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ABSTRACT 

A Spiking Neural Network (SNN) with neuromorphic architecture for optimal link 

decisions is put forward in this paper. SNNs can adapt to the various changes in the 

working environment quickly, for maintenance or advancement of the selected 

performance metrics. Such results can be appealing for satellite networks with orbital 

operations involving either stationary or manned aids, which would provide directions 

for autonomy in CN decisions. The satellite on-board processing capabilities, 

traditionally, have been a limiting factor for advanced satellite communication 

strategies. Additionally, with deep space explorations rising, the demand for bandwidth 

is increasing, which can be achieved by making communication systems more efficient. 

Manual updating procedures for satellite operations gives rise to chances of 

configuration errors. Since AI has been showing continuous improvements and glorious 

performances, when applying it to convert manual operations to intelligent ones, some 

errors can be avoided. In scenarios where the delay time of an operator responding is 

considerable, the spacecraft must be able to autonomously make decisions. Intelligent 

systems can help improve spacecraft reliability by being trained to react to unexpected 

situations and guide the spacecraft to safer operational states with autonomous decision-

making. This serves as an apt area to apply an SNN model for a lighter space network 

on a first-hop level. This literature will be focused on enabling flexible routing for link 

selection with the help of Spiking Neural Networks. This path selection problem is 

approached by applying Spike Neural Network (SNN) to classify satellite downlinks 

based on link cost to improve learning, and later analyze the classification and link 

decision capabilities of the network with respect to a traditional neural network. The 
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spiking network has inbuilt Back Propagation (BP) implemented in the framework, 

Nengo. The system managed to achieve better accuracy even when activation was 

provided in hidden layer instead of output layers. Tweaking the firing rates, epochs and 

batch size of the data might yield better results. For the LEO scenario, a maximum 

accuracy of 86% was obtained for synthetic data using SNN and for the GEO scenario, 

a maximum of 98.5% was obtained.  
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 INTRODUCTION 

 Challenges in current space systems 

With the rise in new horizons of discoveries in space, organizations, such as NASA, have been 

looking to expand their communication infrastructure beyond the current conventions. Outer space 

involves huge budgets for satellite, and this comes with several challenges. The challenges in 

satellite communication may include errors in data transmission, low signal to noise ratio (SNR) 

of the link, poor antenna directivity, high noise spectral density, high bit error rate (BER), 

atmospheric losses, polarization mismatch, satellite drag, error during configuration updates at the 

satellite, etc. Errors are every common in satellite systems due to the numerous uncertainties such 

as equipment error, shared band, error planning, intentional errors, etc. For example, due to certain 

environmental effects (signal corruption, satellite drag, etc.), assuming an error to have occurred 

while updating a certain operational attribute at the satellite. In such cases, an algorithmic 

approach would involve a good amount of time in performing troubleshooting and resuming 

operations as the speed of light is 3x108 m/s. For instance, if the satellite is 6 light minutes way, it 

would take a precious 12 light minutes, source-destination, and destination-source, to troubleshot 

and bring the system back to normalcy. But, the involvement of an artificial agent, such as a neural 

network, could help us avoiding the error by learning the associated features and making 

opportune decisions and predictions before such an unfortunate event may occur, thereby avoiding 

the time taken to troubleshoot and resume operations altogether.   

The above stated issues lead to the need of autonomous satellite behavior implementations to avoid 

manual updating and less exchange of signals from ground to satellite without human supervision 

or interference, and make adaptive decisions considering the uncertainties. Further, recent 

advances in this area have provided directions for enhanced on-board processing which can enable 
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futuristic communication technologies, such as flexible routing/channelization, beamforming, 

free-space optics and also signal regeneration [1]. On a practical basis, once deployed to the orbit, 

performing physical modifications would be costly in space systems. Among the various 

renditions to exploit use of neural networks for numerous applications, the area of SNN has not 

been completely exploited specially in space explorations. Given a set of attributes, the SNN can 

choose an optimal choice or perform certain modifications according to the learned features. For 

example, assuming a link selection problem based on associated costs of available links, the SNN 

can be used to make an optimal link decision to successful data transmission to the destination. 

For simplicity, this literature will be focusing on predicting the link on a first-hop basis.  

 Challenges in SNN Implementation 

Literature [8]-[23] show different approaches to implement SNN on software and hardware 

platforms. Some of the major challenges are inadequate data, bad input feature selection, 

inadequate learning rate, overfitting/underfitting, etc. During the early stages of the thesis, one of 

the major concerns was to create the SNN. Although several SNN simulation platforms are 

available as described in [23], they required several prerequisites and knowledge for immediate 

usage and deployment. The commonly known frameworks such as Tensorflow worked only for 

creating convolutional neural networks (CNN) and deep neural networks (DNN) without spiking 

activities. 

Secondly, finding relevant satellite data was difficult due to restricted access. Previous works 

which provided graphic results involved grants from governmental organizations. Several data 

sources had restricted access, which lead to the use of simulation software for obtaining necessary 

data. The simulation software used in this literature is STK communication tool (More details later 

in this thesis). Thirdly, Nengo provides an affable UI for visualizing the simulation of SNN, but 
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the specific method that is considered in this literature does not enable visualizing the firing of 

neurons of SNN graphically. Finally, the satellite scenario considered is a simple network with 

three links for selection. Increasing the number of inputs would mean creating more links within 

the simulation and data extraction. Although this is not a cumbersome task, the post processing 

would require ample time involving budget calculations, data processing, training, and 

predictions. Typically, a LEO scenario involves more than 400 links and simulating such a 

scenario is arduous. 

 Motivation 

The recent Mars-Rover incident clearly indicates the rise in the number of Space missions today 

compared to those in the past. As mentioned earlier, deeper space explorations put forward the 

necessity of better communication systems, which is a challenge. This pulled at the thread of 

designing artificial neural network for communication systems so that errors can be avoided in 

satellite data transmission. This sparked a motivation to gather more information in this arena.  

Previous literatures to implement SNN using several methods such as the one using MATLAB, 

Verilog and CMOS by Di Hu et al [5] and the hardware and software implementation methods in 

works [5] - [21], shows clearly the level of complexity involved in creating SNNs. Thanks to the 

reliable technological developments and improvements of today that this has been made easier for 

today’s generation of researchers. Among the several literatures to apply neural networks in 

improving satellite systems, such as image classification, sensory improvements and activations, 

navigation systems, intelligent propulsion systems, prediction of satellite drag, optimized routing, 

etc., this literature stands out in its simplicity for creating a fully functional SNN for link selection 

using satellite downlink data. The literature involving cognitive network controller by R.Lent et 

al. in [32] provided a wider perspective to use SNNs for this application..  
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This literature explains in detail the method to use the NengoDL framework to create a spiking 

neural network, perform testing and preform optimization and discusses the performance of the 

NN in terms of metrics such as training time, accuracy, an impact of certain features on these 

metrics. The main contributions in this thesis: 

1. Firstly, creating a spiking neural network model for intelligent decision making in 

predicting the best downlink for a given set of links in a satellite scenario.  

2. Secondly, proving that the spiking nature of the neural network predicts with better 

accuracy when compared to traditional models.  

 Thesis Organization 

1. Chapter 2 discusses in detail, the working of neural networks, major frameworks involved 

in this literature and how the neuromorphic architecture is built, and the parameters 

associated with it.   

2. Chapter 3 summarizes the previous works in the implementation of SNNs via hardware 

and software implementations. 

3.  Chapter 4 describes in brief, the case under study the important terms involved for link 

budget such as SNR, buffer occupancy, Service time, response time, with necessary 

formulas and expressions. 

4. Chapter 5 Describes the STK simulation tool and its operations for satellite 

communication and data extraction. 

5. Chapter 6 explains the method to create SNN step by step using clear snippets of code 

and the experiments conducted. 

6. Chapter 7 Shows the results of each experiment and detailed analysis of the impact of 

data on the time, accuracy, loss, and other metrics.  
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7. Chapter 8 concludes this thesis and describes suggestions for potential future works in 

this area.  
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 SPIKING NEURAL NETWORKS 

 Neural Networks: a brief insight 

Artificially intelligent systems use neural network to make decisions and perform predictions. A 

neural network is formed by connecting several neurons together in form of layers. The output of 

a neuron is acts as a potential that activates the next neuron.  Neural Networks (NN) are computing 

systems that correspond to the biological neural networks in a human brain. Communication 

between neurons happen through connection between the neurons called synapse. The neurons 

that send signals are called presynaptic neurons, and the ones that receive signals are called 

postsynaptic neurons. The signals can be processed by the postsynaptic neurons and signal the 

downstream neurons connected to them [24]. Unlike conventional artificial neural networks used 

in ML, a spiking neural network (SNN) stands out. SNNs work using spikes, the discrete events 

that occur at different time instances.   

 States of neuron 

Neurons may have states which typically represented by real numbers between 0 and 1. Each 

synapse has a weight, a number that controls the signal between presynaptic and postsynaptic 

neurons [24]. During simulation of SNN, a stateless behavior is set to the neurons for making the 

study simpler. The processor is the activation function of the neuron to fire. 

 

Figure 2.1 The perceptron; Source: [24] 
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 Membrane potential of a neuron 

A spike’s occurrence is explained by differential equations that represent various biological 

processes. Membrane potential is the most significant aspect of neural activity. Basically, a 

neuron spikes once it reaches a certain potential, and then the potential of that neuron is reset.  

 

Figure 2.2 Structure of a neuron. Source: [38] 

To model a spike event, the post synaptic potential is obtained as a weighted synaptic efficacy of 

the terminal, which is the pre-synaptic terminal [26]. The pre-synaptic neuron input where i ϵ I and 

neuron j ϵ J is given as the sum of all synaptic contributions given in Equation (1): 

 
yi(t) =  ∑ yi

k(t)

m

k

 (1) 

Similarly, the post synaptic input can be represented as given in Equation (2) below: 

 xj(t) =  ∑ ∑ wij
kyi

k(t)

ki

 (2) 

As per neurotic conventions, the synaptic terminal k is associated with weight wij
k. When the above 

value crosses the threshold ϑ, the firing time tj of neuron j [26]. 

 Neuron model and working of NN 

Each spiking neuron keeps up a value representing its current state. The neurons accept the input 

spikes and integrate the corresponding weights to update their states. The neuron is activated when 
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the state reaches a threshold value, and outputs a spike to the next neuron and after a pre-

configured propagation delay, the successors receive the spike and update their states 

accordingly[6]. Though these operating principles are common, depending on the neuron model, 

the neuron behavior changes. The most common neuron model is the Leaky integrate-and-fire 

(LIF) model (have a look at Table 3.1) for its proven improvements and realistic brain-like 

behavior. LIF neurons are inspired by the membrane voltage leaking in biological neurons, with 

their states decreasing over time if no input spikes present [6]. 

[4] In 2003, E. Izhikevich proposed a simple neuron model having two equations and one 

nonlinear term. Starting from here the works of various authors from different parts of the world 

has been analyzed according to its relevance in this section. The least mean squared error function 

for the target algorithm learn the desired firing times {tj
d} at the output neurons. If the 

corresponding input patterns are denoted by {P[t1, t2, ⋯ ti]}, the following represents the error 

equation, the desired and actual firing times are {tj
d} and {tj} [26]. 

 E = 
1

2
∑ (tj − tj

d)
2

j
 (3) 

The following equations represent the calculations necessary for error propagation [26][27][29], 

or in other words known as back propagation to update the weights, thus the change of weight is 

as follows:  

 
Δωij

k = −η
∂E

∂wij
k
 (4) 

Where η is the learning rate and ωij
k is the weight connecting neuron i to neuron j with delay 

dk[26][27]. The above computations are inbuilt in NengoDL for immediate usage in functional 

ways and classes. Now that the basic firing of a neuron in an SNN is understood, the building of 

neural network comes into picture. In a neural network, input layer, hidden layer, and output layer 
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are associated. A neural network starts with input layer, followed by few hidden layers, and finally 

output layer. The number of layers at each layer is decided using several trials and errors for the 

data extracted from each scenario under different circumstances. 

 Why SNN? 

The SNN doesn’t necessarily have to know each piece of information associated with the data. 

Since their computational speed is very high and their capacity for working with uncertain data is 

high, spiking neural networks is a great choice for solving the problem [3]. Further, SNNs are 

capable of learning temporal data on realistic terms, i.e., the SNN works well with unsupervised 

data also, but in this thesis, partial supervised learning is done for proper evaluation of the model. 

SNNs are event based thus enabling it to be a good choice to be applied on satellite systems, where 

uncertainty is the most, and analyze the performance of the SNN and the system itself. This can 

be installed to any other such environment and the SNN would learn to make decisions based on 

its knowledge associated to its environment. Applying SNNs to satellite systems would enable 

new prospects of autonomous intelligent space systems. 

 Assumptions  

Assuming that a bundle is a file or set of packets and the uplink transmission is complete, multiple 

routes are available to dispatch a given data bundle and they are accessible by the system, a best 

route or link can be selected to dispatch the data based on a few features describing the link. This 

happens regularly during routing, except that in this thesis, this decision is made by a neural 

network instead of a rigid algorithm incapable of adapting to uncertainties. Secondly, assuming to 

begin with an ad-hoc network of 1 input layer with 16 neurons, 1 output layer with 4 neurons and 

1 hidden layer with 32 neurons, further experiments are conducted to find a good model.  Finally, 

the BER is considered as a representation of the quality of the link and buffer occupancy (the 
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number of bundles waiting to be transmitted) is considered as the traffic in that link as the features 

to determine the inputs to the system. These two attributes are used to obtain a relevant cost to 

each link to obtain the best link and route them. This also provides us an option of implementing 

a distributed service instead of centralized behavior, but that is a whole other region to explore for 

the future.  

 Use of Artificial neural networks in space 

A work by Hou et al, proposes link planning for LEO satellites to reduce the number of link 

switching, by using relay satellites and Inter satellite links (ISLs)[30]. A lot of satellite attributes 

such as orbital height, orbital inclination, location of GS, were considered and a main assumption 

was that, the transmission was already complete[30]. Routing is a crucial process that has a 

significant impact on the network’s performance in modern communication networks. Ideally, 

routing algorithms include finding the best path(s) between source and destination router, steer 

clear of packet losses and allowing high-speed data transmission. In space, communication traffic 

is subject to high variability, nonlinearity, and unpredictability, thus making the routing policy a 

very cumbersome task [3]. Under certain assumptions, the optimal routing may be considered as, 

the first hop selection of the available shortest path (SP) computations. This thesis provides 

evidence that use of SNN aids accomplishing more human like behavior provided availability of 

enough data and based on the scenario at hand. For instance, in [33] Zhenyu Na et al. propose a 

distributed routing strategy focusing on LEO satellite to enhance the speed of training targeting 

the traffic prediction accuracy. They achieved this through extreme machine learning. [41] focuses 

on applications such as anomaly detection in telemetry data, flexible payload optimization, 

interference detection and classification, and other IOT services involving large amounts of data 

using AI or Machine learning. In such applications, the use of SNNs can produce attractive results 
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considering its spiking behavior. Another challenge that can be addressed is the satellite downlink 

replanning problem as mentioned in [45] for effective communication between satellites, which is 

a more sophisticated approach. Dynamic power allocation architectures for HTP satellites is 

another such area where AI was applied  to set reward functions for minimizing the unmet system 

demands and power consumptions [46]. Thus, from above examples we can wee the wide areas 

for AI application in space. 

 Keras 

For implementation of the SNN, Keras is the first step for the specific method used in this thesis. 

It is an open-source software library with python interface for building artificial neural networks. 

It is an interface for the TensorFlow (TF) library which is also open source for machine learning 

tasks. TF can be used as an interface for deep neural networks having lucid ecosystem of tools and 

resources for several data based and statistical applications. 

 NengoDL 

A special python package called the Nengo Brain Maker is used for building, testing, and 

deploying neural networks. NengoDL is a simulator specific to simulating Nengo models. In other 

words, it accepts as input a Nengo network, and enables the user to simulate the network with the 

help of certain underlying computational framework (in this case, Keras: TensorFlow). The classes 

available to use in NengoDL is designed in such a way that it is similar to the usage of libraries in 

TensorFlow. One can Build a Nengo Model with basic understanding of TensorFlow model. 

NengoDL enables a user to convert a regular Keras model to a Nengo model and apply spiking 

activities so that the people experienced with TensorFlow are benefitted with easy adaptation to 

spiking networks. It makes easier to apply and explore spiking activities using special activation 
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functions and neuron types, setting firing rates and applying synaptic smoothing for obtaining 

better plot curves. 

 

In the next chapter we will see how other authors all over the world have implemented SNNs in 

detail, and which of the methods would work for this application.  
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 LITERATURE REVIEW 

 Prior works 

Understanding back propagation is important while studying neural networks. While applying BP 

is difficult for a NN containing spiking activities, Nego provides this functionality built within so 

that learning is smoother. The approximated chain rule approach by the authors of [26] provides 

detail exegesis of back propagation implementations with spiking neural networks. Considering 

from Equations (1) - (4),  the approximated chain rule is implemented as follows: 

 ∂E

∂ωi
kj

=
∂E

∂tj

∂tj

∂wij
k

=
∂E

∂tj

∂tj

∂xj(t)
|

t=tj

∂xj(t)

∂wij
k

|

t=tj

 (5) 

From the equations of post synaptic potential and error equations, the approximated threshold 

function for firing of a neuron is given as δtj
= −δxj(tj) ∕ α, where α equals the local derivative 

of xj with respect to  
∂xj(t)

∂t
|

t=tj

. Thus, the second term in the above equation (5) from [25] is 

expressed as follows: 

 ∂tj

∂xj(t)
|

t=tj

= −
1

α
=

−1

∂xj(t)

∂t
|

t=tj

=  
−1

Σi,jwij
l ∂yi

l(t)
∂t

|
t=tj

 
(6) 

 
Δwij

k(tj) =  −η
yi

k(tj) ⋅ (tj
d − tj)

Σi,jwij
l

∂yi
l(tj)

∂tj

 
(7) 

 

δj ≡
∂tj

∂xj(tj)

∂E

∂tj
=

(t J̇
d − tj)

Σi,lwij
l

∂yi
l(tj)

∂tj

 

(8) 

For error propagation apart from the output layer (J), the generalized delta error in layer I after 

applying the approximated chain rule. 
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δi =
∂ti

∂xi(ti)
∑δj

∂xj(tj)

∂ti
 = 

Σjδj{Σkwij
k

∂yi
k(tj)

∂ti
}

Σh,lwhi
l ∂yh

l (ti)

∂ti

 (9) 

Thus, for hidden layer weight adaptation value reads as follows. An approximation of post-

synaptic potential xj(t) is made 

 

Δwhi
k = −η

yh
k(ti)Σj {δjΣkwij

k ∂yi
k(tj)
∂ti

}

Σh,lwh
l i

∂ti
̅̅ ̅̅
∂yn

l (ti)
 (10) 

The authors have represented the spike times in milliseconds where the third neuron always fired 

at t = 0 for reference starting time. [26] During training, the result showed that the network learned 

the XOR pattern with learning rate equal to 0.001 within 500 epochs, while the same rate required 

just about 10 to 60 epochs to reach more than 80% prediction accuracy in our model. The number 

of epochs for the current thesis is less depending on the amount of data and features selected. For 

the second part of the testing, they used an extrapolated XOR function with 6 hidden neurons, 3 

input and 1 output neuron, which is slightly different in the current thesis. The study of [26] 

provided wide perspectives and abundant knowledge to understand how back propagation could 

be applied to a spiking neural network for improving the learning. Have a look at Table 3.1 for a 

detailed analysis of various works on creating SNN for different applications.  
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Table 3.1 Background information of various works based on SNNs 

Paper Description Implementation Technique 

[1] 

T
ec

h
n
o
lo

g
y

 

FPGA Using “Reject output” to separate the 

training data set into two parts for 

classifying. The term “Reject output” 

is used for separating all indiscernible 

patterns from the training data set. 

The CNN has 10 outputs. 

A
p
p
li

ca
ti

o
n

 Image recognition 

M
o
d
el

 

LIF 

[5] 

T
ec

h
n
o
lo

g
y

 

MATLAB, Verilog, and 

CMOS. 

To find a random target from a map, 

an indirect training algorithm, 

implemented in MATLAB, Verilog 

and CMOS are used to train SNN. 

Virtual insect is based on a re-scalable 

neural network having one input, 

output and hidden layer each. 

A
p
p
li

ca
ti

o
n

 

To train a virtual insect to 

navigate through a terrain 

with obstacles from the 

environment 

M
o
d
el

 spike timing-dependent 

plasticity (STDP) 

[6] 

T
ec

h
n
o
lo

g
y

 

Xilinx ZC706 evaluation 

board with a XC7Z045 

SoC to build the test 

platform 

Use of hybrid of conventional time-

stepped updating algorithm and 

event-driven updating algorithm. 

Signed 16-bit fixed-point numbers are 
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A
p
p
li

ca
ti

o
n

 Classification task on the 

MNIST dataset. 

used to represent the weights and 

neuron states. Maximum of 1024 

neurons for a layer, with fully 

connected synapses.  
M

o
d
el

 
LIF 

[8] 

T
ec

h
n
o
lo

g
y

 Xilinx Virtex-5 

(xc5vlx85ff676-3) FPGA 

device. 

Reduced precision method is 

analyzed for training and inference of 

SNN. SNN is first trained and used 

with the conventional 32-bit single-

precision format. Statistical analysis 

of network weights, activations, and 

gradients is performed. By analyzing 

the data distribution, the possible 

minimal numerical format is 

determined. Then SNN accuracy is 

tested and computations are done. 

A
p
p
li

ca
ti

o
n

 classify the handwritten 

digits in MNIST 

database. 

M
o
d
el

 

LIF 

[9] 

T
ec

h
n
o
lo

g
y

 

None mentioned  Algorithm 1. ML training using 

online SGD. 
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A
p
p
li

ca
ti

o
n

 

A review of models for 

probabilistic SNNs 

within a probabilistic 

signal processing 

framework 

Algorithm 2. ML training by online 

doubly SGD.  

M
o
d
el

 

Probabilistic model: 

generalized linear models 

for SNNs, known as the 

spike response model 

with escape noise. 

[10] 

T
ec

h
n
o
lo

g
y

 

None mentioned 

 

The synaptic transistors and neuron 

circuits are fabricated in different 

wafers, and the hardware SNN 

simulation is studied after modeling 

the behavior of each building-block. 

To recover clean images from noisy 

images, a NN is trained using noisy 

train images and mean squared error 

(MSE) loss function. The trained NN 

is converted to the hardware SNN. 

A
p
p
li

ca
ti

o
n

 Pattern recognition using 

synaptic transistors and 

neuron circuits 

M
o
d
el

 

LIF model 
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[11] 

T
ec

h
n
o
lo

g
y

 

Software based learning 

followed by hardware-

based recognition 

implemented. 

Created neuro-synaptic network, used 

LIF neuron model, analyzed 

synapse’s response to a pre-neuron’s 

spike (that will be proportional to the 

synapse’s strength) and obtained a 

weight update rule. 

A
p
p
li

ca
ti

o
n

 

Fisher Iris flower 

classifier 

M
o
d
el

 LIF 

[13] 

T
ec

h
n
o
lo

g
y

 

Xilinx XC2V1000 FPGA Merging NoCs (network on chips) 

with programmable spiking neurons. 

Use of a 2-D array of interconnected 

neural tiles surrounded by I/O blocks. 

Neural tiles are connected forming a 

nearest neighbor connect routine. An 

SNN was analyzed by programming 

the tile functionality and connectivity. 

A
p
p
li

ca
ti

o
n

 Spike packet routing 

M
o
d
el

 Not mentioned 

[14] 

T
ec

h
n
o
lo

g
y

 

Intel core 2 Quad Q6600 

CPU (2.4 GHz) and 

GeForce 8800 GTX 

graphics hardware. 

Used GPU language CUDA (compute 

unified device architecture) recently 

released from NVIDIA, to create 

feature extraction module for the NNs 

using OpenMP (Open Multi-

Processing) 

A
p
p
li

ca
ti

o
n

 

neural networks-based 

text detection system 
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M
o
d
el

 Fork-join model 

OpenMP 

[15] 

T
ec

h
n
o
lo

g
y

 

Intel Xeon CPU The whole flow consists of two types 

of programs, the first type is only run 

once, to calculate gray level, or doing 

normalization, and calculating value 

at the field of reception, image 

intensity is integrated. The second 

type of program was executed at 

every time step to simulate the 

dynamic behaviors of spiking 

neurons. 

A
p
p
li

ca
ti

o
n

 

SNN model for 

segmentation of color 

image (blood smeared 

images) 

M
o
d
el

 

Conductance-based 

integrate and-fire neuron 

model used to simulate 

neurons in the network 

[16] 

T
ec

h
n
o
lo

g
y

 

Not mentioned First, both models are trained with the 

learning rule for 800 epochs with a 

constant rate η = 0.05, depending on 

20 trials with varying random seeds. 

Then the Bayesian learning rule is 
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A
p
p
li

ca
ti

o
n

 

Classifying a handwritten 

number and detecting 

possible rotation of the 

image of the handwritten 

digit 

 

considered and the impact of the prior 

prediction values is studied on 

overfitting. 

M
o
d
el

 

probabilistic model is 

introduced for a 

generalized set-up 

[17] 

T
ec

h
n
o
lo

g
y

 GPU device Radeon HD 

7970 using OpenCL 

framework 

2 major computation segments: 

Update and propagation. Update 

feeds synaptic events into SNN, 

propagate solves neuron model 

equations for each neuron and 

generates spike events; A
p
p
li

ca
ti

o
n

 Performance analysis 

M
o
d
el

 Izhikevich 

[18] 

T
ec

h
n
o
lo

g
y

 Intel Xeon E5-2680 CPU 

and NVIDIA Tesla K40C 

GPU 

The inputs to the algorithm are the 

trained network and the spike trains 

representing the input. The algorithm 

evaluates the SNN and produces an 

output class label. SNN is iteratively 

A
p
p
li

ca
ti

o
n

 

SNN evaluation 
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M
o
d
el

 

LIF evaluated for each timestep. Finally, 

the class label corresponding to the 

output neuron having the maximum 

spike rate is chosen.  

[19] 

T
ec

h
n
o
lo

g
y

 CARLsim 

24 CPU cores and 8 

GPUs 

A CARLsim simulation occupying 

CONFIG, SETUP, and RUN states at 

execution is done. An 80-20 random 

spiking network implementation is 

done using 2 CPUs and 2 GPUs. 

A
p
p
li

ca
ti

o
n

 

SNN simulations 

M
o
d
el

 Izhikevich and LIF 

spiking neuron models 

[20] 

T
ec

h
n
o
lo

g
y

 Spartan6 FPGA 4-layer ConvNet trained for 

recognition of poker card symbols has 

been implemented in a Spartan6 

FPGA, including 22 convolutional 

nodes and a decision block. Different 

strategies for the decision block are 

analyzed. 

A
p
p
li

ca
ti

o
n

 

Observing a deck of 40 

poker cards 

and determine the kind of 

card (hearts, spade, clubs, 

or diamond) 

M
o
d
el

 LIF 
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[21] 

T
ec

h
n
o
lo

g
y

 Verilog-HDL, 

NANGATE 45nm 

technology library 

Using the datasets of Inverted 

Pendulum and Wisconsin dataset, for 

latency comparison. Seven 

input/output port modules for each 

direction in addition to the Switch-

Allocator was used, and the Crossbar 

module which handles the transfer of 

spikes to the next spiking neural 

processing core was used.  

A
p
p
li

ca
ti

o
n

 Evaluating hardware 

based SNNs 

M
o
d
el

 

Not mentioned 

 

[22] 

T
ec

h
n
o
lo

g
y

 SpiNNaker 102 board Comparing scaling potential of 

SpiNNaker to that of a PC. The 

experiment helps users of SpiNNaker 

dividing graphs for mapping 

maximum number of cores and utilize 

hardware capabilities to the complete 

extent. 

A
p
p
li

ca
ti

o
n

 graph processing 

applications for transfer 

of data packets 

M
o
d
el

 LIF 

[23] 

T
ec

h
n
o
lo

g
y

 

NEURON, GENESIS, 

NEST simulation tool, 

NCS, CSIM, XPPAUT, 

SPLIT, Mvaspike 

Evaluating various kinds of 

simulation techniques and algorithms 

presently implemented and the 

precision of those in which plasticity 
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A
p
p
li

ca
ti

o
n

 review different aspects 

of the simulation of 

spiking neural networks 

is based on the exact timing of the 

spikes. 

M
o
d
el

 
Hodgkin-Huxley type, IF 

models, using event-

driven integration 

strategies 

 

 Inference from prior works 

From the above table it is clear that most of the applications makes use of MNIST data for 

classification in [6], [8], [11], [14], [16] and [21], and most of them involve complex 

implementation methods and structures created on simulation platforms [23] and on chips like 

FPGAs [1], [6], [8], [13], [20] and 94[22] Other software based implementations include 

MATLAB, Verilog HDL like in [5] and [21], and [11]. Although access to some tools is available, 

coding in Verilog HDL happened to create more difficulty. Use of CPUs and GPUs for 

implementing SNNs significantly exude more complex structures and [14], [15], [17], [18] and 

[19] appear cumbersome for immediate application or deployment. Further, such implementations 

require ample prior knowledge and time to complete implementation successfully. Evidently, from 

Table 3.1 we can see that the number of input and the output neurons depends on the features of 

the data considered for inputs and the response required. Far from classifications involving SNNs 

to understand types of flowers and digits [11], works like [31] seem to us as eye openers to the 

ways and several applications in which neural networks can be applied, which can be used but 

there isn’t sufficient details in these papers to implement this idea. All the prior works studied 
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above provide ample information regarding creating SNNs and using them to make intelligent 

systems. These works appear to shed very little light on applying SNNs to space operations. Unlike 

[43], instead of identifying satellite downlink based on elements such as memory filter and high 

power amplifier, in this thesis, I will be using BER for link quality and link occupancy to deduce 

the response time (cost). This thesis covers in detail the challenges in space communications and 

the need of SNN based AI in the same. Many path selection algorithms are available such as in 

[44], which provided a wide outlook on such methods involving neural networks, but the neuronal 

activities in most works lack spiking activities. Secondly, this thesis proposes the use of NengoDL 

for immediate deployment and integration as neuromorphic chips consuming comparatively less 

power than CPUs and GPUs. SNN created through this framework can be integrated into Intel’s 

Loihi neuromorphic chip which is proven to consume very less power and energy as shown in 

Table 3.2. This is the reason for emphasis on use of SNNs. 

Table 3.2 Average energy per inference and power consumption chart. Source: [39] 

Hardware Running 

(Watts) 

Idle 

(Watts) 

Dynamic 

(Watts) 

Joules per 

inference 

inference per 

sec 

CPU 28.48 17.01 11.47 0.0063 1813.63 

GPU 37.83 14.97 22.86 0.0298 770.39 

Intel’s 

Loihi 

0.110 0.029 0.081 0.00027 296 

From above, we can see that SNNs are event driven and can be implemented with less power. First 

one is Von Neumann architecture. The neurons are evaluated in the central processing unit while 

the synapse weight information and neuron outputs are stored in the RAM. The transfer between 

CPU and Ram for the data is the challenge in this case, which limits the speed at which the entire 
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network can be evaluated. Secondly, GPUs or graphic processing units, due to their capability to 

perform large scale matric multiplication operations, have been able to improve the speed of the 

neural networks. The issue here is the higher power consumption. This could make the CPU and 

RAM operations look simpler, but their hardware doesn’t resemble that of a neural net. To resolve 

this, development of neuromorphic hardware to accelerate the speed of the networks and power 

consumption has become essential for next gen systems. Hence, seeing from the performance of 

SNNs so far, we can say that designing a SNN for a space application would be a better choice 

when compared to CPUs, GPUs and traditional ANNs known by the ML community today. 

 

In the net chapter, we will look at the principles of satellite communications necessary to 

understand that falls within the scope of this thesis.  
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 PRINCIPLES OF SATELLITE COMMUNICATION 

 Satellite Link Budget 

This section contains a brief description of the considered physical layer attributes for the satellite 

link. Satellite communication system consists of two types of links: Uplink and Downlink. The 

satellite link budget involves relatively simple calculations. Certain non-trivial concepts could also 

be taken into account. On highly professional grounds, all the second order effects are to be 

considered that would affect the link budget, of which most are skipped in this case. The most 

important few attributes are considered in this case for computing the link budget. Satellite 

communication is wireless communication through Radio Frequency link, which includes free 

space losses and additional losses[49].  

 

Figure 4.1 Wireless Transmission 

Hence, at Transmission there may be several things such as data, modulators, encoder, power 

amplifier, etc. Here considering it a black box, what comes out of this is a power Pt (Transmitted 

power) which is fed to an antenna with a gain Gt. Similarly at the receiver, there will be a series 

of things like filters, amplifiers, down Converter mixers, etc., which when seen as a black box, the 

input has a Received power Pr, coming from the reception antenna with a gain of Gr. Between the 

two antennas, the wireless communication takes place with the Free space lowering the intensity 

of the signal.   



27 

 

 Free space losses 

[49] The increasing intensity of the signal due to the distance between the two stations, goes with 

Quadratic law. The intensity of the signal received depends on square of the distance between 

transmitting and receiving antenna. According to quadratic law, if the distance is twice as far, the 

power flux reduces four times. This issue persists for all wireless communication and not particular 

only to satellite communication. 

 

Figure 4.2 Quadratic law 

Transmission in satellite communication, means that the transmitter performs sends section of the 

payload onboard of the satellite with the corresponding transmitting antenna pointed towards the 

earth. There are several types on antennas but one thing to remember is that they do not create 

energy. They only transmit and receive by focusing the collected power on one focus point. The 

directive gain of the antenna is the ratio of power density of antenna in one direction to that 

radiated by an ideal isotropic antenna (emits uniformly in all directions) radiating the same total 

power. This depends on the direction the antenna is pointed. For simulation, we enabled the 

constant pointing by the use of targeted option on the sensor properties. The highest value of the 

directive gain is given by D, which is the directivity of the antenna[49]. Evidently, two angles 

need to be defined that would render the position w.r.t an ideal sphere that is a certain distance 

away from the antenna. Thus, the direction at which the antenna is focused renders energy at best. 

The directivity is rendered in dBi as we are comparing with isotropic antenna [50]. 
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D(dBi) = 10 log10 (
Radiated power density in one direction

Isotripically radiated power density
) 

D =
4πAe

λ2
 

Where Ae is the equivalent area or effective surface of the antenna and λ is the carrier 

electromagnetic wavelength, depicting that higher the wavelength, lower will be the frequency of 

radiation and smaller will be the directivity. The effective surface may not be the physical surface 

are of the antenna, and this carries the properties of the antenna.   If we have an aperture This 

attribute in handled within the simulation for obtaining the link budget.  The gain is not same as 

directivity but can be calculated as the efficiency times directivity. As available for dipole antenna 

the way the radiation pattern recedes with distance thus resulting in total power flux dropping, we 

are unaware of such representations for general patterns. 

G = ηradD 

 Equivalent Isotopically radiated power: EIRP 

[49] It is assumed that we have an ideal isotropic radiator which is equivalent to the antenna under 

consideration in the given direction. This is defined as the power with which an isotropic antenna 

would have to emit to have the same power flux given as follows: 

EIRP = GPt 

Considering two antennas, one for emission and one to receive, with the knowledge of distance 

between the antenna and the receiver the power can be obtained.  

Considering emitted total power Pt, The EIRP is known from above equation, so, a distance x away 

from it, the power would have dropped by 4πx2 . Therefore, the power received is obtained as 

follows: 

Pr =
EIRP .  Ae

4πx2
=  

PtGt

4πx2
Ae 
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Figure 4.3 EIRP scenario 

This can be represented in terms of gain as a function of wavelength: 

Pr =
PtGtGrλ2

4πx2
 

Hence, converting to dB as it is more preferential, we obtain the total received power in dBW as 

the FRIIS question for propagation.  

Pr(dBW) = Pt(dBW) + Gr(dBi) + Gt(dBi) − 10 log10 (
4πx

λ
)

2

 

With a link receiving from a Tx, the received power depends on the power transmitted, gains of 

the transmitter and the receiver and is counter proportional to its losses [50]. The last term denotes 

the free space path loss. 

 Additional Losses 

From the above FRIIS equation, all the losses can be subtracted easily as shown above. 

Conventional practices follow adding all the gains (improving the signal) and subtracting the 

losses (those deteriorating the signal). 

a) Free space propagation loss 

b) Attenuation loss 

c) Polarization mismatch 

d) Interference, etc. 
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It is not possible to describe the quality of signal just using the absolute power value. The noises 

are to be included while understanding the signal quality as mentioned in the propagation equation. 

 Signal to Noise Ratio (SNR) 

In previous section, the several types of noises were introduced. These noises can be quantified 

into an expression in terms of an effective temperature, which is an equivalent temperature taking 

all these noises and recreate their power in terms of thermal noise. Sure, thermal noise by itself 

stands out as a type of noise, but even the other sources of noise could be obtained by 

mathematically substituted as Nyquist noise formula with an equivalent temperature. 

N = kBTsys 

Where N is the noise spectral density (NSD) describing the power of the noise per unit Bandwidth 

(BW), kB is the Boltzmann’s constant and Tsys is the effective temperature of the system. This 

formula is called as the Nyquist noise formula. Tsys includes all the noises and is a parameter of 

the system as a whole. To obtain the full power, the BW is multiplied with this value. Hence, the 

total received power from FRIIs equation, divided by the NSD times the BW, renders the carrier 

to noise ratio (C/N) 

C

N
=

PtGtGrλ2

(4πx)2LakBTsB
 

Energy per bit per unit spectral density for the noise is Eb/N0 is a quantity that is directly connected 

to the error rate. The Eb is obtained by dividing the previous expression by transmission rate and 

to obtain N0, the previous expression is multiplied by BW. 

Eb

N0
=

energy per 1 bit

Noise Spectral Density
 

Eb

N0
=

PtGtGrλ2

(4πx)2LakBTsR
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Eb

N0
(dB) = Gt + Pt +

Gr

Ts
− Ls − La + 228.5 − 10 log10 R 

The term Gr / Ts represents the gain per system temperature of the receiver in dBK and 228.5 

stands for the Boltzmann’s constant in dB. 

 Satellite communication example 

Consider the following: A GEO satellite link with transmission rate of 100Kbits/sec with receiver 

gain 35dB, transmitter gain 20dBi. If the satellite is assumed to be exactly at the equator and 

transmission power of 700Watts at 10GHz frequency. (Source: [50]) 

Ts = 300K | Pt = 700W | 𝑓 = 10GHz |  𝜆 = 1/𝑓 

Thus,  𝑃𝑡(𝑑𝐵𝑊) = 10 log10 (700) = 28.5dBW 

𝑃𝑟(𝑑𝐵𝑊) = 𝑃𝑡(𝑑𝐵𝑊) + 𝐺𝑟(𝑑𝐵𝑖) + 𝐺𝑡(𝑑𝐵𝑖) − 10 𝑙𝑜𝑔10 (
4𝜋𝑥

𝜆
)

2

 

  =  28.5𝑑𝐵𝑊 +  20𝑑𝐵𝑖 +  35𝑑𝐵 − 10 𝑙𝑜𝑔10 (
4𝜋∗36000

1/10𝐺𝐻𝑧
)

2

 

  =  −229.61  𝑑𝐵𝑊 

𝐺𝑟

𝑇𝑠
= 35 − 10 log10 (300) = 10.2dBK 

𝐸𝑏

𝑁0

(𝑑𝐵) = 20 + 28.5 + 10.2 − 203.5 ( 𝐿𝑠) − 5 (𝐿𝑎) − 228.5 − 50

= 28.7𝑑𝐵 

 ≃ 𝟐𝟗𝒅𝑩  

From the above value is it clear that the quality of the signal is very good. Using this calculation, 

we can deduce the associated BER suiting the type of modulation used. The BER is a probability 

of error in the transmitted data.  
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 Link budget conventions 

1. Compute or evaluate the transmission power – Pt and obtain the gain Gt in the direction 

considered. 

2. Calculate the free space path loss for the frequency under consideration and thus estimate 

Ls. It is essential to note that the distance varies according to which orbit the satellite 

currently is. 

3. Additional losses such as polarization mismatch, loss due to satellite drag, atmospheric 

losses, etc. need to be estimated. These losses are subject to change according to location 

or seasons. 

4. Compute the system temperature Ts and the Rx gain Gr. Obtain the Gr/.Ts ratio in dBk. 

5. Obtain the BER based on modulation and compare the calculated Eb/N0 with the one 

required for the desired BER by calculating the link margin.  

6. To obtain a positive link margin, modify the parameters such as EIRP, Pt, etc. 

 Bit Error Rate (BER) 

The BER value is a measured as the number of error bits received per unit time. If X bits were 

transmitted, and had x error bits in them, the ratio of x/X is the BER, which is a unitless measure. 

The probability pe is the expectation value of the BER. The bundle error ratio can be calculated 

similarly as follows[34]: 

pb = 1 – (1 – pe)
L 

where L is the Data bundle length of L bits. The BER values were obtained through simulation 

for time series data covering 24hrs of time. The BER describes the link quality inclusive of all the 

losses. From [35] evidently, the probability of error can be obtained in terms of Q function 

expressed as using Energy per symbol to noise spectral density as:  
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P(Error) = Q (√
2Es

N0
) = 0.5 erfc (√

Es

N0
) 

For synthetic data, Obtaining BER was the most challenging task. For obtaining the BER, the 

following procedure was adopted. Firstly, the simulation of the satellite scenario was done for 

both LEO and GEO orbits. Post this, the range of energy per bit to noise power spectral density 

was obtained through the simulator. This range was used to randomly obtain the Eb/N0 values and 

corresponding Es/N0 values using the following formula [36]: 

Es

N0
=

Eb

N0
log2(M) 

Where M = 4 for QPSK channel. This is expressed under the “Reg” column after each Eb/N0 

value in the data sheet. These values are randomly generated for obtaining 10,000 synthetic 

observations behaving like simulated data. 

 Cost calculation 

Considering a bundle of data is transmitted, this bundle can be viewed as a file of size 100MBytes. 

Size of one bundle = 100Mbytes | therefore, Size of One bundle = 800 Mbits 

Probability of 1 bit error in a bundle =  Pe = BER 

Probability of 1 bundle loss =  pb = 1 − (1 − pe)L 

Where L is the length of the bundle. If we consider 1 bundle to be file, then L is the size. 

Tranmsission time =
Size of Bundle

Data Rate
 

Propagation time is the time taken to cover d distance in 3*108 m/s (Speed of light). If we consider 

LTP type of transmission, The Round-Trip time (RTT) is twice the propagation time. Thus, Time 

Required to transmit the bundle[51]: 

Propagation time = 
d

3∗108m/s
 



34 

 

Bundle time = (Transmission time) + 2*(Propagation time) 

 Link Tx time =
size of bundle

rate
×

1

(1 − pb)
 

According to queuing theory, the service time is the time taken to serve a customer. In this case, 

the time taken to serve one bundle. Occupancy is the number of bundles waiting to be transmitted. 

The system would have to transmit n such bundles. This time is considered as the cost of that link. 

Service time = s =
Bundle time

Probability of successful Transmission
=  

Bundle time

(1 − pb)
 

Response time = (Occupancy ∗ Average Bundle time) +  service time 
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 DATASET GENERATION 

The STK cloud simulation tool is used to simulate satellite communication scenarios to obtain the 

BER values as no real data is available in case of satellite downlinks. One is GEO and the other is 

LEO. The link budget obtained from these scenarios are used to obtain a range of values to create 

another set of larger dataset as synthetic values for experiments. This synthetic data is used to see 

how the SNN would respond to a large data set of random events. To simulate using STK tool, 

one must undergo certain necessary trainings to correctly use the STK tool specific to creating 

communication scenarios. On a generic level, the scenario can be visualized as the following 

image, refer to Figure 5.1. The satellite being a LEO or  Geo satellite makes a selection of the best 

link for transmission, giving the idea that the reception need not be monitored and controlled 

manually. 

 

Figure 5.1 Satellite scenario considered 

 Simulation procedure 

The objects that are used for the scenario created are satellite, transmitter, receiver and sensors, 

places (locations/facility). All the necessary objects are available to be inserted from the object 

browser. The properties can be defined by using one of the several methods listed on the right side 
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and the properties are set. The properties are set such a way that it mimics real satellites 

transmitters and receivers. Further, the environmental conditions can also be set, such as rain and 

fog. 

 

Figure 5.2 STK Objects 

 Transmitter and receiver properties 

The downlink properties were set for the transmitter and the uplink properties were set to the 

transmitter and the receiver, refer Figure 5.3. This scenario assumes the link is established such 

that the uplink transmission was already done. The type of transmitter is simple transmitter model 

and that of the receiver is complex receiver model given by STK. The values such as frequency, 

EIRP, data rate and polarization are set according to the recommended values chart provided by 

the International Telecommunication Union (ITU)[37]. The following table shows the list of 

recommended values necessary of simulation from ITU as well as particular to conventional 

satellite values. 

Table 5.1 List of recommended values for satellite communication by ITU 

Service GEO LEO 

Frequency (space-to-Earth) (GHz) 19.92 19.2 

EIRP (dBW) 61.8 58 
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Polarization Left hand circular Right Hand Circular 

Bandwidth (MHz) 41.84 4.1 

Data Rate (Mbps) 51.84 8900 

Distance rage (km) 36000 2000 

Propagator J2Perturbation SGP4 

Several other factors can be monitored and set according the ITU recommendations. Once all these 

parameters are set, each element is provided access to each other element with the help of the 

“Access” feature for the objects. The transmitter can now access the details of receivers. The 

“Link-Budget” is one such attribute that can be accessed through navigation to the access page. 

Similarly, the “Report and Graph Manager” feature of STK cloud enables crating new styles of 

graphs and reports for the simulated period, for the factors that one is interested in analyzing.  

 

Figure 5.3 Sample Transmitter properties of LEO orbit 

Table 5.2 List of common features 

Modulation QPSK 

Pointing targeted 

Antenna diameter 0.5 m 

Sensor Type Simple conic (5 deg) 
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Antenna model type Parabolic 

Transmitter Simple Transmitter model 

Receiver Complex receiver model 

Explicitly, other environmental Losses can be set by selecting respective databases from the STK 

cloud database. This enables one to add additional noise to the signals transmitted is the location 

of the places change. The databases contain rain and cloud records from several places and days. 

A separate link budget was obtained for BER analysis with explicit Rain and fog loss to analyze 

how the system responds in such cases. From the graphs obtained through simulation, it was 

observed that the behavior of the signals is the same except there is a change in the range of values. 

 Space Scenario 

LEO satellites are closer to earth at around 2000kms and at the same time provide access to 

receivers from various parts of the same country. GEO satellites are at about 36000kms away from 

earth and this mode along with the earth, and hence the name GEO stationary. From Figure 5.8 it 

is we can see that antenna pattern. It the same for all the receivers provided the features are set 

with the appropriate values. Yellow lines in the orbit path on 2D graphics show that the satellite 

mildly busy and the red lines shows that the satellite is accessing all 3 receivers and very busy. 

The blue line indicates change in satellite is not accessing any of the receivers. 
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Figure 5.4 LEO Orbit simulation screenshot before contact.  

 

Figure 5.5 LEO Orbit simulation screenshot at common contact.  

 

Figure 5.6 GEO Orbit simulation screenshot.  

 

Figure 5.7 2D view of GEO scenario 
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Figure 5.8 Antenna pattern visualization from one of the ground stations.  

 Reports and graphs 

The “Report and Graph Manager” can be accessed to obtain the desired graphs for analyzing the 

scenarios, refer Figure 5.9. The following are the graphs obtained from different scenarios under 

different circumstances. All the graphs will be generated with time on the x axis and customizes 

y axes options in STK tool. Explicit RF environment losses can be enabled or disabled by checking 

or unchecking the model use option mentioned in Figure 5.10. 

 

Figure 5.9 Access page for transmitter 
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Figure 5.10 Explicit RF environment losses 

 

Figure 5.11 Report and Graph manager page 

 GEO Scenario without explicit RF loss 

This thesis analyzes three kinds of data for each scenario. One is synthetic data; one is simulated 

without explicitly setting the RF environmental losses and finally a dataset with explicit RF 

environmental losses. Figure 5.12, and Figure 5.13 show the graphs representing how the 

distance(left Y-axis) and the free space losses(right y axis) vary with time(X-axis) along with 

BER(right Y-axis and left y axes respectively in each image). Since we have not provided explicit 

rain and fog loss, it can be observed that the BER is lower and so are the free space losses.  
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Figure 5.12 GEO - BER and Distance Vs Time 

 

Figure 5.13 GEO - BER and Free space loss vs Time 

 GEO Scenario with explicit RF loss 

The second part is to create the same scenario, but this time we give explicit rain and fog loss to 

make the links to have poor RF environmental conditions. We can see from the following graphs 

that BER curves are wider and higher, showing the lower quality of the link and The free space 

losses in Figure 5.14 show very high levels measured in dBs implicating that the quality of 

environment is poor due to explicit RF losses. The explicit rain and fog loss recorded in dB can 

be seen in Figure 5.15. X-axis shows time, left and right y axes show BER and free space loss 

respectively. 
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Figure 5.14 BER, Free space loss Vs Time 

 

Figure 5.15 Rain Loss and CloudsFog Loss Vs Time 

 GEO Access durations 

The following pie charts represents the access durations for the GEO satellite among the three 

receivers. We can see that the duration of access in long enough for all three receivers showing 

the stationary behavior of satellite. This shows that the satellite is constantly available for a given 

area for a long time. 
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Figure 5.16 Access duration for GEO for Transmitter to Receiver 1 

 

Figure 5.17 Access duration for GEO for Transmitter to Receiver 2 

 

Figure 5.18 Access duration for GEO for Transmitter to Receiver 3 

 LEO Scenario without explicit RF loss 

The following graphs show the graphs of BER for the LEO scenario. The closer the satellite, lower 

the BER and higher the link quality. Similarly, the graphs show the variation of BER and losses 
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with time during the contact period. This contact period is nothing but the access duration. BER 

varies with time starting smaller and gradually reaching higher values with increase in time for 

each access duration. A better view can be seen in the next graph as BER(right y axis) varies with 

distance(left y axis) at the first common contact in Figure 5.19. It is clear how behavior of BER in 

LEO and GEO scenarios are different. The free space losses(right y axis) at each contact duration 

is shown in Figure 5.20 and Figure 5.21 shows the BER is lower during the peak duration of access 

and the increases as the satellite moves away from the transmitter’s region of capture. Keeping in 

mind that for this scenario the RF environmental losses were not set explicitly, the pattern appears 

in such a way that the BER is very low during the beginning phase of communication. The graphs 

also show a clearer view for the first common contact to show the pattern of the curves more 

understandably. For all, x-axis represents time of 24hr duration.  

 

Figure 5.19 BER, Distance Vs Time (at first common contact) 

 

Figure 5.20 BER, Freespace Loss Vs Time (All) 
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Figure 5.21 BER, Freespace Loss Vs Time (At first common access) 

 LEO scenario with explicit RF losses 

The next part is to visualize the variations when explicit RF losses are provided to the scenario. 

When explicit RF loses are provided, the BER gradually changes from high values and peaks 

down at low values with decrease in distance at each receiver. The Figure 5.22 represent the 

BER(right y axis) variation with distance(left y axis). Figure 5.23, Figure 5.24, Figure 5.25, Figure 

5.26 show the losses for this scenario and it can be seen that it behaves same as the one without 

explicitly specifying RF Losses(right y axis). Since the behavior of these attributes can all be 

represented through BER, the BER values can be used as feature for predicting the best link in the 

scenario.  

 

Figure 5.22 BER, Propagation Distance Vs Time (at first common contact) 
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Figure 5.23 BER, Free space loss Vs Time (all) 

 

Figure 5.24 BER, Free space loss Vs Time (at first common contact) 

 

Figure 5.25 Rain and fog loss (All) 

 

Figure 5.26 Rain and Fog Loss Vs Time (At first common contact) 
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 LEO Access durations 

The following pie charts in Figure 5.27, Figure 5.28, and Figure 5.29 represent the access durations 

for the LEO satellite at the receivers. We can see that the duration of access is shorter and 

distributed throughout the 24 hours at 6 to 7 different time periods for each receiver showing LEO 

satellite behavior clearly. Although this has nothing to do with the prediction at the NN end except 

the BER, it helps understand the satellite communication better. 

 

Figure 5.27 Access duration for Receiver 1 

 

Figure 5.28 Access duration for Receiver 2 
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Figure 5.29 Access duration for Receiver 3 

 Link budget reports 

The link budget report can be accessed the same way as the graphs. The Access page contains a 

“Link Budget” button which when clicked generates a short form of link budget for any link that 

is selected from the transmitter.  Refer Figure 5.30, which shows the snippet from STK tool for 

receiver 1 as an example. The link budgets for the rest of the links are obtained in similar fashion. 

 

Figure 5.30 Link budget report 

 These results are stored as comma separated values (CSV) and used for applying further cost 

calculations to the models. From this chapter one can infer that instead of using every 

interdependent factor for link quality, we can use BER collectively to represent it and understand 

how other factors are related to it.  
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In the next chapter, we will analyze the collected data after applying the cost calculations to 

observe the behavior.  



51 

 

 DATA ANALYSIS 

 Behavior of measured and theoretical data 

The following table shows a sample of measures and theoretical BER values from the Eb/N0 using 

Q function. From Table 6.1 Sample Measured and Theoretical BER values, we observe that BER 

changes drastically, but the behavior of the curves is the same.  

Table 6.1 Sample Measured and Theoretical BER values 

Eb/No (dB) Measured BER3 Theoretical BER 

16.2024 3.32E-20 6.25884E-09 

16.28 1.55E-20 5.77845E-09 

15.9787 2.76E-19 7.87954E-09 

15.3705 5.24E-17 1.47434E-08 

14.5701 1.88E-14 3.36627E-08 

13.6814 4.17E-12 8.43222E-08 

12.7879 3.53E-10 2.1267E-07 

12.9104 2.02E-10 1.87315E-07 

13.3624 2.26E-11 1.17296E-07 

13.6647 4.57E-12 8.57913E-08 

13.774 2.50E-12 7.66219E-08 

13.6757 4.30E-12 8.48208E-08 

13.3839 2.02E-11 1.14714E-07 

12.9359 1.80E-10 1.8243E-07 

12.7401 4.37E-10 2.23473E-07 
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The theoretical BER values are higher than the measured values for all the links. Figure 6.1 and 

Figure 6.2 show the plot of BER vs time for simulated and synthetic data for satellite a LEO 

scenario. The observations are same for the GEO scenario also. Practically speaking, a model 

trained using this data set would fail miserably in making correct predictions. But since the 

behavior of the data is the same, theoretically, the model would give similar results as the data, 

behaves similar fashion.  

 

 

Figure 6.1 Measured BER 

 

Figure 6.2 Theoretical BER 
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 LEO scenario  

BER vs EB/N0 graphs for each link can been seen in the following graphs. The following tables 

show the sample of synthetic data created followed by the graphs plotted for each link and 

simulated data. As mentioned earlier, the occupancy values are random generated using MS Excel. 

EbN0_1, Pe_BER1, Occupancy1 and Response_Cost1 are associated with link 1. Similarly, the 

naming conventions are for links 2 and 3 respectively for synthetic data. 

 Synthetic data 

The tables, Table 6.2 and Table 6.3 show a sample of synthetic data for the LEO scenario. The 

values are obtained based on cost calculations (334.5). 

Table 6.2 Sample Eb/N0 and BER for LEO scenario Synthetic data 

EbN0_1 Pe_BER1 EbN0_2 Pe_BER2 EbNo_3 Pe_BER3 

13 1.33293E-10 21 5.3E-57 14 6.8E-13 

16 2.2674E-19 15 9.1E-16 25 7E-140 

18 1.39601E-29 16 2.3E-19 18 1.4E-29 

20 1.04424E-45 14 6.8E-13 25 7E-140 

17 6.75897E-24 24 1E-111 24 1E-111 

22 3.29609E-71 19 1E-36 20 1E-45 

12 9.00601E-09 26 2E-175 24 1E-111 

20 1.04424E-45 22 3.3E-71 19 1E-36 

21 5.2997E-57 20 1E-45 21 5.3E-57 

18 1.39601E-29 13 1.3E-10 20 1E-45 

Table 6.3 Sample Occupancy and Response time for LEO Scenario Synthetic data 
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Occupancy 

1 

Response 

Cost1 

Occupancy 

2 

Response 

Cost2 

Occupancy 

3 

Response 

Cost3 

7 0.83738 7 0.82577 2 0.30972 

5 0.61933 5 0.61933 6 0.72255 

6 0.72255 6 0.72255 6 0.72255 

1 0.20644 1 0.2065 6 0.72255 

2 0.30966 2 0.30966 6 0.72255 

10 1.13543 10 1.13543 6 0.72255 

1 139.027 1 0.20644 5 0.61933 

4 0.5161 4 0.5161 1 0.20644 

9 1.03221 9 1.03221 2 0.30966 

9 1.03221 9 1.04382 1 0.20644 

Eb/N0 values are random generated based on the range obtained from link budget simulation. 

Figure 6.3, Figure 6.4, and Figure 6.5 show Eb/N0 vs BER for links 1, 2 and 3 respectively of 

synthetic data generated all showing similar behavior. This makes it a good dataset for training 

the SNN to learn selection between closer values. Concurrently, Figure 6.6, Figure 6.7, Figure 6.8 

show the cost and occupancy of each link and how it varies with respect to each other. The 

response time or cost is obtained through mathematical calculations involving the occupancy, thus 

showing some level of proportionality with its rise and fall. Figure 6.9 shows the cost at each 

observation that the SNN would see at a given random instance of time. 3 bars for each observation 

representing cost of links 1, 2, and 3 respectively. 
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Figure 6.3 Link 1 Eb/N0 Vs BER 

 

Figure 6.4 Link 2 Eb/N0 Vs BER 

 

Figure 6.5 Link 3 Eb/N0 Vs BER 
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Figure 6.6 Link 1 Occupancy and Cost for each observation 

 

Figure 6.7 Link 2 Occupancy and Cost for each observation 

 

Figure 6.8 Link 3 Occupancy and Cost for each observation 
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Figure 6.9 Cost for each observation 

 Simulated data 

The following table shows the simulated data sample Eb/N0 and BER. Refer Table 6.4 for the 

values and Table 6.5 for the cost and occupancy for each link. STK tool was helpful in creating 

the scenario and extracting the BER. 

Table 6.4 Sample Simulated data LEO (Eb/N0 vs BER) 

Eb/No 

(dB) 

BER1 

Eb/No 

(dB) 

BER2 

Eb/No 

(dB) 

BER3 

14.9166 1.68E-15 14.327 9.21E-14 14.15 2.72E-13 

16.1028 8.64E-20 15.239 1.48E-16 15.05 6.34E-16 

17.2058 5.80E-25 16.01 2.06E-19 15.81 1.26E-18 

18.0049 1.30E-29 16.493 1.80E-21 16.3 1.23E-20 

18.2564 1.00E-30 16.57 7.98E-22 16.42 3.96E-21 

17.8647 9.82E-29 16.224 2.70E-20 16.12 7.34E-20 

16.98 8.52E-24 15.545 1.25E-17 15.49 1.95E-17 
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15.8507 8.85E-19 14.671 9.54E-15 14.66 1.03E-14 

14.6631 1.00E-14 13.718 3.41E-12 13.74 3.08E-12 

13.8986 1.23E-12 13.463 1.34E-11 13.33 2.72E-11 

Table 6.5 Sample Occupancy and Response time for LEO Scenario Simulated data 

Occupancy 

1 

Response 

Cost1 

Occupancy 

2 

Response 

Cost2 

Occupancy 

3 

Response 

Cost3 

7 0.83738 7 0.82577 2 0.30972 

5 0.61933 5 0.61933 6 0.72255 

6 0.72255 6 0.72255 6 0.72255 

1 0.20644 1 0.2065 6 0.72255 

2 0.30966 2 0.30966 6 0.72255 

10 1.13543 10 1.13543 6 0.72255 

1 139.027 1 0.20644 5 0.61933 

4 0.5161 4 0.5161 1 0.20644 

9 1.03221 9 1.03221 2 0.30966 

9 1.03221 9 1.04382 1 0.20644 

 

The following graphs show Eb/N0 vs BER for all three links for this scenario. The curves behave 

the same way as the synthetic values in QPSK modulation. The range varies from 12 to 26 dB for 

Eb/N0. Refer Figure 6.10, Figure 6.11, and Figure 6.12 for the graphs. Figure 6.13, Figure 6.14, 

and Figure 6.15 show the link occupancy and cost for the three links directly proportional to each 

other. The range of BER is low as the satellite is a lot closer to the earth. 
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Figure 6.10 Link 1 Eb/N0 Vs BER 

 

Figure 6.11 Link 1 Eb/N0 Vs BER 

 

Figure 6.12 Link 1 Eb/N0 Vs BER 
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Figure 6.13 Link 1 Occupancy and Cost for each observation 

 

Figure 6.14 Link 2 Occupancy and Cost for each observation 

 

Figure 6.15 Link 3 Occupancy and Cost for each observation 
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Figure 6.16 Cost for each observation 

 GEO Scenario 

The following tables are figures are associated with synthetic and simulated data of GEO satellite 

scenario. The observations show higher error rates since the distance is very large as compared to 

that of a LEO satellite. 

 Synthetic data  

Table 6.6 presents a sample of 10 observations for 3 satellite links in the GEO orbit generated in 

MS Excel. Eb/N0_1, Eb/N0_2, and Eb/N0_3 are the corresponding values for inks 1, 2 and 3. The 

bit error rates are denoted with Pe_BER1, Pe_BER2 and Pe_BER3 for each link. The BER range 

is very high due to the considered losses at different instances. 

Table 6.6 Sample Synthetic values for GEO Synthetic data (Eb/N0 vs BER) 
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Eb/N0_1 Pe_BER1 Eb/N0_2 Pe_BER2 Eb/N0_3 Pe_BER3 

10 1.56846E+16 11 1.56846E+16 8 1.56846E+16 

14 62.6969357 10 1.56846E+16 19 47.01629631 

6 1.56846E+16 10 1.56846E+16 9 1.56846E+16 

19 156.7209877 14 31.35273816 12 21139.88535 

5 1.56846E+16 9 1.56846E+16 13 158.484531 

19 94.03259262 6 1.56846E+16 9 1.56846E+16 

11 1.56846E+16 8 1.56846E+16 19 141.0488889 

8 1.56846E+16 13 64.45193839 12 21218.24584 

8 1.56846E+16 11 1.56846E+16 17 156.7209877 

9 1.56846E+16 7 1.56846E+16 14 47.02483693 

 

Table 6.7 Sample Cost and Occupancy for GEO synthetic data 

Occupancy1 

Response 

Cost1 

Occupancy2 

Response 

Cost2 

Occupancy3 

Response 

Cost3 

7 2E+16 6 1.56846E+16 9 1.56846E+16 

3 62.7 10 1.56846E+16 2 47.01629631 

10 2E+16 7 1.56846E+16 9 1.56846E+16 

9 156.7 1 31.35273816 3 21139.88535 

2 2E+16 6 1.56846E+16 9 158.484531 

5 94.03 2 1.56846E+16 4 1.56846E+16 

3 2E+16 7 1.56846E+16 8 141.0488889 

2 2E+16 3 64.45193839 8 21218.24584 
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7 2E+16 1 1.56846E+16 9 156.7209877 

6 2E+16 6 1.56846E+16 2 47.02483693 

 

The graphs showing the BER vs Eb/N0 in dB can be seen in the following images, refer Figure 

6.17, Figure 6.18, and Figure 6.19. This is followed by the graphs showing Occupancy and cost 

for sample observations in GEO satellite transmitter. Evidently, the data closely resembles the 

QPSK modulation behavior as seen in real data. Refer Figure 6.20, Figure 6.21, and Figure 6.22 

for the observations at 50 random time instances for each link. Finally, the bar chart representing 

cost of the three links at each instance is shown for a few sample observations, which is not clearly 

discernable due to the huge amount of data in Figure 6.23. 

 

 

Figure 6.17 Synthetic data BER Vs Eb/N0 link 1 
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Figure 6.18 Synthetic data BER Vs Eb/N0 link 2 

 

Figure 6.19 Synthetic data BER Vs Eb/N0 link 3 

 

Figure 6.20 Link 1 Occupancy and Cost for each observation 
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Figure 6.21 Link 2 Occupancy and Cost for each observation 

 

 

Figure 6.22 Link 3 Occupancy and Cost for each observation 
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Figure 6.23 Cost at each observation 

 Simulated data 

Same as the synthetic data, the following tables (Table 6.8 and Table 6.9) show the Eb/N0, BER, 

occupancies and cost of each link simulated for GEO scenario using STK tool. The range of BER 

is very low as rain and fog loss is not enabled in this data. This means that the sky is clear, and 

data is subject to less error and loss. Refer Figure 6.24, Figure 6.25, and Figure 6.26 for Eb/N0 vs 

BER for GEO simulated scenario. Figure 6.27, Figure 6.28, and Figure 6.29 show the cost and 

occupancy variation with respect to rise and fall in each other. Finally, Figure 6.30 shows the cost 

at each observation. 

Table 6.8 Sample Simulated values Eb/N0 vs BER for GEO 

Eb/No 

(dB) 

BER1 

Eb/No 

(dB) 

BER2 

Eb/No 

(dB) 

BER3 

17.9995 1.41E-29 17.9302 3.85E-29 18.0712 4.88E-30 
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18.0029 1.34E-29 17.9349 3.59E-29 18.0731 4.75E-30 

18.0064 1.27E-29 17.9396 3.36E-29 18.075 4.61E-30 

18.0098 1.21E-29 17.9443 3.14E-29 18.0768 4.49E-30 

18.0132 1.15E-29 17.949 2.93E-29 18.0787 4.37E-30 

18.0166 1.09E-29 17.9537 2.74E-29 18.0805 4.25E-30 

18.02 1.04E-29 17.9583 2.56E-29 18.0823 4.14E-30 

18.0234 9.91E-30 17.9629 2.40E-29 18.084 4.03E-30 

18.0267 9.43E-30 17.9675 2.24E-29 18.0858 3.93E-30 

18.03 8.98E-30 17.9721 2.10E-29 18.0875 3.83E-30 

Table 6.9 Sample Simulated values cost and occupancy for GEO 

Occupacy1 Response 

Cost1 

Occupancy2 Response 

Cost2 

Occupancy3 Response 

Cost3 

10 172.0983 5 93.86021661 5 93.7891133 

9 156.4526 4 78.21683678 10 171.9376962 

1 31.28765 5 93.85998667 8 140.6781994 

5 93.86998 5 93.85987242 10 171.9376062 

4 78.2243 10 172.0760817 3 62.52948171 

10 172.0978 9 156.4327038 8 140.6780669 

3 62.57853 6 109.5027972 8 140.678024 

5 93.86966 9 156.4324787 4 78.15907852 

6 109.5152 10 172.0756315 5 93.78876245 

4 78.22389 3 62.57266782 10 171.93735 
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Figure 6.24 Link 1 Eb/N0 Vs BER 

 

Figure 6.25 Link 2 Eb/N0 Vs BER 

 

Figure 6.26 Link 3 Eb/N0 Vs BER 
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Figure 6.27 Link 1 Occupancy and Cost for each observation 

 

Figure 6.28 Link 2 Occupancy and Cost for each observation 

 

Figure 6.29 Link 3 Occupancy and Cost for each observation 
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Figure 6.30 Cost at each observation 

These graphs verify that the proportionality matches both in synthetic and simulated data making 

it apt for use to train and evaluate the SNN. The data analysis shows that the BER behaves as it 

should for both the scenarios under the specific conditions given. The range of values are low with 

nearer distances and when the sky is clear, whereas it is the opposite otherwise. There is a big 

difference in the range, but the plotted curves show the same behavior. Further, the cost at each 

observation from the bar graphs show how convenient it would be for the SNN to make prediction 

at each observation. 

 

In the next chapter, we will discuss how to implement a spiking neural network starting from 

traditional neural network and moving to Nengo framework.  
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 IMPLEMENTATION OF SNN 

The data collected from the simulation is used to find the cost of each link and fed to the SNN for 

predicting the best link. The workflow used to complete the SNN model is done using the steps 

mentioned in [42], such as data collection, analysis, model construction, model validation, and 

inference. 

 Creating the Keras model 

A sequential model is created with a few dense layers, having 1 input layer, 1 output layer and 1 

hidden layer starting from 3 input neurons, 16 hidden neurons, and 4 output neurons. This 

architecture is a quicker and easier but works on the same principles while other methods require 

sightly varying architecture[47]. The dataset is split into train, test, and validation. The appropriate 

amounts of batch size and epochs depending on each dataset and the model are compiled and fit. 

The model is compiled using sparse categorical cross-entropy loss function and Adam optimizer 

with 0.001 learning rate and evaluated for the accuracy metrics.  A good model is chosen 

according to the results obtained after testing in Keras, is selected for conversion. Figure 7.1 Code 

snippet from keras shows a glimpse from DNN implementation.[48] provides a brief insight on 

how to build a simple deep neural network for classification. 

As the model parameters are not known and NNs are mostly trial and error based, several 

experiments were conducted by changing the number of layers, activation functions, optimizers, 

and size of layers. The results if impact is recorded in a table in the next chapter. What started with 

just a few layers picked pace and quicky rise to different number of layers and different size for 

each layer. Finally, a couple of chosen models were chosen to see if SNN shows improvement in 

performance. 
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Figure 7.1 Code snippet from keras 

 Converting the model to Nengo Model 

The experiments which started with an ad-hoc network has now evolved with 3 neurons in the 

input layer, 16, 32 and 64 neurons in each hidden layer and 4 neurons in the output layer. Totally 

2980 parameters seen from the model summary, refer Figure 7.3. This may change depending on 

which model was selected and there is possibility it may not work for certain other applications.  

After the Keras model is created, it is passed into the NengoDL Converter, which is a tool designed 

to automate the translation from Keras to Nengo. After training the weights, the do_training 

condition is set to true and the nengo_dl.Simulator() class is used to load the weights from the 

saved file and used to evaluate the model. The model is compiled and fit before this step. An 

example from the NengoDL tutorials was referred to plot the predictions and perform training in 

SNN[47]. The impact of various factors such as activation functions, neuron types, synaptic 

smoothing, and firing rates on the accuracy, time taken, and loss was conducted.  
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Figure 7.2 Code snippet from Nengo 

 

Figure 7.3 Sample model summary snippet 

For conversion to spiking neurons, a helper function is defined that will build the network, load 

weights from the parameters file, and make it easy to meddle with few other features of the 

network [47]. The run_network() function contains lines of codes to speed up the simulation at the 

network level, predicts the best link for the test data and evaluates the model using validation data. 

Initially, the output is constant for each observation as the data fed is not temporal. After swapping 

the activations with Spiking Rectified Linear function, the spikes would start to appear. 
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Figure 7.4 Sample SNN code snippet 

 

Figure 7.5 Sample run_network() code snippet 

The function contains arguments to specify activation, number of time steps to predict (n_step), 

scale firing rates, synapse value, number of testing data, and the neuron type. The shape of the 

data is different compared to that in Keras. There is an additional time parameter that adds to the 

third dimension of the dataset.   
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Experiments for each dataset were conducted step by step to analyze the performance of the NN. 

Each section contains sub-sections to obtain the results for the NN based on the change in 

parameters such as activation functions, neuron types, number of layers and size of layers, epochs, 

batch size, and optimizer.  Activation functions tested include sigmoid, SoftMax, Tanh and Relu 

functions tested in this framework as these are the most used activations for classification.  

Neuron types are (a) LIF neuron nengo_dl.SoftLIFRate() with smoothing around the firing 

threshold (b) Spiking version of LeakyReLU, nengo_dl.SpikingLeakyReLU() [47]. Applying 

these neuron types along with spiking activation produces good results. The optimizers most suited 

for this type of multi-class classification are Adam or RMSprop. Further, synaptic smoothing and 

changing the firing rates of the neurons are also done based on values ranging from 0.00001 to 0.5 

and 0.1 to 1000 exponentially respectively. 

 

 

Figure 7.6 Prediction for imparting spiking activites  

Let’s first understand synaptic smoothing. The reasons for performing synaptic smoothing is to 

obtain smoother curves and reduce rapid fluctuations during spiking. This is achieved through 
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synaptic filters. The Synapse parameter in this run_network() function does this activity, which 

basically acts as a low pass filter time constant.  This creates a low-pass filter with the given time 

constant at the output of all the spiking neurons[47]. Hence this helps compute a running average 

of each neuron’s activity for a time period instead of observing the final time step alone. So, if 

there are any rapid changes in the inputs, the network output will be less responsive making it take 

more time for the output to settle, refer Figure 7.8. The accuracy, slightly improves at times but 

deteriorates if too high of a value is given, meaning that the spiking is restricted too much.  

Next attribute is firing rate, which can also be sued to improve the model performance. We have 

seen that the output of a neuron is a spike in SNN. If this rate is increased, the output will also be 

updated correspondingly. If the firing happens more often, the model will begin resembling the 

original non-spiking model, where the output is the actual fire rate. This can be done without 

training the model again by giving a linear scale to all the input neurons, which agrees well with 

ReLU activations functions[47]. Refer Figure 7.7 to see how the neurons spike when firing rates 

vary from 0.1 to 8.  

Very high firing rates would almost give a constant output without any spiking activity, which is 

not the aim of this literature. For regularizing by optimizing the firing rates during training is 

another option to increase the firing rates, but it is not done in this thesis to save time. It is 

important to be aware that there are tradeoffs depending on the specific application for these 

factors.  
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Figure 7.7 Prediction scaling firing rates snippet 

 

Figure 7.8 Prediction performing synaptic smoothing   
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 RESULTS OF SNN 

After several trials and errors experimenting with the number of neurons, layers and the sizes, for 

the LEO scenario, the best model consists of 3 input neurons 3 hidden layers of 16, 32 and 64 

neurons each and output layer of 4 neurons for the Keras model. Unless mentioned specifically, 

the output layer activation with 4 neurons, is given as ‘sigmoid’. When converted to Nengo, the 

model shows better accuracy at certain conditions. The following graph shows the generic loss 

plot that shows the loss reduces with each epoch for both testing and training datasets. The model 

might produce the same results after conversion to the new framework but gives a possibility of 

increasing the accuracy when a few parameters are tweaked. In most of the cases increasing the 

synaptic smoothing decreased the prediction accuracy and increase in firing rates up to a certain 

level produced increase in prediction accuracy. Very high firing rates resulted in a drop in the 

accuracy.  

 

Figure 8.1 Generic loss plot 

The tables below show the results of the two models for the 3 different datasets obtained for LEO 

and GEO scenario. Typically, the loss plots for all the models look like above Figure 8.1 but results 

vary according to the data at hand. 
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 LEO Scenario Results 

The results of impact on accuracy and time for the synthetic data on the Keras neural network and 

SNN according to each parameter is listed below. Refer Table 8.1 and Table 8.2 for results of LEO 

scenario synthetic data. Refer Table 8.3 and Table 8.4 for results of simulated data.  

Table 8.1 Impact chart LEO synthetic data Keras 

Model Parameter Layers Loss Time Optimizer Accuracy Batch Epoch 

1 

Optimizer 3,16,32,4 

0.394 9.69 Adam 0.89 100 60 

2 0.393 8.35 Rms  0.89 100 60 

3 

Layers 

3,16,32(X2),4 0.3 8.63 Adam 0.894 100 60 

4 3,16,32(X4),4 0.32 10.14 Adam 0.86 100 60 

5 3,16,32(X8),4 0.3 11.41 Adam 0.87 100 60 

6 3,16,32(X4),4 0.33 5.23 Adam 0.87 100 30 

7 

Size 

3,16,32,64,4 0.33 9.85 Adam 0.88 100 60 

8 3,16,64,64,4 0.33 10.03 Adam 0.88 100 60 

9 activation 

3,16,32, 

64(sigmoid),4 

1.3863 9.201 Adam 0.48 100 60 

Table 8.2 Impact chart Leo Synthetic data Nengo 

Data Parameter 

Model 7 Model 9 

Loss Time Accuracy Loss Time Accuracy 

N
eu

ro
n

 Softlifrate 0.31 1.5 0.84 0.97 1.53 0.81 

Spikingleakyrelu 0.31 1.6 0.84 0.97 1.63 0.81 

A
c

ti
v

at
i

o
n
 Spikingrelu 0.31 1.34 0.84 0.97 1.37 0.81 
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Regularspiking(Tanh) 0.31 1.38 0.845 0.97 1.41 0.81 

Regularspiking(Sigmoid) 0.31 1.37 0.845 0.97 1.40 0.81 

Regularspiking(Relu) 0.31 1.6 0.845 0.97 1.9 0.81 

S
y
n
ap

ti
c 

S
m

o
o
th

in
g
 

0.00001 0.31 1.56 0.845 0.97 1.55 0.67 

0.0001 0.31 1.3 0.845 0.97 1.56 0.667 

0.001 0.31 1.45 0.845 0.97 1.95 0.665 

0.005 0.31 1.91 0.84 0.97 1.77 0.665 

0.01 0.31 1.91 0.8 0.97 1.78 0.660 

0.05 0.31 1.68 0.58 0.97 1.75 0.475 

0.5 0.31 1.55 0.39 0.97 1.88 0.3950 

F
ir

in
g
 R

at
e 

0.1 0.31 1.52 0.64 0.97 2.01 0.475 

0.5 0.31 1.29 0.84 0.97 1.88 0.5350 

1 0.31 1.48 0.845 0.97 1.51 0.67 

2 0.31 1.47 0.855 0.97 1.91 0.7350 

4 0.31 1.3 0.86 0.97 1.86 0.81 

8 0.31 1.52 0.86 0.97 1.63 0.81 

10 0.31 1.67 0.86 0.97 1.75 0.81 

1000 0.31 1.65 0.86 0.97 1.85 0.81 

 

After conducting several experiments for the same set of layers, Keras showed 88% accuracy in 

prediction of best link. But Nengo showed only 81%. But when the activation was removed from 

Keras and added to the layer having maximum neurons, the performance of Keras model 

deteriorated. The prediction accuracy of Keras model was 41% showing poor performance, 
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whereas Nengo was able to achieve 84%. When the firing rates were tweaked, the model’s 

accuracy raised to 86%. 

Table 8.3 LEO Simulated data in Keras 

Model Parameter Layers Loss Time Accuracy Batch Epoch 

5 

Layers 

3,16,32,4 0.89 1.77 0.389 5 7 

6 3,16,32(X2),4 0.4 1.2 0.60 4 8 

3 

Size 

3,16,32,64,4 0.75 0.68 0.66 4 8 

7 3,16,32,64,4 0.03 1.5 0.60 3 11 

4 3,8,16,32,4 1.15 0.89 0.66 4 8 

8 Activation 

3,16,32, 

64(Sigmoid),4 

1.38 1.51 0.66 3 11 

 

Table 8.4 LEO Simulated data in Nengo 

Data Parameter 

Model 7 Model 8 

Epoch 

Loss Time Accuracy Loss Time Accuracy 

B
at

ch
 s

iz
e 

3
 

Epochs 

0.92 3.1 0.33 1.16 3.1 0.33 8 

0.92 3.6 0.33 0.92 3.6 0.33 11 

0.84 4.06 0.6667 0.92 4.06 0.33 20 

N
eu

ro
n
 

T
y
p
e 

SoftLIFRate 0.84 1.17 0.6667 0.92 1.31 0.33 20 

SpikingLeakyReLU 0.84 1.400 0.6667 0.92 1.400 0.33 20 

A
ct

i

v
at

io

n
 Spikingrelu 0.84 1.22 0.6667 0.92 1.35 0.33 20 
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Regularspiking(Tanh) 0.84 1.16 0.6667 0.92 1.34 0.33 20 

Regularspiking 

(Sigmoid) 

0.84 1.05 0.6667 0.92 1.38 

0.33 

20 

Regularspiking(Relu) 0.84 1.03 0.6667 0.92 1.60 0.33 20 

S
y
n
ap

ti
c 

S
m

o
o
th

in
g
 

0.00001 0.84 1.46 0.6667 0.92 1.44 0.33 20 

0.0001 0.84 1.55 0.6667 0.92 1.43 0.33 20 

0.001 0.84 1.25 0.6667 0.92 1.28 0.33 20 

0.005 0.84 1.77 0.6667 0.92 1.34 0.6667 20 

0.01 0.84 1.44 0.33 0.92 1.10 0.6667 20 

F
ir

in
g
 R

at
e 

0.1 0.84 1.51 0.00 0.92 1.69 0.6667 20 

0.5 0.84 1.18 0.33 0.92 1.24 0.6667 20 

1 0.84 1.60 0.6667 0.92 1.43 0.333 20 

2 0.84 1.33 0.6667 0.92 1.75 0 20 

4 0.84 1.469 0.6667 0.92 1.57 0 20 

8 0.84 1.39 0.6667 0.92 1.58 0 20 

10 0.84 1.19 0.6667 0.92 1.42 0 20 

1000 0.84 1.45 0.333 0.92 1.27 0 20 

 

For the simulated data, the results obtained are not what was anticipated. Firstly, the amount of 

data obtained in the simulation for LEO satellite is very less and this might lead to the risk of 

overfitting in the model. Due to the geographical locations of the receiver, fewer access durations 

were obtained. A total of only 42 minutes of common contact was achieved where each event 

represents a reading recorded for 1 minute.  
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After shuffling the data for training and fitting multiple times with different sets of training data, 

the Keras model was able to give a prediction accuracy of 60%. But Nengo gave 66.7% of 

accuracy. After removing the activation from output layer and giving it to the layer with maximum 

number of neurons, surprisingly, Keras predicted with 66.66% of accuracy but Nengo gave only 

33% accuracy. But after tweaking the firing rates to 0.5, SNN was able to achieve 66.67% of 

accuracy. The model is still not fairly good, due to the low accuracy rate. But it is still better than 

Keras. As shown from synthetic data, if larger dataset is available, the model might give better 

results. 

 GEO scenario Results 

The results for GEO satellite is given in Table 8.1 and Table 8.2 for synthetic data. Refer Table 

8.7 and Table 8.8 for results of simulated fata for the selected models. Though initially the loss is 

high for Model 10, after spiking activities are imparted, the loss reduces drastically.  

Table 8.5 GEO synthetic data Keras 

Model Parameter Layers Loss Time Optimizer Accuracy Batch Epoch 

1 

Optimizer 3,16,32,4 

0.45 7.18 Adam 0.701 100 60 

2 0.45 6.88 Rms  0.70 100 60 

3 

Layers 

3,16,32(X2),4 0.44 7.8 Rms 0.70 100 60 

4 3,16,32(X4),4 0.453 9.1 Adam 0.70 100 60 

5 3,16,32(X8),4 0.453 10.42 Adam 0.68 100 20 (ES) 

7 3,16,32(X4),4 0.44 10.42 Adam 0.68 15 10 

8 

Size 

3,16,32,64,4 0.44 8.44 Adam 0.69 100 60 

9 16,32(X2),64,4 0.448 12.11 Adam 0.69 100 60 
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10 Activation 

16,32(X2), 

64(Sigmoid),4 

1.38 1.55 Adam 0.354 100 10 

Table 8.6 GEO Synthetic data Nengo 

Data Parameter 

Model 9 Model 10 

Loss Time Accuracy Loss Time Accuracy 

N
eu

ro
n

 

Softlifrate 1.3 2.16 0.29 0.54 1.86 0.805 

Spikingleakyrelu 
1.3 2.0 0.29 0.54 

1.49 
0.805 

A
ct

iv
at

io
n

 

Spikingrelu 1.3 1.2 0.29 0.54 1.37 0.805 

Regularspiking(Tanh) 1.3 1.3 0.29 0.54 1.7 0.805 

Regularspiking(Sigmoid) 1.3 1.84 0.29 0.54 1.94 0.805 

Regularspiking(Relu) 1.3 1.5 0.29 0.54 1.48 0.805 

S
y
n
ap

ti
c 

S
m

o
o
th

in
g
 

0.00001 1.3 1.7 0.29 0.54 1.54 0.805 

0.0001 1.3 1.6 0.29 0.54 1.49 0.805 

0.001 1.3 1.56 0.29 0.54 1.669 0.805 

0.005 1.3 1.85 0.285 0.54 1.56 0.80 

0.01 1.3 1.75 0.285 0.54 1.67 0.785 

0.05 1.3 1.75 0.28 0.54 1.67 0.705 

0.5 1.3 1.8 0.15 0.54 1.58 0.445 

F
ir

in
g
 R

at
e 

0.1 1.3 3.23 0.3333 0.54 2.4 0.78 

0.5 1.3 2.8 0.330 0.54 1.98 0.80 

1 1.3 2.33 0.30 0.54 1.97 0.805 
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2 1.3 1.74 0.29 0.54 1.89 0.805 

4 1.3 1.76 0.285 0.54 1.83 0.805 

8 1.3 1.76 0.285 0.54 1.51 0.805 

1000 1.3 1.5 0.285 0.54 1.44 0.805 

Table 8.7 GEO simulated data Keras 

Model Parameter Layers Loss Time Optimizer Accuracy Batch Epoch 

1 

Optimizer 3,16,32,4 

0.031 8.7 Adam 0.99 18 64 

2 0.0092 8.69 Rms  1 18 54 

3 

Layers and 

size 

16,32,64,4 0.069 3.68 Adam 1 18 10 

4 3,8,16,32,4 0.041 7.99 Adam 1 18 64 

5 3,8,16,32,4 0.096 1.398 Adam 1 100 

20 

(ES) 

6 Activation 

3,8,16,32 

(Sigmoid),4 

1.386 1.07 Adam 0.6 18 10 

Table 8.8 GEO Simulated data in Nengo 

Data Parameter 

Model 5  Model 6 

Loss Time Accuracy Loss Time Accuracy 

N
eu

ro
n

 Softlifrate 0.9702 1.32 0.645 0.1167 1.86 0.97 

Spikingleakyrelu 0.9702 1.59 0.645 0.1167 1.49 0.97 

A
ct

iv
at

io
n

 

Spikingrelu 0.9702 1.32 0.645 0.1167 1.37 0.97 

Regularspiking(Tanh) 0.9702 1.73 0.645 0.1167 1.7 0.97 

Regularspiking(Sigmoid) 0.9702 1.37 0.645 0.1167 1.94 0.97 
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Regularspiking(Relu) 0.9702 1.48 0.645 0.1167 1.48 0.97 

S
y
n
ap

ti
c 

S
m

o
o
th

in
g
 

0.00001 0.9702 1.70 0.645 0.1167 1.54 0.97 

0.0001 0.9702 1.49 0.645 0.1167 1.49 0.97 

0.001 0.9702 1.81 0.645 0.1167 1.669 0.97 

0.005 0.9702 2.04 0.645 0.1167 1.56 0.98 

0.01 0.9702 1.67 0.645 0.1167 1.67 0.85 

0.05 0.9702 1.67 0.645 0.1167 1.67 0.705 

0.5 0.9702 1.63 0.645 0.1167 1.58 0.445 

F
ir

in
g
 R

at
e 

0.1 0.9702 1.68 0.645 0.1167 2.4 0.985 

0.5 0.9702 1.35 0.645 0.1167 1.98 0.97 

1 0.9702 1.481 0.645 0.1167 1.97 0.97 

2 0.9702 1.411 0.645 0.1167 1.89 0.97 

4 0.9702 1.39 0.645 0.1167 1.83 0.97 

8 0.9702 1.88 0.645 0.1167 1.51 0.97 

1000 0.9702 1.588 0.645 0.1167 1.44 0.97 

The layers are as follows: one input layer with 3 neurons, three hidden layers with 16,32,and 64 

neurons and last output layer with 4 neurons for classification. The last layer is a sigmoid layer 

for the first set of experiments in Keras. Later this activation is moved to the hidden layer having 

the highest number of neurons. This is the procedure adopted for both the scenarios.  

For the GEO satellite, the synthetic data was only able to achieve an average accuracy of 35.4% 

in Keras. The SNN predicted with 80.5% accuracy (range 78% to 70.5%). When the activation 

was changed to the hidden layer, the same model predicts with 69.5% accuracy in Keras but SNN 

predicts with 87% of accuracy. Though this range is low for a model to be called as a good model, 

the model predicts better than Keras when spiking activities are involved. Coming to simulated 

dataset, without changing the activations, Keras produced good accuracy of 99% for just 10 epochs 

than SNN at 52% to 64%. But, when activation was changed, Keras performs very poorly at 56% 
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but Nengo reaches up to 97% of accuracy in predicting the best link. Further, tweaking the firing 

rates achieves 98.5% of prediction accuracy performing better than Keras model. 
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 CONCLUSION AND FUTURE WORK 

Thus, a spiking neural network for optimal decision-making using classification of downlink data 

to predict the best link was designed with the help of NengoDL framework. The results obtained 

were very surprising for certain datasets. In most cases, without changing the output activation 

function, the spiking activities did not produce any improvement in the accuracy unless there was 

a change in the firing rates in case of LEO scenario synthetic data. But in GEO, there is an increase 

in prediction accuracy in rage of 2% to 10% when firing rate is increased. Extreme firing rates 

produce a -2% to -10% range of reduction in prediction accuracy.  

Since training a neural network depends on several factors like features of data, parameters like 

batch size and number of epochs, tweaking these to balance the network, produced better results 

in Keras. Nengo, although it effectively translated the Keras NN to a Nengo framework, the model 

did not produce better results for lesser data like that obtained in LEO scenario. It was finally 

observed that the models produced better results when large dataset was available. Smaller 

datasets yielded an average accuracy of 66.67% both in Keras and Nengo. But larger dataset 

produced on an average 84% accuracy in Keras and 87% accuracy in Nengo. Similarly, for the 

GEO scenario, the model in Keras produced 68%-96% accuracy and a 0.5% increase in SNN. But 

after changing the output activation to the hidden layer having the most neurons, the results change 

drastically. It was observed that Keras models perform very poorly when compared to SNN 

predictions by at least 30% difference. For LEO, the maximum accuracy in SNN is 86% when 

Keras was just at 41%. For GEO scenario, the prediction of Keras was just 56% while SNN 

manages to achieve 98.5%  of accuracy. 

To conclude, from the various experiments conducted using the SNN created using Nengo, it can 

be observed that the model with spiking activities does produce better predictions compared to 
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that in Keras depending on the datasets used and the activation functions.  Smaller datasets 

produced good accuracy but high loss. Increase in amount of data produced better accuracy and 

lower loss. Using many layers of networks produced better results to an extent but increases the 

training time and reduces the accuracy after a level. SNNs are thus good candidate for intelligence 

in space applications. 

This work reveals several research opportunities where certain aspects require more study. This 

work can thus be a link for future works focusing on SNNs. Future works in this thesis may focus 

on performing regression for predicting the next best link for a certain amount of time in the near 

future. This would require large amount of real satellite downlink data to obtain a good prediction. 

Secondly, experimenting with link cost reduction methods is a good area to work on. Running 

evaluations for SNN with more than 3 input links is an interesting experiment. Further, other 

regularization and optimization techniques can be evaluated to analyze the performance of SNN. 

There are several such renditions that can be focused on exploiting SNN for intelligent systems in 

future.  
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LIST OF ABBREVIATIONS 

AI 
Artificial Intelligence 

NN 
Neural network 

SNN 
Spiking Neural network 

STK 
Simulation Tool Kit 

RF 
Radio Frequency 

LTP 
Licklider Transmission Protocol 

GEO 
Geosynchronous equatorial orbit  

LEO 
Low Earth orbit 

SNR 
Signal to noise ratio 

BER 
 Bit Error Rate 

EIRP 
Equivalent Isotopically radiated power 

CNN 
Convolutional neural network 

DNN 
Deep neural network 

LIF 
Leaky integrate and fire 

GS 
Ground station 

SP 
Shortest path 

IoT 
Internet of Things 

HTP 
High Throughput 
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TF 
Tensorflow 

BP 
Back propagation 

SGD 
Stochastic Gradient Descent 

QPSK 
Quadrature Phase Shift Keying 

MSE 
Mean Squared Error 

GPU 
Graphic Processing unit 

CPU 
Central Processing Unit 

FPGA 
Field programable Gate Array 

MNIST 
Modified National Institute of Standards and Technology  

ML 
Machine Learning 

BW 
Bandwidth 

NSD 
Noise Spectral Density 

RTT 
Round Trip Time 

ITU 
International Telecommunication Unit 
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