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Intrinsic high-frequency neural activities have been observed in the vi-
sual system of several species, but their functional significance for vi-
sual perception remains a fundamental puzzle in cognitive neuroscience.
Spatiotemporal integration in the human visual system acts as a low-pass
filter and makes the psychophysical observation of high-frequency activi-
ties very difficult. A computational model of retino-cortical dynamics (RE-
COD) is used to derive experimental paradigms that allow psychophysi-
cal studies of high-frequency neural activities. A reduced-parameter ver-
sion of the model is used to quantitatively relate psychophysical data col-
lected in two of these experimental paradigms. Statistical analysis shows
that the model’s account of the variance in the data is, in general, highly
significant. We suggest that psychophysically measured oscillations re-
flect intrinsic neuronal oscillations observed in the visual cortex.

1 Introduction

In 1912, Fröhlich made the “assumption that the sense organs . . . respond
to stimuli with rhythmical excitations” (cited in Ansbacher, 1944). He dis-
tinguished between rhythmic responses to nonrhythmic stimuli (intrinsic
oscillations) and rhythmic responses to rhythmic stimuli (entrained oscilla-
tions). Since then, electrophysiological recordings have revealed oscillatory
activities of both types in the visual system of several species (Başar & Bul-
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lock, 1992). The role of intrinsic oscillations in visual perception remains a
fundamental puzzle in cognitive neuroscience. It has been suggested that
temporal coordination of rhythmic activity can serve as a neural code un-
derlying visual awareness, focused arousal, attention, and feature binding
(Milner, 1974; von der Malsburg, 1981; Sheer, 1984; Eckhorn et al., 1988;
Gray & Singer, 1989; Crick & Koch, 1990; Llinas, 1992; Engel, Fries, Konig,
Brecht, & Singer, 1999). Tests of these proposals yielded controversial re-
sults (Fahle & Koch, 1995; Kiper, Gegenfurtner, & Movshon, 1996; Leonards,
Singer, & Fahle, 1996; Blake & Yang, 1997; Elliott & Müller, 1998; Alais,
Blake, & Lee, 1998; Usher & Donnelly, 1998). One common aspect of these
studies was the use of entrained oscillations. However, the limitation of en-
trained oscillations in probing the functional roles of intrinsic oscillations
has been highlighted (Fahle & Koch, 1995; Leonards et al., 1996; Blake &
Yang, 1997).

How can the intrinsic dynamics of the visual system be studied psy-
chophysically? The complete dynamics of a linear time-invariant (LTI) sys-
tem can be determined by its impulse response in the time domain or, equiv-
alently, by its transfer function in the frequency domain. This LTI method-
ology has been applied to the human visual system, with the finding that
the morphology of the estimated impulse response depends strongly on
stimulus parameters, such as size, luminance, and adaptation level (Kelly,
1961; Ikeda, 1986; Georgeson, 1987; Manahilov, 1995). This is expected from
the fact that the human visual system is nonlinear and time variant. Early
phenomenal observations in response to static or moving stimuli indicated
a repetitive aspect of perception for stimuli well above detection threshold,
possibly reflecting high-frequency oscillations (Bidwell, 1899; McDougall,
1904). However, the human visual system is known to integrate signals over
space and time (Davson, 1990). This integration would act as a “low-pass”
filter and make the psychophysical observation of high-frequency oscilla-
tions difficult.

A first approach to bypass the integration stage would be to obtain
an independent estimate of the integration dynamics and to process the
data with an inverse filter of the integration stage. However, the nonlin-
ear and time-varying nature of the visual system, coupled with the dif-
ficulties in isolating the integration process, make the estimation of this
inverse filter a challenging problem. Moreover, because the inverse filter
would be essentially a high-pass filter, it would be extremely sensitive to
noise.

A second approach would be to design a stimulus paradigm that leads
to interactions between the neural responses before the integration stage. If
these interactions result in modified activities that reflect the intrinsic oscilla-
tions even after the integration stage, then one could relate the psychophys-
ically measured performance to the underlying intrinsic neural activity. In
this study, we follow the second approach.
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2 General Architecture of the RECOD Model

A model of retino-cortical dynamics (RECOD) (Öğmen, 1993), whose gen-
eral structure is shown in Figure 1, constitutes the theoretical basis of our
study.

The primate retina contains two major populations of ganglion cells: one
population with fast phasic (transient) responses and a second population
with slower tonic (sustained) responses (e.g., Gouras, 1968; De Monasterio
& Gouras, 1975; Croner & Kaplan, 1995; Kaplan & Benardete, 2001). The
lower two ellipses in Figure 1 represent these two populations of retinal
ganglion cells in our model. The typical responses of these neurons to a pulse
input are shown in the figure (denoted by R). These populations project to
distinct layers of the lateral geniculate nucleus (LGN), forming two parallel
afferent pathways (the magnocellular and the parvocellular), as shown in
the figure. In turn, magnocellular and parvocellular pathways form the
primary inputs of different visual areas subserving various functions, such
as the computation of motion, form, and brightness (Livingstone & Hubel,
1988). However, at the cortical level, these two pathways interact (Van Essen,
Anderson, & Felleman, 1992) and the loci/degree of their interactions are
not fully established (Sincich & Horton, 2002).

The model uses a lumped representation for the cortical targets of mag-
nocellular and parvocellular pathways. The cortical targets of the magnocel-
lular pathway represent the areas that play a major role in the computation
of motion and temporal change. The cortical targets of the parvocellular
pathway represent the areas that play a major role in the computation of
dynamic form and brightness (see the upper ellipses in Figure 1). In terms
of cortical interactions between these pathways, the model postulates re-
ciprocal inhibition, as shown by the arrows between the upper ellipses in
the figure. The lumped representation for the areas involved in the com-
putation of dynamic form and brightness contains recurrent connections
(not shown in the figure) to represent the extensive feedback observed in
postretinal areas (Van Essen et al., 1992). This recurrent circuit produces
oscillatory responses (denoted by P in the figure). As noted, oscillatory re-
sponses have been observed in the visual system of several species, ranging
from invertebrates to vertebrates (Başar & Bullock, 1992). Oscillatory activ-
ities are ubiquitous in human electroencephalograms (EEGs) (Başar, 1998).
Oscillatory activities have also been recorded intracerebrally in the primate
visual cortex (Doty & Kimura, 1963; Maunsell & Gibson, 1992; Livingstone,
1996; Friedman-Hill, Maldonado, & Gray, 2000; Maldonado, Friedman-Hill,
& Gray, 2000; Fries, Reynolds, Rorie, & Desimone, 2001; Rols, Tallon-Baudry,
Girard, Bertrand, & Bullier, 2001).

To link neural responses to visual perception, the model postulates that
the oscillatory activity is temporally integrated (�P in Figure 1) according to
the psychophysically determined temporal-integration characteristics of the
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Figure 1: A schematic representation of the pathways and the neural popu-
lations in the retino-cortical dynamics (RECOD) model. The open and filled
triangular symbols depict excitatory and inhibitory interactions, respectively.
The lower two ellipses correspond to populations of retinal ganglion cells with
fast-phasic (transient) and slow-tonic (sustained) response properties. The typ-
ical responses (denoted by R) of these neurons to a pulse input are shown in the
figure. The upper-right ellipse represents the postretinal areas that play a major
role in determining the perceived form and brightness of stimuli. It contains in-
ternal recurrent connections (not shown in the figure) and produces oscillatory
responses (denoted by P in the figure). According to the RECOD model, the ma-
jor excitatory drive for these neurons comes from sustained retinal ganglion cells.
The upper-left ellipse represents a population of neurons that encode temporal
change and motion characteristics of stimuli. Their response is transient (de-
noted by T in the figure). The model includes reciprocal inhibitory interactions
between neurons in the transient and the sustained pathways. In particular, it is
suggested that inhibitory signals from the afferent transient pathway are used
to inhibit or reset the activities in the recurrent loops of the sustained pathway.
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human visual system1 and that this temporally integrated activity underlies
the perception of brightness and form.

3 Prediction of the RECOD Model for Metacontrast Masking

Metacontrast masking is an experimental paradigm that is widely used
to probe the dynamics of the visual system, typically within the context of
nonlinear models (Breitmeyer, 1984; Bachmann, 1994; Breitmeyer & Öğmen,
2000). In this paradigm, the visibility of a target stimulus is measured in the
presence of a spatially neighboring but nonoverlapping mask stimulus. The
mask stimulus is turned on after the target stimulus with a delay between
the onset of mask and target, called the stimulus onset asynchrony (SOA)
(see Figure 2). Due to the interactions between the responses generated by
the target and mask stimuli, the visibility of the target is affected by the mask
stimulus. Based on extensive experimental studies, metacontrast masking
functions (visibility of the target as a function of SOA) have been categorized
into two general types: type A (monotonic), where peak masking occurs at
SOA = 0, and type B (nonmonotonic or U-shaped), where peak masking
occurs at a positive value of SOA (Breitmeyer, 1984; Bachmann, 1994). An
analysis of the RECOD model in the context of metacontrast masking pro-
duced a novel prediction: that spatiotemporally localized (briefly flashed
dots) suprathreshold stimuli should produce a new type of metacontrast
masking function that exhibits gamma range (30–70 Hz) oscillations (Pu-
rushothaman, Öğmen, & Bedell, 2000). The metacontrast stimulus is shown
in Figure 2, and the prediction of the model is illustrated in Figure 3A.

The plots at the top of Figure 3A depict the postretinal transient activities
that the target (T) and the mask (M) would generate if they were presented
in isolation. The triangle with the dashed pattern depicts the fast transient
response in postretinal areas driven by the magnocellular pathway and
the sawtooth-shaped activity depicts the oscillatory response in postretinal
areas driven by the parvocellular pathway. The arrows between activities

Figure 1: continued. The model also postulates that the oscillatory activity is
temporally integrated (�P) according to the temporal integration characteristics
of the human visual system prior to the perception of brightness and form and
that this temporally integrated activity underlies the perception of brightness
and form. A detailed description and formal equations of the model can be
found in Purushothaman, Öğmen, Chen, and Bedell (1998) and Purushothaman,
Öğmen, and Bedell (2000).

1 �P in Figure 1 represents the stage of integration that occurs after the generation of
oscillatory activities in postretinal areas that determine perceived brightness and form.
Integration also occurs at earlier levels, for example, as indicated in Figure 1 by the sluggish
response of retinal-sustained neurons to a pulse input.
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Figure 2: Stimulus for the metacontrast experiment. On each trial, the target
was presented 4.5 min arc to the left or the right of a fixation dot, and the mask
was presented on the opposite side. Note that in each trial, the fixation dot was
turned off 200 ms before the first stimulus was presented.

illustrate the inhibitory interactions between the transient and oscillatory
activities. When the SOA is such that the mask-generated transient activity
overlaps in time with the bursting phase of the target-generated oscillatory
activity (SOA1, on the left), this burst of activity will be suppressed due to the
inhibition exerted by the transient activity. This will cause a decrease in the
integrated activity generated by the target. As a result, the visibility of the
target will decrease for SOA1, as shown in the metacontrast function at the
bottom of the figure. When the SOA is such that the mask-generated tran-
sient activity occurs between two bursting phases of the oscillatory activity
(SOA2, on the right), inhibition will not suppress significantly the oscilla-
tory activity in the sustained channel. This will result in a relatively high
level of perceived target brightness, as shown in the metacontrast function
at the bottom of the figure.
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Figure 3: Graphical illustration of the model predictions for metacontrast mask-
ing. (A) Schematic representation of activities generated by the target (T on the
y-axis) and the mask (M on the y-axis) for two different values of SOA. The
arrow indicates inhibitory interactions. The bottom panel depicts the predicted
metacontrast function. (B) Depiction of the oscillatory activity generated by the
target (T) and the temporally spread transient activity generated by the mask (M)
for spatiotemporally extended stimuli. The transient activity generated by the
mask is spread in time due to the temporal combination of transient responses
generated at the temporal and/or spatial edges of the mask stimulus. The bot-
tom panel illustrates the predicted metacontrast function (from Purushothaman
et al., 2000).
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When a range of SOA values is considered, one can see that the shape
of the metacontrast function will reflect the shape of the oscillatory activity.
In order to suppress selectively the different bursting phases of the oscilla-
tions, the mask-generated transient activity should be relatively brief with
respect to the period of the bursts. We suggest that this can be achieved by
using a spatiotemporally localized stimulus—a small, brief flash. Using a
temporally extended stimulus would generate a more temporally spread-
out transient activity due to the temporal spread of the response compo-
nents generated at the onset and offset of the stimulus. Similarly, using a
spatially extended stimulus would generate a more temporally spread-out
transient activity due to response components generated at the edges of the
mask stimulus when they combine temporally with a delay that depends
on their distance from the target. As a result, spatiotemporally extended
stimuli would generate a masking function with significantly less promi-
nent oscillations, as shown in Figure 3B. It is also important to note that
the sampling of the SOA axis in the experiment should be high enough to
reveal rapid fluctuations in the metacontrast function. The three columns
in Figure 4 show psychophysical metacontrast data from three observers.
The top three rows correspond to three individual runs, and the bottom row
plots the average of these three runs. The magnitude of the metacontrast
functions is variable across observers ranging from about two log units to
one-half log unit. However, as the comparison of the three runs for each sub-
ject shows, the magnitude of the metacontrast function is relatively stable
within each subject. Moreover, all the observers show oscillatory masking
functions. The location of the dips across different runs remains consistent
for observers GP and HO but is less so for observer BG. Statistical analysis of
the average data using the Duncan multiple-range grouping test supports
oscillations in the masking functions of all observers. For observer GP, there
are three statistically significant (p = 0.05) dips, located at 45–55, 65–75, and
85–90 ms. For observer HO, there are four significant dips, located at 40,
50, 60–75, and 85–100 ms. For observer BG, there are two significant dips,
located at 40 and 80 ms.

4 Prediction of the RECOD Model for the Perceived Number of Flashes

An investigation using the metacontrast masking paradigm was the first
step in our approach to study the intrinsic dynamics of the human visual sys-
tem. In this article, we use a related but independent experimental paradigm
in order to establish more firmly and to cross-validate the psychophysical
observation of intrinsic oscillations. All experimental parameters were iden-
tical to those used in the previous metacontrast experiment except that the
target and mask dots were flashed successively at the location of a previously
viewed fixation stimulus, shortly after it was turned off. This paradigm was
shown to produce U-shaped masking functions for stimuli of larger dimen-
sions when the SOA was coarsely sampled (Breitmeyer & Horman, 1981).
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Figure 4: Metacontrast functions for observers GP (left column), HO (middle
column), and BG (right column). The top three rows show individual runs, and
the bottom row plots the average +/− SEM of these three runs. The data in the
left two columns are from Purushothaman et al. (2000).
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To obtain empirical evidence that is independent of our previous study,
we changed the observers’ task from brightness matching to a report of the
perceived number of flashes. Previously, Bowen (1989) showed, with larger
targets and coarse temporal sampling, that for short SOAs, the two flashes
are integrated, and the observers report seeing a single flash. For large SOAs,
there is little interaction between the flashes, and the observers report see-
ing two flashes. However, for intermediate SOAs, observers reported seeing
three (or more) flashes even though physically only two flashes were pre-
sented. Bowen (1989) showed that this surprising finding can be explained
if one assumes multiphasic (oscillatory) responses in the visual system. By
applying the LTI approach and using a single channel conceptualization
of the visual system, he derived an impulse response in the form of an
exponentially damped sine wave with a 10 Hz frequency. Here, we extend
Bowen’s approach using finer sampling of the SOA axis to prevent potential
aliasing effects that would limit the estimate of the oscillation frequency. In
addition, the multichannel structure of the RECOD model produces a novel
prediction for this paradigm, which is illustrated in Figure 5.

The first and the second flash and their resulting activities are depicted
by vertical and horizontal dashing, respectively. The encircled numbers
in each panel show the predicted number of perceived flashes. When the
SOA is short (see Figure 5a), there is no temporal overlap between tran-
sient and sustained activities, and the summed activity of the two flashes
yields a (temporally) single integrated postretinal response. Consequently,
the postretinal responses to the two flashes are fused together, resulting in
the perception of a single flash. As SOA increases, the postretinal activities
of the two flashes gradually become temporally separated (see Figures 5b–
5d). Figures 5b shows an intermediate SOA such that the transient inhibition
from the second flash falls between two bursts in the postretinal response

Figure 5: Facing page. Graphical illustration of the model predictions for the
number-of-flashes experiment. The first and the second flash and their result-
ing activities are depicted by vertical and horizontal dashing, respectively. The
circled numbers in each panel show the predicted number of perceived flashes.
The panels depict increasing values of SOA, with a corresponding to the shortest
and d to the longest SOA. The vertical dashed lines from transient activities to
postretinal oscillatory activities illustrate the time interval during which tran-
sient activities exert their inhibitory influence. When this time interval falls on
an “off-phase” of the oscillation, as in b, the temporal profile of the oscillatory
activity is not significantly modified. When this time interval falls during an
on-phase of the oscillation, as in c, the inhibition suppresses the corresponding
burst and generates a longer temporal gap between the previous and the fol-
lowing bursts. Because of this temporal gap, a decrease in activity persists even
after the integration stage producing a response profile with three temporally
segregated regions.
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to the first flash. Hence, the postretinal response to the first flash remains
relatively unaffected, resulting in two distinct regions in the integrated ac-
tivity and a percept of two flashes. When the SOA is further increased such
that the transient response to the second flash occurs during the on-phase of
the oscillation (see Figure 5c), the corresponding burst is suppressed. This
increases the time interval between the temporally adjacent bursts. This ex-
tended off-phase is preserved in the integrated activity from the first flash,
resulting in two temporally distinct epochs of postretinal activities. Because
the second flash generates an additional temporally separated activity, ob-
servers are predicted to report seeing three flashes. It can be inferred that if
the SOA is gradually increased, the probability of reporting two and three
flashes will alternate temporally following the oscillation pattern of the
postretinal activity. When the SOA becomes large (see Figure 5d), the two
flashes generate transient and sustained activities that no longer overlap
temporally, and the responses to the two flashes will remain distinctly sep-
arate. Therefore, for large SOAs, the model predicts the perception of two
distinct flashes.

Thus, in addition to agreeing with Bowen’s (1989) findings mentioned
above, the model makes the prediction that the shape of the probability
curves for perceiving one, two, and three flashes should depend on the
oscillations observed in the metacontrast masking functions. Note that be-
cause the observersí responses are distributed in three distinct categories in
the number of dots paradigm, oscillations are expected to be less prominent
in each of the probability functions. However, the shape of the probabil-
ity curves should depend on the oscillatory profiles of the metacontrast
functions. To test this hypothesis, we examine whether the model, whose
response profiles are derived from our subjects’ metacontrast data, provides
a statistically significant account of the probabilities of perceiving different
numbers of flashes. While the graphical depiction of the model’s prediction
is intended to convey the main idea, the specific quantitative prediction of
when the observers are expected to report seeing one, two, or three flashes
will depend on the relative strength of each region of the response and how
much a region is temporally separated from other regions. The strength and
separation of the regions, in turn, depend on several parameters, such as
the duration of neural responses, the oscillation profiles, and the latencies
of the signals. In section 6.2, we introduce the metrics used to quantify sig-
nal strength and segregation in order to translate model-generated neural
activities into response probabilities. Furthermore, by incorporating the em-
pirical metacontrast data of the observers directly to the model, we carry
out the quantitative analysis of the data using only four free parameters.

5 Parametrically Reduced Version of the RECOD Model

The RECOD model is defined by a system of nonlinear differential equations
whose parameters reflect neurophysiological properties of the retinocortical
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pathways. A detailed description and formal equations of the model can be
found in Purushothaman et al. (2000) and Purushothaman, Öğmen, Chen,
and Bedell (1998). Because in this study we are considering two psychophys-
ical measures obtained using identical stimulus parameters, with the only
exception of spatial position of the stimuli, we were able to minimize the
number of free parameters involved in curve fitting by using a simplified
version of the model. According to our model, metacontrast masking func-
tions reflect the temporal profiles of postretinal responses for spatiotem-
porally localized stimuli. Consequently, we approximated the postretinal
response to a 10 ms flash of intensity 2.5 log units above detection threshold
by using the metacontrast function of each observer. Thus, if we denote by
ρT(t) the postretinal oscillatory response to the target, this response was set
to

ρT(t) = 1 − M(SOA = t),

where M(SOA) is the normalized metacontrast masking function, so that
the dips in the metacontrast masking correspond to peaks (bursts) in the
postretinal response.2 In the number-of-flashes experiment, the target and
the mask stimuli are flashed at the same spatial location, and the composite
postretinal response to the target and mask stimuli, which were flashed at
the same spatial location, at a given SOA, ρ(t, SOA), was computed as

ρ(t, SOA) = ρT(t) + ρM(t),

with ρM(t) = ρT(t−SOA+φ). The latency of signals in the visual pathways
depends on stimulus parameters (e.g., Mansfield, 1973; Purushothaman,
Patel, Bedell, & Öğmen, 1998; Maunsell et al., 1999). The parameter φ reflects
the decrease in the latency of the second flash due to the facilitation provided
by the first flash. When the transient activity (T in Figure 1) temporally
coincided with the postretinal activity in the sustained pathway, the net
postretinal activity, P(t, SOA), including the inhibitory effect of the transient
activity, was approximated by a complete suppression of activity at that time
instant:

P(t, SOA) = ρ(t, SOA){1 − δ(t − SOA + θ)},

where δ(t) is the Kronecker delta function. The parameter θ reflects the
reduction in latency for the transient activity generated by the second flash.

2 Note that this formulation is not intended to be general but constitutes an approxi-
mation for the experimental conditions and results in hand. For example, in the absence
of masking, the formula yields 0 as the postretinal response and does not correspond to
an uninhibited postretinal response. However, the formula is a valid approximation for
our data, where all observers showed masking effects.
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6 Methods

6.1 Psychophysical Methods. The experiment was performed on the
same set-up used in our previous metacontrast masking experiments (Pu-
rushothaman et al., 2000). All experimental parameters and procedures
were the same except that the two flashes (Target and Mask) were spa-
tially overlapping. The stimuli consisted of 1 arc min diameter dots, set to
a luminance of 2.5 log units above their detection threshold. The dots were
flashed foveally at the center of a homogeneous background field of lumi-
nance 13 cd/m2. The duration of the dot stimuli was 10 ms. The onset of
the second dot was delayed by SOA values that ranged from 30 to 100 ms
in 5 ms steps. To minimize order effects and potential observer biases, the
SOA values were interleaved randomly within each run. The probability of
perceiving one, two, and three or more flashes for each SOA was computed
based on a total of 90 responses collected in three sessions. Data were col-
lected on three observers (GP, HO, and BG, an observer naive to the purpose
of the experiment at the time of data collection). For observers GP and HO,
we used metacontrast data from a previous study (Purushothaman et al.,
2000) and collected only data for the number-of-flashes experiment. For ob-
server BG, we collected in each session both metacontrast and the number-
of-flashes data. The order of the experiments was randomized across three
sessions run on three different days. In the number-of-flashes experiment,
the observers were asked to report, through a joystick, whether they saw
one, two, or three flashes. The details of the metacontrast experiment are
given in Purushothaman et al. (2000).

6.2 Modeling Methods. As explained schematically in Figure 5, the
number of perceived flashes depends on the number of distinct regions
in the integrated postretinal response. In order to quantify this and to con-
vert it to probability measures, we used two indices reflecting the relative
energy and temporal segregation of each region. The postretinal activity
generated by an isolated presentation of a single flash, ρT(t), produces the
perception of a single flash. It served as a reference in the computation of
these indices. The first index is given by

M1(SOA) = �t∈T1P(t, SOA)/�t∈DρT(t, SOA),

where T1 corresponds to the temporal span of the region under considera-
tion and D is the duration of the response to a single flash. The second index
is given by

M2(SOA) = �t∈T1{P(t, SOA) − ρT(t, SOA)}2/�t∈D{ρT(t, SOA)}2.

This provides a normalized measure of the difference between the compos-
ite response in the region under consideration and the reference response
(single flash) and thus provides an indication of the temporal separation
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between regions. The product of these two measures was used as an esti-
mate of that region’s likelihood to produce the percept of a separate flash.
We normalized this product by

L = {M1M2 − min(M1M2)}/ max(M1M2).

At short SOAs, the combined response to the two flashes was considered
in two regions: the first region running from the beginning of the response
to the point at which the transient inhibition had suppressed the response,
and the second region running from that point onward to the end of the re-
sponse. For each region, L was calculated, and the probability of reporting
two flashes was computed by G(S + L1L2), where G and S are linear scaling
parameters. Because at short SOAs, the response consisted of only two re-
gions, the probability of reporting three flashes was 0. Thus, the probability
of reporting one flash was (1 − probability-of-reporting-two-flashes). After
a critical SOA, the combined response to the two flashes starts showing
either two or three distinct regions. This critical SOA depends on the du-
ration D, the location of bursts in ρT(t), and the latency difference between
sustained and transient activities. After that critical SOA, the probability of
reporting one flash became 0. The probability of reporting two flashes was
computed using the same procedure described above, and the probability
of reporting three or more flashes was set to (1 − probability-of-reporting-
two-flashes). The four free model parameters that were customized to fit
each observer’s data are G, S, φ, and θ . Their values are given in Table 1.
Note that all calculations were done in discrete time steps of 5 ms (imposed
by the sampling rate of the metacontrast masking function) and are limited
by this resolution.

7 Results

Psychophysical results for the three observers are shown by the filled squares
in Figures 6, 7, and 8. The averaged probability of perceiving one, two, and
three flashes is shown in separate panels as functions of SOA. For all ob-
servers, the probability of perceiving a single flash decays by an SOA value
of 70 ms. The probability of seeing two flashes starts to increase for SOA

Table 1: Values of the Free Parameters Obtained by Curve Fitting.

Observer G S φ (ms) θ (ms)

GP 2.3 0.06 15 0
HO 8.2 0.01 10 5
BG: Averaged data (Fig. 8) and
runs 1 and 2 in Fig. 10. 4.5 0.04 15 0
BG: Run 3 in Fig. 10. 3.7 0.03 15 0
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Figure 6: The probability of perceiving one (top panel), two (middle panel), and
three or more (bottom panel) flashes as a function of SOA (filled squares) along
with corresponding model predictions (open circles) for observer GP. The data
represent the mean +/− SEM of the three runs.
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Figure 7: Same as Figure 6, for observer HO.
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Figure 8: Same as Figure 6, for observer BG.
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values of 40 ms. For SOA values larger than 50 ms, observers’ responses
comprise one-, two-, and three-flash categories. Moreover, the probability
functions of individual observers are not smooth and exhibit an oscillatory
character. The data averaged across the three observers are shown in Fig-
ure 9. The curves are now much smoother, indicating that the oscillatory
profiles of the three observers are not in phase. For comparison, the data
averaged from the three observers from Bowen’s study are superimposed
on our averaged data. Bowen’s study used a lower sampling frequency of
the SOA axis but covered a wider range of SOA values. The data points
shown in the figure are those that fall into the range used in our study.
Quantitatively, the probability of perceiving one flash decays faster in our
study, which results in a relatively higher probability of two-flash responses
in our data. Three-flash responses are similar. Overall, and notwithstanding
the parametric differences in the two studies, one can see that the two data
sets are qualitatively similar.

Are the oscillations in the probability functions random fluctuations due
to experimental noise, or do they reflect intrinsic oscillations of visual pro-
cesses, as suggested by the model? By using two spatially adjacent dots of
identical characteristics compared to the stimuli used here, we found that
the perceived brightness as a function of SOA exhibits an oscillatory charac-
ter (Purushothaman et al., 2000). If the oscillations were due to experimental
noise, one would expect very little correlation between the oscillations in
the two experimental paradigms, in particular given that the observers’
task was quite different in the two experiments. On the other hand, if the
oscillations reflect a common underlying mechanism, such as intrinsic neu-
ronal oscillations, as suggested by the RECOD model, there should be a
significant correlation between the two data sets. To test this hypothesis,
we established a link between the two data sets: perceived brightness of the
first dot as a function of SOA and the perceived number of dots as a function
of SOA, based on the RECOD model. Model predictions were fitted to the
data by using each observer’s metacontrast masking data and by adjusting
four free parameters (see section 6). The results are shown by the open cir-
cles superimposed to the data for each observer in Figures 6, 7, and 8. For
observer GP, the model is in good agreement with data in both the general
shape and the locations of the peaks.

For one-flash responses, both the data and the model dip at SOA = 50
ms. The data peak at SOA = 55 ms and decay thereafter to a probability
of 0%. The model peaks at SOA = 60 ms and decays thereafter. Note that
all computations were carried out with a 5 ms resolution limit imposed by
the data. For two-flash responses, both the data and the model show peaks
at SOA values of 50 ms, 65 ms, and 90 ms. For three-flash responses, the
model predicts a dip at SOA = 90 ms flanked by two peaks. In the data,
although there is a dip at SOA = 90 ms, the magnitudes of the peaks are
smaller than those in the model. The probability function starts to rise at an
SOA of approximately 60 ms—10 ms earlier than the model.
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Figure 9: The data of Figures 6, 7, and 8 averaged across the three observers
(filled squares) +/− SEM. Open triangles are the data averaged across the three
observers +/− SEM from Bowen (1989).
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For observer HO, there is good overall agreement between the model and
the data, although some discrepancies can be noted. For one-flash responses,
the model predicts a peak at SOA = 50 ms, which is not present in the data.
For two-flash responses, the model predicts two smaller peaks instead of the
larger peak at SOA = 55 ms. There is a good agreement for the location and
magnitude of the peak at 75 ms. For larger SOAs, the model response drops
below the data, and the next peak occurs 5 ms earlier in the model. For three-
flash responses, there is a relatively good agreement for the location of the
peaks, although quantitatively, the model predictions are higher than the
data. For observer BG, while the model predicts well the location of the peak
at SOA = 45 ms for the one-flash responses, it does not capture well the two-
and three-flash responses. Quantitatively, the coefficients of determination
for observers GP, HO, and BG are r2 = 0.82, 0.73, and 0.20, respectively.
The model’s account of the variance in the data is highly significant for
observers GP and HO (F3,26 = 38.67, p = 9.9 × 10−10 and F3,26 = 23.63, p =
1.35 × 10−7, respectively) but not significant for observer BG (F3,26 = 2.23,

p = 0.11).
In order to investigate further the poor performance of the model for

observer BG, we studied whether the unaccounted variance in his data was
attributable to day-to-day variations in his responses. This hypothesis is
suggested by the fact that neuronal oscillations can be modulated, for ex-
ample, by arousal or attention (Molotchnikoff & Shumikhina, 1996; Munk,
Roelfsema, König, Engel, & Singer, 1996; Steinmetz et al., 2000; Fries et al.,
2001) and by our finding that sizable day-to-day variations in the meta-
contrast masking function occur in some observers (see Figure 4; see also
Purushothaman et al., 2000). We considered the data collected on three dif-
ferent days and computed standard errors of the mean (SEM) for each SOA.
As Figures 6, 7, and 8 suggest, the average (across all SOAs) SEM for ob-
server BG is larger than those for the other two observers (average SEMs:
GP: 0.074, HO: 0.058, BG: 0.096).

We took advantage of the fact that for observer BG, the metacontrast
and the number-of-flashes data were collected during each session in an
interleaved fashion. We estimated how much day-to-day variability con-
tributes to the poorer fit for this observer by fitting the number-of-flashes
data collected on a given day using the metacontrast masking data collected
on the same day. As shown in Figure 10, this procedure yields better fits.
The model gives a very good fit to data for runs 1 and 2, especially if we
take into consideration the 5 ms resolution limit of the computations. For
run 1, one-flash responses decay monotonically for both the model and the
data. For two-flash responses, both the model and the data show peaks at
SOA = 55 ms and 80 ms. The data show an additional peak at SOA = 100
ms, which is not present in the model. For three-flash responses, both the
model and the data show a peak at SOA = 60 ms and a dip at SOA = 80
ms. Because the sum of probabilities across one-, two-, and three-flash re-
sponses is 1, the inability of the model to predict the peak at SOA = 100
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Figure 10: The probability of perceiving one (top panels), two (middle panels),
and three or more (bottom panels) flashes as a function of SOA (filled squares)
and the corresponding model predictions (open circles) for observer BG. The
three columns represent the results of three different sessions. The error bars
correspond to estimates based on the binomial distribution. Evaluation of the
fit of the model to the data was conducted by calculating the pooled coefficient
of determination (r2 = 0.46) across the data sets collected on all three days.

ms for two-flash responses causes it to miss the dip at the same SOA for
three-flash responses.

For run 2, the one-flash responses show a dip at SOA = 45 ms and a peak
at 50 ms for both the model and the data. For two-flash responses, both the
model and the data show peaks at SOA = 45 ms and 65 ms. The magnitude
of the second peak is smaller in the model. The data show a third peak
at SOA = 85 ms, which occurs 5 ms earlier in the model. For three-flash
responses, the data show peaks at SOA = 70 ms and 100 ms. The model has
peaks at SOA = 75 ms and 100 ms. For one-flash responses of run 3, while
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the model predicts well the peak at SOA = 45 ms, it predicts an additional
peak at 60 ms, which is not present in the data. For two-flash responses, the
model predicts well the peaks at SOA = 40 ms and 55 ms and the dips at
SOA = 45 ms and 90 ms. The peak at SOA = 75 ms occurs 5 ms earlier in
the model. The model misses the peak at SOA = 95 ms, and the magnitude
of the drop between the peaks at SOA = 55 ms and 75 ms is much larger
in the model than in the data. For three-flash responses, the data show one
peak at SOA = 70 ms and a second at 90 ms. The model has a peak at 65 ms
and a second at 90 ms.

Although the timings of the peaks are close to those observed in the data,
the model does not predict well the magnitude of the peak at 65 to 70 ms.
In addition, the inability of the model to predict the peak at SOA = 95
ms for two-flash responses causes it to miss the dip at the same SOA for
three-flash responses. All three runs taken together yield a coefficient of
determination of r2 = 0.46, and the model’s account of the variance in the
data is now highly significant (F11,78 = 5.98, p = 5.57 × 10−7). Overall, the
model provides a good fit to all our data with the exception of run 3 for
observer BG.

It is interesting to note that for runs 1 and 2, where we found a good
match between the model and the data, the curve fitting used the same set
of parameters. For run 3, where the match was poorer, the fit required a
slightly different set of parameters. However, changing the parameters did
not produce a match comparable to runs 1 and 2. We interpret this failure of
the model as an indication that the model is not a universal approximator
that can fit any set of data. Rather, when the model produces acceptable fits,
it generates a consistent set of parameters.

8 Discussion

By using a computational model of retinocortical dynamics, a statistically
significant correlation is found between oscillatory data obtained in two
similar but independent experimental paradigms. The two authors who
participated in the experiments (GP and HO) were not naive to the purpose
of the experiment; however, their prior knowledge of the hypotheses is
not likely to have influenced their performance, for the order of the SOA
values was completely randomized during the experiment. Although the
observer could clearly distinguish between a “short” and a “long” SOA, it is
highly unlikely that the observer could modulate his performance according
to a complex function of SOA that correlates with metacontrast masking
functions collected in a previous study.

Under normal viewing conditions, observers do not perceive high-freq-
uency oscillations that would result from intrinsic oscillations in the visual
system. As shown in Figures 1 and 5, we suggest that the visual system
filters these intrinsic oscillations through spatiotemporal integration before
a conscious percept is formed. The specific experimental paradigms and
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stimulus conditions used in our studies allow us to reduce the effect of
this spatiotemporal integration and make the putative intrinsic oscillations
measurable through psychophysical methods. Previously, the predictions
of the RECOD model were shown to be in agreement with neurophysiolog-
ical oscillatory data (Purushothaman et al., 2000), suggesting a possible link
between the psychophysically measured oscillations and those observed in
the visual cortex. Combined psychophysical and neurophysiological exper-
iments in behaving animals could assess this link more directly. Our study
does not directly address the question of whether intrinsic oscillations play a
functional role in visual perception. However, methods like those described
here can be applied to test psychophysically the suggested functional roles
of intrinsic oscillatory neural activity, such as in feature binding.
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Purushothaman, G., Öğmen, H., & Bedell, H. E. (2000). Gamma-range oscilla-
tions in backward-masking functions and their putative neural correlates.
Psychological Review, 107, 556–577.
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