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Abstract 

This thesis is dedicated to study the elastodynamic Green’s tensor in anisotropic 

medium in order to understand the influence of anisotropy on the point source 

radiation.  

In the first part of this thesis, a new form of elastodynamic Green’s tensor in VTI 

medium is found based on the method of Tsvankin and Chesnokov (1990). I found the 

analytical asymptotic Green’s tensor for elliptical anisotropic medium. I propose a 

new form of approximated qP-qSV solution for weak TI medium while the solution of 

SH wave can always be found analytically. The new form of the Green’s tensor is 

uniform through all directions. The accuracy of the approximated results will decrease 

as Thomsen parameters increase.  

In the second part, I study the anisotropic effect due to initial stress on the 

Green’s tensor. A six-rank tensor introduced by Nikitin and Chesnokov (1981) is 

being used to describe the effect of deviatoric stress on the symmetry of the medium. 

The Green’s tensor in general anisotropic medium is calculated. I studied four types of 

uniaxial initial stress. The phase velocity and radiation patterns in the pre-stress 

medium are calculated. Last, I examine the error brought by the approximation in 

calculating the Green’s tensor. 
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Review and motivation 

In the field of exploration seismology, people rely on the seismic wave propagation to 

see the earth’s interior. One of the most interesting problems is how the wave propagated in 

different type of media, which is also known as the forward problem. The forward problem is 

that given the information about the source and medium then to calculate the elastic wave 

field. 

Elastodynamic Green’s tensor is the solution of the elastic wave equation with a point 

source. It is a second-rank tensor. The columns are related with the three components of the 

displacement and the rows are related with the three components of the source. 

Elastodynamic Green’s tensor in isotropic medium has been solved analytically for a long 

time. The point-source solution in an isotropic unbounded medium was first solved by Stokes 

(1849). This well-known result is actually the elastodynamic Green’s tensor in isotropic 

medium.  

The problem of wave propagation in anisotropic media has been gained more and more 

attentions throughout the last century. For the general anisotropic cases, the Green’s tensor is 

usually calculated numerically. One of the most common ways to solve Green’s tensor is to 

present it in an integral formula. The integral can be solved by asymptotic expansions like 

stationary phase approximation (SPA). 

Ben-Menaham and Sena (1990) has solved the asymptotic dyadic Green’s tensor based 
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on the stationary phase method. Their analytic solution yields a simplification of the slowness 

in elliptical anisotropy.  

Vavrycuk et al. has published several studies (1996, 1997, 2002) regarding the 

anisotropic Green’s tensor. Rather than using SPA, he involved high-order ray expansion to 

find the analytical formula for the near-field. However, this method will encounter problems 

at the directions where the phase velocity of the shear waves equals each other. Vavrycuk 

(2002) and Gridin (2000) have studied this problem in different ways. Generally, it uses 

higher-order approximations with additional terms. The ray theory will collapse at the 

shadow zones; therefore, it is unable to model the wave field in the complicated structures. 

Tsvankin and Chesnokov (1990) simplified the integral transform by using low-order 

Fourier series to approximate the azimuthally dependent property of Green’s tensor in general 

anisotropic medium. This method provides a semi-analytical way to calculate the Green’s 

tensor in a very fast time. It is not affected by the problem at shear wave singularities 

described above. Tsvankin (1995) had proposed a way to find the analytical radial 

components of Green’s tensor in weak VTI medium. However, to the author’s understanding, 

the approximation is not linear and has a vibrating nature that will affect the results. 

Since the property of the VTI medium is not changing with the azimuth angle, the 

procedure described in Tsvankin and Chesnokov (1990) can be further simplified. In the first 

part of this thesis, I find a new analytical form of the complete Green’s tensor in VTI medium 

based on this method.  



3 

The second part of the thesis is related with one of the special cause for the anisotropy – 

the initial stress. The effect of the static initial stress on elastic wave propagation has been 

studied by various authors. Biot (1940) use a special stress tensor to study the effect of initial 

stress on the elastic wave propagation. Dahlen (1972) developed the theory about the 

pre-stressed medium but was proved later by Nikitin (1984) as one of the special case of the 

general theory. 

Nikitin and Chesnokov (1981) studied the effect of initial stress by considering an 

additional six-rank tensor which is related with the initial deviatoric stress. The symmetry of 

the medium will be affect by the deviatoric stress while the strength of the elastic parameters 

will related with the initial pressure. Considering the case when the background medium is 

isotropic, the plane wave solution is found via Born approximation when the stress 

distributed periodically in space (Vshivtsev, 1996). 

To the author’s understanding, most of the studies in this topic are related to the plane 

wave propagation. In this thesis, I calculate the Green’s tensor by the numerical method 

described by Tsvankin and Chesnokov (1990). I study not only the phase velocity but also the 

radiation patterns of a point source generated in the pre-stressed medium.  
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Part I,  

Elastodynamic Green’s tensor in VTI medium 

 

In this part of the thesis, I find the analytical solution of elastodynamic Green’s tensor in 

VTI medium. First, the elastic wave equation for Green’s tensor is derived. Then, the basics 

of elastic wave propagation are reviewed. After that, steps for solving the Green’s tensor are 

shown in detail. Three elements of Green’s tensor are calculated and studied. The synthetic 

study of radiation patterns and seismograms are shown at the end of this part of thesis. 

 

1. The setting of the problem 

1.1  The elastic wave equation 

The elastic wave equation can be derived from Newton’s second law, where    is the 

force acting upon the object.   is the mass of the object and    is the acceleration. 

 

i iF ma  

 

For the continual mechanics, the force vector is the summation of body force, surface 

traction, and source. The mass will be the density at a point in the medium.  
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The stress and strain excited by the wave propagation can be described by the Hooke’s 

law. Einstein’s summation notation is implied.     is the stress tensor and     is the strain 

tensor.       is the stiffness tensor and    is the displacement. Using Hooke’s law, the elastic 

wave equation can be found. 

 

2

2

( , ) ( , )
( , ) ( , ) ( , )i k

ijkl i

j l

u t u t
t C t f t

t x x


  
 

  
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In this case, I eliminate the body force. Since it is supposed to solve the equation in 

homogeneous medium, the stiffness tensor is not depended on the location, thus can be out of 

the differential operator. Finally, I get the elastic wave equation in the homogeneous medium 

(equation 1-1). 

 

2 2

2

( , ) ( , )
( , )i k

ijkl i

j l

u t u t
C f t

t x x

 

 
  

r r
r     (1-1) 

 

In order to find the general solution which is independent from the source distribution, I 
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use the relation described in equation 1-2.     is the elastodynamic Green’s tensor.  

 

0 0 0 0 0 0( , ) * ( , ; , ) ( , )k km m km mu t G f G t t f t d dt

 

 

   r r r r r   (1-2) 

0 0 0 0 0 0( ) ( ) ( , )i im m im mf f t t f t d dt   
 

 

    r - r r r  

 

By the property of Dirac delta, the source can be expanded. Comparing both sides of the 

equation 1-2, I get the wave equation 1-3 for Green’s tensor.     is the Kronecker symbol. 

 

2 2

0 0 0 02
( ) ( , ; , ) ( ) ( )ik ijkl km im

j l

C G t t t t
t x x

   
 

   
  

r r r r  (1-3) 

 

Equation 1-3 indicates that the elastodynamic Green’s tensor is the response of the point 

source. In other words, it’s the elementary solution of elastic wave equation 1-1. Once 

equation 1-3 is solved, equation 1-2 can be used to find the displacement field for the general 

source distribution. 

 

1.2  The procedure to solve dynamic green’s tensor 

For simplicity, I change the notation of “    ” to “ ” and “    ” to “ ”. It means that 

origin of coordinate system has been moved to the source location. In order to solve equation 
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1-3, I expand the Green’s tensor and Dirac delta function into Fourier series. By doing this, I 

received the wave equation in frequency and wave vector domain (equation 1-4-a). 

 

2( ) ( , )ik ijkl j l km imC k k G     k  (1-4-a) 

i

i

k
V


  (1-4-b) 

 

   is the wave vector (equation 1-4-b), which is also known as spatial frequency.   is 

the angular frequency. It can be seen from equation 1-5, that the solution of Green’s tensor in 

k-ω domain can easily be found by calculating the negative inverse matrix of 

Green-Christoffel matrix     . 

 

1 ( )
( )

det | |

km
km km

km

adj GC
G GC

GC

    , 
2

ik ik ijkl j lGC C k k    (1-5) 

 

To find the bilinear solution of the Green’s tensor, the stiffness tensor for VTI medium 

needs to be involved. The inverse Fourier transform has to be done in order to find the 

solution in time-space domain.  
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2. The stiffness tensor and other property of VTI medium 

 

2.1  The stiffness tensor 

For VTI medium, the symmetric axis is along the Z-axis (in Cartesian coordinates), 

which means the property of the medium will not change for different azimuth angles. It is a 

relative simple type of anisotropic symmetry but is still much more complicated than 

isotropic case. 

First of all, the stiffness tensor of VTI medium has five independent elements rather than 

two for isotropic medium. Stiffness tensor is defined as the first derivative of stress over 

strain which correspond the medium’s property. It connects the stress and strain tensor via 

Hooke’s law. Stiffness tensor is a fourth rank tensor which has 81 non-zero and 21 

independent elements for the general anisotropic medium. It can be written as a compact 

matrix by considering the symmetry. 

 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

ij

C C C C C C

C C C C C C

C C C C C C
C

C C C C C C

C C C C C C

C C C C C C

 
 
 
 

  
 
 
 
 

 

 

For the isotropic case, the stiffness tensor is controlled by two independent parameters 
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(λ and μ) known as Lamé parameters.  

 

( )ijkl ij kl ik jl il jkC         
 

 

    For the VTI medium, the stiffness tensor is more complicated. 

 

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

( ) ( )

( )

ijkl ij kl ik jl il jk i j k l i j kl ij k l

il k j jk i l ik j l jl k i

C a b d

e

               

           

      

   
 

 

    “a” and “b” can be interpreted as Lamé parameters. “d”, “e”, and “f” are additional 

parameters which describe the anisotropy property of the medium.  

 

2.2  Phase velocity 

Phase velocity is the velocity perpendicular to the wave-front. The anisotropy will lead 

to shear wave splitting, which is unique to anisotropic medium. In order to explain this 

phenomenon, I have to examine the solution of plane wave equation 2-1.  

    I substitute the general formula of plane wave (equation 2-2) into equation 2-1. 

 








 

2

2

2u

t
C

u

x x

i

i j k l

k

j l



 (2-1) 
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)( vtxnik

i
iieu



 (2-2) 

 

       is the direction vector and   is the phase velocity. Considering the property of 

Kronecker symbol, equation 2-1 can be rewritten. 

 

0)( 2  kikik uv   (2-3) 

ljijklik nnC
 

 

Equation 2-3 is Green-Christoffel equation, which is depended upon the property of 

medium and the direction of phase velocity. 

  

02  ikik v   (2-4) 

 

    Equation 2-4 is the condition that the plane wave will exist in the homogeneous 

anisotropic medium. It is a cubic equation of the square of phase velocity which should has 

three distinct roots correspond to different modes of wave. The eigenvectors of equation 2-3 

are the polarizations. 

 

2 2 2

11 44 33 442 ( )sin ( )cosPV C C C C K      
 



11 

2 2 2

11 44 33 442 ( )sin ( )cosSVV C C C C K      
 (2-5-a) 

2 2 2

66 44sin cosSHV C C   
 

2 2 2 2 2 2

11 44 33 44 13 44(( )sin ( )cos ) 4( ) sin cosK C C C C C C        
 

 

    These are the eigenvalues of equation 2-4 for VTI medium. θ is the angle between the 

direction of wave propagation and Z-axis. For the isotropic case, the solutions are much 

simpler, 

 

2
PV

 






 

SV





 

 

    In isotropic media, two of the phase velocity (SV and SH) equals to each other. The 

values of phase velocities do not depend on directions. There are only two waves observable 

which are called P- and S-wave, respectively. P stands for primary since it travels faster. S 

stands for secondary or shear. The reason is that the phase velocity of S-wave is slower and 

its polarization is within the plane that perpendicular to the direction of wave propagation.  

When two of the eigenvalues equal, the solutions of eigenvector will be ambiguous. As a 

result, there will be no distinct polarization for the S-wave in isotropic media. On the contrary, 

the split S-wave in anisotropic medium will show recognizable polarizations in the 
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seismometer. This is a way that the anisotropic medium can be distinguished from isotropic 

ones. 

For anisotropic cases, especially VTI medium, there are three distinct solutions for 

equation 2-4. I call them the phase velocities of qP-, qSV-, and SH-waves respectively. Their 

value only depends on the polar angle θ, recalling the property of transversely isotropic 

medium.  

    The three orthogonal eigenvectors can be determined for the most cases in VTI medium. 

The polarization of qP- and qSV-wave are generally not along the P and SV directions. 

However, they still lies in the radiation plane which determined by the ray direction and the 

Z–axis. And the polarization of SH-wave is the same with the one in isotropic medium. For 

some special directions, two of the roots (qSV and SH) equals to each other. In these 

directions the Green-Christoffel equation will degenerate and there will be ambiguity in 

determining the polarization. These directions are called shear-wave singularities. As been 

proven (Dellinger, 1991), there is at least one shear-wave singularity which is along the 

Z-axis in VTI medium. The physical reason for this singularity is that the amplitudes of the 

shear-wave are lies in the same isotropic plane when travelling along the Z-axis; therefore, 

they will be at the same velocity. The locations of other shear wave singularities are related 

with the stiffness tensor (Crampin, 1981). The analytical results of the polarization in VTI 

medium can be found in Daley and Hron (1977).  
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2.3  Thomsen parameters 

    Thomsen (1986) proposed a method to simplify the formula of “K” in equation 2-5 and 

defined three dimensionless parameters ε, γ, and   to describe the anisotropic property of the 

media. Along with the vertical P- and S- phase velocities, these five parameters can be an 

alternative to the stiffness tensor. 

    Thomsen parameters are listed below. 

 

11 33

332

C C

C





 

66 44

442

C C

C





 

2 2

13 44 33 44

33 33 44

( ) ( )

2 ( )

C C C C

C C C


  


  

33
0P

C
V




 

44
0S

C
V




 

 

    The physical meaning of γ can be interpreted as the anisotropic parameters for SH-wave. 

ε and   are linked with the anisotropic property of both the qP- and qSV-wave. The equation 

2-5-a can be greatly simplified if we expanded the “K” at small ε and   (Tsvankin, 1996). 

 

2 2 2 4

0[1 2 sin 2( )sin ]P PV V        
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2 2 2 2 4

0(1 2 sin cos 2 sin )SV SV V       
 (2-5-b) 

2 2 2

66 44sin cosSHV C C   
 

 

    Notice that I do not expand the γ parameter in this study; therefore, the property of 

SH-wave is not affected by this approximation. Equation 2-5-b is known as the phase 

velocity in weak-anisotropic media. When two of the Thomsen parameters (ε= ) equals, 

equation 2-5-b can be further reduced. 

 

2 2 2 2 2

0 0(1 2 )sin cosP P PV V V    
 

2 2

0SV SV V
 

 

This special type of medium is known as elliptical anisotropy. It can be seen that the 

anisotropic effect on qSV-wave phase velocity disappeared. Additionally, there is only one 

shear-wave singularity which is along the axis of symmetry. The elliptical anisotropy can be 

interpreted as a more symmetric type of VTI media and will be treated first when I am 

solving the Green’s tensor. 

 

2.4  Group velocity 

    One of the signatures of anisotropic media is the group or ray velocities are different 

from the phase velocities. The group velocity is the velocity that energy travels. It is along the 
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ray direction which is the one connected the receiver with the source. In anisotropic media, 

since the phase velocity is usually not perpendicular to the wave front, the ray directions will 

deviant from the phase directions. The ray direction in VTI medium can be calculated from 

the phase direction by equation 2-6 (Crampin, 1981). The   
  and   

  are the phase and 

group angle (ray angle), respectively.   
  is the phase velocity and η is indicating different 

wave modes. 

 

1
arctan( )

p

g p

p p

dV

V d



 

 
 


  

 (2-6) 

 

   For some special types of media, there will be three group velocities of qSV-wave within 

one group angle. This phenomenon is named as shear-wave triplication and its existing 

condition can be described by equation 2-7 (Dellinger, 1991) which means that the group 

angle will decrease while the phase angle is increasing. It will result in a strongly tilted wave 

front of qSV-wave and the energy participation will be complicated. 

 

0
g

p

d

d






 (2-7) 
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3. Green’s tensor 

 

3.1  Isotropic medium 

Equation 3-1 and 3-2 are elastodynamic Green’s tensor in isotropic medium.  

 

2 2 2 2

( )1
( , )
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k k
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V V
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 
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
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0 0
0

0 0

0 0

0

r - r r - r
r r

r - r r - r

r - r r - r

r - r

 

 

Function H is Heaviside step function. As can be seen from equation 3-2, the 

elastodynamic Green’s tensor contains both the far- and near- wave field. It has four variables 

of “         ”, which are time and space locations of the wave field and source respectively. 

The first and second terms on the first line of equation 3-2 correspond to the P- and 

S-wave at the far-field. The function “    ” and “        ” are related with the polarizations. 

Dirac delta function indicates the wave front, which is spherical for isotropic media. These 

two parts are called the far-field because their amplitudes are proportional to 
 

 
. They will 

decay slower than the third part of equation 3-2. 

The third part of equation 3-2 is the near-field, which can never be calculated by plane 

wave equation 2-1. It lies between the P- and S-wave and decays much faster than the 
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far-field. However, it contains information about the source. Its nature can be interpreted after 

the Green’s tensor is convolved with the source-time function (source wavelet).  

 

2 2

2 2

3 3
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4 4
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 
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 
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   

 
   

 
   

 (3-3) 

 

The solution is equation 3-3.   
  and   

  are the integral of the source-time function 

over time. It can be seen that the near-field can be further decomposed into two parts that 

proportional to 
 

  
 and 

 

  
. The polarization of the near-field is complicated, which has both P 

and S modes.  

The near-field reflects the interaction between the P- and S-wave. It’s also depended on 

the frequency of the source-time function. As the frequency increase, the near-field will 

become less significant. 

 

3.2  VTI case 

In this part, the scheme for solving the elastodynamic Green’s tensor is explained and 

shown analytically for the elliptical and weak anisotropic medium. For the more complicated 

type of symmetries, the general method will be discussed in part two of the thesis. 
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3.2.1 In k-ω domain 

The dynamic Green’s tensor in k-ω domain can be found by calculating the negative 

inverse matrix of Green-Christoffel tensor (equation 1-5). Since I want to find the formula 

related with the measurable stiffness tensor    , I use equation 1-2 to calculate the 

displacement field directly. In k-ω domain, convolution will become multiplication. 

 

( , ) ( , ) ( , )i ij ju k G k f k    

 

In this case, the source is supposed to be an impulse in r-t domain thus will be constant 

throughout the k-ω domain. After incorporated the source component   , the Green’s tensor 

can be found. 

 

2 2 2 2 2 2 2 2 2 2 4 2 2
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2 2 2 2 2 2 2 2 2 2 2 2 2
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f
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k k f C C k V k V k V C C k C C k
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k k f C C k V
GC








   

   

 

          

          

   2 2 2 2 2 2 2 2

33 44 3 12 44) ( ) ( )] [( ) ( ) ]}SV SH rk V k V C C k C C k        

(3-6) 
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 (3-7) 

3 2 2 2 2 2 2 2 2 2det | | ( )( )( )km P SV SHGC k V k V k V         

1,2   1,2j   

 

The phase velocities can be found by equation 2-5-a, which can also be written as 

equation 3-8-a, 3-8-b, and 3-8-c. 

 

1

22

211 33 11 33
13

1

2 2
PV



               
     

(3-8-a) 
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     

(3-8-b) 
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2
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(3-8-c) 

2 2

11 11 44 3rC n C n       1 3 1 3 4 4 3( ) rC C n n    

2 2

22 66 44 3rC n C n       
2 2
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1 2 31rn n n n     

 

Γ
  
 only has four radial elements. Equation 3-6 and 3-7 can also be written in the 
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matrix form. 

 

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

u G G G f

u G G G f

u G G G f

     
     
     
          

 

 

The elements of elastodynamic Green’s tensor in VTI medium are listed below. 
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For     and    , I separate the Green’s tensor into qP-qSV part and SH part. It will 
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leads to severe mistakes if one applied the stationary phase approximation without separating 

them. Generally speaking, there will be a wrong S-wave and the solution will blow at 

shear-wave singularities. 

 

3.2.2 Elliptical anisotropy in r-t domain 

For the elliptical anisotropy, the problem is largely reduced. Each step of calculation is 

present and will be discussed in this chapter. 

I start from the Green’s tensor in k-ω domain (equation 3-9). The next step is to calculate 

the inverse Fourier transform to take the formula back to time-space domain. Starting from 

the equation below, there are four integrals for three-dimensional phase wave-number (or 

slowness) vectors and angular-frequency. The integral is being calculated in cylindrical 

coordinate system. 

 

3

2

[ cos( ) ]

3 3 3 34

0 0

1
( , , , ) ( , , , )

(2 )
ri k r k z i t

r r ru r z t u k k e e k dk dk d d


      



  

  

 

      

 

I used residue theorem to calculate the integral over   . There are at most six 

singularities lies in the determinant of Green-Christoffel tensor, which correspond to the qP-, 

qSV-, and SH-wave propagated upward and downward. If I choose an observation location 

above the source, there will no downward-propagating wave and vice versa (for the 
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homogeneous medium). Thus the six singularities of    reduced to three causal ones. 

According to Jordan’s lemma, the path of integral lies in the lower half-space of the complex 

plane (figure 3-1). The poles of qSV- and SH-wave are shown schematically, their true 

locations are related with the stiffness tensor. For instance, if     is less than    , the phase 

velocity of the SH-wave will be faster; therefore, the corresponding wave number will be 

smaller. 

 

 

Figure 3-1, Contour of the integral. 

 

The contour detours the singularities. According to Cauchy’s residue theorem, the 

integral will equals zero. 

 



23 

3 3 3 3 3 0

P SV SHk k k big arc

dk dk dk dk dk





          

 

As the radius of the big arc goes to infinity, the integral on the big arc will vanish. And 

the integral over    is depending on the small arcs. 

 

3 3 3 3 3 3 3 3

P SV SH P SV SHk k k k k kbig arc

dk dk dk dk dk dk dk dk





                 

 

The integral on small arcs can be calculated by the Cauchy principal value integral. Take 

    as an example, for the cases when “   ”, the solution will be 
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(3-10) 
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P

k k
V


    (3-11 a) 

2
2

2

0

SV r

S

k k
V


   (3-11 b)

 
 

For parts of downward propagation, the integral can be solved in a similar way.  
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The two parts in equation 3-10 are related to the qP- and qSV-wave, respectively. There 

is no SH-wave because that     is corresponds to the force along Z-axis; therefore, there is 

no excitation in the transverse plane (the plane perpendicular to radial plane within the SH 

polarization).  

Then the integral over azimuth angle can be calculated by the Bessel integral. 

 

2

cos

0

1
( ) cos( )

2

ix

n n
J x e n d

i



  


   

 

      is the nth-order Bessel function of the first kind. Considering the property of TI 

medium and the source component, there will be no Bessel function higher than order-two in 

the solutions. Substituting the above Bessel integral into equation 3-10, one gets the formula 

below. 
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 
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 





   
  

 



   

 

I use the stationary phase approximation (Bleistein, 1984) to find the asymptotic 

solution of the above integral. The Bessel function has the analytical asymptotic formula in 

equation 3-12.  
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( )
2 4

2
( )

r

n
i k r

n

r

J x e
k r

 


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  (3-12) 

 

The stationary phase approximation is a kind of asymptotic expansion at high frequency. 

For this study, the major part of energy is travelling at the directions close to the ray direction. 

At other directions, the integral over horizontal slowness gives a vibrating result which will 

be cancelled if the frequency goes to infinity. The result is the leading far-field terms of the 

Green’s tensor.  

The SPA is dedicated to find the asymptotic solution of the integral below. 

 

( )( )

b

i t

a

I f t e dt   

 

A point is called stationary phase point at which the first derivative of the phase function 

equals zero but the second derivative does not vanishes. The SPP solution can be found by 

expanding the phase function at these stationary points. 

 

( )

''

2
( )

| ( ) |

i cI e f c
i c

 



   
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The stationary horizontal wave-number for qP- and qSV-waves for the elliptical 

anisotropy are listed below. 
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2
2 2 2
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After transforming the frequency to time, the final result can be found below. 
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The above formulas are valid while the source is located at the origin. θ is the polar 
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angle. The inverse Fourier transform over frequency can also to be evaluated for different 

types of wavelets. 

The dimensionless function   
   and    

   are related with the radiation pattern of qP- 

and qSV-wave. They are indicating the differences between the TI and isotropic Green’s 

tensor. For the isotropic Green’s tensor, the radiation pattern only depended on the geometry 

of the observation (receivers). However, in VTI medium, it’s also related with the stiffness 

tensor of the medium. Even the phase velocity for qSV-wave is isotropic, its amplitude are 

still affected by the anisotropic property of media. 

The “M function” can be interpreted as an anisotropic-weighted sinusoid function.  The 

bracket in the Dirac delta indicates the shape of the wave-front. For the qSV-wave, it is 

spherical which corresponds to the property of elliptical anisotropy. For the qP-wave, the 

wave front is depending on the “M function”.  

The other elements of Green’s tensor can be calculated with the same manner. For 

example,     in the space and frequency domain are shown in equation 3-14 where   is 

azimuth angle.  

. 
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(3-14) 
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As can be seen from equation 3-14, the Green’s tensor can be separated as the radial and 

transverse part which corresponds to the different projection of the force. There are three 

waves travels at the phase velocity of qP, qSV, and SH, respectively. The “F function” 

controls the radiation in the vertical plane and the radiation in isotropic plane are depended 

only on the geometry.  

 

3.2.3 Weak anisotropic case in r-t domain 

In this section, I am trying to solve the far-field Green’s tensor via SPA in weak-VTI 

media. Thomsen’s parameters are employed to simplify the solution. One important point is 

that this weak-anisotropic approximation is only focused on qP-qSV part. The SH part can 

always be solved analytically by the method mentioned in the above section. 
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I again started from the Green’s tensor in k-ω domain and follow the same manner to 

calculate the integral over vertical wave-number. The difference is that rather writing the 

dispersion relationship as equation 3-11-a and 3-11-b, I consider the full solution for the 

general VTI medium. They are written in term of the slowness but not wave-number in order 

to eliminate the frequency dependency. 
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Similar to the phase velocity solution (equation 2-5-a), there is a long expression under 

the square root. After expanding this term at small   and ε (Thomsen parameters), the 

dispersion relationships can be simplified. 

 

2 2 4 2

02

0

2 2 4 2

02

0

1
(1 2 ) 2 ( )

1
(1 2 ) 2 ( )

1

r r P

P

r r P

S

p p p V
V

p p p V
V f





  

 
 

    


    



  (3-15 a & b) 

 

This simplification will not affect the Bessel integral. Taking     as an example, the 
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final integral over horizontal slowness can be written as equation 3-16. 
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Expanding the Bessel function at far-field and calculating the first-derivative of the 

phase function. I found the equation for solving SPPs when neither of z and r equals zeros. 
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Since I am trying to find the square of the slowness, the above equations are cubic ones 

and they can be solved analytically. Among the three solutions, only the one with real value 

has physical meaning and can be used in SPA solution. 

When “z=0”, the above equations reduced to: 
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It is equivalent to equations (3-15). For the case when “r = 0”, the SPPs are set to zeros 

to be physically meaningful.  

After finding the SPP and substitute them into equation 3-16, I can get the approximated 

analytical solution for weak-VTI media (equation 3-18). Equation 3-17-a and 3-17-b can also 

be evaluated by numerical methods like Newton-Raphson method.  
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(3-18-1) 

 

The apparent singularities when z or r equals zero can be removed by L’Hopital rule. 
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The accuracy of the weak-VTI-approximated stationary points is depending on the elastic 

property of the media. The solutions will be accurate when equation 3-15 is not too far away 

from the exact one. For some directions (θ), the small deviant of the SPP may lead to big 

error for the qSV-wave radiation pattern due to the unphysical value of the stationary phase 

slowness. The accuracy of this approximation will be discussed in detail in the next section.  

Besides, SPA may not be a good way to model the strongly distorted wave-front like 

shear-wave triplication which will happen in TI media (Tsvankin, 1995). For this type of 

media, the numerical solution is suggested and will be discussed on the following chapters. 

Equation 3-18 is the Green’s tensor in r-t domain where     and     are the stationary 

vertical slowness calculated by the dispersion relationship.  
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(3-19) 

 

The other elements of Green’s tensor can be calculated in the same manner. For    , 

   , and    , the only differences with     and     are the projection of the displacement 

in the isotropic plane (equation 2-9). Thus they will not be shown in this thesis. 
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4. Synthetic results – radiation patterns and synthetic 

seismogram 

In this section, the radiation patterns and synthetic seismograms calculated from the 

above analytical solution are shown. First of all, the isotropic cases are shown. Then the exact 

far-field analytical solution of the elliptical anisotropy is shown and compared with the 

isotropic solutions. At last, the approximated far-field solution for weak-anisotropic media is 

presented and its property will be discussed in detail. 

 

4.1  Radiation patterns 

4.1.1 Introduction and lobe plots 

In this thesis, the definition of radiation pattern is limited to the amplitude generated by 

the unit force at the unit distance from the point force. Using the isotropic Green’s tensor as 

an example, the radiation pattern will be the argument in front of the Dirac delta function and 

is shown below for the P-wave part of    .  

 

2

3 3
33 24

p
p

n f
RP

V
  (4-1) 

 

For the physical interpretation, I need to refer to figure 4-1. Remembering the definition 

of the Green’s tensor,     is responsible for the vertical displacement generated by the 
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vertical force. As can be seen from figure 4-1, the vertical force is     while    is the vector 

of ray direction. The first    is to project the vertical force    into the ray direction 

(P-wave). Then the second    is to project the “P-wave-force” back to the vertical axis 

which is related with the vertical displacement   .  

 

 

Figure 4-1, Relationship between the source and the radiation patterns. 

 

Similarly, the expression for radiation patterns in elliptical anisotropic Green’s tensor 

can be found from equation 3-14 and 3-15.  

The elliptical anisotropic stiffness tensor (equation 4-2) is obtained by Gajewski 

(Gajewski, 1993). The stiffness tensor for the compared isotropic media is calculated via the 

simple average method presented in the same paper. 
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The radiation patterns of P- and S-waves for isotropic    ,    , and     are plotted 

versus the polar angle in Figure 4-2-a, 4-2-b, and 4-2-c. The elliptical anisotropic cases are 

plotted in Figure 4-3-a, 4-3-b, and 4-3-c. It can be seen that the anisotropic radiation patterns 

are not far from the isotropic one. However, even the phase velocity of the qSV-wave is 

isotropic; its amplitude still behaves differently. This is resulted from the tilted polarization of 

the qSV-wave. These results are well-agreed with the ones obtained by Gajewski (1993). 
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(a) 

(b) 

(c) 

Figure 4-2, Isotropic radiation patterns: the P- and S-wave are on the left and right. 

(a)-   , (b)-   , and (c)-   . 

 



37 

 

(a) 

(b) 

(c) 

Figure 4-3, Radiation patterns of elliptical anisotropy; the P- and S-wave are on the left and 

right. Azimuth angle equals zero. 
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From figure 4-3, the lobes for vertical displacements are slightly “fatter” while the 

horizontal displacements are “slimmer” than the isotropic cases (figure 4-2-a and 4-2-b). This 

is result from the amplitude polarizations for qP- and qSV-wave are not along the ray 

direction but slightly tilted to the vertical axis. For the case when azimuth angle equals thirty 

degrees, the radiation patterns for qSV- and SH-wave from     are plotted in figure 4-4. The 

radiation pattern of SH part is slightly affected by the phase velocity variation along different 

polar angles.  

 

 

Figure 4-4, Radiation pattern for the SH- (left) and qSV-wave (right) 

at 30 degree azimuth. 

 

The stiffness tensor for the weak-anisotropic media is completely empirical (equation 

4-3). The radiation patterns of qP- and qSV-wave for    ,    , and     are plotted with 
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polar angle in figure 4-5-a, 4-5-b, and 4-5-c, respectively. Similarly, the radiation patterns of 

qSV- and SH-wave at thirty degree azimuth are plotted in figure 4-5-d. 
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(a) 

(b) 

(c) 

(d) 

Figure 4-5, Radiation patterns for weak-anisotropic case.  

(a)-   , (b)-   , (c)-   , and (d)-     (qSV- and SH-wave). 
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4.1.2 Discussions on the radiation patterns in weak VTI media 

In this section, I will examine the behavior of the approximated asymptotic solution of 

the Green’s tensor in weak VTI media and to compare them with the numerically calculated 

results for three different models. First I will study the simplified slowness function (equation 

3-15-a and 3-15-b). The approximated dispersion relationship is for the primary interests 

since it will affect the SPP calculation as well as the second derivative of the phase function 

and eventually the radiation patterns.  

The stiffness tensors of the three models are listed in Table 4-6 while the first model is 

same as the one in equation 4-3. 

 

Model                           

#1 34.60 30.36 8.36 12.63 12.61 -0.033 0.070 0.374 

#2 34.60 28.36 8.36 12.63 12.61 0.073 0.110 0.126 

#3 36.6 28.36 8.36 12.63 12.61 0.073 0.145 0.244 

Table 4-6, the stiffness tensors (GPa) and Thomsen parameters of three models. 

 

For the first model, the vertical slowness versus horizontal one is plotted in figure 4-7–1. 

It can be seen that the behavior of the simplified qP-wave slowness is close to the full 
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solution. However the qSV-wave is deviant from the exact one at large horizontal slowness. 

Tsvankin and Thomsen (1994) have pointed out that qSV-wave’s velocity behavior is 

determined by the parameter σ (equation 4-4) which is directly related with “   ”. I receive 

the same conclusion that this parameter will also influence the slowness behavior since it 

appears explicitly in equation 3-15-b. The deviant of the approximated slowness is resulted 

from the high σ value. This will lead to the significant error in SPP calculation and eventually 

to the big error in qSV-wave radiation pattern (figure 4-7-2 and 4-7-3). 
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(a) 

(b) 

Figure 4-7-1, Approximated and exact qP- (a) and qSV-wave (b) vertical slowness 

behavior versus horizontal slowness for model one. 
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  (a) 

  (b) 

Figure 4-7-2, qP- (a) and qSV-wave (b) SPP calculation for model one. 

     

(a) 

(b) 

Figure 4-7-3, qP-wave far-field radiation patterns of     (a) for model one 

 and its relative error (b). 
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    The radiation patterns of the media in equation 4-3 and their relative error is plotted in 

figures 4-7-1 to 4-7-8 for    ,    , and    , respectively. The errors are calculated by 

equation 4-5. For the qP-wave, the approximated solution behaves very well. The error is 

lower than 1.5% for the most cases. However, the qSV-wave behaves well at small polar 

angles (less than 30 degree) and the error increase rapidly around 50 to 60 degrees. The 

exact radiation changes more rapidly at 45 degree but the approximated one changes more 

smoothly. 

 

apx ext

ext

G G

G



  (4-5) 

    

(a) 

(b) 

Figure 4-7-4, qSV-wave far-field radiation patterns of     (a) for model one  

and its relative error (b). 
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    The behavior of     and     is not far from    . For the qP-wave, the error will grow 

as the polar angle increase. The qSV-wave radiation behaves better than the    . Similarly, 

the full solution is more angular than the approximated one. It is because the second–order 

simplified dispersion relationship can only be a smooth approximation of the exact solution 

and are unable to model the rapid change of radiation pattern.  

The difference in the error trends is caused by the different structure of the Green’s 

tensor. The hybrid method which using the numerical method to find the SPP and substitute 

them into Green’s tensor may help to lower the error at intermediate polar angles, but cannot 

lower the highest error significantly.  

 

(a) 

(b) 

Figure 4-7-5, qP-wave far-field radiation patterns of     (a) for model one  

 its relative error (b). 
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(a) 

(b) 

Figure 4-7-6, qSV-wave far-field radiation patterns of     (a) for model one 

and its relative error (b). 

 

(a) 

(b) 

Figure 4-7-7, qP-wave far-field radiation patterns of     (a) for model one  

and its relative error (b). 
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(a) 

(b) 

Figure 4-7-8, qSV-wave far-field radiation patterns of     (a) for model one 

and its relative error (b). 

 

The results of model two are shown in figures 4-8-1 to 4-8-7 in the same manner of 

model one. Figure 4-8-1-a and 4-8-1-b are the calculation of SPPs for qP- and qSV-wave. 

Figure 4-8-1-b shows the approximated slowness of qSV-wave is much closer than model one 

due to the lower value of  . The approximated radiation patterns are also closer to the exact 

ones for the same reason.  
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(a) 

(b) 

Figure 4-8-1, Calculated SPP for qP- and qSV-wave for model two. 

 

(a)

(b) 

Figure 4-8-2, qP-wave far-field radiation patterns of     (a)  

for model two and its relative error (b). 
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(a) 

(b) 

Figure 4-8-3, qSV-wave far-field radiation patterns of     (a)  

for model two and its relative error (b). 

 

(a) 

(b) 

Figure 4-8-4, qP-wave far-field radiation patterns of     (a)  

for model two and its relative error (b). 
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(a) 

(b) 

Figure 4-8-5, qSV-wave far-field radiation patterns of     (a)  

for model two and its relative error (b). 

 

(a) 

  (b) 

Figure 4-8-6, qP-wave far-field radiation patterns of     (a)  

for model two and its relative error (b). 
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(a) 

(b) 

Figure 4-8-7, qSV-wave far-field radiation patterns of     (a)  

for model two and its relative error (b). 

 

The results for model three are plotted in figures 4-9-1 to 4-9-7. Thomsen parameters   

and   are higher than those from model two. There is a larger deviant of both the qP and 

qSV slowness. This will lead to a bigger error in the radiation patterns. 
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(a) 

(b) 

Figure 4-9-1, Calculated SPP for qP- and qSV-wave for model three. 

 

(a) 

(b) 

Figure 4-9-2, qP-wave far-field radiation patterns of     (a)  

for model three and its relative error (b). 
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(a) 

(b) 

Figure 4-9-3, qSV-wave far-field radiation patterns of     (a) 

for model three and its relative error (b). 

 

(a) 

(b) 

Figure 4-9-4, qP-wave far-field radiation patterns of     (a) 

for model three and its relative error (b). 
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(a) 

(b) 

Figure 4-9-5, qSV-wave far-field radiation patterns of     (a) 

for model three and its relative error (b). 

 

(a) 

  (b) 

Figure 4-9-6, qP-wave far-field radiation patterns of     (a) 

 for model three and its relative error (b). 
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(a) 

(b) 

Figure 4-9-7, qSV-wave far-field radiation patterns of     (a) 

for model three and its relative error (b). 

 

4.2  Synthetic seismograms in the homogeneous media 

In this section, the synthetic seismograms are shown and studied. First, the theory is 

quickly reviewed. Then, the analytical far-field seismograms and the numerically calculated 

full-waveform solutions are shown in the second section.  

 

4.2.1 Introduction 

Recalling equation 1-2, the displacement is the superposition of the elementary solutions 

(Green’s tensor). In this section, I only consider the homogeneous medium. And I am 

focusing on study the individual part of the Green’s tensor.  
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The calculated radiation patterns are indicating the amplitude variation over different 

directions. The time arrival is depended on the accuracy of the stationary slowness. For the 

approximated results, the approximated slowness of both qP- and qSV-wave are already 

studied in the above section.  

The full-wave-form exact solution can be found by calculating the integral over 

horizontal slowness numerically. There is a singularity at the interface between the real and 

complex vertical slowness. Generally, it will not contribute to the result and can be removed 

by simple methods (Tsvankin and Chesnokov, 1990).  

 

4.2.2 Synthetic examples 

In this section, three models are studied. All the parameters are listed in Table 4-10. The 

first model is the elliptical anisotropic medium in equation 4-2. The second one is the weak 

TI medium in the previous section. The last model is a VTI medium with strong anisotropic 

properties which will lead to shear wave triplication. For the first two models, both the 

analytical and numerical results are studied. For the third one, only the numerical results are 

shown. 

 

 

Model                        

#1 3.52 2.02 0.31 0.42 2.03 1.8 
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#2 34.60 28.36 8.36 12.63 12.61 2.5 

#3 19.38 12.05 3.00 5.43 5.22 2.5 

Table 4-10, stiffness tensor (GPa) and density (g/cc) for three different models. 

 

The results for model one are plotted in figures 4-11–1 to 4-11-3 and 4-11-4 to 4-11-6. 

The source is located at the origin and there are three receivers located at different offsets 

(X=Y=0.5 km, X=Y=0.8 km, and X=Y=1.1 km). For those in figures 4-11–1 to 4-11-3, the 

force is along the Z-axis and I calculate its contribution to vertical (   ) and horizontal (   ) 

displacements. Figures 4-11–4 to 4-11-6 show the results of X-component receivers due to 

forces along the X-axis. The wavelet being used for numerical calculation is described in 

equation 4-6. The analytical solutions are plotted with the same magnitude but only with the 

Dirac delta function. 
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Figure 4-11-1, Z and X components at X=Y=0.5 Z=1 from Z source for model one. 

 

 

 

Figure 4-11-2, Z and X components at X=Y=0.8 Z=1 from Z source for model one. 
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Figure 4-11-3, Z and X components at X=Y=1.1 Z=1 from Z source for model one. 

 

 

Figure 4-11-4, X component at X=Y=0.5 Z=1 from X source for model one. 

 

 

Figure 4-11-5, X component at X=Y=0.8 Z=1 from X source for model one. 
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Figure 4-11-6, X component at X=Y=1.1 Z=1 from X source for model one. 

 

The results for model two are plotted in figures 4-12–1 to 4-12-6 by the same manner. 

The location of receivers was different (X=Y=1 km, X=Y=1.5 km, and X=Y=2 km). It can be 

seen that the approximated qP and qSV solutions are following the behavior of radiation 

patterns described in the previous section (figures 4-8–2 to 4-8-7). 

 

 

 

Figure 4-12-1, Z and X components at X=Y=1 Z=2 from Z source for model two. 
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Figure 4-12-2, Z and X components at X=Y=1.5 Z=2 from Z source for model two. 

 

 

 

Figure 4-12-3, Z and X components at X=Y=2 Z=2 from Z source for model two. 
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Figure 4-12-4, X component receiver at X=Y=1 Z=2 from X source for model two. 

 

 

Figure 4-12-5, X component at X=Y=1.5 Z=2 from X source for model. 

 

 

Figure 4-12-6, X component at X=Y=2 Z=2 from X source for model. 
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Figure 4-13, Group velocities for qP, qSV, and SH in model three. 

 

 

Figure 4-14-1, Z component at X=Y=1.2 Z=2 from Z source for model three. 

 

 

Figure 4-14-2, Z component at X=Y=1.5 Z=2 from Z source for model three. 
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Figure 4-14-3, Z component at X=Y=1.8 Z=2 from a Z source for model three 

 

The group velocity for model three is calculated and plotted in figure 4-13. The 

corresponding seismograms are plotted in figures 4–14-1 to 4-14-3 for    . There are 

additional qS-wave travel between the usual qP- and qSV-wave.  

This effect can be modeled by the numerical calculation. The energy participation in this 

case is very complicated. The wave-front is strongly tilted and the solutions are accompanied 

with the phase shift. The simple stationary phase approximation is not accurate for this type 

of phenomenon. 
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5 Conclusion of Part I 

 

    New forms of elastodynamic Green’s tensor in VTI medium are founded based on 

Tsvankin and Chesnokov’s method (1990). 

The asymptotic solution of elastodynamic Green’s tensor is calculated analytically for 

the elliptical anisotropic medium. The approximated far-field qP-qSV solution for the weak 

VTI medium is found by expanding the slowness into small Thomsen parameters based on a 

newly proposed method. The asymptotic SH-wave, which is essentially elliptical, can always 

be calculated analytically.  

The solution of elliptical anisotropy is exact and agrees very well with the results 

obtained by other methods (Gajewski, 1993). For the weak VTI medium, the accuracy of the 

solution is depending on the value of Thomsen parameters. The accuracy of the qP and 

qSV-wave are related with the parameters δ and ε. For the qSV-wave, the situation is more 

complicated. The parameter σ is determining its behavior. When this parameter is big enough, 

the qSV-wave front will be strongly twisted. At this time, this method fails to work and the 

numerical solution is suggested. 

Generally speaking, the solution of qP-wave is more accurate than the qSV-wave. The 

accuracy of both of them will decrease toward the horizontal plane. 
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Part II 

Green’s tensor in pre-stressed medium 

 

In this part, the effects of static initial stress on the elastic wave propagation are studied. 

At first, the theory of Nikitin and Chesnokov (1981) is introduced and the method of 

calculating the elastodynamic Green’s tensor is briefly reviewed. Then the behavior of the 

phase velocity under initial stress is studied. In the last section, four models of initial stress 

were studied and the results are discussed. 

The intuitive understanding of the influence of initial stress on elastic wave propagation 

can be simply illustrated by the following 1-D rope example, which is mentioned in Biot’s 

paper (1940). Considering the rope, whose elastic property can be described by the Young’s 

modulus, being stretched or relaxed. Its elastic property will be changed. And if there is an 

elastic wave propagates through, it will travel faster in the stretched rope than the relaxed 

one.  

The effect of stress will have a similar impact on the background medium. Combining 

the compacting (or relaxing) with its six-independent elements, the stress tensor may result in 

different symmetry to those caused by other geological reason. 

The thought experiment can be described by the following steps: 

At first, the background medium is presented, which is isotropic and without any cracks 
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or defects. 

Secondly, the initial stress is applied to the medium. At this time, the symmetry of the 

medium may be altered. The symmetry can be complicated due to the structure of the 

deviatoric stress. 

Lastly, the point source was triggered and the elastodynamic Green’s tensor is 

calculated. 

 

6 The setting of the problem 

6.1  Wave equation in pre-stressed medium 

The displacement    is defined as the difference between the present coordinate 

(Eulerian variable)    and the original coordinate (Lagrangian variable)   . 

 

i i iu x a   

 

The stress     in the present coordinate system can be written as the rotation of the 

stress in original coordinate system     which is also known as the second Piola-Kirchhoff 

stress tensor (equation 6-1). 
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       is the Jacobian. It links the densities in present (  ) and the original coordinate 

system ( 0 ). (Bland, 1969) 
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The elastic wave equation in general anisotropic media can be written as equation 6-2. 

   is the force density which has the unit of force over volume. Take equation 6-1 into 6-2 

and considering the equilibrium initial stress, equation 6-3 is obtained. 
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The stress in the original coordinate can be written as the summation of the initial static 

stress    
  and the stress excited by the elastic wave propagation    

 , which is equation 6-4-1. 

The initial static stress can be presented in terms of the initial pressure    and deviatoric 

stress    
  (6-4-2). The negative sign in front of the pressure is chose to make positive 
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pressure is to relax the medium. Equation 6-5 is the Hooke’s law for the second 

Piola-Kirchhoff stress. 
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The stiffness tensor in pre-stressed media can be found by expanding the strain energy 

into Taylor series of the deviatoric initial stress (Nikitin and Chesnokov, 1981). In general it 

can be presented by equation 6-6. The first term is the stiffness tensor of the background 

medium under pressure and the second term is corresponded to initial deviatoric stress.  

There are two conditions in Nikitin and Chesnokov’s theory (1981). First, the initial 

static stress is small compared to the stiffness tensor of the background medium. Secondly, 

the background medium is without any inclusion or fractures. 
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If the background media is isotropic, equation 6-6 becomes equation 6-7. In equation 

6-7,     is Kronecker symbol, while   and μ are Lamé parameters.    and    are the 

dimensionless parameters in matrix        . All of them are depended on the initial pressure. 

The pressure dependency is not limited to the linear relationship. It will not affect the 

symmetry but the strength of the medium. 

Incorporating equation 6-4 and 6-5 into equation 6-3 then removing the higher-order 

terms, the elastic wave equation in original coordinate system can be found. 
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   (6-8) 

 

For the homogeneously distributed initial stress, equation 6-8 becomes equation 6-9. It is 

important to notice that the first term on the right-hand side will vanish when the initial stress 

is zero. Then equation 6-9 is similar to the Eulerian wave equation. 
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 (6-9) 

 

Equation 6-10 is the equation for Green’s tensor. The displacement can be written as the 

superposition of the elementary solution (equation 6-11). I will solve equation 6-10 to find 

the radiation patterns. 
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The Green’s tensor in wave-number–frequency-domain (bilinear form of Green’s tensor) 

can be easily founded (equation 6-12). 
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η indicates the mode of elastic wave (qP, qSv, or qSH). Equation 6-12 can be interpreted 

as the summation of the contribution of different modes denoted by η.   
 

 is the eigenvectors 

in for each mode. ω is the angular frequency and k is the wave number.    is the phase 

velocities which can be anisotropic.  

 

6.2  Calculation of the Green’s tensor 

Tsvankin and Chesnokov (1990) proposed a method to calculate the far-field part of the 

radiation patterns in general elastic media. It’s based on finding the Green’s tensor in 

frequency – slowness (or wave-vector) domain (equation 6-12) and find its Fourier image in 

time-space domain. This method involved solving the four-dimensional integral of inverse 
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Fourier transform (3-D in space and 1-D in time).  

The cylindrical coordinate system is chose to do the computation and the integral 

formula can be written as equation 6-13. 
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(6-13) 

 

The first integral over vertical wave-number    can be solved by residue theorem.  

The second integral over azimuth angle φ can be solved by expanding the integrand into 

low order Fourier series (equation 6-14) and the integral may be reduced by Bessel integrals.  

This step is omitted in the previous sections because that the azimuthally dependent 

property of the Green’s tensor in VTI medium is only to the second order of the Fourier series. 

For the case of initial stress, the integrand is the Green’s tensor which has two variables – 

polar angle (θ) and azimuth angle (φ). The Green’s tensor is expanded into the low-order 

Fourier series of azimuth angle. The vertical slowness is expanded to the first-order Fourier 

series (equation 6-14).  
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Since the analytical formula of phase velocity is not available for media under initial 

stress, the vertical and horizontal wave-number is present as equation 6-15. 
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I did not expand the horizontal wave-number into the first-order Fourier series in order 

to stay in the same formula in Tsvankin and Chesnokov (1990). As have been tested, this will 

slightly harm the solution. This error will be discussed in detail in the following sections. 

The third integral over    can be reduced by the stationary phase approximation. And 

the last integral over angular frequency ω can be solved by considering the Dirac delta. For 

the more detailed discussion about this method, the readers may refer to the previous sections 

or Tsvankin and Chesnokov (1990). 
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7 Green-Christoffel and the plane wave in pre-stressed 

medium 

7.1  Stiffness tensor 

Equation 6-7 can be reduced and written into a second rank symmetric tensor in 

equation 7-1 according to Liao et al. (personal communication, 2010). 
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0

1 22 2( ) , 1,2,3C v v t         

 

There are only five independent elements in the deviatoric stress (trace must be zero). As 

well as Lamé parameters, there are seven independent elements. In the case of uniaxial stress 

along the principal axis of the medium, the above formula can be further simplified (equation 

7-2). 
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7.2  Phase velocity  

I will start from equation 7-3 which is the homogeneous equation for the plane wave in 

pre-stressed medium. 
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In the same manner described in the previous sections, the Green-Christoffel equation 

7-4 can be found, where   is the phase velocity. Due to the complexity of the initial stress, 

the phase velocity is usually solved by the numerical method. 
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7.3  Calculated velocities for different models 

The initial deviatoric stress is presented as equation 7-5. I consider a simplified case 

when the magnitudes of all the elements in stress tensor are equal. 

 

0

ij ijt bA   (7-5) 

 

According to Nikitin and Chesnokov (1981), the uniaxial stress can be present as 

equation 7-6. 
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“a” is an arbitrary number. Ψ and θ are the Euler angles corresponded to the orientation 

of the axis of stress.  

The elastic constants of the background medium in Table 7-1 and the four types of 

uniaxial initial stress in Table 7-2 will be used to calculate the radiation patterns and synthetic 

seismograms. 
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Background Medium Additional Parameters 

λ = 10 GPa b = 1 GPa 

μ = 9 GPa    = 1 

  = 2.5 g/cc    = 1 

Table 7-1, Parameters for the background model 

 

Model  Pressure  Matrix “   ” 

#1 0      =    = 0.5;     = -1; 

#2 -1 GPa     =    = 0.5;     = -1; 

#3 0      =    = -0.5;     = 1; 

#4 0      =    = 0.5;     = -1; 

Table 7-2, Parameters for different initial stress model 

 

It is assumed that the parameters in Table 7-1 are constants throughout the different 

initial pressures. However, this is not realistic since they should depend on the pressure 

(equation 6-7). The reason for doing this is that I want to separate the contribution of initial 

pressure since it appears explicitly in equation 6-9 and 6-10. In the real case, the parameters 

in Table 7-2 may increase or decrease according to the change of initial pressure and the 

effect will be more significant than the following results. 
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The three resulting stiffness are shown in equations 7-7-a, 7-7-b, and 7-7-c. As have 

been mentioned before, since the influence of initial pressure on the stiffness is excluded, the 

results for the first two models are same. The first three vertical uniaxial stresses can result in 

the VTI symmetry while the horizontal uniaxial stress (model four) will produce the HTI 

(horizontal transversely isotropic) symmetry. 
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The first stress model will relax the model along the Z-axis. Equation 7-7-a is the VTI 

medium which is often encountered in the seismology where the largest phase velocities are 

in the isotropic plane. And the elastic wave whose amplitude is polarized within the isotropic 

plane will travel faster.  
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The phase velocity of the qP- and qSV-wave for model one are plotted in figure 7-1. 

They display the anisotropic property as described above. The results for model two are 

plotted with the manner in figure 7-2. Comparing with model one, both phase velocities 

increased due to presence of the compacting initial pressure. 

However, the stiffness tensor in equation 7-7-b will have a different impact on the 

elastic wave propagation. In this case, the direction of the largest phase velocity is along the 

axis of symmetry and the phase velocity of qSV-wave is usually faster. This is because that 

the initial stress is compacting along the vertical direction. Due to this reason, the body waves 

that polarized in the radial plane will travels faster. Without considering the stress, this type 

of symmetry can be caused by the aligned vertical cracks distributed symmetrically besides 

the vertical axis – which is often rare to be observed. The calculated phase velocities are 

plotted in figure 7-3.  
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Figure 7-1, Phase velocities of qP- and qSV-wave in stress model one. 

 

 

 

Figure 7-2, Phase velocities of qP- and qSV-wave in stress model two. 
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Figure 7-3, Phase velocities of qP- and qSV-wave in stress model three. 

 

 

 

Figure 7-4, Phase velocities of qP- and qSV-wave in stress model four. 
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Model four was shown in equation 7-7-c. This is a medium of hexagonal symmetry 

whose symmetric axis is along X-axis. The deviatory stress is expanding the medium along 

the symmetric axis. In HTI media like this, the phase velocity varies with different azimuth 

angles and the largest phase velocity can be found along the isotropic plane (Y–Z plane). In 

this case, the qSV-wave usually travels faster.  

I only show the phase velocities in the symmetry plane (figure 7-4). They are slightly 

higher than the background velocity due to the compaction within this plane.  

 

  



83 

8 Synthetic results – radiation patterns and synthetic 

seismograms 

 

In this section, the radiation patterns and synthetic seismograms are calculated. Lastly, 

the error in the calculation is studied and discussed. 

 

8.1  Radiation patterns 

    Figures 8-1 to 8-4 show the radiation patterns of qP- (a) and qSV-wave (b) in the four 

different models. I only show the results of    . 

There are several reasons causing the distortion of radiation patterns. The first and the 

biggest impacts are from the phase velocity, since it appears in the Green’s tensor directly 

(      
 

   ). Secondly, the polarization of the amplitude for body waves in the anisotropic 

media will tilt from the pure modes.  

Figure 8-1 (a) and (b) shows the results in model one. They are similar with the radiation 

patterns calculated by the stiffness tensor in equation 7-7-a. The difference comes from the 

Lagrangian wave equations 6-9 and 6-10 that there is an additional term related with the 

initial stress. This is one of the unique properties for the pre-stressed media. 

Comparing figures 7-1 and 7-2, it can be seen that adding the “compacting” initial 

pressure will generally increase the phase velocities of both qP- and qSV-wave. This will 
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make the radiation patterns in the compacted media to shrink (figures 8-2-a and 8-2-b). 

However, the overall anisotropic property is not changing. For this study, the contribution 

from initial pressure only lies in the additional term in wave equations. 

Figures 8-3-a and 8-3-b show the results from an uncommon type of VTI medium. The 

radiation patterns (figure 8-3) are different from the ones in model one (figure 8-1) but still 

follow the trend of phase velocities. 

I calculate the result in isotropic plane (90 degree azimuth) for model four. In the 

symmetric plane, both the qP- and qSV-wave become pure modes. The resulting radiation 

patterns are plotted in figures 8-4-a and 8-4-b. They are very similar to the isotropic 

radiations except the phase velocities are different. 

 

(a) 

(b) 

Figure 8-1, Radiation patterns for qP- and qSV-wave in stress model one. 



85 

(a) 

(b) 

Figure 8-2, Radiation patterns for qP- and qSV-wave in stress model two. 

 

(a) 

  (b) 

Figure 8-3, Radiation patterns for qP- and qSV-wave in stress model three. 
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(a) 

(n) 

Figure 8-4, Radiation patterns for qP- and qSV-wave in stress model four. 

 

8.2  Synthetic seismogram 

In this section, I calculate the synthetic seismograms corresponded to the four models in 

Tables 7-1 and 7-2. The receivers are located along the unit radius with different azimuth and 

polar angles. 

The results of the vertical component of receivers are calculated and showed in figures 

8-5 to 8-8. I consider a vertical source and the wavelet described in equation 4-6. The x 

component seismograms from the x-force are shown in figure 8-9 only for model four. The 

azimuth is 90 degrees thus there are only SH waves. 

For the first three types of model with VTI symmetry, the amplitude is following the 

radiation patterns calculated in the above section. The group velocity is approximated by the 
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stationary phase points (figures 8-5 to 8-8).  

The time arrivals of both phases are slightly changing in the seismograms from model 

four. This is not correct due to the fact that the receivers are set in the isotropic plane. In the 

isotropic plane, the phase velocity should be same with group velocity. Thus there is a chance 

for one to evaluate the error by finding the difference in theoretical and calculated time 

arrival. In this way, I study the effect of neglecting the high-order terms in the horizontal 

slowness.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 8-5, Synthetic seismograms at azimuth=90 and theta=50, 60, 70, 80 (from top to 

bottom) in stress model one. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 8-6, Synthetic seismograms at azimuth=90 and theta=50, 60, 70, 80 (from top to 

bottom) in stress model two. 



90 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 8-7, Synthetic seismograms at azimuth=90 and theta=50, 60, 70, 80 (from top to 

bottom) in stress model three. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 8-8, Synthetic seismograms at azimuth=90 and theta=50, 60, 70, 80 (from top to 

bottom) in stress model four. 



92 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 8-9, Horizontal component synthetic seismograms  

at azimuth=90 and theta=50, 60, 70, 80 (from top to bottom) in stress model four. 
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Theta Error in time arrival  

P-wave (in %) 

SV-wave 

(all absolute value) 

SH-wave 

50 0.8 0.7 0.6 

60 1.2 1.2 1.0 

70 2.0 1.9 1.65 

80 2.8 2.7 2.3 

Table 8-1, Error in time arrival calculated for stress model four. 

 

I define the relative error of time arrivals by equation 8-1. The calculated errors are 

shown in Table 8-1. This error is due to several reasons. The biggest one is the expanded 

parts in horizontal slowness is neglected; therefore, the error is increasing towards the 

horizontal axis. Since the horizontal slowness is increasing, the part being neglected will also 

become bigger, thus leads to bigger errors. The error is also linked with the property of the 

initial stress. For the stronger azimuthally anisotropic model, this error may increases 

accordingly.  
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9 Conclusion for Part II 

 

In this part, the elastodynamic Green’s tensor in the pre-stressed medium is calculated 

when the background medium is isotropic and the initial stress tensor is homogeneous. The 

deviatoric part of initial stress will alter the symmetry of the medium while the pressure will 

contribute to the value of the elastic parameters.  

Besides the anisotropic effect, the Green’s tensor in Lagrangian wave equation will 

behaves differently due to the additional term in the wave equation which is linked with the 

initial stress tensor directly. This term will not change the symmetry of the medium but will 

contribute to the overall magnitude of the phase velocity, thus the Green’s tensor. 

The error is introduced since I drop the azimuthally dependent part of horizontal 

slowness in the process of calculating the inverse Fourier transform. The error will becomes 

bigger toward the horizontal plane (X-Y plane) and will increase along with the azimuthally 

anisotropic property of the medium. 
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