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This dissertation consists of three essays in empirical asset pricing. In the first essay, I

propose a machine learning based approach to monitor the relative forecasting performance

between two forecasts and select the conditionally better forecast. When I apply this ap-

proach to the combination forecast and the historical average benchmark forecast, the re-

sulting new return predictor leads to statistically and economically significant out-of-sample

gains consistently over time. Such improvements come from expecting a conditionally poor

performance of the combination forecast and switching to the historical average benchmark.

This approach also works well for other return forecasts using individual economic predictors

and can be applied to combine individual forecasts more efficiently. Interestingly, the weight

on the combination forecast produced by the machine learning based monitoring approach

is high during NBER recessions and periods with high macro uncertainty, which captures

the well-known fact that return predictability is concentrated in bad times.

In the second essay, we compute implied dividend yields using equity options and show

that they are negatively related to the subsequent stock returns. This finding is in contrast

with the theory and evidence at the market level where dividend yield is positively related to

the future market return. The panel data analysis reveals that the normal relation between

the dividend yield and individual stock returns recovers in longer horizon. I further find

that the mixed evidence regarding option implied skewness and stock returns could also

be reconciled with varying forecast horizon. The opposite to theory relation between option

implied measures and stock returns is stronger when analyst forecast dispersion is at a higher

level.

In the third essay, we investigate the relationship between systematic risk and credit

default swap (CDS) returns and discovers that cross-sectional dispersion in future CDS

returns can be rationalized by differences in firm’s sensitivities to the market return. Further

analysis shows that investors in the CDS market demand higher compensation to provide

v



default protection to firms with higher sensitivities to downside market movements. The

reward for bearing downside risk is not simply the compensation for systematic risk nor is it

explained by other firm characteristics. The relation between downside risk and CDS returns

is stronger for longer maturity CDS contracts.
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Chapter 1

Monitoring Forecasts with Machine Learning

1.1 Introduction

Stock return forecasts are of great interest to both academics and practitioners in finance

as they affect areas ranging from asset pricing to portfolio allocation and risk management.

The quest for accurate and reliable return forecasts led to numerous economic variables

discovered to have significant in-sample predictability (Campbell and Shiller, 1988; Fama

and French, 1988, 1989; Ferson and Harvey, 1993; Lettau and Ludvigson, 2001; Pontiff and

Schall, 1998). However, as noted by Goyal and Welch (2008), these potential predictors are

unable to deliver consistent out-of-sample forecasts of the market return when compared to

a simple benchmark: the historical average forecast. The relative forecasting performance of

economic predictors are found to be unstable and changes over time. Rapach, Strauss, and

Zhou (2010) find that combining individual predictive regression models can improve out-

of-sample performance in both statistical and economic terms. However, the out-of-sample

performance of this approach still deteriorates from 1980 onward. I find that the deteriorated

performance of combining strategy is because several economics variables could not reliably

predict market return after around 1980. Thus, model uncertainty and instability not only

seriously impair the forecasting ability of individual predictive regression models, but can

also spill over and negatively affect the combination forecast. Removing poor forecasts from

the combination pool could potentially boost out-of-sample performance, but this approach
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requires econometricians to identify in real time which forecast will perform worse (or better)

in future.

Motivated by these empirical observations, I answer the following two questions: (1) can

we monitor the forecasting performance ex-ante; (2) if so, can we improve forecast accu-

racy using the information gathered from monitoring. I propose a machine learning based

approach to monitor relative performance between a candidate forecast and the historical

average benchmark forecast (theoretically they could be any two forecasts but the current

setting uses the historical average as a benchmark as this is the most commonly used baseline

in evaluating any market return forecast). This approach accommodates model instability

and utilizes a large number of potential conditioning variables to monitor forecasting model’s

predictive power. I then investigate whether the information provided by machine learning

based monitoring can help us make more accurate forecasts in a pseudo-real-time exercise. I

find that machine learning based monitoring approaches can provide consistent out-of-sample

gains to both combination forecast and individual forecasts statistically and economically.

The approach of monitoring forecasting performance via machine learning has several

essential features. First, this method naturally takes into account the structural instability

of forecasting models. Paye and Timmermann (2006), Goyal and Welch (2008), Pettenuzzo

and Timmermann (2011), Henkel et al. (2011) document substantial variation in predic-

tive power of regression models when forecasting stock returns. Numerous factors includ-

ing business cycles, macroeconomic uncertainty, policy shocks, and advances in information

technology combine to produce a highly complex and constantly evolving data-generating

process for market return. To capture the time-varying predictability of forecasting models,

monitoring the performance of these models in “real time” is crucial. If evidence indicates

that the forecasting performance is deteriorating or extremely poor during certain periods,

then investors should adjust the weights put on this forecast or just switch to the alternative

forecast. The intuition is similar to the case when an asset manager adjusts the portfolio

weight by evaluating portfolio risk constantly.
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Second, I apply a monitoring approach to facilitate forward-looking optimal selection of

candidate forecasts. The standard literature of forecasting with multiple models usually use

past forecast performance to gauge future forecast accuracy. This idea of choosing optimal

weight based on past performance, dating back to Bates and Granger (1969), works in the-

ory but not in practice especially when compared to simply putting equal weights on models

(Granger (1989), Stock and Watson (2004), Timmermann (2006)). A key contributor to the

poor performance of optimal forecast combination is that these methods do not take into

account expected future forecasting performance. The models that perform well in the past

(unconditionally) may not necessarily continue to work well in the future (conditionally).

Timmermann and Zhu (2017) and Gibbs and Vasnev (2017) show that the forward-looking

approach to model selection or model combination using conditionally optimal weights leads

to better performance. Provided that a model’s superior performance can be ex-ante iden-

tified with conditional information, this model could be the preferred one for certain time

periods even if it performs poor on average. I implement this idea of identifying conditional

forecasting performance with a broader set of conditioning variables compared with the

empirical study conducted in Timmermann and Zhu (2017) and Gibbs and Vasnev (2017).

Third, the use of machine learning methods in the process of monitoring accommodates

a far more broad list of potential conditioning variables (monitoring instruments) and richer

specifications of the functional form. The flexibility comes from the high-dimensional nature

of machine learning methods and allows me to monitor the forecasting performance in real

time which otherwise is hard to implement by using traditional econometric techniques. It is

thus possible to approximate the unknown and complex data-generating process underlying

market return and forecasting performance of candidate models. There is a concern of a

higher propensity with overfitting using a high-dimensional method like machine learning. I

address this by implementing ensemble based machine learning algorithms with regulariza-

tion to classify whether a forecasting prediction model will perform better than the historical
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average benchmark forecast in the next period. I use sequential ensemble methods (boost-

ing trees) and parallel ensemble methods (random forest and extremely randomized trees)

to convert small, weak learners into a strong learner. Besides, time-series cross-validation

is applied in real time to tune hyperparameters of each machine learning model to further

control in-sample overfitting. Above considerations describe advantages of machine learn-

ing methods to learn complex dynamics of relative forecasting performance and emphasize

considerations to guard against overfitting the data.

My empirical findings suggest that the relative forecasting performance of the combi-

nation forecast can be monitored with machine learning methods by conditioning on the

time-series features of past relative performance. Hybrid forecasts based on selecting the

conditionally better one between the combination forecast and the historical average bench-

mark forecast provide gains in predicting market returns. The gains obtained through mon-

itoring are statistically and economically significant, especially during recent decades when

model instability is a severe concern for both individual predictive models and combination

forecast. Besides, the monitoring approach can also improve individual forecasts and be used

to generate new combination forecasts that consistently outperform the historical average

benchmark. I further show that the monitoring approach has links that are related to the

macro economy. The weights on the combination forecast provided by the monitoring ap-

proach can be seen as the level of predictability of the market return, and they align well

with NBER recession indicators and macro uncertainty measures which is consistent with

previous literature.

The contribution of my paper to the literature is twofold. First, I document the evidence

that model instability, a common concern in individual prediction models, also negatively

affects the combination forecast, especially in recent decades. Second, I propose a novel

machine learning based monitoring approach, evaluate its usefulness for model selection and

model combination, and examine the out-of-sample gains in forecasting the market return.
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My work extends the empirical literature on stock return prediction. Goyal and Welch

(2008) note that it remains difficult to find models that can improve on even the most

naive benchmarks in out-of-sample. Rapach, Strauss, and Zhou (2010) find that combina-

tion method could reduce model uncertainty. Campbell and Thompson (2008) show that

restricting the return forecasts to be non-negative and forcing the regression coefficients

to have the theoretically expected signs lead to clear gains in out-of-sample predictability.

Along the same lines, Pettenuzzo, Timmermann, and Valkanov (2014) propose a Bayesian

approach to impose non-negative equity premia and bounds on the conditional Sharpe ratio

of univariate predictive regressions and find that their approach leads to more accurate fore-

casts. I build on the work of Rapach, Strauss, and Zhou (2010), document the evidence that

forecast combination methods also undergo model instability problem, and propose a novel

approach using machine learning methods to monitor the relative forecasting performance

between the combination forecast and the historical average benchmark forecast.

Machine learning methods have appeared much more in the asset pricing literature re-

cently. Rapach et al. (2013) apply LASSO to predict global equity market returns using

lagged returns of all countries. Giglio and Xiu (2016) and Kelly et al. (2017) use dimension

reduction methods to estimate and test factor pricing models. Moritz and Zimmermann

(2016) apply tree-based models to portfolio sorting. Kozak et al. (2017) and Freyberger et

al. (2017) use shrinkage and selection methods to, respectively, approximate a stochastic

discount factor and a nonlinear function for expected returns. The focus of my paper is

to explore the usefulness of machine learning methods in monitoring the forecasting perfor-

mance between two forecasts and study whether monitoring forecasts via machine learning

could improve the predictability of the market return.

There are a few papers in the literature that estimate conditional forecasting performance

for model selection or model averaging. Aiolfi and Timmermann (2006) exploit the persis-

tence of the past forecast errors in an optimal way for constructing weights for model averag-

ing. Timmermann and Zhu (2017), Gibbs and Vasnev (2017), and Granziera and Sekhposyan
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(2018) consider optimal weighting strategy conditional on expected future performance of

the models given their past performance. Their approach results in sizable improvements in

the accuracy of industrial production and inflation forecasts. Kim and Swanson (2016), on

the other hand, use a hybrid modeling strategy, where they use a threshold, controlling for

the severity of the business cycle, to switch between a naive benchmark and sophisticated

index driven models for forecasting. They find that this strategy delivers sizable improve-

ments in the accuracy of the GDP growth forecasts. My paper focuses on forecasting the

market return and propose a machine learning based monitoring approach to accommodate

an extensive list of monitoring instruments to maximize the information one can extract

from past forecasting performance.

The remainder of this chapter is organized as follows. Section 1.2 outlines the machine

learning methodology I rely on to monitor the forecasting performance and how to select

conditionally better forecast. Data descriptions are presented in Section 1.3. Section 1.4

presents the main results of monitoring on the combination forecast and individual forecasts.

Section 1.5 examines the link with the real economy. Section 1.6 concludes.

1.2 Methodology

In this section, I introduce conditionaly predictive ability, the machine learning algo-

rithms, how to identify conditionally better forecast from past forecasting performance, and

finally the criteria I use to evaluate the out-of-sample forecasts.

1.2.1 Conditional Predictive Ability

Conventional forecast combination methods use past forecasting performance to identify

the more precise forecast. It is usually assumed that past forecasting performance is a good

indicator of future forecasting performance. However, it is not clear how to select the proper

holdout window of historical forecasting performance to use as a guidance and more critically
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past forecasting performance may not be the best indicator for predicting future forecasting

performance. It is possible that one forecast is expected to be more accurate than another

forecast conditional on some state variables (monitoring instruments) taking certain values,

while the ranking of the two forecasts’ expected performance is reversed for other values of

the state variables. The state variables could be the mean, the maximum, the trend of the

relative forecasting error or other features that are not obviously straightforward. I introduce

more formally how to idenity which forecast will be more accurate for the next period by

learning from a large number of monitoring instruments with machine learning algorithms.

Pairwise comparisons of predictive accuracy are routinely carried out in macroeconomic

and financial studies. In this study, I will focus on comparing two forecasts with one of them

being the historical average benchmark forecast. This setting has a theoretical background

as investors would assume no predictability of the market return if the historical average

benchmark forecast dominates other candidate forecasts. If the market return is constant,

then the historical average benchmark forecast should be the best estimate for next period

stock return. On the other hand, if investors believe the market return is time-varying,

then an alternative forecast should be better than the historical average in predicting stock

return. The historical average of past market return is the most common used benchmark

for evaluating out-of-sample predictability from any forecast.

Let r̂1,t+1|t and r̂2,t+1|t be two one-step-ahead forecasts of rt+1: the return on a stock

market index in excess of the risk-free interest rate. The second forecast r̂2,t+1|t is the

historical average forecast, r̂2,t+1|t =
∑t

τ=1 rτ , serving as a benchmark forecasting model

corresponding to a constant expected market return. Both forecasts are generated using

information known at time t. I calculate the square forecast error

L(r̂t+1|t, rt+1) = (rt+1 − r̂t+1|t)
2. (1.1)
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Under square forecast error loss, the loss differential between the two forecasts, ∆Lt+1 ≡

L(r̂1,t+1|t, rt+1)− L(r̂2,t+1|t, rt+1), takes the form

∆Lt+1 = e2
1,t+1 − e2

2,t+1, (1.2)

where ek,t+1 = rt+1 − r̂j,t+1|t for k = 1, 2 are the individual forecast errors. Negative values

of ∆Lt+1 indicates that the first forecast produced a smaller square forecast error than the

second forecast in period t+ 1.

If the market return is constant, then E(∆Lt) should be positive for any t, meaning that

the historical average forecast will be a better model for predicting the market return. On

the other hand, if the market return is predictable by any forecast, then E(∆Lt) should

be netative for any t. However, as reported from earlier literature, most models relative

predictive power change signs over time. Both individual predictive models or combination

methods undergo up and downs in performance when compared to the historical average

benchmark forecast. Even if one forecast is worse on average than the historical average

benchmark forecast, it might perform better in certain states of the world. This suggests that

using conditioning variables (monitoring instruments) when evaluating competing forecasts’

relative accuracy could help to identify the more precise forecast at each time.

Suppose the conditioning variables could be written as a feature vector xt and label the

sign of outcome ∆Lt as yt where

yt =


0, if ∆Lt > 0

1, if ∆Lt <= 0

(1.3)

Thus, identifying the more accurate forecast between r̂1,t+1|t and r̂2,t+1|t could be con-

verted to a supervised classification problem with a set of t training examples of the form

{(x1, y1), . . . (xt, yt)} where a learning algorithm seeks a function g : X → Y .
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1.2.2 Machine Learning Algorithms

After establishing the supervised classification learning problem, it is still needed to

introduce the specific functions g that will be used.

I begin model description with the least complex method, the logistic regression model.

Logistic regression model is a statistical model that is usually taken to apply to binary

dependent variable. The log-odds of the probability of an event is modeled as a linear

function of independent variables. This model imposes a simple regression specification and

does not allow for interactions between predictors.

To account for interactions among predictors, one way that is popular in machine learning

literature is to use decision trees. Unlike logistic regression model, decision trees are fully

nonparametric and imply a logic that departs markedly from traditional logistic regression.

Decision trees are like flow-chart-like structure, where it grows in a sequence of steps. At

each step, a new branch sorts the data remained from the previous step into bins based on

one of the predictor variables. This sequential branching slices the space of predictors into

rectangular partitions, and approximates the unknown function g with the majority value

of the binary outcome within each partition.

The advantages of a tree model include the following: it is invariant to monotonic trans-

formations of predictors, it can accommodate interactions between predictors, and it can

approximate severe nonlinearities in the functional form. However, the flexibility also limits

its usefulness as decision trees are prone to overfit the training data and thus some sort of

regularization should be applied. In my analysis, I consider three types of ensemble tree

regularizers that combine forecasts from many small trees into a single forecast.

The first regularization method is random forest classifier. It is an ensemble method

that combines forecasts from many small decision trees. This algorithm introduces extra

randomness when growing trees. Instead of trying to fit the whole sample, each small decision

tree will only use a sub-sample of the dataset. Averaging the results from small decision trees
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can improve the predictive accuracy and control over-fitting. This brings greater diversity,

which trades a higher bias for a lower variance and yields an overall better model.

The second regularization method is a variant of random forest and is called extremely

randomized trees classifier. Instead of using sub-sample of the dataset and searching for the

best possible threshold for each feature when splitting a node, this algorithm uses the full

sample and random thresholds for each feature. This trades more biaes for a lower variance

and usually will be faster to train than regular random forest since finding the best possible

threshold for each feature at every node is very time-consuming.

The last ensemble tree method I include is gradient boosting classifier. This algorithm

works by sequentially adding a new decesion tree to an ensemble of previous trees with each

new one trying to correct the forecasting errors from its predecessor. It fit the new predictor

to the residual errors made by the previous predictor. Shallow trees on their own are “weak

learners” with weak predictive power. The theory behind boosting suggests that many weak

learners may, as an ensemble, comprise a single “strong learner” with greater stability than

a single complex tree.

For all three machine learning algorithms, depth of the trees and number of small es-

timators will be the tuning parameters determined via cross validation using past sample.

All of the above learning algorithms including logistic regression will result in a probability

measure, labeled as pt+1 representing the probability of outcome of yt+1 in Equation (1.3)

to be 1. I apply another layer of ensemble to average all three machine learning algorithms

outputs and end up with the averaged probability measure from three machine learning al-

gorithms. This extra layer of ensemble is implemented to reduce the power of any particular

algorithm and reduce overfitting in a further step.

Given the probability measure pt+1, I apply a model selection rule and select forecast 1,

r̂1,t+1|t, if pt+1 > 0.5 and select forecast 2, r̂2,t+1|t, if pt+1 < 0.5.
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1.2.3 Conditioning Variables

After describing the learning algorithms, I will now introduce the conditioning variables

(monitoring instruments) used as explanatory variables in the logistic regression and machine

learning algorithms.

It is natural to use historical information to compute the combination forecast such as

the Bates and Granger (1969) optimal weighting scheme and the discounted mean squared

forecast error (DMSFE) in Stock and Watson (2004) and Rapach, Strauss, and Zhou (2010).

These methods assume that forecasts performed well in the recent past will continue to work

well in future. Thus, the first set of conditioning variables are past k month relative square

forecast errors between forecast 1 and forecast 2. DMSFE is the simplest case which averages

the past k month forecast errors from a hold-out sample. Here, I list each of past k month

relative square forecast error as one independent variable since the best indicator of future

performance may not usually be the mean. Choosing the correct number of k and figuring

out the best indicator for future forecasting performance ex-ante is not possible without

knowing the actual data. Thus, it is purly an empirical question of how to learn from the

past forecasting performance. With the machine leaning algorithms, it is possible to learn

from a wide range of lag forecasting performance and decide which of these conditioning

variables are good indicators for future performance.

However, it may not be the lag forecasting performance that directly determines the

future performance but rather some of the features of the past history of performance could

be more useful. I follow Christ, Braun, Neuffer, and Kempa-Liehr (2018) and calculate

hundreds of time-series features from the history of past performance using the TSFRESH

package in Python. It automatically extracts more than 300 features from the time-series

describing basic characteristics of the time-series such as the number of peaks, the average,

maximal value, autocorrelation, and linear trend. The combination of machine learning

algorithms and the large number of time-series features will maximize the information one

can extract from past forecasting performance and help to identify the more precise forecast.
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1.2.4 Forecast Evaluation

I use the out-of-sample R2 statistic, suggested by Campbell and Thompson (2008) to

evaluate the forecasting performance of r̂i, where r̂i is either an individual forecast based on

univariate predictive regression model, a combination forecast or a monitored forecast. The

out-of-sample R2 is given by

R2
OS = 1−

∑t1
t=t0

(rt − r̂i,t|t−1)2∑t1
t=t0

(rt − r̂HA,t|t−1)2
. (1.4)

where r̂HA is the historical average benchmark forecast ( r̂HA,t+1|t =
∑t

τ=1 rτ ). The out-of-

sample R2 statistic measures the reduction in mean square prediction error for a forecast

relative to the historical average benchmark forecast. When R2
OS > 0, the forecast r̂i out-

performs the historical average benchmark forecast according to the mean square prediction

error metric.

Even if there is evidence that R2
OS is greater than zero, its values are typically small for

predicting the market return. This raises the issue of economic significance. Campbell and

Thompson (2008) argue that even a small out-of-sample R2 , such as 0.5% for the monthly

data, can signal economically meaningful degree of return predictability in terms of increased

annual portfolio returns for a mean-variance investor. This provides a simple assessment of

forecastability in practice.

A limitation to the out-of-sample R2 measure is that it does not explicitly account for the

risk taken by an investor during the out-of-sample period. To address this, I also measure

the economic value of market return forecasts for a risk-averse investor. Following Camp-

bell and Thompson (2008) and Ferreira and Santa-Clara (2011), among others, I compute

the certainty equivalent return (CER) for an investor with mean-variance preferences who

monthly allocates across equities and risk-free bills using various market return forecasts.
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At the end of month t, the investor optimally allocates the following share of the portfolio

to equities during month t+1:

wt =

(
1

γ

)(
r̂t+1

σ̂2
t+1

)
, (1.5)

where r̂t+1 is a forecast of the market return and σ̂2
t+1 is a forecast of its variance. The share

1− wt is allocated to risk-free bills. The portfolio return of month t+ 1 is:

Rp,t+1 = wtrt+1 +Rf,t+1. (1.6)

I assume that investor estimates the variance of the market return from five-year moving

window of past monthly returns, set wt to lie between 0 and 1.5, assume the relative risk

coefficient to be 5 following Campbell and Thompson (2008).

The CER of the portfolio is

CER = µ̂p −
1

2
γσ̂2

p, (1.7)

where µ̂p is the mean of the investor’s portfolio return over the forecast evaluation period

and σ̂2
p is the variance of portfolio return. The CER can be interpreted as the risk-free rate

of return that an investor is willing to accept instead of choosing the given risky portfolio.

The CER gain is the difference between the CER for the investor who uses a candidate

forecast of the market return and the CER for an investor who uses the historical average

benchmark forecast. I multiply the difference by 1200 so that it represents the annual

percentage portfolio management fee that an investor would be willing to accept to have

access to the predictive model instead of the historical average benchmark forecast.

1.3 Data

The monthly data are downloaded from Amit Goyal’s website where detailed descriptions

of the data are provided. This analysis include 14 predictor variables originally included in

13



Goyal and Welch (2008) and the sample period starts from January 1927 to December 2017.

Below, I provide a list of the predictors I relied on to form the mean combination forecast:

1. Dividend-price ratio (dp): log of a 12-month moving sum of dividends paid on the S&P

500 Index minus the log of stock prices (S&P 500 Index)

2. Dividend yield (dy): log of a 12-month moving sum of dividends minus the log of

lagged stock prices.

3. Earning-price ratio (ep): log of a 12-month moving sum of earnings on the S&P 500

Index minus the log of stock prices.

4. Dividend–payout ratio (de): log of a 12-month moving sum of dividends minus the log

of a 12-month moving sum of earnings.

5. Equity risk premium volatility (rvol): based on a 12-month moving standard deviation

estimator (Mele 2007)

6. Book-to-market ratio (bm): book-to-market value ratio for the Dow Jones Industrial

Average

7. Net equity expansion (ntis): ratio of a 12-month moving sum of net equity issues by

NYSE-listed stocks to the total end-of-year market capitalization of New York Stock

Exchange (NYSE) stocks.

8. Treasury bill rate (tbl): interest rate on a three-month Treasury bill (secondary mar-

ket).

9. Long-term yield (lty): long-term government bond yield.

10. Long-term return (ltr): return on long-term government bonds.

11. Term spread (tms): long-term yield minus the Treasury bill rate.
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12. Default yield spread (dfy): difference between Moody’s BAA- and AAA-rated corpo-

rate bond yields.

13. Default return spread (dfr): long-term corporate bond return minus the long-term

government bond return.

14. Inflation (infl): calculated from the CPI for all urban consumers.

Stock returns are measured as continuously compounded returns on the S&P 500 index,

including dividends, and the Treasury bill rate is used to compute the equity premium. As

in Rapach, Stratuss, and Zhou (2010), I use standard predictive regression model for the

equity premium:

rt+1 = αi + βixi,t + εt+1 (1.8)

where rt+1 is the return on a stock market index in excess of the risk-free rate, xi,t is a variable

listed above. As in Goyal and Welch (2008), I generate out-of-sample forecasts of the equity

premium using an expanding estimation window. The first out-of-sample forecast starts at

January 1947, consistent with the starting point of out-of-sample evaluation in Goyal and

Welch (2008).

Then I calculate the equal-weighted combination forecast of rt+1 made at time t as the

simple average of 14 individual forecasts estimated from Equation (1.8):

r̂CF,t+1 =
1

14

14∑
i=1

r̂i,t+1. (1.9)

Relative square forecast error is calculated using the combination forecast r̂CF,t+1 and

the historical average benchmark forecast r̄t+1 as in Equation (1.1) and (1.2). In the main

analysis, I use past 60 month lag relative square forecast error (60 explanatory variables)

and time-series features of past 60 month lag relative square forecast error (hundrends of

explanatory variables) as two sets of conditioning variables to classify whether r̂CF,t+1 will

have lower forecast error compared with r̄t+1. For either logistic regression and machine
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learning algorithms, I use 120 past sets of feature and outcome pair as training data to learn

what features are important in determining whether the mean combination forecast is better

than the historical average forecast.

1.4 Empirical Results

1.4.1 Model Instability of Combination Forecast

Goyal and Welch (2008) comes to a pessimistic conclusion about return predictability

and attributes the lack of consistent out-of-sample predictability of the equity premium to

model uncertainty and model instability of individual forecasts using economic predictors.

Following the application of forecast combination in literatures predicting macro economic

variables (Hendry and Clements (2004), Clements and Hendry (2006), and Timmermann

(2006)), Rapach, Strauss, and Zhou (2010) reports that various versions of combinations

of forecasts from individual predictive regression models generate consistent and significant

out-of-sample gains relative to the historical average. The intuition is that combining across

individual forecasts provides a convenient and straightforward way to reduce the instability

risk associated with relying on any single model. The results reported in Rapach, Strauss,

and Zhou (2010) support the hypothesis that by combining forecast, and usually putting

equal weights on individual forecasts can significantly improve out-of-sample predictability.

I revisit this exercise with monthly data and extend the sample period to December,

2017, which is the longest data period used in the literature. In Figure 1.1, I report time-

series plot of the difference of square forecast error between the historical average benchmark

forecast and the combination forecast. The difference of square forecast error is computed

as e2
HA,t−e2

CF,t, where eHA,t is the forecast error of the historical average benchmark forecast

and eCF,t is the forecast error of the combination forecast. The combination forecast is

the equal-weighted average of fourteen individual forecasts calculated following Goyal and

Welch (2008). This plot provides a visual impression of the relative forecasting performance
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of combination forecast over time. When the line in Figure 1.1 is above the horizontal

dotted line at y = 0, the combination forecast outperforms the historical average benchmark

forecast, while the opposite holds when the line is below the horizontal dotted line. At each

month, I compute and plot the rolling mean of difference in square forecast error from past

60 month.

The plot in Figure 1.1 have positive values for most of the time from 1950 to 1990, indicat-

ing that the combination forecast delivers resonable out-of-sample predictability compared

with the historical average benchmark forecast. The plot is highly positive before 1960 and

during 1970 to 1990, highlighting that forecast combination was an effective strategy for

market return prediction. However, after 1995, there are two sharp downward sloping peri-

ods where combination forecast performs much worse than the historical average. The first

decrease of performance is from 1995 to 2000 before the Dot-com bubble and the second from

2007 to 2010 which covers the financial crisis period. The difference of square forecast error

changes from positive to negative around 1996 and around 2007 suggesting the combination

forecast is not a good candidate for predicting market return since the historical average

benchmark forecast have smaller square forecast errors.

Actually, the predictability of the market return has decreased gradually over time. In

Figure 1.3, I plot out-of-sample R2 with moving evaluation starting date from January 1947

to January 2012. The evaluation ending date is always December 2017. The out-of-sample R2

is computed as the percentage reduction in mean square forecast error of the model of interest

relative to the historical average benchmark forecast: R2
OS = 1 −

∑t1
t=t0

(rt−r̂1,t|t−1)2∑t1
t=t0

(rt−r̂HA,t|t−1)2
. where

r̂1,t|t−1 is the forecast of interest and r̂HA,t|t−1 is the historical average benchmark forecast.

The dotted line in Figure 1.3 depicts the time series trend of out-of-sample forecasting

performance of the combination forecast. The figure shows that combination forecast has

positive out-of-sample R2 of around 0.50% when the evaluation is for the whole period from

1947 to 2017. When we gradually move the evaluation starting date month by month, the

out-of-sample R2 will decrease slowly, indicating the predictive power of the combination
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forecast has diminished over time. If the evaluation starting date is set around 1984, the

mean combination forecast will have negative out-of-sample R2 suggesting it is worse than the

historical average benchmark forecast. The latest evaluation starting date is January 2014

since the later the evaluation starting date, the less oberservations will be available. Thus

the line is natually more volatile near the end of the x axis. However, we can still observe

the clear decreasing trend of market return predictability using combinaiton forecast.

It is well known that model uncertainty and model uncertainty are serious concerns for

individual predictive regression models. Therefore, it is difficult to identify individual fore-

casts capable of generating reliable equity premium forecast over time. Forecast combination

methods are able to alleviate the concern of model instability to some extent. As shown in

Figure 1.1 and Figure 1.3, the combination forecast works well from 1950 to 1990 but per-

forms much worse since 1990. It suggests that model instability not only negatively affect

predictability of individual models but can also affect the combination forecast. Table 1.1 re-

ports the out-of-sample R2 with various evaluation starting date for 14 individual predictive

models in Panel A and for several versions of combination forecasts in Panel B. All columns

are for evaluation periods with moving starting date from January 1947 to January 2007 and

with fixed evaluation ending date at December 2017. As shown in Panel B, the out-of-sample

R2 is decreasing from 1947 to 2017. In row 1 of Panel B in Table 1.1, it is reported that

the combination forecast, as shown in Figure 1.3, has out-of-sample R2 of around 0.50% for

the whole sample period. When we look at the evaluation period starting from 1987, 1997

and 2007, the out-of-sample R2 decreases to negative values (−0.09%, −0.10% and −0.24%).

We observe similar trend in most individual forecasts in Panel A. For example, for earnings-

price ratio (ep), the out-of-sample R2 decreases from −1.50% to −3.59% when we transit

from whole sample period to the most recent decade, and for net equity expansion (ntis), it

changes from −0.52% to −4.54%. Similar decreasing pattern can be found for 8 out of 14

economic predictors. Combining individual forecasts may be able to address the problem of

model instability when the concern is not too severe. However, when the individual forecasts
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perform much worse than the benchmark forecast (the historical average of market return),

combination strategy is not able to deliver consistent gains.

In Panel B of Table 1.1, I also report out-of-sample R2 for other combining methods

other than equal-weighted mean. The row labeled as ’Median’ represents using the median

of individual forecasts and it has some improvement in predictability during 1987 to 2017

compared with equal-weighted combination forecast. It indicates that ignoring outliers in

individual forecasts may be an effective way to tackle the problem of model instability which

spills over from individual forecasts to combination forecast. However, median combination

forecast gets slightly worse results for the whole evaluation period from 1947 to 2017. Besides,

from 2007 to 2017, the out-of-sample R2 is about 0.04% suggesting that the forecasting

performance no better than that of the historical average benchmark forecast.

The following rows starting with ‘DMSFE’ is a combining method based on Stock and

Watson (2004), where the combining weights formed at time t are functions of the historical

forecasting performance of the individual forecasts over the holdout out-of-sample period. I

consider holdout periods of 60, 24, 12 and 1 month and discount factor of 1 and 0.5. There

are several interesting findings. First, setting discount rate to 0.5 seems to have improved the

predictability for all evaluation periods compared with discount rate of 1. This suggests that

we may need to put more weights on forecasts with better recent outperformance. However,

the extreme case of using performance of last month as guidance for the next period weight

(labeled as ’DMSFE 1 1.0’) leads to much better results for the evaluation period from 1947

to 2017 (out-of-sample R2 of 1.17%) and much worse result for evaluation period starting

from 2007 to 2017 (out-of-sample R2 of −1.26%). These contrasting results imply that it

is hard to identify the best combination weights that work throughout the whole sample

period based on ad hoc choice of holdout period and discount factor. It is possible to

try more combinations of holdout period and discount factor to boost out-of-sample R2 .

However, any combination with superior results could be purely random and not meaningful
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for future reference as theory suggests no prior belief about which combination should work

better than others.

The results presented above can be summarized as follows:

• Combination forecast may be effective when model instability in individual forecasts is

not strong. When certain individual models perform much worse than the benchmark,

equal-weighted mean of individual forecasts is not able to beat the historical average

benchmark consistently.

• Various modifications of combination forecast show some potential of improvement of

performance. However, it is hard to know the right form of combination ex-ante and

the best combination method may not work well consistently throughtout the whole

period.

1.4.2 Monitoring the Combination Forecast

Based on the previous results that the combination forecast does not outperform the

historical average benchmark forecast consistently over time, there could be improvement

in forecasting the market return if the conditionally better forecast could be identified and

selected for each period. I next provide the results of monitoring the relative forecasting

performance between the combination forecast and the historical average benchmark forecast.

The results are presented in Table 1.2. It report out-of-sample R2 for moving evaluation

starting date ranging from January 1947 to January 2007. All evaluation period ends at

December 2017. Panel A reports baseline results of the combination forecast and a simple

equal-weighted average of the combination forecast and the historical average benchmark

forecast. The first row in Panel A of Table 1.2 reports the out-of-sample R2 of the combi-

nation forecast. It shows that for the most recent several decades, the combination forecast

does not perform better than the historical average benchmark forecast as the out-of-sample
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R2 is negative especially after 2007. It is natural to consider taking the average of the com-

bination forecast and the historical average as a way to improve the forecasting performance.

The second row of Panel A (labeled as ‘(CF + HA)/2’) indicates that there are some small

improvement from 1987 to 2017 but a large loss of predictability for earlier evaluation periods

as the out-of-sample R2 of the full evaluation period reduced from 0.50% to 0.29% with this

simple adjustment.

Panel B of Table 1.2 reports the results of a dummy monitoring method by comparing

discounted mean squared forecast error (DMSFE) with a holdout window of 60 months

and discount factor of 0.5 and 1. It selects the forecast with better recent out-of-sample

performance. DMSFE is computed for the two forecasts: the combination forecast and the

historical average benchmark forecast. Both rows in Panel B report improvement over the

combination forecast after 1967. The second row of Panel B using a discount factor of

0.5 puts more weight on recent performance and results in larger improvement compared

with using a discount factor of 1. But for the full sample period from 1947 to 2017, both

DMSFE method perform worse compared to the combination forecast with out-of-sample

R2 lower than 0.50%. Besides, there are numerous ways to choose holdout window and

discount factor while no theory suggests an ideal combiantion that would be the best for any

data and any condition. Furthermore, the mean of past square forecast error may not be

the best indicator for future square forecast error given the time-varying feature of relative

forecasting performance shown in Figure 1.1. The empirical evidence also suggests that the

dummy monitoring using DMSFE is not improving the overall results.

Thus, I use a monitoring approach to identify the conditionally better forecast through

using past 120 month observations as training sample. Every month, it is observed that one

of the two forecasts will perform better. This will output the left-hand side binary response

variable. Right-hand side conditioning variables will be the past 60 month lag relative square

forecast error. If the mean of lag relative square forecast error is indeed the best indicator for

comparing future performance, then all 60 right-hand variable (lag relative square forecast
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error) will naturally have equal weights. Thus, dummy monitoring using DMSFE is nested

in the general monitoring approach.

Results of monitoring through using past 60 month lag relative square forecast error as

conditioning variables are reported in Panel C of Table 1.2. I implement logistic regression

and an ensemble of three machine learning algorithms to classify which forecast will per-

form better conditional on past relative performance. Both logistic regression and machine

learning algorithms will output a probability measure pt between 0 and 1 to indicate the prob-

ability that the combination forecast will have lower square forecast error for next period.

Then I select the combination forecast (the historical average benchmark forecast) when pt

is larger than 0.5 (less than 0.5). The first row in Panel C present out-of-sample R2 of mon-

itoring with lag relative square forecast error through logistic regression. For all evaluation

periods, monitoring through logistic regression results in worse performance compared to the

combination forecast. It suggests logistic regression is not able to identify the conditionally

better forecast through learning from lag relative square forecast error. On the other hand,

as shown in the second row of Panel C, using the machine learning algorithms have higher

out-of-sample R2 compared with using the logistic regression. However, the performance of

monitoring with machine learning algorithms is similar to the dummy monitoring approach

‘DMSFE 60 0.5’ reported in Panel B. This suggests that if we restrict ourselves to using the

past 60 month lag relative forecast error as conditioning variables, discounted mean of the

past performance with discount factor of 0.5 is one of the best indicators as machine learning

algorithms are not able to beat this with different weights. Results in Panel C indicates that

machine learning algorithms are better than logistic regression in identifying useful indicator

for future performance, but the out-of-sample R2 is still lower than the combination forecast

itself without monitoring.

In Panel D of Table 1.2, I report the results of monitoring through using more than

300 time-series features of past 60 month lag relative square forecast error as conditioning

variables. The time-series features include basic statistics like mean and standard deviation
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and also other features like autocorrelation coefficients that could potentially describe the

past relative performance better. For example, the cyclical changes in business cycles and

seasonal patterns in forecasting performance can not be detected by looking at the simple

mean. First row of Panel D present out-of-sample R2 of monitoring with logistic regression.

The predicting performance of logistic regression based monitoring is worse than any other

previous cases. With hundreds of possibly correlated features, this is expected as logistic

regression is not able to handle the situation when the number of conditioning variables are

larger than the number of observations.

The second row of Panel D report the out-of-sample R2 of monitoring using an ensemble

of three machine learning algorithms. Ensemble is a term used in machine learning literature

to indicate averaging several machine learning algorithms’ output. This is a common prac-

tice in machine learning classification to reduce over-fitting. Second row of Panel D reports

that for all evaluation periods, the forecasting performance has increased compared with no

monitoring, dummy monitoring with DMSFE, and monitoring with lag relative square fore-

cast error. For example, for evaluation from 1977 to 2017, the out-of-sample R2 of is 0.34%,

higher than that of the mean combination forecast (0.14%) and other monitoring methods

mentioned above. For the period from 1947 to 2017, the out-of-sample R2 is 0.57% while it is

0.50% for the combination forecast without monitoring. The difference between monitoring

with machine learning algorithms and no monitoring gets bigger as the evaluation period

moves closer to the most recent date. The combination forecast has negative out-of-sample

R2 starting from 1987 meaning that generally spreaking, the mean combination forecast is

worse than the historical average benchmark forecast in predicting the market return. But

when I use machine learning algorithms to monitor and select the conditionally better fore-

cast among the combination forecast and the historical average benchmark forecast, all the

out-of-sample R2 are positive. The out-of-sample R2 is 0.18% from 2007 to 2017, 0.32% from

1997 to 2017, and 0.35% from 1987 to 2017. It shows that there are certain periods from
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1987 to 2017 when combiantion forecast delivers superior forecasts and the machine learning

algorithms are able to capture these periods when combination forecast is usefull.

The results in Table 1.2 show that using machine leaning algorithms to monitor and

select conditionally better forecast by learning from time-series features of past relative

performance is able to improve the forecasting performance consistently over time. The

improvements can not be achieved with other traditional monitoring method like comparing

DMSFE or using logistic regression.

Figure 1.2 displays the time-series plot of the difference of square forecast error between

the historical average benchmark forecast and the monitored combination forecast using

machine learning algorithms and time-series features of past relative performance. The

monitored combination forecast consistently outperforms the historical average benchmark

forecast as the square forecast errors of the historical average are almost always larger than

that of the combination forecast resulting in the line above the dotted horizontal line at y = 0.

Compared with Figure 1.1 for the combination forecast without monitoring, the monitored

combination forecast performs pretty well when the combination forecast is worse than the

historical average benchmark. It is not surprising as the switching rule from monitoring

would have no room to improve when the combination forecast is dominating the historical

average benchmark forecast. Though there are also periods when monitoring reduce the

forecasting performance from incorrectly choosing the better forecast, the overall outper-

formance of monitored combinaiton forecast over the historical average benchmark forecast

makes the monitoring approach a good method to generate useful forecast consistently over

time.

Figure 1.3 displays the comparison of out-of-sample R2 of the combination forecast and

the monitored combination forecast with moving evaluation starting point from 1947 to 2012

(all ending at 2017) as a complement of Table 1.2. The soid line represents the out-of-sample

R2 of the monitored combination forecast while the dotted line reprents the out-of-sample

R2 of the combination forecast without monitoring. It is clear from the graph that the
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monitored combination forecast performs better than combination forecast for almost all

evaluation periods ending at 2017. Since there are less observations when the evaluation

starts later, both lines start to have more up and downs after 1999 but it can still be

observed that monitoring improves the performance.

I also measure the economic value of forecasting market return through monitoring fore-

casting performance for a risk-averse investor. Numbers in Table 1.3 denote the annualized

certainty equivalent return (CER) gains based on different evaluation starting date. I eval-

uate the quality of the forecast using certainty equivalent return (CER) gains calculated as

following. Each period, investors allocates the following share of the portfolio to equities:

wt =
(

1
γ

)(
r̂t+1

σ̂2
t+1

)
, where r̂t+1 is a forecast of the equity premium and σ̂2

t+1 is a forecast of

stock variance. The share 1 − wt is allocated to risk-free bills. I assume investor estimates

the variance of the equity premium from five-year moving window of past monthly returns,

set wt to lie between -0.5 and 1.5, assume the relative risk coefficient γ to be 5 following

Campbell and Thompson (2008). The CER of the portfolio is CER = µ̂p− 1
2
γσ̂2

p, where µ̂p is

the mean of the portfolio returnand σ̂2
p is the variance of the portfolio return. The CER can

be seen as the risk-free rate of return that an investor is willing to accept instead of choosing

the risky portfolio. The CER gain is the difference between the CER for the investor who

uses a candidate forecast of the equity risk premium and the CER for an investor who uses

the historical average forecast.

The first row in Panel A represents the CER gains of the combination forecast. It

provides CER gains of 0.90% over the full evaluation period from 1947 to 2017 but the

gains decrease as the evaluation starting dates moves from 1947 to 2007. Similarly as the

out-of-sample R2 displayed in Table 1.2, the average of combination forecast and historical

average, dummy monitoring using DMSFE, and monitoring with lag relative square forecast

errors all produce CER gains lower than the combination forecast without any monitoring

for most of the evaluation periods.
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In the second two row of Panel D, it displays the CER gains of monitoring through ma-

chine learning algorithms with time-series features of past 60 month relative square forecast

error. It is shown that machine learning based monitoring increases the CER gains for all

evaluation periods. For example, the CER gain is 1.05% from 1947 to 2017 while the com-

bination forecast has CER gain of 0.90%. The improvement gets larger when we evaluate

more recent samples.

Overall, these results provide statistical and economic evidence in support of the pro-

posed monitoring approach with machine learning algorithms and using time-series features

of relative forecasting performance as conditioning variables, particularly so for the recent

decades.

1.4.3 Monitoring Individual Forecasts

Previous results show that monitoring the combination forecast could improve the fore-

casting performance by dynamically switching between the combinaiton forecast and the

historical average benchmark forecast. Similarly, the monitoring approach could be applied

to individual forecasts too as model instability also affects individual forecasts. If an individ-

ual forecast of market return does not dominate the historical average benchmark forecast

and it is not dominated by the historical average benchmark forecast, identifing the condi-

tionally better forecast in real time and switching to the better one should also increase the

predictability of market return.

I report the results from monitoring individual forecasts in Table 1.4. The results are for

the full evaluation period from 1947 to 2017. Because of the good performance in monitoring

the combination forecast, the table only reports results utilizing an ensemble of three ma-

chine learning algorithms as monitoring method and time-series features of past 60 month

lagged difference of squared forecast error (DSFE) between the historical averge benchmark

forecast and each candidate individual forecast as conditioning variables. The first column
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of Table 1.4 lists the 14 individual economic predictors used for generating individual fore-

casts. The second column reports the out-of-sample R2 of the individual forecasts without

monitoring while the third column reports the out-of-sample R2 after monitoring. For 13 out

of 14 forecasts, the monitoring approach increase the out-of-sample R2 . For example, the

out-of-sample R2 increases from −1.54% to 0.74% for bm and from 0.09% to 0.60% for tms.

The average of improvement in out-of-sample R2 is 0.57%. The magnitude of improvement

across each individual forecast differs slightly as different forecasts have different forecasting

performance compared to the historical average benchmark forecast. How much the moni-

toring approach could improve depends on how often each individual forecast outperforms

the benchmark and whether the algorithm can correctly identify these periods. Last two

columns of Table 1.4 reports the CER gains before and after monitoring. The increase in

economic gains is observed for 11 out of 14 individual forecasts. The universal improvement

in out-of-sample R2 and CER gains indicates that the monitoring approach is indeed useful.

The previous table reports results from monitoring individual forecasts. It is a natural

extension to consider if there are any benefits to combine the monitored individual forecasts.

Table 1.5 displays the out-of-sample R2 of this approach (monitoring first and combining

later). Panel A of Table 1.5 shows the benchmark results from previous section including the

out-of-sample R2 of combination forecast and monitored combination forecast (combining

first and monitoring later).

By monitoring each individual forecast, the algorithm will output a probability measure

pi,t indicating the weight to put on the i-th individual forecast. The basic monitoring ap-

proach selects the individual forecast (the historical average forecast) when pi,t is larger than

0.5 (less than 0.5). First, consider the equal-weighted average of monitored individual fore-

casts which is reported in first row of Panel B in Table 1.5. It is observed that this approach

of monitoring first and combining later has similar out-of-sample R2 for all evaluation pe-

riods as the monitored combination forecast (combining first and monitoring later). Both
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approach increase the out-of-sample R2 especially for later evaluation periods when model

instability is a severe concern.

Instead, the cross-section of pi,t could be used as weights to apply for each individual

forecast when generating a new combination forecast. The second row of Panel B in Table

1.5, labeled as ‘Weighted Average’, reports the results of using individual monitoring ouput

as combination weights. The new combination forecast improves the out-of-sample R2 for all

evaluation periods compared with equal-weigthed combination of individual forecasts. For

the most recent evaulation period from 2007 to 2017, the out-of-sample R2 increases from

−0.24% to 0.24% and for the full evaluation period from 1947 to 2017, it increases from

0.50% to 0.63%.

On the other hand, given the cross-section of pi,t at each time period, it is possible to

consider the extreme case of selecting the individual forecast with the highest pi,t. The last

row of Panel B in Table 1.5, labeled as ‘Weighted Selection’, shows the out-of-sample R2

from this extreme approach. During the evaluation period from 2007 to 2017, the out-of-

sample R2 reaches a magnitude of 3.64% indicating a significant improvement by selecting

the conditionally best individual forecast from monitoring. Similar large improvement are

observed from 1977 to 2017 though the out-of-sample R2 is not much different as other

approaches during the full evaluation period.

In summary, this section confirms the usefullness of the monitoring approach by showing

universal improvement on individual forecasts and the benefits to consider new combination

methods using the output of monitoring on individual forecasts. The improvements are

observed for the full evaluation period and even more strong during past 30 years when

model instability is a severe concern for individual forecasts.
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1.5 Links to the Real Economy

1.5.1 Predictability and NBER Recessions

Mounting evidence shows that return predictability fluctuates over the business cycles.

Particularly, various papers find that return predictability concentrates in bad times. Ra-

pach, Strauss, and Zhou (2010), Henkel, Martin, and Nardari (2011), and Dangl and Halling

(2012) find that macro variables or combination of macro variables’ forecast have better

predictive power in recessions.

The selection between the combination forecast and the historical average benchmark

forecast boils down to the question of whether market return is predictable or not. If the

market return is constant and unpredictable, the historical average forecast should be the

best estimate for the next period. If the market return is time-varying and predictable,

the combination forecast should capture the business-cycle fluctuations in the market return

and thus be a better forecast. Fama and French (1989) and Cochrane (1999, 2007) argue

that heightened risk aversion during economic downturns demands a higher risk premium,

thereby generating market return predictability. Therefore, whether the combination forecast

provides a good prediction of the market return is linked to business-cycles movements.

The monitoring approach output a probability measure pt indicating the weight to put

on the combination forecast. It can be seen as the level of return predictability. This

output of probability measure should have some connection with business-cycles according to

previous literature. Figure 1.4 plots the rolling mean of weights on the combination forecast

from past 24 month, along with gray shaded vertical lines indicating NBER recessions.

There are upward spikes of the weight on the combination forecast at or shortly after most

NBER recessions. For example, for recent recession between December 2007 to June 2009

and between March 2001 to November 2001, there are distinct increasing patterns of the

weights on the combination forecast. It shows that the monitoring approach indeed correctly

identifies the increase of predictability in market return during economic recessions. However,
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there are other periods when return predictability is high and not captured by the NBER

recessions. For example, the two recent spikes after 2009 is not associated with any recession

periods. Next, I explore other possible origins of time-varying return predictability.

1.5.2 Predictability and Macro Uncertainty

Cujean and Hasler (2017) provide theoretical model to explain why stock return pre-

dictability concentrates in bad times. They argue that the key feature is that investors

assess uncertainty differently as they use different forecasting models. As economic con-

ditions deteriorate, uncertainty rises and investors’ opinions polarize. Disagreement thus

spikes in bad times, causing returns to react to past economic news. Thus whether return is

predictable by economic predictors or combinaiton forecast of individual economic predictors

is related to the level of uncertainty in investors.

Figure 1.5 plots the estimated weight on the combination forecast and macro uncertainty.

Rolling mean of the estimated weights from past 24 month are reported in the figure. Macro

uncertainty measure is calculated following Jurado, Ludvigson, and Ng (2015) which is avail-

able from 1960 to 2017. Figure 1.5 shows that the weight on the combination forecast and

macro uncertainty comoves throught the sample. Whenever the macro uncertainty increases,

the estimated weight on the combination forecast also increases. The results confirm the

theoretical model in Cujean and Hasler (2017) indicating higher return predictability from

economic predictors during high uncertainty periods (bad times).

To gauge the effect of recession and uncertainty on the return predictability, Table 1.6

reports the regression results. On the left hand side of the regression, I put the weight of

each forecast from monitoring the relative forecasting performance between the candidate

forecast and the historical average benchmark forecast. The explanatory variables include

NBER recession indicator and macro uncertainty measure. The estimation is implemented

for each forecast seperately. First row of Table 1.6 shows that about 10% of the estimated

weight on the combination forecast is explained by recession and uncertainty. Both recession
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and uncertainty have positive coefficients confiring previous empirical findings and theoretical

models. The coefficient on recession indicator has a t-statistic of 1.22 while the uncertainty

measure has a t-statistic of 4.03. This suggests that macro uncertainty plays the essential role

of driving the time-varying return predictability. The following rows of Table 1.6 reports the

results for other individual forecasts. Unlike the case for combination forecast, the weight on

other individual forecasts are usually less explained by the macro conditions with R2 less than

5% except for dp and dy. The estimations for dp and dy also result in significantly positive

coefficient for macro uncertainty. This similarity suggests that the forecasts generated from

dividend related predictors follow similar pattern of the combination forecast. It highlights

that the dividend related ratios are important measures driving the time-varying market

return.

1.6 Conclusion

I conduct a comprehensive evaluation of the out-of-sample performance of the forecast

combination methods in predicting the market return. I find that forecast combination

methods fail to deliver consistent out-of-sample gains especially during the recent decades

as model instability of individual models can be large enough to impair the effectiveness of

combination forecasts. I then investigate whether the relative performance between the com-

bination forecast and the historical average benchmark forecast can be monitored through

tracking lag relative forecasting performance. I propose a novel approach to monitor the rel-

ative forecasting performance between the two forecasts using machine learning algorithms

as the estimation method and using time-series features from the lag relative performance as

conditioning variables. I document that selecting the conditionally better forecast based on

monitoring improves the out-of-sample predictability of the combination forecast. The im-

provements are also observed for individual forecasts and several novel methods to combine

individual forecasts using the output from the monitoring approach. My results suggest that
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considering conditional predictive ability and examining a large panel of monitoring instru-

ments via machine learning methods could indeed be useful for model selection and model

combination strategies. Further analysis shows that monitoring approach provides informa-

tion with links to the macro economy. The results indicate that the market return is more

predictable during economic downturns and during the periods when macro uncertainty is

high, in agreement with previous literature.
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Table 1.1 Out-of-sample R2 of Traditional Forecasts
This table reports the forecasting performance of 14 individual predicting varialbes used in Goyal and Welch

(2008), as well as several combination forecasts constructed from the 14 individual forecasts used in Rapach,

Strauss, and Zhou (2010). The combination methods include the equal-weighted average (Mean), the median

of individual forecasts (Median), combination using discounted mean square forecast error (DMSFE) with

holdout window of 1, 12, 24 and 60 months and discount factor of 0.5 and 1. I evaluate the quality of the

forecast using the out-of-sample R2 defined as the percentage reduction in mean square forecast error of

the forecast of interest relative to the historical average benchmark: R2
OS = 1−

∑t1
t=t0

(rt−r̂i,t|t−1)
2∑t1

t=t0
(rt−r̂HA,t|t−1)2

. where

r̂i,t|t−1 is the forecast of interest and r̂HA,t|t−1 is the historical average benchmark forecast of the market

return. I multiply the R2
OS by 100 to denote percentage values. A positive R2

OS indicates that the forecast

of interest generates more accurate predictions than the historical average benchmark. I report R2
OS for

different evaluation starting date ranging from January 1947 to January 2007. All evaluation period ends at

December 2017.

Evaluation starts at (ends at December 2017)
1947 1957 1967 1977 1987 1997 2007

Panel A: Individual forecasts
dp -0.12 -0.33 -0.29 -0.92 -1.39 -1.04 -0.80
dy -0.45 -0.72 -0.56 -1.41 -1.99 -1.58 -0.87
ep -1.50 -1.93 -1.68 -2.13 -1.48 -1.73 -3.59
de -1.44 -1.87 -1.57 -0.87 -0.56 -1.10 -1.70
rvol -0.05 -0.19 -0.08 -0.01 -0.01 0.01 0.03
bm -1.54 -1.96 -2.26 -2.86 -2.33 -1.37 -1.08
ntis -0.52 -0.64 -0.80 -0.97 -1.90 -2.84 -4.54
tbl 0.08 0.12 -0.00 -0.62 -0.14 0.15 0.46
lty -0.68 -1.00 -0.85 -0.80 0.03 0.31 0.56
ltr -0.78 -0.11 -0.01 0.02 0.15 -0.30 0.39
tms 0.09 0.08 0.14 -0.25 -0.96 -0.68 -0.40
dfy -0.18 -0.06 -0.04 -0.10 -0.21 -0.28 -0.44
dfr -0.24 0.00 0.03 0.23 -0.09 -0.10 0.23
infl -0.06 -0.04 -0.07 -0.33 -0.33 -0.59 -0.90

Panel B: Traditional combination forecasts
Mean 0.50 0.37 0.36 0.14 -0.09 -0.10 -0.24
Median 0.40 0.37 0.38 0.21 0.09 0.08 0.04
DMSFE 60 1.0 0.50 0.37 0.37 0.15 -0.08 -0.09 -0.24
DMSFE 24 1.0 0.49 0.36 0.37 0.14 -0.04 -0.03 -0.19
DMSFE 12 1.0 0.56 0.43 0.42 0.18 -0.03 -0.00 -0.14
DMSFE 1 1.0 1.17 1.09 1.18 1.13 -0.31 -0.34 -1.26
DMSFE 60 0.5 0.57 0.45 0.43 0.14 -0.08 -0.01 -0.08
DMSFE 24 0.5 0.57 0.45 0.43 0.14 -0.08 -0.01 -0.08
DMSFE 12 0.5 0.57 0.45 0.43 0.14 -0.08 -0.01 -0.08
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Table 1.2 Out-of-sample R2 of Monitored Combination Forecast
This table reports the forecasting performance of the (equal-weighted) combination forecast, as well as several

variations of monitored combination forecast by monitoring the relative forecasting performance beteen the

combination forecast and the historical average benchmark forecast. Panel A includes the combination

forecast and the simple average of the combination forecast and the historical average benchmark forecast

(labeled as ‘(CF+HA)/2’). Panel B selects one of the two forecasts by comparing past discounted mean

squared forecast error (DMSFE) with a holdout window of 60 months and discount factor of 0.5 and 1.

Panel C and D report results from selecting the conditionally better of the two forecasts using logistic

regression or ensemble of machine learning algorithms as monitoring method. Both logistic regression or

ensemble of machine learning algorithms output a probability measure pt indicating the weight to put on the

combination forecast. I use past 120 month outcome as training sample and use time-series cross-validation

to select hyper-parameters if necessary. The approach selects the combination forecast (the historical average

forecast) when pt is larger than 0.5 (less than 0.5). Panel C reports the results from monitoring through

past 60 month lagged difference of squared forecast error (DSFE) between the historical averge benchmark

forecast and the combination forecast as conditioning variables. Panel D utilizes the time-series features

of the past 60 month lagged difference of squared forecast error (DSFE) as conditioning variables. The

time-series features are calculated following Christ, Braun, Neuffer, and Kempa-Liehr (2018) using the

python package TSFRESH. I evaluate the quality of each forecast using the out-of-sample R2 defined as

the percentage reduction in mean square forecast error of the forecast of interest relative to the historical

average benchmark: R2
OS = 1 −

∑t1
t=t0

(rt−r̂i,t|t−1)
2∑t1

t=t0
(rt−r̂HA,t|t−1)2

. where r̂i,t|t−1 is the forecast of interest and r̂HA,t|t−1

is the historical average benchmark forecast of the market return. I multiply the R2
OS by 100 to denote

percentage values. A positive R2
OS indicates that the forecast of interest generates more accurate predictions

than the historical average benchmark. I report R2
OS for different evaluation starting date ranging from

January 1947 to January 2007. All evaluation period ends at December 2017.

Evaluation starts at (ends at December 2017)
1947 1957 1967 1977 1987 1997 2007

Panel A: Baseline
Combination Forecast 0.50 0.37 0.36 0.14 -0.09 -0.10 -0.24
(CF + HA)/2 0.29 0.21 0.21 0.09 -0.02 -0.03 -0.12

Panel B: Select best by comparing past DMSFE
DMSFE 60 1.0 0.40 0.30 0.39 0.24 0.04 0.01 -0.10
DMSFE 60 0.5 0.45 0.42 0.38 0.19 0.10 0.14 0.09

Panel C: Monitoring with past DSFE as conditioning variables
Logistic Regression 0.37 0.23 0.25 0.15 -0.08 -0.30 -0.60
Machine Learning 0.46 0.33 0.23 0.12 0.09 0.14 0.04

Panel D: Monitoring with time-series features of past DSFE
Logistic Regression 0.21 0.11 0.06 -0.05 -0.36 -0.48 -0.46
Machine Learning 0.57 0.55 0.52 0.34 0.35 0.32 0.18
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Table 1.3 Certainty Equivalent Return Gains of Monitored Combination Forecast
This table reports the certainty equivalent return gains of the equal-weighted combination forecast as well as

several variations of the monitored combination forecast by monitoring the relative forecasting performance

beteen combination forecast and historical average forecast. Panel A includes the combination forecast and

the simple average of the combination forecast and the historical average forecast (labeled as (CF+HA)/2).

Panel B selects the better of the two forecasts by comparing discounted mean squared forecast error (DMSFE)

with a holdout window of 60 months and discount factor of 0.5 and 1. Panel C and D report results from

selecting the conditionally better of the two forecasts using logistic regression or ensemble of ensemble of

machine learning algorithms as monitoring method. Both logistic regression or ensemble of machine learning

algorithms output a probability measure pt indicating the weight to put on the combination forecast. The

approach selects the combination forecast (the historical average forecast) when pt is larger than 0.5 (less

than 0.5). Panel C reports the results from monitoring through past 60 month lagged difference of squared

forecast error (DSFE) between the historical averge benchmark forecast and the combination forecast as

conditioning variables. Panel D utilizes the time-series features of the past 60 month lagged difference of

squared forecast error (DSFE) as conditioning variables. The time-series features are calculated following

Christ, Braun, Neuffer, and Kempa-Liehr (2018) using the python package TSFRESH. Each period, investors

allocates the following share of the portfolio to equities: wt =
(

1
γ

)(
r̂t+1

σ̂2
t+1

)
, where r̂t+1 is a forecast of the

equity premium and σ̂2
t+1 is a forecast of stock variance. The share 1 − wt is allocated to risk-free bills. I

assume investor estimates the variance of the equity premium from five-year moving window of past monthly

returns, set wt to lie between -0.5 and 1.5, assume the relative risk coefficient γ to be 5 following Campbell

and Thompson (2008). The CER of the portfolio is CER = µ̂p− 1
2γσ̂

2
p, where µ̂p is the mean of the portfolio

returnand σ̂2
p is the variance of the portfolio return. CER can be seen as the risk-free rate of return that

an investor is willing to accept instead of choosing the risky portfolio. CER gain is the difference between

the CER for the investor who uses a candidate forecast of the equity risk premium and the CER for an

investor who uses the historical average forecast. I multiply the difference by 1200 so that it represents the

annual percentage portfolio management fee that an investor would be willing to accept to have access to

the predictive model instead of the historical average forecast. I report CER gains for different evaluation

starting date ranging from January 1947 to January 2007. All evaluation period ends at December 2017.

Evaluation starts at (ends at December 2017)
1947 1957 1967 1977 1987 1997 2007

Panel A: Baseline
Combination Forecast 0.90 0.77 0.81 0.33 0.10 0.36 0.40
(CF + HA)/2 0.51 0.44 0.46 0.21 0.10 0.23 0.18

Panel B: Select best by comparing past DMSFE
DMSFE 60 1.0 0.69 0.59 0.76 0.45 0.26 0.30 0.54
DMSFE 60 0.5 0.91 0.94 0.90 0.51 0.48 0.63 0.67

Panel C: Monitoring with past DSFE as conditioning variables
Logistic Regression 0.54 0.35 0.44 0.30 0.06 -0.33 -0.61
Machine Learning 0.85 0.71 0.59 0.35 0.38 0.45 0.82

Panel D: Monitoring with time-series features of past DSFE
Logistic Regression 0.46 0.36 0.30 0.13 -0.17 0.01 0.14
Machine Learning 1.05 1.08 1.13 0.81 0.92 1.22 0.84
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Table 1.4 Improvement From Monitoring Individual Forecasts
This table reports the forecasting performance of 14 individual forecasts examined in Goyal and Welch (2008)

with or without monitoring. The monitoring approach uses ensemble of machine learning algorithms to select

the conditionally better forecast between each individual forecast and the historical average forecast. Time-

series features of past 60 month lagged difference of squared forecast error (DSFE) between the historical

averge benchmark forecast and each candidate individual forecast are used as conditioning variables. The

time-series features are calculated following Christ, Braun, Neuffer, and Kempa-Liehr (2018) using the python

package TSFRESH. The ensemble of machine learning algorithms output a probability measure pt indicating

the weight to put on the individual forecast. The approach selects the individual forecast (the historical

average forecast) when pt is larger than 0.5 (less than 0.5). The second and the third column report the

out-of-sample R2 defined as: R2
OS = 1 −

∑t1
t=t0

(rt−r̂i,t|t−1)
2∑t1

t=t0
(rt−r̂HA,t|t−1)2

. where r̂i,t|t−1 is the forecast of interest and

r̂HA,t|t−1 is the historical average benchmark forecast of the market return. I multiply the R2
OS by 100 to

denote percentage values. A positive R2
OS indicates that the forecast of interest generates more accurate

predictions than the historical average benchmark. The last two columns report certainty equivalent return

(CER) gains calculated as following. Each period, investors allocates the following share of the portfolio to

equities: wt =
(

1
γ

)(
r̂t+1

σ̂2
t+1

)
, where r̂t+1 is a forecast of the equity premium and σ̂2

t+1 is a forecast of stock

variance. The share 1−wt is allocated to risk-free bills. I assume investor estimates the variance of the equity

premium from five-year moving window of past monthly returns, set wt to lie between -0.5 and 1.5, assume

the relative risk coefficient to be 5 following Campbell and Thompson (2008). The CER of the portfolio is

CER = µ̂p− 1
2γσ̂

2
p, where µ̂p is the mean of the portfolio returnand σ̂2

p is the variance of the portfolio return.

The CER can be seen as the risk-free rate of return that an investor is willing to accept instead of choosing

the risky portfolio. The CER gain is the difference between the CER for the investor who uses a candidate

forecast of the equity risk premium and the CER for an investor who uses the historical average forecast. I

multiply the difference by 1200 so that it represents the annual percentage portfolio management fee that an

investor would be willing to accept to have access to the predictive model instead of the historical average

forecast. Both out-of-sample R2 and CER gains are evaluated from January 1947 to December 2017.

OOS R2 CER Gains
Individual Monitored Individual Monitored

dp -0.12 0.00 -0.05 0.51
dy -0.45 0.05 -0.13 0.49
ep -1.50 0.65 -0.09 2.12
de -1.44 -1.19 -0.75 -0.60
rvol -0.05 0.00 -0.11 -0.01
bm -1.54 0.74 -1.59 1.42
ntis -0.52 -0.14 -0.01 -0.22
tbl 0.08 0.17 0.57 0.56
lty -0.68 -0.05 0.26 0.49
ltr -0.78 -0.29 -0.86 -0.07
tms 0.09 0.60 0.00 0.92
dfy -0.18 -0.09 -0.42 -0.14
dfr -0.24 0.34 0.09 0.72
infl -0.06 -0.16 -0.07 -0.19
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Table 1.5 Out-of-sample R2 of Combining Individual Forecasts Through Moni-
toring
This table reports the forecasting performance of combining individual forecasts throught monitoring. Panel

A includes baseline results of combination forecast (combining individual forecasts with equal weights) and

monitored combination forecast. Panel B includes results from several different ways to combine individual

forecasts from monitoring each one of them. Fist row of Panel B (labeled as ‘Equal-weighted Average’) reports

results of monitoring each individual forecast, selecting the conditionally better one of the individual forecast

and the historical average benchmark forecast, and then computing equal weighted average of monitored

individual forecasts. Second row of Panel B (labeled as ‘Weighted Average’) reports results of combining

individual forecasts using weights resulted from an ensemble of machine learning algorithms. The ensemble

of machine learning algorithms monitor the relative forecasting performance between each individual forecast

and historical average forecast and output a probability measure pi,t indicating the weight to put on the i-th

individual forecast. Then individual forecasts are combined using normalized value of weights. Last row of

Panel B (labeled as ‘Weighted Selection’) reports results of selecting the conditionally best individual forecast

by comparing pi,t reported by machine learning algorithms. I evaluate the quality of each forecast using the

out-of-sample R2 defined as the percentage reduction in mean square forecast error of the forecast of interest

relative to the historical average benchmark: R2
OS = 1−

∑t1
t=t0

(rt−r̂i,t|t−1)
2∑t1

t=t0
(rt−r̂HA,t|t−1)2

. where r̂i,t|t−1 is the forecast of

interest and r̂HA,t|t−1 is the historical average benchmark forecast of the market return. I multiply the R2
OS

by 100 to denote percentage values. A positive R2
OS indicates that the forecast of interest generates more

accurate predictions than the historical average benchmark. I report R2
OS for different evaluation starting

date ranging from January 1947 to January 2007. All evaluation period ends at December 2017.

Evaluation starts at (ends at December 2017)
1947 1957 1967 1977 1987 1997 2007

Panel A: Baseline: Equal-weighted combination forecast (monitored)
Combination Forecast 0.50 0.37 0.36 0.14 -0.09 -0.10 -0.24
Monitored Combination Forecast 0.57 0.55 0.52 0.34 0.35 0.32 0.18

Panel B: Monitor each individual forecast first, then combine
Equal-weighted Average 0.50 0.41 0.45 0.46 0.36 0.25 0.36
Weighted Average 0.63 0.48 0.50 0.42 0.18 0.18 0.24
Weighted Selection 0.54 0.32 0.30 0.95 1.02 1.74 3.64
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Table 1.6 Weight on Forecasts and the Real Economy
This table reports estimation results of regressing weight put on each forecast on macro conditions. The

ensemble of machine learning algorithms are used to monitor the relative forecasting performance between

each forecast and historical average benchmark forecast and output a probability measure pi,t indicating the

weight to put on the candidate forecast. Then the weight of each candidate forecast is regressed on NBER

recession indicator and macro uncertainty measure. Macro uncertainty measure is calculated following

Jurado, Ludvigson, and Ng (2015). Sample period is from August 1960 to December 2017 due to the data

avalability of macro uncertainty. Point estimates of macro variables, t statistics, and R2 of regression are

reported.

Weight Recession Uncertainty

β t-stat β t-stat R2

CF 0.04 1.22 0.50 4.03 0.08
dp 0.01 0.26 0.64 4.56 0.09
dy 0.01 0.40 0.79 5.44 0.12
ep -0.00 -0.03 0.42 2.80 0.04
de -0.09 -2.47 -0.13 -0.73 0.04
rvol -0.01 -0.13 0.00 0.01 0.00
bm 0.02 0.47 0.41 3.41 0.04
ntis -0.09 -2.32 0.02 0.13 0.03
tbl 0.09 1.99 -0.15 -0.76 0.02
lty 0.09 2.63 -0.08 -0.47 0.02
ltr -0.01 -0.35 0.02 0.11 0.00
tms 0.01 0.19 0.16 0.94 0.01
dfy -0.00 -0.07 0.39 2.28 0.03
dfr 0.07 2.46 -0.00 -0.01 0.01
infl 0.05 1.34 -0.27 -1.72 0.01
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Figure 1.1 Difference of Square Forecast Error Between the Historical Average
Benchmark Forecast and the Combination Forecast

This figure plots the difference of square forecast error betweeen the historical average benchmark

forecast and the equal-weighted combination forecast. The combination forecast is based on four-

teen individual forecasts calculated following Goyal and Welch (2008). Each forecast is estimated

using expanding window from January 1927 to current period. The difference of square forecast

error is computed as e2
HA,t− e2

CF,t, where eHA,t is the forecast error of the historical average bench-

mark forecast and eCF,t is the forecast error of the combination forecast. The differenec of square

forecast error is then multiplied by 104 and the past 60 month rolling mean is computed and

reported in this figure.
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Figure 1.2 Difference of Square Forecast Error Between the Historical Average
Benchmark Forecast and the Monitored Combination Forecast

This figure plots the difference of square forecast error betweeen the historical average benchmark

forecast and the monitored combination forecast. The difference of square forecast error is computed

as e2
HA,t−e2

MCF,t, where eHA,t is the forecast error of the historical average benchmark forecast and

eMCF,t is the forecast error of the monitored combination forecast. The monitoring is conducted

using ensemble of machine learning algorithms and extracting more than 300 time-series features

extracted from past 60 month lagged difference of squared forecast error (DSFE) between the

historical averge benchmark forecast and the combination forecast88 as conditioning variables. The

time-series features are calculated following Christ, Braun, Neuffer, and Kempa-Liehr (2018) using

the python package TSFRESH. The ensemble of machine learning algorithms output a probability

measure pt indicating the weight to put on the combination forecast. The approach selects the

combination forecast (the historical average forecast) when pt is larger than 0.5 (less than 0.5).

The differenec of square forecast error is then multiplied by 104 and the past 60 month rolling

mean is computed and reported in this figure.
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Figure 1.3 Out-of-sample R2 (%) of Combination Forecast and Monitored Com-
bination Forecast with Moving Evaluation Starting Date

This figure plots out-of-sample R2 of the equal-weighted combination forecast and the monitored

combination forecast. The monitoring is conducted using ensemble of machine learning algorithms

and extracting more than 300 time-series features extracted from past 60 month lagged difference

of squared forecast error (DSFE) between the historical averge benchmark forecast and the combi-

nation forecast as conditioning variables. The time-series features are calculated following Christ,

Braun, Neuffer, and Kempa-Liehr (2018) using the python package TSFRESH. The ensemble of

machine learning algorithms output a probability measure pt indicating the weight to put on the

combination forecast. The approach selects the combination forecast (the historical average fore-

cast) when pt is larger than 0.5 (less than 0.5). The evaluation starting date starts from January

1947 to December 2012. The evaluation always ends at December 2017. The out-of-sample R2

is computed as the percentage reduction in mean square forecast error of the model of interest

relative to the historical average benchmark: R2
OS = 1 −

∑t1
t=t0

(rt−r̂i,t|t−1)2∑t1
t=t0

(rt−r̂HA,t|t−1)2
. where r̂i,t|t−1 is the

forecast of interest and r̂HA,t|t−1 is the historical average benchmark forecast. The out-of-sample

R2 is multiplied by 100, to denote percentage values. A positive R2
OS implies that the model of

interest generates more accurate forecasts than the benchmark. Each point in the figure represents

a evaluation period with starting date in the x-axis and ending date at December 2017.
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Figure 1.4 Weight on the Combination Forecast From Monitoring and NBER
Recession

This figure plots the estimated weight on the combination forecast and NBER recessions. The

weight on the combination forecast is calculated from monitoring via ensemble of machine learning

algorithms. The monitoring approach utilizes more than 300 time-series features extracted from

past 60 month lagged difference of squared forecast error (DSFE) between the historical averge

benchmark forecast and the combination forecast as conditioning variables. The time-series features

are calculated following Christ, Braun, Neuffer, and Kempa-Liehr (2018) using the python package

TSFRESH. The ensemble of machine learning algorithms output a probability measure pt indicating

the weight to put on the combination forecast. Rolling mean of the estimated weights from past

24 month are reported in the figure. The gray shaded areas represent periods labeled by NBER as

recessions.
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Figure 1.5 Weight on the Combination Forecast From Monitoring and Macro
Uncertainty

This figure plots the estimated weight on the combination forecast and macro uncertainty. The

weight on the combination forecast is calculated from monitoring via ensemble of machine learning

algorithms. The monitoring approach utilizes more than 300 time-series features extracted from

past 60 month lagged difference of squared forecast error (DSFE) between the historical averge

benchmark forecast and the combination forecast as conditioning variables. The time-series features

are calculated following Christ, Braun, Neuffer, and Kempa-Liehr (2018) using the python package

TSFRESH. The ensemble of machine learning algorithms output a probability measure pt indicating

the weight to put on the combination forecast. Rolling mean of the estimated weights from past

24 month are reported in the figure. Macro uncertainty measure is calculated following Jurado,

Ludvigson, and Ng (2015) which is available from 1960 to 2017.
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Chapter 2

A Comprehensive Look at the Option-Implied

Predictors of Stock Returns

2.1 Introduction

Stock return predictability is not necessarily clear evidence against efficient markets, as

opposed to conventional wisdom. At the aggregate level, market return predictability can be

viewed as a result of the time-varying equity premium. At the individual firm or portfolio

level, the cross-sectional variations of expected stock returns can be attributed to different

exposures to risk factors. However, evidence on return predictability is subject to statistical

biases, poor out-of-sample return predictability, and difficulty in identifying risk factors.1 As

a result, literature has provided mixed evidence on the nature of stock return predictability,

in particular, at the individual firm or portfolio level.

First, we examine whether ex-ante measures of firm-level dividend yields can forecast

future stock returns. Theory suggests that the ex-ante dividend yield is positively related to

future stock returns. This is due to the time-varying equity premium and the present value

relation as described in Fama and French (1988) and Campbell and Shiller (1988). Consistent

with this theoretical argument, numerous papers including Cochrane (2011) find a positive

relationship between the dividend yield and future market returns. Golez (2014) refines the

well-known return predictor dividend-price ratio by extracting the expected dividend growth

1 See Stambaugh (1999) and Ferson et al. (2003) for statistical biases and see Welch and Goyal (2008)
for out-of-sample return predictability.
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from options data and finds stronger predictability of market returns. His results provide

further support to the view that the market return predictability is due to time-varying

equity premium. At the firm-level, we compute ex-ante measures of dividend yields using

equity options data. When we sort individual stocks based on their implied dividend yields

every month, the subsequent monthly return difference between the top and bottom quintile

is −0.58% per month with t-stat of -2.34. This cross-sectional variation in the expected

return is puzzling in that the firm-level implied dividend yield is negatively related to the

subsequent stock return as opposed to the positive relation theoretically expected.

We argue that the main driver of this puzzling empirical fact is contamination of firm-

level option-implied dividend yields. For example, information asymmetry between traders

in options and equity markets can severely distort measurements of option-implied dividend

yields based on the no-arbitrage principle. The intuition is simple. When the traders in

the options market have superior information than the traders in the equity market, the

underlying stock price temporarily deviates from what option prices in the put-call parity

imply. Such deviation is captured by the expected dividend when we extract the expected

dividends from the put-call parity. Therefore, the measure of the expected dividend is

contaminated, and so are the measures of implied dividend yield and the corrected dividend-

price ratio. It is expected that all options will suffer from information asymmetry, probably

with less effects for longer maturity options. Besides, short-term options will unlikely be able

to contain predictive information about future dividend payments since short-term future

dividend payments are rather fixed. Thus, we control for the information asymmetry by

looking at the term structure of implied dividend yield and isolate the information about

implied dividend yield. We show that the positive relationship between implied dividend

yield and expected returns will recover after information asymmetry is controlled.

We also develop a hypothesis that the effect of information asymmetry will disappear

within a few months, and thereafter the normal relationship between the implied dividend

yield and the expected return will recover. We test this hypothesis by both cross-sectional
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and panel data analyses. In the cross-sectional analysis, when we sort individual stocks based

on their implied dividend yields every month, the negative future return difference between

the top and bottom quintile persists up to 3 months and become insignificant for longer

holding periods. In panel analysis with firm fixed effects, we find the return predictability

pattern consistent with our hypothesis. Our results are robust to the use of an alternative

valuation ratio, the corrected dividend-price ratio by Golez (2014).

The reason why the cross-sectional analysis fails to find the same return-predictability

pattern as the panel analysis is as follows. First, the dividend yield represents the expected

return based on the present-value relation which is originally defined in the time-series envi-

ronment in Campbell and Shiller (1988). In the cross-sectional setting, excessive variations

in the expected dividend growth across firms completely dominate the effects of the dividend

yields. Second, the cross-sectional analysis ignores the effect of the common time-variation

in firm-level implied dividend yields. As a result, how the expected return varies with the

dividend yield within a given firm is ignored in estimation. Third, a cross-sectional analysis

is not suitable for the data with a short sample period, that is, when conditional information

matters, in general. Fourth, most importantly, cross-sectional variations in expected returns

can be driven by unidentified risk factors. We include the firm fixed effects to circumvent

the issue of unidentified risk factors.

Our findings shed light on the existing mixed evidence on the relationship between risk-

neutral skewness and expected return. Xing et al. (2010) show that high (low) slope of the

volatility smirk predicts low (high) stock returns, implying the traders in the options market

have superior information than the equity traders. Since the high slope of the volatility

smirk is often assumed to be associated with negative risk-neutral skewness of stock returns,

their finding implies the positive relationship between risk-neutral skewness and the expected

return, as opposed to Conrad et al. (2013) and the asset pricing models with idiosyncratic

skewness developed in Brunnermeier et al. (2007) and Barberis and Huang (2008).
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We examine if information asymmetry can explain the existing mixed evidence on the

relationship between risk-neutral skewness and the expected return. We find that option-

implied measures such as the slope of the volatility smirk (Xing et al., 2010), and the model-

free risk-neutral skewness (Conrad et al., 2013) also suffer from the same issue of contam-

ination.2 With such option-implied measures, we confirm that the effect of information

asymmetry disappears within a few months, and thereafter the normal negative relationship

between risk-neutral skewness and the expected return recovers. Further, we look at situa-

tions where information asymmetry is more prominent with the use of proxy extracted from

analyst forecast data. We argue that the higher the forecast dispersion about future earnings,

the easier for traders with information advantage to hide and exploit this private news in the

options market, which will contaminate the option-implied measures further. We show that

when analyst forecast dispersion is at a higher level, the effect of information asymmetry

on option-implied measures will be stronger within a few months. To summarize, the issues

in option-implied measures and cross-sectional analysis cause such mixed evidence on the

relationship between option-implied skewness and the expected return, and we reconcile the

mixed evidence using a panel analysis with varying forecasting horizons.3

The remainder of the paper is organized as follows. Section 2.2 introduces different

option-implied measures and explains why they are potentially contaminated by nature.

Section 2.3 describes the data sources and data treatments. Section 2.4 provides empirical

results to support our hypothesis. Section 2.5 concludes.

2The contamination issue exists also in other option-implied measures used in Ofek et al. (2004), Yan
(2011), Cremers and Weinbaum (2010), and Kalay et al. (2014).

3 Yan (2011) shows that the relationship between risk-neutral skewness and the expected return can be
either positive or negative depending on the parameter values in a model with jumps, and he further argues
that it is purely an empirical question and so introducing information asymmetry is not necessary. However,
we explain why it is difficult to reject the existence of information asymmetry in Section 2.2.5 .
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2.2 Option-Implied Predictors for Stock Returns

2.2.1 Implied Dividend Yield

There are two ways to extract implied dividend yields from index derivatives. The first

one is to use put-call parity of options introduced in Binsbergen and Koijen (2010). The

second method is to use both options and futures data described in Golez (2014). Apart

form estimating implied dividend yields, the second method also simultaneously estimates

interest rates from futures prices. However, the estimates of interest rates could be different

from the interest rates inferred from bond markets data. Besides, the estimated interest

rates could contain measurement errors. Therefore, in this paper, we only use options data

to derive dynamics of implied dividend yields.

To compute implied dividends from options data, we require only the absence of arbitrage

opportunities. Under this condition, put-call parity for European options holds:

ct,T +Ke−rt,T (T−t) = pt,T + St −Dt,T

where ct,T and pt,T are prices of call and put options at time t, with maturity T and strike

price K.4 rt,T is the interest rate between time t and T . Dt,T is the expected dividends paid

between time t and T under the risk-neutral probability defined as

Dt,T =
T∑
i=1

Et(Mt:t+idt+i)

Here, Mt:t+i is a stochastic discount factor to discount future dividends dt+i. Equity price is

given by the sum of discounted dividend values:

St =
∞∑
i=1

Et(Mt:t+idt+i)

4Since individual firm options are American options, the put-call parity becomes a band with inequality.
Therefore, we acknowledge that the firm-level option-implied measures based on strict put-call parity are
still noisy proxies at best even without information asymmetry.
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Thus, the implied dividend yield is IDY = Dt,T/St. We use pairs of call option and put

option with same strike price and same time to maturity to estimate implied dividend yield.

We will interpolate the term structure of interest rate to get an appropriate discount rate.

The implied dividend yield can be used as a predictor of future stock returns because of

the present value relation explained in Fama and French (1988) and Campbell and Shiller

(1988). From a simple dividend growth model of stock prices, we have

St−1 =
Dt

r − g

Therefore, the historical dividend yield Dt/St−1 = r − g includes information about the

discount rate which is the expected return. The option-implied dividend yield IDY =

Dt,T/St we construct is an ex-ante version of this the historical dividend yield.

2.2.2 Corrected Dividend-Price Ratio

The corrected dividend price ratio measure comes from the model in Campbell and Shiller

(1988) and Golez (2014) where time-series property of expected returns are assumed. We

first define log return rt+1, log dividend growth rate ∆dt+1, and log dividend-price ratio dpt

as follows:

rt+1 = log[
Pt+1 +Dt+1

Pt
],∆dt+1 = log[

Dt+1

Dt

], dpt = log[
Dt

Pt
]

where Pt is the price at time t and Dt is the dividend paid from t− 1 to t. Then, use taylor

expansion around the average of dividend-price radio d̄p,

rt+1 = κ+ dpt + ∆dt+1 − ρdpt+1
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where κ = log[1 + exp(−d̄p)] + ρd̄p and ρ = exp(−d̄p)
1+exp(−d̄p) . After iterations, we obtain the

Campbell and Shiller (1988) present value identity

dpt = − κ

1− ρ
+ Et

∞∑
j=0

ρj(rt+1+j)− Et
∞∑
j=0

ρj(∆dt+1+j)

Denote µt = Et(rt+1). Assume µt follows AR(1) processes:

µt+1 = δ0 + δ1µt + εµt+1

By plugging in the AR(1) assumption of expected return, we find the dividend price ratio

as follows,

dpt = φ+ (
1

1− ρδ1

)µt − Et
∞∑
j=0

ρj(∆dt+1+j)

Finally, we derive a return forecasting equation:

µt = E(rt+1) = ψ + (1− ρδ1)dpt + (1− ρδ1)Et

∞∑
j=0

ρj(∆dt+1+j) + vrt+1 (2.1)

where ∆dt+1+j = log[
Dt+1+j

Dt+j
] = log(Dt+1+j) − log(Dt+1). We can also write the return

forecasting equation with a single factor as

E(rt+1) = ψ + (1− ρδ1)dpCorrTSt + vrt+1 (2.2)

where dpCorrTSt = dpt + Et
∞∑
j=0

ρj(∆dt+1+j) is the dividend-price ratio corrected for term

structure of implied dividend growth rates.

According to Equation (2.1), the future expected return is a function of historical dividend-

price ratio and the expected forward dividend growth rates. In Equation (2.2), expected

return can be more accurately measured by the dividend-price ratio after subtracting the

term structure of implied dividend growth rates. We will use options with different maturi-

ties to estimate implied forward dividends. Golez (2014) assume AR(1) process for implied
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dividend growth and derive the dividend-price ratio corrected for single implied dividend

growth rate estimated from option pairs with six months to maturity. The dividend-price

ratio derived in Golez (2014) is

dpCorrt = dpt + gt(
1

1− ργ1

)

where gt is conditional expected dividend growth rate and γ1 is AR(1) coefficient of the

process of expected dividend growth rate.

2.2.3 Model-Free Risk-Neutral Skewness

We calculate individual firms’ risk-neutral skewness following the results in Bakshi and

Madan (2000) and Bakshi et al. (2003). They show that the payoff to any security can

be replicated and priced using a set of options with different strike prices on that security.

Bakshi and Madan (2000) define quadratic contract, cubic contract, and quadratic contracts

as having payoffs

H[S] =


R(t, τ)2 volatility contract

R(t, τ)3 cubic contract

R(t, τ)4 quartic contract
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where R(t, τ) ≡ ln[S(t+ τ)]− ln[S(t)] is the log-return of the stock. Using the prices of these

contracts, model-free risk-neutral moments may be computed as

VAR(t, τ) = erτV (t, τ)− µ(t, τ)2

SKEW(t, τ) =
erτW (t, τ)− 3µ(t, τ)erτV (t, τ) + 2µ(t, τ)3

[erτV (t, τ)− µ(t, τ)2)]2/3

KURT(t, τ) =
erτX(t, τ)− 4µ(t, τ)erτW (t, τ) + 6erτµ(t, τ)2V (t, τ)− 3µ(t, τ)4

[erτV (t, τ)− µ(t, τ)2)]2

where V , W and X represent the fair values of the volatility, cubic and quadratic contract,

respectively. These prices are computed by integrating over a set of strike prices, as

V (t, τ) =

∫ ∞
S(t)

2(1− ln[K/S(t)])

K2
C(t, τ ;K)dK

+

∫ S(t)

0

2(1 + ln[S(t)/K])

K2
P (t, τ ;K)dK

W (t, τ) =

∫ ∞
S(t)

6ln[K/S(t)]− 3(ln[K/S(t)])2

K2
C(t, τ ;K)dK

−
∫ S(t)

0

6ln[S(t)/K] + 3(ln[S(t)/K])2

K2
P (t, τ ;K)dK

X(t, τ) =

∫ ∞
S(t)

12(ln[K/S(t)])2 − 4(ln[K/S(t)])3

K2
C(t, τ ;K)dK

+

∫ S(t)

0

12(ln[S(t)/K])2 + 4(ln[S(t)/K])3

K2
P (t, τ ;K)dK

In the above equations, C(t, τ ;K) and P (t, τ ;K) are the prices of European calls and puts

written on the underlying stock with strike price K and expiration τ periods from time t. As

shown in the equation, we use a weighted sum of out of the money options across different
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strike prices to construct the ex-ante risk-neutral skewness of stock returns. Following Conrad

et al. (2013), we set apart four maturity buckets. Each time to maturity is assigned to one of

1-month, 3-month, 6-month, and 12-month maturity. We calculate the risk-neutral skewness

from options with time to maturity closest to 3 month.

2.2.4 Volatility Skew

Xing et al. (2010) define volatility skew (the slope of volatility smirk) as the difference

between the implied volatilities of out-of-the-money puts and at-the-money calls.

V ol skewi,t = V OLOTM,P
i,t − V OLATM,C

i,t

where V OLOTM,P
i,t is the implied volatility of an out-of-the-money put option with the ratio

of the strike price to the stock price lower than 0.95 (but higher than 0.80), and V OLATM,C
i,t

is the implied volatility of an at-the-money call option with the ratio of the strike price to

the stock price between 0.95 and 1.05. We follow Xing et al. (2010) to restrict our attention

to options with time to maturity between 10 and 60 days. When there are more than one

pair of out-of-the-money put option and at-the-money call option, we weight all available

options with positive volume equally.

2.2.5 Contamination of Option-Implied Measures

Option-implied measures are supposed to be contaminated by information asymmetry

between traders in options and equity markets. The intuition is simple. When the implied

dividend yield is constructed from options data, the main assumption is the absence of

arbitrage opportunities. Under this condition, the present (expected) value of dividend

before maturity is extracted from the put-call parity:

ct,T +Ke−rt,T (T−t) = pt,T + St −Dt,T
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where ct,T and pt,T are prices of call and put options at time t, with maturity T and strike

price K. rt,T is the interest rate between time t and T . Dt,T is the expected dividends paid

between time t and T .

When the traders in options market have superior information than the traders in equity

market as argued in Xing et al. (2010) and Cremers and Weinbaum (2010), the underlying

stock price St temporarily deviates from what option prices in the put-call parity imply. Such

deviation is captured by the expected dividend when we extract the expected dividends from

the put-call parity. Therefore, the measure of expected dividend is contaminated, and so are

the measures of implied dividend yield and the corrected dividend-price ratio.

When the volatility skew is computed following Xing et al. (2010), deviations of underly-

ing stock price St from the fair price will affect implied-volatility calculations. For example,

if some negative news is available only in options market, then the observed stock price will

be higher than the full-information price. The out-of-the-money put option price will be

seen too high to equity traders, and the calculated implied volatility will be higher than the

true implied volatility. Therefore, the measure of the volatility skew will be contaminated

by information asymmetry. In fact, Xing et al. (2010) acknowledge the existence of informa-

tion asymmetry and interpret the contaminated volatility skew as a proxy for information

asymmetry. However, if we view the volatility skew as a proxy for negative ex-ante risk-

neutral skewness, their findings contradict Conrad et al. (2013) and the asset pricing models

with skewness developed in Brunnermeier et al. (2007) and Barberis and Huang (2008). Our

view is that the measured volatility skew captures both information asymmetry and negative

skewness.

When the model-free risk-neutral skewness is computed following Bakshi et al. (2003),

deviations of underlying stock price St from the fair prices also play a role since the stock
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price St is used in calculation. Similar to the case of volatility skew, the measure of model-

free risk-neutral skewness will be contaminated by information asymmetry and will represent

both information asymmetry and risk-neutral skewness.5

Based on potential contamination of option-implied measures, we develop a hypothesis

that the effect of information asymmetry will disappear within a few months, and thereafter

the normal relationship between the option-implied measures and the expected return will

recover. Here, the normal relationship means a positive association with expected returns in

case of the implied dividend yield, the corrected dividend price ratio, and volatility skew while

negative in case of the risk-neutral skewness. Contamination of option-implied measures by

information asymmetry can even revert the sign of the relationship if contamination is severe.

However, if traders in equity market resolve information asymmetry in a few months, the

normal relationship can appear thereafter. We empirically test this hypothesis in the rest of

the paper in order to reconcile the well-known mixed evidence on the relationship between

option-implied skewness and expected returns: Xing et al. (2010) and Yan (2011) vs. Conrad

et al. (2013).

In fact, the positive relationship between risk-neutral skewness and expected return is

not necessarily abnormal. Yan (2011) shows that such relationship can be either positive

or negative depending on the parameter values in a model with jumps and argues that it

is purely an empirical question and introducing information asymmetry is not necessary.

However, we do not rule out existence of information asymmetry for three reasons. First,

the model cannot explain why the relationship between risk-neutral skewness and expected

return changes from “positive” to “negative” over forecasting horizons. Second, it is very

difficult to find parameter values in the model that can explain the negative relationship at

the market level while positive at the firm-level even though we focus on only short-term

expected returns. Third, the evidence about information asymmetry in literature is quite

5Although we do not study in this paper, measures for historical (realized) skewness such as Amaya et al.
(2013) are potentially contaminated as well since the realized return due to information asymmetry will be
included when realized skewness is calculated.
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strong. Xing et al. (2010) show information asymmetry is linked to the subsequent earning

surprises, and Cremers and Weinbaum (2010) find the short sale constraint cannot explain

the put-call parity deviation and its return predictability as opposed to Ofek et al. (2004).

2.3 Data

Our sample period is from January 1996 to December 2013. Options data are from

Optionmetrics (provided through Wharton Research Data Services). Closing prices are cal-

culated as the average of closing bid and ask prices. Data on stock returns are obtained

from Center for Research in Security Prices. We use monthly returns from 1996 to 2013 for

all individual securities with positive common shares outstanding. Balance sheet data for

the computation of book-to-market ratios and leverage ratios are from Compustat. Interest

rates are obtained from a collection of continuously compounded zero-coupon interest rates

at different maturities from OptionMetrics.

To calculate risk-neutral skewness, we follow the procedure as in Bakshi, Kapadia, and

Madan (2003) using out-of-the-money puts and calls. We employ options with time to

maturity close to 3 month and with positive open interest. For each day, we require at least

two OTM puts and two OTM calls to calculate risk-neutral skewness. If there are more puts

than calls, then we use the puts that have the most similar strike to price ratio as the calls,

vice versa if there are more calls than puts. For each month, we average the risk-neutral

skewness for each day in this month to get a monthly measure of risk-neutral skewness. The

sample consists of 70,095 firm-month observations of risk-neutral skewness with mean of

-0.48 and standard deviation 0.33 over the time period January 1996 to December 2013.

When calculating the volatility skew, we apply the following filters to daily options data

as in Xing, Zhang, and Zhao (2010): including options with positive volume for underlying

stock, implied volatility between 3% and 200%, price larger than $0.125, positive open inter-

est and nonmissing volume, and maturity between 10 to 60 days. We use ATM call options

with moneyness between 0.95 and 1.05 and OTM put options with moneyness between 0.80
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and 0.95. We first calculate daily volatility skew by using the differences between implied

volatilities between OTM puts and ATM calls. Then we average the daily volatility skew

to get monthly measures for each firm. We end up with 151,771 firm-month observations of

volatility skew with mean 4.08 and standard deviation 4.91.

In estimating the implied dividend yield from options, we follow the procedure described

in Binsbergen, Brandt, and Koijen (2012). Options with positive volume or open interest

greater than 200 contracts are considered. Each day, we find paris of call and put with same

strike price and same time to maturity and calculate implied dividend yields for this pair from

put-call parity. For each day, we compute the mean of implied dividend yield to get the daily

measure. For each month, we aggregate all daily estimates of implied dividend yields and

calculate the mean of daily estimates. The sample has 392,725 firm-month observations of

implied dividend yields with mean of 0.02 and standard deviation of 0.05. We also calculated

dividend price ratio corrected for implied dividend growth for firms paying dividends. We

have 38,656 firm-month measures of log corrected dividend price ratio with mean -3.24 and

standard deviation of 1.07.

Table 2.1 provides the summary statistics of monthly firm-level option-implied measures

and control variables used in the paper. IDY is the ex-ante option-implied dividend yield from

put-call parity. log DPc is the corrected dividend-price ratio from Golez (2014). RNSKEW is

the model-free risk-neutral skewness from Bakshi et al. (2003). HSKEW and HVOL are the

monthly historical return skewness and volatility calculated using daily returns, respectively.

log Size, log BM, and log LEV are firm market capitalization, the book-to-market ratio, and

the leverage in a log scale, respectively.
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2.4 Empirical Results

2.4.1 Option-implied Measures

Figure 2.1 shows how the distribution of firm-level implied dividend yield evolves over

time. The cross-sectional mean and the median of implied dividend yield change over time

significantly, implying there are substantial common time-variations of firm-level implied

dividend yield.

Table 2.2 shows the correlation matrix of monthly firm-level option-implied measures

and control variables. The ex-ante option-implied dividend yield (IDY) and the corrected

dividend-price ratio (DPc) from Golez (2014) are positively correlated and the correlation

coefficient is 0.746. They are, in fact, very similar measures. The only difference is that

the implied dividend yield (IDY) captures both the expected return and expected dividend

growth by construction while the corrected dividend-price ratio (DPc) represents only the

expected return by subtracting the expected dividend growth term from the historical div-

idend price ratio. Thus, the implied dividend yield is still a noisy proxy for the expected

return. However, we consider the implied dividend yield, hoping that it can be cleaner

measure than the historical dividend yield in that the historical dividend yield includes the

realized dividend which is noisy by nature. On the other hand, the corrected dividend-price

ratio (DPc) is still a noisy proxy for the expected return because measuring the dividend

growth term is subject to estimation errors and model misspecification embedded in the

procedure by Golez (2014). Therefore, we consider both the implied dividend yield (IDY)

and the corrected dividend-price ratio (DPc) in our analysis.

Volatility skew (VOLSKEW) from Xing et al. (2010), which is the slope of volatility smirk,

is positively correlated with the implied dividend yield (IDY) and the corrected dividend-

price ratio (DPc). This positive correlation represents two different aspects of these measures.

First, high implied dividend yield or high corrected dividend-price ratio implies high expected

return. High volatility skew generally translates into more negative skewness which means
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high expected returns as shown in Brunnermeier et al. (2007) and Barberis and Huang (2008).

Therefore, they are supposed to be positively correlated. Second, as explained in Section

2.2.5, these option-implied measures are potentially contaminated by information asymmetry

between options and equity markets to the same direction. Therefore, these option-implied

measures are supposed to be positively correlated for this reason as well. Note the model-free

risk-neutral skewness (RNSKEW) from Bakshi et al. (2003) is negatively correlated with the

implied dividend yield (IDY), the corrected dividend-price ratio (DPc), and the volatility

skew (VOLSKEW) since high risk-neutral skewness generally translates into low volatility

skew (the slope of volatility smirk).

Figure 2.2 shows the time-series of the cross-sectional medians of four option-implied

measures: IDY, log DPc, RNSKEW, and VOLSKEW. All variables are standardized by their

sample means and standard deviations for better visualization. Note we draw −RNSKEW

instead of RNSKEW so that all four option-implied measures in the plot are associated

with expected returns in the same way. In time-series, the implied dividend yield (IDY)

and the corrected dividend-price ratio (DPc) are highly correlated as expected from their

definition. The negative model-free risk-neutral skewness (−RNSKEW) and the volatility

skew (VOLSKEW) are also highly correlated, confirming that they both measure negative

skewness. All four measures are highly correlated after 2006 suggesting skewness becomes a

dominant factor in equity valuations.

Table 2.3 reports the average firm-characteristics of each decile portfolio sorted by the

implied dividend yield every month. Although the correlations between the implied dividend

yield and firm characteristics in Table 2.2 are not very high, the average firm-characteristics

except Sharpe ratio have monotonic relationship with the implied dividend yield. Since the

implied dividend yield is a valuation ratio, it is supposed to be related to firm-characteristics.

By definition, the implied dividend yield does not compete with firm-characteristics. Rather,

it summarizes all information contained in firm-characteristics related to firm valuation.

62



Roughly speaking, low implied dividend yield firms are small, growth, low-leveraged, more

volatile, more positively skewed firms with higher kurtosis.

2.4.2 Cross-sectional Analysis

Table 2.4 shows raw and risk-adjusted average returns of five equal-weighted portfolios

sorted by the ex-ante option-implied dividend yield (IDY). We find that high implied divi-

dend yield is associated with lower subsequent returns. Panel A shows that the top implied-

dividend-yield portfolio has the subsequent monthly return significantly lower than the bot-

tom implied-dividend-yield portfolio. The subsequent monthly return difference between top

and bottom quintile is -0.58% per month with t-stat -2.34 computed using Heteroskedastic-

ity and Autocorrelation Consistent (HAC) standard errors. This difference remains robust

after we adjust risk by CAPM, Fama-French 3-factor model, and Carhart 4-factor model.

Therefore, this sorting exercise implies that high implied dividend yield means low expected

return as opposed to the well-known market level evidence and what the present-value re-

lation in Fama and French (1988) and Campbell and Shiller (1988) implies. We repeat this

analysis with different holding periods up to twelve months and find the similar pattern up

to three-month holding periods but not longer.

We examine the effects of information asymmetry on IDY by differentiating between

short-term implied dividend yield and long-term implied dividend yield. Short-term implied

dividend yield is the IDY measure computed using only options with maturity less than

60 days while long-term implied dividend yield is IDY calculated with options maturing no

earlier than 6 months. If there are possible information advantage to option traders, it would

affect both short-term and, to a less extent, long-term put-call parity deviation. And the

short-term put and call options will unlikely to have any significant superior information

about expected dividend payments since the short maturity and smooth dividend payments

in short period. Thus, if we take the difference between long-term IDY and short-term

IDY and cancel out the effect of information asymmetry, the remaining part will reflect
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solely information on expected dividend yield. Table 2.5 reports the raw and risk-adjusted

average returns of five equal-weighted quintile portfolios sorted by four measures related to

option-implied dividend yield. Panel A reports the results with respect to IDY calculated

from all available options. Panel B and C shows quintile returns of portfolios sorted by

short-term IDY (from options with maturity less than 60 days) and long-term IDY (from

options maturing 6 months later). Portfolio returns sorted by the term structure of IDY ( the

difference between long-term IDY and short-term IDY) are presented in Panel D. We observe

from first three panels that the negative relationship between IDY and returns are persistent

with respect to different maturities of options used to compute this measure. When we sort

all firms by the term structure of IDY, monotonically increasing portfolio average returns

and risk-adjusted returns are reported in Panel D. It suggests that the positive relationship

between dividend yield and expected returns recovers once we control for the information

asymmetry by taking the difference between long-term IDY and short-term IDY.

We perform a conventional cross-sectional analysis on stock returns with option-implied

measures. Table 2.6 shows Fama-Macbeth regressions with monthly stock returns. For each

month t, we run the following cross-sectional regression:

ri,t+1 = αt + βtXi,t + γ>t Zi,t + ei,t+1

where ri,t+1 is the monthly stock return (%), Xi,t is either the implied dividend yield IDYi,t or

the corrected dividend-price ratio logDP c
i,t, and Zi,t is control variables. Then we compute

the time-average of βt and γt to find the point estimates and report their t-statistics in

parentheses using Heteroskedasticity and Autocorrelation Consistent (HAC) standard errors.

The coefficient on the implied dividend yield is negative and its t-statistic is about 5 with or

without control variables including size, book-to-market, leverage, historical volatility, and

historical skewness. Again, this result is counter intuitive since the present vale relation which

is a simple accounting identity implies a positive coefficient. One potential explanation is that

64



implied dividend yield IDYi,t and the corrected dividend-price ratio logDP c
i,t are dominated

by the effect of put-call parity deviations caused by information asymmetry between traders

in options and equity markets. In that case, negative coefficients should be observed as Table

2.6.

In fact, if the implied dividend yield and the corrected dividend-price ratio are not con-

taminated by put-call parity deviations, the control variables should be excluded in the

regression since the dividend yield and the dividend-price ratio are valuation ratios and thus

already include information embedded in control variables related to the expected returns.

However, we include the control variables because what we observe in the regression is mostly

from the effect of put-call parity deviations caused by information asymmetry.

Table 2.7 repeats Table 2.4 with other option-implied measures such as model-free risk-

neutral skewness (RNSKEW) and volatility skew (VOLSKEW) which is the slope of volatility

smirk. Table 2.7 shows exactly the same pattern as Table 2.4. The coefficient on volatility

skew is negative and significant with or without control variables. In case of risk-neutral

skewness, the opposite sign on the coefficient is actually the same pattern as Table 2.4 because

of its definition. The coefficient on risk-neutral skewness is positive and significant with or

without control variables. Therefore, we suspect that we have counter-intuitive results here

since all four option-implied measures are potentially contaminated by deviations from put-

call parity caused by information asymmetry between traders in options and equity markets.

The next section further investigates this hypothesis with panel data analysis.

2.4.3 Panel Data Analysis

Previous section shows that high implied dividend yield is associated with lower subse-

quent returns in the cross-section as opposed to exiting theories and market level evidence.

In case of the subsequent monthly return, it is consistent with contamination of the option-

implied measures by deviations from put-call parity caused by information asymmetry be-

tween traders in options and equity markets.

65



However, more puzzling fact is that such pattern persists for twelve months since infor-

mation asymmetry is difficult to explain why such pattern persists for such a long period.

Here, we argue that the conventional cross-sectional analysis is not suitable to reveal the

true relationship between the implied dividend yield and the expected returns. First, the

dividend yield represents the expected return based on the present-value relation which is

originally defined in the time-series environment in Campbell and Shiller (1988). In the cross-

sectional setting, the dividend yield will be difficult to capture variations in the expected

return due to excessive variations in the expected dividend growth across firms. Second, the

cross-sectional analysis ignores the effect of the common time-variation in firm-level implied

dividend yields as shown in Figure 2.1. As a result, how the expected return varies with

the dividend yield within a given firm is not considered at all in cross-sectional estimation.

Third, a cross-sectional analysis is not suitable for the data with short sample period, that is,

when conditional information matters, in general. Fourth, most importantly, cross-sectional

variations in expected returns might be due to unidentified risk factors. We resolve these

issue by performing a panel data analysis. In particular, we circumvent the issue of uniden-

tified risk factors by including firm fixed effects. After all, we focus on how the expected

return varies with the dividend yield within a given firm.

Table 2.8 shows the time-series predictability of monthly S&P500 index returns. We

compare five different option-implied measures: the implied dividend yield (IDY), the cor-

rected dividend-price ratio (log DPc), the model-free risk-neutral skewness (RNSKEW), the

volatility skew (VOLSKEW), and the corrected dividend-price ratio using information in

the term structure of the expected dividend growth from Bilson et al. (2015). All these

predictor variables are computed using the index options. Due to the short sample period

from January 1996 to December 2013, evidence on predictability is somewhat weak, yet the

signs of coefficients are all consistent with theories. High dividend yield and low skewness

are associated with high expected return.
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Table 2.9 shows the pooled time-series predictability of individual stock returns. We run

the following panel regression:

ri,t+1 = αi + β IDYi,t + γ>Zi,t + ei,t+1

where ri,t+1 is the monthly stock return (%), αi is the firm fixed effect, IDY is the ex-ante

option-implied dividend yield from put-call parity, and Zi,t is control variables. The table

shows that the coefficient on the implied dividend yield is negative and highly significant

as t-stat is around 10, consistent with the cross-sectional result. One interesting result

here is that control variables become relatively less significant when the firm fixed effects

are included whilst the implied dividend yield does not. If firm fixed effects capture all

risk premium associated with identified and unidentified risk factors, remaining significant

coefficients represent time-variation of risk premium. Since the coefficients on the implied

dividend yield remain the same even after the firm fixed effects are included, we conclude

the time-series relationship between the implied dividend yield and the expected return is

more important or more dominant in the data than the cross-sectional relationship.

Table 2.10 extends Table 2.9 using different forecasting horizons up to twelve months.

We run the following panel regression with each of forecasting horizon h = 1, 2, 3, ..., 12:

ri,t+h = αi + β Xi,t + ei,t+1

where ri,t+h is the h-months ahead non-overlapping monthly stock return (%), αi is the firm

fixed effect, and Xi,t is either implied dividend yield IDYi,t in Panel A or the corrected

dividend-price ratio logDP c
i,t in Panel B. Here, including firm fixed effects is important since

it eliminates all cross-sectional variations in expected returns due to risk factors. In Panel

A, the coefficient on the implied dividend yield starts from a strongly negative value but

gradually increases and becomes significantly positive after three month. We interpret this

coefficient pattern as the information asymmetry disappears within a few months and the
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normal relationship between the implied dividend yield and the expected return recovers.

The same pattern is discovered when the corrected dividend price ratio is used as a predictor

variable since two measures are constructed in a very similar way. Here, the control variables

should be excluded in the regression since the dividend yield and the dividend-price ratio

are a valuation ratio and so already include information in control variables related to the

expected returns.

Table 2.11 repeats Table 2.10 with the model-free risk-neutral skewness (RNSKEW) and

the volatility skew (VOLSKEW), which is the slope of volatility smirk, as a predictor vari-

able. We find exactly the same pattern as Table 2.10. In the first few months, information

asymmetry dominates and so the coefficient is the opposite of what theory implies, yet the

normal relationship between the skewness measures and the expected return recovers there-

after. Note the signs of the coefficients on the model-free risk-neutral skewness (RNSKEW)

should be the opposite of the volatility skew (VOLSKEW) because of their definitions. In

case of the model-free risk-neutral skewness and the volatility skew, control variables should

be included because skewness is just one determinant of the expected return. Accordingly,

we have stronger results when control variables are included as expected. Table 2.12 repeats

Table 2.10 and 2.11 with overlapping holding period returns. After six month, the normal

relationship with all option-implied measures and the expected return dominates the overall

return predictability.

To confirm the validity of the option-implied measures, we test whether the option-

implied dividend actually include information about future dividend. This is an important

fundamental question since the option-implied dividend from put-call parity is a main build-

ing block of the implied dividend yield and the corrected dividend-price ratio. The first two

rows of Table 2.13 show that the option-implied dividend actually include information about

future dividend, and so two option-implied measures are not pure noises. The remaining

part of Table 2.13 shows how the implied dividend yield predicts the dividend growth. The
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result is consistent with information asymmetry in the short term and existing literature in

the long term.

2.4.4 Option-implied Measures and Information Asymmetry

We argue that the information asymmetry between traders in options and equity mar-

kets creates the puzzling evidence of opposing relationship between option-implied measures

and future stock returns over different horizons. When the traders in options market have

informational advantage of some news (positive or negative) about a specific stock, all option-

implied measures will include this information asymmetry and its effect will dominate other

underlying predicators (dividend yield or skewness). In this section, we further look into this

hypothesis and measure the influence of this information asymmetry using a proxy calculated

from analyst forecast data.

When some traders receive private information about specific stocks, options market is

naturally a good place to exploit the private information since it provides higher leverage

and it is easier to hide their private information. Further, if the analyst forecast dispersion

is high, which means public information is noisy about the firm’s future earnings, it will be

easier for these traders to hide their intension and profit from the informational advantage.

Thus, we develop a hypothesis that the higher the analyst forecast dispersion, the stronger

the relationship between information asymmetry and future stock returns.

For the analyst forecast dispersion measure, we use the standard deviation of analyst

forecasts of quarterly earnings scaled by stock price to eliminate firm-level differences. Table

2.14 reports the result of interaction term between option-implied measures and analyst

forecast dispersion. We run the following panel regression with each of forecasting horizon

h = 1, 2, 3, ..., 12:

ri,t+h = αi + βXi,t + γDISPi,t + δ Xi,t ·DISPi,t + ei,t+1
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where ri,t+h is the h-months ahead non-overlapping monthly stock return (%), αi is the

firm fixed effect, and Xi,t is either implied dividend yield IDY, volatility skew VOLSKEW

(the slope of volatility smirk) or model-free risk-neutral skewness RNSKEW. The interaction

term of option-implied measure and analyst forecast dispersion (DISP) is included in each

regression. The table shows that the coefficient on the interaction term between IDY and

DISP is significantly negative for first three month ahead non-overlapping returns with t-

statistics ranging from −7 to −2. This is a break down of Table 2.10 where we report the

coefficient of IDY changes from negatively significant (opposing theory) to positive after a few

months. From Table 2.14, it is observed that for higher analyst forecast dispersion stocks, this

negative relationship between IDY and future stock returns within three months is stronger.

Similar patterns are shown for skewness measures volatility skew (VOLSKEW) and model-

free risk-neutral skewness (RNSKEW) as a predictor variable. The coefficient of interaction

term between RNSKEW and DISP are positively significant for first few months, which

drives the overall coefficient of RNSKEW to be positive (opposing theory) for future returns

within first few months reported in Table 2.11. The effect of analyst forecast dispersion

on VOLSKEW is, however, not significant especially for first month return. But for 2 to 4

month ahead returns, the sign is consistent with the hypothesis that higher dispersion stocks

tend to have a stronger and opposite to theory relationship between skewness and future

stock returns.

2.5 Conclusion

As Fama and French (1988) and Campbell and Shiller (1988) explain, the dividend yield

should be positively related to the future stock returns. We construct the option-implied

measure of dividend yield from equity options at firm-level and find that it is negatively

related to the subsequent monthly stock returns, as opposed to the market level evidence

and what theory suggests. This puzzling empirical finding is mainly driven by the deviations

from put-call parity caused by information asymmetry between traders in options and equity
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markets. Our panel data analysis reveals that the normal relationship between the dividend

yield and the future returns recovers after information asymmetry dissipates within a few

months. The biggest problem with the cross-sectional analysis is that the cross-sectional

variations in expected returns can be driven by unidentified risk factors. We include the

firm fixed effects to circumvent the issue of unidentified risk factors. We further investi-

gate whether the existence of information asymmetry contaminates ex-ante option-implied

skewness measures as well, which explains why existing literature finds both positive and

negative relationship between option-implied skewness and expected returns in the cross-

section. Finally, we reconcile such mixed evidence by showing that the normal negative rela-

tionship between option-implied skewness and expected returns appears regardless of choice

of option-implied skewness measures after the false positive relationship due to information

asymmetry vanishes in the panel data analysis. To conclude, the issues in option-implied

measures and cross-sectional analysis cause such mixed evidence on the relationship between

option-implied skewness and the expected return, and we reconcile the mixed evidence using

a panel analysis with varying forecasting horizons.
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Table 2.1 Summary Statistics

The table presents the summary statistics of monthly firm-level option-implied measures and control

variables used in the paper. IDY is the ex-ante option-implied dividend yield from put-call parity.

log DPc is the corrected dividend-price ratio from Golez (2014). RNSKEW is the model-free risk-

neutral skewness from Bakshi et al. (2003). VOLSKEW is volatility skew (VOLSKEW), which is

the slope of volatility smirk, from Xing et al. (2010). HSKEW and HVOL are the monthly historical

return skewness and volatility calculated using daily returns, respectively. log Size, log BM, and

LEV are firm market capitalization, the book-to-market ratio, and the leverage, respectively. The

sample period is from January 1996 to December 2013.

Variable Mean Percentile

5% 25% 50% 75% 95%

IDY 0.022 -0.020 0.004 0.014 0.031 0.089

log DPc -3.247 -4.971 -3.799 -3.226 -2.613 -1.611

RNSKEW -0.428 -0.909 -0.568 -0.398 -0.253 -0.060

VOLSKEW 4.084 -0.181 2.046 3.217 4.985 10.872

HSKEW 0.171 -1.291 -0.303 0.155 0.640 1.707

HVOL 0.099 0.032 0.055 0.081 0.122 0.225

log Size 0.099 0.032 0.055 0.081 0.122 0.225

log BM -1.077 -2.871 -1.672 -1.054 -0.483 0.561

LEV 0.320 0.020 0.100 0.251 0.480 0.870
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Table 2.2 Correlation Matrix

The table presents the correlation matrix of monthly firm-level option-implied measures and control

variables used in the paper. IDY is the ex-ante option-implied dividend yield from put-call parity.

log DPc is the corrected dividend-price ratio from Golez (2014). RNSKEW is the model-free risk-

neutral skewness from Bakshi et al. (2003). VOLSKEW is volatility skew (VOLSKEW), which is

the slope of volatility smirk, from Xing et al. (2010). HSKEW and HVOL are the monthly historical

return skewness and volatility calculated using daily returns, respectively. log Size, log BM, and

LEV are firm market capitalization, the book-to-market ratio, and the leverage, respectively. The

sample period is from January 1996 to December 2013.

IDY DPc RN− VOL− HSKEW HVOL log Size log BM LEV
SKEW SKEW

IDY 1
log DPc 0.726 1
RNSKEW -0.175 -0.134 1
VOLSKEW 0.544 0.384 -0.517 1
HSKEW 0.010 0.010 0.006 0.010 1
HVOL 0.249 0.197 0.021 0.438 0.031 1
log Size -0.231 -0.136 -0.145 -0.238 0.001 -0.353 1
log BM 0.096 0.054 -0.049 0.113 -0.002 0.136 -0.242 1
LEV 0.142 0.139 -0.135 0.147 -0.003 0.114 -0.097 0.665 1
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Table 2.3 Implied Dividend Yield and Firm Characteristics

The table presents the average firm-characteristics of each decile portfolio sorted by the implied

dividend yield every month. IDY is the ex-ante option-implied dividend yield from put-call parity.

log DPc is the corrected dividend-price ratio from Golez (2014). RNSKEW is the model-free risk-

neutral skewness from Bakshi et al. (2003). HSKEW and HVOL are the monthly historical return

skewness and volatility calculated using daily returns, respectively. log Size, log BM, and LEV are

firm market capitalization, the book-to-market ratio, and the leverage, respectively. HKURT is the

monthly historical return kurtosis calculated using daily returns. Sharpe Ratio is calculated using

monthly return and volatility. The sample period is from January 1996 to December 2013.

Low High High-Low
1 2 3 4 5 6 7 8 9 10 (t-stat.)

log Size 6.45 7.22 7.71 7.78 7.82 7.89 7.90 7.88 7.61 7.04 0.60
(26.87)

log BM -1.04 -1.15 -1.28 -1.23 -1.16 -1.10 -1.03 -0.96 -0.89 -0.93 0.11
(4.16)

LEV 0.26 0.26 0.25 0.27 0.30 0.32 0.35 0.37 0.40 0.38 0.12
(22.86)

HVOL 3.53 3.18 3.03 2.97 2.85 2.73 2.65 2.58 2.65 2.99 -0.54
(-11.69)

HSKEW 0.27 0.21 0.19 0.18 0.17 0.17 0.16 0.15 0.16 0.15 -0.12
(-11.57)

HKURT 1.63 1.42 1.29 1.23 1.16 1.14 1.15 1.13 1.13 1.28 -0.34
(-10.22)

Sharpe Ratio 0.72 0.57 0.52 0.56 0.57 0.61 0.62 0.63 0.68 0.62 -0.10
(-1.63)
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Table 2.4 Average Returns of Decile Portfolios Sorted by the Implied Dividend
Yield

The table presents raw and risk-adjusted average returns of five equal-weighted quintile portfolios
sorted by the ex-ante option-implied dividend yield. Panel A shows one-month holding period
returns and risk-adjusted alphas. Avg. return is the raw sample average of returns. CAPM α is
the CAPM alpha of each portfolio return. FF3 α is the Fama-French three-factor model alpha of
each portfolio return. Carhart4 α is the Carhart four-factor model alpha of each portfolio return.
The last two columns show the difference between the top and the bottom quintile portfolio returns
and their t-statistics computed using Heteroskedasticity and Autocorrelation Consistent (HAC)
standard errors. Panel B shows longer holding period average raw returns. The sample period is
from January 1996 to December 2013.

Panel A: 1-month Holding Period Return (%)

Low High
1 2 3 4 5 H-L t(H-L)

Avg. return 0.97 0.89 0.86 0.69 0.39 -0.58 -2.34
CAPM α -0.15 -0.12 -0.12 -0.27 -0.59 -0.44 -1.72
FF3 α 0.07 0.01 -0.04 -0.22 -0.53 -0.59 -2.72
Carhart4 α -0.08 -0.07 -0.12 -0.30 -0.68 -0.60 -2.78

Panel B: Longer Holding Period Raw Returns (%)

Low High
1 2 3 4 5 H-L t(H-L)

3-month 2.40 2.58 2.65 2.44 1.47 -0.93 -1.91
6-month 4.12 4.82 5.36 4.96 3.57 -0.54 -0.71
12-month 9.95 10.64 10.74 10.62 9.88 -0.07 -0.06
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Table 2.5 Average Returns of Deciles Portfolios Sorted by Term Structure of the
Implied Dividend Yield

The table presents raw and risk-adjusted average returns of equal-weighted quintile portfolios.
Panel A shows results sorted by implied dividend yield (IDY) calculated from opitons with all
maturities. Panel B presents results sorted by short-term IDY, calculated from options with less
than 60 days maturity. Panel C includes results sorted by long-term IDY computed from options
with longer than 6 month maturity. Panel D reports results sorted by the difference between long-
term IDY and short-term IDY. Avg. return is the raw sample average of returns. CAPM α is the
CAPM alpha. FF3 α is the Fama-French three-factor model alpha. Carhart4 α is the Carhart
four-factor model alpha. The last two rows in each panel show the difference between the top and
the bottom quintile portfolio returns and their t-statistics computed using Heteroskedasticity and
Autocorrelation Consistent (HAC) standard errors. The sample period is from January 1996 to
December 2013.

Measure Rank Avg. return CAPM α FF3 α Carhart4 α

Panel A: Decile Returns Sorted by IDY (%)

IDY Low 1 0.97 -0.15 0.07 -0.08
2 0.89 -0.12 0.01 -0.07
3 0.86 -0.12 -0.04 -0.12
4 0.69 -0.27 -0.22 -0.30

High 5 0.39 -0.59 -0.53 -0.68
H-L -0.58 -0.44 -0.59 -0.60
T (-2.34) (-1.72) (-2.72) (-2.78)

Panel B: Decile Returns Sorted by short-term IDY (%)

IDYshort Low 1 0.92 -0.18 0.07 -0.13
2 0.92 -0.06 0.03 -0.02
3 0.88 -0.10 -0.05 -0.08
4 0.67 -0.31 -0.23 -0.33

High 5 0.41 -0.59 -0.54 -0.70
H-L -0.51 -0.42 -0.61 -0.57
T (-2.56) (-1.98) (-3.18) (-3.01)

Panel C: Decile Returns Sorted by long-term IDY (%)

IDYlong Low 1 1.07 -0.05 0.10 -0.02
2 0.79 -0.28 -0.13 -0.22
3 0.81 -0.21 -0.08 -0.20
4 0.70 -0.22 -0.18 -0.26

High 5 0.43 -0.48 -0.42 -0.56
H-L -0.64 -0.43 -0.52 -0.55
T (-2.19) (-1.55) (-2.28) (-2.44)

Panel D: Decile Returns Sorted by term structure of IDY (%)

IDYlong − IDYshort Low 1 0.52 -0.52 -0.45 -0.60
2 0.79 -0.23 -0.14 -0.23
3 0.84 -0.17 -0.10 -0.12
4 0.80 -0.17 -0.05 -0.14

High 5 0.85 -0.16 0.03 -0.16
H-L 0.33 0.35 0.48 0.44
T (2.03) (2.05) (2.89) (2.68)
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Table 2.6 Fama Macbeth Regression on the Implied Divided Yield and the Cor-
rected Dividend-Price Ratio

The table presents Fama-Macbeth regressions with monthly stock returns. For each month t, we
run the following cross-sectional regression:

ri,t+1 = αt + βtXi,t + γ>t Zi,t + ei,t+1

where ri,t+1 is the monthly stock return (%), Xi,t is either the implied dividend yield IDYi,t or the

corrected dividend-price ratio logDP ci,t, and Zi,t is control variables. HSKEW and HVOL are the

monthly historical return skewness and volatility calculated using daily returns, respectively. log

Size, log BM, and LEV are firm market capitalization, the book-to-market ratio, and the leverage,

respectively. Then we compute the time-average of βt and γt to find the point estimates and report

their t-statistics in parentheses using Heteroskedasticity and Autocorrelation Consistent (HAC)

standard errors. The last column shows the time-average of adjusted R2 of each cross-sectional

regression. The sample period is from January 1996 to December 2013.

Model IDY log DPc log Size log BM LEV HVOL HSKEW Adj. R2 (%)

I -6.060 0.3
(-4.73)

II -5.894 -0.384 0.135 0.322 2.812 -0.011 5.8
(-5.18) (-4.89) (1.50) (0.69) (1.01) (-0.22)

III -0.035 0.5
(-0.48)

IV -0.122 -0.140 -0.019 0.229 -1.195 -0.089 6.5
(-1.59) (-1.92) (-0.19) (1.87) (-0.35) (-1.11)
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Table 2.7 Fama Macbeth Regression on Risk-Neutral Skewness and the Slope of
Volatility Smirk.

The table presents Fama-Macbeth regressions with monthly stock returns. For each month t, we
run the following cross-sectional regression:

ri,t+1 = αt + βtXi,t + γ>t Zi,t + ei,t+1

where ri,t+1 is the monthly stock return (%), Xi,t is either model-free risk-neutral skewness

RNSKEW or volatility skew V OLSKEW (the slope of volatility smirk), and Zi,t is control vari-

ables. HSKEW and HVOL are the monthly historical return skewness and volatility calculated

using daily returns, respectively. log Size, log BM, and LEV are firm market capitalization, the

book-to-market ratio, and the leverage, respectively. Then we compute the time-average of βt and

γt to find the point estimates and report their t-statistics in parentheses using Heteroskedasticity

and Autocorrelation Consistent (HAC) standard errors. The last column shows the time-average

of adjusted R2 of each cross-sectional regression. The sample period is from January 1996 to

December 2013.

Model RN− VOL− log Size log BM LEV HVOL HSKEW Adj. R2

SKEW SKEW (%)

I 0.915 0.7
(1.77)

II 1.360 0.016 -0.036 0.083 -2.232 0.067 7.8
(2.99) (0.17) (-0.31) (0.75) (-0.65) (0.81)

III -0.060 0.8
(-2.66)

IV -0.062 -0.038 -0.006 0.037 -1.245 0.004 7.2
(-2.87) (-0.49) (-0.07) (0.34) (-0.42) (0.06)
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Table 2.8 Time-series Predictability of Market Returns

The table presents time-series predictability of market returns. Each column shows the result of
the time-series predictive regression:

rm,t+1 = α+ βXt + et+1

where rm,t+1 is the monthly S&P500 index return (%) and Xt is a single predictor variable. IDY is

the ex-ante option-implied dividend yield from put-call parity. log DPc is the corrected dividend-

price ratio from Golez (2014). log DPc,ts is the corrected dividend-price ratio using information

in the term structure of the expected dividend growth from Bilson et al. (2015). RNSKEW is the

model-free risk-neutral skewness from Bakshi et al. (2003). VOLSKEW is volatility skew, which is

the slope of volatility smirk, from Xing et al. (2010). All these predictor variables are computed

using the index options. Numbers in parentheses are their t-statistics using Heteroskedasticity and

Autocorrelation Consistent (HAC) standard errors. The sample period is from January 1996 to

December 2013.

Single Predictor IDY log DPc log DPc,ts RNSKEW VOLSKEW

Coefficient β 0.0057 0.0043 0.0080 -0.0001 0.7295
(t-statistics) (1.56) (1.24) (2.31) (-0.29) (1.67)
In-sample R2 (%) 1.56 0.89 2.60 0.01 1.59
Pseudo Out-of-sample R2 (%) 0.17 -0.35 2.46 -2.80 0.19
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Table 2.9 Panel Regression of Monthly Stock Returns on the Lagged Implied
Dividend Yield

The table presents the pooled time-series predictability of individual stock returns. We run the
following panel regression:

ri,t+1 = αi + β IDYi,t + γ>Zi,t + ei,t+1

where ri,t+1 is the monthly stock return (%), αi is the firm fixed effect, IDY is the ex-ante option-
implied dividend yield from put-call parity, and Zi,t is control variables. HSKEW and HVOL
are the monthly historical return skewness and volatility calculated using daily returns, respec-
tively. log Size, log BM, and LEV are firm market capitalization, the book-to-market ratio, and
the leverage, respectively. All explanatory variables are standardized by their sample means and
standard deviations. Numbers in parentheses are t-statistics calculated using Heteroskedasticity
and Autocorrelation Consistent (HAC) standard errors. The sample period is from January 1996
to December 2013.

Model IDY log Size log BM LEV HVOL HSKEW Fixed Effect Adj R2 (%)

I -0.32 Yes 0.03
(-8.55)

II -0.44 -5.56 0.44 Yes 2.06
(-11.02) (-56.56) (7.04)

III -0.41 -5.69 0.28 0.41 -0.41 0.04 Yes 2.12
(-10.22) (-54.41) (3.91) (3.69) (-10.02) (1.36)

IV -0.33 No 0.04
(-10.05)

V -0.33 -0.44 0.34 No 0.19
(-9.38) (-13.36) (10.35)

VI -0.34 -0.52 0.21 0.17 -0.12 0.05 No 0.21
(-9.53) (-14.20) (4.73) (4.03) (-3.46) (1.56)
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Table 2.10 Panel Regression of Monthly Stock Returns with Varying Forecasting
Horizon

The table presents the pooled time-series predictability of individual stock returns with different
forecasting horizons up to twelve months. We run the following panel regression with each of
forecasting horizon h = 1, 2, 3, ..., 12:

ri,t+h = αi + β Xi,t + ei,t+1

where ri,t+h is the h-months ahead non-overlapping monthly stock return (%), αi is the firm fixed
effect, and Xi,t is either implied dividend yield IDYi,t or the corrected dividend-price ratio logDP ci,t.
All explanatory variables are standardized by their sample means and standard deviations. Under
the coefficient estimates, we report t-statistics calculated using Heteroskedasticity and Autocorre-
lation Consistent (HAC) standard errors. The sample period is from January 1996 to December
2013.

Panel A: Regression on IDY

hth month 1 2 3 4 5 6 7 8 9 10 11 12

1. Without Firm Fixed Effects

β -0.33 -0.18 -0.06 0.03 0.05 0.11 0.03 0.02 0.04 0.01 0.07 0.13
t-stat. -10.05 -5.09 -1.77 0.83 1.45 2.82 1.38 0.53 1.17 0.26 1.67 3.09

2. With Firm Fixed Effects

β -0.32 -0.13 -0.02 0.13 0.18 0.26 0.12 0.13 0.16 0.10 0.15 0.25
t-stat. -8.55 -3.24 -0.48 3.09 4.10 5.84 2.64 2.84 3.62 2.15 3.26 5.07

Panel B: Regression on log DPc

hth month 1 2 3 4 5 6 7 8 9 10 11 12

1. With Firm Fixed Effects

β 0.05 -0.13 0.21 0.24 0.20 0.23 0.24 0.31 0.29 -0.04 0.17 0.30
t-stat. 0.76 -1.73 2.81 3.05 2.56 3.12 3.02 3.82 3.80 -0.50 1.92 3.75
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Table 2.11 Panel Regression of Monthly Stock Returns on the Lagged Option-
implied Skewness Measures with Varying Forecasting Horizon

The table presents the pooled time-series predictability of individual stock returns with different
forecasting horizons up to twelve months. We run the following panel regression with each of
forecasting horizon h = 1, 2, 3, ..., 12:

ri,t+h = αi + β Xi,t + γ>Zi,t + ei,t+1

where ri,t+h is the h-months ahead non-overlapping monthly stock return (%), αi is the firm fixed
effect, Xi,t is either model-free risk-neutral skewness RNSKEW or volatility skew V OLSKEW
(the slope of volatility smirk), and Zi,t is control variables: HSKEW, HVOL, log Size, log BM, and
LEV as defined in Table 2.1. All explanatory variables are standardized by their sample means
and standard deviations. Under the coefficient estimates, we report t-statistics calculated using
Heteroskedasticity and Autocorrelation Consistent (HAC) standard errors. The sample period is
from January 1996 to December 2013.

Panel A: Regression on VOLSKEW

hth month 1 2 3 4 5 6 7 8 9 10 11 12

1. With Firm Fixed Effects
β -0.39 -0.11 0.02 0.21 0.36 0.55 0.37 0.28 0.19 0.33 0.53 0.57
t-stat. -7.39 -1.99 0.43 3.57 5.99 8.92 6.08 4.43 2.93 5.16 8.07 8.61
2. With Firm Fixed Effects, log Size, and log BM
β -0.62 -0.33 -0.21 0.01 0.17 0.39 0.21 0.08 -0.11 0.14 0.39 0.37
t-stat. -10.34 -5.52 -3.47 0.08 2.75 5.96 3.26 1.33 -0.17 2.08 5.67 5.21
3. With Firm Fixed Effects and All Control Variables
β -0.42 -0.25 -0.23 0.13 0.07 0.2 0.21 0.08 -0.11 0.13 0.37 0.23
t-stat. -6.97 -5.47 -3.58 -0.23 1.04 2.94 3.03 1.18 -1.51 1.87 5.14 3.04

Panel B: Regression on RNSKEW

hth month 1 2 3 4 5 6 7 8 9 10 11 12

1. With Firm Fixed Effects
β 0.55 0.23 0.09 0.10 0.06 0.07 -0.03 0.01 0.29 0.07 -0.07 0.08
t-stat. 7.62 3.23 1.23 1.23 1.37 0.87 -0.45 0.11 3.78 0.93 -0.94 1.05
2. With Firm Fixed Effects, log Size, and log BM
β 0.19 -0.09 -0.28 -0.28 -0.26 -0.34 -0.40 -0.24 0.04 -0.23 -0.34 -0.25
t-stat. 2.38 -1.23 -3.48 -3.39 -3.21 -4.07 -4.75 -2.86 0.42 -2.65 -3.97 -2.92
3. With Firm Fixed Effects and All Control Variables
β 0.16 -0.07 -0.23 -0.22 -0.15 -0.22 -0.33 -0.22 0.07 -0.21 -0.33 -0.24
t-stat. 3.04 -0.85 -2.84 -2.68 -1.89 -2.69 -3.92 -2.60 0.82 -2.44 -3.84 -2.73
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Table 2.12 Panel Regression of Stock Returns with Varying Holding Period

The table presents the pooled time-series predictability of individual stock returns with different
holding periods up to twelve months. We run the following panel regression with each of holding
periods n = 1, 3, 6, and 12:

ri,t+n = αi + β Xi,t + γ>Zi,t + ei,t+1

where ri,t+n is the overlapping n-month holding period stock return (%), αi is the firm fixed effect,
Xi,t is implied dividend yield IDYi,t, the corrected dividend-price ratio logDP ci,t, model-free risk-
neutral skewness RNSKEW , or volatility skew V OLSKEW (the slope of volatility smirk), and
Zi,t is control variables: HSKEW, HVOL, log Size, log BM, and LEV as defined in Table 2.1. All
explanatory variables are standardized by their sample means and standard deviations. Under the
coefficient estimates, we report t-statistics calculated using Heteroskedasticity and Autocorrelation
Consistent (HAC) standard errors. The sample period is from January 1996 to December 2013.

Predictor Control Variables Holding Period (month)

1 3 6 12

IDY Firm Fixed Effects β -0.32 -0.30 0.77 3.05
t-stat. -8.55 -3.40 4.81 10.67

log DPc Firm Fixed Effects β 0.05 0.17 0.84 2.30
t-stat. 0.76 1.21 3.82 6.83

VOLSKEW Firm Fixed Effects β -0.39 -0.34 1.26 4.98
t-stat. -7.39 -2.98 6.50 15.30

Firm Fixed Effects β -0.62 -1.05 -0.10 2.28
+ log Size + log BM t-stat. -10.34 -8.50 -0.49 7.16

Firm Fixed Effects β -0.42 -0.88 -0.26 1.73
+ All Control Variables t-stat. -6.97 -7.06 -1.29 5.46

RNSKEW Firm Fixed Effects β 0.55 0.86 0.99 0.77
t-stat. 7.62 5.51 3.92 1.92

Firm Fixed Effects β 0.19 -0.26 -1.42 -3.79
+ log Size + log BM t-stat. 2.38 -1.52 -5.26 -9.54

Firm Fixed Effects β 0.16 -0.21 -1.09 -3.28
+ All Control Variables t-stat. 3.04 -1.21 -3.99 -8.23
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Table 2.13 Panel Regression of Dividend Growth with Varying Horizon

The table presents the pooled time-series predictability of individual dividend growth with different
dividend horizons up to twelve months. We run the following panel regression with each of dividend
horizons n = 1, 3, 6, and 12:

logD
(12)
i,t+n − logD

(12)
i,t = αi + βXi,t + ei,t+1

where Di,t is the overlapping twelve-month trailing sum of dividends, αi is the firm fixed effect, and
Xi,t is either option-implied dividend growth IDGi,t or option-implied dividend yield IDYi,t. Under
the coefficient estimates, we report t-statistics calculated using Heteroskedasticity and Autocorre-
lation Consistent (HAC) standard errors. The sample period is from January 1996 to December
2013.

Predictor Firm Dividend Growth Horizon
Fixed Effects (month)

1 3 6 12

IDG Yes β 0.696 0.108 0.198 0.379
t-stat. 2.55 3.57 6.93 7.60

No β 0.078 0.104 0.165 0.351
t-stat. 3.89 4.63 7.28 7.93

IDY Yes β 0.037 0.035 0.238 -0.114
t-stat. 2.93 1.23 0.49 -1.57

No β 0.085 -0.028 0.093 -0.272
t-stat. 0.84 -1.08 -1.94 -3.29
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Table 2.14 Panel Regression of Monthly Stock Returns with Interaction of An-
alyst Forecast Dispersion

The table presents the pooled time-series predictability of individual stock returns with option-
implied measure and its interaction with analyst forecast dispersion. We run the following panel
regression with each of forecasting horizon h = 1, 2, 3, ..., 12:

ri,t+h = αi + βXi,t + γDISPi,t + δ Xi,t ·DISPi,t + ei,t+1

where ri,t+h is the h-months ahead non-overlapping monthly stock return (%), αi is the firm fixed
effect, and Xi,t is either implied dividend yield IDY , volatility skew V OLSKEW (the slope of
volatility smirk) or model-free risk-neutral skewness RNSKEW . The interaction term of option-
implied measure and analyst forecast dispersion DISP is included in each regression. All ex-
planatory variables are standardized by their sample means and standard deviations. Under the
coefficient estimates, we report t-statistics calculated using Heteroskedasticity and Autocorrelation
Consistent (HAC) standard errors. The sample period is from January 1996 to December 2013.

hth-mon 1 2 3 4 5 · · · 10 11 12

1. Xi,t = IDY with Firm Fixed Effects

δ -0.09 -0.11 -0.06 0.07 0.02 · · · -0.99 -0.28 0.03
t-stat. -7.27 -7.52 -2.84 2.16 0.51 · · · -0.99 -0.62 0.59

2. Xi,t = V OLSKEW with Firm Fixed Effects

δ 0.01 -0.03 -0.02 -0.07 -0.04 · · · -0.06 -0.07 -0.17
t-stat. 0.53 -2.70 -2.17 -2.91 -1.51 · · · -1.18 -1.29 -3.56

3. Xi,t = RNSKEW With Firm Fixed Effects

δ 0.33 0.35 0.65 0.35 -0.07 · · · 0.32 -0.37 0.65
t-stat. 3.42 3.32 5.81 3.08 -0.67 · · · 2.13 -2.48 4.44
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Figure 2.1 Evolution of the Cross-sectional Distribution of Implied Dividend
Yield

The plot shows the cross-sectional distribution of monthly option-implied dividend yield. Each line

represents the cross-sectional mean, median, 10th percentile, and 90th percentile calculated every

month, respectively.
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Figure 2.2 Cross-sectional Medians of Option-implied Predictors for Stock Re-
turns

The plot shows the time-series of the cross-sectional median of four monthly option-implied predic-

tors for stock returns: IDY, log DPc, RNSKEW, and VOLSKEW where IDY is the implied divi-

dend yield, log DPc is the corrected dividend-price ratio, RNSKEW is the model-free risk-neutral

skewness, and VOLSKEW is the volatility skew (the slope of volatility smirk). All variables are

standardized by their sample means and standard deviations for better visualization. We draw

−RNSKEW instead of RNSKEW so that all four option-implied measures in the plot are associ-

ated with expected returns in the same way. The sample period is from January 1996 to December

2013.
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Chapter 3

Systematic Risk and the Cross-Section of Credit

Default Swap Returns

3.1 Introduction

The basic insight from the standard unconditional capital asset pricing model (CAPM)

(Sharpe (1964), Lintner (1965)) states that the cross-sectional asset returns should be ex-

plained by sensitivities of asset returns to the return of the aggregate market. There are a

large number of papers exploring this relationship between systematic risk and return in the

equity market. However, it has been shown (see Fama and French 1992, 1993) that, market

beta, the systematic risk measure described in CAPM model, has no ability to explain the

cross-section of stock returns. Rather, individual firm characteristics such as size, book to

market ratios, and momentum are found to be important and more robust predictors of

the cross-sectional variation in stock returns. These findings create some controversy over

whether firm characteristics or factor loadings are more relevant.

A natural extension of the CAPM model is to consider the asymmetric treatment of risk

by investors. Ang, Chen, and Xing (2006) define upside and downside risks by computing

market beta conditioning on market returns being larger or smaller than average market

returns. They find that firms with high downside beta have higher contemporaneous stock

returns while firms with high relative upside beta (relative to CAPM beta) have lower con-

temporaneous stock returns. The underlying assumption is that investors have asymmetric
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preferences for losses versus gains, as suggested in Markowitz (1952) and Bawa and Lin-

denberg (1977). When the market goes down, loss-averse investors have a larger increase

in marginal utility because of their asymmetric utility function (the disappointment utility

function presented in Gul (1991) satisfies this assumption and could be used to motivate the

role of downside beta in asset prices). Assets that are more sensitive to market downturns

than market uptrends are undesirable for loss-averse investors as these assets will provide

low payoffs exactly when the wealth of the investors are decreasing. Thus, stocks with higher

covariation with the market during downside market movements should earn higher rewards

for investors to hold in equilibrium.

There exist several studies in the literature examining the relationship between condi-

tional market risk and expected returns in different asset classes or different markets (see, for

example, Lettau, Maggiori, and Weber (2014) and Atilgan, Bali, Demirtas, and Gunaydin

(2015)). However, no earlier papers study the relationship between (un)conditional market

risk and the cross-section of credit default swap (CDS) returns. In the current paper, we

first test whether the systematic market risk is priced in the cross-section of CDS returns

and then examine the relation between downside (upside) market risk and CDS returns. We

contribute to a growing literature on identifying determinants of the cross-section of returns

for bond (see, e.g., Kwan (1996), Gebhardt, Hvidkjaer, and Swaminathan (2005), Bessem-

binder et al. (2009), Lin, Wang, and Wu (2011), Jostova, Nikolova, Philipov, and Stahel

(2013), Chordia et al. (2017), Choi and Kim (2017) and Bai, Bali and Wen (2017)) and firm-

level CDS contracts (see, e.g., Berndt and Obreja (2010), Bongaerts, de Jong, and Driessen

(2011), Junge and Trolle (2015) and Lee, Naranjo, and Sirmans (2014)). We contribute to

the literature by studying the systematic risk as determinants of the cross-section of CDS

returns and rely on specific features of CDS contracts and decomposition of systematic risk

to show which part of the systematic beta risk is priced in the cross-section while controlling

for firm characteristics.
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Credit default swaps are single-name over-the-counter derivatives that provide default

insurance. The payoff to the protection buyer covers losses up to the notional value in the

event of a default by the reference entity. Default events are triggered by either bankruptcy,

failure to pay, or a debt-restructuring event. The buyer of the protection pays a quarterly

premium, quoted as an annualized percentage of the notional value, and in return receives

the payoff from the seller of protection if a credit event occurs. Structural models following

Merton (1974) generate a simple insight for the relation between CDS returns and equity

returns: risk premia on the equity market and CDS (debt) market are related as all claims

on the same underlying assets should earn the same amount of compensation per unit of

risk. Empirical studies along this line successfully confirm the model-suggested relationship

between stock returns and bond returns (Schaefer and Strebulaev (2008)) and the relation-

ship between stock returns and credit-implied risk premia (Friewald, Wagner, and Zechner

(2014)). Though most earlier studies (e.g., Huang and Huang (2003)) find that structural

models are not sufficient to generate a high level of credit spreads as observed in data, sim-

plest structural model is capable of describing the association between corporate bond (CDS)

returns and equity returns. This paper contributes to the literature by constructing theoretic

relationship (implied by Merton (1974) structural model and CAPM model) between CDS

returns and firm’s market risk (CAPM beta) estimated from stock returns and empirically

confirm the positive relation between systematic risk and CDS returns.

The literature has recognized the role of downside risk in asset pricing since Roy (1952)

and Markowitz (1952). Ang, Chen, and Xing (2006) build on the idea that investors dislike

assets that are more sensitive to market downturns than market uptrends and motivate a

downside beta measure relying on the disappointment utility function of Gul (1991). They

find that firms that have higher downside beta have higher contemporaneous stock returns.

However, they did not find a significant association between ex-ante downside beta and fu-

ture stock returns unless they exclude high volatility stocks. Lettau, Maggiori, and Weber
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(2014) further report that downside-risk-CAPM can jointly explain the cross-sectional re-

turns of currencies, commodities, sovereign bonds, and U.S. stocks. However, Atilgan, Bali,

Demirtas, and Gunaydin (2015) find that contrary to the findings in the U.S. equity market,

downside beta does not explain the cross-sectional differences in future and contemporane-

ous returns in an international setting for individual stocks. We contribute to the literature

by examining the relation between downside beta and CDS returns as CDS contracts are

designed to be more sensitive to downside risk than equity contracts. Although CDS con-

tracts reflect the same firm fundamentals as stocks, they are more sensitive to downside risk

because of their specific structure as firms are more likely to default in bad market states and

CDS protection sellers are more likely to be responsible for the loss of value during market

downside movements. Thus, CDS protection sellers are expected to require a premium for

bearing the risk of negative externalities spilling over from other sectors in the market. In

this paper, we test and confirm the hypothesis that CDS protection sellers do get higher

compensation for the downside risk embedded in the firm.

We focus on returns of CDS contract for two other reasons. First, Merton (1974) implies

a clear structural link between stock and CDS returns through the firm’s capital structure.

Second, Friewald, Wagner, and Zechner (2014) confirms that CDS spreads are consistent in

their assessment of the underlying credit risk with stock prices without being affected by

other liquidity-related measures. In contrast, earlier literature studying credit risk through

corporate bond returns document a “distress risk puzzle” in which expected stock returns

are negatively related to credit risk.

Our strategy for finding a premium for bearing unconditional and conditional systematic

risk in the cross-section of CDS contracts is as follows. First, we show that CDS protection

sellers’ earn higher average returns for firms with higher CAPM beta. Second, we show

that firms with higher downside beta risk or upside beta risk have larger returns for CDS

protection sellers. This result is seemingly inconsistent with protection sellers willing to

accept a discount for firms with high upside potential. However, it is shown that CAPM
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beta, downside beta and upside beta are all correlated by construction, thus, sorting on each

of the conditional beta risk measures alone will not rule the impact of CAPM beta on CDS

returns. This observation leads us to next step where we explore two methods to disentangle

the effects of conditional beta on CDS returns that are unrelated to unconditional beta. We

use relative downside (upside) beta measures as in Ang, Chen, and Xing (2006) and also

extract the residual part of downside (upside) beta that is orthogonal to CAPM beta. The

decomposition of impact from conditional beta risk provides more evidence that is consistent

with theory. It is confirmed that CDS protection sellers demand higher returns for firms with

larger relative (residual) downside beta and accept a discount for firms with larger relative

(residual) upside beta. Finally, we identify the reward for unconditional systematic risk and

conditional systematic risk while controlling for other known characteristics that may affect

CDS returns in theory. Fama-Macbeth regression results show that higher CDS returns are

required by CDS sellers to provide protection for firms with higher CAPM beta, downside

beta, and relative downside beta.

The remainder of the paper is organized as follows. Section 3.2 introduces the relation

between CDS returns, stock returns and market beta implied by Merton structural model

and CAPM model. Section 3.3 describes the data sources and data treatments to obtain

CDS returns and various risk measures. Section 3.4 provides empirical results. Section 3.5

concludes.

3.2 Structural Models and CDS Returns

3.2.1 Merton Model

In this section, we use a simple Merton framework to illustrate that returns to a firm’s

credit instrument (CDS) should be related to returns to its equity. CDS and equity contracts

are two claims on the same underlying firm. Thus, in structural models, their returns are

intrinsically related where firm value, V , is the driving state variable.
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First, consider the equity claim which could be viewed as a European call option on the

firm’s assets with strike price equal to face value of debt D and maturity T . Using Ito’s

lemma on value of equity, we obtain that the expected excess return on equity µE − r as a

function of excess asset return which is denoted as µ− r:

µE − r =
V

E
EV (µ− r), (3.1)

where EV denotes the partial derivative of E with respect to V which is the call option delta

with EV > 0.

To derive characteristics of CDS returns, we follow the insight in Berndt and Obreja

(2010). Note that a portfolio that combines a long position in a T -year par defaultable

bond issued by firm i and a short position in a T -year par riskless bond generates same

cash-flows, to a close approximation, as from selling protection on the firm through a T -year

CDS contract. Therefore, we have

∆VCDS = ∆PD −∆PRF , (3.2)

where ∆PD and ∆PRF denote changes in the value of the risky and risk-free bond. After we

divided both side by par, the excess return on defaultable bond is given as

µD − r = ∆VCDS. (3.3)

We refer to ∆VCDS as excess CDS return for protection seller, or simply as CDS return and

will describe how to calculate it later.

Then, similar to the equity return, CDS return could also be written as a function of

asset return

∆VCDS = µD − r =
V

D
DV (µ− r), (3.4)

where DV denotes the partial derivative of D with respect to V .
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Dividing Equation (4) by Equation (1) and considering the fact that V = D + E , we

have

∆VCDS = hE(µE − r), (3.5)

where hE denotes the sensitivity of the return on CDS to the return on equity and hE =

E
D

( 1
EV
− 1).

3.2.2 CDS Returns and CAPM

Now we suppose the CAPM model holds. The expected excess equity return will be

determined by the following equation

µE − r = βE(µM − r), (3.6)

where µM is expected return on market portfolio and βE is the CAPM beta of the equity.

Substitute Equation (3.6) into Equation (3.5), we have

∆VCDS = βCDS(µM − r), (3.7)

where CDS beta is given as hEβE.

CDS beta depends on firm characteristics and equity beta, we will use equity beta as a

first step in empirical analysis. And we also use Merton model implied elasticity to generate

heterogeneous CDS beta to analyze direct relation between CDS returns and CDS beta.

3.3 Data and Empirical Methodologies

3.3.1 Data

Our sample period is from January 2000 to December 2015. All U.S. firms with actively

traded stock and single-name CDS contract are included. Total number of firms in the
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sample is 820. Equity data are obtained from CRSP. CDS data are acquired from Markit.

We consider CDS contracts denominated in U.S. dollars with one, three, five, seven and ten

years maturity. Markit constructs a composite CDS spread using input from a variety of

market makers and requires each daily observation passes a rigorous cleaning test to ensure

accuracy and reliability.

Individual stocks data are used to calculate CAPM beta, downside beta and upside beta.

We use twelve month of daily data to calculate each risk measure following Ang, Chen, and

Xing (2006). It is a choice of balancing between long enough time period to have enough data

for downside/upside variation and short period to account for time-varying risk exposures.

3.3.2 Calculating CDS Returns

To construct excess CDS returns for protection sellers, we follow the procedure in Bon-

gaerts, de Jong, and Driessen (2011). Consider an investor at time t−∆t who sells protection

to the k-th firm using a CDS contract and receive spread at CDSk,t−∆t each quarter until

default or maturity. Assume this protection seller purchases an offsetting contract at time

t with spread CDSk,t. This investor will receive −1
4
∆CDSk,t each quarter until default or

maturity. The value of this stream plus adjustment for initial accrued spread during holding

period will give the excess holding return

∆VCDS,k,t =
∆t

4
CDSk,t−∆t −

∆CDSk,t
4

(T−t)∑
j=1

Bt(t+ j)QSV
k,t (t+ j), (3.8)

where QSV
k,t (t+ j) is the survival probability up to time t+ j under risk neutral measure and

Bt(t + j) is the price of a riskless zero coupon bond with maturity at time t + j. The time

frequency for CDS returns we considered here is month by month. Since the investor has

zero cost when initiating the contract, the excess return is equal to the value of the stream.

To facilitate the calculation of risk neutral survival probability, it is assumed for simplicity

that CDS spread only reflects default risk, the default intensity is constant over the maturity
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period and there is a constant recovery rate ρ = 40%. Then, we follow Duffie and Singleton

(2003) to solve for risk neutral survival probability:

CDSk,t = 4
(1− ρ)

∑(T−t)
j=1 Q

def |SV
k,t (t+ j)Bt(t+ j)∑(T−t)

j=1 QSV
k,t (t+ j)B(t, t+ j)

, (3.9)

QSV
k,t (t+ j) = exp(−λk,t(t+ j)), (3.10)

where Q
def |SV
k,t (t+ j) represents the risk neutral probability of a default occurring in period

t+ j conditional on survival up to time t+ j − 1.

3.3.3 Systematic Risk and Downside Risk Measures

There is sufficient evidence supporting the view that general investors are loss averse

following the seminal work of Kahneman and Tversky (1979). Asymmetric preferences were

already used in the early finance literature to provide alternatives to the standard CAPM,

which is based on the variance as a symmetric risk concept. Markowitz (1952), for example,

introduces the notion of semi-variance as a measure of risk. The notion is exploited and

extended in asset pricing theory by Hogan and Warren (1974), Bawa and Lindenberg (1977),

and Harlow and Rao (1989).

Regular CAPM beta is calculated as β = Cov(ri,rm)
V ar(rm)

. For downside beta and upside beta,

we follow Ang, Chen, and Xing (2006) to calculate downside beta as conditional CAPM beta

when market excess return is below average market excess return. Downside beta is denoted

as β−,

β− =
Cov(ri, rm|rm < rm)

V ar(rm|rm < rm)
, (3.11)

where ri and rm are individual stock excess return and market excess return, rm is average

market excess return. Similarly, upside beta is defined as conditional CAPM beta when
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market excess return is above average market excess return,

β+ =
Cov(ri, rm|rm > rm)

V ar(rm|rm > rm)
. (3.12)

Everything else being equal, firms with high downside potential are not as desirable as

firms with low downside potential, since former firms tend to correlate with market return

with higher magnitude during market downturns when investors’ wealth is low. On the other

hand, consider two stocks with same downside beta, but with different payoff potential in up

markets. The stock that covaries more with the market when market is going up has larger

payoff. Investors will not require a high expected return to hold this asset. Thus, everything

else being equal, stock with high upside beta will have a discount and earn less reward.

However, regular beta, downside beta, and upside beta are related by construction. It is

important to differentiate effects from different risk, we introduce three additional relative

measures to control for other risk measures.

The relative downside beta (denoted by β−−β) is downside beta relative to regular CAPM

beta. Similarly, upside beta relative to regular beta is the relative upside beta computed as

β+ − β. Another relative risk measure is asymmetric beta which is the difference between

downside beta and upside beta, (β− − β+). In a simple model with disappointment utility

where investors care more about downside risk, Ang, Chen, and Xing (2006) show that stocks

with either high regular beta, high downside beta, or high upside beta are rewarded with

higher expected returns since these three beta measures are correlated. Further, stocks with

high relative downside beta or high asymmetric beta are remunerated by higher expected

returns, while stocks with high relative upside beta have lower expected returns in the model.
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3.4 Empirical Results

3.4.1 Systematic Risk

In this section, we investigate whether firms with higher systematic risk have higher

average returns for CDS protection sellers. Systematic risk is measured by CAPM beta

which describes how strong a firm’s return covary with the market return. If there is a

cross-sectional relation between systematic risk and returns, then there should exist a pat-

tern between average realized returns and the factor loadings associated with exposure to

systematic risk. The CAPM model implies that stocks that covary strongly with the market

have contemporaneously high average returns. According to the Merton model implications

described in Section 3.2.2, we would also expect a positive relationship between equity CAPM

beta and CDS sellers’ returns. Though this relationship may depend on firm characteristics

that explains the CDS/equity elasticity, the sign of the relationship should maintain positive

if we focus on cross-sectional relationship.

Every month, we use daily stock returns from past twelve months to compute a stock’s

CAPM beta. At the beginning of each month at time t, we sort single-name CDS contracts

into five quintiles based on systematic risk estimated using realized equity returns over

the past twelve months. We concentrate on presenting the results of equal-weighted CDS

portfolios and equal-weighted Fama-Macbeth (1973) regressions.

In the columns under label “CDS returns (%)” of Table 3.2, it reports the average realized

excess CDS sellers’ returns from t to t+ 1 in each equally weighted quintile portfolio. CDS

contracts with maturity from one year (labeled as “1 yr”) to ten years (labeled as “10 yr”)

are included for analysis. For five year maturity CDS contracts (labeled as “5 yr”), quintile

1 has an average excess return of 0.06% per month for protection sellers while quintile 5 has

an average excess return of 0.42% per month. The spread in average excess returns between

quintile portfolios 5 and 1 is 0.36% per month which is significantly positive with t statistic of

2.64. The results are consistent across each CDS contract maturity with slightly increasing
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return spread between portfolio 5 and 1 as we move from one year maturity to ten years

maturity. The results are also consistent with the notion that investors are rewarded for

bearing systematic risk. It does not necessarily mean CAPM model holds as there might be

other variable that also explain expected returns. However, it implies that CDS protection

sellers bearing high market risk are rewarded with high average returns.

Table 3.2 also reports unconditional and conditional systematic risk measures for each

quintile portfolio under label “Systematic risk”. Conditional market risk measures: negative

beta and positive beta (β− and β+) estimated from past twelve month data (same as β) are

reported. Negative beta is estimated conditional on market return being less than average

market return while positive beta is estimated conditional on market return greater than

average market return. By construction, unconditional and conditional beta measures are

positively correlated. It means that higher β− or higher β+ must also imply higher uncon-

ditional beta. Note that, from last three columns in Table 3.2, for these portfolios sorted

by β, the spread in β− and β+ are similar to the spread in β. Thus, in next subsection,

to analyze the rewards for downside and upside risk, we apply several different methods to

distinguish rewards from conditional market risk with rewards from unconditional market

risk while taking into account the fact that the risk measures are highly correlated.

3.4.2 Downside Beta and Upside beta

In this subsection, we explore the relationship between conditional market risk measures

and cross-sectional CDS sellers’ returns. We report returns of equal-weighted CDS portfolios

sorted by downside beta and upside beta in Table 3.3.

Panel A of Table 3.3 displays the CDS portfolio returns sorted by downside beta β−. It

shows that for higher β− firms, CDS protection sellers earn higher excess returns. Selling five

year maturity CDS contracts in the quintile with the lowest (highest) β− earns an average

excess return of 0.08% (0.43%) per month. The average difference between quintile portfolio

5 and 1 is 0.35% per month which is statistically significant with t statistic of 2.89. The
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return spread is uniformly positive for CDS contracts with maturity from one year to ten

years and the return spread is increasing as we move from short maturity to long maturity.

These results are consistent with the argument that CDS protection sellers dislike downside

risk and request higher reward for selling protection to firms that covary strongly when the

market goes down. Firms with high β− should carry a premium in order for agents to provide

CDS protection.

There is an alternative explanation to explain the results: agents simply have no specific

emphasis on downside risk versus upside potential. And the positive relation between β−

and CDS sellers’ returns could be a mechanical result caused by construction of β− and

β. Indeed, under label “Systematic risk” in Panel A of Table 3.3, it is shown that high

β− portfolios do have higher β and β+. However, the average β spread between quintile

portfolio 5 and portfolio 1 is 1.13 (from 0.57 to 1.69), smaller than the average β− spread

which is 1.37 (from 0.48 to 1.85). This indicates that the variation in β is not as disperse as

the variation in β− across these quintile portfolios, suggesting downside risk β− may have

independent risk-award relationship that is not subsumed by β.

Panel B of Table 3.3 displays the CDS portfolio returns sorted on upside beta β+. It

reports a positive relationship between β+ and CDS sellers’ returns. For CDS contracts with

five years maturity, the return spread between quintile portfolio 5 and 1 is 0.22% per month.

The return spread is significantly positive with a t statistics of 2.17. However, the magnitude

of the return spread for five year CDS contracts sorted on β+ (0.22%) is smaller than when

sorted on β− (0.35% as shown in Panel A of Table 3.3) and when sorted on β (0.36% as

shown in Table 3.2).

Theory suggests that firms with rising stock prices when market goes up should be more

attractive to investors and thus earn low returns for protection sellers. However, we do not

observe a discount for firms that have high β+. Rather, firms with high β+ earn higher

returns for CDS protection sellers. This pattern seems to be inconsistent with agents having

a preference for upside potential. To explain this seemingly contradicting result, note that
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sorting on the upside beta measure β+ alone does not control for the effects of unconditional

β or of β−. Thus, the positive relationship between β+ and CDS returns shown in Panel

B of Table 3.3 may be a result of increasing β or β− from quintile portfolio 1 to 5. It is

reported in last three columns in Panel B of Table 3.3 that the spread in β is 1.11 and the

spread in β− is 0.94. It is confirmed that higher CAPM beta and downside beta both imply

higher CDS sellers’ returns. Hence, we study the conditional risk measures while controlling

for the confounding effects in the next subsection.

3.4.3 Pure Downside Beta and Upside beta

To control for unconditional systematic risk, we examine the reward for downside (upside)

risk in CDS markets by first sorting firms by relative downside (upside) beta (β−(β+)− β)

and asymmetric beta (β− − β+). Relative downside (upside) beta is computed to focus on

the incremental effect of downside (upside) beta over the regular CAPM beta. Asymmetric

beta describes how asymmetric a firm’s return sensitivity to market return will be depending

on whether the market is performing bad or good. These measures will alleviate the concern

of the potential impact of unconditional risk on conditional risk.

Panel A of Table 3.4 shows that the relation between relative downside beta and CDS

sellers’ returns is not significant for one year to seven years CDS contracts. For ten years

CDS contract, there is a positive return spread of 0.17% significant at 10% level. It is also

shown that when moving from quintile portfolio 1 to quintile portfolio 5, there is a U-shape

pattern for average CDS excess returns for each maturity group. This U-shape pattern for

CDS returns is aligned well with the pattern for β across these portfolios sorted on relative

downside beta. Thus, by sorting on relative downside beta, we have not completely ruled

out the impact of β on CDS returns.

Interestingly, quintile portfolio 1 (with lowest relative downside beta) has average β of

1.31 which is larger than the average β (1.11) for quintile portfolio 5 (with highest relative

downside beta). If β is the only risk that explains the cross-section of CDS returns, we should
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expect higher average returns for quintile portfolio 1. Yet, though insignificantly, the average

CDS returns of quintile portfolio 1 is slightly smaller than those of quintile portfolio 5. It

indicates that higher downside beta has an impact on CDS returns that is not subsumed by

CAPM beta. We will apply another method to fully disentangle downside beta from regular

CAPM beta later in this subsection.

In panel B of Table 3.4, we examine the effects of β+ while controlling for regular beta by

sorting firms according to relative upside beta (β+− β). We find that higher relative upside

beta firms have lower CDS returns. The return spread between quintile portfolio 5 and 1

are ranging from −0.27% to −0.15% for five different maturities which are all significantly

negative. This pattern of low CDS returns to high relative upside beta firms is consistent

with agents willing to accept a discount for selling protection for firms with high upside

potential. Though we have not fully rule out the impact of regular beta, the difference of

average β between quintile portfolio 1 and 5 would actually work against us. Note that

quintile portfolio 5, with highest relative upside beta, also has higher average regular beta

(1.24) than quintile portfolio 1 (1.16). Higher regular beta should be associated with higher

CDS returns for quintile portfolio 5, compared with portfolio 1. However, since quintile

portfolio 5 also has higher average upside beta, lower average CDS returns for this portfolio

are discovered to imply that protection sellers accept a discount of expected return because

of the higher upside potential of these firms.

We also sort firms by asymmetric beta (β−−β+) in panel C of Table 3.4. This measure is

computed to provide an examination of the impact of downside beta relative to upside beta.

In panel C of Table 3.4, we observe an increasing pattern in average CDS sellers’ returns

with increasing asymmetric beta. The return spread between quintile portfolio 5 and 1 is

significantly positive at 1% level and ranges from 0.12% for one year maturity CDS to 0.30%

for ten years maturity CDS. Average β of quintile portfolio 5 is smaller than that of quintile

portfolio 1, thus higher average CDS returns of portfolio 5 indicates that firms covary more
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with market during bad times than good times compensate CDS protection sellers’ with a

larger reward for bearing undesirable risk.

Table 3.4 demonstrates that CDS sellers providing protection for firms that covary

strongly with the market conditional on positive moves accept discounts in rewards. It

also shows some weak evidence that CDS sellers require higher returns to sell protection

for firms with higher relative downside beta. However, sorting on relative downside (up-

side) beta does not fully eliminate the impact of regular CAPM beta, which we now provide

further analysis.

To disentangle downside (upside) beta from regular CAPM beta, we extract out the

projection of downside (upside) beta on CAPM beta and call it fitted downside (upside)

beta (component of conditional market beta that is explained by unconditional market risk).

Then the residual downside (upside) beta that is not explained by unconditional market beta

will now be orthogonal to CAPM beta. This residual downside (upside) beta measure will

provide information about conditional risk that is completely unrelated to unconditional

market risk.

We first run time series regression of β− on β for each firm individually,

β− = c0 + c1β + e. (3.13)

Then we obtain fitted downside beta β̂− = ĉ0 + ĉ1β and residual downside beta ê(β−) =

β− − β̂− from downside beta, beta and estimation results from regression. Fitted upside

beta and residual upside beta will be calculated similarly.

Table 3.5 reports the average CDS returns for portfolios sorted on fitted downside beta

and residual downside beta. Panel A of Table 3.5 confirms the positive relationship between

CAPM beta and CDS returns. Quintile portfolio 5 have highest fitted downside beta (project

of β− on β) and significantly higher CDS returns than quintile portfolio 1. Panel B of Table

3.5 shows the impact of pure downside beta by sorting firms on residual downside beta.
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We can confirm that the risk-return pattern will not be influenced by regular beta since

quintile portfolio 1 and 5 have very close average beta (1.19 and 1.18). A significant positive

relationship between residual downside beta and CDS returns is observed for CDS contracts

with maturity from three years to ten years. The return spread between quintile portfolio

5 and 1 increases from 0.04% for CDS with one year maturity to 0.15% for CDS with ten

years maturity. Hence, it is confirmed that exposure to pure downside beta risk implies

high returns for CDS protection sellers, consistent with agents requiring higher rewards for

bearing higher downside risk. Besides, the positive relationship between downside beta and

CDS returns are stronger for longer maturity CDS contracts.

The results sorted on fitted upside beta and residual upside beta are reported in Table

3.6. Panel A of Table 3.6 presents the average CDS returns of portfolios sorted on fitted

upside beta. It explains the seemingly puzzling evidence of positive relationship between

upside beta and CDS returns previously shown in panel B of Table 3.3. β+ and β are highly

correlated and sorting on the projection of β+ on β reflects the CAPM suggested pattern

between systematic risk and return. Thus, sorting on β+ alone will not rule out the effects

of β. To illustrate the impact of pure upside beta on CDS returns, we turn to panel B

of Table 3.6 where firms are sorted on residual upside beta. The return spreads between

quintile portfolio 5 and 1 are significantly negative across all contract maturities, ranging

from −0.11% to −0.22% as we move from one year maturity to ten years maturity. It is

consistent with protection sellers willing to accept a discount of return for firms with strong

upside potential. The evidence shown above is also consistent with the results displayed

in panel B of Table 3.4. However, note that β does not show much variation across each

portfolio sorted on residual upside beta. By examining this pure upside beta, we identify a

clear pattern between upside beta and CDS returns that is consistent with theory.

In summary, this subsection demonstrates that downside risk is rewarded in the cross-

section of CDS returns. This effect is not mechanically driven by CAPM beta since pure

downside risk is priced too. On the other hand, CDS protection sellers accept a discount
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to sell CDS for firms that covary strongly with the market conditional on positive moves of

the market. The pattern between downside (upside) beta and CDS returns is robust while

controlling for variation in CAPM beta. However, these sorting results does not control for

other firm characteristics that may potentially affect CDS returns. We consider these firm

control variables in the next subsection.

3.4.4 Fama-MacBeth Regressions

Section 3.2.2 describes the relation between CDS returns and CAPM beta and shows that

the sensitivity of CDS returns to the stock returns hE is also an important factor determining

the CDS returns apart from beta. In Merton model, hE is determined by leverage, maturity

and asset volatility. Besides, size and book-to-market have been found to be critical in

explaining equity returns. Thus, in this subsection, we run Fama-Macbeth regressions of

excess returns on (un)conditional betas and firm characteristics including leverage, asset

volatility, size, btm and credit ratings.

Table 3.7 reports the results of Fama-Macbeth regression of one year maturity CDS

sellers’ returns over t to t + 1 on various sets of (un)conditional risk measures and firm

characteristics that are available to investors at time t. Newey-West t-statistics are reported

in brackets to determine the statistical significance of the average intercept and slope coeffi-

cients. Each independent variable is standardized to have straightforward interpretation of

the estimates.

Consistent with single-sorting results reported in Section 3.4.1, Model 1 in Table 3.7

confirms that CAPM beta carries a significantly positive coefficient. Model 2 and 3 confirm

that both downside beta (β−) and upside beta (β+) also have significant positive coefficients

when they are included separately as the single regressor. Upside beta has a seemingly

contradicting sign of coefficient compared with theory. As mentioned earlier, the reason

is that beta, downside beta, and upside beta are all positively correlated and the relation

between upside beta and CDS returns may be biased if not controlling for other risk measures.
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In model 4 where both β− and β+ are included as regressors, we find that only downside risk

is priced with a positive sign. The coefficient on downside beta is 0.176, highly significant

(t-statistics of 2.96), consistent with portfolio sorts on downside beta in Section 3.4.2. The

coefficient on upside beta is negative (-0.015) with insignificant t-statistic (-0.64). These

results support the hypothesis that CDS protection sellers demand positive premium on β−,

but the evidence for sellers accepting discount on β+ is weak. Model 5 includes both β and

pure downside beta ê(β−). β still has a significantly positive coefficient while pure downside

beta has a positive coefficient (0.018) which is insignificant. Model 6 includes β and pure

upside beta ê(β+). In this model, pure upside beta is found to carry a negative risk premium

with t statistic of -2.35. Model 7 to model 8 confirms model 5 and model 6 by controlling for

firm characteristics that might be related to CDS returns. Higher numerical rating number

means worse credit rating in the data sample. Thus, it is natural that this measure has a

positive coefficient (about 0.077) meaning CDS sellers providing protection for worse credit

rating firms should be rewarded with higher returns.

Table 3.8 and table 3.9 display similar Fama-Macbeth regression results for CDS contracts

with five years maturity and ten years maturity respectively. β− is priced in the cross-section

while β+ has insignificant negative coefficient when both of them are included as regressors

in model 4. Note that pure downside risk measure ê(β−) has significant positive coefficient

in model 5 and model 7 for both CDS contracts with maturity of five years and ten years.

The consistent results from the regressions in Table 3.7 to Table 3.9 suggest that rewards

in CDS markets for (pure) downside beta is always positive and statistically significant.

CDS sellers providing protection to high (pure) downside firms are compensated by higher

average returns, and this result is robust to controlling for other firm characteristics and

conditional risk characteristics. The pattern between pure downside beta and CDS returns

are stronger for longer maturity CDS contracts. On the other hand, the reward or discount

for upside beta is found to be insignificant in the cross-section once we control for other

conditional risk measures and firm characteristics. We expect the coefficient of β+ to be
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negative once controlling for β−. However, in empirical results, it sometimes flips sign and

is always insignificantly negative when we control other risk attributes. Overall, aversion to

market risk and downside risk is priced in CDS markets more strongly, and more robustly,

in the cross-section than investors’ attraction to upside potential. This is in accordance with

the fact that CDS contracts are more valuable during market downturns and CDS investors

mainly care about downside market risk.

3.5 Conclusion

Theory suggests that systematic risk should be priced in the cross-section of asset returns.

Besides, previous literature suggests a role for downside risk based on rational preferences.

If investors treat a downside loss differently from an upside gain of equal magnitude, there

should be a significantly positive link between downside risk and expected CDS returns

required by protection sellers. This pattern is expected to be discovered in the CDS market

as these contracts provide valuable protection especially when the market is going down.

There have been various earlier studies testing this relation in the equity markets. However,

the evidence is mixed and only a contemporaneous relationship between downside risk and

stock returns is discovered in literature. Our paper contributes to the literature by analyzing

the systematic (downside) risk-expected return relation at the credit market level.

The univariate sorting analysis based on CAPM beta and downside beta find a significant

positive return spread of CDS contracts between high-risk firms and low-risk firms. A closer

look of the results sorted on conditional downside beta calls for more analysis to rule out

the impact of CAPM beta since unconditional and conditional beta measures are correlated.

We use two methods to isolate the impact of downside beta on CDS returns and confirm

that firms with high downside risk are associated with a positive premium required by CDS

protection sellers. The pattern between downside risk and CDS returns are stronger for

longer maturity CDS contracts. We test the robustness of our results by using firm-level

Fama-Macbeth regressions and controlling for other firm characteristics. These regression
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results confirm that higher risk premium is required by investors to provide protection for

firms with higher systematic risk and downside risk.
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Table 3.1 Sample Statistics

This table presents summary statistics of CDS returns and spreads. The sample period is from
January 2001 to December 2015 and observations are at monthly frequency. CDS data are provided
by Markit.

Mean Stdev Min Max

CDS Return (%, 1 yr) 0.1049 1.8174 -52.6563 109.1511
CDS Return (%, 3 yr) 0.1391 2.5470 -55.8476 156.2189
CDS Return (%, 5 yr) 0.1639 3.0161 -51.2839 253.3413
CDS Return (%, 7 yr) 0.1725 3.4418 -51.1963 348.1378
CDS Return (%, 10 yr) 0.1789 3.8171 -65.1980 387.4469
CDS Spread (1 yr) 0.0150 0.0799 0.0001 7.5031
CDS Spread (3 yr) 0.0178 0.0645 0.0002 6.5620
CDS Spread (5 yr) 0.0204 0.0553 0.0001 3.0763
CDS Spread (7 yr) 0.0213 0.0512 0.0003 3.0455
CDS Spread (10 yr) 0.0219 0.0477 0.0005 2.6723
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Table 3.2 CDS Sellers’ Returns Sorted by CAPM Beta

This table lists the monthly equal-weighted average CDS sellers’ returns and risk characteristics
of the firms sorted by CAPM beta. For each month, we calculate CAPM beta (β) using daily
continuously compounded returns over past 12 months. CDS contracts are ranked into quintiles
(1 − 5) by β and form equal-weighted portfolios each month. The columns under label “CDS
returns (%)” reports the average percentage excess returns for protection sellers over one month.
CDS contracts with maturity of 1 year, 3 years, 5 years, 7 years, and 10 years are included in
table. The columns under label “Systematic risk” reports the CAPM beta (β), downside beta
(β−) and upside beta (β+) which are estimated from past 12 months. The row labeled “High-
Low” presents the difference between the CDS returns or systematic risk between portfolio 5 and
portfolio 1. The entry labeled “t-stat” in square brackets is the t-statistic computed using Newey-
West heteroskedastic-robust standard errors with 12 lags for the High-Low difference. The sample
period is from January 2001 to December 2015 and observations are at monthly frequency.

CDS returns (%) Systematic risk

1 yr 3 yr 5 yr 7 yr 10 yr β β− β+

1 Low β 0.03 0.04 0.06 0.06 0.05 0.50 0.55 0.46
2 0.06 0.08 0.09 0.10 0.11 0.79 0.83 0.75
3 0.07 0.10 0.13 0.13 0.14 1.01 1.03 0.99
4 0.12 0.16 0.19 0.21 0.21 1.26 1.26 1.25
5 High β 0.27 0.35 0.42 0.45 0.48 1.78 1.76 1.77

High-Low 0.25*** 0.31** 0.36*** 0.39*** 0.42*** 1.27*** 1.21*** 1.30***
t-stat [3.06] [2.56] [2.64] [2.65] [2.75] [48.11] [50.19] [29.09]
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Table 3.3 CDS Sellers’ Returns Sorted by Downside/Upside Beta

This table lists the monthly equal-weighted average CDS sellers’ returns and risk characteristics
of the firms sorted by downside beta and upside beta. For each month, we calculate downside
beta (β−) and upside beta (β+) using daily continuously compounded returns over past 12 months.
In Panel A, CDS contracts are ranked into quintiles (1 − 5) by downside beta: β− and form
equal-weighted portfolios each month. In Panel B, CDS contracts are sorted by upside beta: β+.
The columns under label “CDS returns (%)” reports the average percentage excess returns for
protection sellers over one month. CDS contracts with maturity of 1 year, 3 years, 5 years, 7 years,
and 10 years are included in table. The columns under label “Systematic risk” reports the CAPM
beta (β), downside beta (β−) and upside beta (β+) which are estimated from past 12 months.
The row labeled “High-Low” presents the difference between the CDS returns or systematic risk
between portfolio 5 and portfolio 1. The entry labeled “t-stat” in square brackets is the t-statistic
computed using Newey-West heteroskedastic-robust standard errors with 12 lags for the High-Low
difference. The sample period is from January 2001 to December 2015 and observations are at
monthly frequency.

CDS returns (%) Systematic risk

1 yr 3 yr 5 yr 7 yr 10 yr β β− β+

Panel A: Sorted by downside beta: β−

1 Low β− 0.05 0.05 0.08 0.08 0.05 0.57 0.48 0.57
2 0.05 0.06 0.07 0.07 0.06 0.82 0.79 0.81
3 0.07 0.10 0.13 0.14 0.17 1.02 1.02 1.01
4 0.10 0.14 0.18 0.18 0.20 1.25 1.29 1.22
5 High β− 0.28 0.38 0.43 0.48 0.50 1.69 1.85 1.62

High-Low 0.23*** 0.33*** 0.35*** 0.40*** 0.46*** 1.13*** 1.37*** 1.05***
t-stat (3.48) (3.07) (2.89) (2.95) (3.23) (37.65) (52.39) (23.33)

Panel B: Sorted by upside beta: β+

1 Low β+ 0.08 0.11 0.12 0.14 0.16 0.59 0.69 0.37
2 0.06 0.09 0.11 0.11 0.11 0.81 0.87 0.72
3 0.07 0.12 0.15 0.17 0.15 1.02 1.04 0.99
4 0.11 0.14 0.17 0.18 0.19 1.24 1.23 1.28
5 High β+ 0.22 0.28 0.34 0.37 0.39 1.70 1.63 1.87

High-Low 0.14** 0.17** 0.22** 0.22** 0.23* 1.11*** 0.94*** 1.51***
t-stat (2.60) (2.08) (2.17) (2.14) (1.97) (31.89) (29.42) (40.94)
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Table 3.4 CDS Sellers’ Returns Sorted by Relative Downside/Upside Beta

This table lists the monthly equal-weighted average CDS sellers’ returns and risk characteristics of

the firms sorted by relative betas. For each month, we calculate CAPM beta (β), downside beta

(β−) and upside beta (β+) using daily continuously compounded returns over past 12 months. In

Panel A, CDS contracts are ranked into quintiles (1 − 5) by relative downside beta: β− − β and

form equal-weighted portfolios each month. In Panel B, CDS contracts are sorted by relative upside

beta: β+ − β and in Panel C, they are sorted by asymmetric beta: β− − β+. The sample period is

from January 2001 to December 2015 and observations are at monthly frequency.

CDS returns (%) Systematic risk

1 yr 3 yr 5 yr 7 yr 10 yr β β− β+

Panel A: Sorted by relative downside beta: β− − β
1 Low β− − β 0.17 0.20 0.26 0.27 0.23 1.31 1.00 1.40
2 0.07 0.10 0.10 0.09 0.10 1.05 0.96 1.07
3 0.06 0.09 0.10 0.11 0.11 0.97 0.98 0.95
4 0.08 0.10 0.12 0.14 0.16 0.95 1.07 0.89
5 High β− − β 0.18 0.27 0.31 0.37 0.41 1.11 1.47 0.95

High-Low 0.01 0.08 0.05 0.10 0.17* -0.21*** 0.47*** -0.45***
t-stat (0.11) (1.11) (0.59) (1.18) (1.95) (-5.40) (8.66) (-10.24)

Panel B: Sorted by relative upside beta: β+ − β
1 Low β+ − β 0.25 0.34 0.39 0.44 0.42 1.16 1.29 0.75
2 0.10 0.13 0.15 0.15 0.20 0.99 1.05 0.86
3 0.05 0.08 0.10 0.09 0.08 0.97 0.99 0.96
4 0.06 0.08 0.10 0.12 0.13 1.01 1.00 1.12
5 High β+ − β 0.10 0.12 0.16 0.18 0.18 1.24 1.14 1.57

High-Low -0.15*** -0.23*** -0.23*** -0.27*** -0.24** 0.08* -0.15*** 0.81***
t-stat (-2.81) (-3.10) (-3.06) (-3.02) (-2.49) (1.67) (-3.78) (14.85)

Panel C: Sorted by asymmetric beta: β− − β+

1 Low β− − β+ 0.11 0.11 0.16 0.15 0.13 1.28 1.03 1.55
2 0.07 0.10 0.12 0.12 0.11 1.04 0.97 1.12
3 0.07 0.11 0.11 0.15 0.16 0.96 0.98 0.95
4 0.08 0.13 0.16 0.17 0.19 0.96 1.07 0.85
5 High β− − β+ 0.23 0.32 0.35 0.41 0.43 1.14 1.43 0.79

High-Low 0.12*** 0.20*** 0.19*** 0.25*** 0.30*** -0.14*** 0.40*** -0.76***
t-stat (3.75) (3.93) (3.22) (3.45) (3.93) (-3.43) (8.37) (-16.41)
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Table 3.5 CDS Sellers’ Returns Sorted by Fitted/Residual Downside Beta

This table lists the monthly equal-weighted average CDS sellers’ returns and risk characteristics of
the firms sorted by fitted and residual downside beta. For each month, we calculate CAPM beta
(β), downside beta (β−) and upside beta (β+) with respect to the market of all stocks using daily
continuously compounded returns over past 12 months. Then we run time series regression of β− on
β for each firm to obtain fitted downside beta β̂− (projection of β− on β) and residual downside beta
ê(β−) (part of β− orthogonal to β). In Panel A, CDS contracts are ranked into quintiles (1− 5) by
fitted downside beta and form equal-weighted portfolios each month. In Panel B, CDS contracts
are sorted by residual downside beta. The columns under label “CDS returns (%)” reports the
average percentage excess returns for protection sellers over next one month. CDS contracts with
maturity of 1 year, 3 years, 5 years, 7 years and 10 years are included in table. The columns under
label “Systematic risk” reports the CAPM beta (β), downside beta (β−) and upside beta (β+)
which are estimated from past 12 months. The row labeled “High-Low” presents the difference
between the CDS returns or systematic risk between portfolio 5 and portfolio 1. The entry labeled
“t-stat” in square brackets is the t-statistic computed using Newey-West heteroskedastic-robust
standard errors with 12 lags for the High-Low difference. The sample period is from January 2001
to December 2015 and observations are at monthly frequency.

CDS returns (%) Systematic risk

1 yr 3 yr 5 yr 7 yr 10 yr β β− β+

Panel A: Sorted by fitted downside beta (projection on β): β̂− = ĉ0 + ĉ1β

1 Low β̂− 0.03 0.07 0.08 0.09 0.07 0.53 0.54 0.50
2 0.05 0.07 0.09 0.10 0.08 0.80 0.83 0.78
3 0.07 0.11 0.15 0.15 0.19 1.02 1.04 1.01
4 0.11 0.15 0.19 0.20 0.21 1.26 1.27 1.25

5 High β̂− 0.27 0.38 0.43 0.45 0.48 1.75 1.78 1.73

High-Low 0.24*** 0.32*** 0.35*** 0.36** 0.41*** 1.23*** 1.23*** 1.23***
t-stat (3.31) (2.78) (2.65) (2.51) (2.72) (60.03) (64.87) (36.5)

Panel B: Sorted by residual downside beta: ê(β−) = β− − β̂−

1 Low ê(β−) 0.15 0.21 0.24 0.24 0.24 1.19 0.93 1.24
2 0.07 0.10 0.13 0.11 0.12 1.01 0.93 1.03
3 0.07 0.10 0.13 0.15 0.14 0.98 0.99 0.97
4 0.07 0.11 0.14 0.15 0.17 1.00 1.11 0.96
5 High ê(β−) 0.19 0.27 0.32 0.34 0.39 1.18 1.49 1.05

High-Low 0.04 0.07* 0.08* 0.10** 0.15*** -0.01 0.56*** -0.20***
t-stat (1.38) (1.77) (1.67) (2.11) (2.76) (-0.14) (17.48) (-7.22)
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Table 3.6 CDS Sellers’ Returns Sorted by Fitted/Residual Upside Beta

This table lists the monthly equal-weighted average CDS sellers’ returns and risk characteristics
of the firms sorted by fitted and residual upside beta. For each month, we calculate CAPM beta
(β), downside beta (β−) and upside beta (β+) with respect to the market of all stocks using daily
continuously compounded returns over past 12 months. Then we run time series regression of β+

on β for each firm to obtain fitted upside beta ˆbeta+ (projection of β+ on β) and residual upside
beta ê(β+) (part of β+ orthogonal to β). In Panel A, CDS contracts are ranked into quintiles
(1 − 5) by fitted upside beta and form equal-weighted portfolios each month. In Panel B, CDS
contracts are sorted by residual upside beta. The columns under label “CDS returns (%)” reports
the average percentage excess returns for protection sellers over next one month. CDS contracts
with maturity of 1 year, 3 years, 5 years, 7 years and 10 years are included in table. The columns
under label “Systematic risk” reports the CAPM beta (β), downside beta (β−) and upside beta
(β+) which are estimated from past 12 months. The row labeled “High-Low” presents the difference
between the CDS returns or systematic risk between portfolio 5 and portfolio 1. The entry labeled
“t-stat” in square brackets is the t-statistic computed using Newey-West heteroskedastic-robust
standard errors with 12 lags for the High-Low difference. The sample period is from January 2001
to December 2015 and observations are at monthly frequency.

CDS returns (%) Systematic risk

1 yr 3 yr 5 yr 7 yr 10 yr β β− β+

Panel A: Sorted by fitted upside beta (projection on β): β̂+ = ĉ0 + ĉ1β

1 Low β̂+ 0.05 0.07 0.09 0.09 0.11 0.53 0.59 0.44
2 0.05 0.09 0.12 0.14 0.12 0.80 0.86 0.75
3 0.07 0.10 0.13 0.13 0.12 1.02 1.03 1.00
4 0.13 0.19 0.23 0.24 0.26 1.26 1.26 1.27

5 High β̂+ 0.23 0.33 0.38 0.39 0.43 1.75 1.71 1.80

High-Low 0.19*** 0.26*** 0.29*** 0.29*** 0.32** 1.22*** 1.12*** 1.35***
t-stat (3.36) (3.05) (2.85) (2.65) (2.54) (58.04) (55.52) (41.87)

Panel B: Sorted by residual upside beta: ê(β+) = β+ − β̂+

1 Low ê(β+) 0.22 0.31 0.36 0.40 0.41 1.18 1.29 0.83
2 0.09 0.13 0.15 0.13 0.17 1.01 1.05 0.90
3 0.06 0.09 0.11 0.12 0.14 0.97 0.99 0.96
4 0.07 0.10 0.12 0.13 0.14 1.01 1.00 1.09
5 High ê(β+) 0.11 0.17 0.20 0.22 0.20 1.20 1.13 1.47

High-Low -0.11** -0.14** -0.17*** -0.18** -0.22** 0.02 -0.16*** 0.64***
t-stat (-2.58) (-2.58) (-2.76) (-2.45) (-2.57) (0.75) (-6.67) (17.07)
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Table 3.7 Fama-Macbeth Regressions of Seller’s Returns on One Year CDS Con-
tract

This table displays the results of Fama-Macbeth regression of CDS sellers’ return of one year
maturity contract on systematic risk and firm characteristics. For each month, we calculate CAPM
beta (β), downside beta (β−) and upside beta (β+) with respect to the market of all stocks using
daily continuously compounded returns over past 12 months. Then we run time series regression of
β− on β for each firm to obtain fitted downside beta (projection of β+ on β) and residual downside
beta ê(β+) (part of β+ orthogonal to β). Other control variables in the regression include market
equity (size), book-to-market ratio (btm), leverage (lev), asset volatility (avol), and credit rating
(Rating). The sample period is from January 2001 to December 2015 and observations are at
monthly frequency.

Model 1 2 3 4 5 6 7 8

Intercept -0.107 -0.100 -0.036 -0.097 -0.110 -0.101 -0.264 -0.254
[-2.69] [-2.53] [-1.43] [-2.49] [-2.64] [-2.72] [-2.81] [-2.88]

β 0.174 0.173 0.171 0.113 0.105
[2.98] [2.91] [3.05] [1.95] [1.78]

β− 0.166 0.176
[2.97] [2.96]

β+ 0.111 -0.015
[2.89] [-0.64]

ê(β−) 0.099 0.076
[1.40] [1.27]

ê(β+) -0.113 -0.117
[-2.35] [-2.31]

lev -0.013 -0.017
[-0.66] [-0.82]

avol -3.441 -3.563
[-1.88] [-1.81]

size -0.005 -0.005
[-0.93] [-0.95]

btm 0.002 0.006
[0.18] [0.47]

Rating 0.077 0.078
[3.76] [3.87]

AdjR2 0.040 0.045 0.026 0.057 0.053 0.053 0.122 0.124
[8.17] [6.19] [8.01] [7.56] [8.92] [10.25] [13.93] [15.05]
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Table 3.8 Fama-Macbeth Regressions of Seller’s Returns on Five Year CDS Con-
tract

This table displays the results of Fama-Macbeth regression of CDS sellers’ return of five year
maturity contract on systematic risk and firm characteristics. For each month, we calculate CAPM
beta (β), downside beta (β−) and upside beta (β+) with respect to the market of all stocks using
daily continuously compounded returns over past 12 months. Then we run time series regression of
β− on β for each firm to obtain fitted downside beta (projection of β+ on β) and residual downside
beta ê(β+) (part of β+ orthogonal to β). Other control variables in the regression include market
equity (size), book-to-market ratio (btm), leverage (lev), asset volatility (avol), and credit rating
(Rating). The sample period is from January 2001 to December 2015 and observations are at
monthly frequency.

Model 1 2 3 4 5 6 7 8

Intercept -0.132 -0.138 -0.028 -0.125 -0.135 -0.125 -0.362 -0.364
[-2.39] [-2.24] [-0.59] [-2.09] [-2.34] [-2.39] [-1.71] [-1.75]

β 0.246 0.242 0.242 0.193 0.189
[2.57] [2.47] [2.63] [2.28] [2.29]

β− 0.249 0.284
[2.62] [2.75]

β+ 0.156 -0.051
[2.46] [-1.26]

ê(β−) 0.197 0.177
[1.99] [2.04]

ê(β+) -0.174 -0.158
[-2.87] [-2.80]

lev 0.001 -0.004
[0.03] [-0.13]

avol -8.468 -8.988
[-3.09] [-3.18]

size -0.012 -0.011
[-0.89] [-0.83]

btm -0.039 -0.036
[-2.20] [-1.94]

Rating 0.122 0.124
[3.15] [3.19]

AdjR2 0.038 0.039 0.024 0.050 0.046 0.047 0.117 0.119
[11.17] [7.61] [8.02] [9.31] [10.99] [13.14] [18.45] [20.00]
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Table 3.9 Fama-Macbeth Regressions of Seller’s Returns on Ten Year CDS Con-
tract

This table displays the results of Fama-Macbeth regression of CDS sellers’ return of ten years
maturity contract on systematic risk and firm characteristics. For each month, we calculate CAPM
beta (β), downside beta (β−) and upside beta (β+) with respect to the market of all stocks using
daily continuously compounded returns over past 12 months. Then we run time series regression of
β− on β for each firm to obtain fitted downside beta (projection of β+ on β) and residual downside
beta ê(β+) (part of β+ orthogonal to β). Other control variables in the regression include market
equity (size), book-to-market ratio (btm), leverage (lev), asset volatility (avol), and credit rating
(Rating). The sample period is from January 2001 to December 2015 and observations are at
monthly frequency.

Model 1 2 3 4 5 6 7 8

Intercept -0.181 -0.195 -0.048 -0.176 -0.183 -0.173 -0.554 -0.536
[-2.40] [-2.43] [-0.62] [-2.22] [-2.37] [-2.40] [-2.05] [-1.99]

β 0.311 0.305 0.306 0.229 0.223
[2.64] [2.56] [2.70] [2.26] [2.26]

β− 0.321 0.388
[2.83] [3.26]

β+ 0.194 -0.088
[2.38] [-1.67]

ê(β−) 0.286 0.265
[2.30] [2.33]

ê(β+) -0.248 -0.220
[-2.78] [-2.67]

lev 0.053 0.041
[1.06] [0.80]

avol -7.556 -8.483
[-1.95] [-2.16]

size -0.002 -0.003
[-0.11] [-0.15]

btm -0.065 -0.060
[-2.56] [-2.34]

Rating 0.146 0.146
[3.06] [3.01]

AdjR2 0.035 0.035 0.021 0.044 0.041 0.044 0.104 0.106
[8.64] [6.76] [6.85] [8.23] [8.96] [10.54] [16.67] [17.30]
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