A Back Propagation Based Spiking Neural Network Approach for Intelligent Link
Decisions In Satellite Communication

by
Meenakshi Visweswaran

A thesis submitted to the Department of Engineering Technology,
University of Houston
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in Engineering Technology

Chair of Committee: Dr. Ricardo Lent
Committee Member: Dr. Deniz Gurkan
Committee Member: Dr. Ahmed Abdelhadi

University of Houston
April 2021



ACKNOWLEDGMENTS

Firstly, I would like to express my sincere gratitude to my advisor Dr. Ricardo Lent for
his continuous guidance and immense knowledge. His support and motivation brought
me to successfully complete this research study. | would like to appreciate the one-to-
one meetings and knowledge sharing discussions we had throughout the journey of this

research.

Besides my advisor, |1 would like to thank my thesis committee: Dr. Gurkan and Dr.
Abdelhadi, for accepting to be part of the committee chair and reviewing my work and
providing valuable suggestions. Thanks to professor Gandhimathi Velusamy and my
other classmates for all the technical discussions, timely review meetings and ample
support in learning necessary tools. Thanks to my academic advisor Ms. Dawn Wolf-Taylor

for her constant support and motivation.

Finally, I would like to thank my parents, sister, in-laws, and friends for the immense
love and understanding. Thanks to my dear friend Premvishnu for his boundless
patience and valuable talks whenever needed. Thanks to my beloved husband Vignesh

for having faith in me and being my strength.



ABSTRACT

A Spiking Neural Network (SNN) with neuromorphic architecture for optimal link
decisions is put forward in this paper. SNNs can adapt to the various changes in the
working environment quickly, for maintenance or advancement of the selected
performance metrics. Such results can be appealing for satellite networks with orbital
operations involving either stationary or manned aids, which would provide directions
for autonomy in CN decisions. The satellite on-board processing capabilities,
traditionally, have been a limiting factor for advanced satellite communication
strategies. Additionally, with deep space explorations rising, the demand for bandwidth
is increasing, which can be achieved by making communication systems more efficient.
Manual updating procedures for satellite operations gives rise to chances of
configuration errors. Since Al has been showing continuous improvements and glorious
performances, when applying it to convert manual operations to intelligent ones, some
errors can be avoided. In scenarios where the delay time of an operator responding is
considerable, the spacecraft must be able to autonomously make decisions. Intelligent
systems can help improve spacecraft reliability by being trained to react to unexpected
situations and guide the spacecraft to safer operational states with autonomous decision-
making. This serves as an apt area to apply an SNN model for a lighter space network
on a first-hop level. This literature will be focused on enabling flexible routing for link
selection with the help of Spiking Neural Networks. This path selection problem is
approached by applying Spike Neural Network (SNN) to classify satellite downlinks
based on link cost to improve learning, and later analyze the classification and link

decision capabilities of the network with respect to a traditional neural network. The



spiking network has inbuilt Back Propagation (BP) implemented in the framework,
Nengo. The system managed to achieve better accuracy even when activation was
provided in hidden layer instead of output layers. Tweaking the firing rates, epochs and
batch size of the data might yield better results. For the LEO scenario, a maximum
accuracy of 86% was obtained for synthetic data using SNN and for the GEO scenario,

a maximum of 98.5% was obtained.
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1. INTRODUCTION

1.1. Challenges in current space systems

With the rise in new horizons of discoveries in space, organizations, such as NASA, have been
looking to expand their communication infrastructure beyond the current conventions. Outer space
involves huge budgets for satellite, and this comes with several challenges. The challenges in
satellite communication may include errors in data transmission, low signal to noise ratio (SNR)
of the link, poor antenna directivity, high noise spectral density, high bit error rate (BER),
atmospheric losses, polarization mismatch, satellite drag, error during configuration updates at the
satellite, etc. Errors are every common in satellite systems due to the numerous uncertainties such
as equipment error, shared band, error planning, intentional errors, etc. For example, due to certain
environmental effects (signal corruption, satellite drag, etc.), assuming an error to have occurred
while updating a certain operational attribute at the satellite. In such cases, an algorithmic
approach would involve a good amount of time in performing troubleshooting and resuming
operations as the speed of light is 3x108 m/s. For instance, if the satellite is 6 light minutes way, it
would take a precious 12 light minutes, source-destination, and destination-source, to troubleshot
and bring the system back to normalcy. But, the involvement of an artificial agent, such as a neural
network, could help us avoiding the error by learning the associated features and making
opportune decisions and predictions before such an unfortunate event may occur, thereby avoiding

the time taken to troubleshoot and resume operations altogether.

The above stated issues lead to the need of autonomous satellite behavior implementations to avoid
manual updating and less exchange of signals from ground to satellite without human supervision
or interference, and make adaptive decisions considering the uncertainties. Further, recent

advances in this area have provided directions for enhanced on-board processing which can enable



futuristic communication technologies, such as flexible routing/channelization, beamforming,
free-space optics and also signal regeneration [1]. On a practical basis, once deployed to the orbit,
performing physical modifications would be costly in space systems. Among the various
renditions to exploit use of neural networks for numerous applications, the area of SNN has not
been completely exploited specially in space explorations. Given a set of attributes, the SNN can
choose an optimal choice or perform certain modifications according to the learned features. For
example, assuming a link selection problem based on associated costs of available links, the SNN
can be used to make an optimal link decision to successful data transmission to the destination.

For simplicity, this literature will be focusing on predicting the link on a first-hop basis.

1.2. Challenges in SNN Implementation

Literature [8]-[23] show different approaches to implement SNN on software and hardware
platforms. Some of the major challenges are inadequate data, bad input feature selection,
inadequate learning rate, overfitting/underfitting, etc. During the early stages of the thesis, one of
the major concerns was to create the SNN. Although several SNN simulation platforms are
available as described in [23], they required several prerequisites and knowledge for immediate
usage and deployment. The commonly known frameworks such as Tensorflow worked only for
creating convolutional neural networks (CNN) and deep neural networks (DNN) without spiking
activities.

Secondly, finding relevant satellite data was difficult due to restricted access. Previous works
which provided graphic results involved grants from governmental organizations. Several data
sources had restricted access, which lead to the use of simulation software for obtaining necessary
data. The simulation software used in this literature is STK communication tool (More details later

in this thesis). Thirdly, Nengo provides an affable Ul for visualizing the simulation of SNN, but



the specific method that is considered in this literature does not enable visualizing the firing of
neurons of SNN graphically. Finally, the satellite scenario considered is a simple network with
three links for selection. Increasing the number of inputs would mean creating more links within
the simulation and data extraction. Although this is not a cumbersome task, the post processing
would require ample time involving budget calculations, data processing, training, and
predictions. Typically, a LEO scenario involves more than 400 links and simulating such a

scenario is arduous.

1.3. Motivation

The recent Mars-Rover incident clearly indicates the rise in the number of Space missions today
compared to those in the past. As mentioned earlier, deeper space explorations put forward the
necessity of better communication systems, which is a challenge. This pulled at the thread of
designing artificial neural network for communication systems so that errors can be avoided in
satellite data transmission. This sparked a motivation to gather more information in this arena.
Previous literatures to implement SNN using several methods such as the one using MATLAB,
Verilog and CMOS by Di Hu et al [5] and the hardware and software implementation methods in
works [5] - [21], shows clearly the level of complexity involved in creating SNNs. Thanks to the
reliable technological developments and improvements of today that this has been made easier for
today’s generation of researchers. Among the several literatures to apply neural networks in
improving satellite systems, such as image classification, sensory improvements and activations,
navigation systems, intelligent propulsion systems, prediction of satellite drag, optimized routing,
etc., this literature stands out in its simplicity for creating a fully functional SNN for link selection
using satellite downlink data. The literature involving cognitive network controller by R.Lent et

al. in [32] provided a wider perspective to use SNNs for this application..



This literature explains in detail the method to use the NengoDL framework to create a spiking
neural network, perform testing and preform optimization and discusses the performance of the
NN in terms of metrics such as training time, accuracy, an impact of certain features on these
metrics. The main contributions in this thesis:
1. Firstly, creating a spiking neural network model for intelligent decision making in
predicting the best downlink for a given set of links in a satellite scenario.
2. Secondly, proving that the spiking nature of the neural network predicts with better

accuracy when compared to traditional models.

1.4. Thesis Organization

1. Chapter 2 discusses in detail, the working of neural networks, major frameworks involved
in this literature and how the neuromorphic architecture is built, and the parameters
associated with it.

2. Chapter 3 summarizes the previous works in the implementation of SNNs via hardware
and software implementations.

3. Chapter 4 describes in brief, the case under study the important terms involved for link
budget such as SNR, buffer occupancy, Service time, response time, with necessary
formulas and expressions.

4. Chapter 5 Describes the STK simulation tool and its operations for satellite
communication and data extraction.

5. Chapter 6 explains the method to create SNN step by step using clear snippets of code
and the experiments conducted.

6. Chapter 7 Shows the results of each experiment and detailed analysis of the impact of

data on the time, accuracy, loss, and other metrics.



7. Chapter 8 concludes this thesis and describes suggestions for potential future works in

this area.



2. SPIKING NEURAL NETWORKS

2.1. Neural Networks: a brief insight

Artificially intelligent systems use neural network to make decisions and perform predictions. A
neural network is formed by connecting several neurons together in form of layers. The output of
aneuron is acts as a potential that activates the next neuron. Neural Networks (NN) are computing
systems that correspond to the biological neural networks in a human brain. Communication
between neurons happen through connection between the neurons called synapse. The neurons
that send signals are called presynaptic neurons, and the ones that receive signals are called
postsynaptic neurons. The signals can be processed by the postsynaptic neurons and signal the
downstream neurons connected to them [24]. Unlike conventional artificial neural networks used
in ML, a spiking neural network (SNN) stands out. SNNs work using spikes, the discrete events

that occur at different time instances.

2.2. States of neuron

Neurons may have states which typically represented by real numbers between 0 and 1. Each
synapse has a weight, a number that controls the signal between presynaptic and postsynaptic
neurons [24]. During simulation of SNN, a stateless behavior is set to the neurons for making the

study simpler. The processor is the activation function of the neuron to fire.
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Figure 2.1 The perceptron; Source: [24]



2.3. Membrane potential of a neuron
A spike’s occurrence is explained by differential equations that represent various biological
processes. Membrane potential is the most significant aspect of neural activity. Basically, a

neuron spikes once it reaches a certain potential, and then the potential of that neuron is reset.

Dendrite . L X . | D 5
T R Action i
Potential

100 mV

Figure 2.2 Structure of a neuron. Source: [38]

To model a spike event, the post synaptic potential is obtained as a weighted synaptic efficacy of
the terminal, which is the pre-synaptic terminal [26]. The pre-synaptic neuron input where i € | and

neuron j € J is given as the sum of all synaptic contributions given in Equation (1):

B = Y yE© ®
k

Similarly, the post synaptic input can be represented as given in Equation (2) below:

X0 =) > whyk® @
i k

As per neurotic conventions, the synaptic terminal k is associated with weight w}j When the above

value crosses the threshold 8, the firing time t; of neuron j [26].

2.4. Neuron model and working of NN
Each spiking neuron keeps up a value representing its current state. The neurons accept the input

spikes and integrate the corresponding weights to update their states. The neuron is activated when

7



the state reaches a threshold value, and outputs a spike to the next neuron and after a pre-
configured propagation delay, the successors receive the spike and update their states
accordingly[6]. Though these operating principles are common, depending on the neuron model,
the neuron behavior changes. The most common neuron model is the Leaky integrate-and-fire
(LIF) model (have a look at Table 3.1) for its proven improvements and realistic brain-like
behavior. LIF neurons are inspired by the membrane voltage leaking in biological neurons, with
their states decreasing over time if no input spikes present [6].

[4] In 2003, E. Izhikevich proposed a simple neuron model having two equations and one
nonlinear term. Starting from here the works of various authors from different parts of the world
has been analyzed according to its relevance in this section. The least mean squared error function
for the target algorithm learn the desired firing times {t]-d} at the output neurons. If the
corresponding input patterns are denoted by {P[t;,t,, - t;]}, the following represents the error

equation, the desired and actual firing times are {t{'} and {t;} [26].
_1 d)?
E-gzj(tj - ) 3)

The following equations represent the calculations necessary for error propagation [26][27][29],
or in other words known as back propagation to update the weights, thus the change of weight is
as follows:

Ao 9
Wi = —N—
1) aWE (4)

Where 1 is the learning rate and w}} is the weight connecting neuron i to neuron j with delay
dx[26][27]. The above computations are inbuilt in NengoDL for immediate usage in functional

ways and classes. Now that the basic firing of a neuron in an SNN is understood, the building of

neural network comes into picture. In a neural network, input layer, hidden layer, and output layer

8



are associated. A neural network starts with input layer, followed by few hidden layers, and finally
output layer. The number of layers at each layer is decided using several trials and errors for the

data extracted from each scenario under different circumstances.

2.5. Why SNN?

The SNN doesn’t necessarily have to know each piece of information associated with the data.
Since their computational speed is very high and their capacity for working with uncertain data is
high, spiking neural networks is a great choice for solving the problem [3]. Further, SNNs are
capable of learning temporal data on realistic terms, i.e., the SNN works well with unsupervised
data also, but in this thesis, partial supervised learning is done for proper evaluation of the model.
SNNs are event based thus enabling it to be a good choice to be applied on satellite systems, where
uncertainty is the most, and analyze the performance of the SNN and the system itself. This can
be installed to any other such environment and the SNN would learn to make decisions based on
its knowledge associated to its environment. Applying SNNs to satellite systems would enable

new prospects of autonomous intelligent space systems.

2.6. Assumptions

Assuming that a bundle is a file or set of packets and the uplink transmission is complete, multiple
routes are available to dispatch a given data bundle and they are accessible by the system, a best
route or link can be selected to dispatch the data based on a few features describing the link. This
happens regularly during routing, except that in this thesis, this decision is made by a neural
network instead of a rigid algorithm incapable of adapting to uncertainties. Secondly, assuming to
begin with an ad-hoc network of 1 input layer with 16 neurons, 1 output layer with 4 neurons and
1 hidden layer with 32 neurons, further experiments are conducted to find a good model. Finally,

the BER is considered as a representation of the quality of the link and buffer occupancy (the



number of bundles waiting to be transmitted) is considered as the traffic in that link as the features
to determine the inputs to the system. These two attributes are used to obtain a relevant cost to
each link to obtain the best link and route them. This also provides us an option of implementing
a distributed service instead of centralized behavior, but that is a whole other region to explore for
the future.

2.7. Use of Artificial neural networks in space

A work by Hou et al, proposes link planning for LEO satellites to reduce the number of link
switching, by using relay satellites and Inter satellite links (ISLs)[30]. A lot of satellite attributes
such as orbital height, orbital inclination, location of GS, were considered and a main assumption
was that, the transmission was already complete[30]. Routing is a crucial process that has a
significant impact on the network’s performance in modern communication networks. ldeally,
routing algorithms include finding the best path(s) between source and destination router, steer
clear of packet losses and allowing high-speed data transmission. In space, communication traffic
is subject to high variability, nonlinearity, and unpredictability, thus making the routing policy a
very cumbersome task [3]. Under certain assumptions, the optimal routing may be considered as,
the first hop selection of the available shortest path (SP) computations. This thesis provides
evidence that use of SNN aids accomplishing more human like behavior provided availability of
enough data and based on the scenario at hand. For instance, in [33] Zhenyu Na et al. propose a
distributed routing strategy focusing on LEO satellite to enhance the speed of training targeting
the traffic prediction accuracy. They achieved this through extreme machine learning. [41] focuses
on applications such as anomaly detection in telemetry data, flexible payload optimization,
interference detection and classification, and other IOT services involving large amounts of data

using Al or Machine learning. In such applications, the use of SNNs can produce attractive results
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considering its spiking behavior. Another challenge that can be addressed is the satellite downlink
replanning problem as mentioned in [45] for effective communication between satellites, which is
a more sophisticated approach. Dynamic power allocation architectures for HTP satellites is
another such area where Al was applied to set reward functions for minimizing the unmet system
demands and power consumptions [46]. Thus, from above examples we can wee the wide areas
for Al application in space.

2.8. Keras

For implementation of the SNN, Keras is the first step for the specific method used in this thesis.
It is an open-source software library with python interface for building artificial neural networks.
It is an interface for the TensorFlow (TF) library which is also open source for machine learning
tasks. TF can be used as an interface for deep neural networks having lucid ecosystem of tools and
resources for several data based and statistical applications.

2.9. NengoDL

A special python package called the Nengo Brain Maker is used for building, testing, and
deploying neural networks. NengoDL is a simulator specific to simulating Nengo models. In other
words, it accepts as input a Nengo network, and enables the user to simulate the network with the
help of certain underlying computational framework (in this case, Keras: TensorFlow). The classes
available to use in NengoDL is designed in such a way that it is similar to the usage of libraries in
TensorFlow. One can Build a Nengo Model with basic understanding of TensorFlow model.
NengoDL enables a user to convert a regular Keras model to a Nengo model and apply spiking
activities so that the people experienced with TensorFlow are benefitted with easy adaptation to

spiking networks. It makes easier to apply and explore spiking activities using special activation
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functions and neuron types, setting firing rates and applying synaptic smoothing for obtaining

better plot curves.

In the next chapter we will see how other authors all over the world have implemented SNNs in

detail, and which of the methods would work for this application.
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3. LITERATURE REVIEW

3.1. Prior works

Understanding back propagation is important while studying neural networks. While applying BP
is difficult for a NN containing spiking activities, Nego provides this functionality built within so
that learning is smoother. The approximated chain rule approach by the authors of [26] provides
detail exegesis of back propagation implementations with spiking neural networks. Considering

from Equations (1) - (4), the approximated chain rule is implemented as follows:

K~ 3t 3wk 9t Ix. k 5
dwlj ot owk 9t ax;(t) ey, OW - ()

From the equations of post synaptic potential and error equations, the approximated threshold

function for firing of a neuron is given as 8, = —8x;(t;) / «, where o equals the local derivative
of x; with respect to axa"—it) . Thus, the second term in the above equation (5) from [25] is
t=t;
expressed as follows:
Gle 1 -1 —1
an (t) t=t; « aX]_(t) . Wl m (6)
ot | _. LiYij ot
t=tj t=t]-
. yi(t) - (5 — ) (7)
Awi(t) = — I
1 aYi(t]')
s = 04 OE_ (5 - 1) ®
b 6Xj (t]) at]‘ 5 | ayll(t])
1,1Wjj a—t]

For error propagation apart from the output layer (J), the generalized delta error in layer | after

applying the approximated chain rule.
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Thus, for hidden layer weight adaptation value reads as follows. An approximation of post-

synaptic potential x;(t) is made

ayr(t

(10)

k _
Awp; = — 1 r.
Zh lw%lia_yn(tl)

g at,

The authors have represented the spike times in milliseconds where the third neuron always fired
at t = 0 for reference starting time. [26] During training, the result showed that the network learned
the XOR pattern with learning rate equal to 0.001 within 500 epochs, while the same rate required
just about 10 to 60 epochs to reach more than 80% prediction accuracy in our model. The number
of epochs for the current thesis is less depending on the amount of data and features selected. For
the second part of the testing, they used an extrapolated XOR function with 6 hidden neurons, 3
input and 1 output neuron, which is slightly different in the current thesis. The study of [26]
provided wide perspectives and abundant knowledge to understand how back propagation could
be applied to a spiking neural network for improving the learning. Have a look at Table 3.1 for a

detailed analysis of various works on creating SNN for different applications.
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Table 3.1 Background information of various works based on SNNs

Paper | Description Implementation Technique
[1] > | FPGA Using “Reject output” to separate the
o
E training data set into two parts for
O
= classifying. The term “Reject output”
< | Image recognition _ ) o )
8 is used for separating all indiscernible
1]
(&)
e patterns from the training data set.
<
The CNN has 10 outputs.
o | LIF
K=}
o
P
[5] > MATLAB, Verilog, and | To find a random target from a map,
o
E CMOS. an indirect training algorithm,
O
= implemented in MATLAB, Verilog
To train a virtual insect to .
and CMOS are used to train SNN.
5 navigate through a terrain . ) )
b Virtual insect is based on a re-scalable
S | with obstacles from the _ _
2— neural network having one input,
environment )
output and hidden layer each.
= spike timing-dependent
©
§ plasticity (STDP)
[6] Xilinx ZC706 evaluation | Use of hybrid of conventional time-
§ board with a XC7Z045 | stepped updating algorithm and
o
% SoC to build the test | event-driven updating algorithm.
(b}
|_

platform

Signed 16-bit fixed-point numbers are
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Classification task on the

used to represent the weights and

c
o
§ MNIST dataset. neuron states. Maximum of 1024
o
o
< neurons for a layer, with fully
2 LIF connected synapses.
o
=
[8] - Xilinx Virtex-5 | Reduced  precision method s
(=)
% (xcbvIx85ff676-3) FPGA | analyzed for training and inference of
c
<
E device. SNN. SNN is first trained and used
- - with the conventional 32-bit single-
< classify the handwritten
§ digits in MNIST precision format. Statistical analysis
= . _
<QE' database. of network weights, activations, and
LIE gradients is performed. By analyzing
the data distribution, the possible
K minimal  numerical format s
o
=
determined. Then SNN accuracy is
tested and computations are done.
[9] 2 | None mentioned Algorithm 1. ML training using
3 .
= online SGD.
3
|_
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Application

A review of models for
probabilistic SNNs
within a probabilistic
signal processing

framework

Probabilistic model:

generalized linear models

Algorithm 2. ML training by online

doubly SGD.

S | for SNNs, known as the
p
spike response model
with escape noise.
[10] > None mentioned The synaptic transistors and neuron
(@)
f__é' circuits are fabricated in different
(&}
(b}
= wafers, and the hardware SNN
Pattern recognition using | . o ] )
s simulation is studied after modeling
§ synaptic transistors and . o
= the behavior of each building-block.
& | neuron circuits _ _
To recover clean images from noisy
LIF model images, a NN is trained using noisy
T train images and mean squared error
o
= (MSE) loss function. The trained NN

is converted to the hardware SNN.
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[11] Software based learning | Created neuro-synaptic network, used
§ followed by hardware- | LIF  neuron model, analyzed
©
%C) based recognition | synapse’s response to a pre-neuron’s
|_

implemented. spike (that will be proportional to the
IS5 Fisher Iris flower | synapse’s strength) and obtained a
<
%_ classifier weight update rule.
<
< | LIF
K=}
o
=

[13] | & | Xilinx XC2V1000 FPGA | Merging NoCs (network on chips)
o
% with programmable spiking neurons.
= Use of a 2-D array of interconnected

Spike packet routing
15 neural tiles surrounded by 1/0 blocks.
©
o
'(—?% Neural tiles are connected forming a
<

nearest neighbor connect routine. An

Not mentioned :
S SNN was analyzed by programming
o
= the tile functionality and connectivity.

[14] Intel core 2 Quad Q6600 | Used GPU language CUDA (compute
§ CPU (24 GHz) and | unified device architecture) recently
©
% GeForce 8800 GTX |released from NVIDIA, to create
(b}
|_

graphics hardware. feature extraction module for the NNs
S neural  networks-based | using OpenMP  (Open  Multi-
s
% text detection system Processing)
Q.
<
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Fork-join model

3
S | OpenMP
[15] | Z | Intel Xeon CPU The whole flow consists of two types
o
% of programs, the first type is only run
(¢b]
= once, to calculate gray level, or doing
SNN model for
normalization, and calculating value
e .
© | segmentation of color
IS at the field of reception, image
S | image (blood smeared
2‘ intensity is integrated. The second
images)
type of program was executed at
Conductance-based ) _
every time step to simulate the
__ | integrate and-fire neuron _ ) o
< dynamic  behaviors of spiking
o .
S | model used to simulate
neurons.
neurons in the network
[16] Not mentioned First, both models are trained with the
- learning rule for 800 epochs with a
(@)
o
é constant rate n = 0.05, depending on
<
O
2 20 trials with varying random seeds.

Then the Bayesian learning rule is
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Classifying a handwritten

considered and the impact of the prior

number and detecting | prediction values is studied on
c
o
= | possible rotation of the | overfitting.
(&)
;:i image of the handwritten
digit
probabilistic model is
D | -
g | introduced for a
=
generalized set-up
[17] . | GPU device Radeon HD | 2 major computation segments:
(=)
o
2 (7970 using OpenCL | Update and propagation. Update
<
O
= | framework feeds synaptic events into SNN,
< | Performance analysis propagate solves neuron model
o
§ equations for each neuron and
Q.
Q.
< generates spike events;
— | Izhikevich
©
o
=
[18] | .. | Intel Xeon E5-2680 CPU | The inputs to the algorithm are the
(@)
o
‘2 |and NVIDIA Tesla K40C | trained network and the spike trains
<
(&)
= | GPU representing the input. The algorithm
S | SNN evaluation evaluates the SNN and produces an
s
2 output class label. SNN is iteratively
g
<
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LIF evaluated for each timestep. Finally,
= the class label corresponding to the
3 : :

S output neuron having the maximum
spike rate is chosen.

[19] - CARLsim A CARLsim simulation occupying
(@)
o
S (24 CPU cores and 8 | CONFIG, SETUP, and RUN states at
<
(&}
= | GPUs execution is done. An 80-20 random
5 SNN simulations spiking network implementation is
IS
= done using 2 CPUs and 2 GPUs.
=
<
_ | Izhikevich and LIF
g
S | spiking neuron models

[20] > Spartan6 FPGA 4-layer  ConvNet trained  for
o
é’ recognition of poker card symbols has
O
= been implemented in a Spartan6

Observing a deck of 40 FPGA, including 22 convolutional
S poker cards nodes and a decision block. Different
= : :

% and determine the kind of strategies for the decision block are
Q.
< | card (hearts, spade, clubs, analyzed.
or diamond)
_ | LIF
(3]}
K=}
o
=
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[21] Verilog-HDL, Using the datasets of Inverted
>
(@)
< | NANGATE 45nm | Pendulum and Wisconsin dataset, for
e
e
o technology library latency comparison. Seven
|_
_ | Evaluating hardware input/output port modules for each
2 | based SNNs
IS direction in addition to the Switch-
=
< Allocator was used, and the Crossbar

Not mentioned module which handles the transfer of
% spikes to the next spiking neural
p
processing core was used.

[22] | . | SpiNNaker 102 board Comparing scaling potential of
(=)
o
[ SpiNNaker to that of a PC. The
<
O
et experiment helps users of SpiNNaker
= graph processing | dividing graphs for  mapping
§ applications for transfer | maximum number of cores and utilize
g
< | of data packets hardware capabilities to the complete
< | LIF extent.
©
o
=

[23] NEURON, GENESIS, Evaluating  various  kinds  of
§ NEST simulation tool, | simulation techniques and algorithms
©
% NCS, CSIM, XPPAUT, | presently implemented and the
|_

SPLIT, Mvaspike

precision of those in which plasticity
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review different aspects | is based on the exact timing of the

of the simulation of | spikes.

Application

spiking neural networks

Hodgkin-Huxley type, IF

models, using event-

Model

driven integration

strategies

3.2. Inference from prior works

From the above table it is clear that most of the applications makes use of MNIST data for
classification in [6], [8], [11], [14], [16] and [21], and most of them involve complex
implementation methods and structures created on simulation platforms [23] and on chips like
FPGAs [1], [6], [8], [13], [20] and 94[22] Other software based implementations include
MATLAB, Verilog HDL like in [5] and [21], and [11]. Although access to some tools is available,
coding in Verilog HDL happened to create more difficulty. Use of CPUs and GPUs for
implementing SNNs significantly exude more complex structures and [14], [15], [17], [18] and
[19] appear cumbersome for immediate application or deployment. Further, such implementations
require ample prior knowledge and time to complete implementation successfully. Evidently, from
Table 3.1 we can see that the number of input and the output neurons depends on the features of
the data considered for inputs and the response required. Far from classifications involving SNNs
to understand types of flowers and digits [11], works like [31] seem to us as eye openers to the
ways and several applications in which neural networks can be applied, which can be used but

there isn’t sufficient details in these papers to implement this idea. All the prior works studied
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above provide ample information regarding creating SNNs and using them to make intelligent
systems. These works appear to shed very little light on applying SNNs to space operations. Unlike
[43], instead of identifying satellite downlink based on elements such as memory filter and high
power amplifier, in this thesis, 1 will be using BER for link quality and link occupancy to deduce
the response time (cost). This thesis covers in detail the challenges in space communications and
the need of SNN based Al in the same. Many path selection algorithms are available such as in
[44], which provided a wide outlook on such methods involving neural networks, but the neuronal
activities in most works lack spiking activities. Secondly, this thesis proposes the use of NengoDL
for immediate deployment and integration as neuromorphic chips consuming comparatively less
power than CPUs and GPUs. SNN created through this framework can be integrated into Intel’s
Loihi neuromorphic chip which is proven to consume very less power and energy as shown in
Table 3.2. This is the reason for emphasis on use of SNNS.

Table 3.2 Average energy per inference and power consumption chart. Source: [39]

Hardware | Running Idle Dynamic | Joules per | inference per
(Watts) (Watts) (Watts) inference sec
CPU 28.48 17.01 11.47 0.0063 1813.63
GPU 37.83 14.97 22.86 0.0298 770.39
Intel’s 0.110 0.029 0.081 0.00027 296
Loihi

From above, we can see that SNNs are event driven and can be implemented with less power. First
one is Von Neumann architecture. The neurons are evaluated in the central processing unit while
the synapse weight information and neuron outputs are stored in the RAM. The transfer between

CPU and Ram for the data is the challenge in this case, which limits the speed at which the entire
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network can be evaluated. Secondly, GPUs or graphic processing units, due to their capability to
perform large scale matric multiplication operations, have been able to improve the speed of the
neural networks. The issue here is the higher power consumption. This could make the CPU and
RAM operations look simpler, but their hardware doesn’t resemble that of a neural net. To resolve
this, development of neuromorphic hardware to accelerate the speed of the networks and power
consumption has become essential for next gen systems. Hence, seeing from the performance of
SNNs so far, we can say that designing a SNN for a space application would be a better choice

when compared to CPUs, GPUs and traditional ANNs known by the ML community today.

In the net chapter, we will look at the principles of satellite communications necessary to

understand that falls within the scope of this thesis.
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4. PRINCIPLES OF SATELLITE COMMUNICATION

4.1. Satellite Link Budget

This section contains a brief description of the considered physical layer attributes for the satellite
link. Satellite communication system consists of two types of links: Uplink and Downlink. The
satellite link budget involves relatively simple calculations. Certain non-trivial concepts could also
be taken into account. On highly professional grounds, all the second order effects are to be
considered that would affect the link budget, of which most are skipped in this case. The most
important few attributes are considered in this case for computing the link budget. Satellite
communication is wireless communication through Radio Frequency link, which includes free

space losses and additional losses[49].

oy ___ w¢

Transmitter Receiver

Free space loss
(dB) r

Figure 4.1 Wireless Transmission
Hence, at Transmission there may be several things such as data, modulators, encoder, power
amplifier, etc. Here considering it a black box, what comes out of this is a power Pt (Transmitted
power) which is fed to an antenna with a gain Gt. Similarly at the receiver, there will be a series
of things like filters, amplifiers, down Converter mixers, etc., which when seen as a black box, the
input has a Received power P;, coming from the reception antenna with a gain of G. Between the
two antennas, the wireless communication takes place with the Free space lowering the intensity

of the signal.
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4.1.1. Free space losses

[49] The increasing intensity of the signal due to the distance between the two stations, goes with
Quadratic law. The intensity of the signal received depends on square of the distance between
transmitting and receiving antenna. According to quadratic law, if the distance is twice as far, the
power flux reduces four times. This issue persists for all wireless communication and not particular

only to satellite communication.

Figure 4.2 Quadratic law
Transmission in satellite communication, means that the transmitter performs sends section of the
payload onboard of the satellite with the corresponding transmitting antenna pointed towards the
earth. There are several types on antennas but one thing to remember is that they do not create
energy. They only transmit and receive by focusing the collected power on one focus point. The
directive gain of the antenna is the ratio of power density of antenna in one direction to that
radiated by an ideal isotropic antenna (emits uniformly in all directions) radiating the same total
power. This depends on the direction the antenna is pointed. For simulation, we enabled the
constant pointing by the use of targeted option on the sensor properties. The highest value of the
directive gain is given by D, which is the directivity of the antenna[49]. Evidently, two angles
need to be defined that would render the position w.r.t an ideal sphere that is a certain distance
away from the antenna. Thus, the direction at which the antenna is focused renders energy at best.

The directivity is rendered in dBi as we are comparing with isotropic antenna [50].
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D(dB;) = 101 (Radiated power density in one direction)
v 0810 [sotripically radiated power density
4mA,
D= 2

Where A, is the equivalent area or effective surface of the antenna and A is the carrier
electromagnetic wavelength, depicting that higher the wavelength, lower will be the frequency of
radiation and smaller will be the directivity. The effective surface may not be the physical surface
are of the antenna, and this carries the properties of the antenna. If we have an aperture This
attribute in handled within the simulation for obtaining the link budget. The gain is not same as
directivity but can be calculated as the efficiency times directivity. As available for dipole antenna
the way the radiation pattern recedes with distance thus resulting in total power flux dropping, we
are unaware of such representations for general patterns.

G = NragD

4.1.2. Equivalent Isotopically radiated power: EIRP
[49] It is assumed that we have an ideal isotropic radiator which is equivalent to the antenna under
consideration in the given direction. This is defined as the power with which an isotropic antenna
would have to emit to have the same power flux given as follows:

EIRP = GP,
Considering two antennas, one for emission and one to receive, with the knowledge of distance
between the antenna and the receiver the power can be obtained.
Considering emitted total power Py, The EIRP is known from above equation, so, a distance x away
from it, the power would have dropped by 4mx? . Therefore, the power received is obtained as

follows:
_EIRP. A, PG
'™ 4mx2 T 4mx2C
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Isotropic source (EIRP)

Figure 4.3 EIRP scenario
This can be represented in terms of gain as a function of wavelength:

b _ P,G.GA?
" 4mx?
Hence, converting to dB as it is more preferential, we obtain the total received power in dBW as

the FRIIS question for propagation.

2

4
P(dBW) = R(dBW) + G,(dBi) + Gy(dBi) — 10logyo (—)

With a link receiving from a Tx, the received power depends on the power transmitted, gains of
the transmitter and the receiver and is counter proportional to its losses [50]. The last term denotes

the free space path loss.

4.1.3. Additional Losses
From the above FRIIS equation, all the losses can be subtracted easily as shown above.
Conventional practices follow adding all the gains (improving the signal) and subtracting the

losses (those deteriorating the signal).

a) Free space propagation loss
b) Attenuation loss
¢) Polarization mismatch

d) Interference, etc.
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It is not possible to describe the quality of signal just using the absolute power value. The noises

are to be included while understanding the signal quality as mentioned in the propagation equation.

4.1.4. Signal to Noise Ratio (SNR)
In previous section, the several types of noises were introduced. These noises can be quantified
into an expression in terms of an effective temperature, which is an equivalent temperature taking
all these noises and recreate their power in terms of thermal noise. Sure, thermal noise by itself
stands out as a type of noise, but even the other sources of noise could be obtained by
mathematically substituted as Nyquist noise formula with an equivalent temperature.

N = kpTsys
Where N is the noise spectral density (NSD) describing the power of the noise per unit Bandwidth
(BW), kg is the Boltzmann’s constant and Ty is the effective temperature of the system. This
formula is called as the Nyquist noise formula. Ty includes all the noises and is a parameter of
the system as a whole. To obtain the full power, the BW is multiplied with this value. Hence, the
total received power from FRIIs equation, divided by the NSD times the BW, renders the carrier
to noise ratio (C/N)

C_ PRGGA?
N (4mx)2L,kgTsB

Energy per bit per unit spectral density for the noise is Eb/NO is a quantity that is directly connected
to the error rate. The Eb is obtained by dividing the previous expression by transmission rate and
to obtain NO, the previous expression is multiplied by BW.

E,  energyper1bit

N, Noise Spectral Density

B,  RGGA?
N, (4mx)2LkgTR
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Ey Gr
N—(dB) =G+ R +T—— Ly — L, + 2285 —101log;p R
0

S

The term G, / Ts represents the gain per system temperature of the receiver in dBK and 228.5

stands for the Boltzmann’s constant in dB.

4.2, Satellite communication example
Consider the following: A GEO satellite link with transmission rate of 100Kbits/sec with receiver
gain 35dB, transmitter gain 20dBi. If the satellite is assumed to be exactly at the equator and

transmission power of 700Watts at 10GHz frequency. (Source: [50])

Ts = 300K | Pt=700W | f = 10GHz | 1 = 1/f

Thus, P,(dBW) = 10 logio (700) = 28.5dBW

4 2
P.(dBW) = P,(dBW) + G,(dBD) + G,(dBi) — 10 logyg (%)

471'*36000)2
1/10GHz

= 28.5dBW + 20dBi + 35dB — 10logso

= —229.61 dBW

% = 35 — 10 logio (300) = 10.2dBK

E
N—b(dB) =20+ 28.5 + 10.2 — 203.5 ( Ls) — 5 (La) — 228.5 — 50
0

= 28.7dB
~ 29dB
From the above value is it clear that the quality of the signal is very good. Using this calculation,
we can deduce the associated BER suiting the type of modulation used. The BER is a probability

of error in the transmitted data.
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4.3. Link budget conventions

1. Compute or evaluate the transmission power — Pt and obtain the gain Gt in the direction
considered.

2. Calculate the free space path loss for the frequency under consideration and thus estimate
Ls. It is essential to note that the distance varies according to which orbit the satellite
currently is.

3. Additional losses such as polarization mismatch, loss due to satellite drag, atmospheric
losses, etc. need to be estimated. These losses are subject to change according to location
Or seasons.

4. Compute the system temperature Ts and the Rx gain Gr. Obtain the Gr/.Ts ratio in dBk.

5. Obtain the BER based on modulation and compare the calculated Eb/NO with the one
required for the desired BER by calculating the link margin.

6. To obtain a positive link margin, modify the parameters such as EIRP, Pt, etc.

4.4, Bit Error Rate (BER)

The BER value is a measured as the number of error bits received per unit time. If X bits were
transmitted, and had x error bits in them, the ratio of x/X is the BER, which is a unitless measure.
The probability pe is the expectation value of the BER. The bundle error ratio can be calculated
similarly as follows[34]:

Po=1-(1-pe)

where L is the Data bundle length of L bits. The BER values were obtained through simulation
for time series data covering 24hrs of time. The BER describes the link quality inclusive of all the
losses. From [35] evidently, the probability of error can be obtained in terms of Q function

expressed as using Energy per symbol to noise spectral density as:
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P(Error) = Q (\/?E:) =0.5erfc (\/E:Z)

For synthetic data, Obtaining BER was the most challenging task. For obtaining the BER, the
following procedure was adopted. Firstly, the simulation of the satellite scenario was done for
both LEO and GEO orbits. Post this, the range of energy per bit to noise power spectral density
was obtained through the simulator. This range was used to randomly obtain the Eb/NO values and
corresponding ES/NO values using the following formula [36]:

Es _ By o
N, = N, 08>

Where M = 4 for QPSK channel. This is expressed under the “Reg” column after each Eb/NO
value in the data sheet. These values are randomly generated for obtaining 10,000 synthetic

observations behaving like simulated data.

4.5. Cost calculation
Considering a bundle of data is transmitted, this bundle can be viewed as a file of size 100MBytes.
Size of one bundle = 100Mbytes | therefore, Size of One bundle = 800 Mbits
Probability of 1 bit error in a bundle = P, = BER
Probability of 1 bundle loss = p, =1 — (1 — p)*
Where L is the length of the bundle. If we consider 1 bundle to be file, then L is the size.

Size of Bundle
Data Rate

Tranmsission time =

Propagation time is the time taken to cover d distance in 3*108 m/s (Speed of light). If we consider
LTP type of transmission, The Round-Trip time (RTT) is twice the propagation time. Thus, Time

Required to transmit the bundle[51]:

d

Propagation time = o T—
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Bundle time = (Transmission time) + 2*(Propagation time)

size of bundle o 1
rate (1—pp)

Link Tx time =

According to queuing theory, the service time is the time taken to serve a customer. In this case,
the time taken to serve one bundle. Occupancy is the number of bundles waiting to be transmitted.
The system would have to transmit n such bundles. This time is considered as the cost of that link.

Bundle time Bundle time

Service time = s = =
Probability of successful Transmission (1-pp)

Response time = (Occupancy * Average Bundle time) + service time
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5. DATASET GENERATION

The STK cloud simulation tool is used to simulate satellite communication scenarios to obtain the
BER values as no real data is available in case of satellite downlinks. One is GEO and the other is
LEO. The link budget obtained from these scenarios are used to obtain a range of values to create
another set of larger dataset as synthetic values for experiments. This synthetic data is used to see
how the SNN would respond to a large data set of random events. To simulate using STK tool,
one must undergo certain necessary trainings to correctly use the STK tool specific to creating
communication scenarios. On a generic level, the scenario can be visualized as the following
image, refer to Figure 5.1. The satellite being a LEO or Geo satellite makes a selection of the best
link for transmission, giving the idea that the reception need not be monitored and controlled

manually.
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Figure 5.1 Satellite scenario considered

5.1. Simulation procedure
The objects that are used for the scenario created are satellite, transmitter, receiver and sensors,
places (locations/facility). All the necessary objects are available to be inserted from the object

browser. The properties can be defined by using one of the several methods listed on the right side
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and the properties are set. The properties are set such a way that it mimics real satellites

transmitters and receivers. Further, the environmental conditions can also be set, such as rain and

Insert STK Objects n

Select An Object To Be Inserted: Select A Method:

Scenario Objects Q Search by Address
¥ arcraft © Area Target From City Database
& Chain “4 Constellation & From Shapefile (.shp)
#pCoverage Definiton @ Faciity (& From Place Fie (.plc)
& Ground Vehicle 57 Missie &, From STK Data Federate
@ 3¢ satelite @ Insert Default
& ship O Target [ Define Properties
&B volumetric

Attached Objects
&S Antenna A Figure Of Merit
@ Rradar N Receiver
§ sensor @ Transmitter
Create a default place

Do not show me this again Edit Preferences... Insert... Close Help

5.1.1. Transmitter and receiver properties

The downlink properties were set for the transmitter and the uplink properties were set to the
transmitter and the receiver, refer Figure 5.3. This scenario assumes the link is established such
that the uplink transmission was already done. The type of transmitter is simple transmitter model
and that of the receiver is complex receiver model given by STK. The values such as frequency,
EIRP, data rate and polarization are set according to the recommended values chart provided by
the International Telecommunication Union (ITU)[37]. The following table shows the list of
recommended values necessary of simulation from ITU as well as particular to conventional

satellite values.

Table 5.1 List of recommended values for satellite communication by ITU

Service GEO LEO
Frequency (space-to-Earth) (GHz) 19.92 19.2
EIRP (dBW) 61.8 58
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Polarization Left hand circular | Right Hand Circular
Bandwidth (MHz) 41.84 4.1

Data Rate (Mbps) 51.84 8900

Distance rage (km) 36000 2000

Propagator J2Perturbation SGP4

Several other factors can be monitored and set according the ITU recommendations. Once all these
parameters are set, each element is provided access to each other element with the help of the
“Access” feature for the objects. The transmitter can now access the details of receivers. The
“Link-Budget” is one such attribute that can be accessed through navigation to the access page.
Similarly, the “Report and Graph Manager” feature of STK cloud enables crating new styles of

graphs and reports for the simulated period, for the factors that one is interested in analyzing.

b e e b
LSsEUDME- 8 S 8-W-0,,00, sEESEN
Hadurw®Ea2 oo

[E——— e

Figure 5.3 Sample Transmitter properties of LEO orbit

Table 5.2 List of common features

Modulation QPSK

Pointing targeted

Antenna diameter 0.5m

Sensor Type Simple conic (5 deg)
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Antenna model type Parabolic

Transmitter Simple Transmitter model

Receiver Complex receiver model

Explicitly, other environmental Losses can be set by selecting respective databases from the STK
cloud database. This enables one to add additional noise to the signals transmitted is the location
of the places change. The databases contain rain and cloud records from several places and days.
A separate link budget was obtained for BER analysis with explicit Rain and fog loss to analyze
how the system responds in such cases. From the graphs obtained through simulation, it was

observed that the behavior of the signals is the same except there is a change in the range of values.

5.1.2. Space Scenario

LEO satellites are closer to earth at around 2000kms and at the same time provide access to
receivers from various parts of the same country. GEO satellites are at about 36000kms away from
earth and this mode along with the earth, and hence the name GEO stationary. From Figure 5.8 it
IS we can see that antenna pattern. It the same for all the receivers provided the features are set
with the appropriate values. Yellow lines in the orbit path on 2D graphics show that the satellite
mildly busy and the red lines shows that the satellite is accessing all 3 receivers and very busy.

The blue line indicates change in satellite is not accessing any of the receivers.

$ 3D Graphics 1 - Earth sE= w 2D Graphics 1 - Earth S e
=flea @E,. EFae. 8.

SN BE. SRR/ //EC. Q. E.
kS
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Figure 5.4 LEO Orbit simulation screenshot before contact.
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Figure 5.5 LEO Orbit simulation screenshot at common contact.

Figure 5.7 2D view of GEO scenario
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Figure 5.8 Antenna pattern visualization from one of the ground stations.

5.2. Reports and graphs

The “Report and Graph Manager” can be accessed to obtain the desired graphs for analyzing the
scenarios, refer Figure 5.9. The following are the graphs obtained from different scenarios under
different circumstances. All the graphs will be generated with time on the x axis and customizes
y axes options in STK tool. Explicit RF environment losses can be enabled or disabled by checking

or unchecking the model use option mentioned in Figure 5.10.

Figure 5.9 Access page for transmitter
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Figure 5.10 Explicit RF environment losses

Figure 5.11 Report and Graph manager page

5.2.1. GEO Scenario without explicit RF loss

This thesis analyzes three kinds of data for each scenario. One is synthetic data; one is simulated
without explicitly setting the RF environmental losses and finally a dataset with explicit RF
environmental losses. Figure 5.12, and Figure 5.13 show the graphs representing how the
distance(left Y-axis) and the free space losses(right y axis) vary with time(X-axis) along with
BER(right Y-axis and left y axes respectively in each image). Since we have not provided explicit

rain and fog loss, it can be observed that the BER is lower and so are the free space losses.
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Figure 5.12 GEO - BER and Distance Vs Time
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Figure 5.13 GEO - BER and Free space loss vs Time

5.2.2. GEO Scenario with explicit RF loss

The second part is to create the same scenario, but this time we give explicit rain and fog loss to
make the links to have poor RF environmental conditions. We can see from the following graphs
that BER curves are wider and higher, showing the lower quality of the link and The free space
losses in Figure 5.14 show very high levels measured in dBs implicating that the quality of
environment is poor due to explicit RF losses. The explicit rain and fog loss recorded in dB can
be seen in Figure 5.15. X-axis shows time, left and right y axes show BER and free space loss

respectively.
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Figure 5.14 BER, Free space loss Vs Time
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Figure 5.15 Rain Loss and CloudsFog Loss Vs Time
5.2.3. GEO Access durations
The following pie charts represents the access durations for the GEO satellite among the three
receivers. We can see that the duration of access in long enough for all three receivers showing
the stationary behavior of satellite. This shows that the satellite is constantly available for a given

area for a long time.
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Figure 5.16 Access duration for GEO for Transmitter to Receiver 1

Figure 5.17 Access duration for GEO for Transmitter to Receiver 2

Satellite-GEO_Com_sat-Transmitter-Transmitter1-To-Place-Place3-Sensor-Sensor3-Receiver-Receiver3: Access Duration - 15 Mar 2021 20:51:17

Figure 5.18 Access duration for GEO for Transmitter to Receiver 3

5.2.4. LEO Scenario without explicit RF loss
The following graphs show the graphs of BER for the LEO scenario. The closer the satellite, lower

the BER and higher the link quality. Similarly, the graphs show the variation of BER and losses
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with time during the contact period. This contact period is nothing but the access duration. BER
varies with time starting smaller and gradually reaching higher values with increase in time for
each access duration. A better view can be seen in the next graph as BER(right y axis) varies with
distance(left y axis) at the first common contact in Figure 5.19. It is clear how behavior of BER in
LEO and GEO scenarios are different. The free space losses(right y axis) at each contact duration
is shown in Figure 5.20 and Figure 5.21 shows the BER is lower during the peak duration of access
and the increases as the satellite moves away from the transmitter’s region of capture. Keeping in
mind that for this scenario the RF environmental losses were not set explicitly, the pattern appears
in such a way that the BER is very low during the beginning phase of communication. The graphs
also show a clearer view for the first common contact to show the pattern of the curves more

understandably. For all, x-axis represents time of 24hr duration.
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Figure 5.19 BER, Distance Vs Time (at first common contact)
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Figure 5.20 BER, Freespace Loss Vs Time (All)
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Figure 5.21 BER, Freespace Loss Vs Time (At first common access)

5.2.5. LEO scenario with explicit RF losses

The next part is to visualize the variations when explicit RF losses are provided to the scenario.
When explicit RF loses are provided, the BER gradually changes from high values and peaks
down at low values with decrease in distance at each receiver. The Figure 5.22 represent the
BER(right y axis) variation with distance(left y axis). Figure 5.23, Figure 5.24, Figure 5.25, Figure
5.26 show the losses for this scenario and it can be seen that it behaves same as the one without
explicitly specifying RF Losses(right y axis). Since the behavior of these attributes can all be
represented through BER, the BER values can be used as feature for predicting the best link in the

scenario.

Figure 5.22 BER, Propagation Distance Vs Time (at first common contact)
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Figure 5.23 BER, Free space loss Vs Time (all)
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Figure 5.24 BER, Free space loss Vs Time (at first common contact)
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Figure 5.26 Rain and Fog Loss Vs Time (At first common contact)
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5.2.6. LEO Access durations

The following pie charts in Figure 5.27, Figure 5.28, and Figure 5.29 represent the access durations
for the LEO satellite at the receivers. We can see that the duration of access is shorter and
distributed throughout the 24 hours at 6 to 7 different time periods for each receiver showing LEO
satellite behavior clearly. Although this has nothing to do with the prediction at the NN end except

the BER, it helps understand the satellite communication better.
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Figure 5.27 Access duration for Receiver 1

Satoliie-LEO_ T To-P Access Duration - 15 Mar 2021 22.29:79

Figure 5.28 Access duration for Receiver 2
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‘Sateline-LEO_ "Access Duration - 15 Mar 2021 22:29:34

Figure 5.29 Access duration for Receiver 3

5.3. Link budget reports

The link budget report can be accessed the same way as the graphs. The Access page contains a

“Link Budget” button which when clicked generates a short form of link budget for any link that

is selected from

the transmitter. Refer Figure 5.30, which shows the snippet from STK tool for

receiver 1 as an example. The link budgets for the rest of the links are obtained in similar fashion.
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Tine (U7C0) EIRP (dBW)  Rovd, Prequency (OFz)  Rovd. Tso. Power (dB)  Plux Density (dBW/m'2)  g/T (dB/R)  C/Wo (dB'Fz)  Bandwidth (kBz) C/N (@)  Eb/No (dB) BR

126 Jan 2021 12:00:00.000 58.500 20.000014 -149.939 -102.462988  13.186233 91846102 51840.000 146995 14,6995 7.8168408-15
26 01:00.000 58.500 20,0004 -149.936 102459511 13.186235 91.849578 51840.000  14.7029 14,7029 7.631312-15
6 Ja 102:00,000 56,500 20.000014 149,932 -102,456085  13.186235 91.853035 51840.000 14,7064 14,7064 7.4511106-15
26 Jan 2021 12:03:00.000 50.500 20,000014 -149.929 -102.452619 13106235 91836470 51040.000 14,7098 14,709  7.27606¢-15
26 Jan 2021 12:04:00,000 50300 20,0004 -149.925 -102.449204 13186233 91839883 51840.000  14.732 47132 7.106026e-15
126 Jan 2021 12:05:00.000 58.500 20,0004 -149.922 -102.445610  13.186233 91.863279 51840.000  14.7166 17066 6.940831e-15
126 Jan 2021 12:06:00.000 50.500 20,0004 149,919 -102,442437  13.186238 91866652 51640.000 14,7200 14,7200 6.780330e-15
126 Jan 2021 12:07:00.000 56.500 20.000013 149.915 102439084 13,106235 91.870005 51840.000  14.7234 1234 6624381615

Figure 5.30 Link budget report

These results are stored as comma separated values (CSV) and used for applying further cost

calculations to

the models. From this chapter one can infer that instead of using every

interdependent factor for link quality, we can use BER collectively to represent it and understand

how other factors are related to it.

49



In the next chapter, we will analyze the collected data after applying the cost calculations to

observe the behavior.
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6. DATA ANALYSIS

6.1. Behavior of measured and theoretical data

The following table shows a sample of measures and theoretical BER values from the Eb/NO using
Q function. From Table 6.1 Sample Measured and Theoretical BER values, we observe that BER
changes drastically, but the behavior of the curves is the same.

Table 6.1 Sample Measured and Theoretical BER values

Eb/No (dB) Measured BER3 Theoretical BER
16.2024 3.32E-20 6.25884E-09
16.28 1.55E-20 5.77845E-09
15.9787 2.76E-19 7.87954E-09
15.3705 5.24E-17 1.47434E-08
14,5701 1.88E-14 3.36627E-08
13.6814 4.17E-12 8.43222E-08
12.7879 3.53E-10 2.1267E-07
12.9104 2.02E-10 1.87315E-07
13.3624 2.26E-11 1.17296E-07
13.6647 4.57E-12 8.57913E-08
13.774 2.50E-12 7.66219E-08
13.6757 4.30E-12 8.48208E-08
13.3839 2.02E-11 1.14714E-07
12.9359 1.80E-10 1.8243E-07
12.7401 4.37E-10 2.23473E-07
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The theoretical BER values are higher than the measured values for all the links. Figure 6.1 and
Figure 6.2 show the plot of BER vs time for simulated and synthetic data for satellite a LEO
scenario. The observations are same for the GEO scenario also. Practically speaking, a model
trained using this data set would fail miserably in making correct predictions. But since the
behavior of the data is the same, theoretically, the model would give similar results as the data,

behaves similar fashion.
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Figure 6.2 Theoretical BER
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6.2. LEO scenario

BER vs EB/NO graphs for each link can been seen in the following graphs. The following tables
show the sample of synthetic data created followed by the graphs plotted for each link and
simulated data. As mentioned earlier, the occupancy values are random generated using MS Excel.

EbNO_1, Pe BER1, Occupancyl and Response_Costl are associated with link 1. Similarly, the

naming conventions are for links 2 and 3 respectively for synthetic data.

6.2.1. Synthetic data

The tables, Table 6.2 and Table 6.3 show a sample of synthetic data for the LEO scenario. The

values are obtained based on cost calculations (334.5).

Table 6.2 Sample Eb/NO and BER for LEO scenario Synthetic data

EbNO_1 Pe BER1 EbNO_2 | Pe_BER2 | EbNo_3 | Pe_BER3
13 1.33293E-10 21 5.3E-57 14 6.8E-13
16 2.2674E-19 15 9.1E-16 25 7E-140
18 1.39601E-29 16 2.3E-19 18 1.4E-29
20 1.04424E-45 14 6.8E-13 25 7E-140
17 6.75897E-24 24 1E-111 24 1E-111
22 3.29609E-71 19 1E-36 20 1E-45
12 9.00601E-09 26 2E-175 24 1E-111
20 1.04424E-45 22 3.3E-71 19 1E-36
21 5.2997E-57 20 1E-45 21 5.3E-57
18 1.39601E-29 13 1.3E-10 20 1E-45

Table 6.3 Sample Occupancy and Response time for LEO Scenario Synthetic data
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Occupancy| Response |Occupancy| Response |Occupancy| Response
1 Costl 2 Cost2 3 Cost3
7 0.83738 7 0.82577 2 0.30972
5 0.61933 5 0.61933 6 0.72255
6 0.72255 6 0.72255 6 0.72255
1 0.20644 1 0.2065 6 0.72255
2 0.30966 2 0.30966 6 0.72255
10 1.13543 10 1.13543 6 0.72255
1 139.027 1 0.20644 5 0.61933
4 0.5161 4 0.5161 1 0.20644
9 1.03221 9 1.03221 2 0.30966
9 1.03221 9 1.04382 1 0.20644

Eb/NO values are random generated based on the range obtained from link budget simulation.
Figure 6.3, Figure 6.4, and Figure 6.5 show Eb/NO vs BER for links 1, 2 and 3 respectively of
synthetic data generated all showing similar behavior. This makes it a good dataset for training
the SNN to learn selection between closer values. Concurrently, Figure 6.6, Figure 6.7, Figure 6.8
show the cost and occupancy of each link and how it varies with respect to each other. The
response time or cost is obtained through mathematical calculations involving the occupancy, thus
showing some level of proportionality with its rise and fall. Figure 6.9 shows the cost at each
observation that the SNN would see at a given random instance of time. 3 bars for each observation

representing cost of links 1, 2, and 3 respectively.
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Link 1 Occupancy and Cost
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Figure 6.8 Link 3 Occupancy and Cost for each observation
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Figure 6.9 Cost for each observation

6.2.2. Simulated data

The following table shows the simulated data sample Eb/NO and BER. Refer Table 6.4 for the
values and Table 6.5 for the cost and occupancy for each link. STK tool was helpful in creating
the scenario and extracting the BER.

Table 6.4 Sample Simulated data LEO (Eb/NO vs BER)

Eb/No Eb/No Eb/No
BER1 BER2 BER3
(dB) (dB) (dB)

14.9166 1.68E-15 14.327 9.21E-14 1415 | 2.72E-13

16.1028 | 8.64E-20 15.239 1.48E-16 15.05 |6.34E-16

17.2058 | 5.80E-25 16.01 2.06E-19 1581 |1.26E-18

18.0049 | 1.30E-29 16.493 1.80E-21 16.3 | 1.23E-20

18.2564 | 1.00E-30 16.57 7.98E-22 16.42 | 3.96E-21

17.8647 | 9.82E-29 16.224 2.70E-20 16.12 | 7.34E-20

16.98 8.52E-24 15.545 1.25E-17 1549 | 1.95E-17
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15.8507 | 8.85E-19 14.671 9.54E-15 14.66 |1.03E-14
14.6631 | 1.00E-14 13.718 3.41E-12 13.74 | 3.08E-12
13.8986 | 1.23E-12 13.463 1.34E-11 13.33 | 2.72E-11

Table 6.5 Sample Occupancy and Response time for LEO Scenario Simulated data

Occupancy| Response |Occupancy| Response |Occupancy| Response
1 Costl 2 Cost2 3 Cost3
7 0.83738 7 0.82577 2 0.30972
5 0.61933 5 0.61933 6 0.72255
6 0.72255 6 0.72255 6 0.72255
1 0.20644 1 0.2065 6 0.72255
2 0.30966 2 0.30966 6 0.72255

10 1.13543 10 1.13543 6 0.72255
1 139.027 1 0.20644 5 0.61933
4 0.5161 4 0.5161 1 0.20644
9 1.03221 9 1.03221 2 0.30966
9 1.03221 9 1.04382 1 0.20644

The following graphs show Eb/NO vs BER for all three links for this scenario. The curves behave
the same way as the synthetic values in QPSK modulation. The range varies from 12 to 26 dB for
Eb/NO. Refer Figure 6.10, Figure 6.11, and Figure 6.12 for the graphs. Figure 6.13, Figure 6.14,
and Figure 6.15 show the link occupancy and cost for the three links directly proportional to each

other. The range of BER is low as the satellite is a lot closer to the earth.
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Figure 6.16 Cost for each observation
6.3. GEO Scenario

The following tables are figures are associated with synthetic and simulated data of GEO satellite
scenario. The observations show higher error rates since the distance is very large as compared to

that of a LEO satellite.

6.3.1. Synthetic data

Table 6.6 presents a sample of 10 observations for 3 satellite links in the GEO orbit generated in
MS Excel. Eb/NO_1, Eb/NO_2, and Eb/NO_3 are the corresponding values for inks 1, 2 and 3. The
bit error rates are denoted with Pe_BER1, Pe_ BER2 and Pe_BERS3 for each link. The BER range
is very high due to the considered losses at different instances.

Table 6.6 Sample Synthetic values for GEO Synthetic data (Eb/NO vs BER)
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Eb/NO_1 | Pe BERL | Eb/NO_2 |Pe BER2 | Eb/NO_3 | Pe BER3
10 | 1.56846E+16 11 | 1.56846E+16 8 | 1.56846E+16
14| 62.6969357 10 | 1.56846E+16 19 | 47.01629631
6 | 1.56846E+16 10 | 1.56846E+16 9 | 1.56846E+16
19 | 156.7209877 14 | 31.35273816 12 | 21139.88535
5 | 1.56846E+16 9 | 1.56846E+16 13| 158.484531
19 | 94.03259262 6 | 1.56846E+16 9 | 1.56846E+16
11 | 1.56846E+16 8 | 1.56846E+16 19 | 141.0488889
8 | 1.56846E+16 13| 64.45193839 12 | 21218.24584
8 | 1.56846E+16 11 | 1.56846E+16 17 | 156.7209877
9 | 1.56846E+16 7 | 1.56846E+16 14 | 47.02483693

Table 6.7 Sample Cost and Occupancy for GEO synthetic data

Response Response Response
Occupancyl Occupancy?2 Occupancy3
Costl Cost2 Cost3
7 2E+16 6 1.56846E+16 9 1.56846E+16
3 62.7 10 1.56846E+16 2 47.01629631
10 2E+16 7 1.56846E+16 9 1.56846E+16
9 156.7 1 31.35273816 3 21139.88535
2 2E+16 6 1.56846E+16 9 158.484531
5 94.03 2 1.56846E+16 4 1.56846E+16
3 2E+16 7 1.56846E+16 8 141.0488889
2 2E+16 3 64.45193839 8 21218.24584
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The graphs showing the BER vs Eb/NO in dB can be seen in the following images, refer Figure
6.17, Figure 6.18, and Figure 6.19. This is followed by the graphs showing Occupancy and cost
for sample observations in GEO satellite transmitter. Evidently, the data closely resembles the
QPSK modulation behavior as seen in real data. Refer Figure 6.20, Figure 6.21, and Figure 6.22
for the observations at 50 random time instances for each link. Finally, the bar chart representing
cost of the three links at each instance is shown for a few sample observations, which is not clearly

discernable due to the huge amount of data in Figure 6.23.
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Figure 6.17 Synthetic data BER Vs Eb/NO link 1
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6.3.2. Simulated data

Same as the synthetic data, the following tables (Table 6.8 and Table 6.9) show the Eb/NO, BER,
occupancies and cost of each link simulated for GEO scenario using STK tool. The range of BER
is very low as rain and fog loss is not enabled in this data. This means that the sky is clear, and
data is subject to less error and loss. Refer Figure 6.24, Figure 6.25, and Figure 6.26 for Eb/NO vs
BER for GEO simulated scenario. Figure 6.27, Figure 6.28, and Figure 6.29 show the cost and
occupancy variation with respect to rise and fall in each other. Finally, Figure 6.30 shows the cost
at each observation.

Table 6.8 Sample Simulated values Eb/NO vs BER for GEO

Eb/No Eb/No Eb/No
BER1 BER2 BER3
(dB) (dB) (dB)

17.9995 | 1.41E-29 | 17.9302 | 3.85E-29 | 18.0712 4.88E-30
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18.0029 | 1.34E-29 | 17.9349 | 3.59E-29 | 18.0731 4.75E-30
18.0064 | 1.27E-29 | 17.9396 | 3.36E-29 | 18.075 4.61E-30
18.0098 | 1.21E-29 | 17.9443 | 3.14E-29 | 18.0768 4.49E-30
18.0132 | 1.15E-29 | 17.949 | 2.93E-29 | 18.0787 4.37E-30
18.0166 | 1.09E-29 | 17.9537 | 2.74E-29 | 18.0805 4.25E-30

18.02 | 1.04E-29 | 17.9583 | 2.56E-29 | 18.0823 4.14E-30
18.0234 | 9.91E-30 | 17.9629 | 2.40E-29 | 18.084 4.03E-30
18.0267 | 9.43E-30 | 17.9675 | 2.24E-29 | 18.0858 3.93E-30

18.03 | 8.98E-30 | 17.9721 | 2.10E-29 | 18.0875 3.83E-30

Table 6.9 Sample Simulated values cost and occupancy for GEO

OccupacylResponse/Occupancy2| Response |Occupancy3 Response
Costl Cost2 Cost3
10 172.0983 5 03.86021661 5 93.7891133
9 156.4526 4 78.21683678 10 171.9376962
1 31.28765 5 03.85998667 8 140.6781994
5 93.86998 5 03.85987242 10 171.9376062
4 78.2243 10 172.0760817 3 62.52948171
10 172.0978 9 156.4327038 8 140.6780669
3 62.57853 6 109.5027972 8 140.678024
5 93.86966 9 156.4324787 4 78.15907852
6 109.5152 10 172.0756315 5 03.78876245
4 78.22389 3 62.57266782 10 171.93735
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These graphs verify that the proportionality matches both in synthetic and simulated data making
it apt for use to train and evaluate the SNN. The data analysis shows that the BER behaves as it
should for both the scenarios under the specific conditions given. The range of values are low with
nearer distances and when the sky is clear, whereas it is the opposite otherwise. There is a big
difference in the range, but the plotted curves show the same behavior. Further, the cost at each
observation from the bar graphs show how convenient it would be for the SNN to make prediction

at each observation.

In the next chapter, we will discuss how to implement a spiking neural network starting from

traditional neural network and moving to Nengo framework.
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7. IMPLEMENTATION OF SNN

The data collected from the simulation is used to find the cost of each link and fed to the SNN for
predicting the best link. The workflow used to complete the SNN model is done using the steps
mentioned in [42], such as data collection, analysis, model construction, model validation, and

inference.

7.1. Creating the Keras model

A sequential model is created with a few dense layers, having 1 input layer, 1 output layer and 1
hidden layer starting from 3 input neurons, 16 hidden neurons, and 4 output neurons. This
architecture is a quicker and easier but works on the same principles while other methods require
sightly varying architecture[47]. The dataset is split into train, test, and validation. The appropriate
amounts of batch size and epochs depending on each dataset and the model are compiled and fit.
The model is compiled using sparse categorical cross-entropy loss function and Adam optimizer
with 0.001 learning rate and evaluated for the accuracy metrics. A good model is chosen
according to the results obtained after testing in Keras, is selected for conversion. Figure 7.1 Code
snippet from keras shows a glimpse from DNN implementation.[48] provides a brief insight on
how to build a simple deep neural network for classification.

As the model parameters are not known and NNs are mostly trial and error based, several
experiments were conducted by changing the number of layers, activation functions, optimizers,
and size of layers. The results if impact is recorded in a table in the next chapter. What started with
just a few layers picked pace and quicky rise to different number of layers and different size for
each layer. Finally, a couple of chosen models were chosen to see if SNN shows improvement in

performance.
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accuracy: 9.542 - val_lacs: 8.0838 - val_accurac

1 . accuracy: 86828 . val_loss: B.9823 . val accuran

accuracy: 9.6845 . val lass: 8.8793 . val accurac

Test accuracy: 8. H340BBRAIIITEGA1

Figure 7.1 Code snippet from keras

7.2. Converting the model to Nengo Model

The experiments which started with an ad-hoc network has now evolved with 3 neurons in the
input layer, 16, 32 and 64 neurons in each hidden layer and 4 neurons in the output layer. Totally
2980 parameters seen from the model summary, refer Figure 7.3. This may change depending on
which model was selected and there is possibility it may not work for certain other applications.
After the Keras model is created, it is passed into the NengoDL Converter, which is a tool designed
to automate the translation from Keras to Nengo. After training the weights, the do_training
condition is set to true and the nengo_dl.Simulator() class is used to load the weights from the
saved file and used to evaluate the model. The model is compiled and fit before this step. An
example from the NengoDL tutorials was referred to plot the predictions and perform training in
SNNI[47]. The impact of various factors such as activation functions, neuron types, synaptic

smoothing, and firing rates on the accuracy, time taken, and loss was conducted.
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# input

_input = tf.keras.Input((3,))

# Dense layers

dense = tf.keras.layers.Dense(units=16, activation = 'relu')(_input)
densel = tf.keras.layers.Dense(units=32,activation="'relu’)(dense)
dense?2 = tf.keras.layers.Dense(units=64,activation="'sigmoid') (densel)
#dense3 = tf.keras.layers.Dense(units=128,activation="'sigmoid') (dense2)
densed4 = tf.keras.layers.Dense(units=4) (dense2)

model = tf.keras.Model(inputs= input, outputs=densed)

converter = nengo_dl.Converter(model)

Figure 7.2 Code snippet from Nengo

model.summary( )

Model: "model 8"

Layer (type) Output Shape Param #
input 9 (InputlLayer) [(None, 3)] ¢}
dense_34 (Dense) (None, 16) 64
dense_35 (Dense) (None, 32) 544
dense 36 (Dense) (None, 64) 2112
dense 37 (Dense) (None, 4) 260

Total params: 2,980
Trainable params: 2,980
Non-trainable params: 0

Figure 7.3 Sample model summary snippet
For conversion to spiking neurons, a helper function is defined that will build the network, load
weights from the parameters file, and make it easy to meddle with few other features of the
network [47]. The run_network() function contains lines of codes to speed up the simulation at the
network level, predicts the best link for the test data and evaluates the model using validation data.
Initially, the output is constant for each observation as the data fed is not temporal. After swapping

the activations with Spiking Rectified Linear function, the spikes would start to appear.
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In [175]: |do_training = True

it do_training:
with nengo_dl.Sisulator(conwerter.net, sinibatch sizes158) as sim:

) ng
start = time.time()
sim.compile]

optimizerstf. optisizers. Adan(d.881),

loss=tf_losses.SparseCategoricalCrossentropy|from logits=True),
metrices|tf metrics sparse_categorical accuracyl.

]
‘sin. compile(
_BE1)
loss=tf.keras. Lass redErrar| reduction=t{.keras. losses. Aeduction, SUM) ,
metrics=|tf.metrics egorical accuracyl,
sim fit|
{oonverter. inputs|_input]: training_samples),
[conuerter outputs [densed]: training lanels},
validation data=|
{converter. inputs|_imput]: testing samples},
{converter outputs[dense4]: testing_labels},
b
epachs=18,
]
# zave the parsmeters to file
sim.save_params{”./Keras_to_snn_params_A")

end = time. time])
primt{f-Time to train is {end = start}"+" seconds

Build finished in :08:88
Dptimizatian finished in 8:80:88
1 Constructing graph: build stage (@w) | ETA:

Jhone /meenu/ . lecal/Lib/pythen3 , B/site packages/nenge_dl/sisulator.py:468: Userdarning: No GPU support detected. Se
& https:/ /e menga.ai/menga-dl/anstal lation. htal#inztalling-tensorflow for instructions on setting up Tensorflow
with GPU support.

warnings warni

Construction finished in 8:89:88
Epoch 1718

B8/60 |ssssssssssssssssssssssssssssss| . 35 19ms/step . loss: @.0H26 . probe loss: B.9836 . probe sparse categoric
al_accuracy: B.5134 - val_loss: B.8772 . val_probe_loss: 8.8773 - val_probe Sparse_categorical_accuracy: B.4768
Epoch /18

58768 | mssssssssssssssssssssssss]| . 15 Bmsfstep . loss: ©.8618 . probe_loss: B.8618 . probe_sparse_categorica
|_accuracy: B.6686 - val_loss: B.7958 . val probe loss: ©.7958 . val_probe sparse categorical_accuracy: 8.7635

Epuch 3718
£8/60 |smemasassssccssscmsmccacese=| . 15 9msfstep - loss: 8.7528 - probe loss: 8.7528 - probe sparse categorica
| accuracy: B.2843 - val loss: B.&764 . val probe loss: 8.6784 . wval probe sparse categorical_accuracy: 8.733%
Epoch 4/18

B8/60 |ssssssssssssssssssssssssssssss| . 15 Bmsfstep - loss: 8.6358 . probe_loss: 86358 - probe_sparse categorica

L_sccuracy: B.E2A1 - wal_loss: B.SGB2 . val _prebe less: ©.5682 - val _probe sparse categorical asccurac
Epoch 5/18

8.211

sssssssssssss=] . 15 Bmsfstep - loss: 8.5387 - probe loss: B.5387 - probe sparse categorica

val loss: B.4989 . val probe loss: 8.4969 . val _probe_sparse categorical_accuracy: 8.5285
Epoch &/18
£8/60 [amemasasssscscasccscccacecea| . B3 Bmsfstep - loss: 8.4795 - probe loss: B.4795 - probe sparse categorica
\_accuracy: B.E191 - val loss: B.4476 - val prebe loss: 9.4476 - wal probe sparse categorical_accuracy: 8.2408
Epach /18

- . 85 Besfstep . loss! @.4266 . probe loss: BU4266 . probe sparse categorica
|_accuracy: B.E493 - wval_loss: 8.4214 . val_probe_loss: @.4214 . wval_probe_sparse_categorical_accuracy: 8.8395
Epoch 8/18
58,68 mssscsssssss]| . 15 98sfstep - loss: B.4835 . probe loss: B.4B33 - probe sparse categerica

L accuracy: B.E8482 - wal_loss: B.4834 . val _probe loss: ©.4834 . val probe sparse_categorical_accuracy: B.S488
Epoch 9/18

wssseesscesssa| . 15 17msfstep - loss: 8,396 . probe less: £.3956 - probe sparse categeric
- wal_probe loss: 8.3381 - val_probe sparse categorical accuracy: B.5838

1z 1Ims/step - loss: @.38T1 . probe_loss: B.3871 - probe_sparse _categoric
8417 - val_loss: B.3818 . val_probe_loss: B.3818 - val_probe sparse_categorical_accuracy: B.BaSe
Ti®e to train is B.38672144E5538315 seconds

Figure 7.4 Sample SNN code snippet

In [25): def run_network|
activation,
params_files"keras to snn params A",
n_stepsss,
scale firing_rates=1,
synapse=Hone,
n_tests1ge,
neuren_type =

Figure 7.5 Sample run_network() code snippet

The function contains arguments to specify activation, number of time steps to predict (n_step),
scale firing rates, synapse value, number of testing data, and the neuron type. The shape of the
data is different compared to that in Keras. There is an additional time parameter that adds to the

third dimension of the dataset.
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Experiments for each dataset were conducted step by step to analyze the performance of the NN.
Each section contains sub-sections to obtain the results for the NN based on the change in
parameters such as activation functions, neuron types, number of layers and size of layers, epochs,
batch size, and optimizer. Activation functions tested include sigmoid, SoftMax, Tanh and Relu
functions tested in this framework as these are the most used activations for classification.

Neuron types are (a) LIF neuron nengo_dl.SoftLIFRate() with smoothing around the firing
threshold (b) Spiking version of LeakyRelLU, nengo_dl.SpikingLeakyReLU() [47]. Applying
these neuron types along with spiking activation produces good results. The optimizers most suited
for this type of multi-class classification are Adam or RMSprop. Further, synaptic smoothing and
changing the firing rates of the neurons are also done based on values ranging from 0.00001 to 0.5

and 0.1 to 1000 exponentially respectively.

‘rediction |2 ¥ 3 313 3F 3213
e El 21133

MM

3
1
©ay.
nput 1 | [93_B79T1E1Y 62585974880 93 7025123s]]
ime taken to complete running the network iz ©.G969E731995181885 seconds
nput 2 [[12%.1718583  31_3833613% 1563115385 |

ime taken to conplete running the network is
nput 3 [ [1%6. 4624884 1351638987  7E_163816
ime taken to complete running the network 1 1.8

Ingut 1 G
M9 ATOTIS12 63 SHOT4EA0 02 J0xe0235]] 2 |

2 1 E
Treawas Rmetep

2.8 Mz, mas=137.7 Hz} Sutput predictions

Irgak 2
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Figure 7.6 Prediction for imparting spiking activites

Let’s first understand synaptic smoothing. The reasons for performing synaptic smoothing is to

obtain smoother curves and reduce rapid fluctuations during spiking. This is achieved through
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synaptic filters. The Synapse parameter in this run_network() function does this activity, which
basically acts as a low pass filter time constant. This creates a low-pass filter with the given time
constant at the output of all the spiking neurons[47]. Hence this helps compute a running average
of each neuron’s activity for a time period instead of observing the final time step alone. So, if
there are any rapid changes in the inputs, the network output will be less responsive making it take
more time for the output to settle, refer Figure 7.8. The accuracy, slightly improves at times but
deteriorates if too high of a value is given, meaning that the spiking is restricted too much.

Next attribute is firing rate, which can also be sued to improve the model performance. We have
seen that the output of a neuron is a spike in SNN. If this rate is increased, the output will also be
updated correspondingly. If the firing happens more often, the model will begin resembling the
original non-spiking model, where the output is the actual fire rate. This can be done without
training the model again by giving a linear scale to all the input neurons, which agrees well with
ReLU activations functions[47]. Refer Figure 7.7 to see how the neurons spike when firing rates
vary from 0.1 to 8.

Very high firing rates would almost give a constant output without any spiking activity, which is
not the aim of this literature. For regularizing by optimizing the firing rates during training is
another option to increase the firing rates, but it is not done in this thesis to save time. It is
important to be aware that there are tradeoffs depending on the specific application for these

factors.
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Experiment 1.4 Firing Rates

In [26]

scale in
print{f scale={ s:xlc} b
run_netwo rk|

a1:

i Sigreidiil,
iring ratessscale.
5ynap5c-! Ba81,

ple._snowl §

Scale=d.1

fhome/meenuy  Local/ Lib/py _dL/ Eiring rate scaling being a

T A e e e R e e e T T e o e e R i R o

cutput

warnings warn (

Jnamemeenuy . LocalsLun pythons. o/ site packages/nengo dL/ canverter gy 34 wap
at exy R here wore ma Lapers in foe model with That activafion Lyme

warmings .warn{
fhomeneenay . localsLibypythens. 875 ackeges/nengo d1/sinulator.py: 468 ning: Mo GFU support detected.
T T Y e | B Y e W e T T o TR b ey YR (Lo
with P suppart

warnings warn

ensorflow: 11 out of the Last 11 calls to <function Model make predict function <localss.predict functics
at BxJfESAfESOC1E> Triggercd Cf.FUNCTON retracing. Tracing 15 EXDENSLVE and The Excessive number of tracings coul
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Figure 7.7 Prediction scaling firing rates snippet
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8. RESULTS OF SNN

After several trials and errors experimenting with the number of neurons, layers and the sizes, for
the LEO scenario, the best model consists of 3 input neurons 3 hidden layers of 16, 32 and 64
neurons each and output layer of 4 neurons for the Keras model. Unless mentioned specifically,
the output layer activation with 4 neurons, is given as ‘sigmoid’. When converted to Nengo, the
model shows better accuracy at certain conditions. The following graph shows the generic loss
plot that shows the loss reduces with each epoch for both testing and training datasets. The model
might produce the same results after conversion to the new framework but gives a possibility of

increasing the accuracy when a few parameters are tweaked. In most of the cases increasing the

synaptic smoothing decreased the

level produced increase in prediction accuracy. Very high firing rates resulted in a drop in the

accuracy.

prediction accuracy and increase in firing rates up to a certain

12 1
11 \
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0.9 1
08 1
0.7

06 1
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The tables below show the results of the two models for the 3 different datasets obtained for LEO

and GEO scenario. Typically, the loss plots for all the models look like above Figure 8.1 but results

vary according to the data at hand.

Figure 8.1 Generic loss plot
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8.1. LEO Scenario Results

The results of impact on accuracy and time for the synthetic data on the Keras neural network and
SNN according to each parameter is listed below. Refer Table 8.1 and Table 8.2 for results of LEO
scenario synthetic data. Refer Table 8.3 and Table 8.4 for results of simulated data.

Table 8.1 Impact chart LEO synthetic data Keras

Model | Parameter Layers Loss | Time [Optimizer| Accuracy |Batch| Epoch
1 0.394 | 9.69 | Adam 0.89 100 | 60
Optimizer 3,16,32,4
2 0.393835| Rms 0.89 100 | 60
3 3,16,32(X2),4 | 0.3 |8.63| Adam 0.894 | 100 | 60
4 3,16,32(X4),4 | 0.32 |10.14] Adam 0.86 100 | 60
Layers
5 3,16,32(X8),4 | 0.3 |11.41] Adam 0.87 100 | 60
6 3,16,32(X4),4 | 0.33 |5.23| Adam 0.87 100 | 30
7 3,16,32,64,4 0.33 | 9.85| Adam 0.88 100 | 60
Size
8 3,16,64,64,4 0.33 |10.03] Adam 0.88 100 | 60
3,16,32,
9 |activation 1.3863(9.201| Adam 0.48 100 | 60
64(sigmoid),4

Table 8.2 Impact chart Leo Synthetic data Nengo

Model 7 Model 9
Data Parameter
Loss |TimelAccuracy| Loss | Time | Accuracy
- Softlifrate 031 |15 084 [097|153| 081
o
g Spikingleakyrelu 031 16| 084 [097]163] 081
g Spikingrelu 0.31 |1.34) 084 (097 |137| 081
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Regularspiking(Tanh) 0.31 |1.38| 0.845 |0.97|1.41 0.81
Regularspiking(Sigmoid) | 0.31 |1.37| 0.845 |0.97|1.40 0.81
Regularspiking(Relu) 031 |16 | 0845 097 1.9 0.81
0.00001 0.31 |1.56| 0.845 |0.97|1.55 0.67

0.0001 031 |13| 0845 |0.97|156| 0.667

-;%n 0.001 0.31 |1.45| 0.845 |0.97|1.95| 0.665
;) 0.005 0.31 |1.91| 084 |0.97|1.77| 0.665
‘g 0.01 0.31 [1.91] 08 [097|1.78| 0.660
2 0.05 0.31 |1.68| 058 |0.97|1.75| 0.475
0.5 0.31 |1.55| 039 |0.97|1.88| 0.3950

0.1 0.31 |1.52| 0.64 |0.97|201| 0.475

0.5 0.31 |1.29| 084 |0.97|1.88| 0.5350

1 0.31 |1.48| 0.845 |0.97|1.51 0.67

% 2 0.31 (1.47| 0.855 |0.97|1.91| 0.7350
g 4 031 [13] 086 |097|186| 081
N 8 031 |152| 086 |[0.97|163| 0.81
10 0.31 |1.67| 086 |0.97|1.75 0.81

1000 031 |165| 086 |[0.97|185| 0.81

After conducting several experiments for the same set of layers, Keras showed 88% accuracy in
prediction of best link. But Nengo showed only 81%. But when the activation was removed from
Keras and added to the layer having maximum neurons, the performance of Keras model

deteriorated. The prediction accuracy of Keras model was 41% showing poor performance,
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whereas Nengo was able to achieve 84%. When the firing rates were tweaked, the model’s
accuracy raised to 86%.

Table 8.3 LEO Simulated data in Keras

Model | Parameter Layers Loss | Time | Accuracy | Batch | Epoch
5 3,16,32,4 0.89 | 1.77 0.389 5 7
Layers
6 3,16,32(X2),4 | 0.4 1.2 0.60 4 8
3 3,16,32,644 | 0.75 | 0.68 0.66 4 8
7 Size 3,16,32,644 | 003 | 15 0.60 3 11
4 3,8,16,32,4 1.15 | 0.89 0.66 4 8
3,16,32,
8 Activation 1.38 | 151 0.66 3 11
64(Sigmoid),4

Table 8.4 LEO Simulated data in Nengo

Model 7 Model 8
Data Parameter Epoch
Loss | Time |Accuracy| Loss |Time | Accuracy

- 092 3.1 0.33 1.16 | 3.1 0.33 8
§ Epochs 092 | 36 033 [092 | 36 0.33 11
e

§ 0.84 | 4.06 | 0.6667 | 0.92 |4.06 | 0.33 20
- SoftLIFRate 0.84 | 1.17 | 0.6667 | 0.92 |1.31| 0.33 20
(@)

§ SpikingLeakyReLU |0.84 |1.400 | 0.6667 | 0.92 |1.400| 0.33 20
? Spikingrelu 0.84 | 1.22 | 0.6667 | 0.92 |1.35| 0.33 20
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Regularspiking(Tanh) | 0.84 | 1.16 | 0.6667 | 0.92 |1.34 | 0.33 20
Regularspiking 0.33
0.84 | 1.05 | 0.6667 | 0.92 |1.38 20
(Sigmoid)
Regularspiking(Relu) | 0.84 | 1.03 | 0.6667 | 0.92 [1.60 | 0.33 20
0.00001 0.84 | 1.46 | 0.6667 | 0.92 |1.44| 0.33 20
f_.fm 0.0001 0.84 | 1.55 | 0.6667 | 0.92 |1.43| 0.33 20
Ué) 0.001 0.84 | 1.25 | 0.6667 | 0.92 |1.28 | 0.33 20
‘% 0.005 0.84 | 1.77 | 0.6667 | 0.92 |1.34 | 0.6667 | 20
e
2 0.01 0.84 | 144 | 033 |0.92 |1.10| 0.6667 | 20
0.1 0.84 | 151 | 0.00 |[0.92 [1.69| 0.6667 | 20
0.5 084118 | 033 [0.92 [1.24] 0.6667 | 20
1 0.84 | 1.60 | 0.6667 | 0.92 [1.43| 0.333 | 20
§ 2 0.84 | 1.33 | 0.6667 | 0.92 |1.75 0 20
g 4 0.84 [1.469 | 0.6667 | 0.92 |1.57 0 20
- 8 0.84 | 1.39 | 0.6667 | 0.92 |1.58 0 20
10 0.84 | 1.19 | 0.6667 | 0.92 |1.42 0 20
1000 0.84 | 1.45 | 0.333 | 0.92 |1.27 0 20

For the simulated data, the results obtained are not what was anticipated. Firstly, the amount of
data obtained in the simulation for LEO satellite is very less and this might lead to the risk of
overfitting in the model. Due to the geographical locations of the receiver, fewer access durations
were obtained. A total of only 42 minutes of common contact was achieved where each event

represents a reading recorded for 1 minute.
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After shuffling the data for training and fitting multiple times with different sets of training data,
the Keras model was able to give a prediction accuracy of 60%. But Nengo gave 66.7% of
accuracy. After removing the activation from output layer and giving it to the layer with maximum
number of neurons, surprisingly, Keras predicted with 66.66% of accuracy but Nengo gave only
33% accuracy. But after tweaking the firing rates to 0.5, SNN was able to achieve 66.67% of
accuracy. The model is still not fairly good, due to the low accuracy rate. But it is still better than
Keras. As shown from synthetic data, if larger dataset is available, the model might give better

results.

8.2. GEO scenario Results

The results for GEO satellite is given in Table 8.1 and Table 8.2 for synthetic data. Refer Table
8.7 and Table 8.8 for results of simulated fata for the selected models. Though initially the loss is
high for Model 10, after spiking activities are imparted, the loss reduces drastically.

Table 8.5 GEO synthetic data Keras

Model |Parameter Layers Loss | Time |Optimizer/Accuracy|Batch| Epoch
1 0.45| 7.18 | Adam | 0.701 | 100 | 60
Optimizer| 3,16,32,4
2 0.45| 6.88 | Rms 0.70 | 100 | 60
3 3,16,32(X2),4|0.44 | 7.8 Rms 0.70 | 100 | 60
4 3,16,32(X4),410.453| 9.1 | Adam 0.70 | 100 | 60
Layers
5 3,16,32(X8),4 10.453| 10.42 | Adam 0.68 | 100 |20 (ES)
7 3,16,32(X4),4| 0.44 | 10.42 | Adam 0.68 15 10
8 3,16,32,64,4 | 0.44 | 8.44 | Adam 0.69 | 100 | 60
Size
9 16,32(X2),64,4/0.448| 12.11 | Adam 0.69 | 100 | 60
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16,32(X2),
10 |Activation 1.38| 155 | Adam | 0.354 | 100 | 10
64(Sigmoid),4
Table 8.6 GEO Synthetic data Nengo
Model 9 Model 10
Data Parameter
Loss| Time |Accuracy|Loss| Time |Accuracy
Softlifrate 1.3]216| 0.29 |0.54|1.86| 0.805
S
§ Spikingleakyrelu 13120 0.29 1054 1.49 0.805
Spikingrelu 131 1.2 0.29 |0.54|1.37| 0.805
5 Regularspiking(Tanh) | 1.3 | 1.3 0.29 |0.54| 1.7 | 0.805
é Regularspiking(Sigmoid)| 1.3 | 1.84 | 0.29 [0.54|1.94| 0.805
< Regularspiking(Relu) | 1.3 | 1.5 0.29 |0.54|1.48| 0.805
0.00001 13| 17 0.29 |0.54|1.54 | 0.805
0.0001 13|16 0.29 |0.54|1.49 | 0.805
-_g 0.001 1315 | 0.29 |0.54(1.669| 0.805
Ué) 0.005 1.3 185 | 0.285 [0.54(1.56 | 0.80
é 0.01 13 |1.75| 0.285 [0.54|1.67 | 0.785
2 0.05 1.3 (175| 0.28 [054|1.67 | 0.705
0.5 13|18 0.15 |0.54|1.58 | 0.445
. 0.1 1.3 {3.23 | 0.3333 (0.54| 2.4 0.78
;32 0.5 13|28 | 0330 [054]198 | 0.80
L% 1 13(233| 030 [0.54]1.97 | 0.805
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2 1.3 |1.74| 029 |0.54(1.89 | 0.805
4 1.3 |1.76 | 0.285 |0.54|1.83 | 0.805
8 1.3 |1.76 | 0.285 |0.54|1.51 | 0.805
1000 13|15 | 0285 |0.54|1.44 | 0.805

Table 8.7 GEO simulated data Keras

Model | Parameter | Layers Loss | Time|Optimizer|Accuracy| Batch | Epoch
1 0.031 | 8.7 | Adam 0.99 18 64
Optimizer| 3,16,32,4
2 0.0092|8.69| Rms 1 18 54
3 16,32,64,4 | 0.069 | 3.68 | Adam 1 18 10
4 |Layers and|3,8,16,32,4| 0.041 | 7.99 | Adam 1 18 64
size 20
5 3,8,16,32,4| 0.096 {1.398| Adam 1 100
(ES)
3,8,16,32
6 |Activation 1.386 | 1.07 | Adam 0.6 18 10
(Sigmoid),4
Table 8.8 GEO Simulated data in Nengo
Model 5 Model 6
Data Parameter _ )
Loss | Time [Accuracy| Loss |[Time|Accuracy
c Softlifrate 0.9702| 1.32 | 0.645 |0.1167|1.86| 0.97
o
é Spikingleakyrelu 0.9702| 1.59 | 0.645 |0.1167|1.49| 0.97
Spikingrelu 0.9702| 1.32 | 0.645 |0.1167|1.37| 0.97
<
% Regularspiking(Tanh) |0.9702| 1.73 | 0.645 |0.1167| 1.7 | 0.97
2
2
Regularspiking(Sigmoid)|0.9702| 1.37 | 0.645 |0.1167|1.94| 0.97
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Regularspiking(Relu) [0.9702| 1.48 | 0.645 |0.1167|1.48| 0.97
0.00001 0.9702| 1.70 | 0.645 |0.1167|154| 0.97

o 0.0001 0.9702| 1.49 | 0.645 |0.1167|1.49| 0.97
g 0.001 0.9702| 1.81 | 0.645 |0.1167[1.669] 0.97
5 0.005 0.9702| 2.04 | 0.645 |0.1167|156| 0.98
% 0.01 0.9702| 1.67 | 0.645 |0.1167|167| 0.85
> 0.05 0.9702| 1.67 | 0.645 |0.1167|1.67| 0.705
05 0.9702| 1.63 | 0.645 |0.1167|158| 0.445

0.1 0.9702| 1.68 | 0.645 |0.1167| 2.4 | 0.985

05 0.9702| 1.35 | 0.645 |0.1167(1.98| 0.97

2 1 0.9702[1.481| 0.645 |0.1167(1.97| 0.97
p 2 0.9702[1.411| 0.645 |0.1167|1.89| 0.97
£ 4 0.9702| 1.39 | 0.645 |0.1167|1.83| 0.97
8 0.9702| 1.88 | 0.645 |0.1167|151| 0.97

1000 0.9702[1588| 0.645 |0.1167|1.44| 0.97

The layers are as follows: one input layer with 3 neurons, three hidden layers with 16,32,and 64
neurons and last output layer with 4 neurons for classification. The last layer is a sigmoid layer
for the first set of experiments in Keras. Later this activation is moved to the hidden layer having
the highest number of neurons. This is the procedure adopted for both the scenarios.

For the GEO satellite, the synthetic data was only able to achieve an average accuracy of 35.4%
in Keras. The SNN predicted with 80.5% accuracy (range 78% to 70.5%). When the activation
was changed to the hidden layer, the same model predicts with 69.5% accuracy in Keras but SNN
predicts with 87% of accuracy. Though this range is low for a model to be called as a good model,
the model predicts better than Keras when spiking activities are involved. Coming to simulated
dataset, without changing the activations, Keras produced good accuracy of 99% for just 10 epochs

than SNN at 52% to 64%. But, when activation was changed, Keras performs very poorly at 56%
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but Nengo reaches up to 97% of accuracy in predicting the best link. Further, tweaking the firing

rates achieves 98.5% of prediction accuracy performing better than Keras model.
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9. CONCLUSION AND FUTURE WORK

Thus, a spiking neural network for optimal decision-making using classification of downlink data
to predict the best link was designed with the help of NengoDL framework. The results obtained
were very surprising for certain datasets. In most cases, without changing the output activation
function, the spiking activities did not produce any improvement in the accuracy unless there was
a change in the firing rates in case of LEO scenario synthetic data. But in GEO, there is an increase
in prediction accuracy in rage of 2% to 10% when firing rate is increased. Extreme firing rates
produce a -2% to -10% range of reduction in prediction accuracy.

Since training a neural network depends on several factors like features of data, parameters like
batch size and number of epochs, tweaking these to balance the network, produced better results
in Keras. Nengo, although it effectively translated the Keras NN to a Nengo framework, the model
did not produce better results for lesser data like that obtained in LEO scenario. It was finally
observed that the models produced better results when large dataset was available. Smaller
datasets yielded an average accuracy of 66.67% both in Keras and Nengo. But larger dataset
produced on an average 84% accuracy in Keras and 87% accuracy in Nengo. Similarly, for the
GEO scenario, the model in Keras produced 68%-96% accuracy and a 0.5% increase in SNN. But
after changing the output activation to the hidden layer having the most neurons, the results change
drastically. It was observed that Keras models perform very poorly when compared to SNN
predictions by at least 30% difference. For LEO, the maximum accuracy in SNN is 86% when
Keras was just at 41%. For GEO scenario, the prediction of Keras was just 56% while SNN
manages to achieve 98.5% of accuracy.

To conclude, from the various experiments conducted using the SNN created using Nengo, it can

be observed that the model with spiking activities does produce better predictions compared to
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that in Keras depending on the datasets used and the activation functions. Smaller datasets
produced good accuracy but high loss. Increase in amount of data produced better accuracy and
lower loss. Using many layers of networks produced better results to an extent but increases the
training time and reduces the accuracy after a level. SNNs are thus good candidate for intelligence
in space applications.

This work reveals several research opportunities where certain aspects require more study. This
work can thus be a link for future works focusing on SNNs. Future works in this thesis may focus
on performing regression for predicting the next best link for a certain amount of time in the near
future. This would require large amount of real satellite downlink data to obtain a good prediction.
Secondly, experimenting with link cost reduction methods is a good area to work on. Running
evaluations for SNN with more than 3 input links is an interesting experiment. Further, other
regularization and optimization techniques can be evaluated to analyze the performance of SNN.
There are several such renditions that can be focused on exploiting SNN for intelligent systems in

future.
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LIST OF ABBREVIATIONS

Al

NN

SNN

STK

RF

LTP

GEO

LEO

SNR

BER

EIRP

CNN

DNN

LIF

GS

SP

loT

HTP

Artificial Intelligence

Neural network

Spiking Neural network
Simulation Tool Kit

Radio Frequency

Licklider Transmission Protocol
Geosynchronous equatorial orbit
Low Earth orbit

Signal to noise ratio

Bit Error Rate

Equivalent Isotopically radiated power
Convolutional neural network
Deep neural network

Leaky integrate and fire

Ground station

Shortest path

Internet of Things

High Throughput
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TF

BP

SGD

QPSK

MSE

GPU

CPU

FPGA

MNIST

ML

BW

NSD

RTT

ITU

Tensorflow

Back propagation

Stochastic Gradient Descent
Quadrature Phase Shift Keying
Mean Squared Error

Graphic Processing unit
Central Processing Unit

Field programable Gate Array
Modified National Institute of Standards and Technology
Machine Learning

Bandwidth

Noise Spectral Density

Round Trip Time

International Telecommunication Unit
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