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Abstract

Drones, or Unmanned Aerial Vehicles (UAVs), are aircrafts without a human pilot that

are typically controlled and programmed by ground base centers. Although drone utiliza-

tion is becoming more commonplace in recent years, there are a few challenges and draw-

backs that should be addressed in drone scheduling such as: 1) limited weight capacity, 2)

accurate estimation of battery consumption, 3) drone failures during the flight, 4) long and

continuous flight missions, and 5) battery capacity degradation over time. This research

aims to address these challenges in three separate studies.

The first contribution of my dissertation addresses the first and second challenges. Ex-

perimental data shows that the battery consumption rate (BCR) is a linear function of the

payload amount. Any design of a parcel delivery system using drones then needs to con-

sider the BCR, which includes strategic planning of the delivery system and operational

planning for a given region. We developed a minimum set covering model for the strate-

gic planning and a mixed integer linear programming problem (MILP) for the operational

planning. In order to improve the computational time of the operational planning model,

a variable preprocessing algorithm and several upper and lower bounds on the objective

function are proposed. The results indicate the sequence of visiting customers impacts the

remaining charge and that 3 out of 5 (60 %) flight paths are not feasible if the BCR is

not considered. The proposed computational techniques enabled us to solve all the tested

problems, which was not possible without them. Among the three proposed lower bound

generation methods, the network configuration method computationally outperformed the

other two methods.

The second contribution of my dissertation addresses the third challenge. Drone-based

delivery network is considered to ship parcels to customers. In the event of failures, the

demand of the corresponding customers would not be satisfied which is how we account

for the lost demand. Therefore, drone failures in scheduling can be considered to minimize

the expected loss of demand (ELOD). An optimization model (drone delivery schedule with
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drone failures (DDS-F)) is developed to determine the assignment of drones to customers

along with the corresponding delivery sequence. A Simulated Annealing (SA) heuristic

algorithm is proposed to solve the model to reduce the computational time. The proposed

SA features a fast initial solution generation based on the Petal algorithm, a binary integer

programming model for path selection, and a local neighborhood search algorithm to find

better solutions. Numerical results showed that the DDS-F model outperformed the well-

known Makespan problem in reducing the ELOD by 23.6% on a test case. The proposed

SA algorithm was able to reduce the computational time by 44.35%, on average, compared

with the exact algorithm.

The third contribution of my dissertation addresses the last two challenges. A new

approach based on a concept of autonomous battery swap stations (ABSSs) is proposed to

reduce the time for battery swap in a drone-aided surveillance mission. A MILP model

is proposed to determine the ABSS location based on the limitation on the revisiting gap

between two consecutive visits at surveillance waypoints. A battery management algorithm

is also proposed to optimize the number of batteries to be secured at a station for each drone

with the goal of minimizing the battery acquisition and replacement cost over a planning

horizon. The impact of average and standard deviation of battery State of Charge (SOC)

on capacity degradation is considered in this study. Numerical results show that delay

in charging the battery can improve the battery end-of-life by 15.6% when charging is

delayed 25% more for a test case. The results also show that the battery end-of-life is a

linear function of number of required batteries.
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Chapter 1

Introduction

1.1 Background & Motivation

Drones, or Unmanned Aerial Vehicles (UAVs), are aircrafts without a human pilot that

are typically controlled and programmed by ground base centers. There are broad cat-

egories of unmanned aircrafts based on their size from small to big ones. They can be

equipped with sensors, cameras, and other advanced scientific equipment [9]. Because of

the attractive features of drones, there has been an increasing demand for civilian appli-

cations in recent years in areas such as: product delivery [10, 11], surveillance missions

[12, 13], health-care [14, 15], humanitarian logistics [16], traffic management [17], scien-

tific measurements [18], pollutant studies [19] and mapping [20].

Unlike ground vehicles that require road infrastructure, drones are able to fly directly

from a starting location to a destination. Especially in rural areas, road networks are not

evenly spread out. In the event of disaster, roads, bridges and railways might be damaged

and become inaccessible for several days. For instance, one month after hurricane Maria

in Puerto Rico, some towns continued to be isolated and delivery of emergency items was

difficult [21] due to limited access to the area. Figure 1.1 shows water standing in Ponce,

Puerto Rico, one week after hurricane Maria. In such cases, drones are able to fly and serve
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victims in areas that had been struck by disaster.

Figure 1.1: Standing water in Ponce, Puerto Rico, after hurricane Maria, 2017 [3]

Drone speeds can reach speeds up to 60 miles/hour, even for small-sized drones, which

is much faster than the speed of other means of transportation when accounting for the

congestion or obstacles on the way. Due to the limitation of road infrastructure and traffic

congestion, extended travel time is very often seen especially in the case of ground vehi-

cles [22]. Drones have the ability to travel to locations where it might be dangerous for

ground vehicles and humans, which makes them ideal for remote surveillance, emergency

response, delivery to remote locations, and disaster response. For example, drones were

used to fly over the Arctic Ocean for scientific observations and research, one of the most

difficult places on Earth because of the cold sea, ice dynamics, and aircraft icing. They are

able to fly low enough to take detailed measurements that could not be taken with manned

aircrafts or satellites alone [18]. Another example shows a drone’s ability to fly inside

buildings and reach the victims who are stuck there or immobilized [15]. Drones can be a

cheaper alternative to manned vehicles such as trucks because they need fewer labor and

typically have lower prices than manned vehicles. Drones are capable of carrying payloads
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for delivery. They can help improve the efficiency of parcel delivery or in coordination

with ground vehicles as well [14].

In general, drones can either ship parcels in last-mile deliveries [23–25] or they can

survey the environment to collect data [26]. Shipping cost and delivery time are the two

most important factors for online shoppers to decide whether to continue to checkout or

abandon their cart. A survey conducted in April 2017 by Statista [4] indicates that the major

reasons for canceling online shopping include high shipping cost (40%) and long delivery

time (35%) (Figure 1.2). There are many companies dealing with shipping services whose

cost of shipping and services vary greatly. Hence, it is crucial for companies to reduce

shipping costs and decrease delivery times. Delivery methods have evolved over time, and

robots and unmanned systems have emerged as a new way to help deliver parcels in the

near future. Figure 1.3 provides a comparison regarding shipping cost and delivery time

between current delivery options offered by courier provider companies such as USPS or

FedEx, and Amazon Prime Air delivery by drones [27]. Prices are calculated for delivery

of a 5 lb. parcel within 10 miles.

Figure 1.2: Reasons for canceling online shopping [4]
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Figure 1.3: Delivery options costs and waiting time [5]

Another popular application of drones is to survey the environment and collect data. A

group of equipped drones can fly over an area and monitor ground or aerial objects in a

surveillance mission. The main challenge of using battery-powered drones in surveillance

and monitoring missions is their limited flight time which prevents them from performing a

long and continuous flight. They only can serve locations within their flight range restricted

by the drone’s battery life. This can be problematic specially in the case of a continuous

or near-continuous flight. For example, a surveillance mission is in order to maintain the

environment security or to collect necessary data from large areas.

Although there are numerous benefits of using drones for various applications, draw-

backs of drones must be considered in designing a drone-based system, which may include

limited weight capacity, estimation of battery endurance, drone failure during the flight,

long and continuous flight missions, and battery capacity degradation over time. There-

fore, this dissertation research focuses on drone scheduling for such applications as parcel

delivery and surveillance, and provides methods to overcome those drawbacks.
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1.2 Problem Description

To perform a delivery or surveillance mission using a group of drones it is essential to:

1) estimate the battery endurance to schedule a safe return of drones to the base station, 2)

consider the failures of drones along the flight, and 3) to overcome the limited battery flight

time for continuous flight missions.

1.2.1 Estimation of Battery Endurance

One of the biggest challenges that restricts the performance of drones is their limited

flight time. It is necessary to estimate the energy consumption and energy requirement for

any aircraft, and then schedule a safe flight based on that information [28]. Based on their

requirements, drones may be powered by a piston-gasoline engine or by an electric motor.

The endurance estimation of piston-gasoline engines are studied well. However, the range

and endurance of electric engines is less studied [29]. Drones with civilian applications

are usually battery-powered that can fly far based on the capability of their battery to sup-

ply electrical power. The maximum flight time is affected by different factors including

payload amount, flight modes [30] and environmental conditions such as temperature [31]

and wind [32, 33]. In delivery application of drones, the impact of payload amount on the

battery endurance and range of flight is vital and is considered in this study.

Battery-powered drones operating in urban and rural areas are usually small in size

and are able to carry a limited payload. The payload on a drone can, for example, be fire

retardant or crop spraying chemicals. In military applications, the payload usually refers

to different armament. The capability of commercial and military drones to carry payload

can vary from less than one pound to thousands of pounds based on their specifications

[34, 35]. Hence, one drone may be able to handle payloads for multiple customers. But, to

ensure the flight safety, it is important to limit the total amount carried by the drone based
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on their respective weight capacity. This dissertation considers the limited weight capacity

and addresses its impact on the estimation of battery endurance in a delivery of items by

drones.

1.2.2 Drone Failures During Flight

Unmanned systems consist of different components, of which each component has a

limited life span. Drones might fail during the flight due to various reasons such as human

error, mechanical or even environmental issues. The types of vehicle failures can be major,

where the drone is unable to return to the base location, or minor, where the drone can

return to the base but is unable to complete the mission. The mishap rate of unmanned

vehicles is significantly higher than manned vehicles and acts as a barrier to being operated

widely in military and civilian applications. According to King et al. [36], by 2005, the

UAV mishap rate was 100 times higher than that of manned aircraft and approximately

half of them were attributed to aircraft failure. Unreliable UAVs are prohibited in crowded

areas because there are risks for civilians. Although human error is the primary reason

of the mishaps for manned aircrafts (approximately 85%), it is not the main reason for

UAV mishaps (the related percentage is 17%) [37]. In practice, the reliability of drones

is an important factor that is oftentimes missed in most optimization models for drone

scheduling. In delivery applications of drones, a failure can result in losing payload and

dissatisfaction of customers. We propose an optimization model for drone scheduling by

considering the failure rate of drones. The proposed model minimizes the expected amount

of demand that is lost due to drone failures.
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1.2.3 Long and Continuous Flight Missions

One important challenge of using battery-powered drones is their limited flight time due

to their battery capacity. Using dual or multiple batteries will increase the total flight time

but also has drawbacks as it is not cheap and as the payload (battery weight) increases, the

flight time will decrease. In order to serve long-distance locations, a drone battery can be

charged along the flight or the drone can be initialized from a location near the destination

instead of the base control center. By charging drone along the flight, it is able to fly for

longer and can reach long-distance locations. There are different methods to charge drones

during flight which include manned charging stations, autonomous charging stations, and

wireless charging infrastructures along the flight. This research proposes to establish au-

tonomous battery swap stations (ABSSs) in the surveillance environment to swap depleted

batteries after each drone flight with fully-charged ones. By using ABSSs and providing

sufficient number of batteries in each station, drones will be able to spend much more time

in flight. Therefore, it is also important to determine the number of batteries required to en-

able a continuous flight mission that will allow drones to spend less time in stations waiting

for the battery to be charged.

Lithium-ion batteries are a key solution to power storage systems for small-sized battery-

powered drones. One drawback of these batteries is their durability and lifetime. The

Lithium-ion batteries energy and capacity decrease over time. The battery capacity degra-

dation rate depends on parameters including temperature, battery state of charge (SOC),

depth of discharge (DOD), and current magnitude [38]. Among these different parameters,

two major factors that affect the battery state of health (SOH) and its degradation are the

average state of charge (SOC) and the swing of the batteries [2]. Over time, the battery

capacity will decrease and therefore, will need replacement. The impact of average and

standard SOC on the lifetime performance of Lithium-ion batteries and decisions regard-

ing battery replacement and charging policies are studied in this research. Also questions
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such as how many batteries are need, when the battery should be replaced, and how they

should be charged to increase their lifetime are answered in this study as well.

1.3 Objectives & Contributions

This research aims to address the mentioned challenges in three separate studies. The

first work studies the estimation of battery endurance and the limited weight capacity, the

second work is related to the failure of drones, and finally, continuous flight missions and

battery capacity degradation over time are addressed in the third work.

For the first work, a delivery application of drones is considered to examine the impact

of payload amount on the battery consumption rate (BCR). Customers are spread in a given

area and their demand is satisfied by a group of drones. The amount of payload that a drone

can carry is limited which affects the BCR. This work contributes to the literature through

the following:

• Experiments conducted on a Phantom 4 pro+ drone to collect real data to investigate

the effect of carried payload on the BCR. Experimental data shows that the BCR is a

linear function of the payload amount.

• The design of a parcel delivery system including strategic and operational planning is

proposed. The strategic planning portion decides the number of depots and their lo-

cations, and the operational planning portion determines the number of drones should

be used daily, assignment of customers to drones, and sequence of visiting assigned

customers for each drone.

• Novel mathematical models is provided for strategic and operational planning by

developing a minimum set covering and a MILP model, respectively.

• A variable preprocessing algorithm, a primal bound generation method and three
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different dual bounds are implemented a on the objective function to improve the

computational time of operational planning model.

The second work considers the limited weight capacity and failure occurrences of a

drone. We considered a delivery network using drones to ship parcels to customers. Dur-

ing the flight it is possible that a drone fails and is unable to deliver packages to customers.

Therefore, in such cases the customer’s demand is not satisfied and is considered lost de-

mand. Our findings indicate the more reliable the network is, the less amount of demand

will be lost. This work contributes to the literature through the following:

• The concept of calculating expected loss of demand (ELOD) is proposed to evaluate

the reliability of the delivery network.

• A novel drone delivery schedule model with drone failures (DDS-F model) is pro-

posed which is a MILP model that incorporates the impact of drone failures in the

assignment of drones to customers and the flight path planning.

• Implementing a Simulated Annealing (SA) algorithm to improve the computational

time to get optimal or good solutions in a reasonable time. In proposed method, the

seed sequences are created based on the Petal algorithm to generate feasible flight

paths and a local neighborhood search algorithm to find better solutions over itera-

tions.

The third work considers a surveillance application of drones to address the issue of

continuous flight missions and impact of battery degradation over time on the flight sched-

ule and battery management. The flight range of drones is limited and is assumed to cover

locations within their maximum flight range. Using battery-powered drones has numer-

ous technical advantages for surveillance missions, albeit, the limited flight time is a major

drawback for a long and continuous mission. This work contributes to the literature through

the following:
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• Proposing a drone-based continuous surveillance missions where batteries are swapped

at autonomous battery swap stations (ABSSs) to increase drones flight time.

• Developing a novel MILP model to determine the location of ABSSs based on the

maximum revisiting gap between two consecutive visits at each surveillance way-

points.

• Considering the impact of State of Charge (SOC) average and standard deviation on

the battery capacity degradation. The batteries are replaced with new ones at the end

of their life time due to battery capacity degradation over time.

• Proposing a heuristic solution method to determine the number of required batteries

secured for each drone based on the acquisition and replacement cost of the batteries

over the planning horizon.

1.4 List of Outcomes

Journal Publications

• Maryam Torabbeigi, Gino J. Lim, and Seon Jin Kim, “Drone delivery scheduling

optimization considering payload-induced battery consumption rates,” Journal of In-

telligent & Robotic Systems, vol. 97, no.3, pp. 471-487, 2020.

• Maryam Torabbeigi, Gino J. Lim, Navid Ahmadian, and Seon Jin Kim, “An optimiza-

tion approach to minimize the expected loss of demand considering drone failures in

drone delivery scheduling,” under revision to Journal of Intelligent & Robotic Sys-

tems.

• Maryam Torabbeigi, Gino J. Lim, and Navid Ahmadian, “Using Autonomous Bat-

tery Swap Stations (ABSS) to Enable Continuous Drone-aided Surveillance Missions
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Considering Battery Capacity Degradation,” submitted to Journal of Intelligent &

Robotic Systems.

Conference Proceedings

• Torabbeigi, Maryam , Gino J. Lim, and Seon Jin Kim, “Drone delivery schedule

optimization considering the reliability of drones,” In Proceeding of International

Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2018, pp. 1048-1053.

Conference Presentations

• Torabbeigi, Maryam, Gino J. Lim, Navid Ahmadian, and Seon Jin Kim. “ Impact of

Drone Failures on the Drone Flight Schedule in a Delivery Application of Drones,”

INFORMS Annual Meeting, Seattle, WA, Oct 2019.

• Torabbeigi, Maryam , Gino J. Lim, and Seon Jin Kim, “Drone delivery schedule

optimization considering the reliability of drones,” presented in International Con-

ference on Unmanned Aircraft Systems (ICUAS). IEEE, 2018, pp. 1048-1053.

• Torabbeigi, Maryam , Gino J. Lim, Seon Jin Kim, and Navid Ahmadian, “Impact of

Payload Amount on Battery Consumption Rate In a Delivery Application of Drones,”

Selected as Best Student Presentation in INFORMS Annual Meeting. Phoenix,

AZ, November 2018.

• Torabbeigi, Maryam , Gino J. Lim, Seon Jin Kim “Application of Drones for Deliv-

ery of Emergency Items after Disasters,” In Proceeding of Texas Hurricane Center,

Houston, TX, August 2018.

1.5 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we review the

relevant literature on delivery and surveillance application of drones, battery endurance,
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drone failure and battery charging.

In Chapter 3, we develop our drone delivery optimization model by considering the

impact of payload amount on the BCR. We measure the relationship between BCR and

payload amount through the real data collected. Two mathematical planning models are

presented to first determine the location of ground depots and then the flight path of the

drones. Afterwards, a variable preprocessing algorithm and several primal and dual bound

generation methods are proposed to reduce the computational time.

In Chapter 4, we develop our mathematical optimization model to consider the relia-

bility of drones in scheduling. An optimization model (DDS-F) is proposed to determine

the assignment drones to customers and flight schedule. Then a Simulated Annealing (SA)

heuristic algorithm is developed to reduce the computational time.

In Chapter 5, we develop a continuous drone-aided surveillance system by establish-

ing autonomous battery swap stations (ABSSs). The maximum revisiting gap between two

consecutive visit for each waypoint is guaranteed by proposed a mixed integer linear pro-

gramming (MILP) model to determine the location of ABSSs. The battery management is

implemented through a proposed algorithm that optimizes the number of assigned batteries

to each drone, determines the replacement of degraded batteries and shows the impact of

delay in charging on battery life time. We conclude the dissertation and discuss the possible

related future research in Chapter 6.
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Chapter 2

Literature Review

2.1 Vehicle Routing Problem (VRP)

The Vehicle Routing Problem (VRP) is a generic name referring to a class of combina-

torial optimization problems in which customers are to be served by a number of vehicles.

VRP, first described by Dantzig and Ramser in early 1959, was dedicated to optimizing

the path used by oil trucks for a refinery factory in Atlanta [39]. VRP is a generaliza-

tions of Traveling Salesman Problem (TSP) in which the shortest route for a traveler is

determined to visit all of the nodes in a given network. Dantzig, Fulkerson, and Johnson

proposed a basic formulation for TSP [40] which can also be formulated as an integer lin-

ear model [41, 42]. Both TSP and VRP have a set of subtour elimination constraints that

avoids subtours in the optimal solution. A formulation for subtour elimination constraints

was proposed by Miller, Tucker, and Zemlin (MTZ) [43], a similar formulation of which

is used in most of the studies in the literature. A basic VRP can be represented as the

following problem.

Assume there are a set of nodes N = 0,1, ...,n where node j shows customers j and node

0 designates the base depot. There exists a set of vehicles K = 1,2, ...,k. A given cost, ci, j,k,

is associated with each travel made from node i to node j by vehicle k. The binary variable
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xi jk is set to 1 if the vehicle k travels directly from node i to node j. Each customer is

visited by one and only one of the vehicles. Each vehicle serves a set of customers starting

and terminating at the depot with the goal of minimizing the total travel cost [44].

Several recent studies in the literature shown multi-UAV scheduling problems can be

presented in the form of a mixed integer linear programming (MILP) that are similar to

VRP models [45]. Similar to the VRP model, drones have to fly over some set of locations

starting and terminating at a base location in the surveillance or delivery applications. The

resulting operational planning problems can be modeled as a TSP [46, 47], a multiple TSP

[48, 49], or even a VRP [14, 50].

2.2 Solution Approaches

2.2.1 Exact Solution Approaches

There are different exact solution methods to solve a TSP or VRP model and their

variants. This can be categorized into: (1) direct tree search methods, (2) dynamic pro-

gramming, and (3) set partitioning [51]. Direct tree search methods consist of sequentially

building vehicle routes by using a branch and bound tree. One of the first results using this

method was obtained by Christofides and Ellison [52]. Their results indicates the computa-

tional efficiency of the proposed branch-and-bound algorithm for the VRRP is significantly

reduced compared with its efficiency in solving an equivalent TSP. Two well-known relax-

ations of the TSP are the assignment problem (AP) and the shortest spanning tree problem

(SSTP). The solution or lower bound for either of these two problems is a valid bound

on the TSP [53]. The branch-and-bound method is a well-known approach in the TSP

and VRP literature [54]. Multiple studies have suggested better bounds and enhance its

computational performance [55–58].

Eilon et al. [59] proposed one of the first dynamic programming approaches for the
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VRP which was able to solve problems with up to 25 customers. Unlike the branching al-

gorithms (branch and cut, branch and bound, and branch and price) that treat the VRP as an

integer linear programming (ILP) or mixed ILP (MILP), dynamic programming approach

breaks the problem into a number of simpler sub-problems [60]. The efficiency of the dy-

namic programming approaches depends on the number of states that can be eliminated

through feasibility considerations. A well-known dynamic programming algorithm for the

TSP is the Bellman-Held-Karp algorithm [61, 62]. Bellman-Held-Karp dynamic program-

ming algorithm is recently implemented for a delivery system with combining a truck and

a group of drones by Bouman et al. [63]. The authors considered a delivery system using

a truck and a group of drones named the TSP with Drone (TSP-D). They implemented

an approach to skip searching subproblems that are not relevant to the optimal solution.

Their proposed method solved problems that were larger than the problems solved by the

mathematical programming approaches presented in the literature at that time.

Balinski and Quandt [64] were one of the first authors suggest a solution method for the

VRP based on the set partitioning approach. The basic set partitioning algorithm was ex-

tended using the column generation method by some studies in the literature and produced

some of the best exact results [65–67]. The column generation method divides the given

problem into two problems: the master problem and the sub-problem. The master problem

is the original problem with a subset of variables. The sub-problem is a new problem that

determines a new variable [68].

Variable preprocessing is a technique that sets the value of some variables before solv-

ing the model which reduces the computational time by shrinking the solution space. Sev-

eral studies in the literature used the preprocessing technique based on capacity and travel

time constraints to eliminate easily identifiable and infeasible situations from the search

space in a routing problem [14, 69, 70].

Recently, Carlsson and Song [71] used the continuous approximation paradigm for a
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delivery truck that collaborates with a drone to make deliveries. The authors reduced the

problem to a small set of parameters, and then determined how these parameters affect

the outcome of the problem. In continuous approximation paradigm, the difficult to solve

combinatorial quantities are replaced with simpler mathematical formulas that can provide

accurate estimations of the original quantity [72]. Such an approach can be implemented

for TSP and VRP problems and their variants [73, 74].

Pessoa et al. [75] developed a generic exact solver for the VRP and its variants to be

solved by a branch-cut-and-price (BCP) algorithm. The developed solver incorporates re-

laxation, rank-1 cuts with limited memory, path enumeration, and rounded capacity cuts.

The authors showed the efficiency of the solver in finding either comparable or better solu-

tions than the specific algorithms for all VRP variants tested.

2.2.2 Meta-Heuristic Approaches

The complexity of the VRP model increases for larger cases. Therefore, the model re-

quires methods to be implemented to find satisfactory solutions faster [76]. Meta-heuristic

algorithms make few or no assumptions about the type of problem. They start with an

initial solution and then improve it over iterations. The meta-heuristic algorithms do not

guarantee to find the optimal solution. The theoretical underpinnings of what makes one

meta-heuristic more effective than another are still poorly understood [77]. The followings

are well-known meta-heuristic algorithms to solve VRP models:

• Genetic Algorithm (GA): GA was first proposed by Holand [78]. It is commonly

used to generate high-quality solutions by using mutation, crossover and selection

operators [79]. GA starts with a set of initial solutions and a fitness value is asso-

ciated with each solution. In each iteration, the solution with better fitness value

are selected from the current population which generates the next generation [80].
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It is common to use a direct representation and to use specially designed operators

(such as crossover) for the VRP. The reason is that the classic operations, which

works on binary strings, would not work well on a VRP tour [77]. Two commonly

used crossover operators for the routes are OrderCrossover (OX) [81] and the Edge

Assembly Crossover (EAX) [82]. In general GA is not as competitive as other meta-

heuristics at solving the VRP. However, Nagata [82] and Berger et al. [83] reached

the best known solution by using GA and are competitive with Tabu Search methods.

• Simulated Annealing (SA): Inspired by the annealing in metallurgy, SA provides

an approximate solution for the VRP based on a randomized local search algorithm

[84]. It is usually used for the problems with a discrete search space such as TSP.

The neighbor solution generated in each iteration is accepted with a probability de-

pendent on the quality of the solution and a global parameter named temperature,

T . The parameter T is reduced through the algorithm and controls the probability of

accepting worst solutions. The final value of T can be used as a stopping criteria as

well. SA can be preferable to exact algorithms such as Branch and Bound for finding

the approximation of the global optimum in a limited amount of time. Robuste et al.

were one of the first authors to implement the SA for the VRP [85]. Osman used the

SA algorithm for the VRP by expanding upon many areas of the basic SA [86].

• Tabu Search (TS): TS is a neighborhood-search algorithm which iteratively searches

the better solution in the current solution neighbourhood [87]. To overcome cycling

between solutions, TS keeps a list of solutions that have already been investigated.

These solutions are called tabu and are forbidden for investigation in the next moves.

The first implementation of TS for the VRP was proposed by Willard [88]. Osman

proposed a SA algorithm for the VRP that produced competitive results in compared

with previous heuristic methods [86]. He developed Best-Improvement (BI) and
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First-Improvement (FI) methods to search the neighbourhood in each move. Toth

and Vigo proposed a process to remove direction of search from the neighbourhood

that are unlikely to produce a better solution [89].

• Nearest Neighbor: In this approach, the closest node to the current node is added

repeatedly. This heuristic has the same procedure as a spanning tree [87]. It was one

of the first algorithms used to find the approximation of the TSP which yields a short,

fast tour, but this is usually not optimal.

2.2.3 Swarm Intelligence (SI) Approaches

In the last decade, diverse efforts have been made to develop swarm intelligence meth-

ods. SI is the discipline that deals with systems composed of many individuals that coor-

dinate using decentralized control and self-organization. The individuals have interactions

with other individuals and with their environment [90, 91]. Here we mention most com-

monly used SI algorithms:

• Particle swarm optimization (PSO): PSO is inspired by fish and bird schooling in

nature and was developed by Kennedy and Eberhart in 1995 [92]. The PSO searches

the objective function space by adjusting the trajectories of individual agents, called

particle. Each particle moves based on the position of the current global best solu-

tion, its own best solution collected in its history, and randomly as well [91]. This

algorithm has been successfully applied for different version of the VRP, such as

VRP with time windows (VRPTW) [93, 94], capacitated VRP (CVRP) [95], and

multi-depot VRP (MDVRP) [96].

• Ant Colony Optimization (ACO): The ACO is developed based on the foraging be-

havior of social ants. Ants use pheromone as a chemical messenger, and find the
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shortest path from a food source to the nest [97]. Ants-based algorithms are particu-

larly suitable for discrete optimization problems [98]. In the ant colony optimization

algorithms, an artificial ant is a simple computational agent that searches for good so-

lutions to a given optimization problem [99]. The movement of an ant is controlled

by pheromone, which shows the quality of the solution and evaporates overtime.

Without such a time-dependent evaporation, the algorithm convergences to the local

optimal solutions. The ACO results in good solutions with a proper pheromone evap-

oration mechanism [98]. The VRP is very similar to food-seeking behaviors of ants

in nature by considering the central depot as the nest and customers as the food [100].

This algorithm was first used for the TSP and then has been successfully applied to

the VRP [101–103].

• Bees Algorithm: After the success of the ACO algorithm, there have been a number

of algorithms proposed to exploit the behaviour of bees. The Bees Algorithm was

first proposed in 1977 by Or to solve the TSP [104]. Different variants of these algo-

rithms have slightly different characteristics. For example, forager bees are allocated

to different food sources to maximize the total nectar in the honey bee-based algo-

rithms [105]. The virtual bee algorithm (VBA) was developed by Yang in 2005, in

which the pheromone concentrations is linked with the objective functions more di-

rectly [106]. These algorithms are very flexible in dealing with discrete optimization

problems such as routing problems [107, 108].

2.3 Application of Drones

Drones are able to perform tasks that were traditionally conducted by manned systems.

Drones can perform both outdoor and indoor missions and can be equipped with various

equipment and tools such as night vision cameras and thermal sensors depending on the
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task. The applications of drones cover a wide range of civil and military applications

such as security enhancement [109], search and rescue missions [110], damage assessment

[111, 112], health-care services [14, 113], border patrol operations [114, 115], exploration

of other planets, such as Mars [116], observations of marine organisms, identification of oil

spill locations [117, 118], and communication relays [14]. In this dissertation, the delivery

and surveillance application of drones are specifically considered.

2.3.1 Delivery Application of Drones

Ground vehicles such as trucks are typically used to deliver parcels across the logistic

networks. The general idea is to deliver packages from a base location to pre-selected

destinations by a given fleet of vehicles. UAVs, also known as drones, can deliver packages

alone [14, 119–122] or in collaboration with other ground transportation vehicles [123–

125]. The scheduling model for the drone delivery problem is similar to the traveling

salesman problem [126] when each destination location is served by only one vehicle, and

vehicles start and finish their path at the same location [14, 121, 122].

More recently, large companies such as Amazon, Mercedes-Benz, United Parcel Ser-

vice (UPS), and DHL have planned to utilize drones for delivery purposes [27, 127–130].

Amazon aims to provide a service named Prime Air to deliver packages up to five pounds

to customers within 30 minutes [127] with an estimation of 1$ delivery cost [27]. Ger-

man automaker Mercedes-Benz in partnership with drone startup Matternet proposed a

delivery system with a combination of van and drone to deliver and pick up packages

[128]. Logistics company Matternet had previously operated a medical supply delivery

project by drones in Switzerland [131] in 2017. UPS also tested a residential delivery by

a combination of drone and truck in February 2017 [129]. Logistics firm DHL launched a

Parcelcopter delivery project in 2013 and they were able to complete 130 autonomous flight
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cycles [130] by June 2016. There are also many academic studies that consider the appli-

cation of drones for delivery purposes [31, 123, 132–134]. Some companies like Microsoft

created a UAV simulator software to improve vehicle navigation [135].

2.3.2 Surveillance Application of Drones

In surveillance missions, a group of drones equipped with specific sensors and cameras

monitor ground or aerial objects. High-quality cameras, sensors, and other information

gathering equipment make drones a suitable option for the surveillance missions. Tradi-

tional surveillance methods are typically limited by the stationary nature of the camera and

in the case of wired cameras, can only cover a limited range. Therefore, for surveying

large areas, an abundance of cameras may be needed. in addition, the human resources

needed to observe and analyze the camera recordings can be very expensive [136, 137].

Aerial surveillance can be performed using a helicopter to achieve desired result, but it is

very costly. Drones provide the ideal solution to the problems by addressing the limita-

tions faced by other surveillance methods. Furthermore, drones have features that make

them highly attractive for use in surveillance missions. They can enter narrow and con-

fined spaces, produce minimal noise, and can be equipped equipment such as night vision

cameras and thermal sensors which allows them to provide images that the human eye is

unable to detect [138].

SkyX Systems Corporation, Canadian based company, claims that by using drones the

traditional monitoring costs in pipeline monitoring can be reduced by nearly 90% [139].

Eurecat company and its partners developed a micro aerial robot for sewer inspection

(ARSI) in Barcelona, Spain. A flying sewer drone inspects the state of the city’s sew-

ers, measures air and water quality and keeps track of the state of the walls and blockages.

They expect this project reduces the time that workers are exposed to harsh conditions by
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at least 50% and the cost of inspections by 30%, and increases the number and the fre-

quency of inspections [140]. Drones can be used in traffic monitoring as well where they

can read plate numbers, and detect the vehicle speed. The southwest China police success-

fully used drones to monitor traffic [141]. In addition, drones can be used in homeland

security application and monitor the border lines. They can be equipped with high-quality

cameras, sensors, and other information gathering equipment which primes them for their

specific missions [142]. The Predator B for example, a military drone used by U.S. Cus-

toms and Border Protection (CBP), monitored about 5,000 hours per year from 2013 to

2016 [143, 144].

2.4 Drone Battery Endurance

Some drone studies have considered a fixed value for the maximum flight time that is

not affected by other factors. Kim et al. [14] proposed drones to be utilized in medicine

delivery to patients as well as test sample pickups for blood and urine in rural areas by

drones with a constant value flight time. Deng et al. [145] proposed a drone system for

efficient power line inspection in China while vehicles have a fixed maximum flight time.

Scott and Scott [146] provided two mathematical model for healthcare delivery by drones

under limited flight time and a limited budget.

Many researches conducted works on characterizing the energy consumption of UAVs

but do not consider the scheduling problem. Therefore, their focus is on more accurately

estimating the mathematical model by describing drone energy consumption [28, 147–

151]. The maximum flight time is impacted by different factors including payload amount,

flight modes [30] and environmental conditions such as temperature [31] and wind [32,

33]. Any rotating-wing cycle will be in different modes including hover, climb, descend,

or forward flight or even the combination of these modes. Due to different flow pattern

22



through the rotor, the moment and blade element analysis have specific calculations in

each flight routine [30]. In [31], the authors introduced a robust optimization model to

address the uncertainties in the flight time due to variation in temperature within a day.

In cold weather, battery performance was decreased until a warm-up period has passed.

Wind, on the other hand, is an element that either decreases the flight time depending on if

a drone flies against the wind or increases the flight time due to the Effective Translational

Lift (ETL) phenomenon. Terning [32] and Al-Sabban [33] included the effect of wind in

their model.

Another factor impacting the drone flight time is the weight of payload it carries. Ac-

cording to [28, 148, 152], there is almost a linear relationship between the payload carried

and maximum flight time for lightweight carried products. By increasing the transported

weight, the power consumption rate increases too. In [148], experimental data indicates

a very slight difference between different flight modes (hovering, forward flight, landing,

and translational flight maneuvers). Also in general, due to ETL, the power consumption

rate is larger in hovering mode than the other modes.

2.5 Reliability and Failure Rate

2.5.1 Reliability

Reliability is the probability that a product will operate or a service will be provided

properly for a specified period of time under the design operating conditions without failure

[153]. For each component, it is assumed that the time-dependent failure rate has a bathtub

shape according to Figure 2.1 [154]. During the burn-in period, failure occurs because

of different reasons such as incorrect use procedures, poor test specifications, incorrect

installation or setup. During the useful life period, the hazard rate is almost constant and

the failures occur randomly or unpredictably. After the useful life period, there will be
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wear-out period, in which the failure rates increases. Effective replacement and preventive

maintenance policies can reduce the rate of failures in wear-out period [155]. Reliability

assessment is a feasible measurement to tackle the uncertainty of systems, and in some

industrial region as in power industry it has been a critical index for ensuring the safety of

systems [156].

Figure 2.1: General Bathtub hazard curve

2.5.2 Reliability in Vehicle Routing Problem (VRP)

Road network reliability is a subject of interest in VRP reliability problems. There

are two common definitions of road network reliability: connectivity reliability and travel

time reliability [157–162]. Connectivity reliability is defined as a probability that there

exists at least one path without disruption or heavy delay to a specific destination within a

given time period. Travel time reliability is defined as the probability that traffic can reach

a given destination within a stated time. There are currently 3 main areas of research in

road network reliability analysis: (1) developing a modeling framework to investigate the
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reliability, (2) establishing a traffic management system by using hardware and software,

and (3) developing a new optimization planning by incorporating road network reliability

[159].

Lam et al. considered alternative paths for each pair of origin-destination locations

[162]. They use the weighted sum of path travel time reliability index (RI) and path travel

time index (TI) to quantify the attractiveness of each alternative path. Ando and Taniguchi

considered the uncertainty of travel times in vehicle routing and scheduling problems with

time windows [161]. The authors have considered the probabilistic travel time and an ob-

jective function which calculates the penalty cost based on the arrival time at each customer

location. The Genetic Algorithm (GA) was implemented to solve the model. Gao studied

the travel time reliability in a VRP problem is obtained by using the Monte-Carlo simula-

tion method [163]. Each route travel time reliability is considered to be the multiplication

of edge reliabilities. He proposed a multi-objective model to minimize the expected total

travel time while satisfying travel time reliability constraint. Tang et al. used connectiv-

ity reliability, travel time reliability and road network capacity reliability to measure the

capacity of the network [160]. They established an integer programming model and the

an state transition probability formula which could adapt to the connection reliability and

travel time reliability. The dynamic reliability analysis of a network by a heuristic genetic

algorithm with Monte Carlo approach is applied in Zhang et al. study [158]. They de-

fined the travel time reliability as the probability that the uncertain travel time does not

exceed a given threshold. They also have implemented chance constraints to substitute the

conventional deterministic time window constraints in their proposed model.

2.5.3 Failure Rate of Drones

There are five different type of failures for an aircraft or a drone [164]:
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• Soft failures cause only light degradation of the drone’s functions without interrup-

tion in the mission.

• Moderate failures cause a moderate degradation of the drone’s functions that might

interrupt the mission without severe damage.

• Severe failures cause heavy damages with low chance of repairing the drone.

• Catastrophic failures cause a crash of the drone with possible injuries or even death

of persons on the ground.

The probability of a failure in a system is the sum of the failure probabilities of its

components. Table 2.1 shows the percentage of failures in each main system of drone for

six different drones [1]. The last shows the average percentage of failures for all of them. It

can be seen that most of the failures are due to breakdowns in the power plant system that

can be a result of the fatigue or the overheating of the engine [165].

Table 2.1: Percentage of drone failures in its main systems [1]

Drone Power Flight Communications Human Miscellaneous
Name plant (%) controls (%) (%) errors (%) (%)

Predator A 23 39 11 16 11
Predator B 53 23 10 2 12
Pioneer 2A 29 29 19 18 5
Pioneer 2B 51 15 13 19 2
Hunter 5A 38 5 31 7 19

Shadow 38 0 0 38 24
Average 38 19 14 17 12

The acceptable probability of a crash causing death or serious injury for the civilian

airliners is 10−9 per flying hour. The initial reliability goal for the Predator drone [166]

was a failure rate of less than 50 per 100,000 hours according to the US National Defense

Magazine. Austin suggested an acceptable rate of one critical defect, that causes the aircraft

to crash, in every 1000 flying hours for small-to-medium-size drones [1].
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The available failure rate data in aviation is very limited because manufacturers tend

to not release the information. The failure rate in aviation is measured by the number of

occurrences per 100,000 flying hours [6]. Figure 2.2 shows failure rate over time for four

different common types of drones (Pioneer, PR-3, Global hawk, and predator) and the F-16

jet fighter aircraft [1, 6].

Figure 2.2: Failure rate vs. flight hours for the F-16 and some common drones [1, 6]

The historical reliability data depicted in Figure 2.2 shows the improvement over time.

AS can be seen the failure rate trend for the Global Hawk almost matches that of the F-16

aircraft. Additionally, the smaller drones have a greater failure rate than the larger ones.

Besides the technical and design aspects, the justification for this might be that they operate

in a more hostile environment than the others [1].
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2.6 Drone Battery Charging

The limited flight time of battery-powered drones is one of their most significant chal-

lenges in surveillance or delivery applications [10, 167, 168]. In order to serve long-

distance locations, the battery has to be charged and the drone may need to load new pack-

ages (in delivery applications). There are different ways to increase drones flight range in-

cluding: (1) loading drones with multiple batteries, (2) installing solar panels on the drone,

(3) combining drones with other vehicles, (4) using wireless charging infrastructures, (5)

charging batteries at the stations, and (6) incorporating autonomous battery charging and

swapping systems.

Li-ion batteries are a common energy source for battery-powered drones. Using dual or

multiple batteries may increase the flight duration at the downside of steep battery prices [2]

and increased drone payloads. The battery consumption rate increases almost linearly by

the amount of payload [10, 152, 169]. Therefore, using multiple batteries may not increase

the flight time as much as one might expect.

Furthermore, fixed-wing drones are a type of drone that can carry solar cells and utilize

solar energy as a primary source for a continuous long flights. However, an alternative

power source is necessary in the absence of sunlight which can be a battery but still en-

counters limited flight time issues [170].

Another alternative is for drones to be used in combination with trucks or other ground

vehicles to bring them to a location near the final destination. The ground vehicle carries

drones to a location that is closer to final destinations meaning drones are able to meet their

demand locations within their flight time. Drones can then return to the vehicle multiple

times to be charged and to pick up new packages or transfer collected data. In such a case,

both drone and the vehicle are able to perform missions and serve some locations. There

are multiple studies that considered variations of drone combination with other vehicles
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[123, 132–134].

Wireless charging infrastructures can be installed along the flight path [114, 115] or at

stations [171] to increase flight time. In dynamic charging, the drone battery is wirelessly

charged while flying over the charging infrastructure at a relatively slower speed than the

normal flight speed [172]. Kim et al. [114] proposed installation of electrification line

(E-line) battery charging systems on border walls. Using this approach, the drones do

not return to the depot or stay on at the station for the batteries to get charged. A major

challenge in using wireless charging infrastructures during flights or at stations is the low

charging efficiency as well as long charge time [171, 173].

Another way to increase flight time is using the charging stations which can be station-

ary or mobile [174, 175]. Based on the size of the delivery or surveillance area, multiple

recharging stations might be required in large urban areas to complete missions without

fully depleting their battery [174]. Song et al. proposed using multiple charging stations

for recharging and product-reloading purposes in a delivery application of drones [175].

Song et al. also considered the effect of payload on energy consumption and showed the

impact of charging batteries in providing better service for the customers [175]. One draw-

back of using manned charging stations is that it requires to have a large amount of land

and labor to swap or charge batteries when drones return to the station. Moreover, drones

have to incur wait time for their batteries to get charged or swapped after landing at the

station location.

An autonomous charging and swapping station is equipped with devices to remove the

depleted battery and place it in a charger to get charged without any human interaction.

Different design options for the components of an ABSS can be found in the literature

[7, 176, 177]. Figure 2.3 shows a sample mechanism for an autonomous swap station. In

Figure a, a drone is landing at the station. In Figure b, the depleted battery is extracted

from the drone. And in Figure c, a new battery is placed inside the drone.
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Figure 2.3: An example of an autonomous charging and swapping station[7]

The swapping time for most of the autonomous systems is around one minute [171].

This is a short period of time comparing to average time batteries needed to fully charge,

which is between 45-60 minutes. These autonomous swapping stations can be used for

both ground [178, 179] and aerial battery-powered vehicles [7, 167].

One application of ABSS can be seen with Tesla who aims to use battery swap technol-

ogy to replace the model S battery in less than three minutes. Furthermore, they claim they

can reduce this time to one minute at a cost slightly less than a full tank of gasoline [178].

Additionally, a cost-based multi-objective function is proposed in [179] to address monthly

operating benefits of a taxi fleet with battery swapping stations. Fujii et al. [167] develop

an automatic battery swap system for the drones. Their proposed method eliminates the

need for charging drone’s battery after a mission.
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Chapter 3

Drone delivery scheduling optimization

considering payload-induced battery

consumption rates

3.1 Introduction

Although drones are gaining more attraction for delivery purposes in recent years, lim-

ited battery endurance and limited payload amount remain to be drawbacks for practical

use [180–182]. An accurate estimate of battery endurance during the planning stage is cru-

cial in optimizing drone delivery schedule. For example, a delivery plan based on under-

estimated battery endurance may lead to the loss of opportunities to serve more customers.

As a result, more drones may be required to satisfy the required delivery demand. The

opposite can be much worse because some drones may not be able to return to the base

due to lack of battery before completing the planned delivery. The amount of payload is

one of key factors affecting the flight duration. Therefore, it should be considered in drone

scheduling as it impacts on the battery endurance.

Some existing studies have considered the limitation on the total flight time or the pay-

load amount in drone scheduling [14, 31, 146] and others considered the impact of carried
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payload on the total flight time calculation [152, 169, 183]. However, these approaches

did not address the issue of potential failure of drones to return due to lower than expected

battery charge. There are studies focusing on characterizing the energy consumption of

drones [28, 148, 151], but not in the context of drone scheduling. In order to avoid run-

ning out of charge and utilize drones efficiently, the battery consumption rate is included in

drone routing in this research. A Phantom 4 Pro+ [184] is tested to collect flight time and

remaining battery charge data. We experimentally show that the BCR is a linear function

of carried payload, and it is modelled using linear regression.

A group of drones is considered in this research to deliver small packages to customers

to study the impact of BCR on the fleet scheduling. Two optimization planning models are

proposed to design drone-based parcel delivery: strategic planning (SP) and operational

planning (OP). The number of delivery bases and their locations are determined by solving

the strategic planning model. A set covering problem approach is used to model SP by

taking into account the distance between customers and base locations to ensure feasible

flights. The OP model aims to minimize the number of drones while considering spec-

ifications of drones in drone routing optimization. A mixed integer linear programming

(MILP) model for drone routing and scheduling is proposed to determine optimal drone

delivery assignments and their paths. The optimal solution provides the least number of

drones required to serve all the customers. The variable preprocessing technique, primal

and dual bound generation schemes are developed to reduce the computational time. Over-

all, contributions of this research include: 1) proposing the BCR concept in drone delivery

application to capture the effect of payload amount on battery endurance and estimate pa-

rameters based on case study collected data, 2) proposing two optimization planning mod-

els: strategic planning to figure out the optimal locations to open depots, and operational

planning to determine drone paths by including limitations of payload amount and battery

endurance, 3) providing the solution methodology consisting of a variable preprocessing

32



technique, primal and dual bound generation methods to reduce the computational time.

The rest of this chapter is organized as follows: Section 3.2 explains the collected data

from testing a drone and the corresponding linear regression to estimate the battery con-

sumption rate as a function of payload amount. The SP and OP mathematical models are

presented in Section 3.3, and the solution methodology for OP model is provided in Sec-

tion 3.4. The numerical results and conclusion are discussed in Section 3.5 and Section 3.6,

respectively.

3.2 Drone Battery Consumption Rate

The BCR can be defined as the amount of charge consumption per unit of time (per

minute); it is the rate at which battery charge decreases during the flight. The BCR is

estimated as a function of payload based on data collected using a Phantom 4 Pro+ drone

[184] with specifications stated in Table 3.1.

Table 3.1: Phantom 4 Pro+ specifications

Specification Value
Drone type Phantom 4 Pro+
Battery type LiPo 4S
Net weight of drone
(including one battery and 4 propellers) 3.06 pounds

The data include flight time and the state of battery charge over time. Although the

power consumption can vary depending on the flight mode (e.g., hovering, forward flight,

landing), the difference among different flight modes is negligible [148]. Furthermore, the

power consumption in hovering mode is greater than the other flight modes due to effective

translational lift [185]. Therefore, the data collected in the hovering mode was used in this

research.

Table 3.2 shows the flight time duration in minutes for various combinations of battery

charge (from 15% to 95%) and payload amount (from 0 lb. to 0.882 lb.). For example, it
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took 2.35 minutes for the battery charge to drop from 95% to 85% when the payload was

0.22 lb. The data are also plotted in Figure 3.1, which shows the State Of Charge (SOC)

during the flight for different payload amounts. The payload amount is the amount of

weights that a drone carries excluding the weight of the drone and its battery. A drone can

consume up to 5% of fully charged battery until it reaches the hovering mode. Therefore,

the initial battery charge was set to 95% to be consistent in all experiments conducted in

this research. Another parameter is the minimum remaining battery charge to ensure safe

landing, which is 15% for the drone we used in our experiments. Therefore, the flight time

was recorded in the hovering position with the battery charge between 15% and 95% at 5%

interval. The experiment was repeated for different amount of payloads: 0, 0.220, 0.441,

0.661, and 0.882 lb.
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Table 3.2: Flight time data (in minutes) collected with Phantom 4 Pro+

Remaining

battery level (%)

Payload amount

0 lb. 0.220 lb. 0.441 lb. 0.661 lb. 0.882 lb.

95 0.00 0.00 0.00 0.00 0.00

90 1.45 1.28 1.10 1.01 0.74

85 2.65 2.35 2.03 1.90 1.61

80 4.06 3.61 3.11 2.96 2.60

75 5.48 4.85 4.23 4.02 3.54

70 6.84 6.05 5.23 4.97 4.42

65 8.01 7.08 6.16 5.80 5.20

60 9.39 8.26 7.30 6.80 6.11

55 10.77 9.46 8.35 7.69 7.04

50 12.07 10.62 9.33 8.59 7.84

45 13.19 11.58 10.22 9.41 8.61

40 14.54 12.75 11.30 10.35 9.50

35 15.90 13.90 12.19 11.30 10.33

30 17.15 15.03 13.16 12.18 11.15

25 18.32 16.02 14.07 13.07 11.88

20 19.62 17.18 15.12 14.03 12.69

15 20.93 18.32 16.12 15.00 13.57

Table 3.3 lists the linear regression lines for the data shown in Figure 3.1 and the cor-

responding R-squared values. Since the R-squared values are higher than 99.9% for all

regression lines, we claim that there is approximately a linear relationship between flight

time and battery SOC. For each payload amount, the BCR corresponds to the slope of

the regression line. For example, the BCR value of 4.39 (%/min) means 4.39% of battery
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Figure 3.1: Total travel time vs. SOC for different amount of payloads

charge decreases in every minute of flight. The regression lines clearly show that the BCR

increases as the payload increases. When we increased the payload from 0 to 0.22lb, the

BCR was increased by 14.5% (i.e., moved from -3.834 to -4.390). A similar trend was

observed for other regression lines as plotted in Figure 3.2.

Table 3.3: The BCR values for different amount of payloads

Payload amount
Linear regression line R2 BCR

(lb.) (% /min)
0 SOC = -3.834 t + 95.67 0.9997 3.834

0.220 SOC = -4.390 t + 95.88 0.9996 4.390
0.441 SOC = -4.977 t + 95.71 0.9996 4.977
0.661 SOC = -5.388 t + 95.91 0.9996 5.389
0.882 SOC = -5.867 t + 95.32 0.9994 5.867

In Figure 3.2, the red dots are the calculated BCR values corresponding to different

payload amounts, and the dashed line is the regression model used in the optimization
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model in OP (see Section 3.3.2). We further analyze the resulting linear regression model:

BCR = α× payload +β, (3.1)

where α is the slope and β is intercept. According to Table 3.4, the estimated value of α

is 2.297 ( %
min×lb.) and β is 3.879 ( %

min ). The corresponding p-values of the payload and in-

tercept are below 0.000115, which implies that both parameters are statistically significant.

The adjusted R-squared value of the model is greater than 99%. Therefore, we claim that a

linear relationship exists between the BCR and the payload amount.

Figure 3.2: The relationship between the BCR and the payload amount

Table 3.4: Linear regression analysis: BCR vs. payload

Coefficients Estimate Std. Error t-value Pr(> |t|)
Intercept 3.87886 0.04645 83.5 3.79e-06
payload 2.29705 0.08603 26.7 0.000115
∗Residual standard error: 0.05999 on 3 degrees of freedom
∗Multiple R-squared: 0.9958
∗Adjusted R-squared: 0.9944

37



3.3 Problem Description and Formulations

The problem description and the mathematical models are presented in this section.

This study focuses on the lightweight parcels so that drones can carry them to customers

within the carrying capacity of drone. Each day, a fleet of drones pick up parcels from

the base depots, deliver them to customers, and then return to the base. If the demand of a

customer is greater than the carrying capacity, then the demand can be divided into multiple

sub-orders for delivery.

In a drone-induced parcel delivery system, a strategic planning should be made in the

facility design phase and operational planning decisions are made for parcel delivery sched-

ule. The SP includes the facility planning and decides about the number and location of

depots based on customers’ location and drones’ specifications. The OP includes drone

utilization planning and flight path planning, and decides about the number of drones to

use for the day, the assignment of customers to drones and order of visiting them. The

effect of payload amount on the total flight duration and the remaining battery charge can

be considered in the OP.

3.3.1 Strategic Planning (SP)

A drone starts its flight from a base depot, delivers products to customers, and returns

to the depot. In the depot, the batteries are replaced or charged, and the payloads are loaded

for future flights. Among a set of potential locations, a few of them are chosen to establish

base depots and serve all the customers. A customer can be covered by a candidate location

if the customer is located within the flight range of a drone. Figure 3.3 shows a flight path

consisting of one depot and one customer. In order to calculate the SOC at each flight stop,

the following notation is used:
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SOCi state of charge at node i,
RCk drone k remaining charge on returning to the depot,
di customer i’s demand,
ti j flight time between node i and j (is assumed to be symmetric, ti j = t ji),
αk , βk slope and intercept parameters of the linear function to calculate BCR ac-

cording to Formula (3.1),
MinChk minimum required battery charge for safe landing of drone k, (k=1, 2, ...),
MaxPk maximum payload capacity of drone k, (k=1, 2, ...).

The battery charge at each stop (depot, customer’s location, and again depot) is calcu-

lated through equations (3.2.1)-(3.2.3) by using Formula (3.1):

Figure 3.3: Covering customer i by depot j

SOC j = 100, (3.2.1)

SOCi = SOC j− t ji(αkdi +βk) = 100− t ji(αkdi +βk), (3.2.2)

and RCk = SOCi− ti j(αk×0+βk) = 100− t ji(αkdi +βk)− ti jβk. (3.2.3)

The drone battery is assumed to be fully charged at the beginning of the flight as stated

in equation (3.2.1). Equation (3.2.2) calculates the remaining battery level at location i

considering the amount of payload in the flight segment from depot j to customer i to be

the customer demand. There is no load on the way back to the depot and the remaining

battery level at the end of the path is computed by (3.2.3).
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To avoid running out of charge on landing on the depot and have a feasible flight path,

the remaining charge at the end of the flight should be greater than the minimum charge

requirement, which leads to the following inequality:

RCk > MinChk and ti j = t ji,

→ ti j(αkdi +2βk)< 100−MinChk,

→ ti j <
100−MinChk

αkdi +2βk
. (3.3)

The demand of customers changes daily. Finally, inequality

ti j <
100−MinChk

αkMaxPk +2βk
(3.4)

is obtained by replacement of di with the drone weight capacity. If inequality (3.4) holds,

then inequality (3.3) holds for different amounts of load.

The right hand side of inequality (3.4) depends on the drone specifications and it can

be used to calculate the maximum flight range of a drone. A depot can cover multiple

customers as long as they are located within this drone maximum flight range.

We propose the minimum set covering problem to determine the least number of can-

didate locations to cover all the customers. The notation used in the SP model is:

Sets:
C Set of customers,
S Set of candidate locations for depots.
Parameters:
f j Fixed cost of opening depot at candidate location j ( j ∈ S),
θi j 1, if candidate location j can cover customer i, 0 otherwise (i ∈C, j ∈ S).
Variable:
u j 1, if location j is chosen to open depot, 0 otherwise ( j ∈ S).
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The SP model is a binary linear problem (BLP) aiming at minimizing the cost of open-

ing depots and then the mathematical model can be written as the following minimum set

covering problem:

Min ∑
j∈S

f ju j, (3.5)

s.t.: ∑
j∈S

θi ju j ≥ 1, ∀i ∈C (3.6)

and u j ∈ {0,1}. ∀ j ∈ S

The objective function (3.5) minimizes the initial cost of opening a depot, while all the

customers are covered by at least one open depot (Constraint (3.6)). The parameter θi j is

calculated based on drone maximum coverage range.

3.3.2 Operational Planning (OP)

This section explains assumptions made regarding the types of drones and parcels to de-

liver, and provides a route planning model. Based on the set of drone center locations given

by the SP model in Section 3.3.1, the OP model finds the optimal assignment of drones to

customers and their corresponding flight paths. The limitations on payload amount, battery

endurance, BCR and the remaining charge requirement at the end of each flight path are in-

cluded in the OP model. It is assumed that the batteries are fully charged before departure

and battery level will decrease along the path according to BCR calculation provided in

Section 3.2. The following mathematical notation is defined to formulate the optimization

model:
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Sets:
C Set of customers,
D Set of open depots,
K Set of drones.
Parameters:
M A large number,
di Customer i’s demand,
MaxPk Payload capacity of drone k(k ∈ K),
MinChk Minimum remaining battery level requirement for drone k (k ∈ K),
ti jk Flight time from node i to node j by drone k (i, j ∈ {C∪D},k ∈ K),
αk,βk Slope and intercept parameters of the BCR linear regression model for

drone k, (k ∈ K).
Variables:
xi jk 1 if drone k goes directly from node i to node j, 0 otherwise (i, j ∈ {C∪D},

k ∈ K),
hk 1 if drone k is utilized in the network, 0 otherwise (k ∈ K),
li j Payload carried from node i to node j (i, j ∈ {C∪D}),
SOCi State of charge (remaining battery level) at customer location i(i ∈C),
RCk Remaining charge of drone k at returning to depot (k ∈ K),

yc The order of sequence of visiting customer c in a path (c ∈C).

The routing planning mathematical model is given below:

Min ∑
k∈K

hk, (3.7)

s.t.: ∑
j∈{C∪D}

∑
k∈K

xi jk = 1, ∀i ∈C (3.8)

∑
i∈{C∪D}

∑
k∈K

xi jk = 1, ∀ j ∈C (3.9)

∑
i∈C∪D

xi jk = ∑
i∈{C∪D}

x jik, ∀ j ∈C,∀k ∈ K (3.10)

∑
i∈C

xi jk = ∑
i∈{C∪D}

x jik, ∀ j ∈ D,∀k ∈ K (3.11)
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∑
i∈D

∑
j∈C

xi jk = hk, ∀k ∈ K (3.12)

∑
i∈C

∑
j∈D

xi jk = hk, ∀k ∈ K (3.13)

∑
i∈{C∪D}

li j− ∑
i∈{C∪D}

l ji = d j, ∀ j ∈C (3.14)

∑
i∈C

∑
j∈{C∪D}

di xi jk ≤MaxPk hk, ∀k ∈ K (3.15)

SOC j ≤ SOCi− ti jk(αkli j +βk)+M(1− xi jk), ∀i ∈ {C∪D},∀ j ∈C, (3.16)

i 6= j,∀k ∈ K

RCk ≤ SOCi− ti jk(βk)+M(1− xi jk), ∀i ∈C,∀ j ∈ D,∀k ∈ K (3.17)

RCk ≥MinChk, ∀k ∈ K (3.18)

yi− y j +n ∑
k∈K

xi jk ≤ n−1, ∀i, j ∈C (3.19)

xi jk ∈ {0,1}, li j, SOCi, RCk ≥ 0, lim = 0, ∀i, j ∈ {C∪D},∀k ∈ K,

and SOCm = 100%. ∀m ∈ D.

The objective function (3.7) is to minimize the number of drones used in the network.

Constraints (3.8) and (3.9) ensure that each customer is served only once by exactly one

drone. Flow conservation is guaranteed through constraints (3.10) and (3.11) by which

when a drone enters a node, it must leave the node and visit another one until it completes

its delivery tour. Constraints (3.12) and (3.13) show the utilization of drones. Constraint

(3.14) is to satisfy customer demand. Constraint (3.15) limits the total payload assigned to

a drone up to its capacity. The state of charge of a drone during the flight and at the end of

the path is calculated by constraints (3.16) and (3.17). At the beginning of the path, drone

battery is completely charged (100%) and during the path, it will decrease based on travel

time and the payload weight carried between each pair of nodes (Constraint (3.16)). The

remaining level at returning to the depot is also stated in Constraint (3.17). Parameter M
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is a large positive number. On one hand, if the value of M is too large, it may increase the

solution time. On the other hand, if the value is too small, the model can lose its optimality.

Therefore, finding an appropriate value of M is important. In this research, the value of M

is determined by the following formula:

M = 100+max
k∈K

(αkMaxPk +βk)× max
i, j∈{C∪D}

ti jk. (3.20)

A threshold value for the battery level is considered in Constraint (3.18) to ensure a safe

return to the depot from a flight without running out of battery. Constraint (3.19) is to

eliminate any sub-tours in the network [43].

3.4 Solution Approach

The OP model in Section 3.3.2 is an extended version of Vehicle Routing Problem

(VRP), which is known to be hard to solve [186]. Therefore, this section introduces meth-

ods to solve the OP model faster. By preprocessing in Section 3.4.1 we can fix some of the

variables to 0 before solving the model so that the solution search space will be reduced,

and it reduces time to solve the model. Section 3.4.2 introduces a primal bound genera-

tion method and Section 3.4.3 presents multiple dual bound generation methods for the OP

model. Whenever the primal and dual bounds are equal, the optimal solution is obtained,

otherwise when the gap between them is less than a threshold value ε > 0, the objective

function value is close to the optimal value within an accuracy of ε.

3.4.1 Variable Preprocessing Algorithm

The variable preprocessing procedure is implemented on variable xi jk. Variable xi jk has

three indexes; i and j are for nodes in the network, and k represents a drone. The dimension
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of variable xi jk is (|C|+ |D|)× (|C|+ |D|)× (|K|). However, our experiments showed that

many of them are zeros at the optimal solution. Consequently, the total number of non-

zero variables can be less than 2|C| in the case each customer is served by one drone. The

preprocessing procedure is introduced through statements (1), (2), and (3.24).

1) The model is an extension of VRP and Constraint (3.19) prevents sub-tours in the

solution. A self-loop is an edge between a node and itself. Therefore, it is clear there is no

self-loop in the solution as stated in the following:

Rule 1: ∀i, j ∈ {C∪D},∀k ∈ K, i f i = j then xi jk = 0. (3.21)

2) The total payload capacity is limited to MaxPk for drone k. Thus, if the total demand

of two customers exceeds the capacity, then they should be assigned to different drones as

stated in the following:

Rule 2: ∀i, j ∈C, ∀k ∈ K, i f di +d j > MaxPk then xi jk = 0. (3.22)

Note that if path (depot→ customer i→ customer j→ depot) is infeasible due to load

capacity, then path (depot→ customer j→ customer i→ depot) is also infeasible because

the summation of demand in both paths is di +d j, which is greater than drone capacity.

3) A feasible path should satisfy Constraint (3.18). The remaining battery level at

the end of the path depends on time to travel and payload in each segment of the flight.

Two customers can be assigned to drone k if battery level is at least equal to MinChk. In

an optimistic case, these two customers are the only customers to be served by drone k.

Figure 3.4 shows a path consisting of two customers. According to Equation (3.23.4),

the remaining charge depends on time to travel between locations, payload, and drone

specifications. The battery level in each step of the path can be determined by (3.23.1)-

(3.23.5) as follows:
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Figure 3.4: Example of a path consisting of two customers

SOCo = 100, (3.23.1)

SOCi = SOCo− toik[αk(di +d j)+βk] = 100− toik[αk(di +d j)+βk], (3.23.2)

SOC j = SOCi− ti jk(αkd j +βk) = 100− toik[αk(di +d j)+βk]− ti jk(αkd j +βk), (3.23.3)

RCk = SOC j− t jokβk = 100− toik[αk(di +d j)+βk]− ti jk(αkd j +βk)− t jokβk, (3.23.4)

and RCk ≥MinChk→ 100− toik[αk(di +d j)+βk)]− ti jk(αkd j +βk)− t jokβk ≥MinChk.

(3.23.5)

The SP model may choose multiple locations to establish depots. Therefore, the travel time

between a depot and a customer should be checked for all the open depots. The feasibility

of assigning each pair of customers to open depots regarding the remaining battery level

is tested by (3.24). The rule 3 states if there is no drone to serve a pair of customers, the

corresponding variable xi jk should be fixed to zero as follow:

Rule 3: ∀i, j ∈C, ∀k ∈ K, i f @o ∈ D :

toik[αk(di +d j)+βk]+ ti jk(αkd j +βk)+ to jkβk ≤ 100−MinChk, then xi jk = 0.

(3.24)

46



Note that even if path (depot→ customer i→ customer j→ depot) is infeasible as a result

of insufficient remaining battery level, then path (depot → custome j → customer i→

depot) can be feasible or infeasible as the battery consumption rates in these two paths

are not necessarily the same, and depend on travel time between path segments and the

payload.

3.4.2 Primal Bound Generation

The objective function of OP model is the minimization of number of drones so every

feasible solution provides a primal bound. The location of base centers is determined by

solving SP model. Then, Algorithm 1 is proposed here to find a feasible solution (a primal

bound) for OP model.

Algorithm 1 : Primal bound on the number of drones (a feasible solution)
Inputs:

The number and location of base depots (result of SP model with objective function =
ω

Parameters in OP problem
Step 1:

Assign each customer to the nearest depot.
Step 2:

Solve OP problem for each depot.

Step 1 assigns customers to the nearest open depot. As we solved a minimum set

covering problem in Section 3.3.1 to find the location of centers; at least one customer is

assigned to each depot. In Step 2, OP problem is solved for each depot to find the number

of required drones and their flight paths. If for depot r, the optimal number of drones is

zr, then ∑
ω
r=1 |D| is a primal bound for the OP problem because it represents a feasible

solution.
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3.4.3 Dual Bound Generations

The OP model is to minimize the objective function. Hence, a lower bound is referred

to as dual bound. The dual bounds for a minimization problem are usually found by a

relaxation of the original model to a simpler one. We can either optimize over a larger

feasible set or substitute the objective function by a term with a lower value everywhere. In

the following, we introduce three dual bound generation methods: Lagrangian relaxation

(Section 3.4.3.1), network configuration (Section 3.4.3.2) based bound, and weight capacity

based bound (Section 3.4.3.3). Each of the methods has its own strengths and weakness in

terms of finding a tight dual bound and/or being able to solve the model much faster.

3.4.3.1 Lagrangian Relaxation

Some constraints of an optimization model are harder to satisfy than others. The general

idea of a Lagrangian relaxation [187] is to remove the constraints that make the problem

hard to solve and move them to the objective function with a penalty cost associated with

them. The hard constraints are the most time-consuming constraints and depend on the

model structure. Hence, it discourages constraint violation, while the resulting model is

much easier to solve. Constraint (3.14) is a hard constraint in the OP model and we move

this to the objective function. Accordingly, we relax the corresponding constraints with

associated Lagrangian multipliers µ ∈ {µ1, ...,µ|C|} ≥ 0. The resulting model is stated as:

L(µ) = Min ∑
k∈K

hk + ∑
j∈C

µ j(d j− ∑
i∈C∪D

li j + ∑
i∈C∪D

l ji), (3.25)

S.t: (3.8)− (3.13),(3.15)− (3.19).

The Lagrangian relaxation model is solved iteratively by updating µ in each iteration.

As L(µ) is not differentiable at all points, a subgradient algorithm described in Algorithm 2,

48



is used.

Algorithm 2 : Subgradient algorithm
Inputs:

The number and location of open depots (result of SP problem),
Parameters in OP problem,
Primal bound obtained from Algorithm 1,
µ0,θ, max_iteration, threshold-value.

While(k < max_iteration or ∆µ > threshold-value)
Do {

Step 1: solve the Lagrangian dual problem (3.25) with Constraints (3.8)-(3.13),
(3.15)-(3.19) to obtain the optimal solution;

Step 2: direction=d j−∑i∈C∪D li j +∑i∈C∪D l ji (gradient of L(µk));
Step 3: step size =θ× upper_bound−L(µk)

||direction|| ;
Step 4: update µ: µk+1 = max{0, µk +direction× step size};
Step 5: converged or not? ∆µ = |µk−µk+1| ;
Step 6: k = k +1;
} End While

The objective function states the number of drones to use, and the value cannot be

fractional. Hence, the dual bound obtained by Lagrangian relaxation should be rounded

up to the nearest integer that is larger than the resulting optimal objective value if it is

fractional.

3.4.3.2 Network Configuration

Two customers are considered to be incompatible if they cannot be assigned to one

drone due to any limitations. This situation happens if either Rule 2 or Rule 3 in Section 4.4

is true for a pair of customers i and j, and it is denoted as i|| j. The incompatibility graph

represented by Ginc = (C,EC), where C is the set of customers and EC = (i, j) ∈C×C : i|| j

is constructed by rules 2 and 3. In graph Ginc, an arc represents a pair of incompatible

customers, in which different drones are needed to serve them. Therefore, a complete

subgraph with m number of vertices in graph Ginc shows m incompatible customers, who
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need different drones to be served. In such a subgraph, m drones are needed to serve the

customers in the subgraph because each pair of these customers are incompatible with each

other. Therefore, the the largest complete subgraph in Ginc represents the largest subset of

customers that all of them are incompatible with each other.

In an undirected graph, a complete subgraph is called clique and a maximum clique is

a clique with the largest possible number of vertices [187]. Therefore, the maximum clique

in graph Ginc shows the largest subset of incompatible customers, that each customer needs

a separate drone to be served. The size of the maximum clique in graph Ginc is a dual

bound for the number of required drones. This problem is a well-known problem and there

are some algorithms to solve it fast. Here, we use Bron-Kerbosch maximal clique finding

algorithm [188].

3.4.3.3 Drone Weight Capacity

The assignment of customers to drones has to meet drone weight capacity. Constraint

(3.15) is related to drone capacity limitation in the OP model. This section introduces a

dual bound generation based on the drone weight capacity limitation. A new variable is

defined and the OP model is relaxed as follow: We define the variable ρik = ∑ j∈{C∪D} xi jk

as a binary variable that gets value 1 if drone k serves customer i, and 0 otherwise. Con-

straint (3.8) and Constraint (3.15) in the OP model are simplified and rewritten by this new

variable:

Constriant(3.8) : ∑
j∈{C∪D}

∑
k∈K

xi jk = ∑
k∈K

( ∑
j∈{C∪D}

xi jk) = ∑
k∈K

ρik = 1. (3.26)

Constriant(3.15) : ∑
i∈C

∑
j∈{C∪D}

di xi jk ≤MaxPk hk,

→∑
i∈C

di ( ∑
j∈{C∪D}

xi jk)≤MaxPk hk,
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and →∑
i∈C

di ρik ≤MaxPk hk. (3.27)

Here, customers have different amounts of demand, and their demand should be prepared

and load to drones considering the weight capacity to minimize the number of drones. This

problem can be cast as a Bin Packing Problem (BPP) [189] that consists of drones as bins

with a capacity of MaxPk, and a customer demand as an object with a size of di, and it is

stated as follows:

BPP-weight Min ∑
k∈K

hk, (3.28)

s.t: ∑
k∈K

ρik = 1, ∀i ∈C, (3.29)

∑
i∈C

di ρik ≤MaxPk hk, ∀k ∈ K, (3.30)

and ρik ∈ {0,1}, hk ∈ {0,1}, ∀i ∈C,∀k ∈ K.

The objective function (3.28) minimizes the number of drones used for delivery. Constraint

(3.29) guarantees each customer is served by one drone while the weight capacity of a

drone is satisfied through Constraint (3.30). Feasible region of the OP is a subset of the

feasible region of the BPP-weight because the BPP-weight is a relaxed form of the OP

model. Hence, the optimal objective function value of the OP model is at least as large as

the optimal objective function value of the BPP-weight.

3.5 Numerical Results

This section begins with a case study to demonstrate how the proposed methods work

(Section 3.5.1). Further experiments are conducted to understand the impact of consider-

ing BCR with respect to payload in drone scheduling (Section 3.5.2), and investigate the
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computational efficiency of the proposed solution approach (Section 3.5.3). The Bron-

Kerbosch Maximal clique finding algorithm [188] is implemented in MATLAB [190]. The

other algorithms and the proposed SP and OP models are implemented in GAMS [191] and

solved by CPLEX 12.6.3. [192]. All computational experiments were conducted using a

Linux server with 24 cores and 384GB RAM.

3.5.1 A Case Study

A random test network having 20 customers and 5 depot candidate locations is shown

in Figure 3.5, where square nodes are candidate depots and circle nodes represent the cus-

tomers. A homogeneous fleet of drones similar to the drone used in Section 3.2 is used to

serve the customers. According to the results of Section 3.2, the linear relationship between

BCR and the payload amount is BCR = 2.297× payload +3.879.

Figure 3.5: A random test network with 20 customers and 5 candidate locations
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First, the covering range of each depot candidate location is identified as shown in Fig-

ure 3.6 and Table 3.5. This is determined by the drone battery specifications, the minimum

required charge of 15%, and the maximum payload capacity of 1 lb.

Table 3.5: Covering customers by depot candidate locations for the case study data

Customer Depot
1 2 3 4 5

1 1 1 1 0 0
2 1 0 0 0 0
3 1 0 0 0 0
4 1 1 1 0 0
5 0 1 1 0 0
6 1 1 1 1 1
7 1 1 1 1 1
8 1 0 1 1 0
9 1 1 1 1 1

10 0 1 1 0 1
11 0 1 1 0 1
12 1 0 1 1 0
13 1 1 1 1 1
14 1 1 1 1 1
15 0 1 1 0 1
16 0 0 1 1 1
17 0 0 1 1 1
18 0 0 1 1 0
19 0 0 1 1 1
20 0 0 1 0 1

Second, a subset of candidate locations is determined by the proposed SP model in

Section 3.3.1. As can be seen from Figure 3.6, some customers can be covered by just one

candidate location (e.g., Customer 2), some others (e.g., Customer 1) can be covered by

multiple locations (D1, D2, and D3), and yet others can be covered by all depot candidates

such as Customer 9. According to the result of the SP model in Section 3.3.1, two (D1

and D3) out of five candidate locations are selected to establish depots there. Third, the

optimal assignment of customers and drone paths are determined by the OP problem as

discussed in Section 3.3.2. We apply both the primal bound and dual bound generation
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Figure 3.6: Covering customers by depot candidate locations

methods on the objective function (Section 4.4). This step is important in reducing the

computational time; our initial test run of more than 24 hours returned an objective function

value of 10 for the problem instance with 18% relative optimality gap, i.e., relative gap =

PrimalBound−DualBound
PrimalBound ×100.

• Primal Bound Generation

Step 1: Assign customers to the nearest depot using Algorithm 1. Hence, customers 1,

2, 3, 7, 8, and 12 are assigned to D1 and the rest of them are assigned to D3.

Step 2: Solve OP problem for each depot to get the optimal paths.

The experiments took 20.82 minutes with 0% relative optimality gap to solve the OP

problem for both depots. The results are presented in Table 3.6, in which four drones

are assigned to Depot 1 and six drones are needed in D3.

• Dual Bound Generation

Different dual bounds are calculated according to Section 3.4.3 and the final dual

bound on the objective function of OP is the maximum value of them. Table 3.7
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Table 3.6: Primal bound calculation (a feasible solution) for the case study

Depot Path

Depot 1

D1→ 1→ 3→ D1
D1→ 2→ D1
D1→ 7→ 12→ D1
D1→ 8→ D1

Depot 3

D3→ 4→ 5→ 10→ D3
D3→ 6→ 14→ D3
D3→ 9→ 19→ 13→ D3
D3→ 11→ 17→ 16→ D3
D3→ 15→ 20→ D3
D3→ 18→ D3

Primal Bound 10

shows the values of proposed dual bounds. The dual bound based on Lagrangian

relaxation is 8.54, which is rounded up because the objective function (number of

drones) should be an integer value. The solution of the maximum clique problem has

a size of 7, consisting of customers 2, 3, 5, 8, 14, 19, and 20. The final dual bound is

max{9, 7, 8}= 9.

Table 3.7: dual bound calculation for the case study

Dual bound generation problem Value
Lagrangian relaxation d8.54e= 9
Network configuration 7
BPP-weight 8
Dual Bound max{9, 7, 8} = 9

• Discussions on the Results from the OP Model

The optimal assignment of customers and drone paths is determined as shown in

Figure 3.7, in which 3 drones are needed in D1 and 6 drones in D3. The drone

flight paths start and finish in the same depot and along the flight, they serve 2 or 3

customers. Although a customer might be covered by more than one depot, just one

of them can serve the customer in the optimal solution and it is not the closest depot

necessarily. For example, in the optimal solution of our case study, customer 6 and
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7 are assigned to D1 and D3 respectively; however, they are closer to the D3 and

D1, respectively. The primal bound generation assigns each customer to the nearest

depot and 10 drones are needed to serve all customers. Using this bound, the optimal

solution lowered the drone count to 9, which is 10% improvement from the original

bound. Table 3.8 shows the details of optimal flight paths, which includes the total

demand, total travel time, and remaining battery level at the end of each flight path.

]

Figure 3.7: Results of OP model for the random test network

Table 3.8: Optimal drone flight path for the case study

Drone Path
Total

demand (lb.)
Total travel
time (min)

Battery
level (%)

1 D1→ 8→ 1→ D1 1 (0.3+0.7) 11.92 42.03
2 D1→ 2→ 12→ D1 0.9 (0.5+0.4) 16.88 19.93
3 D1→ 3→ 6→ D1 1 (0.6+0.4) 12.23 42.21
4 D3→ 4→ 5→ 10→ D3 0.7 (0.3+0.3+0.1) 18.07 17.25
5 D3→ 7→ 14→ D3 1 (0.6+0.4) 12.53 39.05
6 D3→ 9→ 11→ 17→ D3 1 (0.3+0.4+0.3) 15.81 26.84
7 D3→ 13→ 18→ D3 0.6 (0.2+0.4) 18.35 19.38
8 D3→ 15→ 20→ D3 1 (0.7+0.3) 17.28 18.93
9 D3→ 16→ 19→ D3 0.8 (0.3+0.5) 14.11 33.34
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3.5.2 Impact of BCR on the Drone Flight Scheduling

We investigated the impact of considering the BCR on drone flight paths using a reverse

path concept and different philosophies of estimating the BCR.

• Reverse of a Path

The reverse of a path has an opposite direction of the primary flight path and moves

backwards. For example, the flight path of drone 1 in Table 3.8, is D1→ 8→ 1→ D1

and the reverse path is D1→ 1→ 8→ D1. Although a flight path and its reverse path

have the same total flight time and total assigned demand, they are not the same in terms

of the BCR calculations. It is due to the fact that the flight distance between location i

and j is the same as flight distance between location j and i, but the carrying payload and

therefore the BCR on the flight segment can be different by the flight direction. Table 3.9

shows the optimal flight paths in the case study (Figure 3.7) and the reverse of them. By

taking into account the threshold value of 15% for the final remaining charge, the reverse

of a feasible path might be infeasible as it is for drones 2, 4, 6, 7, and 8, which means

more than half of the optimal flight paths (55.6%) are infeasible if the reverse paths are

used.

• Fixed Total Flight Time Regardless of the Payload Amount

Drones can fly for a limited time before needing to land to recharge. BCR is the rate at

which battery charge decreases during the flight (see Section 3.2) so the higher amount

of BCR means the battery level decreases faster and the total flight time will be lower.

Therefore, the total flight time has a reverse relationship with the BCR. As mentioned in

Section 3.1, most of the studies in the literature do not consider BCR in scheduling and a

fixed value for the limitation of total flight time is included. In this section, the solutions

provided by a fixed value for the total flight time are evaluated. Two extreme cases for
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Table 3.9: Path reverse of optimal solution for the case study

Path Total demand Total flight Remaining
(lb.) time (min) charge (%)

Drone 1: D1→ 8→ 1→ D1 1 11.92 42.03
Reverse: D1→ 1→ 8→ D1 38.14
Drone 2: D1→ 2→ 12→ D1 0.9 16.88 19.93
Reverse: D1→ 12→ 2→ D1 14.22 ∗

Drone 3: D1→ 3→ 6→ D1 1 12.23 42.21
Reverse: D1→ 6→ 3→ D1 35.03
Drone 4: D3→ 4→ 5→ 10→ D3 0.7 18.07 17.25
Reverse: D3→ 10→ 5→ 4→ D3 13.52 ∗

Drone 5: D3→ 7→ 14→ D3 1 12.53 39.05
Reverse: D3→ 14→ 7→ D3 34.92
Drone 6: D3→ 9→ 11→ 17→ D3 1 15.81 26.84
Reverse: D3→ 17→ 11→ 9→ D3 14.2 ∗

Drone 7: D3→ 13→ 18→ D3 0.6 18.35 19.38
Reverse: D3→ 18→ 13→ D3 12.93 ∗

Drone 8: D3→ 15→ 20→ D3 1 17.28 18.93
Reverse: D3→ 20→ 15→ D3 7.32 ∗

Drone 9: D3→ 16→ 19→ D3 0.8 14.11 33.34
Reverse: D3→ 19→ 16→ D3 31.29
∗ Infeasible flight path

the total flight time are considered here: flight time based on maximum and minimum

carried payload.

On one hand, for a specific drone, the BCR has the highest value and it can fly longer

when it has no payload. On the other hand, the BCR has the lowest value if it is fully

loaded. For the drone used in Section 3.2, the total flight time is 13.76 minutes with

a payload amount of 1 lb. (maximum payload amount) and it is 21.92 minutes when

it does not carry any payload. A subset of nodes in Figure 3.7 are taken as a test case

(D3 and customers 4, 5, 6, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, and 20) to expedite the

computational experiments for this section. The optimal objective function value of the

OP model is 6 for this test case.

This problem is infeasible with the total flight time of 13.76 minutes, because drone is
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not able to complete the path “D3→ customer→ D3” for some of the customers (e.g.

customer 18 and 20) within the total flight time. In this case, although drones can return

to the depot before running out of battery, the energy consumption is considered to be

pessimistic and prevents us from serving all the customers. In the other case, the objective

function value is 5 with the total flight time of 21.92 minutes and the optimal flight paths

are presented in Table 3.10. These paths can meet the limitation of the total flight time

but regarding the remaining charge, most of them (60%) are infeasible and 6 drones will

run out of battery before landing at the depot.

Table 3.10: Optimal paths with the minimum BCR

Drone Path
Total

demand (lb.)
Total travel
time (min)

Battery
level (%)

1 D3→ 15→ 20→ D3 1 17.28 18.93
2 D3→ 19→ 18→ D3 0.9 19.36 8.12 ∗

3 D3→ 4→ 9→ 11→ D3 1 14.54 23.21
4 D3→ 16→ 17→ 14→ D3 1 20.12 -0.6 ∗

5 D3→ 13→ 6→ 5→ 10→ D3 1 21.40 -2.18 ∗
∗ Infeasible flight path

3.5.3 Computational Efficiency of Proposed Solution Method

• Dual Bound Generation Methods

In this section, the performance of proposed dual bounds (Section 3.4.3) is tested by

six different problems including two depots and 11 customers and homogeneous fleet

of drones stated in Table 3.11. The difference between the test case 1 and the 5 other

test cases is the travel time and demand parameters which are a ratio of the test case 1

parameters. The ratio of each test case demand to the test case 1 and the ratio of each test

case travel time to the test case 1 are presented in first section of Table 3.11. The second

section of the table shows the number of variable xi jk reductions by using three rules of

the preprocessing algorithm introduced in Section 3.4.1. Rule 2 and Rule 3 show the
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incompatibility among customers regarding the drone weight capacity and the remaining

charge, respectively (incompatible customers cannot be assigned to one drone). Some

of the variable xi jk are fixed by more than one rule in the preprocessing so the total

number of variables fixed by preprocessing algorithm is not necessarily the summation

of reductions by three rules.

Table 3.11: Test cases used in comparing the dual bound methods

Test case characteristics Test case
1 2 3 4 5 6

Ratio to the test case 1 for:
Customer demand 1 1.5 2 1 1.5 2
Travel time 1 1 1 0.74 0.74 0.74

# Variables fixed by:
Rule 1 (self-loop) 11 11 11 11 11 11
Rule 2 (weight) 0 30 66 0 30 66
Rule 3 (battery) 84 95 101 16 28 47
Total 95 112 117 27 60 95

The obtained dual bounds by using three different dual bound generation methods are

presented in Table 3.12. The larger value for the dual bound is better because it provides

a smaller gap between primal and dual bounds. The bold numbers in the table show the

largest dual bound value for each test case. As it can be seen, Lagrangian relaxation

algorithm has a good performance and can provide the largest dual bound in all the cases

except test case 5. The network configuration and the BPP-weight method give the largest

dual bound in 66.7% and 50% of these cases, respectively.

Table 3.12: The bounds obtained by dual bound methods for different test cases

Dual bound generation method Test case
1 2 3 4 5 6

Lagrangian relaxation 5 8 9 4 5 7
Network configuration 5 8 9 2 5 7
BPP-weight 4 6 7 4 6 7
Dual bound 5 8 9 4 6 7
Primal bound 7 8 9 4 7 8
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Table 3.13 presents the total computational time in seconds to get the dual bound by

each dual bound generation method and solve the test case by using that bound. The

bold numbers in the table show the lowest total computational time for each test case.

Note that for these problems the preprocessing algorithm is not used in running each test

case to be able to capture the effect of bound generation methods. Although Lagrangian

relaxation method provides good dual bounds, its computational time is higher than the

two other methods for all the test cases and make it ineffective in practice. As it can

be seen, the computational time by Lagrangian relaxation almost increased if the total

incompatibility among the customers decreases. For example test cases 4, 5, and 1 that

have the highest computational time by Lagrangian relaxation algorithm in Table 3.13,

have the lowest number of variables fixed by the preprocessing algorithm in Table 3.12

too. In total, the Lagrangian relaxation algorithm is not suggested to be used due to the

high computational time especially for the data parameters with low incompatibility.

The dual bound generation methods based on network configuration and the BBP-weight

provide better dual bounds in a reasonable time. The computational time for the network

configuration problem to find the dual bound has a low variability and depends less on

the parameters. Regarding the total computational time, it has the lowest run time in all

the cases except for test case 5 (83.3% of the cases). The computational time of BPP-

weight problem is related to the incompatibility among customers regarding the weigh

capacity of drones. In test case 1 and 4, no variable is fixed by Rule 2 in Table 3.13 and

these cases have the highest computational time by BPP-weight problem in Table 3.12.

As the number of reduced variables by Rule 2 increases the BPP-weight computational

time decreases.

Overall, the computational time of the bound generation methods decreases if the incom-

patibility among the customers increases. The required time to solve each test case based

on the obtained dual bound depends on the quality of the dual bound. The higher dual
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Table 3.13: Computational time (seconds) with different dual bound generation methods

Method Solved problem Test case
1 2 3 4 5 6

Lagrangian
relaxation

Dual bound 6,901.4 36.1 0.4 25,210.7 15,906.1 30.6
Test case 880.8 0.3 0.2 18.0 12,722.8 0.2

Total 7,782.3 36.5 0.6 25,228.7 28,628.9 30.8

Network
configuration

Dual bound 0.02 0.01 0.02 0.01 0.01 0.01
Test case 880.8 0.3 0.2 5.4 12,722.8 0.2

Total 880.8 0.3 0.2 5.4 12,722.8 0.2

BPP-weight
Dual bound 0.2 0.1 0.1 0.3 0.2 0.1

Test case 1280.9 0.3 0.3 18.0 0.8 0.2
Total 1281.2 0.4 0.4 18.3 1.0 0.3

bound is better and results in less computational time to solve the test case. The network

configuration dual bound generation method outperforms the two other methods because

it provides good dual bounds (the highest bound for 66.7% of the cases), has low com-

putational time (the lowest time in 83.3% of the cases), and depends less on the demand

and travel time parameters.

• Computational Efficiency of Preprocessing and Bound Generation Methods

This section examines the computational efficiency of preprocessing and bound genera-

tion methods proposed in Section 4.4. Three randomly generated problems with different

sizes are tested here: 1 depot- 6 customers, 2 depots-10 customers, and 1 depot-14 cus-

tomers. The results are presented in Table 3.14, with the optimality relative gap of 5%

and the CPU run time of 3600 seconds (i.e., 1 hour). The name of each test problem

shows the number of depots and number of customers, respectively. The second and

third columns show whether bounds on the objective function and variable preprocessing

is used for the problem or not.

The CPLEX solver could not find an optimal solution within 1 hour of running time

for the last two test problems. However, both the variable preprocessing and bound

generation helped reduce the computational time significantly for all three test problems
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(70.1% for the case problem with one depot and 6 customers). The first test problem

is small size, in which all four problems are able to reach an optimal solution with 0%

optimality relative gap. Note that problem “1-6-Y-Y” returned the lowest computational

time. For the second case, all four problems get objective function of 7; however, problem

“2-10-N-N” cannot recognize the optimality and there is still an optimality gap (14.28%).

In the third test case, problem “1-14-N-N” and “1-14-Y-N” are not able to meet the

stopping criteria (relative gap ≤ 5%) within 1 hour of running.

According to the results of Table 3.14, as the size of the problem increases, it is more

important to use the proposed solution algorithm to reduce the computational time and

obtain the optimal solution. For the smallest test case (problem “1-6”) even without the

bound and the preprocessing algorithms, the optimal solution can be obtained in a few

seconds (3.11 seconds). But when the size of problem increases (problems “2-10” and

“1-14”), we are not able to get the optimal solution within 1 hour of running without the

proposed solution algorithm.

Furthermore, it can be seen that the impact of preprocessing on the computational time

reduction is more than the impact of primal and dual bound generation methods. For all

three test problems, the computational time for “N-Y” cases (just using the preprocessing

algorithm) is lower than the “Y-N” cases (just using the bound generation algorithm).

Using variable preprocessing in comparison to using the bound generation algorithm

reduces the computational time 58.06% for the test problem “1-6” and 98.48% for the

“2-10” test problem. In problem “1-14”, we are not able to get the optimal solution

within 1 hour if we do not use the variable preprocessing technique.
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Table 3.14: Effect of preprocessing and bound generation methods on the computational time

Problem Bounds Prep. time (s)
MIP objective
function value gap

1-6

N N 3.11 4 ∗∗ 0 %
Y N 3.10 4 ∗∗ 0 %
N Y 1.30 4 ∗∗ 0 %
Y Y 0.93 4 ∗∗ 0 %

2-10

N N 3600.00 7 ∗ 14.28 %
Y N 2783.74 7 ∗∗ 0 %
N Y 42.12 7 ∗∗ 0 %
Y Y 30.85 7 ∗∗ 0 %

1-14

N N 3600.00 7 ∗ 14.28 %
Y N 3600.00 6 ∗ 14.28 %
N Y 1568.43 6 ∗∗ 0 %
Y Y 12.96 6 ∗∗ 0 %

∗ Objective function value for an integer feasible solution
∗∗ Objective function value for the integer optimal solution

3.6 Conclusion

A delivery application of drones was studied in this research, in which a group of drones

was considered to deliver parcels to customers. A primary focus was given to understand

the impact of the drone battery consumption on the design of a drone based parcel delivery

system. Among factors affecting the drone battery consumption, the payload amount and

flight time were two factors studied in this research. Based on actual experiments using

a drone, we showed that there is a linear relationship between the BCR and the payload

amount. Based on the linear regression model, two planning optimization models were

proposed to find the depot locations and drone flight paths for delivery. The SP model was

to find the depot locations by optimizing a set covering problem and the OP model was

proposed to determine the assignment of customers to depots and flight paths by including

the drone battery endurance as constraints in the routing optimization problem. The pre-

processing algorithm and several bound generation methods were proposed to improve the

computational time. The proposed models and the solution method were implemented on
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a case study. The numerical results showed that (1) up to 60% of the flight paths generated

without considering the BCR ended up fail to complete the delivery trips due to insufficient

battery duration, (2) reversing the flight paths for visiting the same subset of customers

could result in insufficient battery duration to complete the deliveries.

Our initial test runs revealed that solving the OP model can be computationally chal-

lenging as there are more customers to cover. Hence, a primal bound generation algorithm

as well as three different dual bound methods are developed and their performance was

compared. The efficiency of proposed solution algorithm in reducing the computational

time was shown through several randomly generated network. The total computational

times of Lagrangian relaxation and the BPP-weight method depend on the incompatibility

among the customers. The dual bound by network configuration method computationally

outperformed the other two methods. Furthermore, for all test problems, the impact of pre-

processing algorithm coupled with the bound generation methods enabled us to solve all

test problems, which was not possible without these methods.

65



Chapter 4

Drone Delivery Schedule Optimization

Considering the Reliability of Drones

4.1 Introduction

Drones are able to perform tasks that were traditionally operated by manned systems.

These drone applications include various civilian fields, such as security enhancement

[109], damage assessment [111, 112], health-care services [14, 113], border patrol opera-

tions [114, 115], and communication relay [14]. Among different applications, the delivery

of lightweight parcels is one of the most rapidly growing civilian applications observed in

recent years [10]. Unlike ground transportation vehicles, drones can operate regardless of

the existence or accessibility of roads. The use of drones can protect humans from exposure

to dangerous areas. Drone-based delivery will be a faster alternative to ground transporta-

tion and it can be more cost-effective as well [26, 27, 193]. Therefore, parcel delivery by

drones is gaining more attention among courier companies, such as Amazon, DHL, and

UPS [23–25].

As the research community has focused on path planning and logistics using drones, the

reliability of drone-based delivery has not received its well-deserved attention [194]. Drone

66



failures are inevitable, and they occur mainly due to mechanical issues, environmental

conditions, cyber-physical attack, collision, or human errors [13, 195]. The mishap rate

of unmanned vehicles is much higher than manned vehicles [36, 194], and this prevents

them from being operated widely in civilian applications. A drone malfunction can result

in mission interruptions and loss of packages, as well as the drone itself, which will lead

to customer dissatisfaction [11]. Unreliable drones should not be operated in congested

areas. Because of the overall weight and substantial power, civilian injury could occur if

they were to fall from the sky [196]. They pose a great risk for people on the ground, and

therefore, safety and reliability in drone delivery must be placed at high priority.

The current research on drone failures has revolved around component-based fault di-

agnosis studies and entire drone health evaluation studies [197]. The safety evaluation and

safety enhancement for particular components of drones are extensively studied. The de-

sired flight path is compared with the actual flight path in the existence of a fault in drone

components. The residuals obtained from the mathematical model are usually used as an

evaluation metric to detect a fault. The fault detection is studied on different drone compo-

nents, such as the sensor [198, 199], actuator [200–202], accelerometers and inclinometers

[203], communication system [204] and battery [205]. However, these studies not only

focus solely on drone health evaluation, but use a uniform health indicator for determining

faults in all drone components [197, 206].

Studies have typically focused on one drone to capture faults and failures [197–206].

However, the impact of drone failures in the delivery network has not been well investi-

gated. To fill this gap in the literature, this research focuses on delivery networks operated

by a fleet of drones. The primary goal is to develop a reliable delivery schedule considering

drone failures to minimize failed package delivery to customers. In a delivery network, the

reliability is observed at the network level as opposed to a component level, i.e., a drone.

The drone failure probability can be estimated based on existing approaches for evaluating
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drone health, such as component-based fault diagnosis studies or entire drone health eval-

uation studies. Unlike typical drone routing problems, the decision to assign each drone

to a subset of customers affects the delivery network reliability introduced in this research.

For example, one may wish to assign a more reliable drone to customers with high or sen-

sitive demands. Other factors affecting the delivery network reliability include the delivery

sequence, the amount of customers’ demand, and the total travel distance [11].

In ground transportation network problems, such as the Vehicle Routing Problem (VRP)

[207, 208], two common definitions of network reliability are [159] (1) connectivity reli-

ability: the probability of at least one path existing between a pair of locations without

disruption or heavy congestion [160], and (2) travel time reliability: the probability of

traveling between a pair of locations within a specified time period [157, 158, 161].

Road connectivity reliability considers unexpected events, such as traffic congestion or

bad weather, that makes roads inaccessible. According to the Federal Aviation Admin-

istration (FAA) regulations, drones should not fly above 400 feet [209]. Currently, the

possibility of air traffic within 400 feet from the ground is negligible. Therefore, the road

connectivity reliability definition may not be applied to the drone network. The travel time

reliability in VRP is usually shown by including time window constraints and uncertainty

in travel time. This can be applicable to the drone delivery network but does not reflect the

impact of drone failures.

This study explores a new concept based on reliability calculation [156] to evaluate the

reliability of a drone delivery network. A mathematical model is developed to determine

more reliable paths for drone-based delivery networks. Although Sawadsitang et al. [194]

considered failure probabilities for drone take-off and flight, their work was limited to

a drone making one round trip between the depot and the customer. Another work by

Torabbeagi et al. [11] adopted the idea of drone delivery network reliability. However,

the drawback of their approach was that the drone delivery reliability was calculated after
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the routing was determined. Motivated by the drawbacks mentioned above, this research

introduces an optimization approach selecting reliable routes for drones to carry multiple

packages on each trip. As such, the sequence of visiting customers and the assignment

of drones to customers becomes an important factor. Contributions of this research are as

follows:

1. To propose a new method to schedule flight paths for a group of drones considering

the probability of drone failure.

2. To develop a mathematical model to obtain the optimal assignment of customers to

drones and the flight sequence of each drone to maximize the reliability of drone-

based delivery.

3. To propose a computationally efficient simulated annealing (SA) method coupled

with the Sweep [210] and Petal algorithm [211].

The rest of this chapter is organized as follows. Section 4.2 explains the method to

calculate the expected loss of demand (ELOD). Section 4.3 formally describes the prob-

lem, followed by the optimization model formulation. Section 4.4 presents the proposed

heuristic algorithm. In Section 4.5, several case studies and an analysis of the results are

discussed. Finally, Section 4.6 concludes the research with a potential extension of this

work.

4.2 Expected Loss of Demand (ELOD) Calculation

In this research, a drone is allowed to visit multiple customers to unload packages along

the flight path. Therefore, each flight path consists of several segments (the flight between

two consecutive stops). If a drone fails during transportation, the remaining customers

along the flight path will not receive what was ordered. The amount of lost demand depends
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on the location of the failure and the amount of payload that the drone carries. The amount

of lost demand will be more considerable if the drone fails closer to the depot as opposed

to if it fails near the final flight segments. No demand will be lost if the drone fails in the

final flight segment returning back to the depot after completing deliveries to all assigned

customers. Therefore, the expected loss of demand is defined as the multiplication of the

carried payload and its associated failure probability over all the flight segments in a flight

path.

4.2.1 General ELOD Calculation

We begin this section by explaining how to calculate the ELOD for the flight path of

one drone. This concept will be used in the mathematical model formulation in Section 4.3

to find the optimal routing strategy of drones to minimize the network ELOD. Suppose a

drone leaving the depot is to visit n customers in sequence and return back to the depot.

In the network setting, this flight path consists of n+ 1 nodes and a sequence of n+ 1

flight segments. The first flight segment is the flight from the depot to the first customer,

and the last flight segment n+ 1 is for the drone to return back to the depot after visiting

the last customer. All flights connecting two customers can be defined as flight segment

i ∈ {2,3, ..,n}. The corresponding failure probability of flight segment i is denoted as

pi−1,i = P(0 < t < ti−1,i), where variable t is the time of failure and ti−1,i is the flight time

between location i−1 and i.

Considering a sequence of flight segments in a path, a failure could happen in a flight

segment if it did not occur in all of the previous flight segments. To capture this, parameter

fi is defined as the probability of no failure in the previous flight segments up to flight

segment i, and zi is defined as the probability of a failure in flight segment i. For flight

segment i, values of fi and zi depend on all of the previous flight segments, and they are
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calculated as:

fi = fi−1 ·qi−1,i, i ∈ {1,2, ...,n+1}, (4.1)

and zi = fi−1 · pi−1,i, i ∈ {1,2, ...,n+1}, (4.2)

where qi−1,i = 1− pi−1,i, f0 = 1, and z0 = 0 .

The payload amount of a drone in a flight segment is the demand of remaining cus-

tomers along the flight path. Parameter d j is to show customer j’s demand, and Di repre-

sents the payload amount in flight segment i. Therefore, Di is the summation of demand

from customer i through customer n as:

Di =
n

∑
j=i

d j, i ∈ {1,2, ...,n},(Dn+1 = 0). (4.3)

Proposition 1. Both zi, i ∈ {1,2, ...,n+1} and fn+1 form a probability mass function.

Proof. We prove that ∑
n
i=1 zi + fn+1 = 1, where n is the number of customers in a drone

flight path.

For n = 1, ∑
1
i=1 zi + f1 = z1 + f1 = p0,1 +q0,1 = 1.

We assume that for n=k, we have ∑
k
i=1 zi + fk = 1, then we show it is true for n = k+1.

n = k+1 : ∑
k+1
i=1 zi + fk+1 = ∑

k
i=1 zi + zk+1 + fk+1.

From the assumption: ∑
k
i=1 zi = 1− fk.

→ 1− fk + zk+1 + fk+1 = 1− fk + fk pk,k+1 + fk qk,k+1 = 1− fk (−1+ pk,k+1 +qk,k+1) =

1− fk(−1+1) = 1.

Therefore, zi, i ∈ {1,2, ...,n+ 1} and fn+1 are used to calculate the ELOD as defined
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below:

ELOD =
n+1

∑
i=1

zi Di =
n

∑
i=1

zi Di + zn+1 ·0 =
n

∑
i=1

zi Di. (4.4)

In Formula (4.4), variable zi depends on the flight segments prior to segment i, while Di

depends on the flight segments after segment i. An equivalent form of ELOD is provided

by:

j

∑
i=1

zi =
j

∑
i=1

fi−1 pi−1,i =
j

∑
i=1

fi−1 (1−qi−1,i) =
j

∑
i=1

fi−1−
j

∑
i=1

fi−1 qi−1,i =
j

∑
i=1

fi−1−
j

∑
i=1

fi,

= f0− f j →
j

∑
i=1

zi = 1− f j, (4.5)

and ELOD =
n

∑
i=1

zi Di =
n

∑
i=1

zi(
n

∑
j=i

d j) =
n

∑
i=1

n

∑
j=i

zi d j =
n

∑
j=1

d j(
j

∑
i=1

zi) =
n

∑
j=1

d j (1− f j),

(4.6)

which only requires the information of the previous flight segments up to the current seg-

ment. Equation (4.6) is based on the customers’ demand, and it does not depend on the

carried payload within the flight segments.

4.2.2 An Illustration of ELOD Calculation

We illustrate the procedure of ELOD calculation using a small example in Figure 4.1,

which consists of one depot and two customers being served by one drone. The amount of

carried payload and the probability of failure in each flight segment are shown above and

below the arcs, respectively.

Let us examine each flight segment for path “Depot → i→ j→ Depot” in Figure 4.1

to calculate the failure probability and ELOD associated with each of the three segments.
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Figure 4.1: An example flight path consisting of one depot, two customers, and one drone

Table 4.1: A summary of ELOD calculations for Figure 4.1

Segment f D Segment ELOD
depot→ i p0i di +d j p0i (di +d j)

i→ j q0i pi j d j q0i pi j (d j)
j→ depot q0i qi j p j0 0 q0i qi j p j0· 0

The final results are summarized in Table 4.1.

1) Flight Segment 1: The drone departing from the depot carries the total demand for

customers i and j. Hence, the demand of both customers will be lost if the drone fails in

this flight segment. The probability of failure is p0i = P(0 < t < t0i), where index 0 is the

depot.

2) Flight Segment 2: The drone continues the delivery for the next customer j after

successfully completing the task for customer i. Hence, the probability of failure for this

segment is the multiplication of (1) probability of no failure in the previous flight segment

(q0i = 1− p0i) and (2) probability of failure in the current segment (pi j = P(0 < t < ti j)).

3) Flight Segment 3: The delivery mission is completed without a failure for both

customers, and the drone returns back to the depot. The corresponding probability of failure

in this segment is p j0 = P(0 < t < t j0).

Therefore, the network ELOD for this single path problem is calculated as:

Network ELOD = ELODDepot→i +ELODi→ j +ELOD j→Depot = p0i · (di +d j)

+q0i pi j d j +q0i qi j p j0 ·0 = p0i (di +d j)+q0i pi j d j. (4.7)
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4.3 Problem Description and Formulation

This work considers one depot, multiple customers, and a group of drones to deliver

packages. Each customer has a certain demand and is served by exactly one drone. Our

aim is to find the optimal drone flight schedule for a delivery network to minimize the

network ELOD for a given drone failure probability distribution. A drone starts its flight

path from the depot, visits the assigned customers in sequence, and returns to the depot.

The flight time and the total amount of payload depend on the type of drones. A mixed

integer linear programming (MILP) model for drone flight schedules is presented in this

section. The following notation is used to develop the drone delivery schedule model with

drone failures (DDS-F model):

Sets:
N set of nodes, node 0 is the depot (i, j ∈ N,c ∈ N−{0}),
L set of drones (l ∈ L).
Parameters:
n number of customers,
ti jl travel time from node i to node j by drone l,
αi jl probability of no failure in flight segment (i, j) by drone l,
dc customer c demand,
wl maximum weight capacity of drone l,
otl maximum operation time of drone l,
M sufficiently large number.
Variables:
xi jl 1 if drone l goes directly from node i to node j, 0 otherwise ,
fc probability of no failure arriving at customer c,
yc the order of visiting customer c in the path.

The DDS-F model is similar to VRP models with the addition of constraints regarding

the limitations of flight time and carried payload. For flight segment (i, j), the probability

of a drone arriving at customer j without a prior failure can be calculated as:

If xi jl = 1, then f j = fi ·Pl(t > ti j), ∀i, j ∈ N, l ∈ L, (4.8)
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where f0 = 1. This “if-then” statement is formulated by adding parameter “M” (a large

number) as the following inequality:

αi jl fi−M · (1− xi jl)≤ f j ≤ αi jl fi +M · (1− xi jl)∀i, j ∈ N, l ∈ L, (4.9)

where αi jl = Pl(t > ti j). When variable xi jl is equal to 1, Inequality (4.9) is of the form

αi jl fi ≤ f j ≤ αi jl fi, which means f j = αi jl fi. When variable xi jl is equal to 0, variable f j

can be any value between −M and M. As the variable f j represents the probability of no

failure, it only receives a value between [0, 1]. Hence, parameter M can be set to 1 without

loss of generality. Inequality (4.9) is used as Constraints (4.19) and (4.20) in the DDS-F

model. The resulting MILP formulation for the DDS-F model is provided as follows:

Min ∑
c∈N−{0}

(1− fc) dc, (4.10)

s.t: ∑
i∈N\{c}

∑
l∈L

xcil = 1, ∀c ∈ N \{0}, (4.11)

∑
i∈N\{c}

∑
l∈L

xicl = 1, ∀c ∈ N \{0}, (4.12)

∑
i∈N\{c}

xicl = ∑
j∈N\{c}

xc jl, ∀c ∈ N \{0}, l ∈ L, (4.13)

∑
c∈N\{0}

x0cl = 1, ∀l ∈ L, (4.14)

∑
c∈N\{0}

xc0l = 1, ∀l ∈ L, (4.15)

∑
c∈N\{0}

∑
i∈N

dc xcil ≤ wl, ∀l ∈ L, (4.16)

∑
i∈N

∑
j∈N

ti jl xi jl ≤ otl, ∀l ∈ L, (4.17)

yu− yv +n ∑
l∈L

xuvl ≤ n−1, ∀u,v ∈ N \{0}, (4.18)

75



αicl fi−M(1− xicl)≤ fc, ∀i ∈ N,c ∈ N \{0}, l ∈ L, (4.19)

fc ≤ αicl fi +M(1− xicl), ∀i ∈ N,c ∈ N \{0}, l ∈ L, (4.20)

and xi jl ∈ {0,1}, fi ≥ 0, f0 = 1, ∀i, j ∈ N, l ∈ L.

The objective function is the minimization of network ELOD for all flight paths. Con-

straints (4.11) and (4.12) state that each customer should be served once and by exactly

one drone. Constraint (4.13) is the flow balance equation. Constraints (4.14) and (4.15)

show that all drones should start and finish their flight at the depot. The amount of com-

modity that each drone can carry is limited, to its weight capacity via Constraint (4.16).

The drone total flight time is also limited as stated in Constraint (4.17). Constraint (4.18)

prevents the sub-tours in the network according to the Miller-Tucker-Zemlin formulation

[43]. Constraints (4.19) and (4.20) are related to the ELOD calculation and are obtained

from Inequality (4.9).

4.4 Solution Method

The DDS-F model is a variant of the Vehicle Routing Problem, which is known to be

NP-hard [186]. Exact algorithms for solving VRP models only work well for small-scale

problems. Hence, meta-heuristic methods are often utilized to find near-optimal solutions

to save time for medium- and large-scale problems. Simulated Annealing (SA) is a com-

monly used meta-heuristic algorithm for finding the global optimum of a given function

specially in discrete search spaces such as the TSP [212]. The SA may be preferable to

exact algorithms (such as gradient descent, Branch and Bound) when the approximation

of the global optimal solution is more important than finding a precise local optimum in a

fixed amount of time. The main characteristic of the SA that differs from the other meta-

heuristic algorithms is the exploration of worse solutions. In each iteration, a worse solution
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might be chosen with a probability (that decreases over iterations) in order to escape from

the local optimal [213]. A recent comparison between Nearest Neighbour, Tabu Search,

and SA methods for the VRP shows the SA provides better solutions [214]. Vincent et

al. verified with benchmark data of the capcacitated vehicle routing problem (CVRP) that

SA performs well and efficiently salves the CVRP [215]. Following the successes of SA

in solving the vehicle routing problems (VRP) and its variants [213, 215–217], and drone

scheduling problems [152, 218], this dissertation proposes SA to solve the DDS-F model.

To develop a solution approach using SA, Section 4.4.1 explains the solution repre-

sentation and the procedure to calculate the minimum ELOD value corresponding to the

solution. Section 4.4.2 introduces the proposed SA procedure along with our methods to

generate an initial solution and the neighborhood search.

4.4.1 Solution Representation and ELOD Calculation

The solution for the DDS-F model consists of flight paths for each of the drones starting

from and terminating at the depot (location 0). Each drone visits a subset of customers in

sequence to complete the delivery task. The proposed algorithm to solve this problem starts

by sorting the customers in an ordered list in each iteration. A three step procedure, known

as the Petal algorithm [211], is used to determine a feasible path with the minimum network

ELOD for the ordered list of customers (S) in each iteration: 1) generate feasible contiguous

subsets from the given list of customers (Section 4.4.1.1), 2) determine the flight path and

the ELOD for each of the subsets (Section 4.4.1.2), and 3) choose a set of flight paths with

the minimum total ELOD to cover all customers (Section 4.4.1.3). Figure 4.2 shows these

three steps.
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Figure 4.2: Process of optimal solution calculation for a given sequence of customers
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4.4.1.1 Create a Set of Contiguous Subsets

For a given list of customers (S) to serve, a contiguous subset (CS) is a subset of the

customers to be visited by a drone. Because there can be numerous different possible con-

tiguous subsets, Algorithm 3 is developed to efficiently create the subsets while satisfying

the feasibility requirements on the weight capacity and the total operation time of drones

(Constraints (4.16) and (4.17)).

Algorithm 3 : Create contiguous subsets from a given ordered list of customers

Define:
S[i:j]= An ordered list from element i to j

Input:
n= number of customers.
SS=[S[1:n] : S[1:n-1]]
c=1, CS={}, F={};

While (c 6 n)
k = c;
Add kth customer in SS to F;
While (F feasible regarding Weight capacity and Flight time)

Add set F to CS;
k = k+1;
Add kth customer in SS to F;

End While
F={}; c = c+1;

End While
Output:

CS: A contiguous subset of customers

The algorithm is initialized, which includes the number of customers (n), the list of

customers to serve (SS), and empty sets of CS and a temporary set F . The contiguous

subsets are generated on a cyclic order of customers to ensure the full inclusion of combi-

nations for creating the CS. This is done by repeating the list of customers except for the

last one, i.e., SS = [1,2, · · · ,n,1,2, · · · ,n−1]. First, the first customer in SS is added to F,

i.e., F = SS[1]. Second, the inner While-loop is executed to construct a feasible CS. The

loops are continued until all the customers in S are checked, i.e., c = n. Then, the algorithm
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stops and returns the CS.

4.4.1.2 Flight Path and ELOD Calculation for Contiguous Subsets

The order of visiting customers in each subset should be optimized to result in the

minimum ELOD value. The optimal flight path for each of the contiguous subsets can be

found by solving the DDS-F model with one drone (the DDS-F-1 problem). Because a

contiguous set contains a much smaller subset of customers to be served by a drone, the

computational burden for solving the optimization model is substantially reduced. The

following showcases the notation used to provide the mathematical model for the DDS-F-1

problem:

Sets:
N′ Set of assigned locations to the drone, 0 shows the depot.
Parameters:
n′ Number of assigned customers,
ti j Travel time from node i to node j, (i, j ∈ N′),
ot Maximum operation time of drone.
Variables:
xi j 1 if drone goes directly from node i to node j, 0 otherwise (i, j ∈ N′).

The mathematical model for the DDS-F-1 problem to obtain the flight path and the

ELOD value for one drone and a set of assigned customers:

Min ∑
c∈N′−{0}

(1− fc) dc. (4.21)

s.t: ∑
j∈N′−{c}

xc j = 1, ∀c ∈ N′, (4.22)

∑
j∈N′−{c}

x jc = 1, ∀c ∈ N′, (4.23)

∑
i∈N′

∑
j∈N′

ti j xi j ≤ ot, (4.24)
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yi− y j +n′ xi j ≤ n′−1, ∀i, j ∈ N′−{0}, i 6= j, (4.25)

αic fi−M(1− xic)≤ fc, ∀i ∈ N′,c ∈ N′−{0}, (4.26)

fc ≤ αic fi +M(1− xic), ∀i ∈ N′,c ∈ N′−{0}, (4.27)

and xi j ∈ {0,1},yi ≥ 0, fi ≥ 0, f0 = 1, ∀i, j ∈ N′.

The DDF-F-1 optimization model is modified to solve the path finding problem for each

contiguous subset more efficiently. Equations (4.6) and (4.8) will determine the ELOD

value for the contiguous subsets after the determination of the flight paths.

A contiguous subset with one customer corresponds to a flight path starting from the

depot to visit the customer and then to return back to the depot. As shown in Figure 4.3,

a contiguous subset with two customers i and j have two possible flight paths (Path I and

Path II), and the feasibility of each path is checked in Step 3 of Algorithm 3. A path with

Figure 4.3: Two possible flight paths for two customers and one drone

a lower ELOD value will be preferred for the drone delivery. The ELOD value for flight

path I (ELODI) is lower than the ELOD for flight path II (ELODII) if following inequality

holds true:

〈ELODI < ELODII〉 → (1−α0il) di +(1−α0ilαi jl) d j < (1−α0 jl) d j +(1−α0 jlαi jl) di.

(4.28)

Two special cases of Figure 4.3 are considered here:

Case 1: customers are located within the same distance from the depot (t0i = t0 j →
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α0i = α0 j). Without loss of generality, we assume that di > d j (∆d = di−d j). Therefore,

the followings hold:

ELODI

ELODII
=

(1−α0il) di +(1−α0ilαi jl) d j

(1−α0il) d j +(1−α0ilαi jl) di
→ ELODII−ELODI = ∆d(α0il−α0ilαi jl),

0 < α0il,αi jl < 1→ 1−α0il < 1−α0ilαi jl,→ ELODII−ELODI > 1. (4.29)

As a result, if two customers are located within the same distance from the depot, then the

customer with higher demand should be served first.

Case 2: customers have the same amount of demand. Without loss of generality, we

assume that t0i > t0 j→ α0il < αo jl . Therefore, the following holds:

If di = d j→
ELODI

ELODII
=

1−α0il +1−α0ilαi jl

1−α0 jl +1−α0 jlαi jl
=

2−α0il(1−αi jl)

2−α0 jl(1−αi jl)
→ ELODI

ELODII
> 1.

(4.30)

As a result, if two customers have the same amount of demand, then the closer customer to

the depot should be served first.

4.4.1.3 Final Flight Paths

We now have multiple feasible flight paths to consider and their corresponding objec-

tive function values. The final selection of contiguous subsets to serve customers for the

limited number of drones should be made such that: (1) all the customers are included in

exactly one subset, which means each customer is served by one drone, (2) the number of

selected subsets is equal to the number of drones, and (3) the flight schedule for all drones

must result in the minimum ELOD. This selection problem can be viewed as partition-

ing the customers into m groups (i.e., m drones). Therefore, we propose a Binary Integer

Programming (BIP) model to solve this problem using the following notation.
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Sets:
P Set of flight paths (p ∈ P).
Parameters:
m Number of drones,
σp ELOD for the flight path p,
θp j 1 if flight path p includes customer j, 0 otherwise, ( j ∈ N−{0}).
Variables:
fp 1 if flight path p is selected, 0 otherwise.

Min ∑
p∈P

σp fp. (4.31)

s.t: ∑
p∈P

θp j fp = 1, ∀ j ∈ N−{0}, (4.32)

∑
p∈P

fp = m, (4.33)

and fp ∈ {0,1}, ∀p ∈ P.

The objective function (4.31) minimizes the summation of ELOD for the selected flight

paths. Constraint (4.32) states that each customer must be included on only one of the

selected flight paths. Constraint (4.33) is to limit the number of selected flight paths to the

number of available drones.

4.4.2 The Simulated Annealing Algorithm

The proposed SA in this research shown in Figure 4.4 starts with an initial solution and

searches for better solutions using a neighborhood search method to improve the objective

function value. The SA algorithm controls the probability of accepting the new solution

using the temperature parameter T , which is set to a high value initially and is gradually

decreasing during the iterations. The SA algorithm has two loops. In the inner loop, new
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solutions are generated in the neighborhood of the current solution at the current temper-

ature. The temperature is decreased at the rate of α ∈ (0,1) in the outer loop until the

stopping criteria are met [219]. The proposed SA stops if either of two conditions is met:

(1) no improvement in the objective function after a certain number of iterations, or (2) a

minimum temperature value is reached. The following two subsections explain two spe-

cific steps of SA in sequence: the initial solution generation method and the neighborhood

search method to find a better solution through iterations.

4.4.2.1 Initial Solution

The initial solution (i.e., a sequence of customers to visit) for the SA algorithm is gen-

erated following the steps outlined in Figure 4.5 [210, 211]. The input data includes the

location information for both the depot and the customers. The polar coordinate angles of

the customers are used to calculate the proximity of each customer to the depot. Then, the

initial solution is generated in ascending order of distance from the depot to the customers.

4.4.2.2 Neighborhood Search Methods

In each iteration of the algorithm, a new solution is generated from the neighborhood

of the current solution. In the neighborhood search, a solution can be accepted or rejected

based on the temperature (T ) and the corresponding objective function value. The probabil-

ity of accepting a better or unchanged solution is always 1, while a worse solution may be

accepted with a low probability to avoid the local entrapment [220]. This research explores

three different ways to generate neighborhood solutions in each SA iteration: shift, reverse,

and exchange. We explain these methods using an example. Consider a list of customers

to be visited by a drone, S = [1,2,3,4,5,6].

1. Shift method: shift k customers after customer i to the first location after customer

j (i, j and k are randomly generated). For example, if i = 1, k = 2 and j = 5, a new
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Figure 4.4: SA Algorithm

solution will be Snew = [1,4,5,2,3,6].

2. Reverse method: reverse the sequence of customers between customer i and j (i and

j are randomly generated). For example, if i = 1 and j = 5, a new solution will be

Snew = [1,4,3,2,5,6]
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Figure 4.5: Initial visit sequence of customers

3. Exchange method: change the locations of customers i and j (i and j are ran-

domly generated). For example, if i = 1 and j = 5, a new solution will be Snew =

[5,2,3,4,1,6].

At each iteration of the SA algorithm, one of the three methods is randomly selected to

generate a new solution.

4.5 Numerical Experiments

Numerical results are conducted to test the proposed solution method using small and

large-size problems. The well-known makespan problem is used as a benchmark to test

the performance of our approach. In the Makespan problem, the objective function is to

minimize the required time needed to complete all flight paths. The objective function of

minimizing the maximum drone flight time is Min Max { ∑i∈N ∑ j∈N ti jl xi jl}. Constraints

(4.11)-(4.18) provide a feasible area of drone flight schedule without failure consideration.

This MinMax problem can be changed to a linear model by using the new variable u =
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max { ∑i∈N ∑ j∈N ti jl xi jl} as follows:

Min u.

s.t: u≥ ∑
i∈N

∑
j∈N

ti jl xi jl, ∀l ∈ L,

and Constraints (4.11)-(4.18).

The sensitivity analysis on the failure distribution is presented in Section 4.5.3, and the

performance of the proposed SA algorithm is discussed in Section 4.5.4. All experiments

are done on a Linux server with 24 cores and 384GB RAM, and they are implemented in

the Python environment [221]. Gurobi solver 8.1 [222] was used to solve the optimization

model. The random drone parameter settings in Table 4.2 are used for all test cases.

Table 4.2: The parameter setting for the test cases

Parameter Value
ti j Euclidean distance between each pair of nodes (min)
wl 1 lb.
otl 32 min.
λl 0.005 (failures per minute)

4.5.1 Case Study

A sample network with 9 customers and 4 homogeneous drones is used in this section.

The drone failures are assumed to follow a Weibull distribution with a constant failure rate

according to Table 4.2. Note that the Weibull distribution is one of the most commonly used

failure distributions in reliability analysis [223]. Hence, the DDS-F model uses parameter

αi jl = Pl(t > ti j) = e−(ti j/ηl), where η is the scale parameter and 1
ηl

= λl is the failure rate.

The resulting optimal flight paths for the DDS-F problem and the makespan model are

shown in Figure 4.6 and Figure 4.7, respectively.
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Figure 4.6: Optimal solutions for DDS-F problem

Figure 4.7: Optimal solutions for Makespan

In VRP and transportation problems, a common objective function is to minimize the

makespan, i.e. the maximum time that a drone spends for any of the flight paths [224].

Therefore, a comparison is made to investigate the impact of the DDS-F model against

the makespan problem. Figure 4.7 shows that the optimal flight paths derived from the

makespan problem differ from the solution outputted by the DDS-F model.

Furthermore, Table 4.3 gives the optimal path details for DDS-F and Makespan regard-

ing the payload amount, ELOD, and flight time. Although DDS-F slightly underperformed

(1.1%) when compared to Makespan, the resulting flight schedule is more reliable, as it

reduced the ELOD value by 33.4%.

The second path of Makespan (0→ 5→ 2→ 0) was revealed to be the reverse of the

second path in the DDS-F model. As expected, the minimization of the makespan does

not differentiate between a path and its reversed path because a path and its reversed path

have the same flight time. This is the drawback of the makespan approach for the problem
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Table 4.3: DDS-F and Makespan results for the test case problem

Problem Path
Payload

ELOD
Flight Network makespan

amount time ELOD (min)
(10−2lb.) (min) (10−2 lb.)

DDS-F

0→ 1→ 4→ 0 40 1.722 26.86

9.511 28.67
0→ 2→ 5→ 0 35 2.499 27.24
0→ 3→ 6→ 7→ 0 45 2.442 28.67
0→ 9→ 8→ 0 60 2.848 25.44

Makespan

0→ 1→ 4→ 0 40 2.499 27.24

12.688 28.36
0→ 5→ 2→ 0 35 2.808 26.86
0→ 3→ 8→ 9→ 0 80 5.583 26.44
0→ 7→ 6→ 0 25 1.798 28.36

discussed in this research. It is trivial to see that the ELOD values can be different between

a path and its reverse path as different customers often request different amounts of payload.

4.5.2 Comparison between the DDS-F and the Makespan

Different random test cases are used to compare the DDS-F model and the Makespan

(MS) model in terms of ELOD and makespan. The results are summarized in Table 4.4,

where n and m are the number of customers and the number of drones, respectively. As

expected, DDS-F performed better in minimizing ELOD, while the MS model worked

better in reducing makespan for all test cases. The percentage increase in ELOD and the

percentage decrease in makespan were calculated according to the following formulas:

ELOD decrease (%) =
ELODMS−ELODDDSF

ELODDDSF
×100, (4.34)

and makespan increase (%) =
makespanDDSF−makespanMS

makespanMS
×100, (4.35)

where subscripts MS and DDSF are to indicate the results obtained by the Makespan and

DDS-F problems, respectively. In all test cases, the reduction of ELOD by DDS-F ranged

from 11.5% up to 33.4%, while the increase of makespan was negligible, ranging from
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Table 4.4: Comparison between DDS-F and MS Problems

n m
MS Problem DDS-F Problem ELOD

decrease
(%)

makespan
increase

(%)
ELOD makespan ELOD makespan

(10−2 lb.) (min) (10−2 lb.) (min)
9 4 12.69 28.37 9.51 28.67 33.4% 1.1%
9 5 11.77 27.20 9.37 27.24 25.6% 0.1%

10 4 13.57 28.43 10.73 28.67 26.4% 0.9%
10 5 11.81 27.20 10.59 27.24 11.5% 0.1%
11 4 15.31 29.25 12.59 29.29 21.6% 0.1%
11 5 15.07 28.29 12.11 28.67 24.4% 1.3%
12 4 16.25 29.25 13.47 29.67 20.7% 1.4%
12 5 16.16 28.37 12.93 28.67 25.0% 1.1%

0.1% to 1.4%. Compared to the traditional makespan model for delivery, the DDS-F can

generate much more reliable drone flight paths by minimizing the expected loss of demand

due to a drone failure.

4.5.3 Sensitivity Analysis on the Failure Rate

The failure rate in Section 4.5.1 and Section 4.5.2 was assumed to be constant. How-

ever, it might be subject to fluctuations over time. Note that the Weibull distribution was

considered here because it is a commonly used probability distribution function involv-

ing a failure function. The cumulative distribution function for the Weibull distribution

is 1− e−(t/η)β

, t ≥ 0 where parameters η and β are the scale and shape parameters, re-

spectively. Therefore, it results in αi jl = Pl(t > ti j) = e−(ti j/η)β

in the DDS-F model. The

Weibull distribution represents a variety of shapes based on the shape parameter: β < 1

means the failure rate decreases over time, β = 1 shows a constant failure rate over time,

and β > 1 exhibits an increase in the failure rate with time. The impact of parameter β on

the Network ELOD for the case study shown in Figure 4.6 is investigated here. As men-

tioned in Section 2.5.3 and depicted in Figure 2.2, the historical reliability data shows an
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Figure 4.8: Network ELOD for different shape parameter values with the fixed scale parameter

improvement in drone failure rate over time for four different drone types. This implies the

parameter β in Weibull distribution to be less than 1. Since the available data for the drone

failure is very limited, not only the decreasing failure rate but also constant and increasing

rates are investigated in this section. The optimal flight paths were obtained by changing

the value of β between 0.8 and 2.5 with 3, 4, and 5 drones. Note that β is dimensionless.

Figure 4.8 shows that the network ELOD decreased as β was increased. This trend can

be explained by looking at the ratio (ti j/ηl) of the exponent in αi jl = e−(ti j/ηl). The results

were generated based on a fixed η = 200. However, the maximum travel time between two

nodes in Figure 4.6 is 13.6 minutes, which lead to ti j
η
<< 1. Thus, increasing the value

of β will result in the increase in both the αi jl parameter value and the variable fc, and it

reduces the ELOD accordingly. Considering the limited flight time of drones, the network

ELOD value will decrease as the Weibull distribution shape parameter increases.

Furthermore, as seen in Figure 4.9, increasing the value of β resulted in the reduction

of the optimal number of required drones. This is because a higher value of β means the
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Figure 4.9: Optimal number of drones by changing Weibull distribution shape parameter

drone’s reliability (parameter αi jl) increases. As a result, a lesser number of drones are

needed as their reliability is higher. For example, the optimal number of drones reduced

from 5 drones to 3 drones when β was increased from 0.8 to 2.5. Note that further experi-

ments showed that parameter β influences on the optimal flight path selection, while η does

not. However, parameter η affects the ELOD value.

4.5.4 The SA Performance

This section evaluates the computational performance of the proposed SA algorithm

(see Section 4.4) compared to the exact method (Gurobi solver implemented in Python

[222]). Test cases are randomly generated with each case having a different number of cus-

tomers (n) and drones (m). The problem size of the test instances varies from 10 customers

with 4 drones to 100 customers with 32 drones. The stopping criteria for solving the exact

method are (1) 2 hours of CPU run time, and (2) a 1% optimality gap.

Prior to solving the test instances using the SA, the SA parameter values were carefully

tuned. The initial temperature (T ) is set to 5 for all of the test cases. The temperature

reduction ratio (α) ranged between 0.93 and 0.98, depending on the size of the problem.

The algorithm will stop if there is no improvement in 10 consecutive iterations or if it
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Figure 4.10: The ELOD value over iterations: a case study with 12 customers and 5 drones

reaches the temperature of 0.05. Figure 4.10 shows the progression of the SA algorithm

until it converged. As can be seen from Figure 4.10, the initial solution to the SA algorithm

is close to the final solution. The SA began with an initial solution (ELOD=12.94) and

searched for a better solution. However, the ELOD fluctuated, as the algorithm is allowed

to accept a worse solution with a low probability to avoid local entrapment. However, it

eventually converged to a solution whose ELOD value (12.92) was lower than the initial

solution. This figure shows that worse solutions were frequently accepted at the initial

stage, but the rate dwindled as it approached the final iterations.

Table 4.5 summarizes the results obtained by both the exact method and the SA. obj is

the ELOD value and time shows the computation time in seconds. The last two columns

show the performance comparison of the SA against the exact method. ∆obj shows the

percentage increase of ELOD in SA compared to the exact method, while ∆time is the
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percentage decrease in computation time. These values are calculated as:

∆ obj (%) =
objSA−objExact

objExact
×100,

and ∆ time (%) =
timeSA− timeExact

timeExact
×100.

Table 4.5: Optimal solution obtained for DDS-F model by the exact and SA methods

n m
Exact Method SA Method

∆obj ∆ time
obj (10−2lb.) time(s) obj (10−2lb.) time(s)

10 4 10.72 63.1 10.72 78.9 0.0% 24.9%
10 5 10.58 68.4 10.58 65.7 0.0% -4.0%
11 4 12.59 296.0 12.59 154.4 0.0% -47.8%
11 5 12.11 388.1 12.11 116.5 0.0% -69.9%
12 4 13.46 763.3 13.46 206.2 0.0% -72.9%
12 5 12.92 4460.7 12.92 123.6 0.0% -96.2%
20 7 NA NA 21.60 318.6 - -
20 8 NA NA 21.35 297.0 - -
40 16 NA NA 39.90 1052.2 - -
40 17 NA NA 39.75 948.5 - -
60 19 NA NA 60.64 2152.7 - -
60 20 NA NA 59.50 1677.5 - -

100 31 NA NA 88.52 6128.6 - -
100 32 NA NA 87.87 2450.9 - -

For the cases with 10, 11, and 12 customers, both methods found optimal solutions. As

expected, the SA outperformed the exact method in CPU time up to 96% with an exception

for the small case. Because the exact method failed to find a solution for cases with more

than 12 customers, it was not possible to compare the performance of the SA for larger

instances. Although the CPU time of the SA increased as the problem size increased,

the SA found solutions for all problem instances within 40 minutes. Overall, the SA is

capable of finding good solutions at a fraction of the time the exact method took to solve the

problems. The computational performance of SA was more pronounced when the problem

size was increased because the exact method could not handle larger problem instances.
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4.6 Conclusion

This chapter presented a reliable way to deliver light-weight parcels to customers us-

ing drones. Because drone failure during flights can result in unmet customer demand,

the concept of minimizing the expected loss of demand was introduced to determine a

more reliable flight path considering the probability of drone failure following a Weibull

distribution. A mathematical optimization model (DDS-F) was developed to determine a

flight schedule with minimum network ELOD subject to drone specific constraints: maxi-

mum flight time and payload capacity. The performance of the DDS-F was analyzed and

compared to the traditional makespan model using various sizes of test problems. The nu-

merical results showed that the DDS-F provided solutions about 23.6% more reliable on

average at a minor increase in makespan by 0.78%. Furthermore, the impact of the failure

distribution on the network ELOD value was investigated, and it was found that the network

ELOD had a reverse correlation to the shape and scale parameters of the Weibull distribu-

tion. The numerical results showed that the impact of the shape parameter on the flight

schedule was higher than the scale parameter. The shape parameter had an influence on the

optimal flight paths and the optimal number of required drones, but the scale parameter did

not. The computational performance of SA was analyzed as the DDS-F was not scalable to

a larger size of problems. The results showed that the SA was able to find optimal solutions

to smaller problem instances at a small fraction of CPU time for solving the DDS-F using

the exact method. Overall, the SA solved all test problem instances within 40 minutes.
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Chapter 5

Using Autonomous Battery Swap Stations

(ABSS) to Enable Continuous Drone-aided

Surveillance Missions Considering Battery

Capacity Degradation

5.1 Introduction

Despite vast improvements in battery-powered drone technologies, limited flight time

remains a major drawback for drones. A common approach to increase the travel time of

battery-powered vehicles is to charge their battery during the trip [208, 225]. Several meth-

ods that involve charging a drone battery during its flight time exists, such as installing

solar panels on the drone [170], using wireless charging infrastructures along the flight

path [114, 115] or at the stations [171], and charging and swapping batteries at the stations

[226, 227]. However, each of these methods have flaws. First, as seen in fixed-wing drones,

drones can carry solar cells and use solar energy as a primary source for a continuous, long

flight [170]. However, in the absence of the sun, an alternative power source would be
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necessary for the drones. Secondly, a major challenge in using wireless charging infras-

tructures during the flight or at the stations is the low charging efficiency and long charge

time in comparison to wired charging at the station [171, 173]. Finally, to address the third

aforementioned solution, it is possible that charging stations swap the depleted batteries

with fully charged ones and recharge them for their next use. Given the nature of these

stations, such charging stations with manual operations require a large space and enough

labor to swap or charge batteries when drones return to the station.

In this study, we propose using Autonomous Battery Swap Stations (ABSSs) as an alter-

native for the manual charging stations during drone group surveillance missions. ABSSs

are equipped with an automated battery replacement system to swap the depleted batteries

with recharged batteries without human interventions [7]. ABSSs can perform all the tasks

that manned stations can do. Each station is equipped with a sufficient number of batteries

so that drones will spend more time surveying rather than waiting at the station for their

battery to be charged.

The swapping time for most ABSSs takes approximately one minute, which is much

shorter than the standard battery charging time [171]. Figure 5.1 shows the swapping mech-

anism in an ABSS. A drone takes off from an ABSS and surveys the area to collect data.

The drone lands in the station when the battery charge is less than a preset threshold to

ensure the safe return for a battery swap before continuing the surveillance mission. In

the ABSS, the depleted battery is replaced with a fully-charged one, and the removed bat-

tery is placed in the charger to be charged for future use. Different design options for the

components of an ABSS can be found in the literature [7, 176, 177].

The installation location for ABSSs can be on rooftops, street lights, cell towers, inside

the sewer system, or along borders [228]. By overcoming the drones’ limited flight time,

it is possible to use drones for long-duration flights. The short swapping time achieved

by ABSSs can even facilitate the use of drones in semi-continuous surveillance missions.
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Figure 5.1: Autonomous battery swapping system algorithm [8]

The application of installing ABSSs to perform semi-continuous drone flights includes:

monitoring smart grid infrastructure [229], border line control [114], security operations

in the oil and gas industry [109], surveillance in tunnel-like environments (such as sewers,

road tunnels and mines) [230, 231], and data collection for the marine ecology, such as

aerial shark spotting [232, 233].

In this study, the application of battery-powered drones to survey predetermined paths

is considered, and ABSSs are utilized to perform long and semi-continuous flights. One

important factor in ABSS application for continuous flights is the approach of managing

the drones’ battery charges. In continuous surveillance by battery-powered drones, a fully-

charged battery should always be prepared for each drone. Lithium-ion batteries are a com-

mon power source for the battery-powered drones. The batteries have the disadvantage of

degradation, which means their capacity decreases over time [38]. Two major factors that

affect the battery state of health (SOH) and its degradation are the average state of charge

(SOC) and its swing of the batteries [2], both of which are studied in this research. A con-

sistent battery management system has to be implemented in all of the stations to prevent

surveillance mission interruptions. The battery management system determines the battery
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acquisition, charging, and replacement policies by answering the following questions: 1)

How many batteries are needed to perform the non-interrupted mission?; 2) How does the

battery capacity change and degrade over time?; 3) What should the battery charging policy

be in order to decrease battery degradation?; and 4) When should the battery be replaced

with a new one?

Overall, the contributions of this research to the literature include: 1) proposing a strate-

gic level framework to use autonomous battery swap stations for a continuous surveillance

performed by drones; 2) proposing a novel mathematical model to determine the optimal

location and the number of swap stations while taking into account the criticality level of

the surveillance area; 3) providing an algorithm to determine the required number of batter-

ies in each charging station while taking into account the SOH degradation of the batteries

over time.

The remainder of this chapter is organized as follows: Section 5.2 explains the proposed

framework to use swap stations for continuous surveillance. A mathematical optimization

problem is proposed in Section 5.2.1 to determine the optimal number and location of swap

stations among candidate locations. Section 5.2.2 studies the battery capacity degradation

over time. Section 5.3 provides a heuristic algorithm to determine the required number of

batteries in each station. The numerical results are discussed in Section 5.4 and and the

conclusion is presented in Section 5.5.

5.2 Problem Description and Formulations

To increase drones flight time, a set of candidate locations are considered in this study

to establish battery swap stations. The goal is to continuously survey the area with the

minimum number of stations in order to reduce the overall cost. As the location of ABSSs

is fixed, the considered surveillance environment can be an area that requires monitoring
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waypoints along a predetermined path, such as pipelines, borders, and sewer systems.

The required time to swap the battery is negligible [7]. There is one charger per battery

in each station to charge the depleted batteries automatically. Upon arrival at the station, if

the remaining battery charge percentage is enough for another flight, the drone will perform

another survey. Otherwise, the drone battery will be swapped automatically with a fully

charged battery. The swapped battery is placed on one of the chargers to be charged for

a future flight. The batteries in the chargers can be used for a flight when they are fully

charged. Due to the battery capacity degradation over time, batteries should be replaced

with new batteries when the capacity is less than a preset threshold. The battery capacity

degradation affects the required number of the batteries assigned to each drone, which is

considered in Section 5.2.2.

As depicted in Figure 5.2, there are two drones in each station s: One of these drones

covers the area on the right side of the station (drones,r) and the other covers the area on the

left side (drones,l). Drones, their batteries, and chargers are assumed to be homogeneous.

Figure 5.2: An example of the surveillance environment

The monitoring of all locations in the given area is essential; however, the importance

level of the locations are different. Some locations in the surveillance area may require

more frequent visits depending on the priority with respect to security, safety, and critical-

ity. To accommodate this need, Ahmadian et al. [234] defined the revisiting gap as the

largest time gap between two consecutive visits of a drone in a particular location. This

concept is used to evaluate the frequency of visiting a particular location in the surveillance
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area.

To parameterize the importance level of surveillance locations, a threshold for the re-

visiting gap (g̃ j) is defined for location j, which shows the maximum allowable time gap

between two consecutive visits of a drone at location j. Meeting the maximum revisiting

gap in the drone flight schedule ensures that at no time in the planning horizon, location j

is unseen for more than g̃ time unit. The parameter g̃ j is an input parameter placed into the

model, which is defined by the decision-makers based on the time interval they prefer to

have data from location j. Locations with higher priority should be visited more frequently,

so their g̃ is lower.

Each station is equipped with two drones that fly in opposite directions and return to the

same station after the surveillance. The assigned surveillance area to each drone is either

the area between the station and halfway to the another station (dronep,r, drones,l , drones,r,

and droneq,l in Figure 5.2) or the area between one of the endpoints of the area and the sta-

tion (dronep,l and droneq,r in Figure 5.2). Note that the halfway point between two stations

is a location that has equal distance from both of these stations. The following proposition

[234] is used to determine the maximum revisiting gap for surveillance waypoints.

Proposition 2. Assume a and b are the endpoints of the assigned area to a drone where

waypoint j is located between them. Let λ j and γ j be the travel time between waypoint j

and the assigned endpoints a and b, respectively, and g∗j be the minimum revisiting gap for

waypoint j. Then:

i) the minimum revisiting gap for waypoint j is achieved by flying directly between a

and b and changing the direction only at the endpoints of the assigned surveillance area.

ii) g∗j = 2 ·max{λ j,γ j}.

Proof. See Ahmadian et al. [234].
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Proposition 2 determines the drones’ flight path as directly flying between the assigned

endpoints and changing direction only at these endpoints. This information is used in the

remainder of this section to calculate the revisiting gap for the waypoints of the surveillance

area, which are located either between two swap stations or between one swap station and

one end point.

According to Figure 5.3, if candidate locations i and i′ are two consecutive swap sta-

tions, then halfway point between them is location h, which has an equal distance from both

i and i′ locations. Each drone starts the flight from a swap station, monitors the locations

between the station and the halfway point, and then returns to the same station. This flight

pattern is proven to result in the lowest revisiting gap for surveillance waypoints [234].

Figure 5.3: Revisiting gap for waypoints located between two swap stations

The revisiting gap for location j in Figure 5.3 (g j) is calculated by [234]:

g j = 2 ·max{λ j,γ j}, (5.1)

where γ j is the flight time between location j and halfway point h, and λ j is the flight

time between location j and the nearest station (λ j = min{time j,i, time j,i′}). In Figure 5.3,

λ j = time j,i′ if location j is located before the halfway point h, and λ j = time j,i if location

j is located after the halfway point h.

Some waypoints may be located between one of the swap stations and one of the

surveillance area endpoints. They are located either before the first station or after the
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last station, such as waypoints j′ and j′′ in Figure 5.4, respectively.

Figure 5.4: Revisiting gap for waypoints located between one station and one endpoint

For waypoints j′ and j′′, the flight time to the endpoint is taken into account rather than

the flight time to the halfway point in order to calculate the revisiting gap as follows:

g j′ = 2 ·max{λ j′,β j′}, (5.2)

and g j′′ = 2 ·max{λ j′′,β j′′}, (5.3)

where β j′ is the flight time between waypoint j′ and endpoint A, and β j′′ is the flight time

between location j′′ and endpoint B.

A two-stage procedure is proposed in this research. The first stage (see Section 5.2.1)

determines the optimal location for swap stations while minimizing the number of stations

and meeting the maximum allowable revisiting gap for locations in the surveillance envi-

ronment. The second stage (see Section 5.2.2) determines the required number of batteries

for each drone needed to perform continuous surveillance.

5.2.1 Swap Station Location Problem

The aim of this section is to propose a mathematical optimization model to determine

the number and location of battery swap stations. There is a given set of candidate locations

(set I), a subset of which will be chosen to establish swap stations. The goal is to cover
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surveillance waypoints (set SW ) and meet their maximum revisiting gap while maintaining

a minimum number of swap stations. If the surveillance area does not have any specific

waypoint, adding dummy waypoints can be considered in the mathematical model. The

parameter e1 and e2 are the left and right endpoints of the surveillance area, respectively.

As depicted in Figure 5.3 and Figure 5.4, each waypoint in the surveillance area is either

located between two stations or between one endpoint and one station. Therefore, it can be

assumed that each waypoint is assigned to either two stations or one station and one end-

point. By considering set I′ = I ∪{e1,e2} as the set of candidate locations and endpoints,

each surveillance waypoint is assigned to exactly two waypoints in set I′. The variable τi′ j

equals 1 if surveillance waypoint j is assigned to waypoint i′ ∈ I′.

The surveillance waypoints located between two stations are located either before or

after the halfway point of those stations. The binary variable x j equals 1 if surveillance

waypoint j is located after the halfway point of its assigned stations, and it is 0 if j is

located after the halfway point. The constraints related to the calculation of the variable x j

would not be binding for the surveillance waypoints not located between two stations. The

binary variables τi′ j and x j are used to determine the waypoint j revisiting gap based on its

location relative to station and endpoint locations. The notations used in this section are as

follows:

The objective function is minimizing the number of selected candidate locations to

establish swap stations:

Min ∑
i∈I

ui. (5.4)

Constraints (5.5) and (5.6) limit the gap to the maximum allowable gap for waypoints and
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Sets:
e1,e2 the left and right endpoints of the surveillance area, respectively,
I set of candidate locations for swap stations (I′ = I∪{e1,e2}, i ∈ I, i′ ∈ I′),
SW set of surveillance waypoints (k ∈ SW,SW ∪ I = /0),
W set of all waypoints ( j ∈W,W = I∪SW ).
Parameters:
ν average drone speed,
g̃ j revisiting gap threshold for waypoint j in time unit,
d j distance of waypoint j from the endpoint e1,
M a big number,
T L total length of area to cover, distance of the endpoint e2 from the endpoint

e1.
Variables:
τi′ j 1 if surveillance waypoint j is assigned to waypoint i′, 0 otherwise,
g j revisiting gap for waypoint j in time unit,
ui 1 if candidate location i is chosen for swap station, 0 otherwise,
x j 1 if waypoint j is located after halfway point of its assigned stations, 0

otherwise.

also candidate locations that are not selected as swap stations according to the followings:

gk 6 g̃k, ∀k ∈ SW, (5.5)

and gi 6 g̃i +Mui, ∀i ∈ I. (5.6)

Each waypoint j ∈W is either located between two consecutive stations or between a

station and one of the endpoints as shown in Figure 5.3 and Figure 5.4. Therefore, each

waypoint j ∈W is located exactly between two locations in the set I′ as stated by:

∑
i′∈I′

τi′ j = 2, ∀ j ∈W. (5.7)

Following constraint ensures that parameter τi j, i ∈ I, can get the value of 1 only if the
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candidate location i is selected as a swap station:

τi j 6 ui, ∀i ∈ I, j ∈W. (5.8)

The remaining constraints are to calculate the revisiting gap for waypoints and un-

opened candidate stations according to Equations (5.1)-(5.3). For the modeling purposes,

the maximization function in (5.1)-(5.3) is converted to a greater than or equality constraint.

Constraints (5.9) and (5.10) calculate the gap for each waypoint located between the first

endpoint e1 and the station i as:

g j >
2
ν
(di−d j)−M(2− τe1 j− τi j), ∀i ∈ I, j ∈W, (5.9)

and g j >
2
ν
(d j)τe1 j, ∀ j ∈W. (5.10)

These constraints are binding only when waypoint j is located between both station i

and endpoint e1 (such as waypoint j′ in Figure 5.4), otherwise the right hand side would be

a very large negative value. A constant drone speed is considered to convert the distance to

the flight time.

Constraints (5.11) and (5.12) are similar to Constraints (5.9) and (5.10), except that

they calculate revisiting gap for waypoints between the last swap station i and the second

endpoint e2 as:

g j >
2
ν
(d j−di)−M(2− τe2 j− τi j), ∀i ∈ I, j ∈W, (5.11)

and g j >
2
ν
(T L−d j)τe2 j, ∀ j ∈W. (5.12)

These constraints are binding only when waypoint j is located between both station i

and endpoint e2 (such as waypoint j′′ in Figure 5.4).
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Constraints (5.13)-(5.18) are to calculate the revisiting gap for the rest of the waypoints,

which are located between two stations (such as waypoint j in Figure 5.3). First, it should

be determined whether waypoint j is located before or after the halfway point. the follow-

ing constraints determine which one of the swap stations is closer to waypoint j:

1
2 ∑

i∈I
diτi j > d j−Mx j, ∀i ∈ I, j ∈W, (5.13)

and
1
2 ∑

i∈I
diτi j 6 d j +M(1− x j), ∀i ∈ I, j ∈W. (5.14)

The halfway point for waypoint j is located at location 1
2 ∑i∈I diτi j. Note that according

to constraint (5.7), there are two variables τi j with the value of 1 for each j ∈W . Variable

x j is a binary variable so only one of the Constraints (5.13) and (5.14) are tight for each

waypoint j ∈W . For waypoints located after their halfway point, variable x j gets the value

of 1 and Constraint (5.14) is binding. Constraint (5.13) is binding for waypoints located

before their halfway point.

Constraints (5.15) and (5.16) calculate the revisiting gap for the waypoints that are

located between two stations and are also located after the halfway points of these stations:

g j >
2
ν
(di−d j)−M(1− x j)−M(1− τi j), ∀i ∈ I, j ∈W, (5.15)

and g j >
2
ν
(d j−

1
2 ∑

i∈I
diτi j)−M(1− x j)−M(2−∑

i∈I
τi j), ∀ j ∈W. (5.16)

If the waypoint j is not located between two stations or is located before the halfway,

Constraints (5.15) and (5.16) are not binding.

Constraints (5.17) and (5.18) are similar to Constraints (5.15) and (5.16), except that

they consider waypoints located before their halfway point:

g j >
2
ν
(d j−di)−Mx j−M(1− τi j), ∀i ∈ I, j ∈W, (5.17)
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g j >
2
ν
(
1
2 ∑

i∈I
diτi j−d j)−Mx j−M(2−∑

i∈I
τi j), ∀ j ∈W, (5.18)

and g j > 0,τi′ j,ui,x j = {0,1}, ∀i′ ∈ I′, i ∈ I, j ∈W. (5.19)

5.2.2 Number of Required Batteries

This section determines the number of required batteries in each station by considering

the battery capacity degradation over time. The battery capacity is the maximum possible

flight time with one charge of the battery. The battery capacity decreases over time and

eventually they have to be replaced with a new one.

The battery state of charge (SOC) shows the remaining battery percentage. The average

and standard deviation of battery SOC (µSOC,σSOC), and the operating temperature (TB) are

the most important factors impacting the battery capacity degradation [235]. The model

proposed in [235], calculates capacity fading (L(m)) each time the battery is used through

Equation (5.22). The intermediate parameters L1 and L2 capture the impact of µSOC and

σSOC on the capacity degradation according to the following equations:

L1 = Kco ·N · exp((σSOC−1)
Tre f

Kex(TB)
)+0.2

tcycle

tli f e
, (5.20)

L2 = L1 · exp(4KSOC(µSOC−0.5))(1−L), (5.21)

and Lm = L2 · exp(Kt · (TB−Tre f )
Tre f

TB
), (5.22)

where Kco,Kex,KSOC,Kt are battery-specific parameters, Tre f , tcycle, tli f e are reference bat-

tery temperature at 25◦C, duration of one cycle, and shelf life at 25◦C at 50% SOC until

80% of the initial capacity, respectively [2, 235]. The capacity degradation over T flights
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or cycles is given by parameter L according to:

L =
T

∑
m=1

Lm. (5.23)

Variable L shows the remaining battery capacity as a fraction of the initial battery ca-

pacity. For example, the remaining battery capacity after T cycle is cap = capmax(1−L),

where capmax is the maximum battery capacity. In this research, the impact of µSOC and

σSOC on the battery capacity degradation and determination of the required number of bat-

teries are considered. The parameter TB is assumed to be constant so its impact on the

battery capacity degradation is not studied here. In Section 5.3, we explain how SOC and

its average and standard deviation in each cycle are calculated to determine the capacity

degradation and find the required number of batteries for each drone.

As mentioned in Section 5.2, there are two homogeneous drones in each station s,

drones,k,k ∈ {r, l}. Drone drones,r covers the waypoints on the right side of the station and

drone drones,l covers the waypoints on the left side of the station. The required number

of batteries for each drone to maintain a continuous flight depends on the length of the

area that they survey. The goal is to minimize the total battery acquisition and replacement

cost. The initial cost of purchasing batteries is c · ns,k, where c is the purchasing cost of

one battery ($) and ns,k is the number of assigned batteries to drone k at station s. ∆ts,k

is the total time of using one battery assigned to drone k at station s before replacing it,

therefore, the fraction of T H
∆ts,k

is the average number of times that batteries are replaced

over the planning horizon T H. The objective function for drone k in station s is:

Min c ·ns,k · (
T H
∆ts,k

+1). (5.24)

where, the variable ∆ts,k is the cumulative cycle time from the first cycle of using the battery

109



up to the replacement cycle. The procedure to calculate ∆ts,k is explained in Section 5.3.

5.3 Solution Method

One cycle of using a battery includes both discharging and charging of the battery as

depicted in Figure 5.5. Each cycle starts with the battery discharging while it is used in

a flight by a drone. Batteries are homogeneous and they are used one after each other, so

it is assumed that they have the same discharging-charging curve in the same cycle. The

parameters used in this section are as follows:

Sets:
SS set of swap stations, SS = {i ∈ I|u∗i = 1},s ∈ SS,
K set of drones at each station, K = {r, l},k ∈ K.
Parameters:
capmax maximum battery capacity (min),
SOCmax maximum battery percentage (%),
φc battery charging rate (%/min),
φd battery discharging rate (%/min),
T FC required time to fully charge a battery to SOCmax in a cycle,
ω battery total idle time at station in a cycle (min),
ω1,ω2 battery idle time before and after charging the battery, respectively,
ρ percentage of total idle time that happens before charging a battery (ω1 =

ρ ·ω),
αs,k required surveillance flight time for drone k in station s (min),
tcycle duration of one cycle (min).

The parameter αs,k is drone k flight time from station s to the halfway or the endpoint

and then return to the same station. It is obtained based on the optimal solution of the swap

station location problem in Section 5.2.1. Based on the battery capacity and remaining

battery charge, a drone can perform multiple trips in one flight. Parameter f shows the

number of drone trips in a cycle and is calculated by:

f = bcap
α
c, (5.25)
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Figure 5.5: Battery state of charge (SOC) during one cycle

where cap is the remaining battery capacity. For example, in Figure 5.5 the time distance

between dashed lines is αs,k, therefore, drone is able to perform 3 trips in one flight. In

Figure 5.5, t0 shows the start time of a cycle and without loss of generality, we assume

t0 = 0, then we have the followings:

t1 = αs,k, (5.26)

t2 = f ·αs,k, (5.27)

t3 = cap, (5.28)

t4 = f ·αs,k +ω1, (5.29)

t5 = f ·αs,k +ω1 +T FC, (5.30)

and t6 = f ·αs,k +ω1 +T FC+ω2. (5.31)

The ns,k batteries that are assigned to drone k are used one after each other, so the length

of a cycle which includes both discharging and charging on a battery is as follow:

tcycle = ns,k · f ·αs,k. (5.32)
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The drone might be idle when it returns to the station after a flight because other bat-

teries should be used in the drone. The idle time (ω) can be before ω1 or after ω2 charging

the battery. The total waiting time in each cycle is calculated by:

ω = tcycle−flight time− charging time,

→ ω = tcycle− f ·αs,k−T FC = (n−1) · f ·αs,k−T FC, (5.33)

and ω1 = ρ ·ω, ω2 = (1−ρ) ·ω. (5.34)

The discharging rate (φd) in each cycle depends on the battery capacity while the charg-

ing rate (φc) is a constant value in all the cycles. The discharging rate in a cycle depends

on the remaining battery capacity and is calculated by:

φ
d =

SOCmax

cap
. (5.35)

As parameter φc is constant, the required time to charge the battery (T FC) depends on

the battery SOC when the battery is back at the station and is calculated as follows:

φ
c =

SOCmax−SOCt4
T FC

, (5.36)

and SOCt4 = SOCmax−φ
d · t2 = SOCmax−

SOCmax

cap
· f ·αs,k, (5.37)

→ T FC =
αs,k · f ·SOCmax

φc · cap
. (5.38)
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The battery SOC for the cycle in Figure 5.5 is according to:

SOC(t) =



SOCmax− SOCmax·t
cap , t0 6 t < t2,

SOCmax−
SOCmax· f ·αs,k

cap , t2 6 t < t4,

SOCmax−
SOCmax· f ·αs,k

cap +φc · (t−ω1− f ·αs,k), t4 6 t < t5,

SOCmax, t5 6 t 6 t6.

(5.39)

The SOC average and standard deviation, µSOC and σSOC, are calculated by the follow-

ing equations, respectively:

µSOC =
1

tcycle

∫
cycle time

SOC(t) dt, (5.40)

and σSOC =
3

tcycle

∫
cycle time

(SOC(t)−µSOC)
2. (5.41)

Therefore, for Figure 5.5, µSOC and σSOC are:

µSOC · tcycle = SOCmax ·ω+
SOCmax · f · (ω1 +T FC)

cap
+SOCmax( f +T FC),

− SOCmax

2cap
· f 2 ·α2

s,k−φ
c(ω1 + f ·αs,k)+

φc

2
( f ·αs,k +ω1 +T FC)2− φc

2
( f ·αs,k +ω1)

2.

(5.42)

σ
2
SOC ·

tcycle

3
= (SOCmax−µSOC)

2 · f ·αs,l +
SOCmax

3cap
· ( f ·αs,k)

3,

− SOCmax

cap
· (SOCmax−µSOC)+(SOCmax−

SOCmax · f ·αs,k

cap
) ·ω1,

+(A−µSOC)
2 ·T FC+

(φc)2

3
· (( f ·αs,k +ω1 +T FC)3− ( f ·αs,k +ω1)

3),

+φ
c(A−µSOC) · (( f ·αs,k +ω1 +T FC)2− ( f ·αs,k +ω1)

2)+(SOCmax−µSOC) ·ω2,

(5.43)
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where A = SOCmax−
SOCmax· f ·αs,k

cap − φc( f ·αs,k +ω1). Parameters µSOC and σSOC are then

used to calculate the battery degradation according to Equation (5.22).

In each swap station s, drones,l and drones,r require ns,l and ns,r batteries to operate a

semi-continuous flight, respectively. Therefore, a total of ns = ns,l + ns,r batteries should

be provided at station s. Algorithm 4 shows the procedure to calculate the required number

of batteries.

Algorithm 4 : Determine the number of required batteries
1: For each s ∈ SS:
2: αs,l = min{2ds ,min{ds−ds′|ds > ds′,s′ ∈ SS}} /ν

3: αs,r = min{2(T L−ds) ,min{ds′−ds|ds < ds′,s′ ∈ SS}} /ν

4: For each k ∈ {r, l}
5: ob j∗s,k = BigM,n∗s,k = nmin

s,k
6: While(true)
7: cap = capmax,L = 0,∆ts,k,n = 0
8: While cap > cap f inal
9: f = b cap

αs,k
c

10: T FC =
αs,k· f ·SOCmax

φc·cap
11: ω = (n−1)αs,k · f −T FC
12: ω1 = ρ ·ω, ω2 = (1−ρ) ·ω
13: tcycle = αs,k · f ·n
14: ∆ts,k,n = ∆ts,k,n + tcycle
15: calculate Lm according to Formula (5.22)
16: L = L+Lm
17: cap = (1−L)capmax
18: End While
19: ob js,k,n = n · ( T H

∆ts,k,n
+1)

20: If ob js,k,n 6 ob j∗s,k
21: ob j∗s,k = ob js,k,n,n∗s,k = n,n = n+1
22: Else
23: Break
24: End While
25: End For
26: End For

Lines 2 and 3 in Algorithm 4 calculate the surveillance flight time (αs,k) of drone k
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for one round trip departing station s and then returning to station s again. Index set k

shows the drones at each station, drone r and l. The outer While loop in lines 6-24 of

Algorithm 4 calculates the required number of batteries assigned to each drone. It starts

from the minimum required number of batteries, nmin
s,k , and increases it one by one, until the

objective function value worsens. The objective function value is calculated according to

(5.24). The minimum number of batteries that should be assigned to drone k at station s is

calculated based on the last cycle of using batteries as:

Last cycle: cap = cap f inal, f = b
cap f inal

αs,k
c, T FC = (nmin

s,k −1) ·αs,k,

and T FC =
αs,k · f ·SOCmax

φc · cap f inal
= (nmin

s,k −1) ·αs,k→ nmin
s,k = d

SOCmax · b
cap f inal

αs,k
c

φc · cap f inal
+1e.

(5.44)

where, parameter αs,k is the flight time of drone k at station s, which is determined by step 2

and 3 of Algorithm 4 for left-side and right-side drones, respectively. The inner While loop

in lines 8-18 calculates parameters f , T FC, ω,ω1,ω2, and tcycle according to Equations

(5.25), (5.38), (5.33), (5.34), and (5.32), respectively. The parameter ∆ts,k,n is the total

time of using a battery assigned to drone k at station s before replacing it while a total of n

batteries are assigned to this drone. These parameters are used to calculate the percentage

of capacity fading in one cycle of using the battery, Lm, according to Equation (5.22).

The remaining battery capacity is (1−L)capmax, where L is the cumulative percentage of

capacity fading. A battery is used in drone flight missions until its capacity reached the

final battery capacity, cap f inal , when the battery should be replaced with a new one. The

parameter cap f inal is an input to the model based on the decision makers opinion and is

usually set to 80% of the original battery capacity [235]. The output of Algorithm 4 is

the required number of batteries assigned to drone k in station s, n∗s,k and its associated

objective function value, ob j∗s,k, and the total time of using each battery, ∆ts,k,n.
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5.4 Case Study and Numerical Results

Numerical results are conducted to test the proposed models and the solution method

using randomly generated test cases. In all the experiments, equally distributed dummy (or

virtual) waypoints are considered to survey the whole area. By increasing the number of

dummy waypoints, the accuracy of the modeling environment increases, but the complexity

of the model also increases accordingly. All experiments are implemented in the Python

environment [221] on a Linux server with 24 cores and 384GB RAM. Gurobi solver 8.1

[222] was used to solve optimization problem in Section 5.2.1 and the solution algorithm

proposed in Section 5.3.

5.4.1 A Case Study

The case study considers a surveillance area with the length of 10 miles (T L = 10 mile),

which is divided into 100 equally distributed dummy waypoints (|SW |= 100). There are 9

candidate locations (|I| = 9) for the ABSSs as shown in Figure 5.6. Figure 5.7 shows the

randomly generated maximum allowable revisiting gap (g̃ j) for every waypoint of this area.

The locations to be visited more frequently are assigned with a shorter permitted revisiting

gap.

Figure 5.6: Case study with 9 candidate locations for ABSS

The rest of the parameters are shown in Table 5.1. The battery charging rate is set to
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0.55% per minute, which means an empty battery can be fully charged in 3 hours. The

drone speed is assumed to be constant at 30 miles per hour, which is 0.5 miles per minute.

The battery-specific parameter values in Equations (5.20)-(5.22) are based on a lithium ion

cell battery (i.e., A123 ANR26650M1A) [2].

Table 5.1: Parameter setting for the test cases [2]
Parameter Value Parameter Value

Battery-specific
parameters

N 1 Tre f 25◦C
Kex 0.717 tli f e 1 year
Ksoc 0.916 Kco 3.66 ·10−5

L 0 Kt 0.0693

Common
parameters

TB 25◦C c 100 $
T H 2 years capmax 45 minutes
φc 0.55 %/min SOCmax 100%
ρ 1 ν 30 mph

5.4.2 Numerical Results

This section begins by solving the mathematical model proposed in Section 5.2.1,

which resulted in three candidate locations C2, C6 and C9 for the ABSS. These stations

are selected considering the maximum revising gap requirements of the waypoints. Fig-

ure 5.7. shows both the g̃ j levels and the actual revisiting gap achieved by selecting those

three ABSSs locations, C2, C6 and C9.

As mentioned in Section 5.2, two identical drones are placed in each of the ABSS loca-

tions. One of them flies in the left direction and the other one in the right direction. Having

enough replacement batteries available at each station for each drone can help seamless

surveillance of the region with a minimum interruption. The following procedure (see Sec-

tion 5.2.2) is followed to determine a sufficient number of batteries for seamless operation.

First, the flight time (αs,k) of drone k for one round trip departing station s is calculated in
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Figure 5.7: Maximum allowable revisiting gap for each waypoint of case study

lines 2 and 3 in Algorithm 4:

α2,l = (2 ·d2) /0.5 = 8, (5.45)

α2,r = min{2 · (T L−d2) ,d6−d2,d9−d2} /0.5 = min{16,4,7} /0.5 = 8, (5.46)

α6,l = min{2 ·d6 ,d6−d2} /0.5 = min{12,4} /0.5 = 8, (5.47)

α6,r = min{2 · (T L−d6) ,d9−d6} /0.5 = min{8,3} /0.5 = 6, (5.48)

α9,l = min{2 ·d9 ,d9−d2,d9−d6} /0.5 = min{18,7,3} /0.5 = 6, (5.49)

and α9,r = 2 · (T L−d9) /0.5 = 4. (5.50)

Second, the cap f inal in Algorithm 4 is set to 80% of the initial battery capacity which is

cap f inal = 0.8 ·45 = 36. Third, Equation (5.44) is used to determine the minimum number

of required batteries per drone (nmin) as: nmin
2,l = 21, nmin

2,r = 21, nmin
6,l = 21, nmin

6,r = 31, nmin
9,l =

31, and nmin
9,r = 46.

Fourth, Algorithm 4 is used to determine the required number of the batteries. Table 5.2

shows the results including the required number of batteries (n∗s,k) obtained by Algorithm 4.
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In these test cases, we observed that the minimum required number of batteries for each

drone resulted in the best value. Overall, a total of 171 batteries are needed for this contin-

uous surveillance mission and the total battery replacement cost would be $27,928.8 over

the planning horizon of two years. The value of ∆ts,k in the table shows the number of days

Table 5.2: Required number of batteries secured for each drone
station (s) drone (k) αs,k (min) nmin n∗s,k ∆ts,k (days) obj ($)

2 left 8 21 21 910 3784
2 right 8 21 21 910 3784
6 left 8 21 21 910 3784
6 right 6 31 31 1268 4884
9 left 6 31 31 1268 4884
9 right 4 46 46 1522 6805

Total 171 - 27,928 $

a battery can be used before it reaches the decision point cap f inal to replace it with a new

battery.

5.4.3 Sensitivity Analysis

In this section, the behavior of the proposed model and the algorithm are analyzed

under different parameter value settings regarding the battery management system. Sec-

tion 5.4.3.1 explains when to change a battery with a brand new one. Section 5.4.3.2 shows

how the total battery replacement cost varies as relevant parameter values are changed. Fi-

nally, Section 5.4.3.3 discusses the time of battery charging and its impact on the battery

capacity degradation over time.

5.4.3.1 Battery Replacement Policy

Electrical vehicle batteries are usually replaced with a new battery when the battery

reaches 80% of its initial capacity [235, 236]. We investigate the impact of using drone

batteries beyond their 80% of the initial capacity on long term battery capacity degradation.
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The minimum required battery power for drone k to make a round trip is αs,k when drone

makes a single round trip departing from station s and returning to it again. Table 5.3

shows how the required number of batteries and the battery replacement cost will change

by setting the end of life of drone k′s battery to αs,k instead of replacing it when it reaches

80% of the initial capacity.

Table 5.3: Impact of f f inal value on the required number of batteries and replacement cost
station (s) drone (k) αs,k (min) nmin n∗s,k ∆ts,k (days) obj ($)

2 left 8 24 24 2504 3199
2 right 8 24 24 2504 3199
6 left 8 24 24 2504 3199
6 right 6 31 31 3364 3772
9 left 6 31 31 3364 3772
9 right 4 46 46 4683 5317

Total 180 - 22,161 $

Table 5.2 and Table 5.3 have the same parameter settings and data, except the parameter

cap f inal is decreased in Table 5.3. In Table 5.2, batteries are replaced when the capacity

reaches 80% of the initial battery capacity; however, in Table 5.3, batteries are used for

flight mission as long as it is possible to return to the station with the remaining battery

capacity, which means cap f inal = αs,k,∀s,k. For this test case, αs,k is 8, 6, or 4 minutes of

fly, so cap f inal is decreasing from 36 minutes in Table 5.2 to αs,k in this section. Comparing

Table 5.3 and Table 5.2, it can be seen that the number of required batteries is increased

from a total of 171 to 180 (5.2%) due to the fact that the cap f inal in Equation (5.44) is

decreased.

The value of ∆ts,k is also increased for all the drones. The reason for this increase is

directly related to the increased number of available batteries in the station. Because more

batteries are available, each battery is used less frequently. Hence, the total battery replace-

ment cost is decreased from 27,928.8 $ to 22,161.0 $ (20.4%) in this case. By decreasing

the value of cap f inal , ∆ts,k and the required number of batteries n∗s,k will always increase.
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However, according to (5.24) since both nominator and denominator are increasing, the

total cost may increase or decrease, depending on other parameters.

5.4.3.2 Battery Replacement Cost

The battery replacement cost for a drone depends on the number of batteries secured

for the drone (ns,k) and the battery replacement service time (∆ts,k) as stated in Equation

(5.24). It is easy to see that variable ∆ts,k depends on ns,k. As there are more batteries

available to support a drone, each of those batteries will be used less frequently. This helps

slow down the battery degradation, which will result in less frequent battery replacement.

Different cases with the same parameter setting as Section 5.4.1 are examined here to show

the relationship between ∆t and α. The results of this section are based on one drone

with the surveillance flight time of α minutes ranging from 19 to 22 minutes. Figure 5.8

shows the relationship between the number of available batteries (n) and the duration of

service (∆t) in days for a battery until it gets replaced. The figure starts from having six

batteries per drone, which is the minimum number of required batteries for the test problem.

Figure 5.8 suggests that there is an approximately linear relationship between ∆t and n,

which is further detailed in Table 5.4. The adjusted R2 value is more than 98% for all these

cases.

Table 5.4: Linear relationship between ∆t and n for different α values
α nmin linear regression line R2 n∗ average total cost
19 6 ∆t = 46.8 n - 121.5 98.3% 10 3,017.7
20 6 ∆t = 39.3 n - 96.3 98.3% 11 3,351.9
21 6 ∆t = 30.0 n - 73.5 98.5% 11 4,051.5
22 6 ∆t = 18.9 n - 52.9 98.9% 13 5,966.2

Table 5.4 also shows the required number of batteries (n∗) assigned to the drone and the

average total cost associated with this number of batteries over a time horizon of 2 years

(T H = 2 years). In lines 20-23 of Algorithm 4, the value of n increases from nmin until the
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Figure 5.8: Impact of n and α on ∆t

objective function value (battery cost) worsen. Figure 5.9 shows how the objective function

value changes by increasing n for α values (the flight time of a single route trip) between

19 and 22. The nmin are shown with stars in this figure. As it can be seen, by increasing

the number of batteries from nmin to n∗, the objective function value decreases and then it

increases beyond the value of n∗.

5.4.3.3 Battery Charging Decision: Charge or Wait

Upon arrival of each drone to the station from a flight, a decision needs to be made

regarding the drone charge: charge the battery or delay the charge to the next decision

point. When the battery is fully charged, it will be stored idle at the station until it gets

picked up to replace another. Figure 5.5 shows battery idle time before (ω1) and after

(ω2) being charged. Hence, the total waiting time (ω) in each cycle of using battery is the

summation of ω1 and ω2. For example, the percentage of the idle time (ρ) before being
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Figure 5.9: Impact of n on average total battery replacement cost

charged can be calculated as ρ = ω1
ω

. In all previous test cases, ρ was set to 1, which means

battery charging is delayed until it is charged for an immediate use. Figure 5.10 shows a

comparison between two scenarios ρ = 0.75 and ρ = 1 for charging a battery upon arrival

at the station.

The same parameter setting as Table 5.1 is used for the scenarios in Figure 5.10. The

value of α is set to 20 minutes in this section, which results in the minimum required

number of batteries to be 6 (nmin
s,k = 6 ). The time span of using one battery assigned to

a drone in a station (∆t) varies and it is 86 days for the case of ρ = 0.75 and 102 days

for ρ = 1.0. For a given battery capacity of cap, a drone can make up to f = bcap
α
c trips

(Equation (5.25)). As an illustration, a drone with cap ranging from 40 and 45 can fly two

rounds of trips without swapping the batteries. As the cap value decreases, the maximum

trips on one fully charged battery decreases accordingly. The slope of graph in Figure 5.10

is steeper for cap < 40 minutes (i.e. f = 1) because the battery has a higher average

remaining state of charge (µSOC) when it returns to the station and higher µSOC results in
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Figure 5.10: Two scenarios for battery charging upon arrival at the station

higher capacity degradation. Two major factors impacting the battery capacity degradation

considered in this study are the mean (µSOC) and the standard deviation (σSOC) of SOC. As

it can be observed from Figure 5.10, the battery capacity degradation was lower when the

charging is delayed as much as possible. The reason is that higher values of µSOC and σSOC

result in higher capacity degradation as Equations (5.20) and (5.21) state. By delaying the

charging, the battery is remained idle at the station with empty charge which means µSOC

and σSOC are lower and therefore, it degrades less.

The results indicate that the battery can be in service for a longer time period to make

more flight missions by delaying the charge until it needs to be charged for the next use.

However, the charging delay strategy has a potential risk of interrupting the continuous

flight surveillance. A fully charged battery might not be available at the station due to

postponing the charging when the drone returns to the station for battery swap, and the

drone has to wait until a battery is ready.
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5.5 Conclusion

This chapter presented a new concept, autonomous battery swap stations (ABSS), to

expedite the battery swap operation so that drones can spend more time for surveillance

missions of a critical region. Under the proposed approach, an ABSS was equipped with

a sufficient number of batteries that were fully charged while the drone was out flying for

the surveillance. Our approach considered battery capacity degradation over time. When a

battery reached end-of-life, it was replaced with a new one. The impact of two main factors

µSOC and σSOC on the battery capacity degradation were studied.

In order to visit important locations more frequently, the maximum revisiting gap con-

cept was used to parameterize the criticality of surveillance locations. A MILP model was

developed to determine the location of ABSSs to meet the maximum revisiting gap limi-

tation of each waypoint along the surveillance region. An algorithm has been developed

to find an appropriate number of batteries to be allocated to each drone by minimizing the

battery replacement cost over a planning time horizon.

Several case study were conducted to study the impact of battery management deci-

sions and parameter settings on the number of required batteries, their useful life span and

the total battery replacement cost. The results showed that replacing a battery at a lower

remaining capacity resulted in an increase in both n∗s,k and ∆t. For the test case studied

here, reducing the cap f inal from 80% of the initial capacity to α resulted in 5.2% increase

in total required batteries and an increase in ∆t for all the batteries. We investigated the time

to start recharging the returned battery. Numerical results indicate that charging the battery

should be delayed until it is needed for the next flight. This strategy may help improve the

battery end-of-life (∆t) so that it can serve longer at the station. For a test case, increasing

the percentage of the idle time before being charged from ρ = 075% to ρ = 100% increases

the ∆t by 15.6%. The results also showed that there is an approximately linear relationship
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between ∆t and n.
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Chapter 6

Summary and Future Work

In summary, the primary objective of this dissertation is on the applications of drones

in delivery and surveillance missions with the consideration to some factors impacting both

path planning and flight schedules.

In Chapter 3, a delivery system design using drones was proposed that considered the

impact of BCR on the fleet scheduling and flight path. A Phantom 4 Pro+ drone was tested

to collect flight time and remaining battery charge data for different payload amount. Ex-

perimental data stated that the BCR was a linear function of carried payload, and therefore,

a linear regression was used to model it. To design the drone-based delivery system, the

SP and the OP models were proposed. The SP model determined the location of delivery

bases by solving a set covering problem that took into account the feasible flight range

from each candidate location. Furthermore, the OP model minimized the number of drones

while considering the payload and flight time limitation, as well as the impact of payload

on the flight time. The OP model determined optimal drone delivery assignments and their

paths by solving a MILP model. To reduce the computational time of the OP model, a

variable preprocessing algorithm, a primal and three different dual bound generation meth-

ods were developed. Several randomly generated delivery networks were used to test the
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proposed models and the efficiency of the proposed solution algorithms. The results indi-

cated that the dual bound by network configuration method computationally outperformed

the Lagrangian relaxation and the BPP-weight methods. The preprocessing algorithm and

the bound generation methods were able to solve all tested cases, which was impossible

without the inclusion of these methods. The contribution of this chapter can be extended

by including other factors affecting the BCR such as flight speed and environmental condi-

tions. By including the impact of flight speed on battery endurance, the flight speed itself

can be optimized. Also, the battery capacity degradation and its impact on battery depth of

charge and flight duration can be considered in the delivery network.

In Chapter 4, a reliable drone-based light-weight parcels delivery schedule considering

drone failures was developed to minimize ELOD. A new concept based on how reliabil-

ity is calculated, minimizing the expected loss of demand, was developed to evaluate the

reliability of a drone delivery network and determine more reliable paths. A DDS-F op-

timization model was proposed to determine the flight schedule with minimum network

ELOD subject to the drone’s limited flight time and payload capacity. The numerical re-

sults stated that the DDS-F provided solutions more reliable on average compared to the

traditional makespan model at a minor increase in makespan. Next, sensitivity analysis was

performed on Weibull distribution (commonly used failure distributions in reliability anal-

ysis) parameters to elaborate on the model behavior which showed: 1) the network ELOD

had a reverse correlation to the shape and scale parameters, 2) the impact of the shape

parameter on the flight schedule was higher than the scale parameter, and 3) the shape pa-

rameter had an impact the optimal number of required drones and the optimal flight paths.

A computationally efficient simulated annealing (SA) method coupled with the Sweep and

Petal algorithms were proposed. The proposed SA was able to find optimal solutions to

small-sized problems much faster than the exact method. There are several ways to extend

more the contributions in Chapter 4. First, one can study more on selecting the appropriate
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failure distribution function based on physical or virtual experiments. Second, the ELOD

concept can be used for a delivery network combining both trucks and drones. Third, a

more efficient solution algorithm could be developed, such as a two-stage approach, in

which the first stage determines a flight schedule at minimum makespan, and the second

stage aims to minimize the ELOD.

In Chapter 5, a novel utilization of ABSSs was proposed to extend the battery-powered

drone flight time in a long and near-continuous surveillance mission. The ABSS had all

of same functionalities as manned stations including swapping the depleted battery with

a recharged one, charging the battery, and replacing it with a new one at the end of its

lifetime. Typical drone behaviour included them departing from an ABSS to collect data

and returning to the same station when the battery charge was less than the required level.

Each station was equipped with a sufficient number of batteries so that drones would not

spend a lot of time waiting at the station for the battery to be charged. In order to provide

more frequent visits for more important or higher-risk locations, this chapter considered

the importance associated with each location which was parameterized as the maximum

revisiting gap. A MILP model was proposed to determine the ABSS location so that the

minimum number of ABSS was established to cover the surveillance waypoints based on

their maximum allowable revisiting gap. Furthermore, an algorithm was also proposed for

the battery management mechanism in each station to prevent surveillance mission inter-

ruptions which determined the following: 1) required number of batteries secured for each

drone to perform the non-interrupted mission; 2) the battery capacity degradation over

time; 3) the battery charging policy; and 4) the replacement of the degraded battery with

a new one. The impact of average SOC and the swing of the batteries (µSOC and σSOC)

on the battery degradation was considered in the battery management. A case study was

conducted to implement the proposed MILP model. Numerical results showed an almost

linear relationship between ∆t and n. Several other case studies were tested in sensitivity
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analysis. The results showed that replacing a battery at a lower remaining capacity re-

sulted in an increase in both n∗s,k and ∆t. Numerical results also indicated delay in charging

the battery improved ∆t so that it can serve longer at the station. As an extension of this

chapter, one can develop a dynamic model in which the decision to land at the station or

continuing the surveillance are made based on real-time information. The important level

of surveillance locations might change even daily, which can be addressed in a dynamic

model. The proposed MILP model can be extended by considering uncertainty in the bat-

tery charging and discharging rates, as well as the drone flight time, which can be included

in the model. Another extension can be addressing the impact of environmental conditions

such as temperature on the battery capacity degradation.
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