5.14 show the comparison between the modeled bandwidth esti-

mations and the measured bandwidth values obtained from using different memory

links for the Jacobi, MG, and SP kernels, respectively. The Jacobi kernel exhibits 4

cache misses at iterations (1,1), (1,8), (1,16), ..., (2,1), (2,8) and so on (as discussed

earlier), so the modeled bandwidth performance results in Figures 5.9 and 5.10 are

obtained for 4 concurrent cache misses. Figures 5.13 and 5.14, and 5.11 and 5.12,

show the modeled bandwidth performance results obtained for 7 and 2 concurrent

cache misses, respectively.

As a summary, in this chapter we presented our compile time off-chip memory

bandwidth model and discussed how the defined model can be used to estimate the

bandwidth performance of OpenMP parallel loops. We used the statistical polyno-

mial curve fitting technique on a set of bandwidth measuring data obtained through
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experiments by the modified STREAM benchmark. This model could be used by the

compiler and performance tools to predict when the sustainable memory bandwidth

of the system will be reached by the application during execution, and to determine

an optimal number of threads that should be configured to execute a specific parallel

loop according to its memory reference pattern. To evaluate our memory band-

width model, we compared the measured and the modeled bandwidth performance

results for several commonly used OpenMP kernels such as Jacobi, MG, and SP from

NAS benchmarks. Our experimental results show that this model can be used for

accurately estimating the memory bandwidth performance at compile time.
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(a)

(b)

Figure 5.9: Comparison of measured and modeled bandwidths for Jacobi kernel via
(a) local memory and (b) HT-1 links.
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(a)

(b)

Figure 5.10: Comparison of measured and modeled bandwidths for Jacobi kernel via
(a) HT-2 and (b) HT-3 links.
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(a)

(b)

Figure 5.11: Comparison of measured and modeled bandwidths for a kernel from
MG benchmark via (a) local memory and (b) HT-1 links.
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(a)

(b)

Figure 5.12: Comparison of measured and modeled bandwidths for a kernel from
MG benchmark via (a) HT-2 and (b) HT-3 links.
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(a)

(b)

Figure 5.13: Comparison of measured and modeled bandwidths for a kernel from SP
benchmark via (a) local memory and (b) HT-1 links.
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(a)

(b)

Figure 5.14: Comparison of measured and modeled bandwidths for a kernel from SP
benchmark via (a) HT-2 and (b) HT-3 links.
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Chapter 6

Shared Cache Contention

Modeling

In this chapter, we explain the importance of shared cache to the overall performance

of parallel application and discuss existing research that has been done towards

modeling the impact from the shared cache contention and/or sharing. We then

present our approach of modeling the shared cache and discuss the results from

model evaluation.

6.1 Introduction

Shared cache in multicore processors is an important hardware resource that should

be utilized effectively to achieve high performance for parallel applications. It is

critical to coordinate accesses by multiple threads to data that reside in shared
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cache to reduce cache contentions, and to improve cache hit rates of both shared and

private data of threads.

On the one hand, the shared cache is designed to be effective for data reuse by

multiple cores, i.e., when a thread uses cached data previously loaded by another

thread. Reusing data in shared cache decreases the number of DRAM accesses,

hence improves the application performance and reduces power consumption. On

the other hand, shared cache may cause severe performance degradation if large

amount of cache contention and interference are incurred by uncoordinated data

access of multiple cores. In fact, the effectiveness of using shared cache has been de-

termined as the most essential factor in overall performance degradation on multicore

processors [66]. Due to this reason, improving shared cache performance has become

quite challenging optimization problem for parallel applications and architectures.

When running a single multithread program or multiple completely separate pro-

grams simultaneously, it is important to know how much the parallel threads or

programs are exhibiting coordinated cache access behavior. In situations where their

cache accesses are not properly coordinated, cache contention, trashing, and in-

creased cache misses may occur. On the contrary, when multiple threads’ cache

accesses do match, e.g. accessing shared cache line with high rate, replacing cache

line with low rate of conflict, they benefit each other from cache sharing, which in

turn may decrease the number of cache misses and thus increase the performance

of the threads. Understanding quantitatively the coordination of accesses to data

residing in shared cache by multiple threads will help users and tools to optimize

their code. Moreover, compilers can pass this information to the runtime to select
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appropriate scheduling and data affinity policy to improve shared cache efficiency.

There has been a lot of work in the literature that focused on modeling cache

performance on single processor architectures [6, 9, 20, 21, 56]. Most of these studies

concentrated on determining the distribution of cache misses (compulsory, capacity,

and conflict). Only recently has the modeling of cache contention and shared cache

performance on multicore architectures started to receive attention [7, 10, 53, 66, 62].

The approaches to modeling cache contention have been mostly either probabilistic

or simulation based.

Chandra et al. [7] propose three models to predict cache contention of co-scheduled

tasks. The first two models, which are the Frequency of Access (FOA) and the Stack

Distance Competition (SDC), use stack distance profile of each thread when executed

sequentially. In an α - way associative LRU cache, for each cache set they have Cα+1

counters such as C1, C2, C3...Cα+1. On each cache access, one of these counters is

incremented. Thus each counter represents the access frequency to it. The Cα+1

counter is incremented when the cache access results in a miss. The two models are

not very accurate since they do not consider conflict misses that could happen under

cache sharing when threads are co-scheduled. For this reason, the authors propose

the third model which takes into account the conflict misses i.e. when a cache line

that is being used by one thread is evicted by another due to the lack of cache ca-

pacity, and the former thread needs to access the same cache line again later on.

The third model, Prob Model, is a probabilistic model that uses a circular sequence

concept [7].

In [66], authors propose a simple approach of predicting cache contention using
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simulation method. For that they used setvectors to store information about the

cache set access frequency (stored in vector a) and the number of distinct cache

lines accessed in the set (stored in vector d). For every memory access, authors

fill out these vectors accordingly. When vectors are finished to be filled, the cache

associativity level α is subtracted from each value of d, which then tells whether

the number of distinct cache lines have exceeded the associativity level and would

result in a cache miss or not. The results from the subtraction of α from d is stored

in d′ vector. Lastly, the cache set access frequency value stored in a is multiplied

with values in d′ for each thread and stored in vector s. The result in s tells how

badly or well a thread uses that cache set when no other thread is co-scheduled. In

order to predict the cache contention impact, one just needs to take a dotproduct

of the two values from sx and sy for each cache set for threads x and y, and see if

the result from the dotproduct is high or not. If the dotproduct result is high, it

means that if threads x and y are scheduled together, it would result in a high cache

contention and interference. Otherwise, if the dotproduct result is low, they would

exhibit coordinated cache access behavior, and would result in less amount of cache

contention. The approach in [66] is simple but effective in terms of evaluating whether

the cache access behavior of two threads matches or not. However, it does not specify

exactly how many cache misses would happen under co-scheduling. Moreover, their

approach does not consider conflict misses; it only considers capacity misses.

The authors in [53] predict the number of compulsory and capacity misses using

circular sequence profiling and stack processing techniques. Their model assumes

that threads compute only homogeneous tasks such as loop iterations and share a
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fully associative last level cache. Stack distance profiling is used to generate a cache

trace of memory accesses by an individual thread under no co-scheduling. However

with co-scheduling, the stack distance profile information becomes inadequate, thus

the authors use the same concept as in [7], the circular sequence profiling, to model

possible interferences from other threads. Their work models only fully associative

cache and outputs only capacity misses from cache sharing by skipping the conflict

misses. On the other hand, we also model set associative caches and output the total

number of cache misses under co-scheduling. Fully associative caches are modeled

by assuming that there is only one cache set available in the cache.

In our work, we present a new method to predict the number of cache misses that

would happen when a task running on one thread is co-scheduled to run with other

tasks (either homogeneous or heterogeneous), and all threads share the same last level

cache. The input to our model is memory traces that can be generated by compiler

analysis. The memory access trace represents a sequence of cache lines touched by

a thread during some period of time. If modeling a set associative cache, the trace

will represent a sequence of cache lines accessed at each cache set. When a thread

is scheduled to run with another thread concurrently, the memory access traces of

each thread will be combined in order to have a single complete sequence of cache

lines that are being accessed by both of the threads. However, the combination of the

traces is not a trivial task since at compile time we have to deal with million different

combinations of sequences. By approaching to this problem from a statistical point

of view, we are able to select a very small number of sequence combinations in

our algorithm to calculate the number of cache misses under cache sharing. Our
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evaluation demonstrates the effectiveness and accuracy of the approach for cache

contention prediction. Since it is static prediction, our method is very suitable for

integration into compilers’ or performance estimating tools’ analysis phase.

6.2 Methodology

6.2.1 Memory Access Trace Generation

Our model requires a sequence of accessed cache lines, referred to as memory access

trace, for each thread and cache set during some period of time as an input. Memory

access trace is generated using the same compiler analysis discussed in 4.2. We utilize

the compiler analysis to collect information about the loop and its memory references.

We only focus on OpenMP loops as execution block in this work. However, the

compiler analysis can be extended to support parsing other types of execution blocks

and generating memory access traces from them. In addition to the loop and array

reference information, the compiler analysis needs to know some details about the

shared last level cache of the underlying architecture such as cache size, associativity

level, and cache line size. The only assumption that we make in our compiler analysis

is that arrays used inside the parallel loop are declared cache aligned. The memory

access trace for each thread and cache set is generated by determining the cache

lines that would be accessed by each thread and placed to that specific cache set

during some period of time. The compiler analysis already generates a cache line

ownership list which is the list of cache lines that are accessed by a thread at specific
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iteration. Then the determination of which logical cache set the cache line in cache

line ownership list will go to is simply done by dividing the accessed cache line number

by set associativity level α. By evaluating each thread’s cache line ownership list in

this way, the compiler can generate the memory access trace for each thread and the

cache set.

6.2.2 Cache Miss Detection Under Cache Sharing

After we generate separate memory access traces for each thread, we would like to

determine how coordinated the threads’ cache access behaviors are with regards to

each other, i.e. whether the cache contention and interference will be high or not,

whether threads will benefit from cache sharing or not, etc. This is accomplished by

estimating the number of cache misses that would happen when all memory access

traces are evaluated together. In order to detect the cache misses that would happen

when threads are co-scheduled, we combine separate memory access traces Xi, Yi,Zi

... of threads X, Y, Z... into one CombinedTracei. i in Xi refers to the cache set

number that the combined memory trace is generated for. For each i we have one

vector Si and a miss counter. Si of size α, where α refers to the set associativity level

of the cache, will store the different cache lines accessed during some period of time.

For each cache line in Si we also store value r which tells the logical time the cache

line was accessed. The cache miss detection algorithm starts by checking whether Si

contains each cache line in CombinedTrace or not.

• If Si already contains the cache line brought from the CombinedTrace list, we
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update the value r of the corresponding cache line to represent the recent time

it was accessed.

• If Si does not have the cache line, we add it to Si and update its value r. We

increment the cache miss counter.

• If Si is already full, but a new cache line from the CombinedTrace needs to

be added to it, we remove a cache line with the least r value from Si and add

the new cache line to Si. We update the value r of the recently inserted cache

line, and increment the miss counter.

Given Xi, Yi,Zi traces, one can combine these 3 traces into one combined trace

in a million different ways at compile time. However, only one combination of traces

will be executed at runtime. Hence, it is a real challenge to know which exact com-

bination will be executed at compile time. Evaluating all combinations one-by-one

to determine the number of cache misses would require endless days of computa-

tion. Hence, in order to quickly but accurately calculate the number of cache misses,

we approach to the problem from a statistical point of view which is discussed in

Simulation Case Study sub-section.

6.2.3 Simulation Case Study

In this section, we explain our approach of choosing smaller number of combinations

for predicting the number of cache misses. Our case study is performed with two

threads only; however the approach can be applied to a larger number of threads
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without any modifications. Let T0 = {ABC} be the first thread’s memory access

sequence and T1 = {XY Z} be the second thread’s memory access sequence. If we

run two threads (T0 and T1) at the same time, the memory access sequence of these

two co-scheduled threads will be one of the combinations of the memory accesses of

T0 and T1. This combination can be one of the following combinations:

C (T0, T1) =



ABCXY Z

XY ZABC

AXBY ZC

XAY BZC

...

(6.1)

where C(T0, T1) =CT0,T1 is the function that generates the combinations from two

threads’ sequences. Let N(.) be a function that returns the length of the thread’s

memory access sequence, and N(T0) = m, N(T1) = n where n and m are the length

of the sequences. The total number of combinations of two threads without ordering

would be (n + m)!. However, in separate sequences there is an order that needs to

be followed such as we don’t want B to appear before A in the sequence, similarly

Y to appear before X. Thus, we will need to take into account the ordering of the

sequences in the combinations. Then the total number of the combinations would

be:

N(CT0,T1) =
(n+m)!

n!m!
= M (6.2)
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Let L(.) be a linear function that returns the number of cache misses of a given

sequence, and αi be the number of cache misses for the ith combination sequence of

two threads Ci(T0, T1).

L(Ci
T0,T1,i

) = αi i = {1 . . .M} (6.3)

Since, each combination is independent from the other, and L(.) is a linear func-

tion, then αi (i = 1 . . .M) will be i.i.d. (independent and identically distributed),

which can be modeled as a Gaussian distribution [19]. This can be easily proven with

the following simulation example. Let T0 and T1 be the sequences of random array

accesses, and n = 80 and m = 120. The total number of combinations of these two

threads is N(CT0,T1) = 1.65×1057, which is very large. Generating and evaluating all

of these combinations would require a lot of computation time. Instead, we randomly

generated smaller number of combinations from these two thread sequences, where

the total number of combinations was 2.6 × 106. We then input each combination

of sequences to our prediction technique that calculated the number of cache misses

that would happen for that combination. After computing the cache misses for each

combination in C(T0, T1), where we have αi values for i = 1 . . . 2.6× 106, we built a

histogram of the α values. Figure 6.1 depicts the simulation results. Red dots in the

figure are the frequencies of the α values in x− axis in the distribution. Notice that

the red dots in the Figure 6.1 can be approximated with Gaussian curve (green line

in Figure 6.1).
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Figure 6.1: Distribution of cache miss values for i = 1 . . . 2.6× 106 combinations

The distribution of cache misses αi of the combination sequences Ci(T0, T1) for ∀i

can be approximated with two parameters: mean value (µ) and standard deviation

(σ) of the variables (αi, i = {1 . . .M}), where:

µ =
1

M

M∑
i=1

αi σ2 =
1

M

M∑
i=1

(αi − µ)2 (6.4)

The probability density function (pdf) [19] of the distribution of αi for ∀i is calculated

as:

P (αi|µ, σ) =
1

σ
√

2π
e(

−(αi−µ)
2

2σ2
) i = 1 . . .M (6.5)

Calculating the probability curve for i = 1 . . .M will give a curve in Figure 6.2.

Figure 6.2 depicts the area percentage under the curve under different ranges. The

area under the curve is computed as:
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S(µ− σ ≤ α < µ+ σ) =

∫ µ+σ

µ−σ
P (α|µ, σ)dα , (6.6)

where S(.) is the area.

Figure 6.2: Calculated area under the distribution curve between two different in-
tervals: (µ± σ and µ± 2σ)

If P (α|µ, σ) follows normal (Gaussian) distribution then the S(µ−σ < α < µ+σ)

is 68.2% of the whole area, and S(µ− 2σ < α < µ+ 2σ) is 95.4% of the whole area

under the curve.

Using the area under the curve we can estimate the probability of predicting

the number of cache misses correctly. For example, let ξ0 be a threshold that we

tolerate as an error. In other words, the value x that we predicted should be between

µ− ξ0 ≤ x ≤ µ+ ξ0 in order to be considered accurate. If the standard deviation σ

of the distribution of the cache misses is small as in Figure 6.3a, then the probability

that we estimate the number of cache misses correctly, when scheduling two threads
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together, will be high, since the area ratio between the S(µ− ξ0 ≤ x ≤ µ+ ξ0)) and

the whole area under the curve will be very high (Figure 6.3a). On the other hand,

if σ of the distribution of the cache misses is high, then the probability of predicting

cache misses correctly will be low, since the area ratio between S(µ−ξ0 ≤ x ≤ µ+ξ0))

and the whole curve will be low (Figure 6.3b).

Let the parameters of normal (Gaussian) distribution function be (µ0, σ0) of the

oversampled random variables and (µ1, σ1) be the normal distribution parameters of

the fewer samples of random variables. The difference between mean values will be

very small:

‖µ0 − µ1‖22 ≤ ε0 , (6.7)

where ε0 is a small positive value.

This can be showed with the previous example (n = 80,m = 120). First we

computed the mean (µ) and the standard deviation (σ) values for all memory access

sequence combinations where i = 1 . . . 2.6× 106 (100%). Then we computed (µ,σ)

for 50% of the samples, and similarly computed for 1%, 0.1% and 0.01% of the

samples. Figure 6.4 depicts the results of the mean and standard deviation values

for different percentages of combinations used.

Notice that in Figure 6.4 the difference between the mean values for 100% and

0.01% of the samples is very small. Figure 6.5 depicts the frequencies (red dots) of

the cache misses and its estimated distribution curve (green line) for 1% of the data.

It can be seen that Figure 6.5 (1% of the data) is similar to the Figure 6.1 (100% of
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(a)

(b)

Figure 6.3: Probability of predicting cache miss values correctly for distributions
with different standard deviation σ
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Figure 6.4: Comparison between mean and standard deviation values for different
percentages of combinations used in the simulation

the data).

Figure 6.5: Distribution of cache miss values for 1% of i = 1 . . . 2.6×106 combinations

With the simulation case study we show that we can accurately predict the num-

ber of cache misses that would happen under cache sharing. The only challenge is a

need to evaluate all memory access sequence combinations for co-scheduled threads,

which will require a lot of computation time. However, we also show that if the

predicted cache miss values for all combinations follow a normal distribution with

a standard deviation σ and mean value µ, then with fewer samples the cache miss
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values will follow normal distribution as well. Thus, instead of evaluating all combi-

nations of the memory access sequences, we only need to evaluate few combinations

and compute cache miss values for them. Then we compute the mean and standard

deviation values from these cache miss values. The final value for cache misses for

co-scheduled threads under cache sharing will be the mean value of the distribution.

Besides, given the mean value µ, a standard deviation σ and error rate ξ0 that we

tolerate, we will also be able to tell the prediction accuracy using Equation 6.6.

Figure 6.6: Distribution of cache misses for different cache sets

Moreover, we show that homogeneous tasks, such as loop iterations that are

executed by co-scheduled threads with much larger data sets than the shared cache

size, will exhibit the same cache access pattern, except that cache sets that are being

accessed will vary based on the loop iteration. Thus all the cache sets will have a

normal distribution of cache misses as shown in Figure 6.6. Using this information

it is possible to predict the total number of cache misses for the whole cache by
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evaluating few random cache sets (instead of all cache sets), by taking the average

cache miss value and multiplying it by the total number of cache sets.

6.3 Results

We evaluated our cache miss prediction technique using two very widely known

benchmarks, matrix multiplication and discrete fourier transform (DFT) [46]. For

that, we compared the predicted number of cache misses obtained by our method

against the measured cache miss values obtained using hardware performance coun-

ters.

For measuring the number of cache misses, we used OpenMP versions of the two

benchmarks and measured the number of L3 (LLC) cache misses using PAPI inter-

face [44] when both sequential and multithreaded versions of programs are executed.

Experiments are performed on a system with 2.2 GHz quad core AMD Opteron pro-

cessor that has 64 byte line, 32-way set associative L3 cache of 2048KB size which is

shared among all four cores. The programs were compiled using GNU 4.5.0 compiler

with PAPI 4.2.0 library.

Tables 6.1 and 6.2 show the comparison between measured and predicted cache

miss values that we obtained for matrix multiplication and DFT kernels, respec-

tively. The two columns (3 and 5) in both tables show the predicted number of

cache misses when 250,000 and 2,000 memory trace combinations are evaluated, re-

spectively. Since the total number of combinations for matrix multiplication and
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DFT kernels were very large, we only evaluated 250,000 and 2,000 number of com-

binations for our experiments. Columns 4 and 6 show an error difference between

the measured and the predicted cache miss values for each experimental case. Since

sequential versions of programs have only one memory trace combination, only one

error difference is calculated and shown in column 4. The lower the values in columns

4 and 6 are, the more accurate our prediction method is. Moreover, by comparing

these two columns we evaluate the accuracy of our statistical approach to decrease

the number of memory trace combinations that are being used in our prediction tech-

nique. The closer the values in both columns are, the more accurate our statistical

approach is meaning that similar (or even the same) prediction accuracy still can be

achieved by evaluating less number of memory trace combinations.

Both matrix multiplication and DFT kernels exhibit the same memory access

pattern throughout the whole iterations of the loop. In other words, their memory

access pattern does not change based on the iteration being executed. This implies

that although it seems that the first several cache sets are mainly used in the first

hundred (or thousands) iterations, the rest of the cache sets will be utilized in the

same manner in later iterations. Due to this fact, to predict the number of cache

misses for the whole cache we evaluated only few cache sets and not all of the cache

sets available. The average predicted results for few cache sets were enough to

estimate the total number of cache misses for the whole cache for both programs.

Results for matrix multiplication and DFT kernels given in Tables 6.1 and 6.2

show that the error difference between the predicted and the measured cache miss

values varies between 12%-18% and is 16% in average, which is fairly good and
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reasonable since it is very challenging to precisely estimate the number of cache

misses for real systems with complex architecture. Therefore we believe that the

predicted cache miss values estimated by our technique are close to the measured

cache miss values, indicating that our technique can be used to predict the cache

contention and/or sharing impact on multithreaded applications at compile time.

Moreover, the results also show that the error differences between the measured and

the predicted values stay almost the same for 250,000 and 2,000 combinations. This

implies that evaluating less number of memory trace combinations does not hurt the

prediction accuracy and proves that our statistical approach is technically accurate

as well.

Our method of predicting cache contention impact when combined with compiler

machine models, could be used by compilers to assist in optimizing code in both high-

level loop transformation, and low-level instruction scheduling and code generation.

For example, it would be helpful for programmers, compilers and/or performance

analyzing tools to choose the optimal way of distributing iterations to threads, the

number of threads to execute the loop, or to select appropriate scheduling and data

affinity policy to improve shared cache efficiency. It could be used to guide a compiler

when performing traditional loop transformations to decide parameters suitable for

executing parallel loops on multicore architecture.
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Table 6.1: Comparison of predicted vs. measured # of cache misses for matrix
multiplication kernel

# of
threads

Measured
# of Cache
Misses

Predicted
# of Cache
Misses
(250K
combina-
tions)

Error %
(250K
combina-
tions)

Predicted
# of Cache
Misses (2K
combina-
tions)

Error % (2K
combinations)

1 113,042K 98,076K 13% NA NA%
2 110,045K 134,124K 18% 135,247K 19%
3 117,668K 140,317K 16% 141,432K 17%
4 110,461K 95,045K 14% 95,436K 14%

Table 6.2: Comparison of predicted vs. measured # of cache misses for dft kernel

# of
threads

Measured
# of Cache
Misses

Predicted
# of Cache
Misses
(250K
combina-
tions)

Error %
(250K
combina-
tions)

Predicted
# of Cache
Misses (2K
combina-
tions)

Error % (2K
combinations)

1 424K 510K 17% NA NA%
2 1,111,029K 950,501K 14% 929,361K 15%
3 305,406K 370,304K 18% 371,577K 18%
4 7,550K 8,574K 12% 8,658K 13%

85



Chapter 7

Conclusion

In this dissertation, we described how existing compilers’ cost models can be extended

in order to consider performance critical features that come with multicore and many-

core architectures such as false sharing, contention for shared memory bandwidth,

and shared last level cache. We proposed compile time models for each of these

features that estimate the performance impact range it would have on application

performance. Firstly, we described our compile-time cost model for false sharing

and discussed how to use the defined model to detect and estimate the performance

impact of false sharing on parallel loops. The model estimates the total number of

false sharing cases that occur throughout the loop, and computes the overhead cost

incurred by false sharing to the whole execution of the loop. Moreover, we describe

our false sharing prediction model that predicts the total false sharing cases by

evaluating much fewer number of iterations, for the purpose of reducing the modeling

time. Secondly, we presented our compile time off-chip memory bandwidth model
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to estimate the bandwidth performance of OpenMP parallel loops. We used the

statistical polynomial curve fitting technique on a set of bandwidth measuring data

obtained through experiments by the modified STREAM benchmark. This model

could be used by the compiler and performance tools to predict when the sustainable

memory bandwidth of the system will be reached by the application during execution,

and to determine an optimal number of threads that should be configured to execute a

specific parallel loop according to its memory reference pattern. Lastly, we presented

a new method to predict number of cache misses that would happen due to cache

sharing and/or contention at compile time. The method utilizes compiler analysis

techniques to generate memory access traces for each thread under no cache sharing.

Then a small number of combinations of threads’ memory access traces are randomly

selected among all combinations as an input to predict cache misses of the threads

using the proposed method.

All of our models have been evaluated by a set of widely known OpenMP kernels.

The results obtained are very promising, and we believe that these three models can

be used to accurately estimate the performance impact (either bad or good) and thus

guide compilers’, performance analyzing or tuning tools’ optimizations.
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