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ABSTRACT

We study the limit behavior of the non-stationary/random chaotic dynamical systems and prove

a strong statistical limit theorem: (vector-valued) almost sure invariance principle for the non-

stationary dynamical systems and quenched (vector-valued) almost sure invariance principle for

the random dynamical systems. It is a matching of the trajectories of the dynamical system with

a Brownian motion in such a way that the error is negligible in comparison with the Birkhoff sum.

We develop a method called “reverse Gaussian approximation” and apply it to the classical block

construction. We apply our results to the stationary chaotic systems which can be described by the

Young tower, and the (non)uniformly expanding non-stationary/random dynamical systems with

intermittency or uniform spectral gap. Our results imply that the systems we study have many

limit results that are satisfied by Brownian motion.
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1 Introduction

1.1 History review

Dynamical systems is a math subject describing the long term evolution of systems for which the

’infinitesimal’ evolution rule is known. Examples and applications arise from all branches of science

and technology, like physics, chemistry, economics, ecology, communications, biology, computer

science, and meteorology, to mention just a few.

These systems have in common the fact that each possible state may be described by a finite

(or infinite) number of observable quantities. Usually, there are some constraints between these

quantities. So the space of states X (called phase space) is often a manifold.

For the continuous time systems, the evolution rule can be a differential equation: each state

x ∈ X associates the speed and direction in which the system is going to evolve. Even when the

real phenomenon is supposed to evolve in continuous time, it is convenient to consider a discrete

time model-discrete time systems. In this case, the evolution rule is a transformation T : X → X,

assigning to the present state x ∈ X the next state T (x) after one unit of time. In both cases,

the main problem of dynamical system is describing the behavior as time goes to infinity for the

majority of orbit.

The term non-stationary dynamical systems, introduced by Berend and Bergelson [7], refers to

a (non-stationary) system in which a sequence of concatenation of maps Tk ◦Tk−1 ◦ · · · ◦T1 acts on

the state space X, where the maps Ti : X → X are allowed to vary with i. For more discussions

about its behavior as time goes to infinity for the majority of orbit, see [10,40].

One interesting limit behavior is called almost sure invariance principle (ASIP): it is a matching

of the trajectories of the dynamical system with a Brownian motion in such a way that the error is

negligible in comparison with the Birkhoff sum. Limit theorems such as the Central Limit Theorem

(CLT), the Functional Central Limit Theorem (FCLT), the Law of the Iterated Logarithm (LIL)

etc. transfer from the Brownian motion to time-series generated by observables on the dynamical

system. These kinds of results for the stationary dynamical systems have a lot of consequences

(see, e.g., Melbourne, Nicol, and Stenlund [34,35,47]).
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Such results were given by [11,12,20,23,37,48,49] for one-dimensional processes under the sta-

tionary or non-stationary dynamical systems and by [16,52] for independent higher-dimensional pro-

cesses; however, for higher-dimensional dependent processes, difficulties arise since the techniques

relying on Skorokhod embedding [42] do not work efficiently. In this direction, an approximation

argument was introduced by Berkes, Philipp, and Stout [8, 41] and was generalized by Kuelbs and

Philipp [26]. Using Kuelbs and Philipp’s result, Melbourne and Nicol [35] obtained the vector-valued

almost sure invariance principle (VASIP) for the (non)uniformly hyperbolic/expanding stationary

dynamical systems by choosing a suitable filtration. Their proof relies on the Young tower and the

tower technique developed by Melbourne and Török in [36]; hence it works very well for the sta-

tionary dynamical systems when they have some Markovian behavior and sufficient hyperbolicity.

Unfortunately, it is quite common to encounter the stationary dynamical systems for which

there is no natural well-behaved filtration. Gouëzel [19] showed that a sufficient control condition

on the characteristic functions of a process implies the VASIP. This condition is easy to check for

large classes of dynamical systems or Markov chains using strong or weak spectral perturbation

arguments. His method relies on the good spectrum of the quasi-compact transfer operator acting

on a suitable Banach space (also known as spectral gap). The advantage of his result is that

the invariant density is not required to be bounded away from zero. This helps Luzzatto and

Melbourne [33] to obtain the VASIP successfully for a large class of (non)uniformly expanding

interval maps with singularities.

However, if the dynamical system is non-stationary, the tower technique in [34–36] no longer

works. If the transfer operator of the dynamic has no spectral gap on the space of functions that are

of interest, Gouëzel’s approach fails to work. Such examples and their related statistical properties

are provided in the following papers [1, 10,13–15,22,27,28,38,39].

Conze and Raugi [10] considered the composition of a family of uniformly expanding interval

maps, extended the spectral theory of single transfer operator to the case of a sequence of trans-

fer operators, and developed a martingale technique based on Gordin’s approach [18] (decompose

Birkhoff sum as reverse martingale differences plus an error term) to prove CLT. Dragičević, Froy-

land, González-Tokman, and Vaienti [14, 15] and Haydn, Nicol, Török, and Vaienti [20] used this
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technique to prove scalar ASIP for the non-stationary/random dynamical systems with exponential

decay of correlation under a variance growth assumption.

For the case without spectral gap, Aimino, Hu, Nicol, Török, Vaienti [1] considered the compo-

sition of a family of Pomeau-Manneville like maps, obtained by perturbing the slope at the indif-

ferent fixed point 0. They got polynomial decay of correlations for C1-observables. Nicol, Török,

Vaienti [39] considered the same system, used the martingale technique in [10] and Sprindžuk’s The-

orem [45] to prove self-norming CLT under the assumptions that the system has sufficiently fast

decay of correlation and the variance grows at a certain rate. Moreover, they proved self-norming

CLT for nearby maps in this family and quenched CLT for random compositions of finitely many

maps in this family under an assumption of fast decay of correlation.

However, this martingale technique causes a new problem: the estimate of the error terms

requires a sufficiently fast decay of correlation, as [20, 39] did, so the limit laws are not known

if the decay of correlation of the dynamical system is too slow. Therefore, in this dissertation,

martingales are not used; instead, we obtain the VASIP for the non-stationary dynamical systems

by setting up several dynamical inequalities and a new approximation method (modify [8] to work

for arbitrary decreasing filtration, in particular, dynamical systems). The three assumptions on

the decay of correlations (A4)-(A6) in our Theorem 2.8 are quite natural under the setting of

dynamical systems. As applications, we apply our results to a large class of the non-stationary

dynamical systems in [10, 20, 39] and the random systems in [14, 15, 39]. In particular, we obtain

the optimal range (α < 1
2) for the Theorem 3.1 in [39]. We also recover the classical stationary

results in [19,34,35,51]. See section 3, Applications.

Finally, we want to compare our results with Gouëzel [19], Melbourne and Nicol [34, 35] in the

stationary dynamics setting:

• Advantage: compared to assumption (H) in [19], our condition is simpler, automatically

satisfied by the stationary dynamical systems in [19]. Same as [19], our VASIP result does

not require invariant density to be bounded away zero. Unlike [19, 34, 35], our result shows

that we do not need to deal with different types of systems (Young tower or spectral gap)

separately, that is, we can prove the VASIP for the stationary systems only by verifying the
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three assumptions (A4)-(A6) in Theorem 2.8. In section 3 and section 6, we will show that

the Young tower and spectral gap satisfy assumptions (A4)-(A6).

• Disadvantage: we do not have an explicit formula or a good estimate for the VASIP error

rate (the difference between the Birkhoff sum and Brownian motion), while [35] obtains an

explicit formula for the Young towers and [19] obtains O(n
1
4 ) for the dynamics with spectral

gap, which is independent of the dimension of observables. The reason for this drawback

is that we consider the systems under several assumptions on the slow decay of correlations

(especially for the non-uniformly expanding non-stationary dynamical systems in [1]). The

parameters in our Theorem 2.8, variance growth rate (the γ in Lemma 7.1) and the VASIP

error rate, are far from optimal.

1.2 Outline of this dissertation

• In section 2, we will give our main theorems.

• In section 3, several corollaries of our main theorems are given as applications.

• In section 4, we obtain several technical lemmas which will be used in the proofs of the main

theorems.

• In section 5, we give the proofs of our main theorems.

• Section 6 contains the proofs of corollaries in section 3.

• Section 7, Appendix, mainly focuses on the computation of the parameters in Theorem 2.8.
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2 Definitions, notations, main theorems

2.1 Definitions and notations

Consider a probability space (X,B, µ) with µ as a reference probability and a family of non-singular

(w.r.t. µ) maps Tk : X → X, k ≥ 1. For any n,m, k ∈ N, denote:

Tn+m
m := Tn+m ◦ Tn+m−1 ◦ · · · ◦ Tm,

Tn := Tn1 = Tn ◦ Tn−1 ◦ · · · ◦ T1.

The transfer operator (Perron-Frobenius operator) Pk associated to Tk is defined by the duality

relation: ∫
g · Pkfdµ =

∫
g ◦ Tk · fdµ for all f ∈ L1, g ∈ L∞.

Similar to Tn+m
m and Tn, denote:

Pn+m
m := Pn+m ◦ Pn+m−1 ◦ · · · ◦ Pm,

Pn := Pn1 = Pn ◦ Pn−1 ◦ · · · ◦ P1.

Notation 2.1

1. an ≈ bn (resp. “an - bn”) means there is a constant C ≥ 1 such that C−1 · bn ≤ an ≤ C · bn

for all n (resp. an ≤ C · bn for all n).

2. Ca denotes a constant that depends only on a.

3. 1 denotes the constant function 1 on X.

4. For any m ∈ N, scalar function f and L1-matrix
[
fij
]

(i.e., fij ∈ L1(X) for all i, j ≥ 1),

define:

f · Pm(
[
fij
]
) = Pm(

[
fij
]
) · f :=

[
f · Pm(fij)

]
.
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5. From now on, let {φk ∈ L∞(X,µ;Rd) : k ∈ N} be the observables satisfying

sup
k
||φk||L∞ <∞,

∫
φk ◦ T kdµ = 0.

Definition 2.2 For (Tn)n≥1 := (Tn1 )n≥1 defined above, we have a decreasing filtration (T−nB)n≥1.

Denote conditional expectation w.r.t. T−nB and µ by:

En(·) := E(·|T−nB).

In particular, the expectation, that is, conditional expectation w.r.t. {∅, X} and µ, is denoted

by:

E(·) :=

∫
(·)dµ.

Definition 2.3 (Non-stationary, stationary and random dynamical systems)

(X,B, (Tk)k≥1, µ) is called a non-stationary dynamical system, where (Tk)k≥1 are non-singular

maps on (X,B, µ) as stated above. In contrast, a stationary dynamical system means that Tk = T1

for all k ≥ 1 and (T1)∗µ = µ.

(X,B, (Tω)ω∈Ω, µ,Ω,F ,P, σ, (µω)ω∈Ω) is called a random dynamical system if

1. σ : (Ω,F ,P)→ (Ω,F ,P) is an invertible ergodic transformation preserving the probability P.

2. (Tω)ω∈Ω are non-singular (w.r.t. µ) maps on (X,B, µ).

3. The probability µω on X is absolutely continuous w.r.t. µ.

4. (Tω)∗µω = µσω a.e. ω ∈ Ω.

Definition 2.4 (VASIP for non-stationary dynamical system, see [20])

For the non-stationary dynamical system (X,B, (Tk)k≥1, µ) with the observables (φk)k∈N, denote
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the d× d variance matrix by

σ2
n :=

∫
(
∑
k≤n

φk ◦ T k) · (
∑
k≤n

φk ◦ T k)Tdµ.

Denote the least eigenvalue of σ2
n by

λ(σ2
n) := inf

|u|=1,u∈Rd

∫
(uT ·

∑
k≤n

φk ◦ T k)2dµ.

We say (φk ◦ T k)k≥1 satisfies the VASIP w.r.t. µ if there exists a constant ε ∈ (0, 1) and

independent mean zero d-dimensional Gaussian random vectors (Gk)k≥1 defined on some extended

probability space of (X,B, µ) such that:

∑
k≤n

φk ◦ T k −
∑
k≤n

Gk = o(λ(σ2
n)

1−ε
2 ) a.s., (2.1)

∫
(
∑
k≤n

φk ◦ T k) · (
∑
k≤n

φk ◦ T k)Tdµ =
∑
k≤n

Ẽ(Gk ·GTk ) + o(λ(σ2
n)1−ε), (2.2)

λ(σ2
n)→∞, (2.3)

where Ẽ(·) in (2.2) means the expectation w.r.t. the probability P̃ of the extended probability space

of (X,B, µ).

Remark 2.5

1. Some Gk can be zero, since the zero Gaussian random vector is independent of any random

vectors.

2. In general,
∑

k≤nGk does not form a d-dimensional Brownian motion due to the non-stationary

process (φk ◦ T k)k≥1. However, by Lemma 7.4, if there is a constant ε ∈ (0, 1) and a positive

definite d× d matrix σ2 > 0, such that σ2
n = n ·σ2 + o(n1−ε), then (Gk)k≥1 can be modified as

i.i.d. Gaussian vectors with covariance σ2, and
∑

k≤nGk would be replaced by d-dimensional

Browian motion stopped at time n. So the VASIP, in this case, coincides with the classical
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VASIP for the stationary dynamical system. This remark says that (2.2) is an equivalence

relation: the Gaussian vectors in the definition of the VASIP rely on the behavior of variance

growth (2.2) and covariance σ2 only.

3. If d = 1, Gk can be embedded into a Brownian motion, and Definition 2.4 becomes scalar

ASIP, that is, there is a matching of the Birkhoff sum
∑

k≤n φk◦T k with a standard Brownian

motion Bt observed at time Ẽ[(
∑

k≤nGk)
2] so that

∑
k≤n φk ◦ T k equals BẼ[(

∑
k≤nGk)2] plus

negligible error almost surely, which equals Bσ2
n

plus a negligible error almost surely. Then

(φk ◦ T k)k≥1 also satisfies self-norming CLT and LIL:

∑
k≤n φk ◦ T k

σn

d→ N(0, 1),

lim sup
n→∞

∑
k≤n φk ◦ T k√
σ2
n log log σ2

n

= 1,

lim inf
n→∞

∑
k≤n φk ◦ T k√
σ2
n log log σ2

n

= −1.

4. If d = 1, scalar ASIP implies scalar self-norming FCLT:

Let ρ2
n := Ẽ[(

∑
k≤nGk)

2], where (Gk)k≥1 are the Gaussian variables in the definition of the

VASIP and Sn :=
∑

k≤n φk ◦ T k. For any n ≥ 1, define the piecewise continuous function Sn

w.r.t. time variable t ∈ [0, 1]:

Snt :=
Si
ρn

+
t− ρ2

i
ρ2
n

ρ2
i+1

ρ2
n
− ρ2

i
ρ2
n

· Si+1 − Si
ρn

, t ∈ [
ρ2
i

ρ2
n

,
ρ2
i+1

ρ2
n

],

where 0 ≤ i ≤ n− 1, S0 := 0,
0

0
:= 0.

Then Sn
d→ B on C[0, 1], where B is a standard Brownian motion.

Definition 2.6 (Assumptions on decays of correlations)

There is α < 1
2 such that for any i, j, n ∈ N (the constants indicated in - below are uniform
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over all φi, i, j, n ∈ N), the following holds:

∫
|Pn+i
i+1 (φi · P i1)|dµ -

1

n
1
α
−1
, (A1)

∫
|Pn+i
i+1 [(φi · φTi −

∫
φi ◦ T i · φTi ◦ T idµ) · P i1]|dµ -

1

n
1
α
−1
, (A2)

∫
|P i+j+ni+j+1 {[P

i+j
i+1 (φi · P i1) · φTi+j − P i+j1 ·

∫
P i+ji+1 (φi · P i1) · φTi+jdµ]}|dµ -

1

n
1
α
−1
. (A3)

Remark 2.7

1. We assume α < 1
2 throughout this dissertation.

2. For the stationary dynamical system, that is, φk := φ, Tk = T for all k ≥ 1, (T )∗µ = µ and∫
φdµ = 0. We denote the transfer operator of T by P . Then P i1 = 1 a.s. for any i ≥ 1 and

the assumptions (A1)-(A3) become:

∫
|Pn(φ)|dµ -

1

n
1
α
−1
, (A4)

∫
|Pn(φ · φT −

∫
φ · φTdµ)|dµ -

1

n
1
α
−1
, (A5)

∫
|Pn[P j(φ) · φT −

∫
P j(φ) · φTdµ]|dµ -

1

n
1
α
−1
. (A6)

(A4), (A5) are well-known to be decay of correlations if φ has certain regularity. In this dis-

sertation, they are called first order decay of correlation for the stationary dynamical system,

(A6) is called second order decay of correlation for the stationary dynamical system.

2.2 Main theorems

Theorem 2.8 (VASIP)

Assume the non-stationary dynamical system (X,B, (Tk)k≥1, µ) with the observables (φk)k∈N

satisfies (A1)-(A3). Then there is γ ∈ (0, 1) depending on d, α only (will be given in Appendix,

Lemma 7.1), such that if λ(σ2
n) % nγ, then (φk ◦ T k)k≥1 satisfies the VASIP.
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Theorem 2.9 (Quenched VASIP)

Consider the random dynamical system (X,B, (Tω)ω∈Ω, µ,Ω,F ,P, σ, (µω)ω∈Ω). Denote Pω as

the transfer operator of Tω w.r.t. µ. Define τ : Ω×X → Ω×X by τ(ω, x) := (σω, Tω(x)). Define

the random composition of transformations and transfer operators: T kω := Tσk−1(ω)◦Tσk−2(ω)◦· · ·◦Tω,

P kω := Pσk−1(ω) ◦Pσk−2(ω) ◦ · · · ◦Pω. Assume for a.e. ω ∈ Ω, dµω := hωdµ for some density function

hω ∈ L1(µ) (this implies Pωhω = hσω). Assume the observables {φω ∈ L∞(X,µ;Rd) : ω ∈ Ω}

satisfy

sup
ω∈Ω
||φω||L∞(X,µ) <∞,

∫
φωdµω = 0

and (A1’)-(A3’) below, where α < 1
2 and the constants indicated in - are uniform over all i, j, n ∈ N

and (φω)ω∈Ω: ∫
|Pnσiω(φσiω · hσiω)|dµ -

1

n
1
α
−1
, (A1’)

∫
|Pnσiω[(φσiω · φTσiω −

∫
φσiω · φTσiωdµσiω) · hσiω]|dµ -

1

n
1
α
−1
, (A2’)

∫
|Pnσi+jω{[P

j
σiω

(φσiω · hσiω) · φTσi+jω − hσi+jω
∫
P j
σiω

(φσiω · hσiω) · φTσi+jωdµ]}|dµ -
1

n
1
α
−1
. (A3’)

Then there are two linear subspaces (independent of ω): W1,W2 ⊂ Rd, Rd = W1
⊕
W2 with

projections π1 : W1
⊕
W2 →W1, π2 : W1

⊕
W2 →W2 such that

• Quenched VASIP: the dynamical system (π1 ◦φσkω ◦T kω )k≥1 satisfies the VASIP w.r.t. µω for

a.e. ω ∈ Ω.

• Coboundary: the dynamical system (π2 ◦ φσkω ◦ T kω )k≥1 is a coboundary: there is ψ ∈ L1(Ω×

X, dµωdP) such that:

π2 ◦ φσω(Tωx) = ψ(σ(ω), Tω(x))− ψ(ω, x) a.e. (ω, x).

Remark 2.10

1. Conditions (A3), (A3’), (A6) can be easily verified by the invariant cone and tower extension

methods, as shown in our Corollaries 3.1 and 3.8.
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2. The quasi-invariant density hω is not required to be bounded away from zero.
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3 Applications

3.1 Applications to non-stationary dynamical systems

Corollary 3.1 (Polynomially mixing non-stationary system)

Consider the non-stationary dynamical system ([0, 1],B, (Tβk)k≥1,m) in [39], where m is the

Lebesgue measure, Tk := Tβk are Pomeau-Manneville like maps with 0 < βk < α < 1
2 :

Tβk(x) =


x+ 2βkx1+βk , 0 ≤ x ≤ 1

2

2x− 1, 1
2 < x ≤ 1

. (3.1)

Consider the observables (φk)k∈N ⊂ Lip([0, 1];Rd) with supk ||φk||Lip < ∞. Then there is γ ∈

(0, 1) (same as γ in Theorem 2.8), such that if λ(σ2
n) % nγ, then (φi ◦ T i)i≥1 satisfies the VASIP.

Consider the observables (φk)k∈N ⊂ Lip([0, 1];R) with supk ||φk||Lip <∞. Then there is γ1 < 1

depending on α only (simpler than γ, will be given in Appendix, Lemma 7.2), such that if λ(σ2
n) %

nγ1, then (φi ◦ T i)i≥1 satisfies self-norming CLT.

Remark 3.2 In [39], the martingale method was used to prove CLT holds when α < 1
8 . Our

method proves CLT holds for the slower mixing system (α < 1
2), which coincides with the sharp

result in the stationary case, see [51].

Corollary 3.3 (Exponentially mixing non-stationary system)

Consider the non-stationary dynamical system (X,B, (Tk)k≥1, µ), assume (V, ||·||V) is a (Pk)k≥1-

invariant Banach sub-algebra of (L1, || · ||L1) satisfying the following assumptions:

1. 1 ∈ V.

2. || · ||L1 - || · ||V .

3. There is a constant A, such that for any n,m ∈ N, any v ∈ V,

||Pn+m
m+1 v||V ≤ A · ||v||V .

12



4. There is ρ ∈ (0, 1) and a constant B such that for any n,m ∈ N, any v ∈ V0 := {v ∈ V :∫
vdµ = 0}, we have

||Pn+m
m+1 v||V ≤ B · ρ

n · ||v||V .

Consider the observables (φk)k∈N ⊂ V ∩ L∞(X,µ;Rd) with supk{||φk||V , ||φk||L∞} < ∞. Then

there is γ < 1 (same as γ in Theorem 3.1), such that if λ(σ2
n) % nγ, then (φk◦T k)k≥1 satisfies the VASIP.

Remark 3.4

1. As applications, we can use this result for the dynamical systems considered in [3–6, 10, 17,

20, 21, 24, 29, 30, 46]:

• Shrinking target problem for an expanding map in Theorem 5.1 of [20]: β-transformation,

smooth expanding map, the Gauss map, and mixing Rychlik-type map. V := BV, Tk := T

with T∗µ = µ, φk := 1Ak − µ(Ak) with supk ||φk||BV <∞ and µ(Ak) % nγ−1 where γ is

the one in our Theorem 2.8.

• Non-stationary observations on an Axiom A dynamical system in Corollary 6.2 of [20]:

V := C0,α (α-Hölder space), Tk := T with T∗µ = µ, supk ||φk||C0,α < ∞ with σ2
n %

nmax(γ,
√

17−1
4

) where γ is the one in our Theorem 2.8.

• The systems in section 7 of [20] are essentially the same, so we just choose the “perturbed

expanding maps (Tk := Tεk)k≥1 of a fixed expanding map T on the circle” in Theorem 7.4

to present our VASIP result: V := BV , dµ := hdm is SRB for T , φk := φ−
∫
φ ◦ T k1 dµ

where φ ∈ V is not a coboundary for T and
∫
φdµ = 0. By our Theorem 2.8 and Lemma

7.1 of [20], (φk ◦ T k1 := φ ◦ T k1 −
∫
φ ◦ T k1 dµ)k≥1 has the VASIP. Since for any n ≥ 1,

∑
k≤n

∫
φ ◦ T k1 dµ =

∑
k≤n

∫
φ · P k1 (h)dm =

∑
k≤n

∫
φ · [P k1 (h)− P k(h)]dm

-
∑
k≤n
||φ||V · ||P k1 (h)− P k(h)||L1

where P k1 and P are the transfer operators of T k1 and T respectively, then by Lemma

13



2.13 in [10],

sup
n
|
∑
k≥1

∫
φ ◦ T k1 dµ| = O(1).

So we have the same statement of the VASIP for (φ ◦ T k1 )k≥1 as Theorem 7.4 in [20].

2. Conditions (Min) in [10] and (LB) in [20] are not required here. This Corollary works for all

non-stationary dynamical systems whose transfer operators have uniform spectral gap in the

sense of [10]. Gouëzel in [19] obtained the following similar result: if the transfer operator of

the stationary dynamical system has a spectral gap, then the VASIP holds, without assuming

the (Min) or (LB) conditions. Using Gouëzel’s result, Luzzatto and Melbourne in [33] obtained

the VASIP for interval maps with singularities.

3. V is usually chosen to be anisotropic Banach spaces or simpler Banach spaces such as Hölder

functions, Lipschitz functions or bounded variation functions. This implies the decay of cor-

relation w.r.t. the norm || · ||V is exponential, see for instance Proposition 3.1 in [2].

3.2 Applications to random dynamical systems

Corollary 3.5 (Exponentially mixing random system)

Consider the same system as in [14]: (X,B, (Tω)ω∈Ω,m) with a notion of a variation var :

L1(X,m)→ [0,∞] and a probability space (Ω,F ,P, σ) where σ : Ω→ Ω is an invertible P-preserving

ergodic transformation. Define random composition of transformations T kω and random composition

of transfer operators P kω as in Theorem 2.9. Assume:

1. var(th) = |t| var(h), t ∈ R.

2. var(g + h) ≤ var(g) + var(h).

3. ||h||L∞ ≤ Cvar · (||h||L1 + var(h)) for some constant 1 ≤ Cvar <∞.

4. For any C > 0, the set {h : X → R : ||h||L1 + var(h) ≤ C} is L1(X,m)-compact.

5. var(1) <∞.

6. {h : X → R : ||h||L1 = 1 and var(h) <∞} is L1(X,m)-dense in {h : X → R : ||h||L1 = 1}.

14



7. There is Kvar <∞ such that for every g, h ∈ B,

var(gh) + ||gh||L1 ≤ Kvar · (var(h) + ||h||L1) · (var(g) + ||g||L1),

where

B := BV (X,m) := {h ∈ L1(X,m) : var(h) <∞}

with norm

||h||B := var(h) + ||h||L∞ .

8. For any g ∈ L1(X,m) such that ess inf g > 0, we have var(1
g ) ≤ var(g)

(ess inf g)2 .

9. The map (ω, x) → (PωH(ω, ·))(x) is P × m-measurable, that is, measurable on the space

(Ω × X,F ⊗ B) for every P ×m-measurable function H : Ω × X → Rd such that H(ω, ·) ∈

L1(X,m) for a.e. ω ∈ Ω.

10. There is C > 0 such that for a.e. ω ∈ Ω and any φ ∈ B,

||Pωφ||B ≤ C · ||φ||B.

11. There are constants K,λ > 0 such that for a.e. ω ∈ Ω, n ≥ 0 and φ ∈ B with
∫
φdm = 0, we

have

||Pnωφ||B ≤ K · e−λn||φ||B.

Then there is an unique quasi-invariant probability dµω := hωdm such that for a.e. ω ∈ Ω,

Pωhω = hσω, supω ||hω||B < ∞. Moreover, for the observables (φω)ω∈Ω ⊂ L∞(X,m;Rd) ∩ B with∫
φωdµω = 0 and supω∈Ω ||φω||B < ∞. Then there are two linear sub-spaces (independent of ω):

W1,W2 ⊂ Rd, Rd = W1
⊕
W2 with projections π1 : W1

⊕
W2 → W1, π2 : W1

⊕
W2 → W2 such

that

• Quenched VASIP: the dynamical system (π1 ◦φσkω ◦T kω )k≥1 satisfies the VASIP w.r.t. µω for

a.e. ω ∈ Ω.
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• Coboundary: the dynamical system (π2 ◦ φσkω ◦ T kω )k≥1 is a coboundary: there is ψ ∈ L2(Ω×

X, dµωdP) such that:

π2 ◦ φω(x) = ψ(ω, x)− ψ(σ(ω), Tω(x)) a.e. (ω, x).

Remark 3.6

1. [14] and [15] considered the same random dynamical systems, but present different results

for limit theorems.

2. Note that our assumptions for the random dynamical system are (V1)-(V8) and (H1), (H2),

(H5) in [14]. (H3), (H4) in [14] and (C4) in [15] are not required here. Our Corollary 3.5

works for the random dynamical systems in [14, 15]:

• Random piecewise expanding maps in higher dimensions.

• Random Lasota-Yorke maps.

Corollary 3.7 (Polynomially mixing random system)

Consider the system (X,B, (Tω)ω∈[0,α]Z ,m) where Tω := Tω0 is the Pomeau-Manneville like

map which is picked from {Tβ : β ∈ [0, α], α < 1
2}. Define (Ω,F ,P, σ) := ([0, α]Z,F ,P, σ) where

σ : Ω→ Ω is an invertible ergodic left shift preserving the probability P. Define random composition

of transformations T kω and random composition of transfer operators P kω as in Theorem 2.9.

Then there is a quasi-invariant probability dµω := hωdm such that Pωhω = hσω for a.e. ω ∈ Ω;

moreover, consider the observable (φω)ω∈Ω ⊂ Lip([0, 1];Rd) with supω ||φω||Lip <∞ and
∫
φωdµω =

0. Then there are two linear subspaces (independent of ω): W1,W2 ⊂ Rd, Rd = W1
⊕
W2 with

projections π1 : W1
⊕
W2 →W1, π2 : W1

⊕
W2 →W2 such that

• Quenched VASIP: the dynamical system (π1 ◦φσkω ◦T kω )k≥1 satisfies the VASIP w.r.t. µω for

a.e. ω ∈ Ω.

• Coboundary: the dynamical system (π2 ◦ φσkω ◦ T kω )k≥1 is a coboundary: there is ψ ∈ L1(Ω×
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X, dµωdP) such that:

π2 ◦ φω(x) = ψ(ω, x)− ψ(σ(ω), Tω(x)) a.e. (ω, x).

3.3 Applications to stationary dynamical systems

Corollary 3.8 (Stationary dynamical system)

Consider the stationary dynamical system (X,B, T, µ) (that is, T∗µ = µ) with mean zero observ-

able φ : X → Rd satisfying (A4), then there is a d×d positive semi-definite matrix σ2 and ε ∈ (0, 1),

such that σ2
n = n · σ2 + o(n1−ε). If (A4)-(A6) are all satisfied, then there are two linear subspaces:

W1,W2 ⊂ Rd such that Rd = W1
⊕
W2 with projection π1 : W1

⊕
W2 →W1, π2 : W1

⊕
W2 →W2,

such that:

• The dynamical system (π1 ◦ φ ◦ T k)k≥1 satisfies the VASIP.

• The dynamical system (π2 ◦ φ ◦ T k)k≥1 is a coboundary, that is, there is ψ ∈ L1(X, dµ) such

that:

π2 ◦ φ(Tx) = ψ(Tx)− ψ(x) a.e.

In particular, if the dynamical system can be described by a Young tower ∆ [50, 51], that is,

(∆,B, F, v) with v ◦ F−1 = v, dv = dv
dmdm is exact, dm is the reference measure on ∆, return map

R is defined on the base of the the tower: ∆0 =
⊔
i≥1 ∆0,i such that R|∆0,i ≡ Ri ∈ N,

∫
∆0
Rdm <∞

and ∆ = {(x, n) ∈ ∆0 × N0 : n < R(x)}. FR : ∆0 → ∆0 is a Gibbs-Markov map, satisfying

|JF
R(x)

JFR(y)
− 1| - βs(F

R(x),FR(x)) (3.2)

where J is the Jacobian w.r.t. dm, β ∈ (0, 1), s(x, y) is the separation time defined on ∆0 ×∆0:

s(x, y) := min{n ≥ 0 : (FR)n(x), (FR)n(y) lie in distinct ∆0,i}.
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Meanwhile, we endow a metric d on ∆: for any z1 = (x1, n1) ∈ ∆, z2 = (x2, n2) ∈ ∆,

d(z1, z2) :=


βs(x1,x2), n1 = n2

1, n1 6= n2

. (3.3)

Then for the stationary dynamical system (∆,B, F, v) and any mean zero observable φ ∈ Lip(∆),

(A4)-(A6) are all satisfied. On the other hand, the discrete stationary dynamical systems such as

Pomeau-Manneville maps, Viana maps, etc. considered in [34], [35] can be described by a Young

tower, so we recover the VASIP for those systems.
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4 Dynamical inequalities

In this section, we will obtain several inequalities based on (A1)-(A3), which are needed in section

5 to prove Theorem 2.8.

Lemma 4.1 If (A1) is satisfied, then for all n,m ∈ N, the following holds:

∫
(

∑
m≤k≤n+m−1

φk ◦ T k) · (
∑

m≤k≤m+n−1

φk ◦ T k)Tdµ = O(n),

where the constant indicated in O(·) is uniform over all φk,m, n.

Proof

∫
(

∑
m≤k≤n+m−1

φk ◦ T k) · (
∑

m≤k≤m+n−1

φk ◦ T k)Tdµ =

∫ ∑
m≤k≤n+m−1

φk ◦ T k · φTk ◦ T k

+
∑

m≤i<j≤n+m−1

φi ◦ T i · φTj ◦ T j + (
∑

m≤i<j≤n+m−1

φi ◦ T i · φTj ◦ T j)Tdµ.

By supk ||φk||L∞ <∞, the above equality becomes

= O(n) +
∑

m≤i<j≤n+m−1

∫
φi · φTj ◦ T

j
i+1 · P

i1 + (φi · φTj ◦ T
j
i+1 · P

i1)Tdµ

- O(n) +
∑

m≤i<j≤n+m−1

∫
|P ji+1(φi · P i1)|dµ.

By (A1) and α ∈ (0, 1
2), the above inequality becomes

- O(n) +
∑

m≤i<j≤n+m

1

(j − i)
1
α
−1

= O(n)

+
∑

0≤i<j≤n

1

(j − i)
1
α
−1

- O(n) +
∑

0<j≤n

∑
0≤i<j

1

(j − i)
1
α
−1

= O(n).

All constants indicated in -, O(·) are uniform over all φk,m, n.
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Lemma 4.2 If (A1) is satisfied, then for all n,m ∈ N, the following holds:

E|En+m

∑
m≤k≤n+m−1

φk ◦ T k| = O(1),

where O(1) is uniform over all φk, n,m.

Proof

E|En+m

∑
m≤k≤n+m−1

φk ◦ T k| = sup
||ψ||L∞(X;R)≤1

∫
ψ ◦ Tn+m ·

∑
m≤k≤n+m−1

φk ◦ T kdµ.

By ||ψ||L∞ ≤ 1 and (A1), the above equality becomes

≤
∑

m≤k≤n+m−1

∫
|Pn+m
k+1 (φk · P k1)|dµ -

∑
m≤k≤n+m−1

1

(m+ n− k)
1
α
−1

= O(1).

All constants indicated in -, O(·) are uniform over all φk,m, n. The last equality holds because

of 1
α − 1 > 1.

Lemma 4.3 If (A1)-(A3) are satisfied, then for all n,m ∈ N, the following holds:

E|En+m[(

n+m−1∑
k=m

φk ◦ T k) · (
n+m−1∑
k=m

φk ◦ T k)T ]− E[(

n+m−1∑
k=m

φk ◦ T k) · (
n+m−1∑
k=m

φk ◦ T k)T ]| = O(n
α

1−α ),

where the constant indicated in O(·) is uniform over all φk,m, n.

Proof

E|En+m[(
n+m−1∑
k=m

φk ◦ T k) · (
n+m−1∑
k=m

φk ◦ T k)T ]− E[(
n+m−1∑
k=m

φk ◦ T k) · (
n+m−1∑
k=m

φk ◦ T k)T ]|

≤ E|En+m(
∑

m≤k≤n+m−1

φk ◦ T k · φTk ◦ T k)− E(
∑

m≤k≤n+m−1

φk ◦ T k · φTk ◦ T k)|
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+E|En+m(
∑

m≤i<j≤n+m−1

φi ◦ T i · φTj ◦ T j)− E(
∑

m≤i<j≤n+m−1

φi ◦ T i · φTj ◦ T j)|

+E|[En+m(
∑

m≤i<j≤n+m−1

φi ◦ T i · φTj ◦ T j)− E(
∑

m≤i<j≤n+m−1

φi ◦ T i · φTj ◦ T j)]T |

≤ E|En+m[
∑

m≤k≤n+m−1

φk ◦ T k · φTk ◦ T k − E(φk ◦ T k · φTk ◦ T k)]| (4.1)

+2E|En+m[
∑

m≤i<j≤n+m−1

φi ◦ T i · φTj ◦ T j − E(φi ◦ T i · φTj ◦ T j)]| (4.2)

Estimate (4.1):

(4.1) = sup
||ψ||L∞(X;R)≤1

∫
ψ ◦ Tn+m · [

∑
m≤k≤n+m−1

φk ◦ T k · φTk ◦ T k − E(φk ◦ T k · φTk ◦ T k)]dµ

-
n+m−1∑
k=m

∫
|Pn+m
k+1 {[φk · φ

T
k − E(φk ◦ T k · φTk ◦ T k)] · P k1}|dµ.

By (A2) and α ∈ (0, 1
2), the above inequality becomes

-
n+m−1∑
k=m

1

(m+ n− k)
1
α
−1

= O(1).

To estimate (4.2), for any fixed j ≤ n+m− 1:

E|Ej [
∑

m≤i<j
φi ◦T i ·φTj ◦T j−E(φi ◦T i ·φTj ◦T j)]| ≤

∑
m≤i<j

E|Ej(φi ◦T i ·φTj ◦T j)−E(φi ◦T i ·φTj ◦T j)|

≤ 2
∑

m≤i<j
E|Ej(φi ◦ T i · φTj ◦ T j)| ≤ 2

∑
m≤i<j

sup
||ψ||L∞(X;R)≤1

∫
ψ ◦ T j · φi ◦ T i · φTj ◦ T jdµ.

By (A1), ||ψ||L∞ ≤ 1, supj ||φj ||L∞ <∞ and α ∈ (0, 1
2), the above inequality becomes:

- 2
∑

m≤i<j

∫
|P ji+1(φi · P i1)|dµ -

∑
m≤i<j

1

(j − i)
1
α
−1

= O(1).
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That is, for any fixed j ≤ n+m− 1,

∑
m≤i<j

E|Ej [φi ◦ T i · φTj ◦ T j − E(φi ◦ T i · φTj ◦ T j)]| = O(1). (4.3)

Let δ := α
1−α < 1, then

(4.2) -
∑

m≤i<j≤n+m−1

E|En+m[φi ◦ T i · φTj ◦ T j − E(φi ◦ T i · φTj ◦ T j)]|

=
∑

m<j≤n+m−1

∑
m≤i<j

E|En+m[φi ◦ T i · φTj ◦ T j − E(φi ◦ T i · φTj ◦ T j)]|

=
∑

m<j≤n+m−1

∑
m≤i<j

E|En+mEj [φi ◦ T i · φTj ◦ T j − E(φi ◦ T i · φTj ◦ T j)]|

≤
∑

n+m−bnδc<j≤n+m−1

∑
m≤i<j

E|Ej [φi ◦ T i · φTj ◦ T j − E(φi ◦ T i · φTj ◦ T j)]|

+
∑

m<j≤n+m−bnδc

∑
m≤i<j

E|En+m[φi ◦ T i · φTj ◦ T j − E(φi ◦ T i · φTj ◦ T j)]|.

By (4.3), the above inequality becomes

- bnδc+
∑

m<j≤n+m−bnδc

∑
m≤i<j

E|En+m[φi ◦ T i · φTj ◦ T j − E(φi ◦ T i · φTj ◦ T j)]|

- bnδc+

n+m−bnδc∑
j=m+1

∑
m≤i<j

sup
||ψ||L∞(X;R)≤1

∫
ψ ◦ Tn+m · [(φi ◦ T i · φTj ◦ T j)− E(φi ◦ T i · φTj ◦ T j)]dµ

= bnδc+

n+m−bnδc∑
j=m+1

∑
m≤i<j

sup
||ψ||L∞(X;R)≤1

∫
ψ ◦Tn+m

j+1 · [P
j
i+1(φi ·P i1) ·φTj −P j1 ·E(φi ◦T i ·φTj ◦T j)]dµ

≤ bnδc+

n+m−bnδc∑
j=m+1

∑
m≤i<j

∫
|Pn+m
j+1 [P ji+1(φi · P i1) · φTj − P j1 · E(φi ◦ T i · φTj ◦ T j)]|dµ.

By (A3), the above inequality becomes
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- bnδc+

n+m−bnδc∑
j=m+1

∑
m≤i<j

1

(n+m− j)
1
α
−1
≤ bnδc+

∑
m<j≤n+m−bnδc

j −m
(n+m− j)

1
α
−1

= bnδc+
∑

0<j≤n−bnδc

j

(n− j)
1
α
−1

= bnδc+
∑

0<j≤n−bnδc

j
n

(1− j
n)

1
α
−1
· 1

n
· 1

n
1
α
−3

- bnδc+

∫ n−bnδc
n

0

x

(1− x)
1
α
−1
dx · 1

n
1
α
−3

= bnδc+

∫ 1

bnδc
n

1− x
x

1
α
−1
dx · 1

n
1
α
−3

-


nδ + n1−δ, 1

α − 1 = 2

n1+δ(2− 1
α

) + nδ, 1
α − 1 6= 2

- n
α

1−α . (4.4)

All constants indicated in -, O(·) are uniform over all φk,m, n.

Lemma 4.4 If (A1)-(A3) are satisfied, then for any ε ∈ (0, 1 − α
1−α), there is constant Cε such

that for all n,m ∈ N, the following holds:

E{|En+m[(

n+m−1∑
k=m

φk ◦ T k) · (
n+m−1∑
k=m

φk ◦ T k)T ]− E[(

n+m−1∑
k=m

φk ◦ T k) · (
n+m−1∑
k=m

φk ◦ T k)T ]|1+ε}

- Cε · n1+ε, where the constant indicated in - is uniform over all φk,m, n, ε.

Proof

Let β > ε, δ > 0 (will be given later), and

∆ := En+m[(

n+m−1∑
k=m

φk ◦ T k) · (
n+m−1∑
k=m

φk ◦ T k)T ]− E[(

n+m−1∑
k=m

φk ◦ T k) · (
n+m−1∑
k=m

φk ◦ T k)T ].
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Then

E(|∆|1+ε) =

∫
|∆|>δ

|∆|1+εdµ+

∫
|∆|≤δ

|∆|1+εdµ ≤
∫
|∆|>δ

|∆|1+β|∆|ε−βdµ+ δε · E|∆|

≤ δε−β
∫
|∆|1+βdµ+ δε · E|∆|.

By the convexity of function | · |1+β and Hölder inequaltiy, the above inequality becomes

≤ δε−β
∫

2β · E[|(
n+m−1∑
k=m

φk ◦ T k) · (
n+m−1∑
k=m

φk ◦ T k)T |1+β]dµ

+δε · E|∆| ≤ 2β · δε−β ·
∫
|(

∑
m≤k≤n+m−1

φk ◦ T k) · (
∑

m≤k≤n+m−1

φk ◦ T k)T |1+βdµ+ δε · E|∆|.

By Minkowski’s inequality, Lemma 4.3 and supi ||φi||L∞ <∞, the above inequality becomes

≤ 2β · δε−β · (
∑

m≤k≤n+m−1

||φk ◦ T k||L2+2β )2+2β + δε · E|∆| ≤ 2β · δε−βn2+2β + δεn
α

1−α .

Take δ = n
2+2β− α

1−α
β , then E(|∆|1+ε) ≤ 2β+1 ·nε·

2+2β− α
1−α

β
+ α

1−α . If ε ∈ (0, 1− α
1−α), we can choose

big β such that n
ε·

2+2β− α
1−α

β
+ α

1−α ≤ n1+ε. Then E(|∆|1+ε) - n1+ε, and the constant indicated in -

is uniform over φk,m, n.

Lemma 4.5 If (A1) is satisfied, for any m,n, p, q ∈ N, the following holds:

E[(

n+m−1∑
k=m

φk ◦ T k) · (
q+n+m+p−1∑
k=q+m+n

φk ◦ T k)T ] = O(max(n, p)max(3− 1
α
,0)),

where the constant indicated in O(·) is uniform over all φk,m, n, p.

Proof

Let δ < 1 (will be given later), n̄ := max(n, p), then

E[(

n+m−1∑
k=m

φk ◦ T k) · (
q+n+m+p−1∑
k=q+m+n

φk ◦ T k)T ] =

n+m−1∑
k=m

q+n+m+p−1∑
j=q+m+n

E(φk ◦ T k · φTj ◦ T j).
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By (A1) and supj ||φj ||L∞ <∞, the above equality becomes

-
n+m−1∑
k=m

q+n+m+p−1∑
j=q+m+n

∫
|P jk+1(φk · P k1)|dµ -

n+m−1∑
k=m

q+n+m+p−1∑
j=q+m+n

1

(j − k)
1
α
−1

=
n+m−1∑
k=m

q+n+m+p−1∑
j=q+m+n

1

(j − (m+ n) + (m+ n)− k)
1
α
−1

=
∑

1≤k≤n

∑
0≤j≤p−1

1

(j + k + q)
1
α
−1

-
∑

1≤k≤n

∑
1≤j≤p

1

(j + k)
1
α
−1
≤
∑

1≤k≤n̄

∑
1≤j≤n̄

1

(j + k)
1
α
−1

- 2bn̄δc+
∑

bn̄δc≤k,j≤n̄

1

(j + k)
1
α
−1

- 2bn̄δc+
∑

bn̄δc≤k,j≤n̄

1

( jn̄ + k
n̄)

1
α
−1

1

n̄
· 1

n̄
· 1

n̄
1
α
−3

- 2bn̄δc+

∫ 1

bn̄δc
n̄

∫ 1

bn̄δc
n̄

1

(x+ y)
1
α
−1
dxdy · 1

n̄
1
α
−3

- 2bn̄δc+
1

n̄
1
α
−3
· (
∫ 1

bn̄δc
n̄

(1 + y)2− 1
α − (y +

bn̄δc
n̄

)2− 1
αdy)

- bn̄δc+
1

n̄
1
α
−3
· (23− 1

α − (1 +
bn̄δc
n̄

)3− 1
α − (1 +

bn̄δc
n̄

)3− 1
α + (

2bn̄δc
n̄

)3− 1
α )

-


n̄δ + n̄3− 1

α , 3− 1
α > 0

n̄δ, 3− 1
α ≤ 0

-


n̄3− 1

α , 3− 1
α > 0, δ = 3− 1

α

O(1), 3− 1
α ≤ 0, δ = 0

- n̄max(3− 1
α
,0). (4.5)

All constants indicated in -, O(·) are uniform over all φk,m, n, p, q.

Lemma 4.6 (Maximal inequality)

If (A1)-(A3) are satisfied, then for any ε ∈ (0,min(1, 2− 2α
1−α)), we have

E( max
m≤k≤m+n−1

|
∑

m≤i≤k
φi ◦ T i|2+ε) - Cε · n1+ ε

2 ,

where the constant indicated in - is uniform over all φk,m, n.

Proof Similar to martingale maximal inequality, Serfling in [43,44] proved maximal inequality for

some random processes (non-martingale) adapted to a increasing filtration. Although in different
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settings, we can still follow the idea of Theorem 3.1 in [43], then apply Theorem B in [44] to obtain

the desired bound of our Lemma 4.6.

Note that if all (φk)k∈N satisfy (A1)-(A3), all coordinates of (φk)k∈N satisfy them too. Without

loss of generality, we assume all (φk)k∈N are scalar functions satisfying (A1)-(A3).

First we claim:

sup
n,m≥1

E(|
∑

m≤i≤m+n−1 φi ◦ T i|2+ε)

n
2+ε

2

<∞.

Let A =
∑

m≤i<m+bn
2
c φi ◦ T i, B =

∑
m+bn

2
c≤i≤m+n−1 φi ◦ T i, ε ∈ (0, 1) (will be determined

later),

E(|
∑

m≤i≤m+n−1

φi ◦ T i|2+ε) = E(|
∑

m≤i<m+bn
2
c

φi ◦ T i +
∑

m+bn
2
c≤i≤m+n−1

φi ◦ T i|2+ε)

≤ E[(|A|+ |B|)2 · (|A|ε + |B|ε)] = E[(A2 +B2 + 2|A| · |B|) · (|A|ε + |B|ε)]

= E(|A|2+ε + |B|2+ε + 2|A| · |B|1+ε + 2|B| · |A|1+ε +B2 · |A|ε +A2 · |B|ε). (4.6)

Let s+ t = 2 + ε, s ∈ (0, 2], ε
2 < 1− α

1−α , by Hölder inequality,

E[|A|s · |B|t] = E{[Em+bn
2
c(|A|s)] · |B|t} ≤ E{[Em+bn

2
c(|A|2)]

s
2 · |B|t}

= E{[Em+bn
2
c(|A|2)− E(|A|2) + E(|A|2)]

s
2 · |B|t} ≤ E[|Em+bn

2
c(|A|2)− E(|A|2)|

s
2 · |B|t]

+[E(|A|2)]
s
2 · E(|B|t) ≤ [E(|B|2+ε)]

t
2+ε · {E[|Em+bn

2
c(|A|2)− E(|A|2)|

2+ε
2 ]}

s
2+ε

+[E(|B|2+ε)]
t

2+ε · [E(|A|2)]
s
2 .

By Lemma 4.1, Lemma 4.4, there is a constant C̄ which is uniform over all φk, n,m such that

the above inequality becomes

≤ 2[E(|B|2+ε)]
t

2+ε · bn
2
c
s
2 · C̄.

Apply the above inequality to (4.6) for s = 1, 1 + ε, ε, 2, respectively, then
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E(|A+B|2+ε) ≤ E(|A|2+ε) + E(|B|2+ε)

+4 · C̄ · [E(|B|2+ε)]
1+ε
2+ε · bn

2
c

1
2

+ 4 · C̄ · [E(|B|2+ε)]
1

2+ε · bn
2
c

1+ε
2

+2 · C̄ · [E(|B|2+ε)]
2

2+ε · bn
2
c
ε
2

+ 2 · C̄ · [E(|B|2+ε)]
ε

2+ε · bn
2
c.

Then

E(|A+B|2+ε)

n
2+ε

2

≤ E(|A|2+ε)

bn2 c
2+ε

2

·
bn2 c

2+ε
2

n
2+ε

2

+
E(|B|2+ε)

(n− bn2 c)
2+ε

2

·
(n− bn2 c)

2+ε
2

n
2+ε

2

+4 · C̄ · [ E(|B|2+ε)

(n− bn2 c)
2+ε

2

]
1+ε
2+ε ·

bn2 c
1
2 · (n− bn2 c)

1+ε
2

n
2+ε

2

+ 4 · C̄ · [ E(|B|2+ε)

(n− bn2 c)
2+ε

2

]
1

2+ε ·
bn2 c

1+ε
2 · (n− bn2 c)

1
2

n
2+ε

2

+2 · C̄ · [ E(|B|2+ε)

(n− bn2 c)
2+ε

2

]
2

2+ε ·
bn2 c

ε
2 · (n− bn2 c)
n

2+ε
2

+ 2 · C̄ · [ E(|B|2+ε)

(n− bn2 c)
2+ε

2

]
ε

2+ε ·
bn2 c · (n− b

n
2 c)

ε
2

n
2+ε

2

=
E(|A|2+ε)

bn2 c
2+ε

2

· [1
2

+ o(1)]
2+ε

2 +
E(|B|2+ε)

(n− bn2 c)
2+ε

2

· [1
2

+ o(1)]
2+ε

2

+4 · C̄ · [ E(|B|2+ε)

(n− bn2 c)
2+ε

2

]
1+ε
2+ε · [1

2
+ o(1)]

2+ε
2 + 4 · C̄ · [ E(|B|2+ε)

(n− bn2 c)
2+ε

2

]
1

2+ε · [1
2

+ o(1)]
2+ε

2

+2 · C̄ · [ E(|B|2+ε)

(n− bn2 c)
2+ε

2

]
2

2+ε · [1
2

+ o(1)]
2+ε

2 + 2 · C̄ · [ E(|B|2+ε)

(n− bn2 c)
2+ε

2

]
ε

2+ε · [1
2

+ o(1)]
2+ε

2 .

Let an := max(supm≥1
E(|

∑
m≤i≤m+n−1 φi◦T i|2+ε)

n
2+ε

2
, supm≥1

E(|
∑
m≤i≤m+n φi◦T i|2+ε)

(n+1)
2+ε

2
), the estimates

above shows that:

an ≤ [
1

2
+ o(1)]

2+ε
2 · (2abn

2
c + 4 · C̄ · a

1+ε
2+ε

bn
2
c + 4 · C̄ · a

1
2+ε

bn
2
c + 2 · C̄ · a

2
2+ε

bn
2
c + 2 · C̄ · a

ε
2+ε

bn
2
c). (4.7)

Let g(x) := 2 + 4 · C̄ · x
1+ε
2+ε
−1 + 4 · C̄ · x

1
2+ε
−1 + 2 · C̄ · x

2
2+ε
−1 + 2 · C̄ · x

ε
2+ε
−1, then

an ≤ abn
2
c · [

1

2
+ o(1)]

2+ε
2 · g(abn

2
c).
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There is x0 such that for all x ≥ x0, g(x) is close to 2.

Since o(1)→ 0 as n→∞, so there is N such that for all n ≥ N ,

[
1

2
+ o(1)]

2+ε
2 is close to (

1

2
)

2+ε
2 <

1

2
.

Then we can choose big x0, N such that for any n ≥ N, x ≥ x0, [1
2 + o(1)]

2+ε
2 · g(x) < 1.

Let bn = max(an, x0), then for any n ≥ N , (4.7) becomes:

an ≤ [
1

2
+ o(1)]

2+ε
2 · (2bbn

2
c + 4 · C̄ · b

1+ε
2+ε

bn
2
c + 4 · C̄ · b

1
2+ε

bn
2
c + 2 · C̄ · b

2
2+ε

bn
2
c + 2 · C̄ · b

ε
2+ε

bn
2
c) < bbn

2
c.

Therefore, bn ≤ bbn
2
c for any n ≥ N ; furthermore, for any n ≥ 1,

sup
m≥1

E(|
∑

m≤i≤m+n−1 φi ◦ T i|2+ε)

n
2+ε

2

≤ an ≤ bn ≤ max(b1, b2, · · · , bN ) <∞.

Second, apply the above inequality to Theorem B in [44]:

Lemma 4.7 (Theorem B in [44])

Suppose Xi has finite variance, zero mean, and

sup
m

E(|
m+n∑
i=m+1

Xi|2+ε) - n
2+ε

2 ,

then

sup
m

E( max
1≤k≤n

|
m+k∑
i=m+1

Xi|2+ε) - n
2+ε

2 ,

where the constant indicated in - is independent of n.

Let Xi := φi ◦ T i, we obtain the desired maximal inequality.

To find the desired Gaussian vectors in the definition of the VASIP, Berkes and Philipp [8] gave

a criterion:

Theorem 4.8 (see [8])
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Given a probability space (X,B, µ), let (Xk)k≥1 be a sequence of random vectors in Rd, adapted to

the increasing filtration (Gk)k≥1, that is, Xk is Gk-measurable. Let (Hk)k≥1 be a family of positive

semi-definite d × d matrices. Assume µk is Gaussian distribution with characteristic function

e−
1
2
uT ·Hk·u. Suppose that there are some non-negative numbers Tk ≥ 108d, λk, δk such that for any

u ∈ Rd with |u| ≤ Tk:

E|E[exp(iuT ·Xk)|Gk−1]− exp(−1

2
uT ·Hk · u)| ≤ λk,

µk{u : |u| ≥ 1

4
Tk} ≤ δk.

Then without changing its distribution we can define (Xk)k≥1 on a richer probability space

together with a family of independent Gaussian vectors (Gk)k≥1 whose distributions are (µk)k≥1

and

P̃ (|Xk −Gk| ≥ αk) ≤ αk,

where α1 = 1, αk := 16d · log Tk
Tk

+4λ
1
2
k ·T

d
k +δk, k ≥ 2, P̃ is the probability w.r.t. the richer probability

space.

In particularly, if
∑

k≥1 αk <∞, then almost surely,

∑
k≥1

|Xk −Gk| <∞.

Berkes and Philipp constructed Gaussian vectors inductively, which relies heavily on the increas-

ing filtration (Gk)k≥1. However, our filtration (T−kB)k≥1 is decreasing. One way to overcome this

difficulty is to construct increasing σ-algebra from Tk with certain Markovian behavior (see [34,35]).

Since we do not have too much information on Tk so far, we will keep using decreasing filtration

(T−kB)k≥1 and derive the following lemma, which plays a crucial role in our proof:

Lemma 4.9 (VASIP criteria)

Given a probability space (X,B, µ), let (Yk)k≥1 be a sequence of random vectors in Rd, (Fk)k≥1

be a decreasing filtration, Yk be Fk-measurable. Let (Hk)k≥1 be a family of positive semi-definite

d×d matrices. Assume µk is Gaussian distribution with characteristic function e−
1
2
uT ·Hk·u. Suppose
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that there are some non-negative numbers Tk ≥ 108d, λk, δk, such that for any u ∈ Rd with |u| ≤ Tk:

E|E[exp(iuT · Yk)|Fk+1]− exp(−1

2
uT ·Hk · u)| ≤ λk,

µk{u : |u| ≥ 1

4
Tk} ≤ δk.

Then without changing its distribution we can define (Yk)k≥1 on a richer probability space to-

gether with a family of independent Gaussian vectors (Gk)k≥1 whose distributions are (µk)k≥1 and

P̃ (|Yk −Gk| ≥ αk) ≤ αk,

where αk := 16d · log Tk
Tk

+ 4λ
1
2
k ·T

d
k + δk, k ≥ 1, P̃ is the probability w.r.t. the richer probability space.

In particularly, if
∑

k≥1 αk <∞, then almost surely,

∑
k≥1

|Yk −Gk| <∞.

Proof Before proving this lemma, let’s recall the procedure of how to construct Gaussian vectors

in [8]: G1 is constructed with distribution µ1, extending the probability space Ω to Ω × I by

multiplying an unit interval I with Lebesgue measure if the original probability space has atoms.

Inductively, assume G1, G2, · · · , Gk−1 have been constructed, partition the extended probability

space as the union of countably many σ(G1, · · · , Gk−1)-measurable elements. Locally, on each such

element, construct Gk, and extend the extended probability space by multiplying another unit

interval. Obtain global Gk by gluing the local Gk. The final extended probability space is Ω× IN.

To prove our result, let In = [n, n+ 1], n ∈ Z, we will construct a triangular array of Gaussian

vectors (Gnk)1≤k≤n,n≥1 together with an extended probability space (Ωn)n≥1:

For the 1-st row of the array, let G1
1 := G1, µ1 = L(G1

1),Ω1 := Ω × I1 (denote its probability

by P ) as in [8]. Assume the previous (n− 1) rows of the array are done: the extended probability

space Ωn−1 (still denote its probability by P ) and (Gn−1
k )k≤n−1 are constructed.

For the n-th row of the array, consider increasing filtration (Fn+2−k)1≤k≤n+1. By Theorem 4.8,

we can construct Gnn+1, G
n
1 , · · · , Gnn and probability space Ωn−1× INn (still denote its probability by
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P ) such that

P (|Yk −Gnk | ≥ αk) ≤ αk, µk = L(Gnk), 1 ≤ k ≤ n,

where αn+1 = 1, αk = 16d · log Tk
Tk

+ 4λ
1
2
k · T

d
k + δk, 1 ≤ k ≤ n.

Since Gnn+1 and αn+1 do not make contribution, discard them. Then we have Gnn, · · · , Gn1 and

probability space Ωn−1 × INn such that

P (|Yk −Gnk | ≥ αk) ≤ αk,

where αk = 16d · log Tk
Tk

+ 4λ
1
2
k · T

d
k + δk, 1 ≤ k ≤ n.

This procedure ends up with a big extended probability space Ω ×
∏
i≥1 I

N
i (still denote its

probability by P ) and triangular array of Gaussian vectors (Gnk)1≤k≤n,n≥1 such that

P (|Yk −Gnk | ≥ αk) ≤ αk,

µk = L(Gnk) for all k, n ≥ 1,

where αk = 16d · log Tk
Tk

+ 4λ
1
2
k · T

d
k + δk, k ≥ 1.

Consider a new triangular array (Yk, G
n
k)1≤k≤n,n≥1, we will use induction to construct the

(Gk)k≥1 as indicated in our lemma:

Start from the 1-st step, (Y1, G
n
1 )n≥1 is tight since (Gn1 )n≥1 have the same distribution. Then

along a subsequence, there is a weak limit (Y ′1 , G
′
1) such that

(Y1, G
n
1 )

d−−−−−−−→
subsequence

(Y ′1 , G
′
1),

P (|Y ′1 −G′1| ≥ α1) ≤ α1.

Assume the (m − 1)-th step is done, that is, (Y1, G
n
1 , Y2, G

n
2 , · · · , Ym−1, G

n
m−1)n≥m−1 has a

subsequence with weak limit (Y ′1 , G
′
1, Y

′
2 , G

′
2, · · · , Y ′m−1, G

′
m−1), and an extended probability space

31



∏
−(m−1)≤i≤−1 Ii × Ω×

∏
i≥1 I

N
i (still denote its probability by P ) such that

(Y1, G
n
1 , Y2, G

n
2 , · · · , Ym−1, G

n
m−1)

d−−−−−−−→
subsequence

(Y ′1 , G
′
1, Y

′
2 , G

′
2, · · · , Y ′m−1, G

′
m−1),

P (|Y ′k −G′k| ≥ αk) ≤ αk, for any k ≤ m− 1.

For the m-th step, since (Y1, G
n
1 , Y2, G

n
2 , · · · , Ym, Gnm)n≥m is tight, then along the subsequence

of the subsequence in (m− 1)-th step, there is a weak limit

(Y1, G
n
1 , Y2, G

n
2 , · · · , Ym, Gnm)

d−−−−−−−→
subsequence

(Ȳ ′1 , Ḡ
′
1, · · · , Ȳ ′m, Ḡ′m).

Compare with the weak limit in (m− 1)-th step, we have

(Y ′1 , G
′
1, Y

′
2 , G

′
2, · · · , Y ′m−1, G

′
m−1)

d
= (Ȳ ′1 , Ḡ

′
1, Ȳ

′
2 , Ḡ

′
2, · · · , Ȳ ′m−1, Ḡ

′
m−1).

By Lemma 7.3, there is (Y ′m, G
′
m) such that

(Y ′1 , G
′
1, Y

′
2 , G

′
2, · · · , Y ′m−1, G

′
m−1, Y

′
m, G

′
m)

d
= (Ȳ ′1 , Ḡ

′
1, Ȳ

′
2 , Ḡ

′
2, · · · , Ȳ ′m−1, Ḡ

′
m−1, Ȳ

′
m, Ḡ

′
m).

Meanwhile, we have an extended probability space
∏
−m≤i≤−1 Ii×Ω×

∏
i≥1 I

N
i (still denote its

probability by P ).

Therefore, in this m-th step, we have weak limit convergence along a subsequence:

(Y1, G
n
1 , Y2, G

n
2 , · · · , Ym, Gnm)

d−−−−−−−→
subsequence

(Y ′1 , G
′
1, Y

′
2 , G

′
2, · · · , Y ′m, G′m).

Then by the diagonal argument, there is a subsequence (independent of m), such that for any

m ≥ 1,

(Y1, G
n
1 , Y2, G

n
2 , · · · , Ym, Gnm)

d−−−−−−−→
subsequence

(Y ′1 , G
′
1, Y

′
2 , G

′
2, · · · , Y ′m, G′m),

P (|Y ′k −G′k| ≥ αk) ≤ αk, for any k ≤ m.
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Therefore, for any k ≥ 1,

L(Y ′1 , · · · , Y ′k) = L(Y1, · · · , Yk),

L(G′1, · · · , G′k) =
⊗

1≤i≤k
µi.

They imply (G′i)i≥1 are independent and (Y ′i )i≥1
d
= (Yi)i≥1. And the extended probability space

becomes
∏
i≤−1 Ii × Ω×

∏
i≥1 I

N
i (still denote its probability by P ).

Use Lemma 7.3 again in a similar way, there is (Gi)i≥1 and a final extended probability space∏
i≤−1 Ii × I0 × Ω×

∏
i≥1 I

N
i (still denote its probability by P̃ ) such that

((Y ′i )i≥1, (G
′
i)i≥1)

d
= ((Yi)i≥1, (Gi)i≥1).

Therefore, for any k ≥ 1,

P̃ (|Yk −Gk| ≥ αk) ≤ αk,

L(G1, · · · , Gk) =
⊗

1≤i≤k
µi,

where αk := 16d · log Tk
Tk

+ 4λ
1
2
k · T

d
k + δk, k ≥ 1.

With all lemmas above, we are ready to prove Theorem 2.8.
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5 Proofs of main theorems

5.1 Proof of Theorem 2.8

Blocks construction

We will construct consecutive blocks {In, n ≥ 1} in N without gaps between them: let In be the

interval in N such that |In| = bncc, c > 0. So
⋃
i≥1 Ii = N. Let a ∈ (1

2 , 1), cn := bnc(1−a)c. Construct

consecutive blocks {In,i, 1 ≤ i ≤ cn + 1} in In such that: |In,i| = bncac, 1 ≤ i ≤ cn, the first block

In,1 contains the least number of In, the last block In,cn+1 := In \
⋃

1≤i≤cn In,i contains the largest

number of In. So |In,cn+1| ≤ 2bncac and
⋃

1≤i≤cn+1 In,i = In. Let an :=
∑

i≤n |Ii| ≈ nc+1 and

Xn :=
∑
i∈In

φi ◦ T i, Yn :=
Xn√
bn
, Hn :=

E(Xn ·XT
n )

bn
,Fn := T−an−1−1B,

where bn := λ(σ2
an) % nγ(c+1), Xn, Yn are Fn-measurable,

Xn,i :=
∑
i∈In,i

φi ◦ T i,Fn,i := T−
∑
k≤i−1 |In,k|−1B, Xn,i is Fn,i-measurable,

Tn := nκ, δn := µn{u : |u| ≥ 1

4
Tn},

where µn is mean zero Gaussian distribution with variance Hn, and κ, c, a will be given in Appendix,

Lemma 7.1 and its proof.

Estimate of E|E[exp(iuT · Yn)|Fn+1]− exp(−1
2
uT ·Hn · u)|

We are going to apply Lemma 4.9 to Yn,Fn, Hn, Tn, µn, δn and estimate

E|E[exp(iuT · Yn)|Fn+1]− exp(−1

2
uT ·Hn · u)|

= E|Ean+1 exp(iuT · Xn√
bn

)− exp(−1

2
uT · E(Xn ·XT

n )

bn
· u).| (5.1)
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First, we note that

E(Xn ·XT
n ) =

∑
1≤i≤cn+1

E(Xn,i ·XT
n,i) +

∑
1≤i<j≤cn+1

E(Xn,i ·XT
n,j)

+
∑

1≤i<j≤cn+1

E(Xn,i ·XT
n,j)

T =
∑

1≤i≤cn+1

E(Xn,i ·XT
n,i) +

∑
1≤i<cn+1

E[Xn,i · (
∑

i<j≤cn+1

XT
n,j)]

+
∑

1≤i<cn+1

E[Xn,i · (
∑

i<j≤cn+1

XT
n,j)]

T .

By Lemma 4.5, the above equality becomes

=
∑

1≤i≤cn+1

E(Xn,i ·XT
n,i) + 2

∑
1≤i<cn+1

O(|In|max(3− 1
α
,0))

=
∑

1≤i≤cn+1

E(Xn,i ·XT
n,i) + cn ·O(|In|max(3− 1

α
,0)) =

∑
1≤i≤cn+1

E(Xn,i ·XT
n,i) +O(nc(1−a)+cmax(3− 1

α
,0)).

Therefore, inspired by the estimate method in [9] and use the above equality, we have the

following:

E|Ean+1 exp(iuT · Xn√
bn

)− exp(−1

2
uT · E(Xn ·XT

n )

bn
· u)|

≤ E|Ean+1 exp(iuT · Xn√
bn

)− exp(−1

2
uT ·

∑
1≤i≤cn+1 E(Xn,i ·XT

n,i)

bn
· u)|

+| exp(−1

2
uT ·

∑
1≤i≤cn+1 E(Xn,i ·XT

n,i)

bn
· u)− exp(−1

2
uT · E(Xn ·XT

n )

bn
· u)|

- E|Ean+1 exp(iuT · Xn√
bn

)− exp(−uT ·
∑

1≤i≤cn+1 E(Xn,i ·XT
n,i)

2bn
·u)|+ |u|2 · O(nc(1−a)+cmax(3− 1

α
,0))

bn

= E|Ean+1[
∑

0≤k≤cn

exp(−
∑

0<i≤k E(uT ·Xn,i)
2

2bn
) · exp(i

∑
k<i≤cn+1 u

T ·Xn,i√
bn

)

− exp(−
∑

0<i≤k+1 E(uT ·Xn,i)
2

2bn
) · exp(i ·

∑
1+k<i≤cn+1 u

T ·Xn,i√
bn

)]|+ |u|2 · O(nc(1−a)+cmax(3− 1
α
,0))

bn

= E|Ean+1{
∑

0≤k≤cn

exp(−
∑

0<i≤k E(uT ·Xn,i)
2

2bn
) · [exp(i

uT ·Xn,k+1√
bn

)
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− exp(−
E(uT ·Xn,k+1)2

2bn
)] · exp(i

∑
k+1<i≤cn+1 u

T ·Xn,i√
bn

)}|+ |u|2 · O(nc(1−a)+cmax(3− 1
α
,0))

bn

= E|Ean+1{
∑

0≤k≤cn

exp(−
∑

0<i≤k E(uT ·Xn,i)
2

2bn
) · exp(i ·

∑
k+1<i≤cn+1 u

T ·Xn,i√
bn

)×

E[exp(i
uT ·Xn,k+1√

bn
)− exp(−

E(uT ·Xn,k+1)2

2bn
)|Fn,k+2]}|+ |u|2 · O(nc(1−a)+cmax(3− 1

α
,0))

bn

≤
∑

0≤k≤cn

E|E[exp(i
uT ·Xn,k+1√

bn
)− exp(−

E(uT ·Xn,k+1)2

2bn
)|Fn,k+2]|+ |u|2 · O(nc(1−a)+cmax(3− 1

α
,0))

bn
.

Let |u| ≤ Tn = nκ, by Lemma 4.1, 4.2, 4.3, 4.6, and Taylor expansion:

e−x = 1− x+O(x2),

eix = 1 + ix− 1

2
x2 + x2 ·O(min(|x|, 1)) = 1 + ix− 1

2
x2 +O(|x|2+ε0),

for any ε0 ∈ (0,min(1, 2− 2α
1−α)), the above inequality becomes:

=
∑

0≤k≤cn

E|E{[1 + i
uT ·Xn,k+1√

bn
− 1

2
(
uT ·Xn,k+1√

bn
)2 +O(|

uT ·Xn,k+1√
bn

|2+ε0)]|Fn,k+2}

−{1− 1

2

E[(uT ·Xn,k+1)2]

bn
+O(|

E[(uT ·Xn,k+1)2]

bn
|2)}|+ |u|2 · O(nc(1−a)+cmax(3− 1

α
,0))

bn

≤
∑

0≤k≤cn

{ |u|√
bn

+
1

2

|u|2

bn
· E|E{[Xn,k+1 ·XT

n,k+1 − E(Xn,k+1 ·XT
n,k+1)]|Fn,k+2}|

+|u|4 ·
|E(Xn,k+1 ·XT

n,k+1)|2

b2n
+ |u|2+ε0 ·

E(|Xn,k+1|2+ε0)

b
2+ε0

2
n

}+ |u|2 · O(nc(1−a)+cmax(3− 1
α
,0))

bn

-
nκ+c(1−a)

n
γ(1+c)

2

+
n2κ+c(1−a)+ca α

1−α

nγ(1+c)
+
nc(1−a)+4κ+2ca

n2γ(1+c)

+
nκ(2+ε0)+c(1−a)+ca

2+ε0
2

n
γ(1+c)(2+ε0)

2

+
n2κ+c(1−a)+cmax(3− 1

α
,0)

nγ(1+c)
-

1

nv
,
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where v := min{γ(1+c)
2 − κ− c(1− a), γ(1 + c)− 2κ− c(1− a)− ca α

1−α , 2γ(1 + c)− c(1− a)− 4κ−

2ca, γ(1+c)(2+ε)
2 − κ(2 + ε0) − c(1 − a) − ca2+ε0

2 , γ(1 + c) − 2κ − c(1 − a) − cmax(3 − 1
α , 0)}, ε0 <

min(1, 2− 2α
1−α).

Equations (5.2)-(5.7) for the range of γ

First, by Lemma 4.1,

|Hn| = |
E(Xn ·XT

n )

bn
| - nc

nγ(c+1)
.

So if

c− γ(c+ 1) < 0, (5.2)

denote the probability for distribution µn by P , then

δn = µn{u : |u| ≥ 1

4
Tn} = P (|N(0, Hn)| > 1

4
Tn) - P (|N(0,

nc

nγ(c+1)
)| > 1

4
Tn)

is exponential decay, so

µn{u : |u| ≥ 1

4
Tn} = δn -

1

nv
.

Then

αn = 16d · log Tn
Tn

+ 4λ
1
2
n · T dn + δn -

1

nκ
+

1

n
v
2
−dκ -

1

nmin(κ, v
2
−dκ)

.

Note that α
1−α < 1, 3 − 1

α < 1. If κ > 1, choose γ, a closed to 1 carefully (γ will be given in

Appendix, Lemma 7.1 and its proof) such that

min(κ,
v

2
− dκ) > 1. (5.3)

So
∑

n≥1 αn <∞. By Lemma 4.9, there are Gaussian vectors G′′n with covariance matrix E(Xn ·XT
n )

such that

|Yn −
G′′n√
bn
| = | Xn√

bn
− G′′n√

bn
| < αn i.o..
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Then almost surely,

∑
i≤n

Xi −G′′i -
∑
i≤n

αi ·
√
bi -

∑
i≤n

1

imin(κ, v
2
−dκ)

· i
c+1

2 - n1+ c+1
2
−min(κ, v

2
−dκ).

Choosing γ, κ, a, c carefully (will be given in Appendix Lemma 7.1) such that

γ
c+ 1

2
> 1 +

c+ 1

2
−min(κ,

v

2
− dκ). (5.4)

Therefore, there is a small ε′ such that

∑
i≤n

Xi −
∑
i≤n

G′′i - n1+ c+1
2
−min(κ, v

2
−dκ) - λ(σ2

an)
1−ε′

2 a.s..

From block length an to general m ∈ N:

For any m, there is n such that an ≤ m < an+1, then we have the following lemmas:

Lemma 5.1

If

c− γ(c+ 1) < 0, (5.5)

1 + (c+ 1)(max{3− 1

α
, 0} − γ) < 0 (5.6)

(these relations are possible, see Appendix, Lemma 7.1), then

λ(σ2
m) ≈ λ(σ2

an).

Proof

By Lemma 4.1 and Lemma 4.5,

E[(
∑
i≤m

φi ◦ T i) · (
∑
i≤m

φi ◦ T i)T ] = E[(
∑
i≤n

Xi) · (
∑
i≤n

Xi)
T ] + E[(

∑
i≤n

Xi) · (
∑

an<i≤m
φi ◦ T i)T ]

+E[(
∑
i≤n

Xi) · (
∑

an<i≤m
φi ◦ T i)T ]T + E[(

∑
an<i≤m

φi ◦ T i) · (
∑

an<i≤m
φi ◦ T i)T ]
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- E[(
∑
i≤n

Xi) · (
∑
i≤n

Xi)
T ] + n · amax(3− 1

α
,0)

n+1 + n · amax(3− 1
α
,0)

n+1 + an+1 − an.

Since an ≈ an+1, the above inequality becomes

- E[(
∑
i≤n

Xi) · (
∑
i≤n

Xi)
T ] + aγn · n · a

max(3− 1
α
,0)−γ

n + aγn · n · a
max(3− 1

α
,0)−γ

n + aγn · (
an+1 − an

aγn
).

Since E[(
∑

i≤nXi) · (
∑

i≤nXi)
T ] % aγn, then the above inequality becomes

- {E[(
∑
i≤n

Xi) · (
∑
i≤n

Xi)
T ]} · [1 + n · amax(3− 1

α
,0)−γ

n + n · amax(3− 1
α
,0)−γ

n + (
an+1 − an

aγn
)].

- {E[(
∑
i≤n

Xi) · (
∑
i≤n

Xi)
T ]} · (1 + n1+(c+1)(max(3− 1

α
,0)−γ) + nc−γ(c+1)).

By (5.5), (5.6), we have

λ(σ2
m) - 3 · inf

|u|=1
uT · E[(

∑
i≤n

Xi) · (
∑
i≤n

Xi)
T ] · u = 3λ(σ2

an).

Similarly, by Lemma 4.1 and Lemma 4.5,

E[(
∑
i≤n

Xi) · (
∑
i≤n

Xi)
T ] - E[(

∑
i≤m

φi ◦T i) · (
∑
i≤m

φi ◦T i)T ]+n ·amax(3− 1
α
,0)

n +n ·amax(3− 1
α
,0)

n +an+1−an

- E[(
∑
i≤m

φi ◦ T i) · (
∑
i≤m

φi ◦ T i)T ] +m
1
c+1 ·mmax(3− 1

α
,0) +m

1
c+1 ·mmax(3− 1

α
,0) +m

c
c+1 .

Since E[(
∑

i≤m φi ◦ T i) · (
∑

i≤m φi ◦ T i)T ] % mγ , then the above inequality becomes

- {E[(
∑
i≤m

φi ◦ T i) · (
∑
i≤m

φi ◦ T i)T ]} · (1 +m
1
c+1 ·mmax(3− 1

α
,0)−γ +m

c
c+1
−γ).

By (5.5), (5.6) again, we have

λ(σ2
an) - 3λ(σ2

m).
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Lemma 5.2

If

1

2
γ(c+ 1)(2 + ε)− c(1 +

ε

2
) > 1, (5.7)

where ε < min(1, 2− 2α
1−α), then there is a small ε′ > 0 such that

sup
an≤m≤an+1

|
∑

an<i≤m
φi ◦ T i| - λ(σ2

an)
1
2
−ε′ a.s..

Proof

By Lemma 4.6,

E(|
supan≤m≤an+1

|
∑

an<i≤m φi ◦ T
i|

λ(σ2
an)

1
2
−ε′

|2+ε) -
nc(1+ ε

2
)

nγ(c+1)(2+ε)( 1
2
−ε′)

=
1

nγ(c+1)(2+ε)( 1
2
−ε′)−c(1+ ε

2
)
.

From (5.7), there is a small ε′ > 0 such that

γ(c+ 1)(2 + ε)(
1

2
− ε′)− c(1 +

ε

2
) > 1.

By the Borel-Cantelli Lemma, we have

sup
an≤m≤an+1

|
∑

an<i≤m
φi ◦ T i| - λ(σ2

an)
1
2
−ε′ a.s..

Find the independent Gaussian vectors in the definition of VASIP

For any k ∈ N, define

Gk :=


G′′i , if k = ai

0, if k 6= ai

. (5.8)

We claim
∑

i≤mGi matches
∑

i≤m φi ◦ T i in the sense of (2.2) and (2.1):
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Verify (2.2): for any m, there is n such that an ≤ m < an+1. Recall Ẽ(G′′i ·G′′i
T ) = E(Xi ·XT

i ),

where Ẽ(·) is the expectation of the probability of the extended probability space, then we have

E[(
∑
i≤m

φi ◦ T i) · (
∑
i≤m

φi ◦ T i)T ]−
∑
i≤m

Ẽ(Gi ·GiT )

= E[(
∑
i≤m

φi ◦ T i) · (
∑
i≤m

φi ◦ T i)T ]−
∑
i≤n

Ẽ(G′′i ·G′′i
T

)

=
∑

1≤i<j≤n
E(Xi ·XT

j ) +
∑

1≤i<j≤n
E(Xi ·XT

j )T + E[(
∑
i≤n

Xi) · (
∑

an<i≤m
φi ◦ T i)T ]

+E[(
∑
i≤n

Xi) · (
∑

an<i≤m
φi ◦ T i)T ]T + E[(

∑
an<i≤m

φi ◦ T i) · (
∑

an<i≤m
φi ◦ T i)T ].

By Lemma 4.1 and Lemma 4.5, the above equality becomes

- n · amax(3− 1
α
,0)

n + n · amax(3− 1
α
,0)

n+1 + an+1 − an - n1+(c+1) max(3− 1
α
,0) + nc

- λ(σ2
an)

1+(c+1) max(3− 1
α ,0)

γ(c+1) + λ(σ2
an)

c
γ(c+1) .

By (5.5), (5.6), there is a small ε′ > 0 such that

1 + (c+ 1) max(3− 1
α , 0)

γ(c+ 1)
< 1− ε′,

c

γ(c+ 1)
< 1− ε′.

Therefore, by Lemma 5.1,

E[(
∑
i≤m

φi ◦ T i) · (
∑
i≤m

φi ◦ T i)T ]−
∑
i≤n

Ẽ(G′′i ·G′′i
T

) - λ(σ2
an)1−ε′ - λ(σ2

m)1−ε′ .

Verify (2.1): By Lemma 5.1 and Lemma 5.2, we have

∑
i≤m

φi ◦ T i −
∑
i≤m

Gi =
∑
i≤n

Xi −
∑
i≤n

G′′i +
∑

an<i≤m
φi ◦ T i
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- λ(σ2
an)

1−ε′
2 + sup

an≤m≤an+1

|
∑

an<i≤m
φi ◦ T i| - λ(σ2

an)
1−ε′

2 ≈ λ(σ2
m)

1−ε′
2 a.s..

In sum, (2.1) and (2.2) hold if (5.2)-(5.7) are all satisfied, then the VASIP holds. The range for

γ will be derived from (5.2)-(5.7), see the computation in Appendix, Lemma 7.1.

5.2 Proof of Theorem 2.9

Proof Fix ω ∈ Ω, we will apply our Theorem 2.8 to the non-stationary dynamical system

(X,B, (Tσkω)k≥0, µω) to prove the VASIP w.r.t. µω. From the proof of Theorem 2.8, we note

that the VASIP holds via proving Lemma 4.1-4.6. So, to prove Theorem 2.9, we will prove the

random versions of Lemma 4.1-4.6. Since Lemma 4.4 and Lemma 4.6 are deduced from the other

four, and Lemma 4.5 is deduced from Lemma 4.1 and Lemma 4.3, so we just need to give the

random versions of Lemma 4.1, Lemma 4.2, Lemma 4.3. For a.e. ω ∈ Ω, fix it and take µω as the

reference probability, define:

Eω(·) =

∫
(·)dµω,Eωn(·) := Eω[(·)|(Tnω )−1B].

The proof of random version of Lemma 4.1 is similar to Lemma 4.1: by (A1’),

∫
(

∑
m≤k≤n+m−1

φσkω ◦ T kω ) · (
∑

m≤k≤m+n−1

φσkω ◦ T kω )Tdµω

- O(n) +
∑

m≤i<j≤n+m−1

∫
|P j−i
σiω

(φσiω · hσiω)|dµ - O(n) +
∑

m≤i<j≤n+m

1

(j − i)
1
α
−1

= O(n).

The proof of random version of Lemma 4.2 is similar to Lemma 4.2: by (A1’),

Eω|Eωn+m

∑
m≤k≤n+m−1

φσkω ◦ T kω | = sup
||ψ||L∞(X;R)≤1

∫
ψ ◦ Tn+m

ω ·
∑

m≤k≤n+m−1

φσkω ◦ T kωdµω

42



≤
∑

m≤k≤n+m−1

∫
|Pn+m−k
σkω

(φσkω · hσkω)|dµ -
∑

m≤k≤n+m−1

1

(m+ n− k)
1
α
−1

= O(1).

The proof of random version of Lemma 4.3 is similar to the estimate of Lemma 4.3, we will just

outline the key parts:

Eω|Eωn+m[(
n+m−1∑
k=m

φσkω ◦ T kω ) · (
n+m−1∑
k=m

φσkω ◦ T kω )T ]− Eω[(
n+m−1∑
k=m

φσkω ◦ T kω ) · (
n+m−1∑
k=m

φσkω ◦ T kω )T ]|

≤ Eω|Eωn+m[
∑

m≤k≤n+m−1

φσkω ◦ T kω · φTσkω ◦ T
k
ω − Eω(φσkω ◦ T kω · φTσkω ◦ T

k
ω )]| (5.9)

+2Eω|Eωn+m[
∑

m≤i<j≤n+m−1

φσiω ◦ T iω · φTσjω ◦ T
j
ω − Eω(φσiω ◦ T iω · φTσjω ◦ T

j
ω)]|. (5.10)

By (A2’), (5.9) becomes

Eω|Eωn+m[
∑

m≤k≤n+m−1

φσkω ◦ T kω · φTσkω ◦ T
k
ω − Eω(φσkω ◦ T kω · φTσkω ◦ T

k
ω )]|

-
n+m−1∑
k=m

∫
|Pn+m−k
σkω

{[φσkω · φTσkω − Eω(φσkω ◦ T kω · φTσkω ◦ T
k
ω )] · hσkω}|dµ

-
n+m−1∑
k=m

1

(m+ n− k)
1
α
−1

= O(1).

To estimate (5.10), for any fixed j ≤ n+m− 1, by (A1’):

Eω|Eωj [
∑

m≤i<j
φσiω ◦ T iω · φTσjω ◦ T

j
ω −Eω(φσiω ◦ T iω · φTσjω ◦ T

j
ω)]| -

∑
m≤i<j

Eω|Eωj (φσiω ◦ T iω · φTσjω ◦ T
j
ω)|

-
∑

m≤i<j

∫
|P j−i
σiω

(φσiω · hσiω)|dµ -
∑

m≤i<j

1

(j − i)
1
α
−1

= O(1).

Let δ = α
1−α , by (A3’) and the above inequality:

(5.10) -
∑

n+m−bnδc<j≤n+m−1

∑
m≤i<j

Eω|Eωj [φσiω ◦ T iω · φTσjω ◦ T
j
ω − Eω(φσiω ◦ T iω · φTσjω ◦ T

j
ω)]|
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+
∑

m<j≤n+m−bnδc

∑
m≤i<j

Eω|Eωn+m[φσiω ◦ T iω · φTσjω ◦ T
j
ω − Eω(φσiω ◦ T iω · φTσjω ◦ T

j
ω)]|

- bnδc+

n+m−bnδc∑
j=m+1

∑
m≤i<j

∫
|Pn+m−j
σjω

[P j−i
σiω

(φσiω · hσiω) · φTσjω − hσjω · E
ω(φσiω ◦ T iω · φTσjω ◦ T

j
ω)]|dµ

- bnδc+

n+m−bnδc∑
j=m+1

∑
m≤i<j

1

(n+m− j)
1
α
−1

- n
α

1−α ,

where all constants indicated in -, O(·) are uniform over all φω,m, n.

The proof of the VASIP w.r.t. µω only relies on the random version of Lemma 4.1-4.6, which

were proved above. So, by Theorem 2.8, the VASIP holds for a.e. ω ∈ Ω under the condition of

variance growth.

Next we claim the VASIP w.r.t. µω or the coboundary based on variance growth: the proof is

exactly the same as Lemma 12 in [14] except the following:

1. the last inequality of page 2270 in [14] becomes:

≤ K̄ ·
∑
i≥1

1

i
1
α
−1

<∞.

2. the inequality in the middle of page 2271 becomes:

≤ K̄
∑
i≤n−1

∑
k≥n−i

1

k
1
α
−1

=
∑

k≤n−1

k

k
1
α
−1

+ n
∑
k≥n

1

k
1
α
−1

- n3− 1
α

∫ 1

1
n

1

x
1
α
−2
dx+ n

∑
k≥n

1

k
1
α
−1
.

Then (35) in [14] becomes ≤ 1
n · (n

3− 1
α + n

∑
k≥n

1

k
1
α−1

)→ 0.

Therefore there is a d× d positive semi-definite matrix σ2 ≥ 0 such that almost surely,

lim
n→∞

1

n

∫
(
∑

0≤k<n
φσk(ω) ◦ T kω ) · (

∑
0≤k<n

φσk(ω) ◦ T kω )Tdµω = σ2.

If σ2 > 0, then variance grows linearly for a.e. ω ∈ Ω. By Theorem 2.8, the VASIP w.r.t. µω holds

for a.e. ω ∈ Ω.
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If det(σ2) = 0, without loss of generality, assume σ2 =

Id1×d1 0

0 0d2×d2


d×d

.

If d1 = 0, we claim it has the coboundary:

Without loss of generality, assume all (φω)ω∈Ω are scalar functions, denote φ̄(ω, x) := φω(x),

similar to the computation of Lemma 12 (36) in [14], we have:

0 = σ2 =

∫
φ̄2(ω, x)dµωdP + 2

∑
i≥1

∫
φ̄(ω, x) · φ̄ ◦ τ i(ω, x)dµωdP,

where τ(ω, x) := (σω, fω(x)).

For the stationary dynamical system (Ω×X, τ, dµωdP) with observable φ̄ ∈ L∞(Ω×X), denote

the transfer operator of τ by τ∗. We will verify conditions (1) and (2) of Theorem 1.1 in [31]: by

(A1’), ∑
n≥0

|
∫
φ̄ · φ̄ ◦ τndµωdP| -

∑
n≥0

∫
|Pnω (φωhω)|dµdP -

∑
n≥1

1

n
1
α
−1

<∞,

∑
n≥0

∫
|τ∗nφ̄|dµωdP =

∑
n≥0

sup
||ξ||L∞(Ω×X)≤1

∫
ξ ◦ τn · φ̄dµωdP

-
∑
n≥0

∫
|Pnω (φωhω)|dµdP -

∑
n≥1

1

n
1
α
−1

<∞.

Therefore, by Theorem 1.1 of [31], there is ψ ∈ L1(Ω×X) such that:

φσω(Tωx) = ψ(σ(ω), Tω(x))− ψ(ω, x) a.e. (ω, x).

If d1 > 0, d2 > 0, we will follow the argument of [19]: Rd = Rd1
⊕

Rd2 with projections

π1 : Rd1
⊕

Rd2 → Rd1 , π2 : Rd1
⊕

Rd2 → Rd2 . The dynamical system (π1 ◦ φσk(ω) ◦ T kω )k≥1 has the

VASIP w.r.t. µω by the argument of “σ2 > 0” above. For the dynamical system (π2◦φσk(ω)◦T kω )k≥1,

we follow the argument of “d1 = 0” above, so there is ψ ∈ L1(Ω×X;Rd2) such that:

π2 ◦ φσω(Tωx) = ψ(σ(ω), Tω(x))− ψ(ω, x) a.e. (ω, x).
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6 Proofs of corollaries

6.1 Proof of Corollary 3.1

Proof Define X(x) := x, x ∈ [0, 1], for a sufficiently large a0 > 1, consider a cone Ca0 ⊂ L1[0, 1]:

Ca0 := {f ∈ Liploc(0, 1] : f ≥ 0, f decreasing, Xα+1 · f increasing, f(x) ≤ a0 · x−α ·
∫
fdm}.

Lemma 6.1 (see also [1, 32,39])

Assume K > 0, φi ∈ Lip[0, 1] and hk ∈ Ca0 with ||φi||Lip ≤ K, ||hk||L1 ≤ M for all i, k ≥ 1.

Then for a sufficiently large a0 > 1 independent of K,M , there are constants λ, v, δ (only depends

on K,M,α, a0) such that the following holds:

h1
i,k := (φi + λ ·X + v)hk + δ, h2

i,k := (λ ·X + v)hk + δ +

∫
φi · hkdm ∈ Ca0 , (6.1)

φi · hk −
∫
φi · hkdm = h1

i,k − h2
i,k ∈ Ca0 − Ca0 ,∫

h1
i,kdm =

∫
h2
i,kdm,

1 ∈ Ca0 , Ca0 is preserved by all Tk’s transfer operators Pk.

Furthermore, there are constants CK,M,α,a0 , Cα,a0 such that for all m,n ∈ N, h ∈ Ca0:

||Pn+m
m+1 (φk · hk −

∫
φk · hkdm)||L1 - CK,M,α,a0 ·

1

n
1
α
−1
, (6.2)

||Pn+m
m+1 (h−

∫
hdm)||L1 - Cα,a0 · ||h||L1 ·

1

n
1
α
−1
. (6.3)

Proof [1,39] proved these properties for the cone Ca0 ∩C1(0, 1]. However, since the C1 properties

are not used in their proofs, so the decay of correlation (6.3) still holds for our Ca0, and Ca0 is still

an Pk-invariant cone. To prove (6.1), the argument is replacing |φ′k|∞ with its Lipschitz constant

Lip(φk) in Lemma 2.4 in [39]. Then (6.2) holds by applying (6.3) and (6.1).
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With this lemma, we can prove our corollary for (φk)k∈N ⊂ Lip[0, 1] now:

Since supi ||φi||Lip < ∞, supi ||φi · φTi ||Lip ≤ 2 supi ||φi||2Lip < ∞, ||P k1||L1 = 1, so (A1) and

(A2) are easily verified by (6.2). Now we verify (A3):

∫
|P i+j+ni+j+1 {[P

i+j
i+1 (φi · P i1) · φTi+j −

∫
P i+ji+1 (φi · P i1) · φTi+jdµ]}|dµ -

1

n
1
α
−1
.

For the fixed i, j above, by (6.1), there are h1, h
′
1, h
′′′
1 , h

′′′′
1 , h2, h

′
2, h
′′′
2 , h

′′′′
2 ∈ Ca0 and the following

decompositions:

h1 − h2 = φi · P i1 ∈ Ca0 − Ca0 , h
′
1 := P i+ji+1h1 ∈ Ca0 , h

′
2 := P i+ji+1h2 ∈ Ca0 , h

′′′
1 − h′′′2 = h′1 · φTi+j −∫

h′1 · φTi+jdm ∈ Ca0 − Ca0 , h
′′′′
1 − h′′′′2 = h′2 · φTi+j −

∫
h′2 · φTi+jdm ∈ Ca0 − Ca0 .

So
∫
P i+ji+1 (φi · P i1) · φTi+jdµ))dm =

∫
h′1 · φTi+jdm−

∫
h′2 · φTi+jdm.

By (6.1), (6.3),

∫
|P i+j+ni+j+1 {[P

i+j
i+1 (φi · P i1) · φTi+j −

∫
P i+ji+1 (φi · P i1) · φTi+jdµ]}|dm

=

∫
|P i+j+ni+j+1 [h′′′1 − h′′′2 − (h′′′′1 − h′′′′2 )]|dm - Ca0,α(||h′′′1 ||L1 + ||h′′′′1 ||L1)

1

n
1
α
−1

- Ca0,α · Csupk ||φk||Lip,||h
′
1||L1 ,||h′2||L1

· 1

n
1
α
−1

= Ca0,α · Csupk ||φk||Lip,||h1||L1 ,||h2||L1
· 1

n
1
α
−1
.

By (6.1), ||h1||L1 , ||h2||L1 are bounded by a constant Csupk ||φk||Lip
. Therefore,

∫
|P i+j+ni+j+1 {[P

i+j
i+1 (φi · P i1) · φTi+j −

∫
P i+ji+1 (φi · P i1) · φTi+jdµ]}|dm - Csupk ||φk||Lip,α,a0

· 1

n
1
α
−1
.

Therefore the VASIP holds for this non-stationary dynamical system.

For scalar self-norming CLT, we will give a similar but simpler proof than VASIP’s:

Let (φk)k∈N ⊂ Lip([0, 1];R), In = [1, n]. Let a ∈ (1
2 , 1), cn := bn(1−a)c (this a is different from

the one in Lemma 6.1). Construct consecutive blocks In,i in In such that: |In,i| = bnac, 1 ≤ i ≤ cn,

the first block In,1 contains the least number of In, the last block Jn,cn+1 := In \
⋃

1≤i≤cn In,i

contains the largest number of In. So |In,cn+1| ≤ 2bnac and
⋃

1≤i≤cn+1 In,i = In. Similar to the
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proof of Theorem 2.8, let Xn :=
∑

i≤n φi ◦ T i, bn := λ(σ2
n) % nγ1 , fix any u ∈ R:

|E[exp(iu · Xn√
bn

)]− exp(−1

2
u2)| ≤ E|En+1[exp(iu · Xn√

bn
)]− exp(−1

2
u2)|.

With the same estimates as in (5.1), the above inequality becomes

∑
0≤k≤cn

E|E{[1 + i
u ·Xn,k+1√

bn
− 1

2
(
u ·Xn,k+1√

bn
)2 +O(|

u ·Xn,k+1√
bn

|2+ε0)]|Fn,k+2}

−{1− 1

2

E[(u ·Xn,k+1)2]

bn
+O(|

E[(u ·Xn,k+1)2]

bn
|2)}|+ |u|2 · O(nc(1−a)+cmax(3− 1

α
,0))

bn

≤
∑

0≤k≤cn

{ |u|√
bn

+
1

2

|u|2

bn
· E|E{[X2

n,k+1 − E(X2
n,k+1)]|Fn,k+2}|

+|u|4 ·
|E(X2

n,k+1)|2

b2n
+ |u|2+ε0 ·

E(|Xn,k+1|2+ε0)

b
2+ε0

2
n

}+ |u|2 · O(nc(1−a)+cmax(3− 1
α
,0))

bn

-
n(1−a)

n
γ1
2

|u|+ n(1−a)+a α
1−α

nγ1
|u|2 +

n(1−a)+2a

n2γ1
|u|4 +

n(1−a)+a
2+ε0

2

n
γ1(2+ε0)

2

|u|2+ε0 +
n(1−a)+max(3− 1

α
,0)

nγ1
|u|2.

To let it go to zero, we need the following conditions:

1. γ1

2 > 1− a,

2. γ1 > 1− a+ a α
1−α ,

3. 2γ1 > 1 + a,

4. γ1 > (1 + a ε02 ) · 2
2+ε0

, ε0 < min(1, 2− 2α
1−α),

5. γ1 > 1− a+ max(0, 3− 1
α).

So when γ1 is any number in (2+aε0
2+ε0

, 1], self-norming CLT holds, where

a = max(
ε0 + (2 + ε0) max(0, 3− 1

α)

2 + 2ε0
,

ε0
2+ε0

ε0
2+ε0

+ 1−2α
1−α

,
2 + 2ε0
4 + 5ε0

), ε0 = min(1, 2− 2α

1− α
).

For the computation of γ1, see Appendix, Lemma 7.2.
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Proof of Corollary 3.3

Proof It is not hard to show that under the assumptions of Corollary 3.3, there is λ ∈ (0, 1) such

that for any f ∈ V,

||Pn+m
m (f −

∫
fdµ)||V - λn||f −

∫
fdµ||V ,

sup
i
||P i1||V <∞.

Note that V is a Banach algebra, so (A1)-(A3) are all satisfied. By Theorem 2.8, Corollary 3.3

holds.

6.2 Proof of Corollary 3.5

Proof For the existence and uniqueness of the quasi-invariant probability, the proofs are given

in [14]. (A1’)-(A3’) can be verified similar to Corollary 3.3. So by Theorem 2.9, we have the

desired result with ψ ∈ L1(Ω×X, dµωdP). To prove ψ ∈ L2(Ω×X, dµωdP), it is exactly the same

as Proposition 3 in [14].

6.3 Proof of Corollary 3.7

Proof The existence of the quasi-invariant probability is constructed similar to [14]: Consider the

Banach space

Y = {v : Ω×X → R : vω := v(ω, ·) ∈ L1(X,m), sup
ω
||vω||L1 <∞}

with norm ||v|| := supω ||vω||L1 .

Define an operator L : Y → Y : L(v)ω := Pσ−1ωvσ−1ω. So ||Lv|| ≤ ||v||. Consider (Ln1)n≥1. We

claim this is a Cauchy sequence:

49



By Lemma 6.1, since Pω1 ∈ Ca0 for any ω ∈ Ω, then for any n < m,

||Ln1− Lm1|| = sup
ω
||Pnσ−nω(1− Pm−n

σ−mω1)||L1 ≤ K ·
1

n
1
α
−1
.

Then there is h ∈ Y such that Lh = h, that is, Pσ−1ωhσ−1ω = hω for a.e.-ω ∈ Ω. So hω satisfies

all conditions of Ca0 except its regularity. To prove hω ∈ Liploc(0, 1], the method is the same as

Lemma 2.3 in [32]. Therefore hω ∈ Ca0 , for a.e. ω ∈ Ω. Define the quasi-invariant probability

dµω := hωdm, so (Tω)∗µω = µσω for a.e. ω ∈ Ω. The verification of (A1’)-(A3’) is the same as

Corollary 3.1. By Theorem 2.9, this corollary holds.

6.4 Proof of Corollary 3.8

Proof First, we will show: there is a d×d positive semi-definite matrix σ2 ≥ 0 and ε ∈ (0, 1) such

that

E[(
∑
i≤n

φ ◦ T i) · (
∑
i≤n

φ ◦ T i)T ] = n · σ2 + o(n1−ε). (6.4)

Note that, by (A4),

∑
i≥1

E(φ · φT ◦ T i) -
∑
i≥1

1

i
1
α
−1

<∞ absolutely converges.

Let σ2 := E(φ · φT ) +
∑

i≥1 E(φ · φT ◦ T i) +
∑

i≥1 E(φ · φT ◦ T i)T , then

E[(
∑
i≤n

φ ◦ T i) · (
∑
i≤n

φ ◦ T i)T ]− n · σ2

=
∑
i≤n

E(φ ◦ T i · φT ◦ T i) +
∑

1≤i<j≤n
E(φ ◦ T i · φT ◦ T j) +

∑
1≤i<j≤n

E(φ ◦ T i · φT ◦ T j)T − n · σ2

= n · E(φ · φT ) +
∑

1≤i<j≤n
E(φ · φT ◦ T j−i) +

∑
1≤i<j≤n

E(φ ◦ T i · φT ◦ T j−i)T − n · σ2

= n · E(φ · φT ) +
∑

1≤i≤n

∑
0<j≤n−i

E(φ · φT ◦ T j) +
∑

1≤i≤n

∑
0<j≤n−i

E(φ · φT ◦ T j)T − n · σ2
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=
∑

1≤i≤n

∑
0<j≤n−i

E(φ·φT ◦T j)+
∑

1≤i≤n

∑
0<j≤n−i

E(φ·φT ◦T j)T−n·
∑
i≥1

E(φ·φT ◦T i)−n·
∑
i≥1

E(φ·φT ◦T i)T .

Then we just need to estimate:

∑
1≤i≤n

∑
0<j≤n−i

E(φ · φT ◦ T j)− n ·
∑
i≥1

E(φ · φT ◦ T i)

=
∑

1≤i≤n

∑
0<j≤n−i

E(φ · φT ◦ T j)−
∑

1≤i≤n

∑
j≥1

E(φ · φT ◦ T j) =
∑

1≤i≤n

∑
j>n−i

E(φ · φT ◦ T j)

=
∑

1≤i≤n

∑
n−i<j≤n

E(φ · φT ◦ T j) + n ·
∑
j>n

E(φ · φT ◦ T j) -
∑

1≤i≤n

∑
n−i<j≤n

1

j
1
α
−1

+ n ·
∑
j>n

1

j
1
α
−1

-
∑
i≤n

i · 1

i
1
α
−1

+ n ·
∫ ∞
n

1

x
1
α
−1
dx = n3− 1

α + n · n2− 1
α - n3− 1

α .

Since 3− 1
α < 1, then there is ε ∈ (0, 1) such that

σ2
n − n · σ2 = E[(

∑
i≤n

φ ◦ T i) · (
∑
i≤n

φ ◦ T i)T ]− n · σ2 - n3− 1
α = o(n1−ε).

If det(σ2) > 0, then σ2
n % n. So, by Theorem 2.8, the VASIP holds if (A5),(A6) are satisfied as

well; moreover, by Lemma 7.4, the Gaussian vectors are i.i.d. with covariance σ2.

If det(σ2) = 0, without loss of generality, assume σ2 =

Id1×d1 0

0 0d2×d2


d×d

.

The argument in this case is exactly same as in Theorem 2.9, we will not repeat it here.

To prove the VASIP for the Young tower ∆, Young [51] proved the first order decay of correlation

(A4) and (A5) already, so we just need to verify the second order decay of correlation (A6):

∫
|Pn[P j(φ) · φT −

∫
P j(φ) · φTdv]|dv -

1

n
1
α
−1
,

where dv = dv
dmdm, both dv

dm and φ are in L∞(∆) ∩ Cβ(∆), inf dv
dm > 0 where Cβ(∆) is the same

as in [51]. However, we just need to show P jφ is also Lipschitz function with uniform Lipschitz

exponent independent of j, then (A6) holds by using (A4):

Without loss of generality, assume φ is scalar function with Lipschitz exponent Cφ: for any
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(a,ma) ∈ F−j∆m,i, the orbit {F 0(a,ma), · · · , F j(a,ma)} touches ∆0 for qa times (0 ≤ qa ≤ j),

a ∈ ∆0,i0,a ∩ (FR)−1∆0,i1,a ∩ · · · ∩ (FR)−(qa−1)∆0,iqa−1,a . Denote Pa := ((FR)−qa∆0,i ∩ ∆0,i0,a ∩

(FR)−1∆0,i1,a ∩ · · · ∩ (FR)−(qa−1)∆0,iqa−1,a)×ma. Therefore F j(Pa) = ∆m,i. For different Pa, they

are either exactly the same, or disjoint.

• P jφ is locally Lipschitz:

For any z1 =: (x1,m), z2 := (x2,m) ∈ ∆m,i, for any a stated above, there are y1
a ∈ Pa, y2

a ∈ Pa

such that F jy1
a = (x1,m), F jy2

a = (x2,m).

P j(φ)(x1,m) =
1

dv
dm(x1,m)

·
∑

F j(y)=(x1,m)

φ(y) dvdm(y)

JF j(y)
=

1
dv
dm(x1,m)

·
∑
a

φ(y1
a)

dv
dm(y1

a)

JF j(y1
a)

.

P j(φ)(x2,m) =
1

dv
dm(x2,m)

·
∑

F j(y)=(x2,m)

φ(y) dvdm(y)

JF j(y)
=

1
dv
dm(x2,m)

·
∑
a

φ(y2
a)

dv
dm(y2

a)

JF j(y2
a)

.

|P j(φ)(x1,m)− P j(φ)(x2,m)| ≤ 1
dv
dm(x1,m)

|
∑
a

φ(y1
a)

dv
dm(y1

a)

JF j(y1
a)

−
∑
a

φ(y2
a)

dv
dm(y2

a)

JF j(y2
a)
|

+| 1
dv
dm(x1,m)

− 1
dv
dm(x2,m)

| · |
∑
a

φ(y2
a)

dv
dm(y2

a)

JF j(y2
a)
| - |

∑
a

φ(y1
a)

dv
dm(y1

a)− φ(y2
a)

dv
dm(y2

a)

JF j(y1
a)

|

+|
∑
a

φ(y2
a)

dv
dm(y2

a)

JF j(y1
a)

(1− JF j(y1
a)

JF j(y2
a)

)|+ |
∑
a

φ(y2
a)

dv
dm(y2

a)

JF j(y2
a)
| · βs(x1,x2)

where y1
a, y

2
a ∈ Pa. Use the distortion (3.2), F j+Ri−mPa = FRi−m∆m,i = ∆0 and JFRi−m|∆m,i =

1, the above inequality becomes

- Cφ · Cv ·
∑
a

1

JF j(y1
a)
· d(y1

a, y
2
a) + Cφ · Cv ·

∑
a

1

JF j(y2
a)
· βs(x1,x2)

-
∑
a

Cv · Cφ ·
m(Pa)

m(∆0)
· d(z1, z2) - Cv · Cφ ·

m(∆)

m(∆0)
· d(z1, z2).

• P jφ is bounded:

|P j(φ)(x1,m)| ≤ P j(1)(x1,m) · ||φ||L∞ = ||φ||L∞ .
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Therefore, P j(φ) is globally Lipschitz, that is, P j(φ) ∈ Cβ(∆): for any z1, z2 ∈ ∆,

|P j(φ)(z1)− P j(φ)(z2)| - 2||φ||L∞ · Cv · Cφ · d(z1, z2)

where its Lipschitz exponent, as shown above, is independent of j.
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7 Appendix

Lemma 7.1 (Computation of the range of γ)

The parameter γ in Theorem 2.8 can be any number in ( c
c+1 + 2

(c+1)(2+ε0) , 1], where

c = max(
ε0a+ (2 + ε0)(8d+ 12)

ε0(1− a)
,
1− 2

2+ε0
+ max(3− 1

α , 0)

1−max(3− 1
α , 0)

),

a = max(
ε0 + 2α

(1− α)(2ε0 + 2)
,
2 + 2ε0
3ε0 + 4

,
(2 + ε0)(1 + max(3− 1

α , 0))− 2

2 + 2ε0
),

ε0 = min(1, 2− 2α

1− α
),

d, α are the parameters in Theorem 2.8.

Proof To find the range of γ, we summarize (5.2)-(5.7) here:

1. min(κ, v2 − dκ) > 1, where κ > 1, v := min(γ(1+c)
2 − κ − c(1 − a), γ(1 + c) − 2κ − c(1 − a) −

ca α
1−α , 2γ(1 + c)− c(1− a)− 4κ− 2ca, γ(1+c)(2+ε0)

2 − κ(2 + ε0)− c(1− a)− ca2+ε0
2 , γ(1 + c)−

2κ− c(1− a)− cmax(3− 1
α , 0)), a ∈ (1

2 , 1), ε0 < min(1, 2− 2α
1−α), c > 1.

2. γ c+1
2 > 1 + c+1

2 −min(κ, v2 − dκ).

3. c− γ(c+ 1) < 0.

4. 1 + (c+ 1)(max(3− 1
α , 0)− γ) < 0.

5. c
γ(c+1) < 1.

6. 1
2γ(c+ 1)(2 + ε)− c(1 + ε

2) > 1, ε < min(1, 2− 2α
1−α).

If v > 2(d + 1)κ, then min(κ, v2 − κd) = κ. So we can use this to simplify 1,2 above as 1,2

below. Note that 3 and 5 above are the same, the inequality 6 above is γ > c
c+1 + 2

(c+1)(2+ε) which

implies 3 and 5 above: γ > c
c+1 . So we can combine 3,5,6 above as 4 below. Therefore the above

inequalities can be rewritten as:

1. v > 2(d+ 1)κ, κ > 1.
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2. γ > 1− 2
c+1(κ− 1).

3. γ > 1
c+1 + max(3− 1

α , 0).

4. γ > c
c+1 + 2

(c+1)(2+ε) , ε < min(1, 2− 2α
1−α).

Use the definition of v to expand v > 2(d+ 1)κ as 1,2,3,4,5 below, and copy 2,3,4 above as 6,7,8

below. Then we have

1. γ(1+c)
2 − κ− c(1− a) > 2(d+ 1)κ, a ∈ (1

2 , 1), c > 1.

2. γ(1 + c)− 2κ− c(1− a)− ca α
1−α > 2(d+ 1)κ.

3. 2γ(1 + c)− c(1− a)− 4κ− 2ca > 2(d+ 1)κ.

4. γ(1+c)(2+ε0)
2 − κ(2 + ε0)− c(1− a)− ca2+ε0

2 > 2(d+ 1)κ, ε0 < min(1, 2− 2α
1−α).

5. γ(1 + c)− 2κ− c(1− a)− cmax(3− 1
α , 0)) > 2(d+ 1)κ.

6. γ > 1− 2
c+1(κ− 1).

7. γ > 1
c+1 + max(3− 1

α , 0).

8. γ > c
c+1 + 2

(c+1)(2+ε) , ε < min(1, 2− 2α
1−α).

We transform the above inequalities to represent the range of γ:

1. γ > (4d+6)κ
c+1 + 2c

c+1(1− a), a ∈ (1
2 , 1), c > 1.

2. γ > (2d+4)κ
c+1 + c

c+1
aα

1−α + c
c+1(1− a),

3. γ > (d+3)κ
c+1 + c(a+1)

2(c+1) .

4. γ > 2(2d+4+ε0)
(1+c)(2+ε0)κ+ 2c+caε0

(c+1)(2+ε0) , ε0 < min(1, 2− 2α
1−α).

5. γ > 2d+4
1+c κ+ c(1−a)

c+1 + c
c+1 max(3− 1

α , 0).

6. γ > 1− 2
c+1(κ− 1).

7. γ > 1
c+1 + max(3− 1

α , 0).
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8. γ > c
c+1 + 2

(c+1)(2+ε) , ε < min(1, 2− 2α
1−α).

Use c
c+1 < 1, 2

2+ε0
< 1, a < 1, ε0 < 1, we can narrow the range of γ 1-5 above as 1-5 below:

1. γ > (4d+6)κ
c+1 + 2(1− a).

2. γ > (2d+4)κ
c+1 + α

1−α + (1− a).

3. γ > (d+3)κ
c+1 + (a+1)

2 .

4. γ > (2d+5)
(1+c) κ+ 2+aε0

(2+ε0) .

5. γ > 2d+4
1+c κ+ (1− a) + max(3− 1

α , 0), a ∈ (1
2 , 1), ε0 < min(1, 2− 2α

1−α).

6. γ > 1− 2
c+1(κ− 1).

7. γ > 1
c+1 + max(3− 1

α , 0).

8. γ > c
c+1 + 2

(c+1)(2+ε) , ε < min(1, 2− 2α
1−α).

Let κ := 2, use 2d+ 5 > d+ 3, a+1
2 < 2+ε0a

2+ε0
, we can combine inequalities 3,4 above as 3 below.

Use 1− 2
c+1 <

c
c+1 + 2

(c+1)(2+ε) , we can combine the inequalities 6,8 above as 6 below:

1. γ > 2(4d+6)
c+1 + 2(1− a).

2. γ > 2(2d+4)
c+1 + α

1−α + (1− a).

3. γ > 2(2d+5)
(1+c) + 2+aε0

(2+ε0) .

4. γ > 2(2d+4)
1+c + (1− a) + max(3− 1

α , 0), a ∈ (1
2 , 1), ε0 < min(1, 2− 2α

1−α).

5. γ > 1
c+1 + max(3− 1

α , 0).

6. γ > c
c+1 + 2

(c+1)(2+ε) , ε < min(1, 2− 2α
1−α).

If a > ε0+2α
(1−α)(2ε0+2) , then 2+aε0

(2+ε0) >
α

1−α + 1− a.

Note that if a > 2+2ε0
3ε0+4 , then 2+aε0

(2+ε0) > 2(1− a).

If a >
(2+ε0)(1+max(3− 1

α
,0))−2

2+2ε0
, then 2+aε0

(2+ε0) > 1− a+ max(0, 3− 1
α).
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Therefore, use 4d+ 6 > max{2d+ 4, 2d+ 5}, when

a > max(
ε0 + 2α

(1− α)(2ε0 + 2)
,
2 + 2ε0
3ε0 + 4

,
(2 + ε0)(1 + max(3− 1

α , 0))− 2

2 + 2ε0
),

ε0 < min(1, 2− 2α

1− α
),

we can combine inequalities 1,2,3,4 above as 1 below and copy 5,6 above as 2,3 below:

1. γ > 2(4d+6)
(1+c) + 2+aε0

(2+ε0) .

2. γ > 1
c+1 + max(3− 1

α , 0).

3. γ > c
c+1 + 2

(c+1)(2+ε) , ε < min(1, 2− 2α
1−α).

Note that if c >
1− 2

2+ε
+max(3− 1

α
,0)

1−max(3− 1
α
,0)

, ε < min(1, 2− 2α
1−α), then

c

c+ 1
+

2

(c+ 1)(2 + ε)
>

1

c+ 1
+ max(3− 1

α
, 0).

If c >
2+ε0a+(2+ε0)(8d+12)− 2(2+ε0)

2+ε

ε0(1−a) , then c
c+1 + 2

(c+1)(2+ε) >
2(4d+6)
(1+c) + 2+aε0

(2+ε0) .

Therefore, if

c > max(
2 + ε0a+ (2 + ε0)(8d+ 12)− 2(2+ε0)

2+ε

ε0(1− a)
,
1− 2

2+ε + max(3− 1
α , 0)

1−max(3− 1
α , 0)

),

a > max(
ε0 + 2α

(1− α)(2ε0 + 2)
,
2 + 2ε0
3ε0 + 4

,
(2 + ε0)(1 + max(3− 1

α , 0))− 2

2 + 2ε0
),

ε0 < min(1, 2− 2α

1− α
),

the inequalities 1,2,3 above can be combined as the following one inequality:

γ >
c

c+ 1
+

2

(c+ 1)(2 + ε)
.

Let ε0 = ε, then

γ >
c

c+ 1
+

2

(c+ 1)(2 + ε0)
.
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Since this is a strict inequality for γ, so c, a, ε0 can take their infimums/supremum, respectively,

that is,

c = max(
2 + ε0a+ (2 + ε0)(8d+ 12)− 2

ε0(1− a)
,
1− 2

2+ε0
+ max(3− 1

α , 0)

1−max(3− 1
α , 0)

),

a = max(
ε0 + 2α

(1− α)(2ε0 + 2)
,
2 + 2ε0
3ε0 + 4

,
(2 + ε0)(1 + max(3− 1

α , 0))− 2

2 + 2ε0
),

ε0 = min(1, 2− 2α

1− α
).

Lemma 7.2 (Computation of the range of γ1)

γ1 satisfies the following inequalities:

1. γ1

2 > 1− a.

2. γ1 > 1− a+ a α
1−α .

3. 2γ1 > 1 + a.

4. γ1 > (1 + a ε02 ) · 2
2+ε0

, ε0 < min(1, 2− 2α
1−α).

5. γ1 > 1− a+ max(0, 3− 1
α).

Then γ1 can be any number in (2+aε0
2+ε0

, 1], where

a = max(
ε0 + (2 + ε0) max(0, 3− 1

α)

2 + 2ε0
,

ε0
2+ε0

ε0
2+ε0

+ 1−2α
1−α

,
2 + 2ε0
4 + 5ε0

), ε0 = min(1, 2− 2α

1− α
).

Proof Since 1+a
2 < 2+aε0

2+ε0
, then γ1 > (1 + a ε02 ) · 2

2+ε0
> 1+a

2 .

If a > 2+2ε0
4+5ε0

, then (1 + a ε02 ) · 2
2+ε0

> 2(1− a).

If a >
ε0

2+ε0
ε0

2+ε0
+ 1−2α

1−α
, then (1 + a ε02 ) · 2

2+ε0
> 1− a+ a α

1−α .

If a >
ε0+(2+ε0) max(0,3− 1

α
)

2+2ε0
, then (1 + a ε02 ) · 2

2+ε0
> 1− a+ max(0, 3− 1

α).

So when a > max(
ε0+(2+ε0) max(0,3− 1

α
)

2+2ε0
,

ε0
2+ε0

ε0
2+ε0

+ 1−2α
1−α

, 2+2ε0
4+5ε0

), ε0 < min(1, 2− 2α
1−α),

γ1 >
2 + aε0
2 + ε0

.

58



Since this is a strict inequality for γ1, so a, ε0 can take their infimum/supremum, respectively,

that is, γ1 can be any number in (2+aε0
2+ε0

, 1], where

a = max(
ε0 + (2 + ε0) max(0, 3− 1

α)

2 + 2ε0
,

ε0
2+ε0

ε0
2+ε0

+ 1−2α
1−α

,
2 + 2ε0
4 + 5ε0

), ε0 = min(1, 2− 2α

1− α
).

Lemma 7.3 (Transfer, see [25] Theorem 6.10)

For any measurable space S and Borel space T , let ξ
d
= ξ′ and η be random elements in S and

T , respectively (that is, ξ and η are living in the same probability space, ξ and ξ′ have the same

distribution but not necessarily live in the same probability space). Then there exists a random

element η′ in T with

(η, ξ)
d
= (η′, ξ′).

More precisely, there exists a measurable function f : S × [0, 1] → T such that we may take

η′ = f(ξ′, U) where U ∼ U(0, 1) is independent of ξ and f .

Indeed, to guarantee the independence, we may simply extend the probability space where ξ′ lives

in, by multiplying an interval (I,Leb).

Lemma 7.4 (Embedding in a d-dimensional Brownian motion)

If (φk ◦ T k)k≥1 satisfies the VASIP, and there is ε ∈ (0, 1
2) and a positive definite d× d matrix

σ2 > 0, such that σ2
n = n · σ2 + o(n1−ε), then there is ε̄ ∈ (0, 1

2) and a Brownian motion Bt such

that almost surely, ∑
k≤n

φk ◦ T k − σBn = o(n
1
2
−ε̄) a.s..

Proof Since d = 1 is trivial, we assume d > 1. By the VASIP Definition 2.4, we have:

∑
k≤n

φk ◦ T k −
∑
k≤n

Gk = o(n
1
2
−ε) a.s.,

σ2
n =

∫
(
∑
k≤n

φk ◦ T k) · (
∑
k≤n

φk ◦ T k)Tdµ =
∑
k≤n

Ẽ(Gk ·GTk ) + o(n1−ε),
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where Ẽ(·) is the expectation of the probability P̃ of the extended probability space (X,B, µ). Then

∑
k≤n

Ẽ(Gk ·GTk ) = n · σ2 + o(n1−ε).

Without loss of generality, we can assume σ2 = Id×d.

Let c ∈ N (will be given later), then

∑
nc<k≤(1+n)c

Ẽ(Gk ·GTk ) = [(1 + n)c − nc] · Id×d + o((n+ 1)c(1−ε)). (7.1)

If c is big enough such that c− 1 > c(1− ε), then

∑
nc<k≤(1+n)c Ẽ(Gk ·GTk )

(1 + n)c − nc
− Id×d =

o((n+ 1)c(1−ε))

nc−1
= o(n1−cε).

Denote

A :=
∑

nc<k≤(1+n)c

Ẽ(Gk ·GTk ) = Qn ·



λn1 0 · · · 0

0 λn2 · · · 0

...
...

. . .
...

0 0 · · · λnd


·QTn , (7.2)

where λn1 ≤ λn2 ≤ · · · ≤ λnd are eigenvalues, Qn is an orthogonal matrix. Denote

A1 := Qn ·



min(λn1 , (1 + n)c − nc) 0 · · · 0

0 min(λn2 , (1 + n)c − nc) · · · 0

...
...

. . .
...

0 0 · · · min(λnd , (1 + n)c − nc)


·QTn ,

A2 := A−A1,

A3 := ((1 + n)c − nc) · Id×d −A1.

For each n, pick arbitrary independent Gaussian vectors ḡn+1
1 , ḡn+1

2 , ḡn+1
3 such that
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Ẽ[ḡn+1
1 · (ḡn+1

1 )T ] = A1, Ẽ[ḡn+1
2 · (ḡn+1

2 )T ] = A2, Ẽ[ḡn+1
3 · (ḡn+1

3 )T ] = A3.

Therefore ḡn+1
1 + ḡn+1

2
d
=
∑

nc<k≤(1+n)c Gk. By Lemma 7.3, there are independent mean zero

Gaussian vectors gn+1
1 , gn+1

2 , gn+1
3 (extend the probability space if necessary, still denote its proba-

bility by P̃ and its expectation by Ẽ(·)) such that

(ḡn+1
1 + ḡn+1

2 , ḡn+1
1 , ḡn+1

2 , ḡn+1
3 )

d
= (

∑
nc<k≤(1+n)c

Gk, g
n+1
1 , gn+1

2 , gn+1
3 ).

Therefore,

Ẽ[gn+1
1 · (gn+1

1 )T ] = A1, Ẽ[gn+1
2 · (gn+1

2 )T ] = A2, Ẽ[gn+1
3 · (gn+1

3 )T ] = A3,

∑
nc<k≤(1+n)c

Gk = gn+1
1 + gn+1

2 a.s.,

Ẽ[(gn+1
1 + gn+1

3 ) · (gn+1
1 + gn+1

3 )T ] = [(1 + n)c − nc] · Id×d.

Furthermore, since A2 and A3, after being diagonalized by Qn, have nonzero entries on disjoint

positions of diagonal line. Therefore by (7.1),

Ẽ[gn+1
2 · (gn+1

2 )T ] = o((n+ 1)c(1−ε)),

Ẽ[gn+1
3 · (gn+1

3 )T ] = o((n+ 1)c(1−ε)).

By Lemma 7.3, we know gni depends on
∑

nc<k≤(1+n)c Gk. Since for any n1 6= n2 ∈ N,∑
nc1<k≤(1+n1)c Gk is independent of

∑
nc2<k≤(1+n2)c Gk, then

(gn1+1
1 , gn1+1

2 , gn1+1
3 ) is independent of (gn2+1

1 , gn2+1
2 , gn2+1

3 ).

So there is a Brownian motion Bt such that for each n ∈ N:

gn+1
1 + gn+1

3 = B(1+n)c −Bnc .
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Therefore ∑
nc<k≤(1+n)c

Gk − (B(1+n)c −Bnc) = gn+1
2 − gn+1

3 a.s.,

∑
k≤nc

Gk −Bnc =
∑
i≤n

(gi2 − gi3) a.s..

For any m ∈ N, there is n such that nc < m ≤ (n+ 1)c and

∑
k≤m

Gk −Bm =
∑
k≤nc

Gk −Bnc +
∑

nc<k≤m
Gk − (Bm −Bnc) =

∑
i≤n

(gi2 − gi3)+

∑
nc<k≤m

Gk − (Bm −Bnc) ≤ |
∑
i≤n

(gi2 − gi3)|+ sup
nc<m≤(n+1)c

|
∑

nc<k≤m
Gk|+ sup

nc<m≤(n+1)c
|Bm −Bnc |.

To estimate the last two terms, we just need to estimate each coordinate of them. So without

loss of generality, we assume the last two terms are scalar Gaussian random elements. Then if

2cε̄ < 1, ε̄ < ε,

P̃ ( sup
nc<m≤(n+1)c

|
∑

nc<k≤m
Gk| > nc(

1
2
−ε̄)) ≤ P̃ (|N(0, Ẽ[(

∑
nc<k≤(n+1)c

Gk)
2]| > nc(

1
2
−ε̄))

= P̃ (|N(0, 1)| > nc(
1
2
−ε̄)√

Ẽ[(
∑

nc<k≤(n+1)c Gk)
2]

) - P̃ (|N(0, 1)| > nc(
1
2
−ε̄)

n
c−1

2

) ≤ e−n1−2cε̄
-

1

n2
,

P̃ ( sup
nc<m≤(n+1)c

|Bm −Bnc | > nc(
1
2
−ε̄)) ≤ P̃ (|N(0, (n+ 1)c − nc)| > nc(

1
2
−ε̄))

= P̃ (|N(0, 1)| > nc(
1
2
−ε̄)√

(n+ 1)c − nc
) - P̃ (|N(0, 1)| > nc(

1
2
−ε̄)

n
c−1

2

) ≤ e−n1−2cε̄
-

1

n2
.

The estimate of gi2 and gi3 are the same, so we just estimate gi2:

P̃ (|
∑
i≤n

gi2| > nc(
1
2
−ε̄)) = P̃ (|N(0, Ẽ[(

∑
i≤n

gi2)2])| > nc(
1
2
−ε̄))

= P̃ (|N(0, 1)| > nc(
1
2
−ε̄)√

Ẽ[(
∑

i≤n g
i
2)2]

) - P̃ (|N(0, 1)| > nc(
1
2
−ε̄)

n
1
2

[1+c(1−ε)]
) - e−n

c(ε−2ε̄)−1
-

1

n2
.
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By the Borel-Cantelli Lemma,

∑
k≤m

Gk −Bm ≤ |
∑
i≤n

(gi2 − gi3)|+ sup
nc<m≤(n+1)c

|
∑

nc<k≤m
Gk|

+ sup
nc<m≤(n+1)c

|Bm −Bnc | = o(nc(
1
2
−ε̄)) = o(m

1
2
−ε̄) a.s..
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