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Gas bubbles driven in radial oscillations are subject to an instability of the spherical shape that is
opposed by surface tension and viscosity. An exact linear formulation for the study of the
phenomenon has been available for many years, but its complexity has discouraged a detailed
investigation. With the recent theory of sonoluminescence of Lohse and co-workers@Hilgenfeldt
et al., Phys. Fluids,8, 2808~1996!#, there has been a renewed interest in the problem and new data
have become available. This paper presents a numerical method for the solution of the pertinent
equations and compares the theory with these new data. The coupling of the strong nonlinearity of
the bubble radial oscillations with the parametric mechanism of the surface instability results in a
very complex structure for the stability boundary. Nevertheless, a good agreement between theory
and data is found. A comparison with earlier approximate models is also made. ©1999 American
Institute of Physics.@S1070-6631~99!04106-9#

I. INTRODUCTION

The fact that the spherical shape of oscillating gas
bubbles may be unstable has long been known
experimentally1–3 as well as theoretically.4–7 Recently, re-
newed interest in this phenomenon has been prompted by the
discovery of the intriguing phenomenon of single-bubble
sonoluminescence,8–10 as it has been hypothesized that the
extinction threshold for light emission is due to a shape in-
stability that destroys the bubble.11–13 For this reason Holt
and Gaitan14,15 have conducted a new experimental study of
the instability threshold of air bubbles in water. The purpose
of the present study is to subject the available theory for
bubble dynamics and linear shape instability to the stringent
test that these new data make available. At the same time, we
shall see what is the effect of introducing in the theory sev-
eral simplifications that have been adopted in the recent
sonoluminescence literature. The pressure amplitudes on
which we primarily focus here are those for which Holt and
Gaitan were able to determine with precision the nature of
the surface instability, and are thus lower than those arising
in sonoluminescence. Nevertheless, in view of the current
interest in this topic, we include some results at higher pres-
sure amplitudes at the end of Sec. V. Further results in this
parameter range can be found in a recent paper.16 The dif-
ference between this study and a recent one on the same
topic17 lies in a more realistic treatment of the bubble interior
and in the comparison with experiment.

In the last several years there have been a number of
studies, referenced and summarized in Ref. 3, on the nonlin-
ear interaction between shape and radial modes for pulsating
bubbles. Since we focus here on the linear growth phase of
the shape instability, such phenomena are not directly rel-
evant to the subject of this paper.

II. THE STABILITY EQUATION

A theoretical formulation of the spherical stability of a
bubble including viscous effects was presented in Ref. 18.
The result is based on a linear analysis according to which
the bubble shape is perturbed to

r 5R~ t !1an~ t !Yn
m~u,f!, ~1!

whereR is the instantaneous bubble mean radius,Yn
m a sur-

face harmonic, andan the amplitude of the surface distor-
tion. Since, in the linear regime, the dynamics of the pertur-
bation is independent of the indexm, we drop it in the
following. It is found thatan satisfies the following equation:
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Here dots denote time derivatives andn, r, and s are the
kinematic viscosity, density, and surface tension coefficient
of the liquid. The fieldU(r ,t), the toroidal component of the
liquid vorticity, satisfies
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subject, atr 5R(t), to the boundary condition
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The physical reason for this rather complicated math-
ematical structure of the problem is that both the amount of
vorticity generated at the bubble surface and the viscous
damping of the shape oscillations depend on the instanta-
neous distribution of vorticity. The spatial integrals of the
field U are necessary to properly account for this instanta-
neous distribution.

For small viscosity, since vorticity will be essentially
confined to a thin boundary layer proportional toAnt, one
may expect that the integral terms in~2! will be smaller than
the other viscous terms. Upon dropping the integrals, one
then finds
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In the case of a bubble of fixed radius, one can read from this
equation directly the natural frequency of oscillationvn and
damping constantbn of the nth mode,
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These results agree with the classic ones in the literature
~see, e.g., Ref. 19!.

If one were to wish to go one step beyond this approxi-
mation, one would naturally turn to a boundary-layer type
approximation. The result would then be12,20
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whered is the boundary layer thickness. Brenneret al.11 sug-
gest to define this quantity as
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in which v is the frequency of the sound driving the radial
oscillations. The quantityR/2n acts as a cutoff justified on
the basis of a quasistatic argument12 for small bubbles.

In Sec. V we shall study how these various approxima-
tions compare with the exact result obtained from Eqs.~2!,
~3!, and~4!.

III. THE RADIAL MOTION

The model we use for the radial oscillations of the
bubble has been documented extensively in our earlier pa-
pers and only the pertinent equations will be summarized
here.

For the radial equation we use the form of Keller and
co-workers,21–23
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In this equationcL is the speed of sound in the liquid,P` is
the static ambient pressure,PS(t) is the imposed acoustic
field pressure evaluated at the location of the bubble, andpB

is the pressure on the liquid side of the interface. This quan-
tity is related to the bubble internal pressurep by the balance
of normal stresses across the interface, namely,
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R
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in which m is the liquid viscosity. In this study we take the
sound field to be sinusoidal,

PS~ t !5PA sinvt, ~11!

with PA the acoustic amplitude andv/2p the frequency of
the driving sound field. Equation~9! is only accurate to first
order in the bubble wall Mach number but, for most of the
pressure amplitudes of this study, this level of accuracy is
sufficient.

A key aspect of the modeling of the radial oscillation is
the specification of the internal pressure in the bubble. Here
we use a model, described in detail elsewhere~see, e.g.,
Refs. 24, 25, 26!, that accounts for heat transport by convec-
tion and conduction inside the bubble. The model has been
derived on the assumptions of perfect gas behavior and spa-
tial uniformity of the gas pressure that are well justified for
the pressure amplitudes below about 1 bar which are our
primary concern. The possible formation of shock waves at
higher amplitudes and their role in sonoluminescence and
stability are currently a matter of debate.10,27–29 It may be
mentioned, however, that in an early paper Trilling30 con-
cluded that shocks would not affect significantly the pressure
variation at the bubble wall, which is the primary determi-
nant of the radial motion.

The internal pressurep is found by integrating

ṗ5
3

R F ~g21!k
]T

]r U
R

2gpṘG , ~12!

whereg is the ratio of the specific heats of the gas andk is
the gas thermal conductivity. The gas temperature field
T(r ,t) is obtained from
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As shown in Ref. 31, at moderate pressure amplitudes the
temperature variations of the liquid at the bubble wall are
negligible. Accordingly, we solve~13! assuming, atr
5R(t), T5T` , whereT` is the undisturbed liquid tempera-
ture. The gas thermal conductivity is approximated by the
linear relationk5AT1B, whereA55.52831025 W/mK2,
B50.011 65 W/mK, which closely fits air data over the
range 200 K,T,3000 K. For the argon simulations we use
insteadA53.231025 W/mK2, B50.009 W/mK.

In view of the complexity of the thermofluid mechanic
processes in the bubble, many researchers have used simpli-
fied formulations. For example, Lohse and
co-workers11,12,32,33calculate the internal pressure from

p5S P`1
2s

R0
D S R0

32h3

R3~ t !2h3D k

, ~15!

whereR0 is the equilibrium radius of the bubble, the poly-
tropic indexk is taken to be 1, andh5R0/8.86 is the hard-
core van der Waals radius. In the parameter range of primary
concern here it is found that the effect of the parameterh is,
however, very small.16

IV. NUMERICAL ASPECTS

The numerical solution of the problem foran is not en-
tirely straightforward and it is appropriate to describe it in
some detail.

The first step is to map the intervalR(t)<r ,` onto the
fixed interval 1>x>0, which we do by means of the new
variable

x5
R~ t !

r
. ~16!

We have also used other mappings with indistinguishable
results. Then we expand the fieldU into a ~truncated! series
of Chebyshev polynomials of even order,

U~r ,t !5(
0

N

uk~ t !T2k~x!, ~17!

which satisfies automatically the condition]U/]r→0 as r
→`. The expansion is substituted into the differential equa-
tion ~3! and the result evaluated at theN collocation points

xk5cos
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2N
, k51,2,...,N. ~18!

The first pointx1 is the node adjacent to the bubble surface
and the last one is the point at infinity. In this way, one
obtainsN equations for theN11 coefficientsuk . The last
equation is found from the boundary condition~4!. The form
of this condition is actually inconvenient for numerical pur-
poses as it establishes an algebraic relation between theuk’s.

It is more convenient to take a time derivative to find a
relation among the derivativesu̇k . To this end we differen-
tiate~4! with respect to time and use~3! to eliminate the term
]U/]t that arises from the integral, and~4! to eliminate the
term *R

`s2nUds. The final result is
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To generate the numerical results that follow we typically
takeN516, which has been determined on the basis of con-
vergence studies to give a good accuracy.

The integrals over the variabler appearing in~2! and
~19! are evaluated by Gaussian quadrature after carrying out
the change of variable~16!. For instance,

E
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The integral in the right-hand side is in the standard form for
Gaussian evaluation using the zeros of Chebyshev polynomi-
als. Typically we use the zeros ofT16. Preliminary calcula-
tions with a greater number of points, up to the zeros ofT40,
did not change the results appreciably. We have verified that
our results coincide with the recent ones of Ref. 17 when, as
in that work, the bubble internal pressure is calculated from
~15! with k57/5 and the prefactor is changed fromP`

12s/R0 to P` .
For the numerical solution of the radial oscillation

model, the gas energy equation is transformed into a set of
ordinary differential equations by the Chebyshev spectral
collocation method described in Refs. 24 and 34. Up to a
forcing pressure of 1 bar, we have used 16 and 20 terms in
the Chebyshev expansion finding virtually identical results.
Above 1 bar, we gradually increased the number of terms up
to 40 for 1.45 bars.

V. RESULTS

Hilgenfeldt et al.12 distinguish between 3 types of sur-
face instabilities for oscillating bubbles; parametric,
Rayleigh–Taylor, and ‘‘afterbounce.’’ The first one accumu-
lates over time and is similar to the mechanism giving rise to
the well-known Faraday waves. The second one is directly
linked to the termR̈ in Eq. ~2!, and manifests itself in a
sudden growth of the surface mode when the radial accelera-
tion is strongly positive. The last type of instability grows
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parametrically during the rapid afterbounces that bubbles
driven far below their natural frequency sometimes execute
after the point of minimum radius. While the latter two types
of instability are encountered at pressure amplitudes in ex-
cess of 1.3 atm with the simplified polytropic model~15! for
the bubble internal pressure used, e.g., in Ref. 12, we have
shown in a recent paper16 that they are strongly suppressed
by the proper account of thermal effects in the gas that is
incorporated in the model of Eqs.~12!–~14!. Hence, the only
instability that needs to be considered here is of the paramet-
ric type. If the instability threshold is evaluated from the
boundary-layer approximation~7!, one can use Floquet’s
theorem to calculate the amplification rate after just one pe-
riod of the~steady-state! radial oscillation. No such theorem
is however available for the complete integro-differential
model ~2! and we have to have recourse to integration over
several cycles to judge whether each particular case is stable
or unstable. Fortunately, the instability is often violent and
the judgment as to its presence is easily made on the basis of
its behavior over 5–10 cycles. Typical examples of the de-
velopment or damping of the instability for an air bubble are
shown in Figs. 1 and 2 both forv/2p520.6 kHz, n52,
PA50.8, withR0517 and 7mm, respectively. In other cases,
however, the integration was continued for 20–40 cycles to
identify a clear trend, and over 100 would have been neces-
sary to see the actual blow-up of the modal amplitude. This
circumstance renders the identification of stability bound-
aries very time consuming, and for this reason some of the
results shown below do not display these boundaries in all of
their complexity.

Holt and Gaitan14,15 give the stability threshold as a
function of the bubble equilibrium radius and sound ampli-
tude for air bubbles in water at 20.6 kHz; for 1 bar static
pressure, the resonant radius at this frequency isRres

5153mm. At pressure amplitudes below 1 bar they were
able to identify the ordern of the unstable surface mode, and
these are the only data that we consider. These data are
shown by the open circles in Figs. 3 (n52), 4 (n53), and
5 (n54). The stability threshold of our model corresponds
to the boundary between the black and white areas of the

figures. Even though it would be desirable to have data pro-
viding a more even coverage of the parameter range, the
agreement between theory and experiment is generally good.

The general features of the instability are well under-
stood on the basis of the stability theory for the Mathieu~or,
more generally, Hill! equation. As shown in Ref. 35, with the
substitutionan5bn /R3/2, and retaining only terms linear in
the radius perturbation, Eq.~2! becomes

d2bn

dt2 12
bn
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dbn

dt
1Fvn

2

v2 1X0un cos~t1f!Gbn50, ~21!

wheret5vt,

un5n1
1

2
23
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2

v2
, ~22!

and we have set

R5R0@11X0 cos~t1f!#. ~23!

From a linearization of the model of Sec. III, we have25,26

FIG. 1. An example of the development of then52 shape instability of an
air bubble in water forv/2p520.6 kHz, PA50.8, R0517mm. FIG. 2. An example of the damping of then52 shape instability of an air

bubble in water forv/2p520.6 kHz, PA50.8, R057 mm.

FIG. 3. The dark area is the calculated stability region for then52 shape
mode for an air bubble in water atv/2p520.6 kHz. The open circles are
the data of Holt and Gaitan~1996, 1998!.
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whereb is the total damping affecting the radial oscillations
and v0 the linear resonance frequency of the bubble. The
explicit expressions for these quantities are rather compli-
cated and are given in the references. IfR in the definitions
of bn andvn is kept constant at its equilibrium valueR0 for
simplicity, Eq. ~21! is in the standard form of the damped
Mathieu equation. The stability boundary in the neighbor-
hood of vn

2/v25 1
4 are given approximately by~see, e.g.,

Refs. 36 and 37!
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A graph of this boundary expressed asR0 vs PA for an air
bubble in water is shown in Fig. 6 forn52 ~solid line!, 3
~dotted line!, and 4. The double dips in these curves can be
explained by observing that~25! would give an instability
near vn

2/v251/4 even with a constant~sufficiently large!
X0 . As the resonance frequency of the bubble oscillation is
approached, however,X0 increases, with the effect that the
instability extends to a greater distance from 1/4. This ac-
counts for the second minimum aroundR05153mm. The
minimum in the instability threshold aroundR0560mm in-
dicated in Fig. 6 forn52 is reflected in a minimum in the
full stability map of Fig. 3, and similarly the minimum for
n53 aroundR0587mm can be seen in Fig. 4, and the mini-
mum aroundR05115mm for n54 is present in Fig. 5. The
Mathieu equation has instability regions also forvn

2/v2

5M2 with M51,2,..., and it can therefore be expected that
the double dip structure of Fig. 6 would be associated to
many more of these unstable modes, although the effect of
damping becomes progressively stronger as the orderM is
increased.

The previous simple argument relies on the presence of a
single resonance for the bubble oscillations. Actually, as
shown in Fig. 7, these oscillations are strongly nonlinear and
one therefore expects a Mathieu-equation structure similar to
the one just described associated to all the nonlinear radial
resonances. This fact might explain the S-shaped stable re-
gions in the n52 stability map. For example, nearR0

.50mm, there is a resonance at the third harmonic which
gives rise to the stability threshold nearPA.0.46 bars. Ac-
cording to the Mathieu diagram in Fig. 6, one expects stabil-
ity of this component in a region above a curve starting at
R0550mm andPA.0.46 bars. The stability region that one
encounters in Fig. 3 aroundR0.60mm and PA

.0.5– 0.6 bars may be a consequence of the competition be-
tween the destabilizing effect of the fundamental mentioned
before, and the stabilizing effect of this third harmonic.
Whatever the explanation of these particular features, one
would expect that the combination of the complex stability

FIG. 4. The dark area is the calculated stability region for then53 shape
mode for an air bubble in water atv/2p520.6 kHz. The open circles are
the data of Holt and Gaitan~1996, 1998!.

FIG. 5. The dark area is the calculated stability region for then54 shape
mode for an air bubble in water atv/2p520.6 kHz. The open circles are
the data of Holt and Gaitan~1996, 1998!.

FIG. 6. Stability boundary~25! for the Mathieu equation~21! expressed in
terms of the pressure amplitude and bubble radius for then52 ~solid line!,
3 ~dotted line!, and 4~dashed line!. The radial oscillations are described by
the linearized theory.
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boundary of the Mathieu~or Hill ! equation and the nonlinear
features of the radial oscillations can account for the intri-
cacy of the stability boundaries.

Qualitatively, the complexity of these boundaries seems
to decrease asn increases. This feature can be understood by
noting that the resonancesvn

2/v25M2 of the Mathieu equa-
tion occur for

R05F ~n21!~n11!~n12!

M2

s

rv2G1/3

. ~26!

Thus, asn increases, the regionR0<80mm corresponds to
higher and higherM , and is therefore more sensitive to the
action of viscosity on the instability.

Figure 8 shows the stability boundary forn52 as com-
puted with the boundary layer approximation together with
the complete model of Sec. III for the radial oscillations.

Upon comparison with Fig. 3, we notice a substantial agree-
ment at the lower pressure amplitudesPA,0.6– 0.7 bars. At
higher amplitudes, however, the complete model is more
stable than the boundary layer one, and is seen to agree better
with the data in the region 0.9,PA,1 bars. The correspond-
ing result for the boundary layer approximation coupled with
isothermal bubble oscillations are shown in Fig. 9, where the
difference with the data are appreciably greater.

Before we have remarked on the difficulty of determin-
ing with precision the stability boundary from the theory of
Sec. II. In order to give a better sense of the accuracy of the
results given in the previous figures, forn52 we have in-
vestigated in greater~if still somewhat insufficient! detail a
small region of the relevant parameter space. The results are
shown in Fig. 10 where the thin solid line is the stability
threshold plotted in Fig. 3, the thick solid line the same
threshold computed with a finer resolution, the dotted line is
the boundary layer result, and the dashed line~under all the
others! is the boundary layer/isothermal bubble model. It is
seen that, with a finer sampling of the (R0 ,PA) plane, more
features are uncovered of which the less detailed results of
Fig. 3 are a ‘‘filtered’’ version. From the appearance of these
curves it is however also apparent that yet finer features are
present, as can also be deduced from the lines showing the
boundaries calculated from the approximate models.~As
pointed out before, it is easier to bring out finer details of
these boundaries due to the applicability of Floquet’s theo-
rem.! In view of the difficulty and tediousness of this de-
tailed analysis~and of the fact that the data are not accurate
enough to warrant such a fine comparison! we do not pursue
it further. In general, however, as noticed in Ref. 17, it can
be seen that there is a tendency for the boundary layer model
~dotted line! to slightly underestimate the threshold at the
lower pressure amplitudes. When the boundary layer model
is coupled with the isothermal approximation~lowest dashed
line!, this tendency is markedly increased.

It is also interesting to compare the stability features of

FIG. 7. Dimensionless maximum radius of the bubble in the course of
steady oscillations as a function of equilibrium radius for pressure ampli-
tudes of 0.2~solid line!, 0.4 ~dotted line!, and 0.5~dashed line! bars for an
air bubble in water atv/2p520.6 kHz as predicted by the model of Sec. III.

FIG. 8. Stability region for then52 shape mode as computed with the
boundary layer approximation~7! together with the complete model of Sec.
III for the radial oscillations. At the higher pressures Fig. 3 indicates that the
complete model is slightly more stable than the boundary layer one. The
stability regions below about 0.5 bars are practically coincident.

FIG. 9. Stability region for then52 shape mode as computed with the
boundary layer approximation~7! for isothermal bubble oscillations. The
shape of the stability boundary for the larger radii is significantly different
from the exact results of Fig. 3. At higher pressures, the complete model is
significantly more stable.
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an argon bubble with those of an air bubble. For simplicity
we do this by calculating viscous effects with the boundary
layer approximation. Figure 11 shows such results for then
52 mode. The argon bubble~solid line! is found to be some-
what more stable than the air bubble~dashed line!. The dif-
ference between the radius, radial velocity, and radial accel-
eration are illustrated in Fig. 12 forR058.6mm and PA

50.91 bars. In this case the air bubble~dashed lines! is un-
stable, while the argon bubble~solid lines! is stable. The
difference in behavior between the two cases is mostly due to
the different values of the adiabatic indexg. It is seen that
the air bubble oscillations are stronger, with greater velocity
extrema and, more importantly, much larger outward~and,
therefore, destabilizing! radial accelerations.

The range of pressure amplitudes explored thus far is
below that where sonoluminescence is encountered. Al-
though the purpose of this paper is to compare the theory
with the available data, it may be interesting to conclude
with the presentation of the stability boundary for an argon
bubble extending into the sonoluminescence region. Due to
numerical difficulties~a failure to converge in the time inte-
gration!, we have been unable to calculate this boundary
with the complete viscous model of Sec. II. Thus we content
ourselves with relatively low-resolution results obtained with
the boundary layer approximation that, as shown in Ref. 17,
is affected by a smaller error in this parameter range. The
solid line in Fig. 13 is the stability boundary found with the
complete radial model of Sec. III, and the dotted line that
with the simplified isothermal pressure relation~15!. Al-
though, below 1.2 bars, the isothermal model lies below the
other one in keeping with the pattern encountered in Fig. 10,
above 1.2 bars the two results are very close. A similar com-
parison between the isothermal and full radial models at a
somewhat higher frequency, 26.5 kHz, was presented in Ref.

FIG. 10. The thin solid line is part of the stability boundary forn52 plotted
in Fig. 3. The thick solid line represents the result of a better approximation
to this boundary resulting from a finer discretization of the parameter space.
The dotted line is the result of the complete model for the radial dynamics
coupled with the boundary-layer approximation~7!, ~8! for the viscous ef-
fects. The dashed line is the boundary layer approximation with an isother-
mal model for the bubble oscillations.

FIG. 11. Comparison between the stability boundaries for then52 mode of
an argon bubble~solid line! and an air bubble~dashed line! computed with
the boundary layer approximation to viscous effects and the complete model
of Sec. III for the radial motion.

FIG. 12. Comparison between~a! the radius,~b! the radial velocity, and~c!
the radial acceleration of an argon bubble~solid lines! and an air bubble
~dashed lines!. The equilibrium radius isR058.6mm and the pressure am-
plitude PA50.91 bars. For then52 mode, with these parameter values the
air bubble is unstable while the argon bubble is stable.
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16 where the isothermal model was found to underpredict the
stability threshold in this same pressure range. These results
indicate that the mutual relationship between the thresholds
predicted by the two models depends upon the precise con-
ditions, and it would be difficult to make general statements,
particularly at the higher pressure amplitudes. As pointed out
in Ref. 32, air decomposes at these higher sound pressure
amplitudes and, for this reason, we do not show similar re-
sults for air bubbles.

VI. CONCLUSIONS

In this paper we have compared the available theory for
the stability of the spherical shape of a radially oscillating
bubble with some recent experimental data by Holt and
Gaitan.14,15 The theory is phrased in terms of an integrodif-
ferential formulation that renders the evaluation of the stabil-
ity boundaries rather complicated. A numerical method for
this purpose has been developed and shown to lead to results
in good agreement with data, particularly for pressure ampli-
tudes above 0.5 bars~Figs. 3 and 4!.

At lower amplitudes the agreement is not as good. In
addition to the complex structure of the stability boundary in
this range, a probable reason is that here bubbles are larger.
With increasing radius, surface tension is less and less able
to maintain sphericity in the presence of gravity, acoustic
streaming, and other perturbations and the stability features
of a distorted bubbles are expected to be different from those
of a spherical one.38,3
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