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Abstract

Driver types and their associated behaviors not only shape our driving habits but our

reactions in unintended driving events as well. The open road places us in unexpected

situations and forces us to act and react in particular ways. Here, in this thesis, I pro-

pose a method to predict the types of drivers and their associated reactions during

unintended events. We demonstrate our clustering and predicting methods with data

from two simulations, On-road Driving (ORD) and Test Track Driving 1 (TTD1). In

the On-road Driving study (n = 8), we construct a between-variable predicting model

to predict the level of arousal of perinasal perspiration for the next 5 seconds based on

driving variables of the last 30 seconds. Subsequently, we use TTD1 (n = 21) data to de-

velop a within-variable model to predict the arousal of drivers during an unintended

acceleration event based on their arousal levels in driving tests simulating our daily

driving. We achieve a classification performance AUC at 0.96 and 0.90 for between-

variable prediction model and within-variable predicting model, respectively. We also

find a group of accelerophobic drivers whose stress level increases along with the ac-

celeration of vehicles. The proposed method can also be used in the design of future

vehicles; the types of drivers could be detected and embedded in advanced automation

systems to personalize car driving variables or enhance car safety features accordingly.
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Chapter 1

Introduction

1.1 Literature Context

In 2019, car accidents claimed 38,800 lives and caused 4.4 million injuries. Both human

factors and machine factors contributed to these accidents. However, driver-related

behavioral factors were present in 95% of all accidents (Petridou and Moustaki, 2000).

Shinar introduced the role of psychology in highway safety in a systematic manner,

pointing out that people drive the way they live (Shinar, 1978). Among the many types

of drivers, anxious drivers and stress-prone drivers may place themselves and others

at an increased risk of accidents (Clapp et al., 2011). Researchers have shown that anx-

iety is a positive predictor of drivers’ flaws in drivers of all ages (Lucidi et al., 2019).

Notably, in case of sudden unintended acceleration (SUA) (Park, Choi, and Choi, 2016),

which causes 16.000 accidents yearly (NHTSA, 2015), this type of driver might find it

more difficult to handle the situation.

In recent years, driver types, characteristics, and associated behaviors have been the

subject of research attention. While one group of researchers has focused on the short-

term state of drivers (such as aggressiveness, distraction, drowsiness, or stress lev-

els), the other group has studied drivers’ long-term characteristics (Eboli, Mazzulla,

and Pungillo, 2017). In the former group, researchers has used physiological mon-

itoring systems and visual tracking systems to detect a driver’s state. For example, a

driver’s physiological signals could indicate distraction, aggressiveness (Panagopoulos
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Chapter 1. Introduction

and Pavlidis, 2020), and stress levels (Healey and Picard, 2005; Saeed and Trajanovski,

2017). Mirror glance patterns and eye movement also predict lane changing and driv-

ing around curves (Beggiato et al., 2017; Ren et al., 2015). In the latter group, researchers

mainly extract the drivers’ characteristics from demographic information and past traf-

fic violations, as these factors can help to predict vehicle crashes (Kim, Ramjan, and

Mak, 2015).

1.2 Our Work

Our primary research goal in the present study was to discriminate between types of

drivers based on analyzing the changes in human physiology in relation to vehicle vari-

ables. Moreover, from this analysis, we built a short-term prediction model of driver

stress based on driving variables and a long-term prediction model of a reaction during

a catastrophic event based on typical daily driving behaviors. To complete this research

goal, we used data from the On-road Driving (ORD) study and the Test Track Driving 1

(TTD1) study. While the advantage of the ORD study is that it simulates daily driving

on highways and residential streets, the TTD1 study is a controlled study consisting of

multiple driving tests under different types of stressors, including cognitive stressors,

sensorimotor stressors, and a simulated catastrophic event.

With the ORD study, we built a between-variable prediction model that used driv-

ing variables such as speed, acceleration, brake force, and steering angle to predict

drivers’ arousal via perinasal perspiration. For this purpose, we segmented the time-

series data of each driver’s arousal via perinasal perspiration and driving variables

into five-second windows. After we applied feature engineering techniques to arrive

at a representative set of all signals, we fed these features into a clustering model and

a prediction model. While the clustering algorithm discriminated between groups of

drivers on whom driving variables had a similar impact on, the predicting model was

2



Chapter 1. Introduction

able to precisely predict the trends of arousal in the next five seconds based on the driv-

ing variables of the last five seconds. Our approach in this study revealed a group of

accelerophobic drivers who showed a fear of acceleration but not of speed.

With the TTD1 study, we only leveraged the arousal and type of stressors to build

a within-variable prediction model. We used the definition of accelerophobic drivers

that we found in the ORD study to segment the arousal based on acceleration levels.

Accordingly, we also preprocessed and performed feature engineering on arousal in

driving tests with applicable stressors, including normal, cognitive, and motoric. Sub-

sequently, we fed these features into a classification model with the XGBoost algorithm

to predict the level of arousal change during and after an unintended acceleration event

(or "catastrophic event"). Interestingly, not only did the prediction model show precise

predictions, but our analysis also revealed a close association between groups of drivers

in driving tests with groups of drivers at the catastrophic event.

We organize the remainder of the thesis as follows:

• In chapter 2, we present our approach for discriminating between types of drivers

and a short-time prediction model of drivers’ stress levels on data of the On-road

Driving study. This chapter consists of four sections: study design, database,

methods, and results.

• In chapter 3, based on the types of drivers associated with acceleration that we

found from data of the On-road Driving study, we describe about a prediction

model to forecast the drivers’ stress levels in a catastrophic event in the Test Track

Driving 1 (TTD1) study. This chapter also consists of four sections: study design,

database, methods, and results.

• In chapter 4, we discuss the common findings obtained from the two studies and

conclude this work. We also discuss about the applications of our results and

future research direction.

3



Chapter 2

On-road Driving Study

2.1 Study Design

2.1.1 Subjects

At the beginning of this study, we used emails and flyer postings to recruit subjects

from the communities of Bryan and College Station, Texas. These subjects had to have

a healthy vision and a valid driving license. We only selected individuals with at least

one and a half years of driving experience. Those subjects were from 18 to 27 years old.

To enhance driving safety, we excluded subjects who were taking medications affecting

their driving ability. A total of n = 12 subjects conforming to the inclusion-exclusion

criteria volunteered for the study. Raw data for n = 4 subjects were not adequately

recorded due to technical issues or due to significant problems with extracting peri-

nasal perspiration signals. Hence, our final working set consists of nearly-complete

raw data for n = 8 subjects (three males/ five females).

2.1.2 Experimental Setup

The On-road Driving study consists of a baseline session and an on-road driving ses-

sion. During these experimental sessions, the systems continuously imaged the partici-

pants’ faces with a thermal and visual camera. The systems also captured participants’

4



Chapter 2. On-road Driving Study

physiological signals with a wearable device. Simultaneously, a driving data acquisi-

tion system recorded vehicle driving variables. A detailed description of each system

is given below:

2.1.2.1 Sensors for Human

• Thermal facial camera. We used a Tau 640 long-wave infrared (LWIR) camera (FLIR

Commercial Systems, Goleta, CA); it features a small size (44⇥ 44⇥ 30 mm) and

adequate thermal (< 50 mK) and spatial resolution (640 ⇥ 512 pixels). The 640

camera was outfitted with an LWIR 35 mm lens f/1.2. Thermal data was collected

at a frame rate of 7.5 fps. We used these thermal facial videos to extract perinasal

perspiration signals, known to commensurate with electrodermal (EDA) activity

in the palm. For this reason, we call the thermally extracted perinasal perspiration

signals, perinasal EDA signals.

• Visual facial camera. A Logitech HD Pro - C920 camera (Logitech, Newark, CA)

with spatial resolution 1920 ⇥ 1080 pixels and a frame rate of 30 fps. It is placed

1 m from drivers, tucked atop driver’s side car dashboard (Figure 2.1). The dis-

tance in combination with the camera optics ensured that a typical face covered a

significant portion of each thermal and visual frame, providing maximum spatial

resolution for image analysis.

• Visual dash camera. This camera was placed on the car dash, aiming at the front

view of the car, to record the subject’s drive. We use a Logitech Brio camera

(Logitech, Newark, CA) with spatial resolution 1280⇥720 pixels and a frame rate

of 30 fps.

We also collected additional physiological data via a sensor specified as follow:

• Adrenergic sensor. We used the Zephyr BioHarness 3.0 (Zephyr Technology, An-

napolis, MD) sensor to measure the subject’s heart rate and breathing rate-two

standard indicators of adrenergic control. The sensor connects to a chest strap

that is worn underneath the subject’s clothing. It is powered by a rechargeable

5
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lithium polymer battery (up to 26 h per charge) and is capable of detecting a heart

rate range of 25� 240 bpm and a breathing rate range of 4� 70 bpm.

(A)

(B)

FIGURE 2.1: Study design of On-road Driving study
(A) Full itinerary of on-road driving (ORD) experiment around the College Station, TX. The

white arrows indicate the direction of driving. This map is generated with Plotly and Mapbox
library using data from OpenStreetMap (OpenStreetMap Contributors, 2017) (B) Physiological

sensors and camera setup in a car.

6
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2.1.2.2 Sensors for Vehicle

Importantly, we used a Dewetron Data Acquisition (DAQ) system to record driving

variables from different channels. These variables included speed, acceleration, brake

force, and steering angle. This Dewetron unit included a high-precision quartz-stabilized

system running at a frequency of 80 MHz and generating a slope accuracy of 2 ns. Ad-

ditionally, it also collected absolute time geographic location information from a GPS

acquisition module.

2.1.3 Experimental Design

Upon signing the consent form, the subjects completed questionnaires to identify de-

mographic information including gender and age. The subjects then participated in

two experimental sessions. The design of the two sessions was as follows:

• Baseline session (BL). Subjects only sat quietly in a parked car and listened to sooth-

ing music for about five minutes. As the car was not moving, only the physiolog-

ical sensors ran and captured the physiological signals from subjects during this

session.

• On-road drive session (ORD). Subjects participated in a drive around College Sta-

tion, Texas. Figure 2.1(A) shows the full itinerary of this driving session. This

itinerary consisted of a segment of Texas State Highway 6 as well as residential

streets. It took 25-35 minutes for subjects to complete this 12-mile journey. The

subject’s car traveled in the right-hand lane at a speed in the range of [0-120] kph,

equivalent to [0-75] mph.

2.1.4 Signal Extraction

2.1.4.1 Tissue Tracking and Perinasal Perspiration Signal Extraction

We used a tissue tracker reported by Zhou et al. (Zhou et al., 2013). Initially, we initi-

ated the tracking algorithm by selecting the subject’s perinasal region in the first frame.

In every subsequent frame, the tracker determined the best matching section of the

7
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thermal clip via spatiotemporal smoothing. In the selected and matching region of the

thermal images, activated perspiration pores appeared as "cold" (dark) spots, amidst

"hot" surrounding tissue (Figure 2.2). Finally, to compute the perspiration signal, we

applied a morphology-based algorithm to the measurement region of interest (MROI)

(Shastri et al., 2012).

FIGURE 2.2: Perinasal Perspiration Signal Extraction

2.1.4.2 Driving Data Extraction

All incoming driving signals were filed in a single database. These included speed,

acceleration, brake force, steering angle, pulse-per-second (PPS) signal of a GPS satel-

lite, and time-related information. We used Dewesoft, a data acquisition software, to

extract tabular data from the database.

2.2 Database

We publicly hosted quantitative data and videos of On-road Driving Study on a Open

Science repository at https://osf.io/974vf/.

2.2.1 Quantitative Data

The quantitative data folder holds comma separated value (csv) file. In the data sum-

mary file, in addition to the columns showing the row number (Column A) and Time

8
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(Column B), there are columns holding physiological data (Columns C - H), columns

holding vehicle variables (Columns I - M), and columns holding geographic variables

(Columns N - O).

• Column C: PP - Values of the perinasal perspiration signal in �C2.

• Column D: PP_NR - Value of perinasal perspiration after using Low-pass Filter-

ing method to suppress noise.

• Column E: HR - Values of the heart rate signal in BPM, measured with the Bio-

Harness in subjects’ chest.

• Column F : BR - Values of the breathing rate signal in BPM, measured with the

BioHarness in the subjects’ chest.

• Column G: SkinTemp - Skin temperature.

• Column H : Posture - Posture.

• Column I : PeakAccel - Peak acceleration force in %.

• Column J : Accelerator - Accelerator pedal force in %.

• Column K: Brake - Brake pedal force in %.

• Column L: Steering - Steering angle in �.

• Column M : Speed - Speed in km/h.

• Column N : IN_Lat - Latitude.

• Column O: IN_Long - Longitude.

2.2.2 Video Data

Each folder in this folder consists of four video files for each subject. For baseline

videos, subject only sat in the parking car in approximate five minutes without any

tasks or types of stressor. For On-road Drive videos, subject drove on road around

College Station, TX.
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• Subject00_Baseline.avi1.avi: Facial view of Baseline session.

• Subject00_Baseline.avi2.avi: Front view of Baseline session.

• Subject00_OnRoadDrive.avi1.avi: Facial view of On-road Driving session.

• Subject00_OnRoadDrive.avi2.avi: Front view of On-Road Driving session.

2.3 Methods

2.3.1 Methodological Flow

In this study, we used all driving variables to form the study’s exploratory variables.

We aimed to analyze the impact of these factors on human physiology and characterize

types of drivers based on the extent of the effects. We used instantaneous perspiration

at the perinasal area as a proxy of the subject’s sympathetic state (Pavlidis et al., 2016),

thus forming the study’s explained variable.

Figure 2.3 depicts the methodological flow of our approach. After preprocessing vari-

ables and extracting features, we built a linear model to show the overall effects of

driving factors on drivers’ arousal. Subsequently, we implemented a clustering algo-

rithm to discriminate between different types of drivers in the study and built a ma-

chine learning (ML) model to predict each driver’s arousal with time-series data. The

remainder of this section describes the individual elements of the flow in more detail.

2.3.2 Preprocessing

Technical issues of sensors and human errors cause substantial problems with signal

recording, especially physiological signals. Therefore, we had to apply some prepro-

cessing techniques to clean and remove noises from these signals. Besides, the nature

of signals also required us to standardize the dataset.

10



Chapter 2. On-road Driving Study

FIGURE 2.3: Overview of methodological flow
While the clustering of driver types was based on hierarchical clustering, the between-variable
prediction model of drivers’ arousal in the next five seconds used the driving variables in the

past five seconds.

2.3.2.1 Quality Control

We applied the quality control method proposed in the paper of Zaman et al., 2019.

Since we did not have any redundant channel modality, we only performed quality

control level 1 (QC1), which indicates the application of a specification filter. In the

case of signals from physiological probes, their values were checked to ascertain that

they were within the specification range given by the sensor manufacturer. Signals that

were found to have values outside of this range were discarded from the set.

2.3.2.2 Signal Smoothing with Fast Fourier Transform

Perinasal perspiration composes many different component signals at different fre-

quencies. The perspiration signal also contains noise (Zhou et al., 2013). Therefore

we used the low-pass filtering method, which is based on the fast Fourier transform

(Sorensen et al., 1987) (FFT) for suppressing high-frequency signals. The FFT decom-

poses the original signal into many components with different frequencies by trans-

forming it from time space to frequency space. Subsequently, we used a low-pass filter

(f = 1/2.5) to eliminate high-frequency signals. Finally, we applied the inverse version

of FFT to reconstruct the cleaned signal from extracted components. Figure 2.4 shows

the perinasal perspiration before and after applying the filtering.
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FIGURE 2.4: Original recorded and clean perinasal perspiration of Subject #01 in
BL and ORD sessions.

The blue hyphenated lines indicate the corresponding signal means.

2.3.2.3 Normalization

As the tonic level of arousal is known to vary significantly between individuals (Zhou

et al., 2013), we computed each subject’s arousal by subtracting perinasal perspiration

with the mean of their baseline perspiration level. Equation 2.1 shows the formula of

the normalization of arousal of subject i at time t of the ORD experimental session.

�PPORDit
= ln(PPORDit

)� ln(µPPBLi
) (2.1)

2.3.2.4 Resampling

Finally, we resampled all signals at 1 Hz. Although the perinasal perspiration signal

extractor and Dewetron DAQ System can generate data at eight and 200 samples per

second, respectively, to possibly incorporate with other physiological sensors, such as

chest sensors measuring heart rate and breath rate, the frequency limits of which are 1

Hz.
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2.3.3 Feature Extraction

We performed feature extraction in a time window of 10 seconds. This included extract-

ing the driving variables in the past five seconds and computing the mean of arousal

of each subject in the next five seconds. As response time varies for different types of

physiological signals and the sensitivity capacity of DAQ, we chose an upper limit as

the time window for feature extraction when incorporating all of these signals. In our

experimental setup, systems recording human and driving variables ran at different

frequencies. The Dewetron DAQ in which a high-precision quartz-stabilized system

cycle with 80 MHz and a slope accuracy of 2 ns is generated (Huber and Drews, 2009).

Perinasal perspiration is a cholinergic signal that is highly sensitive and manifests the

onset of stress within two to five seconds (Tsiamyrtzis et al., 2016). Since we only used

this physiological signal in our approach, we chose five seconds as the upper limit for

the time window. We performed two types of feature from all driving variables and

arousal as follows:

�PPORDi,t+5 = f(Speedi,t, Accel.i,t, Brakei,t, Steeringi,t) (2.2)

We performed two types of feature from all driving variables and arousal as follows.

2.3.3.1 Statistical Features

These features include the mean and standard deviation of all driving variables of the

past five seconds. These standard descriptive statistics exhibit the characteristics of the

value distribution of each driving variables.

2.3.3.2 Correlative Features

We also computed the Pearson correlation between driving variables of five seconds

before with the arousal of five seconds later. These features not only showed the mutual

relationship between driving variables and human variables but also captured each

driver’s characteristics during their driving session. We later fed these features to a
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clustering algorithm to discriminate between groups of drivers’ characteristics. Figure

2.5 depicts two typical observed patterns of correlation between driving variables and

human arousal. While Subject #07 showed a substantial correlation between driving

variables and the arousal, Subject #08 showed no correlation.

(A) Subject #07 (B) Subject #08

FIGURE 2.5: Two main patterns of correlation matrices.
Size of circles indicate the absolute value of correlation.

2.3.4 Linear Model

To analyze how much the arousal of all subjects varied as the driving variables varied,

we constructed a cross-sectional linear model with random effects on subjects. In this

model, the arousal was explained by driving variables (explanatory variables). Equa-

tion 2.3 shows the regression model that describes the arousal of subject i at time t in
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the time window of 10 seconds.

�PPORDi,t+5 = �SpeedµµSpeedi,t + �Speed��Speedi,t

+ �AccelµµAcceli,t + �Accel��Acceli,t

+ �BrakeµµBrakei,t + �Brake��Brakei,t

+ �SteeringµµSteeringi,t + �Steering��Steeringi,t

+ µi + �o + ✏i,t

(2.3)

2.3.5 Hierarchical Clustering

To delve into the types of drivers and their associated relationship between driving

variables and arousal, we used a clustering algorithm to discriminate between drivers

into groups with similar characteristics. With a dataset that has a small number of

observations like what we have in this study, hierarchical clustering is the method of

choice (Baker and Hubert, 1975). Besides, the dendrogram of hierarchical clustering

not only provided us intuitive visualizations, but also gave us a simple way to split or

join clusters.

Agglomerative clustering and divisive clustering are two general strategies of hier-

archical clustering. While agglomerative clustering is a bottom-up approach that ini-

tiates each driver as a cluster and continues to merge clusters, divisive clustering is a

top-down approach that initiates all drivers as a single cluster and performs splitting

recursively. A measure of dissimilarity between groups of drivers was required to de-

cide which clusters should be combined or divided. The algorithm decided by using

an appropriate metric of the distance between pairs of observations and a linkage crite-

rion, which specifies the dissimilarity of sets as a function of the pairwise distances of

observations in the sets. In this study, we chose Euclidean as a distance metric (Equa-

tion 2.4). To maximize the discrimination between clusters, we selected the complete

linkage function (Defays, 1977) as the linkage criterion. Equation 2.5 expresses the

complete linkage function, meaning the distance D(X,Y ) between clusters X and Y ,
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as:

d(x, y) = kx� yk2 =
sX

i

(xi � yi)
2 (2.4)

D(X,Y ) = max
x2X,y2Y

d(x, y) (2.5)

where

• d(x, y) is the distance between subjects x 2 X and y 2 Y

• X and Y are two sets of subjects (clusters)

At this stage, we fed all correlative features into the clustering algorithm. Although

standardizing these features on the same scale is recommended (Mohamad and Us-

man, 2013), it does not solve the problem and might lead to a change of the final struc-

ture (Kaufman, 2005). Providentially, all correlative features had a clear value range

between -1 and 1. Therefore, standardizing these values was not necessary for our ap-

proach.

Besides, we used Silhouettes (Rousseeuw, 1987) to determine the optimal number of

clusters. This method not only provides an interpretation and validation of consis-

tency within clusters, but also provides a succinct graphical representation to evaluate

the goodness of the structure.

2.3.6 Machine Learning Model

Because of robustness in overfitting, interpretability, and computational efficiency (Chen

and Guestrin, 2016), we chose Extreme Gradient Boosting (XGBoost) to predict the

drivers’ arousal in the next five seconds. We classified each driver’s average arousal in

five seconds into two classes (low arousal and high arousal). To discriminate between

the two classes and label data samples, we used the Otsu algorithm to determine a

binary threshold (Otsu, 1979). Subsequently, we fed all statistical features of driving

variables in the past five seconds into XGBoost models to predict the class of average
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arousal in the next five seconds.

The XGBoost model constructs an ensemble of decision trees. At the training phase,

multiple trees are formed sequentially in a stepwise manner, with each tree resolving

the weaknesses or wrong predictions of the previous tree. When testing a new sample,

each tree yields a probability score for each class, and a weighted combination gives

the final estimate. This algorithm implements a gradient descent methodology to find

the optimal structure of the trees. Equation 2.6 shows the formula of a prediction of the

model in step t.

ŷt =
tX

k=1

hk(x) =
t�1X

k=1

hk(x) + ht(x) = ŷt�1 + ht (x) (2.6)

where hk(x) represents the function corresponding to the tree developed at step k,.

The optimization aim is to reduce the binary loss from the predictive value ŷt to the

actual value of y. This is shown as:

l
�
y, ŷt

�
=

nX

i=1

⇣
yi ln

⇣
1 + e�yt

i

⌘
+ (1� yi) ln

⇣
1 + ey

t

i

⌘
(2.7)

where yi is the actual value of observation i in a total of N observations.

2.4 Results

2.4.1 Linear Model

Table 2.1 shows a summary of the linear model with random effects. According to this

result, we can see the overall effects of driving variables on all drivers. As the beta

coefficient estimate of the standard deviation of speed �V2 is positive, the change of

speed shows a positive trend with respect to drivers’ arousal. Seconds, the negative

value of the coefficient estimate of the mean of brake force indicates the decrease of

arousal as drivers stop at crossroads.
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TABLE 2.1: Summary of the linear model with random effects to predict arousal in
the next five seconds on data of the On-road Driving study.

Coefficient Estimate Std. Error df t value Pr(>|t|)
�Speedµ 0.00029 0.00016 1879.42228 1.84304 0.06548
�Speed� 0.00500 0.00158 1879.35200 3.15687 0.00162 **
�Accelµ -0.00021 0.00072 1880.18525 -0.28717 0.77401
�Accel� 0.00089 0.00154 1880.32728 0.57475 0.56553
�Brakeµ -0.00202 0.00049 1880.53147 -4.13182 0.00004 ***
�Brake� 0.00226 0.00090 1879.09356 2.51553 0.01197
�Steeringµ 0.00033 0.00014 1879.88145 2.36431 0.01816
�Steering� -0.00012 0.00026 1879.09798 -0.48026 0.63110

�o 0.21907 0.06214 10.19210 3.52550 0.00533 **

2.4.2 Clustering - Types of Drivers

Table 2.2 presents the two groups of drivers based on clustering the correlative fea-

tures of driving variables of the past five seconds with the driver’s arousal in the next

five seconds. While drivers in the group C1 stay calm and have no correlation with

driving variables, drivers’ arousal in the group C2 shows notable positive trends with

accelerating and braking. Besides, drivers in the group C2 also show negative trends

with respect to braking. The dendrogram of Figure 2.6(A) visualizes these two separate

groups of drivers.

TABLE 2.2: Clustering result of the correlative features between driving variables
and drivers’ arousal with a 5-5 seconds time window.

Red text and arrow show positive trends, while blue text and arrows show negative trends.

Subj. µSpeed �Speed µAccel. �Accel. µBrake �Brake µSteer. �Steer. Group

#01 0.162 -0.06 0.019 0.047 -0.066 -0.098 "0.227 #-0.314 C2

#04 0.011 -0.013 -0.002 0.123 -0.137 0.136 -0.103 "0.218 C2

#05 "0.306 0.182 "0.346 "0.273 #-0.362 0.163 "0.231 "0.281 C1

#06 0.152 0.078 "0.306 "0.238 #-0.363 0.054 -0.007 0.132 C1

#07 "0.370 0.143 "0.348 "0.307 #-0.454 0.059 0.015 "0.297 C1

#08 -0.025 0.028 0.136 0.091 -0.192 0.003 0.027 0.13 C2

#10 #-0.319 0.105 -0.072 -0.006 0.146 0.141 0.007 0.141 C2

#11 "0.306 0.108 "0.280 0.121 #-0.284 0.025 0.042 0.164 C1
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FIGURE 2.6: Clustering result of 5-5 seconds time window

2.4.2.1 Accelerophobic Drivers

We named drivers in the group C1 accelerophobic drivers based on their arousal re-

sponses to acceleration and braking. Figure 2.7 depicts the correlation between all driv-

ing variables and arousal in Subject #06.

According to Figure 2.7, at the entrance and exit of the highway, annotated with circles

[A][B], their arousal increased when speed and acceleration increased or reduced. Op-

positely, their arousal dropped while waiting for the traffic light at intersections such

as [D] where drivers stop fully. This observation was more noticeable with respect

to non-stop intersections such as [C], where the vehicles crossed intersections without

stopping. According to Table 2.2, this driver’s arousal had positive trends in relation to

the change of acceleration, meaning similar to other accelerophobic drivers. However,

their response to speed is different. For instance, this driver stayed calm when driving

at [60-70] mph on the highway [E]. Although a small number of subjects do not suf-

ficiently represent the whole population, this phenomenon still indicates that speed is

not always the main factor but acceleration.
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FIGURE 2.7: Visualization of the full itinerary and the association between driving
variables and arousal.

The discontinuous line of arousal is due to technical issues with capturing thermal images or
to difficulties extracting perinasal perspiration when drivers moved their face too quickly.

Dotted circles in the arousal plot indicate locations with interesting observations.
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2.4.2.2 Sensitivity Analysis

We also performed a sensitivity analysis by applying the clustering algorithm on dif-

ferent time windows of five, 10, 15, and 30 seconds of driving variables. Figure 2.8

shows no change in the members of each cluster. With a small variance of the thresh-

old value of the distance between clusters, the subjects remained consistently in two

separate groups. The hierarchical structure of drivers remained consistently with time

windows from five to 15 seconds. There was a minor internal change in one cluster

during the 30-second time window.

(A) 5 seconds (B) 10 seconds

(C) 15 seconds (D) 30 seconds

FIGURE 2.8: Hierarchical clustering of types of drivers with different time windows
of 5, 10, 15, and 30 seconds.

The red branch includes accelerophobic drivers who were sensitive to the change in
acceleration. The blue branch consists of remaining subjects who showed minor or no

association.
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2.4.3 Predicting Arousal from Driving Variables

We performed five-fold stratified cross-validation (Stone, 1974) to evaluate the effec-

tiveness of the online model predicting trends of arousal in the next five seconds. Ac-

cordingly, the original sample was randomly partitioned into five equal-sized subsam-

ples with a stratified strategy. The XGBoost algorithm used four subsamples for train-

ing and retained one subsample for testing. This process was repeated five times with

a different subsample used for testing each time. The mean and standard deviation of

performance metrics were performed at the end of this process.

Table 2.3 shows the performance metrics of XGBoost short-term prediction model for

each subject.

TABLE 2.3: Performance of ML model training and testing on data of each subject

Subject Accuracy Precision Recall Spec F1 NPV AUC
Subject #01 0.92 0.85 0.84 0.95 0.85 0.94 0.97
Subject #04 0.89 0.88 0.83 0.93 0.85 0.90 0.96
Subject #05 0.90 0.91 0.90 0.90 0.91 0.89 0.96
Subject #06 0.90 0.94 0.90 0.89 0.92 0.83 0.96
Subject #07 0.92 0.94 0.92 0.92 0.93 0.88 0.97
Subject #08 0.90 0.92 0.89 0.90 0.91 0.86 0.96
Subject #10 0.93 0.96 0.94 0.92 0.95 0.88 0.98
Subject #11 0.92 0.97 0.93 0.89 0.95 0.79 0.97
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Test Track Driving 1 Study

3.1 Study Design

3.1.1 Subjects

The study took place at the test track facility of Texas A&M University. It included 33

subjects aged between 18 and 72 years old. From the 33 subjects that participated in the

study, we acquired usable data for 21 subjects (63.636%), including 11 males (52.381%)

and 10 females (47.619%). The other 12 subjects did not have full recorded data to

develop our model.

3.1.2 Experimental Setup

During the experimental sessions of this study, the systems continuously imaged the

participants’ faces with a thermal and visual camera. In general, the experimental setup

in the car of this study was similar to the ORD study. The systems also captured par-

ticipants’ physiological signals with a wearable device. Detailed descriptions of each

system are as follows.

3.1.2.1 Sensors for Human

• Thermal facial camera. We used a Tau 640 long-wave infrared (LWIR) camera (FLIR

Commercial Systems, Goleta, CA); it features a small size (44⇥ 44⇥ 30 mm) and

adequate thermal (< 50 mK) and spatial resolution (640 ⇥ 512 pixels). The 640
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camera was outfitted with an LWIR 35 mm lens f/1.2. Thermal data was collected

at a frame rate of 7.5 fps. We used these thermal facial videos to extract perinasal

perspiration signals, known to commensurate with electrodermal (EDA) activity

in the palm. For this reason, we call the thermally extracted perinasal perspiration

signals, perinasal EDA signals.

• Visual facial camera. A Logitech HD Pro - C920 camera (Logitech, Newark, CA)

with spatial resolution 1920 ⇥ 1080 pixels and a frame rate of 30 fps. It is placed

1 m from drivers, tucked atop driver’s side car dashboard (Figure 2.1). The ap-

propriate distance in combination with the camera optics ensured that a typical

face covered a significant portion of each thermal and visual frame, providing

maximum spatial resolution for image analysis.

• Visual dash camera. This camera was placed on the car dash, aiming at the front

view of the car, to record the subject’s drive. We use a Logitech Brio camera

(Logitech, Newark, CA) with spatial resolution 1280⇥720 pixels and a frame rate

of 30 fps.

We collected additional physiological data via a wearable sensors.

• Adrenergic sensor. We used the Zephyr BioHarness 3.0 (Zephyr Technology, An-

napolis, MD) sensor to measure the subject’s heart rate and breathing rate-two

standard indicators of adrenergic control. The sensor connects to a chest strap

that is worn underneath the subject’s clothing. It is powered by a rechargeable

lithium polymer battery (up to 26 h per charge) and is capable of detecting a heart

rate range of 25� 240 bpm and a breathing rate range of 4� 70 bpm.

3.1.2.2 Sensors for Vehicle

Similarly, we also used a Dewetron Data Acquisition System to record and save driving

variables. These variables included speed, acceleration, brake force, steering angle, and

lane position.
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3.1.3 Experimental Design

Upon signing the consent form, the subjects completed questionnaires that identified

key facts about the subject, including gender and age. Subsequently, subjects in the

TTD1 study performed four drives in the driving facility under different types of stres-

sor s. The detailed design of the four drives are as follows:

• Normal Drive (ND). Driving the vehicle in the absence of a stressor (s = N ).

• Cognitive Drive (CD). Driving the vehicle under a cognitive stressor (s = C):

Subjects were asked to subtract by 13, sequentially starting from 1,022. When

they gave a wrong answer, they were stopped and asked to restart subtractions

from 1,022.

• Motoric Drive (MD). Driving the vehicle under a motoric stressor (s = M ): Sub-

jects had to text back words that appeared sequentially on the screen of a smart-

phone.

• Failure Drive (FD). The subjects were split into three groups based on the type of

the applicable stressor s: no stressor (GFDs=N
), cognitive (GFDs=C

), and motoric

(GFDs=M
). Near the end of this drive, all the subjects experienced an unintended

acceleration to simulate a catastrophic event EFD.

In ND, CD, and MD drives, these subjects had to drive a one-mile runway four times,

performing four U-turns. For each subject, the order of these three drives was random-

ized; then, there are 3! = 6 possible permutations, as follows:

ND � CD �MD, ND �MD � CD, CD �ND �MD

CD �MD �ND, MD �ND � CD, MD � CD �ND

Table B.1 shows the randomized order of experiments in the first three experiments.
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In the last Failure Drive (FD), these subjects drove on the straight runway only once.

For this drive, the subjects were split into three groups, depending on what type of

one of the three applicable stressors, as mentioned earlier. This drive consisted of two

phases, as follows:

• Phase P1FDi,s
. At the beginning of FD, the subject i experienced the same type of

stressor s that they had experienced in their first experimental drive.

• Phase P2FDi,s
. At the end of the runway, after driving under the stressor s in

Phase P1FDi,s
, the subject i experienced an unintended acceleration event, simu-

lating a catastrophic event EFD.

For all drives, the speed limit was set at 30 mph. The experimenter advised the sub-

jects when their speed was falling outside the required range [25, 35] mph so that they

increased or decreased their speed accordingly.

3.1.4 Signal Extraction

At this step, we performed similar steps Tissue tracking & perinasal perspiration signal

extraction and Driving Data Extraction as in On-road driving study.

3.1.4.1 Tissue Tracking and Perinasal Perspiration Signal Extraction

We used a tissue tracker reported by Zhou et al. (Zhou et al., 2013). Initially, we initi-

ated the tracking algorithm by selecting the subject’s perinasal region in the first frame.

In every subsequent frame, the tracker determined the best matching section of the

thermal clip via spatiotemporal smoothing. In the selected and matching region of the

thermal images, activated perspiration pores appeared as "cold" (dark) spots, amidst

"hot" surrounding tissue (Figure 2.2). Finally, to compute the perspiration signal, we

applied a morphology-based algorithm to the measurement region of interest (MROI)

(Shastri et al., 2012).
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3.1.4.2 Driving Data Extraction

All incoming driving signals were filed in a single database. These included speed,

acceleration, brake force, steering angle, pulse-per-second (PPS) signal of a GPS satel-

lite, and time-related information. We used Dewesoft, a data acquisition software, to

extract tabular data from the database.

3.2 Database

We publicly hosted quantitative data and videos of Test Track Driving 1 study on a

Open Science repository at https://osf.io/974vf/.

3.2.1 Quantitative Data

The quantitative data folder holds comma separated value (csv) files for each subject.

In the data summary file, in addition to the columns showing the Time value (Column

A), there are columns holding physiological data (Columns B), columns holding vehicle

variables (Columns D - I and M), and columns holding information about the drive

(Columns B and J-L).

• ColumnB : Perspiration: Values of the perinasal perspiration signal in �C2.

• ColumnC : Drive: Type of drive

‘ 1 ⌘ Normal drive (no stressor)

‘ 2 ⌘ Cognitive stressor drive

‘ 3 ⌘ Motoric stressor drive

‘ 4 ⌘ Failure drive (either no stressor, Cognitive stressor, or Motoric stressor,

and an unintended acceleration event at the end)

• ColumnD : Speed: Speed in mph. Speed limit is 30 mph.

• ColumnE : Acceleration: Accelerator pedal force in %.
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• ColumnF : Braking: Brake pedal force in %.

• ColumnG : Steering: Steering angle in �.

• ColumnH : LaneDeviation: Center of the vehicle with respect to the middle of

the lane.

• ColumnI : Distance: Distance in meters from the starting pylon.

• ColumnJ : Activity: Type of activity in the drive

‘ 0 ⌘ U-turn

‘ 1 ⌘ Normal

‘ 2 ⌘ Cognitive

‘ 3 ⌘ Motoric

• ColumnK : Failure: Indicator of unintended acceleration

‘ 0 ⌘ no unintended acceleration

‘ 1 ⌘ unintended acceleration present

• ColumnL : Phase: Phase of the drive

‘ 0 ⌘ U-turn segment of the drive

‘ 1 ⌘ P1: 1st straight segment of the drive

‘ 2 ⌘ P2: 2nd straight segment of the drive

‘ 3 ⌘ P3: 3rd straight segment of the drive

‘ 4 ⌘ P4: 4th straight segment of the drive

• ColumnM : NewSteering: New value of steering angle.
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3.3 Methods

3.3.1 Methodological Flow

Our primary goal of using data in this study was to test the persistence of arousal

changes of accelerophobic drivers that we found in the ORD study. Accordingly, we

used the associated subjects’ arousal after different acceleration levels in everyday

drives, such as ND, CD, and MD drives, to predict their arousal at the catastrophic

event EFD in FD drive. While the online prediction model built on data from the ORD

study produces short-term predictions of trends in arousal in the next five seconds, the

predictions made by the predicting model in this study can be considered to be more

long-term. Figure 3.1 depicts the methodological flow of our approach. In this ap-

proach, we used all arousal of perinasal perspiration signals and stressors that drivers

experience as variables. After preprocessing the variables and extracting features, we

built a linear model to see the overall association between the drivers’ arousal in nor-

mal driving with their arousal at the simulated catastrophic event. Subsequently, we

built a machine learning model to predict the trend of arousal at the catastrophic event.

The remainder of this section details the individual elements of the flow.

FIGURE 3.1: Overview of methodological flow of our approach on Test Track Driv-
ing 1 study
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3.3.2 Preprocessing and Quality Control

For each drive in this study, we applied data validation and performed noise removal,

data resampling, and normalization on perinasal perspiration like what we did with

data in ORD study. For perinasal perspiration normalization, we used the mean of per-

spiration in runways of ND drive as the baseline perspiration of each subject. Therefore

the arousal (�PP dit) of subject i in drive d at time t is defined as:

�PP dit = ln(PPdit)� ln(µPPNDi
) (3.1)

3.3.3 Feature Engineering

As in the ORD study, we used a time window to extract driving variables and perspi-

ration. As the speed limit in this study was controlled and was much less than that of

the ORD study, we used 3-3 seconds as the time window instead of 5-5 seconds time

window. Accordingly, we computed standard statistics for driving parameters of the

last three seconds and the mean of arousal of the next three seconds.

In the next step, we applied the definition of accelerophobic drivers that we found

in the ORD study to extract associated features. From the statistics of driving vari-

ables, we partitioned samples of arousal into two parts based on acceleration levels.

When driving, subjects’ acceleration takes one of two modes. Therefore, we used the

Otsu algorithm for each subject’s acceleration distribution in each drive to determine a

threshold to partition the data. Finally, we had two sets of arousal samples, as follows:

• �PPdi,t,LA: Means of three seconds of arousal of subject i in drive d after a low

acceleration (LA) at time t.

• �PPdi,t,HA: Means of three seconds of arousal of subject i in drive d after a high

acceleration (HA) at time t.
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3.3.4 Data Generation and Data Labelling

To build a classification machine learning model to predict arousal trends after the

catastrophic event, we generated more data sampled from the original data set and

labeled the data sample based on the changing levels of arousal.

3.3.4.1 Data Generation

Full extracted data from 21 subjects is a too small number of samples for building a ro-

bust predicting machine learning model. Therefore, we had to generate more samples

from the original data set. As mentioned earlier, these subjects drove in four segments

in each drive. Each segment included driving along the runway and a U-turning. We

assumed each time or a pair of driving along the runway and U-turning as a separate

drive. Accordingly we split each original drive into four generated drives and extract

features separately from these drives. Finally, we produced 84 samples from 21 original

samples.

3.3.4.2 Data Labelling

From the distribution of arousal of all subjects at the simulated catastrophic event, we

noticed there were two levels of increasing of arousal. While one group showed no

change in arousal after a catastrophic event, the other group exhibited a notable arousal

increase in arousal. We named the former the normal group (Group False) and the latter

the accelerophobic (Group True). To separate the two groups, we also used the Otsu

algorithm (Otsu, 1979) to determine a threshold to split the two classes. From this we

obtained nine subjects in Group True and remained 11 subjects in Group False.

3.3.5 Linear Model

We built a linear model expressing the arousal of subject i at the catastrophic event

after driving under stressor s in Failure Drive, denoted as (�PPP2FD,i,s
), from values

of their arousal after low and high accelerations in Cognitive Drive and Motoric Drive.
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Equation 3.2 expresses this cross-sectional regression model as

�PPP2FD,i,s
= �CDHAµ�PPCDHA,i

+ �CDLAµ�PPCDLA,i

+ �MDHAµ�PPMDHA,i + �MDLAµ�PPMDLA,i

+D(s) + �o + ✏i

(3.2)

3.3.6 Machine Learning Model

We also used the XGBoost algorithm (Chen and Guestrin, 2016) to build a predict-

ing model with an ensemble of decision trees. This model used the features extracted

according to the definition of the accelerophobic drivers in the ORD to predict the ex-

pected response of their arousal after the simulated catastrophic event.

3.4 Results

3.4.1 Linear Model

Table 3.1 shows a summary of the linear model. According to the values of coefficients,

we can see the overall effects of arousal after high and low accelerations in normal

drives on driver’s arousal after the simulated catastrophic event in the Failure Drive.

The number of asterisks indicates the level of significance: **: p-value  0.01, ***: p-

value  0.001. The positive regression coefficients of arousal after high accelerations,

�CDHA
= 2.11765, and �MDHA

= 2.97984, express a strong positive effect on arousal

right after the catastrophic event. Besides, the type of stressor also has an impact on

the outcome of the final arousal. Both cognitive and motoric stressors have positive

coefficients, Ds=C = 0.17285 and Ds=M = 0.16446.

Figure 3.2 depicts the association of arousal after high accelerations in the Cognitive

Drive and the Motoric Drive with the arousal after the catastrophic event in the Failure

Drive. In this figure, accelerophobic drivers, including Subject #01, Subject #06, and
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TABLE 3.1: Summary of the cross-sectional linear model to predict drivers’ arousal
at catastrophic event on the Test Track Driving 1 study

Coefficient Estimate Std. Error t value Pr(>|t|)
�CDHA 2.11765 0.65809 3.21788 0.00620 **
�CDLA -1.58805 0.65839 -2.41204 0.03016
�MDHA 2.97984 0.73529 4.05262 0.00119 **
�MDLA -2.53203 0.69956 -3.61948 0.00279 **
Ds=C 0.17285 0.05284 3.27108 0.00557 **
Ds=M 0.16446 0.04579 3.59153 0.00295 **
�o -0.21802 0.06604 -3.30124 0.00525 **

Subject #07, exhibited a strong arousal response across the board.

According to the linear model, we observed that arousal in daily drives can predict

arousal in sudden unexpected acceleration events . Besides, the distraction at the time

of incidents also have strong impacts on the arousal.
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(A) GN

(B) GC

(C) GM

FIGURE 3.2: Bar plots of the means of arousal of each subject after high accelerations
(HA) in Cognitive Drive (CD), Motoric Drive (MD), and unintended acceleration

in Failure Drive (FD).
The hyphenated lines indicate the Otsu threshold to separate the two classes of arousal after

the catastrophic event. (A)(B) and (C) are three groups of subjects experiencing three different
types of stressor in the FD, including no stressor, cognitive stressors and motoric stressors.34
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3.4.2 Machine Learning Model

We perform five-fold stratified cross-validation (Stone, 1974) to evaluate the effective-

ness of this model for predicting trends of arousal. Table 3.2 shows the performance

metrics of XGBoost prediction model.

TABLE 3.2: Performance of ML model

ClassHigh ClassLow Accuracy Precision Recall Spec NPV F1 AUC
36 48 0.81 0.7 0.84 0.80 0.90 0.76 0.90
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Conclusion

4.1 Accelerophobia

This research produced a clustering model to discriminate between types of drivers

based on the effect of driving variables on the driver stress as indicated by the changes

in drivers’ arousal. From the analysis of the effect, this works proposed two prediction

models. One online predicting model produced arousal trends in the next five seconds

based on driving variables in the last five seconds. The other long-term model used

drivers’ arousal during regular drives to predict those drivers’ stress during and after

a simulated catastrophic event.

From the clustering model in the ORD study, we found a group of "accelerophobic"

drivers who shows a fear of acceleration but not of speed. In the TTD1 study, accelero-

phobic drivers exhibited strong arousal across the board. Their arousal after high ac-

celerations in regular driving events was strongly associated with their arousal during

and after the simulated catastrophic event.

Our proposed method can be practically applied through detection systems or accelero-

phobia tests. Car automation systems of future semi-automated or automated vehicles

may be able to adjust the driving variables and control car safety module accordingly to

the types of drivers. Especially for accelerophobic drivers, auto manufacturers may be

able to find an optimal acceleration pattern and implement personalized car settings to
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help them drive comfortably. In terms of the modification of cars (Stefano, Stuckey, and

Kinsman, 2019) for people with disabilities, recognizing accelerophobia may help them

avoid accidents or provide automated intervention in the case of unexpected events.

By detecting the accelerophobia and its associated risk levels in each driver, insurance

companies may be able to adjust the insurance rates accordingly. This method could

also be used to provide tests to students in driving training schools. From the outcome

of the test, schools could then guide those students and help them to avoid human

errors that might lead to car accidents in the future.
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4.2 Limitation and Future Research Plan

Although linear models and machine learning models in the two studies show sig-

nificant results, there are limitations of data and methodology. Firstly, the number of

subjects in both studies is still small. This observed phenomenon might happen with a

small set of data but might not be present in large data sets. Secondly, there is a lack of

incorporation with other physiological signals such as heart rate, breath rate, and psy-

chometrics. Therefore, our plan for future research is to examine this method in relation

to a large set of data and to incorporate other physiological signals and psychometrics.
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On-road Driving Study
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Appendix A. On-road Driving Study

A.1 Noise Removal

FIGURE A.1: Original recorded and noise-removed perinasal perspiration of all sub-
jects.

Blue hyphenated lines indicate the mean of perspiration in the baseline session (BL). Red
hyphenated lines indicate the mean of perspiration in the On-road driving session (ORD).
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A.2 Correlation Matrices

(A) Subject #01 (B) Subject #04

(C) Subject #08 (D) Subject #10

FIGURE A.2: Correlation matrices of Normal Drivers.
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(A) Subject #05 (B) Subject #06

(C) Subject #07 (D) Subject #11

FIGURE A.3: Correlation matrices Acclerophobic Drivers.
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B.1 Randomized Order of Experiments

TABLE B.1: Demography and order of experiments of all subjects

Subject Age Gender 1st Drive 2nd Drive 3rd Drive 4th Drive
T001 69 F N M C N
T002 23 M C N M C
T003 75 F C M N C
T004 22 F N M C N
T005 65 F M N C M
T006 70 M M C N M
T007 64 M N M C N
T009 18 M M N C M
T012 22 M C M N C
T013 85 M C N M C
T015 22 M N M C N
T016 60 F N C M N
T017 25 F C M N C
T018 72 M C M N C
T022 22 F C N M C
T024 61 F M C N M
T026 23 F N C M N
T029 22 F N M C N
T030 24 F M C N M
T031 24 M M N C M
T032 24 M N C M N
T041 71 M N C M N

B.2 Failure Drive (FD)
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FIGURE B.1: Failure Drive of Subject #01

FIGURE B.2: Failure Drive of Subject #02

FIGURE B.3: Failure Drive of Subject #03
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FIGURE B.4: Failure Drive of Subject #04

FIGURE B.5: Failure Drive of Subject #05

FIGURE B.6: Failure Drive of Subject #06
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FIGURE B.7: Failure Drive of Subject #07

FIGURE B.8: Failure Drive of Subject #09

FIGURE B.9: Failure Drive of Subject #12
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FIGURE B.10: Failure Drive of Subject #13

FIGURE B.11: Failure Drive of Subject #15

FIGURE B.12: Failure Drive of Subject #16
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FIGURE B.13: Failure Drive of Subject #17

FIGURE B.14: Failure Drive of Subject #18

FIGURE B.15: Failure Drive of Subject #22
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FIGURE B.16: Failure Drive of Subject #24

FIGURE B.17: Failure Drive of Subject #29

FIGURE B.18: Failure Drive of Subject #30
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FIGURE B.19: Failure Drive of Subject #31

FIGURE B.20: Failure Drive of Subject #32

FIGURE B.21: Failure Drive of Subject #41
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