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Abstract

Multiple-pedestrian tracking in unconstrained environments is an important task

that has received considerable attention from the computer vision community in

the past two decades. Accurate multiple-pedestrian tracking can greatly improve

the performance of activity recognition and analysis of high level events through a

surveillance system.

Traditional approaches to pedestrian tracking build a motion prediction model to

track the target. With improvements in object detection methods, recent approaches

replace the motion prediction stage and track targets by selecting among the outputs

of a detector. To incorporate the merit of traditional and recent approaches, we have

developed a novel approach using an ensemble framework that optimally chooses

target tracking results from that of independent trackers and a detector at each

time step. The compound model is designed to select the best candidate scored

by a function integrating detection confidence, appearance affinity, and smoothness

constraints.

To further improve the tracking performance we focus on the design of a novel

motion prediction model. Human interaction behavior is known to play an important

role in human motion. We present a novel tracking approach utilizing human collision

avoidance behavior, which is motivated by the human vision system. The model

predicts human motion based on modeling of perceived information. An attention

map is designed to mimic human reasoning that integrates both spatial and temporal

information. We also develop an enhanced tracker that models human group behavior

using a hierarchical group structures. The groups are identified by a bottom-up social
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group discovery method. The inter- and intra-group structures are modeled as a two-

layer graph and tracking is posed as optimization of the integrated structure.

Finally, we propose another novel tracking method to unify multiple human be-

havior. To investigate the effects of potential multiple social behaviors, we present an

algorithm that decomposes the combined social behaviors into multiple basic inter-

action modes, such as attraction, repulsion, and no interaction. We integrate these

multiple social interaction modes into an interactive Markov Chain Monte Carlo

tracker and demonstrate how the developed method translates into a more informed

motion prediction, resulting in robust tracking performance.
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Chapter 1

Introduction

1.1 Motivation

Multiple-pedestrian tracking in unconstrained environments is an important task

that has received considerable attention from the computer vision community in the

past two decades. A number of approaches that address this problem have been

proposed [75, 73] for its importance in applications related to surveillance, human

activity recognition, and video retrieval. Accurate multiple-pedestrian tracking can

greatly improve the performance of activity recognition and analysis of high level

events through a surveillance system. However, the complexity of human motion

poses several challenges to the accuracy and precision of any tracking system. In

the context of video surveillance, human motion can be thought of as blob motion in

which arms and legs are difficult or unnecessary to localize. At this scale, the study

of human motion predominantly involves cues related to space and environment, and
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we can expect to recover how people move from place to place. Accordingly, the re-

covery of motion pattern of people facilitates a measure of social phenomena among

interacting individuals [30]. Interpersonal distance cues have their basis in the sem-

inal findings that people tend to organize the space around them in four concentric

zones associated with different degrees of intimacy [27]. The spatial organization of

people within these concentric zones is dominated by relationships between inter-

acting individuals [54]. Hence, it is the encoding of social relationships along with

tracking methods that has been most commonly exploited in recent years to model

human motion.

Visual tracking of multiple targets in complex scenes captured by a monocular,

potentially moving, and uncalibrated camera is a very challenging problem due to

measurement noise, cluttered background, uncertainty of the target motion, occlu-

sions, and illumination changes [73]. While traditional methods for tracking have

focused on improving the robustness of motion models and predictive filters, recent

advances in methods for object detection [23, 68, 67] have led to the development of a

number of tracking-by-detection [4, 29, 20, 62, 14, 9, 5, 38] approaches. These meth-

ods try to first apply a learned discriminative model to detect objects in each frame

independently, and then associate detections across frames to identify each object’s

unique spatio-temporal trajectory. However, varying visual properties of the object

of interest often results in tracking drift, imprecise detection, missing detection and

occlusion as shown in Figure 1.1. Hence, the resulting association problem has to be

resolved by inferring between-object interactions using incomplete data sets. Several
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(a) Tracking drift (b) Imprecise detection (c) Missing detection (d) Occlusion

Figure 1.1: Examples of outputs from a tracker (in red box) and a detector (in green
box).

approaches have been proposed to address this problem by optimizing detection as-

signments in the spatio-temporal context [76, 34, 5, 12], while other methods have

focused on achieving the necessary precision by coupling a robust tracker that can

update its predictive model (motion and object attributes) guided by the detection

confidence and discriminative features obtained from multiple cues [14, 20, 74]. The

improved tracking performance reported by these methods indicates that such a com-

bination is desirable. Nonetheless, the positive or negative contribution of the chosen

predictive model and the detector at each time step within the combination term is

not well understood. Further, it is not guaranteed that each term will have an equiv-

alent contribution towards tracking a target and the weighting parameters chosen

empirically could deteriorate the tracking result in previously unobserved scenarios.

1.2 Challenges

1.2.1 Ensemble of Detection and Tracking

Traditional trackers that depend on the appearance model and motion prediction

perform poorly in the presence of abrupt motion changes and cause template drifts.
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The true target gradually shifts away from the tracking template because of the

error in the motion model. In addition, tracking drifts and photometric variations

make it hard to maintain unique identities among targets and cause frequent identity

switches. On the other hand, detection results suffer from long-term occlusion, dy-

namic backgrounds and low-resolution images. Since outputs from either the detector

or the tracker can be sparse and unreliable, one solution to alleviate the problem is

to create an abundant number of potential candidates to increase the probability

of finding a more accurate candidate for the target of interest. For example, visual

tracker sampler [40] samples a large number of trackers from the tracker space dy-

namically to compensate for target variations. Other approaches have also tried to

combine the tracker and detector together [14, 74] but limited the role of the de-

tector so as to assist the tracker as a confidence measurement tool. The benefit of

using outputs from the tracker and detector directly as association candidates for

the tracked target, however, has never been fully exploited.

1.2.2 Visual Perception in Multi-person Tracking

Unlike the traditional motion model, the social behavior model, in essence, treats

human motion as the result of both a person’s intention and their interaction with

environment rather than the outcome of a motion dynamics model alone. This is a

critical aspect of tracking humans and enables incorporation of the basic understand-

ing that human beings invariably will make motion decision based on their intent

and understanding of the environment. Typical social behavior models are built on

constraints over spatial proximity and treat nearby subjects and objects with equal

4



importance. However, a person does not plan his/her movements based on a holistic

understanding of the scene but reasons about it based on the local field of visual

perception [31]. Therefore, we propose building a perception-based motion model

from the first-person perspective. Intuitively, a person does not react to all subjects

in his/her perspective with equal intensity. For example, a person will react strongly

to a person moving faster in their direction as compared to someone moving slower.

In other words, a person moving quickly towards one will take priority in one’s per-

ception and hence in their motion planning. We argue that people’s attention has

two kinds of variations: (1) spatial variations that are related to subjects that are

near or far; and (2) temporal variations that are related to subjects that are moving

fast or slow. An attentive vision based motion model is more realistic and beneficial

for improving multi-person tracking.

1.2.3 Group Structure in Multi-person Tracking

Among various measures of social interaction, social grouping provides an indication

of how humans engage and orient themselves to exhibit a group activity. With regards

to motion behaviors, a social group can be inferred from pedestrian trajectories.

In the case of multiple people in a scene, social groups can be indicated through

relationships within a group and relationships across groups. We can denote the

structure across groups as an intra-group structure and the structure within a group

as an inter-group structure as shown in Fig. 1.2. Social grouping can guide tracking

by assuming that humans in a group will maintain their spatial structure in the

coming moments. The key benefit of taking advantage of social grouping is two

5



(a) Social Group (b) Group Structure

Figure 1.2: Examples of social group and group structures. The red arrow shows an
inter-group structure and the yellow arrow shows an intra-group structure.

fold, one is to handle human occlusions within a group and second is to minimize

the search space for data association. Modeling both inter-group and intra-group

structure can fully exploit these key benefit.

1.2.4 Social Interaction in Multi-person Tracking

The integration of social relationships to address the dynamics of human motion

has its origin in the social force model [33] that applies a fluid flow analogy to the

dynamics of pedestrians. It is primarily a physical model that captures a continuous

phenomena where humans are considered to react to energy potentials caused by

other pedestrians and static obstacles, while trying to keep a desired speed and

motion direction. Recently proposed local motion models such as linear trajectory

avoidance model (LTA) [49] or human motion prediction model [43] demonstrate that

leveraging social relationships can improve tracking performance. The effect of the
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social relationships can take two forms: 1) attraction effects, and 2) repulsion effects.

The attraction and repulsion effect can be characterized as the tendency to move

toward or away from objects. Repulsion effect has been leveraged in most existing

tracking methods, but modeling of both effects of social relationships simultaneously

remains challenging. Modeling motion based on repulsion effects alone excludes

the possibility of people’s intent to meet and only captures the intent of avoiding

collisions. Nevertheless, unconstrained environments would typically involve people

with motion dynamics explained under both repulsion and attraction effects.

1.3 Research Goals

First, we argue that results obtained from the tracker and detector generate redun-

dant association candidates and can complement each other in different scenarios.

For example, a drifting tracking result can be corrected by the detection result (Fig-

ure 1.1(a)) and an imprecise detection result can be replaced by a better tracking

prediction (Figure 1.1(b)). In the case of missed detection (Figure 1.1(c)) and oc-

clusion (Figure 1.1(d)), the prediction power of the tracker may help to maintain

the position and identity of the tracked target. Similarity measurement of appear-

ance model alone is unreliable and the exploration of the interplay among multiple

cues in a tracking environment yields promising results [14, 20]. So we propose a

ensemble framework to optimize the association by selecting outputs of a detector or

a tracker at each time step to increase the overall tracking accuracy and precision.

Instead of using detection and classification results to guide the tracker, we treat
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the tracker and object detector as two independent identities and we keep both their

results as association candidates for the tracked target. In each frame, we select the

best candidate and assign it to the tracked target. The assignment is scored by a

function integrating detection confidence, appearance affinity, and smoothness con-

straints imposed using geometry and motion information. The approach exploits the

discriminative power of the tracker and detector. The weighting factor of each term

used in the score function is discriminatively trained. The method of data mining

for hard negative examples [23] is applied to handle a very large set of artificially

generated negative samples.

Secondly, we define human motion as a direct consequence of human attentive

vision system. The problem is then transformed into a human attentive vision model-

ing problem, which operates in a virtual simulation world that has the same physical

world coordinates as the real world. We simulate the virtual vision and get the first-

person perspective image. Such transformation facilitates intuitive analysis of human

perception and reaction to subjects in the environment and induces a more realistic

motion model. Then we propose an attentive vision model that approximates the

spatial and temporal variance of human attention. The combined attention map

enables motion path prediction of a person without explicit knowledge of other per-

son’s motion. Our method identifies regions of high interest from subject’s attention

map that guides the estimation of subject’s next movement and serves as a novel

feature in a person tracking framework. The attention feature is integrated into a

tracking-by-detection framework and improves the tracking performance.

Furthermore, most tracking systems with social grouping have overlooked the
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Figure 1.3: Depiction of the process flow.

structure across groups while the individual-group relation or the inter-group struc-

ture has been exploited. Current systems account for the inter-group structure as

a important constraint to refine the target search during tracking. However, intra-

group structure may change in a dramatically different manner from inter-group

structure and could provide rich information to further improve tracking. For in-

stance, the structure for individuals in the same group may stay unchanged or change

minimally while exhibiting slow movements or in stationary states. On the other

hand, the structure between groups may change significantly if groups are moving

in different directions. To fully leverage the social grouping context, inter-group

and intra-group structures should be modeled and updated in a more integrated ap-

proach. We present an approach to do so by extending the model of Zhang et al.

[77] and show that it improves multiple person tracking.

Last but not least, the intent of pedestrians produces different social relationships

in which the intent of avoidance is explained by the repulsion effect and the intent

of approach is explained by the attraction effect. The intent varies over time, thus
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motion prediction of corresponding trackers should be adjusted dynamically depend-

ing on the current interaction environment. One main limitation of current work is

that the motion dynamics of a target is modeled using a fixed motion model, typi-

cally a first-order approximation. Thus, it fails to model the complex motion that

is affected by elaborate pedestrians’ intent and corresponding interactions. Our ap-

proach focuses on how to incorporate the temporally varying pedestrian interaction

into a dynamic motion model without explicit knowledge of local social relation-

ships. Although the content of interaction is unknown, the intent of pedestrians can

be assumed to belong to a finite set which combines the intent of avoidance and

approach. The finite set of intent generates a finite set of interactions. We propose

to decompose complex pedestrian interaction into a finite set of interactions, where

the decomposition is motivated by the work of Kwon and Lee [39]. With the de-

composition of complex pedestrian interactions, we present a visual tracker based on

a pedestrian dynamic model that combines both the intent driven terms of avoid-

ance and approach. The main idea of our method is illustrated in Fig. 1.3. Local

interaction modeling guides the tracking result. Conversely, the tracking output val-

idates the content of social interactions. Consider a simple scene consisting of two

pedestrians. We model the local interaction between them under the intent of either

avoidance or approach. Based on the modeling, our approach predicts two possible

motions for each pedestrian. Then it searches the best tracking result by sampling

pedestrians’ state space. On the other hand, the best tracking result validates the

intent under which local interaction effects contribute more accurately to prediction

using a linear search strategy.
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1.4 Dissertation outline

The organization of the remainder of this dissertation is as follows. We begin in

Chapter 2 by presenting a literature review of existing approaches to multi-person

tracking. In Chapter 3, we present the ensemble framework for optimal selection.

Chapter 4 proposes a visual perception modeling method for multi-person tracking.

Hierarchical group structures model us explained in Chapter 5. Chapter 6 describes

the social interaction decomposition strategy and the compound social interaction

based tracker. Finally, the last chapter summarizes the dissertation highlights and

its contributions with a discussion on future work.
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Chapter 2

Related Work

2.1 Multi-person Tracking

Multi-person tracking is a fundamental problem for many computer vision tasks, such

as video surveillance and activity recognition. Various approaches have been pro-

posed to address this problem [71]. Previous tracking algorithms mainly exploit two

aspects including coping with targets’ appearance variance and modeling complex

targets’ motion. To account for appearance variation of the target caused by change

of illumination, deformation and pose, a large amount of work has been proposed

[79, 2, 28, 55, 45, 8] and these methods perform well and get good results. However,

the dynamics of target and interaction between targets is much less explored. The

state space of targets is affected by motion of target and interaction of targets. While

a dynamic model is used mainly to reduce the search space of state space, it affects

the tracking results especially when multiple targets undergo complex interacting
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motion. The early tracking algorithms adopt constant velocity model or acceleration

model, such as [50] which leverages second-order auto-regressive dynamics. Most

recent tracking algorithms incorporate random walk model [55, 45] which models the

targets’ dynamics as Brownian motion. Recently, various approaches that account

for interaction among people to improve visual tracking have been developed. Motion

behaviors are distinctly encoded dependent on the tracking environment, primarily

differentiated in terms of densely crowded scenes and more informal interacting en-

vironments. Social behavior in densely crowded scenes is dominated by the overall

motion of all individuals in the scene while informal interacting environments allow

for more locally complex dynamics. In the following, we mainly focus on recent work

in tracking by detection and sampling based trackers.

2.1.1 Tracking by Detection

Building on the success of state-of-the-art object detection methods, object tracking

appears to be “easier” to achieve if best matching detection targets can be transi-

tively linked. However, due to the numerous false positives and missed targets in

detection results, local data association based on affinity measures between contigu-

ous detections is hard to achieve, hence limiting the ability to find a unique trajectory

for each tracked target without drifting [69, 29]. On the other hand, global data as-

sociation tries to solve the problem by optimizing the linkage problem of multiple

trajectories simultaneously [76, 34, 5]. Brendel et al. [15] used maximum weighted

independent set to converge to a data association optimum. Andriyenko et al. [6]

combined discrete with continuous optimization to solve both data association and
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trajectory estimation. Butt et al. [18] use Lagrangian relaxation to transfer the global

data association to solvable min-cost flow problem. Since global methods tend to

be computationally expensive, they usually start by detecting short tracklets and

iteratively associating them into longer tracks. Leibe et al. [41] propose to couple

the output of detector and trajectory estimation, but trajectories ultimately rely on

detections. To overcome the difficulties faced by the global association approaches,

Breitenstein et al. [14] proposed to deal with the detection uncertainty in a particle

filtering framework in which unreliable detection information is complemented by

the prediction power of the tracker. In order to increase the association confidence, a

boosted classifier is trained online to assess the similarity of tracker-detection pairs.

Independent from the detector’s output, the classifier term improves the robustness

of the tracking result. This coupling framework has also been applied to challenging

sports videos [74], which uses a vote-based confidence map to localize people, and

the motion model is estimated by the optical flow.

2.1.2 Sampling-based Trackers

The interaction among multiple targets contributes to the complexity of state space.

Particle filters based tracking methods perform well in handling non-Gaussianity and

multi-modality of the distribution of targets’ state [35]. Previous works extended the

particle filters framework for multiple targets by either leveraging multiple indepen-

dent trackers [57] or increasing the joint state space to include multiple targets [53].

The first approach is computationally tractable but can not handle interacting tar-

gets. In the second approach, the complexity of computation expands exponentially
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with the number of targets since the joint state space becomes increasing large. To

overcome these problems, Khan et al. [36] and Zhao et al. [78] proposed the Markov

chain Monte Carlo (MCMC) based particle filter tracker which reduces the computa-

tional cost in a high dimensional state space and make sampling-based tracker feasible

for multi-target tracking. Kwon et al. [39] utilize the interactive MCMC (IMCMC)

to sample multiple basic tracker space, which requires a relatively small number of

samples by exchanging information between chains and is capable of solving combi-

natorial problem. This dissertation also leverages the IMCMC based particle filter

tracking framework to search the best targets’ states. In the real-world environ-

ment, a fixed number of trackers are insufficient to cope with complicated tracking

environment. Thus, our approach changes the total number of basic trackers and

does the sampling in a changing joint target space efficiently. To the best of our

knowledge, a similar algorithm is proposed in [40]. It samples the pre-defined ba-

sic tracker pool and maintains the number of tracker as small as possible while our

tracker changes the number of basic trackers based on the social interaction mode at

each time instant.

2.2 Visual-Attention Modeling

By mimicking the human vision system, computational visual-attention modeling is

investigated by psychologists, microbiologists, and computer scientists. A number

of computational models of attention are proposed and can be categorized based on
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whether they are biological, purely computational, or hybrid [24]. All plausible bio-

logical methods are directly or indirectly inspired by cognitive concepts. In contrast,

Ma et al. [44] proposed a method based on local contrast for generating saliency

maps that is not based on any biological model. Achanta et al. [1] had incorporated

both biological and computational parts in their method. Our work falls in the area

of purely computational methods. All the aforementioned tracking works treat the

social behavior from surveillance camera view angle instead of understanding social

behavior from subject’s own viewpoint. In this dissertation, we model the target mo-

tion behavior from the first-person view and utilize it for multiple target tracking.

To the best of our knowledge, no previous tracking method has leveraged first-person

perspective.

2.3 Local Behavior Modeling

Khan et al. [36] proposed to model the level of interaction between targets at any

time step according to the percentage of pixel overlap between the bounding boxes

of the corresponding targets. The joint behavior of interacting targets is defined

according to the interaction potentials measured by a graph-based Markov Random

Field (MRF). Specifically, the interaction potential is measured in the log domain,

expressed by means of the Gibbs distribution. The discrete-choice model proposed

by Antonini et al. [7] was targeted for human tracking and assumes that an individual

pedestrian makes a choice from a discrete set of velocity options at each time step.

The options are defined by four elements: a choice set, a set of attributes describing
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the alternatives, a set of socio-economic characteristics describing the decision maker

and a random term ε to capture the correlation structure between alternatives. This

model treats other pedestrians as occupants of a potential path. The position and the

direction of walk contributes to the decision making within the choice set. Building on

the social force model [33], the linear trajectory avoidance (LTA) model [49] accounts

for local repulsion effects among pedestrians to estimate the energy potential and

predict motion paths. The LTA model incorporates the human dynamics attributed

to the behavior where a pedestrian tries to avoid running into other pedestrians while

approaching ones destination. The underlying assumption of LTA model is that each

pedestrian has their own global destination and all the other pedestrians are treated

as moving obstacles. The motion of a pedestrian is predicted by minimization of

an energy functional that accounts for the pedestrians’ position, speed and angle.

Luber et al. [43] extended the use of the local repulsion effect to include physical and

social constraints of the environment. Specifically, the model combined the personal

intention forces and the repulsion social forces of other pedestrians and physical

obstacles to define the total force induced over each pedestrian. The individual

pedestrian motion was then predicted based on the sum of forces inferred through

a closed-form solution. Choi et al. [20] considered both local repulsion effects and

group motion dynamics within a joint prediction model. The group motion dynamics

capture the effect that some people walking close to each other tend to keep walking

together. It models the repulsion effects based on the distance between two targets in

the 3D space. The group motion is modeled based on the motion correlation within

a group while comparing both the similarity of velocities and the distance among
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each other. Qin et al. [52] and Bazzani et al. [10] exploited the social group effect

associated with the tracking performance.

2.4 Open Challenges

Several open challenges for multi-person tracking can be draw from related work:

− The redundancy and diversity between tracking and detection is not leveraged

for robust multi-target tracking. Previous approaches perform tracking by

associating the output of either the detector or basic tracker only.

− To the best of our knowledge, visual perception has never been exploited for

multi-person tracking which can help understand human motion in a realistic

way.

− While the individual-group relation or the inter-group structure has been ex-

ploited, modeling both inter-group and intra-group structures has never been

done.

− None of the previous models incorporate local-attraction effects which is one

main cause of abrupt motion change into local motion prediction. Broadly

speaking, all models based on the use of local repulsion effects only [49, 43, 20]

are applicable in environments where pedestrians are moving in a crowd and

do not deviate from their global destination. In contrast, the modeling of more

complex local interactions among people exhibited through both local repulsion

and attraction effects has not been adequately explored.
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Chapter 3

An Ensemble Framework for

Optimal Selection

3.1 System Overview

Our system is initialized with a human detector and several independent human

trackers. Each independent tracker deals with one target. As illustrated in Fig-

ure 3.1, after collecting redundant candidates from outputs of both the detector and

independent trackers in testing stage, the hierarchical data association step tries to

optimize the association between tracked targets and candidates. We reduce the

association problem to an assignment problem. To manage time complexity, we

adopt a greedy-search based association framework using the score matrix between

candidates and targets as detailed in Section 3.2. The score is computed by the

dot product between a set of learned weights and features extracted from multiple
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Figure 3.1: Framework of our tracking system.

cues. In addition to color histogram, optical flow, and motion features, we learn

an additional target classifier to measure the object detection confidence. Those

weights are trained with a max-margin framework, which is designed to give high

affinity score for associating candidates with true tracked targets and low score when

tracked targets are associated with drifting, false positive candidates or candidates

belonging to different targets. To learn the weight parameter, positive samples are

obtained from the ground truth and a large number of negative samples are arti-

ficially generated to prevent sample selection bias as described in Section 3.3. We

test our method using publicly available datasets under different challenging condi-

tions and demonstrate superior tracking results that outperform the state-of-the-art

algorithms, particularly in terms of accuracy.
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Figure 3.2: Using outputs from both the tracker and the detector, our algorithm
selects the best candidate and associates it to the tracked target. Candidates from
the tracker are shown in red boxes and candidates from the detector are in green
boxes. Solid boxes represent the best candidate selected by the algorithm.

3.2 Ensemble Model

We formulate the multi-object tracking problem as a sum assignment problem that

associates tracking candidates obtained from outputs of the tracker and detector to

tracked targets of interest. Let S = {s1, . . . , sm} be all tracked targets, where m is

the number of objects currently being tracked. Let TR = {tr1, . . . , trm} indicate the

set of all independent trackers. In this dissertation, a color based particle filter is

implemented for each independent tracker tri ∈ TR. Each particle filter tracker deals

with one target and T = {t1, . . . , tm} represents the output of particle filter trackers.

The detector’s output is denoted as D = {d1, . . . , dn}, where n is the number of

detection outputs. D ∪ T represents all m + n tracking candidates. The aim of the

system is to find the optimal assignment for all tracked targets S in each frame t,

which is measured by the association score of the form:

arg max
{j}

m∑
i=1

β · Φt(x
j
i )

i ∈ S, j ∈ D ∪ T

s.t. ∀xpa, x
q
b p 6= q if a 6= b,

(3.1)
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where xji indicates that the candidate j is assigned to tracked target i, {j} denotes

a set of selected candidates, β is a vector of model parameters which is learned as

presented in Section 3.3, Φt(·) represents the association feature set in the current

frame, and β · Φt is the score function. The proposed formulation tries to find

optimal links between tracked targets and candidates provided by both the tracker

and the detector by assigning at most one candidate to at most one target, and the

assignment is evaluated by the affinity score defined in Equation 3.1. The association

feature set

Φ(xji ) =

[
φ1(j), φ2(xji ), φ3(xji ), φ4(xji ), φ5(xji ), φ6(xji )

]
combines information from different feature spaces, namely the classification confi-

dence, the color histogram, the motion feature and the optical flow feature. Each

component is described below in detail.

Classification confidence. The classification confidence (φ1) is proportional

to the likelihood that the object of interest appears at a given position, and the

confidence is derived from the classification result of a binary classifier introduced

to gain additional robustness to our discriminative framework [14]. The classifier

scores a feature vector x with a dot product function ω · x, where ω is a vector

of weighting parameters and x is the feature vector extracted from a given image

patch. w is trained with a max-margin framework, the details of which are provided

in Section 3.3. The feature vector x is the concatenation of multi-scale HOG [22]

and LBP [3] feature sets. The HOG feature is extracted from a two-level image pyra-

mid. We perform PCA on each HOG feature to manage the curse of dimensionality

and improve prediction performance. The cumulative energy threshold for selecting
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Figure 3.3: Visualization of the classification confidence map.

eigenvectors is set at 95%. For image patches with negative score, their classification

confidence is set to zero. For those with positive score, the score is normalized by its

ranking among scores of positive training samples. For example, an image patch with

classification confidence of 0.95 will have higher score than 95% of positive training

samples. Figure 3.3 illustrates the confidence map after applying the binary classifier

for human detection. As can be seen, areas of detection targets yield high confidence

value.

Color histogram. The 3D color histogram is built in the Red-Green-Intensity

(RGI) space with 5 bins per channel. Given the training pairs, we perform a kernel

density estimate for the target and candidate. The similarity between two kernels

g(xc) and g(xt) is measured by the Bhattacharyya coefficient B, and the likelihood

is given by:

φ2 ∝ exp(−λ(1−B[g(xc), g(xt)])) , (3.2)

where λ is set to be 5.

Motion feature. The speed, object scale, and angle represent the motion feature

of objects. The speed is modeled by the Normal distribution; φ3 ∝ fs(
st
st−1

;µs, σs),

where st
st−1

is the speed ratio between two frames and fs is the probability density
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function. The angle likelihood is modeled by the von Mises distribution [61], which

is formulated as:

φ4 =
eκ

acos(θ−µa)

2πI0(κa)
, (3.3)

where I0(.) is the modified Bessel function of order zero. The scale likelihood is

modeled by the Normal distribution; φ5 ∝ fl(l;µ
l, σl), where l is the scale between

two frames and fl is the probability density function. Model parameters {µs, σs, µa,

κa, µl, σl} are learned from positive training samples.

Optical flow feature. The optical flow is precalculated according to [16]. The

dominant motion of each region is encoded by a 2D histogram that quantifies both

the magnitude and angle of the motion with 10 bins and 8 bins, respectively. The

Bhattacharyya coefficient B is used to measure the similarity of histograms {Ht, Hc}

between the target and candidate. The optical flow score function is given by φ6 ∝

exp(−τ(1−B[Ht, Hc])), where τ is set to be 5.

3.2.1 Hierarchical Data Association

Our algorithm employs a hierarchical association strategy to solve Equation 3.1 by

progressively associating outputs of independent trackers and the detector to tracked

targets. We use the word “active” to distinguish a target without being occluded.

The association hierarchy consists of three levels. In each level, the assignment is

obtained by the Hungarian algorithm. At the first level, it finds the best association

between active targets and all candidates. At the second level, we try to associate

occluded targets to all unassigned candidates of the detector. If the best association
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score is below a threshold, we move the occluded target to the third level, in which,

it will be linked to one of the unassigned candidates of the indpendent trackers based

on the association score. The details of the algorithm are described in Algorithm 1.

Greedy search by Hungarian Algorithm. Given m targets, we solve the

assignment problem for n detector’s candidates and m independent trackers’ candi-

dates through the Hungarian algorithm. The score matrix is defined as:

S =



s1
1 s2

1 . . . sn1

s1
2 s2

2 . . . sn2
...

...
...

...

s1
m s2

m . . . snm︸ ︷︷ ︸
Detector’s Candidates

sn+1
1 −∞ . . . −∞

−∞ sn+2
2 . . . −∞

...
...

...
...

−∞ −∞ . . . sn+m
m


︸ ︷︷ ︸

Trackers’ Candidates

The score in S is computed by sji = β · Φ(xji ) where i and j are row and column,

respectively. The negative infinity value of the off-diagonal components represents

self-association rule of the tracking result [34] as it is designed to be linked to one

specific target only.

Occlusion Handling. We set the “enter” and “exit” regions along image borders

after the first two frames in a typical surveillance setting similar to [14]. If the best

association score for a target is below a threshold in the first level association, it

will be marked as “occluded”. In addition, an assigned target in the first level

with a lower classification confidence score than a threshold will also be marked as

“occluded”. We activate an occluded target only if its associated candidate returns

a classification confidence score greater than a threshold. For an occluded target,

the association feature set is not updated until it becomes active again. An occluded
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target will be deleted if it stays in the “exit” region for more than 5 frames or remains

“occluded” for more than 20 frames in the “non-exit” regions. Deletion of an active

target depends on its position with respect to the “exit” region.

Algorithm 1: Association Framework

Input: Targets {1, . . . , i, . . . ,m}, Candidates {1, . . . , j, . . . , (n+m)}.
Output: Association Results.

1 Compute the association feature for all active targets and candidates;

2 Compute the score sji = β · Φ(xji ) and assign it to the score matrix;
3 Apply the Hungarian algorithm to solve the assignment problem;
4 for each assignment (i, j) do

5 if sji <threshold or φ1(j) <threshold then
6 invalidate the assignment
7 end

8 end
9 Recompute the score matrix for all occluded targets and unassigned detection

candidates;
10 Apply the Hungarian algorithm to solve the assignment problem;
11 for each assignment (i, j) do

12 if sji <threshold or φ1(j) <threshold then
13 invalidate the assignment
14 end

15 end
16 if active target is assigned then
17 update the feature set;
18 else
19 active target is set as occluded;
20 end
21 if occluded target is assigned then
22 occluded target is set as active and its feature set is updated;
23 end
24 For all unassigned occluded targets, associate them to corresponding tracking

results
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3.2.2 Detector and Independent Trackers

We use a state-of-the-art deformable part based detector to detect the occurrences

of human targets in every frame [23]. The tracker we use is similar to [50] where the

particle’s observation model is built upon the RGI color histogram [14]. We keep

track of two frames for updating the observation template: one is the first frame

that the target appears in and the other is the latest frame in which the target is

in the “active” state. A new independent tracker is initialized for a target that has

higher classification confidence value than the threshold in two continuous frames

and has no existing tracker associated to it. The observation template is updated

based on the first frame object appear and the recent frame object appear. Second

order autoregressive dynamics is leveraged to propagate the particles:

xt+1 = Axt +Bxt−1 + Cvt, vt ∝ N (0,Σ) (3.4)

Where matrices A, B, C and Σ defining the motion dynamics. All the parameter is

experimental results. A, B, C keep the same for all the dataset. Σ is increased for

sport video set. A new tracker is initialized for an object that has two subsequent

detections in overlapping region, which are not associated to an exiting tracker. The

enter region for the first two frame is the whole image. For all the other frames, new

tracker is only initialized in enter region which is shown in Figure 3.4. The initial

samples are drawn based on a Normal distribution centered at the detection box. A

tracker is terminated when the object is set as deleted.
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Figure 3.4: Examples of the enter and exit regions after the first two frames.

3.3 Discriminative Learning

The model parameters β in Equation 3.1 is learned discriminatively. Consider a

training set {(yi,Φ(oi))}Ni=1, where yi ∈ {+1,−1} is the label and Φ(oi) ∈ Rn is

the feature vector extracted from the training instance oi that includes an assigned

candidate. We are trying to learn a model that assigns the score to the instance with

a function of the form β ·Φ(·), where β is a vector of model parameters. The formu-

lation, in analogy to classical SVMs, leads to the following optimization problem:

f(β) = min
β

1

2
‖β‖2 + C

N∑
i=1

`(β; (Φ(oi), yi)) , (3.5)

where `(β; (Φ(oi), yi)) = max{0, 1 − yi〈β,Φ(oi)〉} is the hinge loss function and the

constant C is chosen experimentally as the weight for the penalty. Stochastic sub-

gradient method [23, 60] is applied for solving this problem.

Typically positive samples are given and we manually generate the “hard” neg-

ative samples. For training, negative samples are randomly generated for three dif-

ferent kinds of scenarios: tracking drift, false positive and mismatch. As shown in
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Figure 3.5: Positive and negative samples generated for the tracking problem: (a)
correct tracking, (b) tracking drift, (c) false positive, (d) mismatch.

Figure 3.5(b), samples for tracking drift are picked as image patches that have be-

tween 0% ∼ 25% overlaps with the ground truth. False positive accounts for cases

where there is no overlap between tracked objects in the ground truth and candidates

obtained from the tracker and detector (Figure 3.5(c)). Mismatch represents identity

switch, in which a tracked target is connected to a wrong candidate (Figure 3.5(d)).

Compared with the number of positive samples, the number of negative instances is

very large. To deal with a large set of samples, we apply the data-mining algorithm

proposed in [23] for training our model efficiently.
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3.4 Experiments

3.4.1 Datasets

We evaluate our tracking algorithm on four public challenging datasets: TUD Cross-

ing, TUD Campus, ETHZ Central and UBC Hockey [14]. The video in the UBC

Hockey dataset is taken by a moving camera and static cameras are used for videos

in other datasets. These four datasets presents a wide range of challenges due to

heavy inter-person occlusion, poor image quality, and low image contrast between

targets and the background. Videos in these datasets also cover different viewpoints

and capture various types of movements. In all experiments, we define “entry” and

“exit” zone manually for each sequence and no other scene or calibration knowledge

is leveraged. We employ the discriminatively trained deformable parts model [23]

as the human detector. The detector uses publicly available and pre-trained model

for TUD Crossing and TUD Campus datasets. The deformable parts model is re-

trained for ETHZ Central and UBC Hockey datasets to boost the detection rate as

the quality of images is much poorer in these videos. None of the video frames in

the dectector training are used for testing.

3.4.2 Parameter Training

We obtained the model parameter β as described in Section 3.3. We use the same

parameter for TUD Crossing and TUD Campus datasets, which is trained on the

first 25 frames of the TUD Crossing video. β is trained for ETHZ Central by using
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the first video sequence in the dataset and our tracking algorithm is tested on the

second video sequence. For UBC Hockey, the first 25 frames are used for training.

None of the video frames in the parameter training set are used for testing.

3.4.3 Quantitative Evaluation

We adopt CLEAR MOT metrics [13] to evaluate the tracking performance of our

algorithm. Key measurements of the metrics include: precision score (MOTP) mea-

sured by intersection over union of bounding boxes, and an accuracy score (MOTA)

which is composed of false negative rate (FN), false positive rate (FP), and number

of ID switches (ID Sw.). Results of our algorithm are reported in Table 3.1 (shown in

top row) after conducting experiments on aforementioned four datasets. In general,

the result shows that our approach achieves high tracking accuracy with very few

number of ID switches. In our experiments, false positives usually are caused by the

drift of occluded targets since it is hard to update the motion model in time during

occlusion. For example, the rapid change of movements in the UBC Hockey video

increases the chance of false positives. The failure of the human detector is the main

reason for false negatives in the result since several persons are not detected and

corresponding independent trackers are not initialized in the video. A typical detec-

tion failure happens when occlusions persist over several video frames. For example,

as shown in Figure 3.6, one of the persons sitting in the lower-right corner is never

detected. Occlusion is also the culprit for ID switches. If a newly detected person

bears similar appearance with an occluded target, the ID of the occluded one may

be mistakenly assigned to another target.
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Dataset MOTP MOTA FP FN ID Sw.
TUD Crossing 70.77% 89.38% 1.09% 9.33% 2
TUD Crossing[14] 71.0% 84.3% 1.4% 14.1% 2
TUD Campus 67.76% 84.82% 0.0% 15.18% 0
TUD Campus[14] 67.0% 73.3% 0.1% 26.4% 2
ETHZ Central 71.49% 75.4% 0.36% 24.24% 0
ETHZ Central[14] 70.0% 72.9% 0.3% 26.8% 0
ETHZ Central[41] 66.0% 33.8% 14.7% 51.3% 5
UBC Hockey 71.61% 91.75% 1.76% 6.49% 0
UBC Hockey[14] 57.0% 76.5% 1.2% 22.3% 0
UBC Hockey[47] 51.0% 67.8% 0.0% 31.3% 11

Table 3.1: CLEAR MOT evaluation results on four datasets. Our results are in the
top row for each dataset. The best results are in bold.

For comparison, we list the results of three competing approaches for these se-

quences: (i) On-line Multi-Person Tracking-by-Detection [14] on TUD Crossing,

TUD Campus, ETHZ Central and UBC Hockey; (ii) Coupled detection and tra-

jectory estimation [41] on ETHZ Central; (iii) Boosted particle filter [47] on UBC

Hockey. As shown in Table 3.1, we outperform the competing approaches on all

datasets in terms of tracking accuracy. As for the tracking precision, our results are

comparable with the best reported performance measures.

To fully evaluate the benefit of the ensemble tracking-by-detection framework

proposed in this dissertation, we also present the performance of component-wise

analysis. The default method used the output of both the part-based detector and

independent particle filter trackers to accomplish data association. Variant (a) lever-

ages output of particle filter trackers alone as tracking candidates while variant (b)

leverages output of only the part-based detector. As shown in Table 3.2, the default

method performs better in term of accuracy, false positive, false negative and ID
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Dataset MOTP MOTA FP FN ID Sw.
TUD Crossing (Default) 70.77% 89.38% 1.09% 9.33% 2
TUD Crossing (a) 63.06% 58.13% 20.04% 21.63% 19
TUD Crossing (b) 69.46% 82.14% 6.85% 10.81% 36
TUD Campus (Default) 67.76% 84.82% 0.0% 15.18% 0
TUD Campus (a) 62.80% 47.19% 18.15% 33.99% 0
TUD Campus (b) 70.08% 59.74% 17.16% 22.44% 3
ETHZ Central (Default) 71.49% 75.4% 0.36% 24.24% 0
ETHZ Central (a) 59.25% 26.74% 37.97% 34.94% 23
ETHZ Central (b) 75.59% 72.91% 1.96% 24.78% 7
UBC Hockey (Default) 71.61% 91.75% 1.76% 6.49% 0
UBC Hockey (a) 58.32% 80.41% 4.85% 14.56% 26
UBC Hockey (b) 73.42% 82.84% 3.41% 13.57% 10

Table 3.2: CLEAR MOT evaluation results on component-wise evaluation of our
approach. Variant (a) leverages output of the independent trackers only. Variant (b)
leverages output the detector only. The best results are in bold.

switches over the result of variants due to the optimal selection of output of both

components. The lower precision score of the default method in three of four datasets

is related to the way MOTP is computed. Since MOTP only measures the positional

deviation of detected targets from their ground truth, an increase in the number of

detected targets can lead to lower overall precision. This is the case since the default

method is able to track a greater number of targets than either of the variants.

3.4.4 Qualitative Evaluation

Figure 3.6 shows our qualitative evaluation. The first row presents the ability of

our approach to keep the identity for target #10 even when the target has been

occluded by multiple targets in the sequence. The scenario in the second row shows
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that we can keep updating the location of occluded targets by using the tracker’s

prediction in the case of missing detections. The third row demonstrates that our

tracker can differentiate targets well when they are very close to each other. The last

row shows a sequence shot from a moving camera. Although the motion model loses

its accuracy due to abrupt changes of movements, our tracker can correct tracking

drifts by switching to associate detection results to tracked targets.
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(a) Keep identity under multiple occlusions

(b) Keep tracking people in the case of missing detections

(c) Keep tracking people when they are close to each other

(d) Correct the tracking drift in the moving camera scenario

Figure 3.6: Tracking results of our approach on TUD Crossing, TUD Campus, ETHZ
Central and UBC Hockey datasets.
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Chapter 4

Modeling Human Visual

Perception for Multi-person

Tracking

Benfold and Reid [11] utilized a person’s head pose to locate areas of attention to

guide surveillance systems. However, this information was not incorporated into

a multi-person tracking framework. In our case, to visualize the scene from each

person’s point of view we utilize the virtual vision simulation [63] so that the

scene can be rendered graphically and further used to simulate a first-person view

assuming the camera to be located at the head height for each person in the scene.

Figure 4.1(a) shows the real world, (b) shows the virtual scene, and (c) shows the

first-person view of person in the red bounding box in (a) and (b). Finally, Figure

4.1(d) shows the retinal mapping of the first-person view of the specific person based
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(a) (b)

(c) (d)

Figure 4.1: Examples of reconstructed virtual world. (a) The original surveillance
image, (b) the virtual vision image, (c) the first-person view image from the person
under the arrow, (d) the retinal mapping image. The bounding boxes in (a,b,c) with
same color represent the same person.

on the log-polar transformation wherein the center of the first-person view image is

assumed to be the focal point.

We generate “attention maps” of the simulated first-person view that guides the

person’s motion as shown in Figure 4.2. The static attention map is built based

on human detection, which treats human subjects in the first-person perspective as

obstacles. The dynamic attention map is derived from optical flow displacement of

human subjects in a person’s view. Human subjects further away or moving slowly

exhibit smaller optical flow displacements than those in closer proximity or moving

fast. Besides, the optical flow displacement from first-person perspective implicitly

incorporates the effect of motion direction in which humans subjects moving towards
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Figure 4.2: System Framework. The components in red outline are implemented in
virtual environment.

a person exhibit bigger optical flow than those moving away in the same speed

from the same position due to fact the person approaching show bigger image pixel

shift than going away. After combining static and dynamic attention maps, retinal

mapping is overlaid on the combined map to mimic human retinal vision mechanism,

i.e., spatial regions far from individual’s visual center will have low attention and

hence lower spatial resolution and vice versa for closer regions. The final attention

map combines spatial and temporal variations of the scene as per the person’s visual

priority.

4.1 Attentive Vision Modeling

Given a configuration Ct = {cti} of subjects (i = 1 . . . N) at time t, each subject

is modeled as cti = (pti, s
t
i, a

t
i), where pti denotes the world coordinate position, sti

its speed, and ati its motion angle. Our method models the human perception of

each subject i at the time step t based on the configuration Ct. For simplicity, we

will explain one subject’s attentive vision model in a scene with a fixed number of

subjects. This can easily be generalized to an arbitrary number of subjects. Unlike

previous approaches, we don’t assume each person’s prior knowledge about other

subjects’ position.
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4.1.1 Virtual Vision Simulation

We assume a person’s consistent moving direction in the next step t+1 is same as the

person’s current motion direction. Based on the calibration of the real scene (Figure

4.1(a)) and the output of human detection, we can get the position parameter pti

for each subject i. The motion parameters si and ai estimation will be explained

in section 4.2. Here we assume we have the parameters cti for each subject. To

simplify the configuration, we also set every person’s height as 1.7 meter and the

eye position is 1.6 meter from the ground, which is also set as the first-person view

camera’s position. Using the configuration Ct, we construct the virtual scene as

shown in Figure 4.1(b) with virtual vision simulator [63]. In the virtual scene, we

are observing the human motion by putting our camera in the observer’s positions.

We position the camera at the person’s head position and the focal length is fixed

for each person, so the camera views the scene in the direction of the person’s head

pose. Here we assume the head pose is same as the subject motion direction. An

example of a camera’s view of the scene from first-person perspective is shown in

Figure 4.1(c). We refer to this as the first-person perspective image. The first-person

perspective image shares the same world coordinate with virtual vision image and

real world image. In the following sections, all computations of attentive vision are

performed on first-person perspective images. The corresponding retinal mapping

image is shown in Figure 4.1(d) further explained in the following section.
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(a) (b) (c)

Figure 4.3: The static map in first-person perspective view. (a) The over-head view
image.(b) The first-person view image. (c) The static map is generated based on the
human detection.

4.1.2 Attention map

Visual saliency is one of the most popular computational model for visual attention

[37]. Similar to saliency based attention model [48], we compute an attention map

that leverages both static and dynamic components of attention. The attention map

is built as shown in Figure 4.2 (red outline). The first step is to construct static and

dynamic maps, then to overlap retinal mapping on the combined map.

Static map. With virtual scene, all the pedestrian’s motion are simulated

with virtual agents that have the same velocity as the real world scene. The im-

ages of first-person perspective are collected from virtual vision simulator for frame

{1, . . . , i, . . . , K}. Background subtraction is performed to detect the human sub-

jects within the controlled foreground-background contrast in virtual scene [51]. The

static map is built based on human detection results in frame 1. The output of human

detection of frame 1 is denoted as R1 = {r1
1, . . . , r

1
n} where r1

n is represented by binary

foreground mask. The static map of human attention is modeled as Ss = r1
1∪ . . .∪r1

n.

Dynamic map. Human perception is sensitive to moving subjects and human
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attentive vision treats moving subjects with different velocities differently. The dy-

namic map is built to address the temporal variance component of attentive vision.

Optical flow (Oi
x, O

i
y) is calculated for frame {2, . . . , i, . . . , K}, which implicitly mod-

els the relative motion between observer’s and all the other subjects’ motion [16].

With the virtual vision images, the human in {2, . . . , i, . . . , K} frames is detected by

background subtraction and the locations are denoted as R2,...,i,...,K . We set K = 25

in this dissertation. The motion saliency in frame i is defined as

M i(x, y) =


sqrt((Oi

x)
2 + (Oi

y)
2) (x, y) ∈ Ri

0 otherwise

(4.1)

The final dynamic map denoted as

Sd(x, y) = max{M2(x, y), . . . ,M i(x, y), . . . ,MK(x, y)}

combines all the motion saliency, which is determined by taking the maximum of

motion intensity. A dynamic map example for one person is shown in Figure 4.4(a).

Static-dynamic map combination. We hypothesize that the human percep-

tion drives attention to specific areas when the motion intensity in that region is

above a certain threshold. Thus the combination of static and dynamic map is ful-

filled in a motion-conditioned strategy. The combined attention map is computed as

follows:

S(x, y) =


1 if Sd(x, y) ≥ ε or Ss(x, y) = 1

0 otherwise

(4.2)

where, ε denotes the threshold on motion intensity and is set to 0.1 in this disserta-

tion. After combination, a binary mask is generated and is overlaid on the original
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(a) (b) (c)

Figure 4.4: (a) The dynamic map is generated based on virtual vision simulation.
(b) The combined static-dynamic attention map. (c) The combined map mask is
applied on first-person perspective image.

image as shown in Figure 4.4(b) and 4.4(c). A crucial point to note here is that even

though subjects receive higher perceptual attention, the regions they occupy may

have lower probability as potential future target positions.

Retinal mapping. Attentive vision refers to the reaction of people according

to the visual stimuli in a dynamically changing environment, which is characterized

by selective sensing in space and time as well as selective processing with respect to

a specific task [58]. Selection in space involves the splitting of the visual field in a

high resolution area, the fovea, and a space-variant resolution area, the periphery,

which are denoted as retinal mapping. Log-polar transformation is the most common

method to represent visual information with a space-variant resolution [65] and to

achieve retinal mapping. The log-polar transformation conserves high resolution in

the center of the image and the resolution gradually decreases away from center.

We denote (x, y) for the image coordinates and (r(x,y), θ(x,y)) for the corresponding

polar coordinates and rmax denotes the maximum value of r(x,y). The polar mapping
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of image pixel (x, y) with origin (x0, y0) is defined as

r(x,y) =
√

(x− x0)2 + (y − y0)2, and θ(x,y) = tan−1(
y − y0

x− x0

). (4.3)

The foveal region is defined as a round disk with the radius r0 and origin (x0, y0).

The image in the foveal region retains uniform resolution while the non-foveal re-

gion exhibits decreasing resolution, which is also used to indicate the importance of

observations . We apply the log-polar transformation on the non-foveal part of a first-

person perspective image, which is defined as the ring-shaped area rmax > r(x,y) > r0.

The unified retina mapping is defined as:

r′(x,y) =


r(x,y) r(x,y) < r0

log(r(x,y)) rmax > r(x,y) > r0

(4.4)

and θ′(x, y) = θ(x, y). With the transformed log-polar coordinates, the quantization

is applied along θ′ and r′ axes that results in G and R elements, respectively. As

shown in Figure 4.5, each pixel (x, y) undergoes a transform to the log-polar space and

the log-polar space is quantized. The retinal mapping of combined static-dynamic

attention map is computed based on the remapping of log-polar space that transforms

the log-polar image back to the Cartesian space. The remapping follows the Eq. 4.3

and 4.4 utilizing the inverse mapping of θ′ and r′ to x′ and y′, respectively. Certain

number of pixels will be allocated as the same intensity value due to the quantization

in log-polar space. After doing so, we get the retinal mapping on combined attention

map as shown in Figure 4.5(b). Another attention search map is generated for motion

prediction as shown in Figure 4.5(c). For attention search map, we compute the mean

of the mapped pixel locations and assign the intensity value from the log-polar space
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Figure 4.5: The diagram of retinal mapping. (a)The first-perspective image overlaid
by static-dynamic map. (b) Retina mapping image. (c) Attention search map.

to the pixel position nearest to the computed mean position. The remaining pixels

are assigned a value of zero. This allows us to generate a sparse map where the pixels

that do not have a value of zero represent positions that can be probable locations

for a target’s next position.

4.1.3 Motion Prediction based on Attentive Vision

This dissertation assumes that people follow their intuition, which means that people

will find the most feasible and most attentive point as their destination. We divide

this process into two step. The first step is to find the most attentive sub-path based

on attention search map (Figure 4.6(a)). A sub-path is defined as a line between two

consecutive corners in the center-surround path as shown with red color in Figure

4.6(a). The probability of each sub-path in attention map is denoted as

Ppath =
mvalid

mtotal

(4.5)

where, mvalid is the number of pixels that are not equal to zero in the attention map

along the sub-path and mtotal is the total number of pixels in the sub-path. Following
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the center-surround search path, the probability map of attentive vision is generated

as shown in Figure 4.6(b). The sub-paths with maximum probability are selected as

most attentive sub-path by exhaustive search.

For the second step, we calculate the corresponding world coordinate of each pixel

in previous optimal sub-paths. With known observer’s position, the point with the

shortest distance to the observer is selected as potential destination from the optimal

sub-path as shown in Figure 4.7(a). The predicted human motion direction πatt is

calculated correspondingly based on the vector from the current position to found

destination and is depicted in Figure 4.7(b). This is used to guide tracking later due

to the shared world coordinate between the observer and the surveillance camera’s

view.

4.2 Tracking Framework

To reduce the computation load and for more accurate subject motion estimation,

we leverage a two-stage tracking framework. In first stage, we extracts basic tracklets

{T1, . . . , Ti, . . . , TN} for each subject i in which Ti = {ct
b
i
i , . . . , c

tei
i } and tbi and tei denote

the begin and end time frame of Ti. The motion parameters sti and ati are estimated

from basic tracklets. With these parameters, we simulate the virtual vision as shown

in section 4.1 and get the motion prediction with attentive vision modeling. In second

stage, we combine the predicted motion feature and other features and accomplish

the tracklets association.

In first stage, we leverage common method to extract basic tracklet based on
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position, size and color histogram similarity in consecutive frames [52]. The color

similarity constraint is also applied between current frame and first frame of tracklet.

The detail of second stage is further explained in section 4.2 and 4.3.

4.2.1 Tracklet Association Formulation

We transform the tracklet association as 2D linear assignment problem on a bipartite

graph. Given a set of tracklets T = {T1, T2, . . . , TN}, we define a pairwise cost matrix

H, in which hij denotes the cost that tracklet j is linked as first tracklet after tracklet

i. The data association is formulated as

arg min
{i,j}

N∑
i=1

N∑
j=1

hijxij s.t.



∑N
j=1 xi,j = 1;∑N
i=1 xi,j = 1;

xij ∈ {0, 1}

(4.6)

where xij = 1 iff tracklet j immediately follows tracklet i, otherwise, xij = 0. The

cost is defined as the combination of five features including our attentive vision

feature:

hij = β · Φ(Ti, Tj) · Z(∆t) (4.7)

where, β = [β1; β2; β3; β4] is a vector of model parameters and set empirically in this

dissertation, Φ(·) = [φ1(·), φ2(·), φ3(·), φ4(·)] represents the association feature set,

and Z(·) is the time gap component defined by an exponential model:

Z(∆t) =


λ∆t−1 1 ≤ ∆t ≤ ξ

∞ ∆t < 1 or ∆t > ξ

(4.8)

where ξ is the threshold of time gap and ∆t = tbj − tei .
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4.2.2 Features Extraction

Given each tracklet pair (Ti, Tj), four features are calculated to get the association

cost. The color feature φ1 is build based on the 3D color histogram in the Red-

Green-Intensity (RGI) space with 8 bins per channel. We perform a kernel density

estimate for both the tracklets across their live frames. The similarity between two

kernels g(Ti) and g(Tj) is measured by the Bhattacharyya coefficient B given by:

φ1 ∝ exp(−B[g(Ti), g(Tj)]). (4.9)

The speed feature φ2 is modeled by the Normal distribution: φ2 ∝ N (µsj ;µ
s
i , σ

s
i )

where, µsj = mean(
∑tej

t=tbj
stj) is the average speed of Tj in its living period and µsi , σ

s
i

is the mean and variance of Ti’s speed.

The angular likelihood is divided to two angular regions. The first one incor-

porates the attentive vision feature that assumes the next tracklet should appear

at the predicted angle. It is modeled by the von Mises distribution [61], which is

formulated as:

φ3 =
eκcos(π−π

att)

2πI0(κ)
, (4.10)

where I0(.) is the modified Bessel function of order zero, and π denotes the motion

angle between the spatial location of the middle point of tracklet i and the corre-

sponding location of Tj. The πatt is our attentive vision model’s predicted angle.

κ corresponds to variance in a normal distribution and is set empirically. To get

the informative attentive vision feature, the human motion direction history should

be estimated accurately. Due to the uncertainty of detection output, we design a

threshold strategy to estimate the human motion direction. When the basic tracklet
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is shorter than 10 frames, we compute the average optical flow to estimate the mo-

tion direction and we rule out the region overlapped by other tracklets. Otherwise,

the motion direction is computed based on tracklet position information.

The second angular feature models smooth motion and penalizes motion change.

This is described by the normal distribution; φ4 ∝ N (µaj ;µ
a
i , σ

a
i ), where µaj is the

moving angle mean of Tj, µ
a
i and σai are the moving angle mean and variance of Ti.

4.2.3 Data association

Given the cost matrix H, we solve the assignment problem through a strategy similar

to the cut-while-linking strategy proposed in [52]. The cost matrix H is extended to

Hnew to solve the initialization and termination of tracks, which is defined as,

Hnew =



h11 h12 . . . h1N τ ∞ . . . ∞

h21 h22 . . . h2N ∞ τ . . . ∞
...

...
...

...
...

...
...

...

hn1 hn2 . . . hNN ∞ ∞ . . . τ

∞ ∞ . . . ∞ ∞ ∞ . . . ∞

∞ ∞ . . . ∞ ∞ ∞ . . . ∞
...

...
...

...
...

...
...

...

∞ ∞ . . . ∞ ∞ ∞ . . . ∞



. (4.11)

The thresholds τ decides when a trajectory ends and is fixed for each scene. When

hij exceeds τ , the link between two tracklets is cut and the track will be linked to

extended columns which indicates the track terminates. The initialization of tracks is

solved along with determined termination. The extended version of data association
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formulation is defined as

arg min
{i,j}

2N∑
i=1

2N∑
j=1

hnewij xij s.t.



∑2N
j=1 xi,j = 1;∑2N
i=1 xi,j = 1;

xij ∈ {0, 1}

(4.12)

The optimal association is solved by Munkres’ assignment algorithm [17].

4.3 Experiments

We evaluate how attentive vision helps to improve multi-person tracking on two

public datasets: TUD stadtmitte [5] and TownCentre [12]. We follow the popular

evaluation metrics [42], which includes mostly tracked trajectories (MT), mostly

lost trajectories (ML), fragments (Frag) and ID switches (IDS). The TUD statmitte

dataset has a short video, but with very low camera angle and frequent full occlusions

among pedestrians. The TownCentre video is a high definition video with 1920×1280

resolution. This sequence is very crowded with frequent occlusion and interaction

among pedestrians. The pedestrians appearing briefly at the image boundaries are

excluded. We also collected a video in an outdoor uncontrolled environment. It is

a high definition video with 1280 × 720 resolution and 1200 frames in total. This

sequence is crowded with 40 trajectories in total. The activity inside is challenging

for tracking algorithms since a large amount of interactions are observed among the

people. Walking, skateboarding and biking activity also exists in the scene. We have

manually annotated the video to identify the locations and provide unique IDs for

all the people in the video.
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Dataset With attentive vision MT ML Frag IDS
TUD stadtmitte No 60.0% 0.0% 3 2
TUD stadtmitte Yes 70.0% 0.0% 2 1
TownCentre No 81.3% 6.2% 33 45
TownCentre Yes 85.6% 4.8% 43 19
OURS No 47.5% 20.0% 22 21
OURS Yes 77.5% 10.0% 13 18

Table 4.1: Component-wise evaluation on each dataset. The best result is in bold.

4.3.1 Component-wise Evaluation

To understand the benefit of the attentive vision feature proposed in this dissertation,

we first present the component-wise evaluation. The baseline method turns off the

attentive vision feature and re-tuning to the best performance while the default

methods keep all the merits of the proposed method. Table 4.1 presents results of

quantitative comparison. The default method out-performs the baseline method in

most measures across all the datasets.

4.3.2 Comparative Evaluation

To compare fairly with different tracking method, we use the same detector’s output.

For TUD stadtmitte, we use the same detection and groundtruth provided by [72]

and show comparable performance. The quantitative results are show in Table 4.2.

We can see that our result is comparable or better than state-of-the-art methods.

Our result is better than Energy Min [5], Disc-Continue [6] and PRIMPT [38] as our

attentive vision incorporated model gives more informed prediction. Our approach
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Dataset Method MT ML Frag IDS
TUD stadtmitte Andriyenko et al.[5] 60.0% 0.0% 4 7
TUD stadtmitte Kuo et al.[38] 60.0% 10.0% 0 1
TUD stadtmitte Andriyenko et al.[6] 60.0% 0.0% 1 4
TUD stadtmitte Yang et al.[72] 70.0% 0.0% 1 0
TUD stadtmitte Proposed method 70.0% 0.0% 2 1
TownCentre Qin et al.[52] (a) 76.8% 7.7% 37 60
TownCentre Qin et al.[52] (b) 83.2% 5.9% 28 39
TownCentre Proposed method 85.6% 4.8% 43 19
OURS Qin et al.[52] 45.0% 22.5% 24 22
OURS Pellegrini et al.[49] 62.5% 15.0% 19 16
OURS Proposed method 77.5% 10.0% 13 18

Table 4.2: Comparison of results on TUD statmitte, TownCentre and Our dataset.
The best result is in bold. [52] (a) and [52] (b) represent the baseline method and
proposed method in [52] respectively.

does not provide an obvious advantage over Online CRF [72] since this video has low

camera angle and several very short tracklets, which makes it difficult to estimate the

tracklet motion direction. In this case, the power of online learned appearance model

in Online CRF gives more benefit than motion prediction. Some sample tracking

results are shown in Figure 4.8.

For TownCentre dataset, we use the original detection and groundtruth provided

by [12], which are used in [52], and we show improvement by incorporating the

attentive vision features. The quantitative comparison is shown in Table 4.2. The

results show that the attentive vision based tracking model outperforms Basic affinity

model [52] and SGB model [52] in terms of MT, ML, and IDS. Fragment of trajecto-

ries under our model increased due to threshold setting in cut-while-linking strategy.

Example qualitative result is shown in Figure 4.9, Figure 4.10, and Figure 4.11.
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We compare our method’s performance with SGB model. We also replace the

attentive vision model in our framework with LTA model [49] and keep all the other

components fixed. The quantitative results are shown in Table 4.2, which show that

attentive vision model outperforms SGB model and LTA model in terms of MT, ML

and Frag. LTA does a little better in IDS than our model. The qualitative evaluation

is shown in Figure 4.12.
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(a)

(b)

Figure 4.6: (a) Center-surround search path. Red line is a sub-path, which is sparse
here for visualization purpose. (b) The generated 3d probability map. The yellow
point represents the nearest point in the sub path with maximum probability which
is the destination point. X and Y axes are width and length in image coordinate and
the unit is pixels.
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(a)

(b)

Figure 4.7: (a) Potential destination point in first-perspective view image. (b) The
calculated moving angle based on attentive vision.
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Frame 22 Frame 63

Frame 107 Frame 165

Figure 4.8: Tracking results of our approach on TUD statmitte dataset. Tracker
under heavy occlusion and interaction: Object 1 is tracked correctly.
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Frame 252 Frame 418

Frame 539 Frame 635

Figure 4.9: Tracking results of our approach on scenario one of TownCentre dataset.
Long-term tracking under full occlusion, abrupt motion change and miss detection:
Object 26 is tracked correctly in spite of significant change of motion direction.
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Frame 1287 Frame 1353

Frame 1418 Frame 1509

Figure 4.10: Tracking results of our approach on scenario two of TownCentre dataset.
Robust tracking in densely populated regions: Object 97 change the motion paths
frequently due to the oncoming crowd.
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Frame 2620 Frame 2697

Frame 2703 Frame 2777

Figure 4.11: Tracking results of our approach on scenario three of TownCentre
dataset. ID fragment correction: Object 258 suffers from ID fragment (but not
ID switch) which is corrected in Frame 2703.
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Frame 53 Frame 141

Frame 201 Frame 295

Figure 4.12: Tracking results of our approach on scenario two of our dataset. Atten-
tion vision prediction: Object 15 distracted from large amount of moving subjects
which is corrected predicted by attentive vision modeling and recovered in Frame
201 and Frame 295.
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Chapter 5

Hierarchical Group Structures in

Multi-Person Tracking

5.1 Structure Preserving Object Tracking (SPOT)

Before introducing the group structure preserving object tracking, we present the

structure preserving object tracking briefly [77]. Given a starting frame, each tracking

target i (i = 1, . . . , N) is represented by a bounding box denoted by Bi = {li, wi, hi}

with center location li and fixed width wi and fixed height hi. The tracking targets

in the scene are denoted as B = {B1, . . . , BN}. φb(I;Bi) denotes the feature vector

for target i extracted from image I.

SPOT defines a graph G = (V,E) over all the targets with V = {B1, . . . , BN}

and E represents the set of edges among all the targets. The multiple object tracking
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problem is defined as finding the best configuration C = {B∗1 , . . . , B∗N} with highest

score over the graph G as shown in Fig. 5.1(c). The problem is translated into an

optimization problem: arg max{C} S(C; I, θ) with

S(C; I, θ) =
∑
i∈V

wTi φ
b(I;Bi)

−
∑

(i,j)∈E

λij|(li − lj)− eij|2 (5.1)

Herein, the parameters wi represent linear weights on object features, eij represent

the length and direction of the springs between object i and j, and θ denotes the set of

all parameters including w and e. The parameter λij is treated as a hyper-parameter.

5.2 Group Structure Preserving Object Tracking

(GSPOT)

As shown in Fig. 5.1(a), SPOT links all the objects in the scene in a flat graph in the

form of a minimum spanning tree. This inherently limits the ability to treat inter-

group and intra-group dynamics uniquely. To explicitly incorporate the different

levels of motion dynamics, the group structure preserving object tracking is built

beyond structure-preserving object tracker (SPOT) by extending the single layer

graph structure of SPOT to a two-layer graph structure. The structure of GSPOT

is shown in Fig. 5.1(b), which unifies the inter-group and intra-group structure in a

more natural way.
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(a) SPOT Structure (b) GSPOT Structure

(c) SPOT Configuration

(d) GSPOT Configuration

Figure 5.1: Examples of graph structures and configurations created by SPOT and
GSPOT. The SPOT configuration models both inter- and intra-group relationships
using a single layer graph while the proposed GSPOT configuration treats inter- and
intra-group relationships through separate hierarchies of the constructed graph.
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Figure 5.2: Depiction of the system framework.

5.2.1 System Framework

The system framework is illustrated in Fig. 5.2. The proposed method starts by

getting the objects’ initial positions, which are also used by the social group discov-

ery component to obtain the spatial structures. With the obtained social groups, we

construct the corresponding group structure and GSPOT uses the structure to track

the objects robustly. Tracking evidences are collected and the social groups are up-

dated intermittently so that the overall group structure can be updated accordingly.

5.2.2 Problem Formulation

Given the subject bounding boxes Bi and the respective feature vectors φb(I;Bi) as

defined in section 5.1, we further define each social group k (k = 1, . . . ,M) in the

scene as gk. The group gk includes one group center ok and a target-group mapping
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set Ψk = {ψki} (i = 1, . . . , N), where ψ is a target-group mapping given as:

ψki =


1 if target i is mapped to group k,

0 otherwise.

(5.2)

We include an added constraint
∑M

k=1 ψki = 1 on the target-group mapping set and

φg(I; gk) denotes the feature vector for a group.

A graphH = (G,O,T) is defined over all the targets and social groups. Note here,

G is abused to denote all the inter-group graph structure G = {G1, . . . , Gk, . . . , GM}.

T denotes the set of edges {τ} between group centers O = {o1, . . . , ok, . . . , oM}. For

each social group gk, a sub-graph is defined as Gk = (Vk, Ek) with Vk = {(B|Ψk = 1)}

and Ek represents the set of edges within a group. Within the defined structured, the

multiple object tracking problem is defined as finding the best configuration over the

whole graph Y = {B∗1 , . . . , B∗N , o∗1, . . . , o∗M} as shown in Fig. 5.1(d). Subsequently,

we define the score of a configuration as:

S(Y ; I,Θ) =
M∑
k=1

wTk φ
g(I; gk)−

∑
(p,q)∈L

βpq|(cp − cq)− τpq|2+

M∑
k=1

(∑
i∈Vk

wTi φ
b(I;Bi)−

∑
(i,j)∈Ek

αij|(li − lj)− eij|2
 (5.3)

Herein, the parameters wk represent linear weights on the group features, and eij and

τpq represent the length and direction of the springs between inter-groups and intra-

groups, respectively. The parameters αij and βpq are treated as hyper-parameter
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and are denoted as ∀i, j : αij = α and ∀p, q : βpq = β. The set of all parameters

including wk, wi, τpq, and eij is denoted as Θ. In this dissertation, we define the

group feature as the concatenation of target features in one group, which is denoted

as φg(I; gk) =
∑

i∈Vk φ
b(I;Bi).

Group Structure and Inference. The inference of the model amounts to

maximizing Eq. 5.3 over Y . Solving a complete connected graph is intractable. With

the tree structured graph, we can solve the optimization by dynamic programming

[23]. To make the inference tractable, we solve the optimization over the two-layer

tree-structured graph H and {G1, . . . , Gk, . . . , GM}. We use two variants of the tree

structure graph: (1) the star model based tree structure for Gk; and (2) a minimum

spanning tree structure for H.

5.2.3 Parameter Learning and Iterative Parameter Learn-

ing.

After solving an optimal object configuration Y , we update the parameters by min-

imizing the structured SVM loss [66]:

`(Θ; I, Y ) = max
Ŷ

(
s(Ŷ ; I,Θ)− s(Y ; I,Θ) + ∆(Y, Ŷ )

)
, (5.4)

where ∆(Y, Ŷ ) is defined as:

∆(Y, Ŷ ) =
M∑
k=1

(
1− Vk ∩ V̂K

Vk ∪ V̂K

)
. (5.5)
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The loss function can be reshaped as:

`(Θ; I, Y ) = max
Ŷ

(
vec(Θ)T

(
Υ̂−Υ

)
−

M∑
k=1

∑
(i,j)∈Ek

α
(
|m̂ij|2 − |mij|2

)
−

∑
(p,q)∈L

β
(
|n̂pq|2 − |npq|2

)
+ ∆(Y, Ŷ )

 ,

(5.6)

where mij = li − lj, npq = cp − cq, and Υ = [φg1, . . . , φ
g
M ,2αmi1j1 , . . . , 2αmi|E1|j|E1|

,

. . . , 2αmi1j1 , . . . , 2αmi|EM |j|EM |
,2βnp1q1 , . . . , 2βnp|L|q|L| ]

T , vec(·) concatenates all pa-

rameters in a column vector.

We present two different methods to update the parameters. The first one is

similar to the one used by Zhang at al. [77] and is given as:

Θ← Θ− `(Θ; I, Y )

|∇Θ`(Θ; I, Y )|2 + 1
2K

∇Θ`(Θ; I, Y ), (5.7)

where we update all the parameters at the same time.

The second method updates the parameters in an iterative manner. We split

the parameter set Θ as the union of Θ1 and Θ2. Θ1 represents the intra-group

feature parameter set including wk and τpq and Θ2 represents the inter-group feature

parameter set including wi and eij. The updates are also split into two stages. In

the first stage only Θ1 is updated as:

Θ1 ← Θ1 −
`(Θ; I, Y )

|∇Θ`(Θ; I, Y )|2 + 1
2K

∇Θ`(Θ; I, Y ). (5.8)

After Θ1 is updated, one more optimization (solve the Eq. 5.3) is performed prior
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to updating Θ2 as the second stage. Θ1 is kept fixed and Θ2 is updated as:

Θ2 ← Θ2 −
`(Θ; I, Y )

|∇Θ`(Θ; I, Y )|2 + 1
2K

∇Θ`(Θ; I, Y ). (5.9)

To refer to the joint parameter optimization approach as “GSPOT” and the iterative

approach as “iGSPOT”.

5.3 Experiments

To evaluate the merit of our proposed hierarchical-structure-based model, we con-

ducted experiments on several public datasets to compare the performance of the

proposed methods against existing methods as well as to evaluate the merits of dif-

ferent components of our approach. The “S15-FM” sequence was included from the

”Friends Meet” dataset [10]. It shows multiple occurrences of persons merging and

splitting from a group and is the most challenging sequence in the whole dataset. One

video sequence was included from the “BEHAVE” Interactions Test Case Scenarios

[46], which includes the scenario showing two groups merging into a larger group.

One video sequence from the “QIL” dataset was also included [70] in which several

individual persons merge into a group and move together. Finally, one video sequence

was included from the “Crowd by Example” dataset that has poor image quality and

shows several groups moving around in a natural manner. The tracking performance

is measured based on CLEAR MOT metrics [13]. We report multiple object tracking

precision (MOTP), miss rate (MISS), false positive rate (FP), number of ID switches

(IDS) and multiple object tracking accuracy (MOTA). The threshold for building a

matched pair between a tracking result and the ground truth is selected as half of the
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bounding rectangles’ diagonal in the ground truth. It should be noted that MOTP

measures the ability of a tracker to estimate precise pedestrian positions, which is

independent of an algorithm’s tracking accuracy. MOTP is computed as the average

error of center position of matched pairs’ over all frames, measured in pixels. Note

here, the MOTA result could be a negative number since it is computed as:

MOTA = 1− # of miss+ # of fp+ IDswitches

# of groundtruth
. (5.10)

5.3.1 Evaluation: Social Group Discovery

We explore three methods to discover the social groups within a scene. The first two

methods are detailed in [26] and [64], respectively. Method described by Ge at al.

[26] uses both spatial and temporal cues to group subjects based on their trajectories

while the method by Khai et al. [64] leverages the social cues from a single frame

based on subject position and pose to find dominant groups. The third method we

use is based on k-means clustering [59]. The number of clusters or groups, k, is

set to be the same as the number of groups identified by the first method [26]. We

integrated the three methods into “GSPOT” with all the other component being

identical and evaluated the tracking performance on the four video sequences. The

average MOTA performance in Table 5.1 shows that the social grouping defined in

[26] gives best overall performance, which could be explained by the advantage of

cumulative spatio-temporal evidences. This metric is based on an agglomerative

clustering where the group membership ρij denotes the number of frames in which

pedestrian i and j are in same group. There is a link between two pedestrians i and
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GSPOT MOTP MOTA FP FN IDS
K-means [59] 5.58 70.57% 13.56% 13.56% 29
Khai et al. [64] 4.96 75.98% 11.94% 11.94% 7
Ge at al. [26] 4.57 99.72% 0.14% 0.14% 0

Table 5.1: Average CLEAR MOT evaluation results on three grouping methods.
The best results are in bold.

j if pij > τ . We set τ = 10 [26]. ωij represents the average pairwise distance over

all the frames when pedestrians i and j are in same group. A modified Hausdorff

distance H(A,B) is derived from pairwise distance matrix and is used to measure

inter-group closeness between groups A and B as H(A,B) = (h(A,B) + h(B,A)) /2,

where

h(A,B) =

∑|A|
i=1

∑d|B|/2e
l=1 wlij

|A| × d|B|/2e
(5.11)

and wlij is the lth smallest distance among all the distances, which are derived between

pedestrian i in group A and all the pedestrians j ∈ B. The social group is then

obtained by agglomerative clustering. The merge step is governed by pairwise group

Hausdorff distance and the merging is stopped by intra-group tightness criterion

shown in Eq. 5.12.

eA+B < ê|A+B| + (eA − ê|A| + eB − ê|B|) (5.12)

where eA, eB, eA+B are the total number of links in group A, group B, and the merged

group A + B, respectively. êA, êB, êA+B denote the minimal expected number of

links in group A, group B, and merged group A+B, respectively. For the remaining

results shown in the dissertation, method by Ge at al. is set as the default social

group discovery method.
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5.3.2 Evaluation: Group Structure

We present variants on updating the identified group structures based on the dis-

covered social groups at initialization to evaluate the merit of the hierarchical graph

in GSPOT. The inter-group structure is initialized but not updated in “GSPOT.v1”

while only the intra-group structure is updated during tracking. The intra-group

structure is initialized in “GSPOT.v2” but not updated while only the inter-group

structure is updated during tracking. Note here that the parameters of the struc-

tures are reinitialized after new group discovery for “GSPOT.v1” and “GSPOT.v2”

although there is no update in each grouping interval for the component held con-

stant. From the tracking performance presented in Table 5.2, it shows that (1) both

precise inter-group and intra-group structures are critical without which the track-

ing performance degraded in all of scenarios; (2) intra-group structure update has

a significant impact over inter-group structure update in tracking performance; and

(3) inter-group structure update contributes to the tracking performance when the

structure in individual groups changes significantly.

5.3.3 Evaluation: Parameter Learning

To fully evaluate the benefit of iterative parameter learning, we compared the per-

formance of iGSPOT against GSPOT. Besides the original trackers, two variant are

evaluated as well. iGSPOT.g1 and GSPOT.g1 denote no group structure updates

after initialization in the first frame with the rest of components being the same. In

the second variant, the default social grouping method in both iGSPOT and GSPOT
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BEHAVE MOTP MOTA FP FN IDS
GSPOT.v1 10.86 99.94% 0.03% 0.03% 0
GSPOT.v2 9.64 21.41% 39.28% 39.28% 1
GSPOT 5.85 100.00% 0.00% 0.00% 0
QIL MOTP MOTA FP FN IDS
GSPOT.v1 4.53 71.84% 14.08% 14.08% 0
GSPOT.v2 4.31 44.82% 27.59% 27.59% 0
GSPOT 5.03 100.00% 0.00% 0.00% 0
FM MOTP MOTA FP FN IDS
GSPOT.v1 5.88 99.50% 0.25% 0.25% 0
GSPOT.v2 5.42 58.14% 20.93% 20.93% 0
GSPOT 4.03 99.80% 0.10% 0.10% 0
CROWD MOTP MOTA FP FN IDS
GSPOT.v1 4.43 74.53% 8.83% 8.83% 100
GSPOT.v2 4.27 22.66% 38.52% 38.52% 4
GSPOT 3.39 99.06% 0.47% 0.47% 0

Table 5.2: CLEAR MOT evaluation results on four datasets. The best results are in
bold.
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Figure 5.3: Evaluation on the effects of GSPOT, iGSPOT and their variants.

are replaced by the method of Khai et al. [64]. We denote them as iGSPOT.g2 and

GSPOT.g2. The tracking accuracy is assessed to measure performance improvement

as shown in Fig. 5.3. As seen, the iterative parameter update gives more robust

performance under various settings.
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5.3.4 Evaluation: Overall performance

To evaluate the overall tracking performance, we compared performance results of the

proposed tracker against four competing approaches for all the video sequences. The

trackers compared included: (1) Multiple Instance Learning Tracker [8] (MIL), (2)

Structure preserving object tracker [77] (SPOT), (3) Multiple structure preserving

object tracker with social group discovery (MSPOT.v1), and (4) Multiple structure

preserving object tracker with fixed grouping (MSPOT.v2). To compare fairly, we

implemented MIL tracker with HOG feature and the parameters of MIL are tuned

to get the best results. SPOT was run using the implementations provided by [77].

MSPOT by name is an extension of SPOT that runs multiple SPOT trackers on

different groups. MSPOT.v1 leverages the same social group discovery method as

used in our model and is updated in the tracking process. MSPOT.v2 uses the

fixed group setting that is set manually. The performance of the five trackers on

all four datasets is presented in Table 5.3. The results in the table show that (1)

our iGSPOT and GSPOT tracker outperform the state-of-the-art tracker SPOT and

MIL indicating that hierarchical structure contributes towards improved tracking;

(2) MSPOT treats objects in the scene and builds multiple independent structure

for each one resulting in improved performance compared to SPOT in BEHAVE and

FM datasets but contributes to worse performance in the other two datasets; (3)

iGSPOT and GSPOT outperform the two MSPOT trackers, which suggests that

the structure between each group pairs should not be overlooked; (4) MIL results in

worse performance compared with SPOT in three of the sequences demonstrating

that incorporation of spatial structures aids tracking.
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Frame 22 Frame 75

Frame 255 Frame 515

Figure 5.4: Tracking results of our approach on BEHAVE dataset.
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Frame 67 Frame 126

Frame 263 Frame 356

Figure 5.5: Tracking results of our approach on QIL dataset.
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Frame 414 Frame 516

Frame 635 Frame 830

Figure 5.6: Tracking results of our approach on FM dataset.
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Frame 55 Frame 84

Frame 99 Frame 147

Figure 5.7: Tracking results of our approach on CROWD dataset.
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BEHAVE MOTP MOTA FP FN IDS
MIL 12.18 -27.41% 63.03% 63.03% 43
SPOT 16.62 16.81% 41.59% 41.59% 0
MSPOT.v1 7.69 22.31% 37.84% 37.84% 64
MSPOT.v2 7.97 57.87% 21.06% 21.06% 0
GSPOT 5.85 100.00% 0.00% 0.00% 0
iGSPOT 5.85 100.00% 0.00% 0.00% 0
QIL MOTP MOTA FP FN IDS
MIL 7.76 26.49% 34.17% 34.17% 118
SPOT 4.53 71.84% 14.08% 14.08% 0
MSPOT.v1 14.12 -6.89% 51.75% 51.75% 77
MSPOT.v2 7.51 28.46% 31.14% 31.14% 211
GSPOT 5.03 100.00% 0.00% 0.00% 0
iGSPOT 5.03 100.00% 0.00% 0.00% 0
FM MOTP MOTA FP FN IDS
MIL 7.05 26.77 % 31.25% 31.25% 636
SPOT 6.36 15.01 % 36.90% 36.90% 663
MSPOT.v1 4.21 60.82% 17.83% 17.83% 209
MSPOT.v2 5.85 59.15% 18.57% 18.57% 220
GSPOT 4.03 99.80% 0.10% 0.10% 0
iGSPOT 4.05 99.90% 0.05% 0.05% 0
CROWD MOTP MOTA FP FN IDS
MIL 6.58 37.89% 28.52% 28.52% 65
SPOT 3.89 56.72% 21.56% 21.56% 2
MSPOT.v1 5.63 2.66% 47.27% 47.27% 36
MSPOT.v2 3.60 30.16% 34.38% 34.38% 14
GSPOT 3.39 99.06% 0.47% 0.47% 0
iGSPOT 3.40 99.22% 039% 0.39% 0

Table 5.3: CLEAR MOT evaluation results on four datasets. The best results are in
bold.
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Chapter 6

Social Interaction based Tracking

The social force model by Helbing [33] is a computational model in which the in-

teractions among pedestrians are described by using the concept of forces between

physical entities. Each pedestrian feels a social force from other pedestrians that is

proportional to the distance between them. In this model, a pedestrian i = 1, . . . , H

makes motion decisions based on the sum of forces Fi exerted. Under the modeled

social force, the motion model that predicts the positional information for a tracked

pedestrian i is given by:

Fi

mi

=
∂vi
∂t

, (6.1)

where vi is the instantaneous velocity and mi is the mass.

With unknown and complicated social interaction in the scene, we aim to break

social interaction into combination of atomic social effects and quantify them with

social force model similar as [33] and give informative prediction about human mo-

tion.
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Figure 6.1: Depiction of the social interaction decomposition framework

6.1 Social Interaction Decomposition

Before decomposing the social interaction, we first define what social effect, social

link, and social interaction mode are. Social effect by name is certain social inter-

action context that drives human motion behavior and can be defined arbitrarily

(e.g. follow, spread, pass, repulsion, attraction). Social link between two persons

represents one of the predefined social effects at the current time instance. Note here

that the social link is directed. Social interaction mode for one pedestrian represents

the set of social effects that happen over all social links. It is hard to know the exact

social effect for every social link without an explicit knowledge of pedestrians’ intent.

The same difficulty holds for knowing the exact social interaction mode.
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With the definition of social interaction mode, we treat pedestrian motion as

the outcome of linear combination of potential social interaction modes with dy-

namically adjusted weights at different moments in time. We decompose unknown

social interaction into multiple social interaction modes which are composed by pre-

defined atomic social effects. The social effects is quantified using a social force

model as shown in Fig. 6.1. Give the social links of one pedestrian l = 1, . . . , L

and atomic social effects γ = 1, . . . ,Γ, the nth social interaction mode is denoted as:

dn = {γ1, . . . , γL}. The total number of social interaction modes is N = ΓL.

We drop the subscript of pedestrian i’s social force with F = Fi here for simplicity

and it is given by:

F =
N∑
n=1

ωnΦ (dn) =
N∑
n=1

ωn ·

(
L∑
l=1

φ(γl)

)
(6.2)

where Φ(dn) represents quantified social force under social interaction mode dn, ωn

is a weighting coefficient, φ(γl) represents social force of social link l under social

effect γl. Di is the set of social interaction modes and dn ∈ Di. We set φ(γl) = φγ(l)

for later explanation.

6.1.1 Atomic social effects and force model

In this dissertation, we mainly explore three atomic social effects: repulsion, attrac-

tion, and non-interaction. The underlying assumption is that all the other social

interaction can be represented as the combination of these three effects. The atomic

social effects can be replaced to fit some other specific scene context. The repulsion

effect captures the behavior where people try to avoid collisions with each other and
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the attraction effect captures the behavior when a person approaches another person

with an intent to meet. Non-interaction by name means pedestrians are independent

from each other. With these three atomic units, the social effects pool is instantiated

as γ = {+,−, 0}.

We quantify the atomic social effect with attraction and repulsion forces model,

which share a similar model with different directions and monotonicity. Similar as

Helbing’s model [33], attraction, φ+(·), and repulsion, φ−(·), force models of pedes-

trian i with social link i→ j are denoted as:

φ+(i→ j) = F a ∗ e(
dij−rij

b
)uij, (6.3)

and

φ−(i→ j) = F r ∗ e(
rij−dij

b
)uji, (6.4)

where F r and F a are the magnitudes of repulsion and attraction force, respectively,

b is the boundary of the influence of the force, dij is the Euclidean distance between

i and j, uji is the unit vector from j to i, and uij is the unit vector from i to j. The

private sphere of a pedestrian is represented by a circle of radius r with ri and rj

defining the private sphere of pedestrians i and j, respectively. Further, rij = ri + rj

defines the radius of influence for pedestrians i and j, respectively. φ0(·) = 0 denotes

non-interaction effect.

Case Analysis: In the example shown in Fig. 6.2, the decomposition is de-

fined by first building social links with other pedestrians from single pedestrian.

Each social link is hypothesized to exhibit repulsion, attraction, or non-interaction

effects, which are denoted by {+}, {−}, and {0} respectively. The repulsion and

82



Figure 6.2: Example of the social interaction decomposition.

attraction effects are translated into social forces by Eq. 6.4 and Eq. 6.3 and {0}

is equal with no force. The set of potential social interaction modes D is com-

posed by the social effects of each social link: {{+,+},{+,−},{−,+},{−,−}, {+, 0},

{0,−},{−, 0},{0,−},{0, 0}}. A motion model is derived from the sum of social forces

based on the social effects in one interaction mode. The maximum number of |Di|

is represented by Nmax. {Di} of each pedestrians are preprocessed to have the same

size Nmax by replicating the social interaction modes. This ensures that the same

number of motion models are maintained for each pedestrian. The motion models

are incorporated into Markov chains as shown in Fig. 6.2.
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Within the context of a Bayesian tracking framework, the posterior distribution

for each interaction mode dn, given a motion prior, can be approximated by con-

structing a Markov chain for sampling. Hence, an increase in the number of social

links leads to an increase of Nmax and a corresponding increase in the number of

Markov chains. Considering H pedestrians in a scene with three atomic social effects,

if every pedestrian has a social interaction link with each other, then, the number of

chains is given by Nmax = ΓL = 3H−1. There is an exponential growth in the num-

ber of chains with respect to the number of pedestrians which is computationally

unsustainable.

We address this issue by limiting the number of social links between pedestrians

based on the distance between them. The construction of social links is based on the

ε-graph [19]. A link is established between pedestrian i and j if E(i, j) < ε where E

is the Euclidean distance in real world coordinates. By adjusting the value of ε, we

build sparse social links among pedestrians. In this dissertation, ε is set to be equal

to the value of the forces’ boundary b which adjusts the sparseness of social links

and is set empirically.

6.1.2 Motion Model with Social Interaction Modes

In a Bayesian context, the tracking problem is to quantify the posterior probability

p(xt|y:t), where the observations are specified by y:t = {y, y, ..., yt}. Given the

new observation yt at time t, the posterior probability is estimated by:

p(xt|y:t) = cp(yt|xt)
∫
p(xt|xt−)p(xt−|y:t−)dxt−, (6.5)
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where c is a normalization constant, p(yt|xt) specifies the likelihood function of the

current observation given the current state, p(xt|xt−) specifies the probability of

the current state given the previous state, and p(xt−|y:t−) specifies the previous

posterior probability.

The goal of our proposed method is to find the best state x̂t at time t given

the observation y:t. It can be obtained by using the Maximum a Posteriori (MAP)

estimate over the M samples at each time t, denoted by:

x̂t = arg max
x`t

p(x`t|y:t) for ` = 1, . . . ,M , (6.6)

where x`t indicates the `th sample of the state xt. Our method estimates an accurate

value of posterior probability by designing a sophisticated motion model p(xt|xt−).

Following the decomposition idea by Kwon and Lee [39], the motion model is designed

as the weighted linear combination of its basic components:

p(xt|xt−) =
Λ∑
λ=1

wλt pλ(xt|xt−), and
Λ∑
λ=1

wλt = 1, (6.7)

where pλ(xt|xt−) denotes the λth basic motion model, wλt is the weighting variable

at time t and will be estimated implicitly in the interaction process of IMCMC as

shown in Eq. 6.12, and Λ is the number of decomposed motion models, which is

equal to cardinality of the social interaction mode set. Hence, Λ = Nmax.

Let ct = [c1,t, c2,t, . . . , cH,t]
T and vt = [v1,t,v2,t, . . . ,vH,t]

T denote the positions

and velocities of H pedestrians, respectively, at time t. The position information

for pedestrians in the next frame is predicted using the computed force denoted

by Fλ=[Φ1(dλ),Φ2(dλ), . . .,ΦH(dλ)]
T . Using a constant velocity motion model, the

motion prediction is defined as ct = ct−1 + vt−1∆t in which ∆t is the time interval
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between two frames. Incorporating the social interaction force for prediction, the

state update at a fixed interval of time ∆t is given as:cλt

vλt

 =

ct−1 + vt−1∆t+ 1
2
Fλ

m
∆t2

vt−1 + Fλ

m
∆t

 , (6.8)

where cλt and vλt denote the predicted positions and velocity in the motion model

λ of each pedestrians, respectively. For a single pedestrian i, the motion prediction

ci,t is given by a set of locations predicted by each of its social interaction modes,

ci,t = {c1
i,t, c

2
i,t, . . . , c

Λ
i,t}. In this work, each basic motion model pλ(xt|xt−) is modeled

as a Gaussian distribution and is given by:

pλ(xt|xt−1) ∝ N (ct; c
λ
t , σ

2). (6.9)

6.1.3 Observation Model

Following Perez et al.. [50], we use a color observation model based on the Hue-

Saturation-Value (HSV) space. Given the initialization for any pedestrian to be

tracked (bounding box), we perform a kernel density estimate, g∗ = g(x0), of the color

distribution in frame 0. The data likelihood is derived based on the Bhattacharyya

similarity coefficient and is defined as S[g∗, g(xt)]. The likelihood of observation,

based on Gibbs distribution, is given by:

p(yt|xt) ∝ exp(−τS2[g∗, g(xt)]), (6.10)

where τ = 20 as suggested in [50].
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Figure 6.3: Overview of the proposed tracking framework.

6.2 Compound Tracker: Integrating Decomposed

Motion Models

Given each decomposed motion model, a basic tracker is composed of a pair of ob-

servation and motion models as illustrated in Fig. 6.3. This generates a basic tracker

that uses the observation model p(yt|xt) and the motion model pλ(xt|xt−1), describ-

ing a specific social interaction mode dλ. The total number of basic trackers for a

pedestrian i is the same as the maximum number of motion models Λ. A Markov
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chain is constructed for each of the trackers. The state space is updated accord-

ing to the MAP estimate obtained via the Metropolis Hasting algorithm [32]. The

Interactive Markov Chain Monte Carlo (IMCMC) algorithm is leveraged to sample

across the basic trackers and combine their sampling results. The IMCMC algorithm

consists of two main parts: parallel process and interacting process. The Metropolis

Hasting algorithm is executed in parallel across all chains during the parallel process

while the optimal state value is determined during the interacting process through

communication between all chains. The weight wnt is implicitly estimated during

the interacting process. The implementation used in this dissertation follows the

approaches proposed in [39] and Corander et al.. [21]. Each Markov chain i runs the

MAP estimate given in Eq. 6.6 via the Metropolis Hasting algorithm. The algorithm

includes the proposal stage and the acceptance stage. In the proposal stage, a new

state x∗t is proposed by the proposal density function which is Gaussian distribution

in our implementation. The acceptance stage decides whether the proposed state is

accepted or not with acceptance ratio:

νparallel(x
∗
t |xt) = min

(
1,
pi(yt|x∗t )
pi(yt|xt)

)
. (6.11)

Here the prior is uniform and hence, it cancels and does not show in the Metropolis

Hasting ratio. In interacting process, the Markov chains communicate the others

and exchange the states to find better state of an object. A Markov chain accepts

the state of another chain β as its state with the following probability:

νinteracting =
pβ(yt|xβt )∑Λ
λ=1 pλ(yt|xλt )

. (6.12)

where pβ(yt|xit) and pλ(yt|xjt) return the likelihood scores of Markov chain β and λ.
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6.3 Interaction Mode Prediction

Given the set of potential social interaction modes for each pedestrian i, denoted

by Di = {d1, d2, . . . , dΛ}, where the size of the set is same across all pedestrians,

the interaction model is predicted as summarized in algorithm 2. The number of

pedestrians is denoted by H while the number of both social interaction modes and

Markov chains is denoted by Λ.

Algorithm 2: Interaction Mode Prediction

Input: Interaction mode sets {D1, . . . ,Di, . . . ,DH}.
Output: Prediction of Interaction Mode {p1, . . . , pi, . . . , pH}.

1 for Markov chain j = 1 to Λ do
2 for Object i = 1 to H do

3 predict the new state xjiwith Equation 6.8;
4 end

5 end
6 for Iteration number 1 to N do
7 Randomly choose one object;
8 for Markov chain 1 to Λ do
9 Do Monte Carlo sampling using [39];

10 end
11 Do interaction among all the Markov chains using [39];

12 end
13 Estimate the MAP state x̂1, . . . , x̂i, . . . , x̂H ;
14 Determine the predicted interaction mode pi based on minimizing the

Euclidean distance between x̂i and x1
i , . . . , x

j
i , . . . , x

Λ
i
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6.4 Experiments

To evaluate the merit of our proposed model, we perform experiments on both syn-

thesized data and real scenes. Synthesized data is generated to evaluate various

parameters in the model. Real scenes are tested to compare the performance of

the proposed method against different existing trackers as well as to compare the

effect of different functions that could be used to model social forces. Two video

sequences were included from the “BEHAVE” Interactions Test Case Scenarios [46].

The videos were acquired at 25 frames/sec and the tracking cycle used is 0.04 s.

Two campus pedestrian sequences from the “EPFL” dataset [25] were also included

in our analysis. These videos were acquired at 25 frames/sec and the tracking cycle

used is 0.04 s. Finally, “QIL” dataset including two video sequences were acquired

by our team in an outdoor passageway with six pedestrians in the scene. The videos

were acquired at 30 frames/sec and the tracking cycle is 34 ms. The resolution of

each frame in the video is 704× 480 pixels.

We outline the parameters of our model based on a set of fixed parameters (Table

6.1) and parameters whose values are chosen to optimize tracking performance (Table

6.2). The tracking performance is measured based on CLEAR MOT metrics [13]. We

report multiple object tracking precision (MOTP), miss rate (MISS), false positive

rate (FP), number of ID switches (IDSW) and multiple object tracking accuracy

(MOTA). The threshold for building a matched pair between a tracking result and

the ground truth is selected as half of the bounding rectangles’ diagonal in the

ground truth. It should be noted that MOTP measures the ability of a tracker to
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estimate precise pedestrian positions, which is independent of an algorithm’s tracking

accuracy. MOTP is computed as the average error of the center position of matched

pairs’ over all frames, measured in pixels. The proposed tracker is named “Social

Interaction-based Multi-target Tracker with three social effects” (SIMT-3E). We also

build one variant of our method which has only two social effects: repulsion and

attraction γ̂ = {+,−}. This is denoted as SIMT.

Table 6.1: Fixed Parameters of the model
Notation Meaning Value Ref

b boundary of social force 3 m
r radius of pedestrian’s private sphere 0.2 m [43]
m mass of pedestrian 80 kg [43]
F a magnitude of fa 500 N
F r magnitude of f r 500 N
∆t tracking cycle 1/(frames per second)
σ2 variance of motion model 2 [39]

Table 6.2: Augmented Parameters of the model

Notation Meaning

φ+(·) social force model of attraction effect
φ−(·) social force model of repulsion effect
T size of sliding window

6.4.1 Social mode prediction

The reliability and accuracy of social mode prediction plays a key role in our proposed

tracker. We use both synthetic and real scene experiments to tune and assess the

prediction performance of our tracker.
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6.4.1.1 Synthetic experiment

We consider the social force model [33] as stimulus for synthetic object’s motion.

Since the stimulus is provided by either the repulsion or attraction force, we employ

the SIMT tracker to evaluate social mode prediction. The parameters including

magnitude, mass, and boundary and share the same values as our motion model. The

synthetic video simulates the object motion video in top view and the corresponding

3D view of the synthetic scene is shown in Fig. 6.4. The videos represent a closed

space of 5 × 5 meters that is walled and has only one opening. In addition, we

impose a physical force of 2000 N on the boundary that prevents objects from leaving

the field of view. The physical force only affect objects’ motion when the distance

between boundary and object is less than 25 cm. Further, a physical repulsion

force of 1000 N is applied to objects to prevent objects from overlapping when two

objects’ distance is less than 12.5 cm. The social interaction mode between every two

objects is randomly drawn from a uniform distribution. For every 100 frames, a new

interaction mode is instantiated for each objects pair. We simulated video sequences

with certain number of objects that are randomly initialized in the first frame. The

initial velocity is set to 0.5 m/s and the direction of motion is set towards one of four

destination points that are located in the middle of four boundaries. In the following

frames, objects’ motion is computed entirely based on the sum of social and physical

forces. The social force is calculated based on the generated interaction mode. Each

object is driven by the sum of social interaction force according to Equation 6.8.

To evaluate the prediction accuracy, we generated nine classes of video sequences

in which the object number of objects is varied from 2 to 10. Each class includes
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five video sequences generated with random initialization. Every video sequence is 5

frames/sec and has 500 frames. The tracking algorithm uses the same configuration

shown above. One of synthetic objects’ trajectory is shown in Fig. 6.5. On applying

our tracking algorithm on the video, the sample of interaction prediction results

are shown in Fig. 6.6, which represents the comparison graph between interaction

prediction and ground truth. Same color for prediction result and ground truth in

one frame indicates a correct prediction, otherwise, it indicates a wrong prediction.

We apply our proposed tracker on the synthetic video sequences. The prediction rate

and error bar with increasing number of target objects is shown in Fig. 6.7. Note

that, the tracking performance stabilizes beyond 5 target objects.

To fully examine the formulation of force model, we test two different force func-

tions on synthetic data, specifically the step function and linear function against the

default exponential function:

linear(φ−(i→ j)) =

∣∣∣∣F r ∗ (rij − dijb
)

∣∣∣∣uji,
linear(φ+(i→ j)) =

∣∣∣∣F a ∗ (dij − rijb
)

∣∣∣∣uij ,

step(φ−(i→ j)) =



0 if rij − dij > b

(F r ∗ 1
3)uji if b ≥ rij − dij > b ∗ 2

3

(F r ∗ 2
3)uji if b ∗ 2

3 ≥ rij − dij > b ∗ 1
3

F ruji if b ∗ 1
3 ≥ rij − dij > 0
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step(φ+(i→ j)) =



0 if rij − dij > b

F auij if b ≥ rij − dij > b ∗ 2
3

(F a ∗ 2
3)uij if b ∗ 2

3 ≥ rij − dij > b ∗ 1
3

(F a ∗ 1
3)uij if b ∗ 1

3 ≥ rij − dij > 0

where the parameters are same as Eq. 6.3 and Eq. 6.4. Along with different social

force functions, we also use a smoothing window and apply the most frequent value

filter to reduce the frequency of changes in the predicted interaction mode. Our

model predicts the position of a tracked object based on predicting the social mode

for each frame in the video. Nonetheless, it is difficult to imagine that people would

change their intent, and as a result their motion direction, at each time step. It is

hence reasonable to assume that the intent and thereby the predicted social mode

under the model would remain unchanged over short time intervals. To enforce this

notion, we use the smoothing window of size T , which is measured in the number of

frames. Evaluating across all video sequences, the optimal window size are T = 16

for exponential function (Fig. 6.8), T = 12 for step function, and T = 3 for linear

function. The comparison of different functions over corresponding optimal window

size are shown in Fig. 6.9. From the accuracy curve, we found the force formulation

of exponential function results in the most robust prediction performance.

6.4.1.2 Tracker performance in real scene

To validate the result of predication accuracy on real scene, we compare SIMT with

three variants that are “SIMT with optimal window” (WSIMT), “SIMT with linear
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Figure 6.4: 3D view image of synthetic scene.

Figure 6.5: Trajectory sample of video sequences with synthetic object interaction.
X and Y axes are width and length in image coordinate and the unit is pixels.
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Figure 6.6: Comparison between interaction prediction and ground truth. Red color
indicates repulsion effect, green color indicates attraction effect, black indicates there
is no interaction.
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Figure 6.7: Prediction rate of the exponential function with error bar for different
classes.
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Figure 6.8: Prediction accuracy of the exponential function under different smoothing
windows.

Figure 6.9: Prediction accuracy of optimal smooth window Vs Different social force
function.
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social force and optimal window” (LnrWSIMT), and “SIMT with step social force

and optimal window” (StpWSIMT). Note here that all the trackers use only two so-

cial effects (γ̂=attraction or repulsion). We use a deterministic strategy that chooses

the prediction position of smoothed intent instead of MAP estimation results (Eq.

6.6) when the likelihood of MAP results is under a preset threshold. The results

on real scenes are shown in Table 6.3 and Table 6.4. StpWSIMT and LnrWSIMT

perform worse than SIMT and WSIMT methods, which indicates that intent force

in the form of exponential function capture the change of social interaction more

accurately. Further, WSIMT outperforms SIMT in terms of MOTP, which means

that our smoothed prediction of social interaction mode provides better guidance of

human motion and results in better localization in real scenario as shown in Figure

6.10. Overall evaluation on real scenes and synthetic data shows that exponential

force function is better over other social force functions and smoothing is better over

no smoothing.

Method MOTP MISS FP IDSW MOTA
BEHAVE Seq#1

SIMT 3.62 0.00 % 0.00 % 0 100%
WSIMT 2.67 0.00 % 0.00 % 0 100%
LnrWSIMT 5.54 2.21 % 2.21 % 1 95.25%
StpWSIMT 5.47 1.83 % 1.83 % 1 96.01%

EPFL Seq#1
SIMT 2.71 0.00 % 0.00 % 0 100%
WSIMT 2.62 0.00 % 0.00 % 0 100%
LnrWSIMT 2.85 9.86 % 9.86 % 0 80.28%
StpWSIMT 2.26 10.14 % 10.14 % 0 79.72%

QIL Seq#1
SIMT 4.67 0.32 % 0.32 % 0 99.36%
WSIMT 4.01 0.95 % 0.95 % 0 98.10%
LnrWSIMT 2.77 6.08 % 6.08 % 1 87.79%
StpWSIMT 2.89 2.00 % 2.00 % 0 96.00%

Table 6.3: CLEAR MOT metrics of SIMT, WSIMT, lnrWSIMT, and StpWSIMT.
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Figure 6.10: WSIMT Vs SIMT.

6.4.2 Social interaction activity analysis

To access the tracking ability and to verify the effectiveness of social effects pre-

diction, we examine our model on common social interaction activity similar as to

ones in [56]. We use the our proposed tracker WSIMT-3E, which uses γ (3 social

effects) and smoothing window. We create a synthetic experiment dataset, which

includes six categories: walking together (Walk), passing (Pass), spreading (Spread),

following resulting in walking together (Follow→Walk), following resulting in pass-

ing when the followed subject is slower than the other (Follow→Pass), and following

resulting in an increasing separation between subject when the followed subject is

faster than the other (Follow→Lost). Examples of 4 of these behaviors are shown in

Fig. 6.11. The motion speed of synthetic objects is randomly selected from human

normal walking speed 0.8− 1.8 m/s. Spreading activity involved 3 − 5 objects and
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Method MOTP MISS FP IDSW MOTA
BEHAVE Seq#2

SIMT 3.21 0.00 % 0.00 % 0 100%
WSIMT 3.00 0.00 % 0.00 % 0 100%
LnrWSIMT 5.36 8.41 % 8.41 % 0 83.18%
StpWSIMT 3.30 0.00 % 0.00 % 0 100%

EPFL Seq#2
SIMT 1.22 0.00 % 0.00 % 0 100%
WSIMT 1.84 0.00 % 0.00 % 0 100%
LnrWSIMT 2.23 9.37 % 9.37 % 0 81.26%
StpWSIMT 2.32 9.37 % 9.37 % 0 81.26%

QIL Seq#2
SIMT 4.43 0.00 % 0.00 % 0 100%
WSIMT 3.44 0.00 % 0.00 % 0 100%
LnrWSIMT 3.41 0.00 % 0.00 % 0 100%
StpWSIMT 3.57 0.00 % 0.00 % 0 100%

Table 6.4: CLEAR MOT metrics of SIMT, WSIMT, lnrWSIMT, and StpWSIMT.

the rest involved two objects. We followed similar scene and object initialization set-

tings as [56] and generated the video sequences automatically. The generated videos

are selected to fit our predefined six activity categories and 10 video sequences were

synthesized for each activity. To show the effectiveness of social interaction based

motion prediction, we replace the motion model Eq. 6.8 with auto regressive motion

model [50] while rest of the algorithm was unchanged. The auto regressive motion

model represents the human motion as a Gaussian process rather than human in-

teraction. Due to the simple appearance and motion in this synthetic experiment,

we evaluated the performance under three sampling settings to highlight the effect

of motion model in which the iteration of IMCMC is set to be 50, 250, and 1000,

respectively. We run both trackers on synthetic videos and the tracking accuracy

and motion prediction precision are measured. The motion prediction precision is

defined as the nearest predicted position from groundtruth in the motion models for

each objects and the smaller value of precision represents the lower search state space
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Activities Iteration 50 Iteration 250 Iteration 1000
WSIMT-AR WSIMT-3E WSIMT-AR WSIMT-3E WSIMT-AR WSIMT-3E

Walk 4.05 % 4.24 % 97.90 % 97.01 % 100 % 100 %
Pass 66.91 % 72.03 % 100 % 100 % 100 % 100 %
Spread 31.13 % 32.11 % 26.51 % 57.45 % 78.11 % 100 %
Follow→Lost 18.79 % 29.53 % 100 % 100 % 100 % 100 %
Follow→Walk 11.36 % 18.89 % 86.44 % 84.02 % 100 % 100 %
Follow→Pass 6.99 % 9.05 % 75.72 % 76.46 % 100 % 100 %

Table 6.5: Tracking accuracy of synthetic interaction activities. Note that, higher
values indicate better accuracy.

Activities Iteration 50 Iteration 250 Iteration 1000
WSIMT-AR WSIMT-3E WSIMT-AR WSIMT-3E WSIMT-AR WSIMT-3E

Walk 14.31 13.78 7.05 6.42 6.08 5.07
Pass 3.82 3.56 3.22 3.01 5.07 3.02
Spread 9.60 7.67 8.72 8.50 4.57 3.67
Follow→Lost 9.27 8.14 5.52 4.56 5.82 4.30
Follow→Walk 11.93 9.39 5.57 4.39 5.26 3.98
Follow→Pass 14.42 15.30 6.16 5.39 6.03 4.47

Table 6.6: Prediction precision of synthetic interaction activities. Note that, lower
values indicate better precision.

for sampling stage. The comparison of accuracy and precision is provided in Table

6.5 and Table 6.6, respectively. Note here that the precision value only includes the

results of correct tracking and is measured in pixel. All the data shown are average

value on ten videos sequences of each category. “WSIMT-AR” represents the variant

of WSIMT-3E with auto regressive model. The results show the accuracy improves

as the iteration number increases and WSIMT-3E is outperform WSIMT-AR in most

of the cases. Comparison of precision results clearly shows that WSIMT-3E gives

informative prediction of the underlying social effect since the tracker’s prediction is

closer to the real state of targets, which then reduces the search space in the sampling

process.
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(a) following (b) walking together

(c) passing (d) spreading

Figure 6.11: Typical scenarios for atomic social interaction activity.
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6.4.3 Comparison with various trackers

We evaluated the proposed tracker WSIMT and WSIMT-3E across multiple datasets

and compared against several popular visual trackers. Specifically, we compare the

tracking results of our method with those of boosted particle filter (BPF) tracker [47],

a standard MCMC particle filter tracker [36, 50], and the Visual Tracking Decom-

position (VTD) tracker [39]. We also have implemented another tracker which keeps

the same tracking framework as ours but replaces the decomposed social interac-

tion model with linear trajectory avoidance model (WSIMT-LTA) [49]. Since the

standard MCMC particle filter only uses a single Markov Chain, we perform N ∗M

iterations of the MCMC tracker where N is the maximum number of Markov Chains

and M is the number of iterations used in our method. All the trackers are initial-

ized manually by specifying a bounding box in the first frame and data association

is entirely based on the generative observation model without any dynamic update.

To initialize the social interaction model, we assume that a pedestrian has a

private sphere of radius equal to 0.2 m and a mass of 80 kg. The magnitude of social

force is 500 N and the boundary is set to be 3 m. The tracking cycle is equal to

the discrete time interval ∆t according to every video sequence’s frame rate. The

variance in Eq. 6.9, σ2, is set to 2 for all the experiments. The parameters are listed

in Table 6.1.

Across all six video sequences, exhibiting varying environments, WSIMT-3E suc-

cessfully tracked all pedestrians. An illustrative example from one of the “BEHAVE”

sequences is shown in Fig. 6.12. This scene shows two pedestrians approaching a
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third and eventually forming a group. Four representative frames from each algo-

rithm’s tracking results are shown. The proposed tracker and BPF track all pedes-

trians well before the three pedestrians start exhibiting group interaction. However,

only WSIMT-3E continues tracking successfully through the group interaction even

though there is significant occlusion. The other two trackers fail due to misleading

background and poor image quality. Similar observations can be made for the results

from the video sequences in the “EPFL” dataset as Fig. 6.14. Once again the MCMC

and the VTD tracker failed early due to complex background and occlusions. BPF

tracked well before the occurrence of partial occlusions. In contrast, WSIMT-3E

tracks the occluded pedestrians even through abrupt motion changes due to robust

prediction based on accountable social interaction modes. Fig. 6.16 shows four rep-

resentative frames of each algorithm’s tracking results from “QIL” dataset. Due to

poor image quality, similar appearance among pedestrians, and partial occlusions,

MCMC and VTD trackers lose track of several pedestrians. WSIMT-3E and the

BPF tracker successfully localize all pedestrians correctly through the video. How-

ever, overall, WSIMT-3E exhibits better tracking performance compared to the BPF

tracker. Fig. 6.13,6.15,6.17 show the predicted social effects of each social links for

the pedestrians with arrow.

To quantitatively compare the result under different scenarios, we manually la-

beled the ground truth in the six video sequences. Tables 6.7, 6.8, 6.9 present the

results of all five algorithms for each of the video sequences from the “BEHAVE”,

“EPFL”, and “QIL”, respectively. WSIMT-3E outperforms all the other trackers in
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terms of miss rate, false positives rate and ID switches. In terms of MOTP, WSIMT-

3E outperforms the other trackers in three video sequences and achieves the second

best in three other video sequences. Overall, WSIMT-3E tracks multiple pedestrians

more robustly by leveraging individual social interaction modes. The results indicate

that the improved motion model also contributes to better localization accuracy. Fur-

ther, WSIMT-3E improves on precision over WSIMT, which indicates that including

the non-interaction social effect within the models leads to better target localization.

Method MOTP MISS FP IDSW MOTA
Seq#1

BPF 6.48 54.49 % 54.49 % 0 -8.99 %
MCMC 3.86 29.28 % 29.28 % 0 41.44 %
VTD 5.46 44.64 % 44.64 % 12 7.54 %
WSIMT-LTA 2.01 31.30 % 31.30 % 0 37.40 %
WSIMT 2.67 0.00 % 0.00 % 0 100 %
WSIMT-3E 2.07 0.00 % 0.00% 0 100 %

Seq#2
BPF 3.14 18.21 % 18.21 % 0 63.58 %
MCMC 4.99 26.65 % 26.65 % 43 20.33 %
VTD 2.60 47.93 % 47.93 % 17 -14.71 %
WSIMT-LTA 3.08 0.00 % 0.00 % 0 100 %
WSIMT 3.00 0.00 % 0.00 % 0 100 %
WSIMT-3E 2.67 0.00 % 0.00 % 0 100 %

Table 6.7: BEHAVE dataset results.

Method MOTP MISS FP IDSW MOTA
Seq#1

BPF 4.64 8.92 % 8.92 % 0 82.16 %
MCMC 3.97 27.48 % 27.48 % 0 45.04 %
VTD 4.93 37.12 % 37.12 % 17 24.14 %
WSIMT-LTA 1.22 31.44 % 31.44 % 0 37.12 %
WSIMT 2.62 0.00 % 0.00 % 0 100 %
WSIMT-3E 2.13 0.00 % 0.00 % 0 100 %

Seq#2
BPF 3.58 9.57 % 9.57 % 0 80.86 %
MCMC 14.53 50.43 % 50.43 % 5 -2.32 %
VTD 3.37 38.55 % 38.55 % 2 22.61 %
WSIMT-LTA 5.04 14.04 % 13.16 % 5 71.35 %
WSIMT 1.84 0.00 % 0.00 % 0 100 %
WSIMT-3E 1.71 0.00 % 0.00 % 0 100 %

Table 6.8: EPFL dataset results.

106



Figure 6.12: The tracking results comparison for selected frames from BEHAVE
dataset: BPF (row1), MCMC (row2), VTD (row3), and WSIMT-LTA (row4)
WSIMT-3E (row5).
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(a) (b)

(c) (d)

Figure 6.13: The predicted social effects of WSIMT-3E for selected frames from
BEHAVE dataset.
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Figure 6.14: The tracking results comparison for selected frames from EPFL dataset:
BPF (row1), MCMC (row2), VTD (row3), and WSIMT-LTA (row4) WSIMT-3E
(row5).
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(a) (b)

(c) (d)

Figure 6.15: The predicted social effects of WSIMT-3E for selected frames from
EPFL dataset.
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Figure 6.16: The tracking results comparison for selected frames from our dataset:
BPF (row1), MCMC (row2), VTD (row3), and WSIMT-LTA (row4) WSIMT-3E
(row5).
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(c) (d)

Figure 6.17: The predicted social effects of WSIMT-3E for selected frames from our
dataset.
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Method MOTP MISS FP IDSW MOTA
Seq#1

BPF 5.89 1.64 % 1.64 % 1 94.66%
MCMC 12.85 26.39 % 26.39 % 122 39.20%
VTD 8.57 43.01 % 43.01 % 17 10.47%
WSIMT-LTA 7.96 23.69 % 23.69 % 0 52.62%
WSIMT 4.01 0.95 % 0.95 % 0 98.10%
WSIMT-3E 3.88 0.92 % 0.92 % 0 98.16 %

Seq#2
BPF 6.20 0.00 % 0.00 % 0 100%
MCMC 3.95 22.25 % 22.25 % 0 55.50%
VTD 10.18 30.47 % 30.47 % 353 23.88%
WSIMT-LTA 3.51 7.78 % 7.78 % 0 84.44%
WSIMT 3.44 0.00 % 0.00 % 0 100%
WSIMT-3E 3.09 0.00 % 0.00 % 0 100%

Table 6.9: QIL dataset results.
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Chapter 7

Conclusion and Future Work

7.1 Summary of Work

We have proposed four models for multi-person tracking, each of which addresses

one of open challenges discussed in Chapter 2. The key contribution are summarized

below:

1. A novel ensemble framework. The framework leverages the redundancy and

diversity between tracking and detection. Association candidates in this inte-

grated model come from independent trackers and object detector. The best

candidate is selected based on a score function that integrates classification

confidence, appearance affinity, and smoothness constraints imposed using ge-

ometry and motion information. Model parameters of the score function are
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discriminatively trained. In order to improve the detection confidence in com-

plex scenes, the framework incorporates an additional target classifier that is

also trained discriminatively.

2. A novel visual perception model. With novel visual perception model, we pre-

sented a tracking method using an attentive vision feature where motion anal-

ysis is performed in the first-person view. The attentive vision is created from

virtually reconstructed scene. A visual attention map is generated based on

attentive vision mechanism, including both static and dynamic components.

The most feasible path taken by the person is searched and decided from

this constructed map. The predicted motion direction is integrated into data-

association tracking with color and motion features. The association is solved

by a greedy algorithm.

3. A hierarchical group structure preserving object tracking method. The method

leverages the group structure to identify the relationship among tracked ob-

jects. Inter-group and intra-group relationship is modeled as a two-layer graph

structure. The proposed structure model is integrated with HOG feature and

solved using dynamic programming. The group structure and parameters are

initialized and updated continuously using social discovery. The proposed

method enables tracking of pedestrians in complex scenes and shows the ad-

vantage of the two-layer graph structure in tracking scenarios over single-layer

graph structure.

4. A new social interaction based tracking method. The method leverages the
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social interaction decomposition to approximate a broader set of human inter-

action behaviors in unconstrained environments. To the best of our knowledge,

this is the first time the social force model has been extended to simultane-

ously model multiple interaction behaviors in human tracking. The proposed

dynamic model is decomposed through the construction of multiple basic track-

ers, each representative of a motion model defined by the specific social inter-

action mode. An IMCMC framework is used to combine the predictions from

the basic trackers to find the best state at each time step.

7.2 Future Work

In our work, we have demonstrated the potential of ensemble of tracking and detec-

tion, visual perception modeling, hierarchical group structure and social interaction

based tracking to boost multi-person tracking performance. Following are some of

the future directions we taken from this work:

1. Use other machine learning techniques to better combine the tracking and

detection by estimate the contribute of different feature precisely. The per-

formance of the algorithm could be improved if we enhance the discriminative

model for visual matching in the tracker by on-line metric learning.

2. Explore more optimization strategies for data association. The methods from

linear and discrete optimization may contribute to better tracking performance

compared with greedy search.
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3. Explore the ability to learn the number of layers in group structures automat-

ically and find optimal ways to model group graphs. The hierarchical group

structure can be extended to more than two layers that could be derived op-

timally based on the result of human detection or group detection. Further,

different ways to construct the graph can be further evaluated to improve the

performance.

4. Use data mining of human motion history to get the basic social effects for

variant scene. The basic social effects is hypothesized based on heuristic un-

derstanding of human interactions. The ability to learn them automatically

can be explored for various scenario.
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