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Abstract

Researchers have been continuously applying a wide variety of approaches to un-

derstand vascular adaptation over the past two decades. However, the specific

cause/effect or links between the hemodynamic factors, inflammatory biochemical

mediators, cellular effectors and vascular occlusive phenotype remain unexplained

still today. To explain these biological phenomena, we have introduced a multi-scale

computational framework to systematically test many hypotheses associated with

the vascular adaptation and finally applied this framework to explain some widely

observed clinical and experimental cases. Our framework incorporates the cellular

activities inside the vein graft influenced by the shear stress and tension, which are

two of the most important environmental factors in the vascular adaptation. This is

a hybrid agent based model (ABM) coupled with the partial differential equations

(PDEs) associated with the calculation of the shear stress. Based on the compu-

tational framework, we have designed and developed a modular, adaptive, efficient

and scalable simulation program so that we can explain some specific pattern for-

mations associated with the vascular adaptation by pattern recognition algorithms

of the framework in real time. Finally, we have coupled a genetic algorithm with the

framework to verify the fact that a combination of interesting patterns associated

with the vascular adaptation can be regenerated in a multivariate data analysis en-

vironment. As a result, this research will reduce the gap in understanding different

cases observed in the vascular adaptation.
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Chapter 1

Introduction

In 2009, cardiovascular disease was the underlying cause of death accounted for 34.1%

(871,517) of all 2,371,000 deaths in the United States [1]. Estimated expenditures for

cardiovascular care in 2007 are estimated to exceed $431 billion. Surgical revascular-

ization using autologous vein also remains a frequent used treatment option whereas

427,000 coronary bypass procedures had been performed in 2004 [4]. An increase

in the rate of obesity and diabetes in the United States also suggest substantial in-

crease in the need for these interventions over the next decade. Although there is

a high demand often for these life-saving procedures, their medium- and long-term

durability is not persistent as well. Since many technical approaches for improved

patency have been exhausted, the recent belief has been that the future of enhancing

the durability of these constructions relies in a better understanding of the biology

of the vein graft wall.

The vein grafts are composed of three regions as lumen, intima and media (Figure
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1.1a) at the time of implantation. There are boundaries between the intima and

media and the external surface of the media, known as the internal elastic lamina

(IEL) and external elastic lamina (EEL) respectively, which are a sheet of connective

tissue. Inconsistent growth or shrink of these three regions play the most significant

role in the vascular adaptation.

Vascular adaptation following local injury occurs through a combination of lumen

narrowing (intimal hyperplasia) and wall (inward/outward) remodeling [5]. Over the

past two decades, researchers have applied a wide variety of techniques to understand

neointimal hyperplasia and vascular remodeling in an effort to identify novel thera-

peutic strategies ref [6–13]. However, despite incremental progress over these decades,

specific cause/effect links between hemodynamic factors, inflammatory biochemical

mediators, cellular effectors, and vascular occlusive phenotype remain unknown. Our

hypothesis is that the complex interplay between monocyte biology, local vascular

hemodynamics and the intrinsic wall milieu determines the course of vascular adap-

tation, leading to success or failure following the intervention. We propose here a

computational framework to develop a hybrid agent-based model of vascular adap-

tation following acute intervention.

Our model is consistent with multiple scales in space and time. The continuous

mechanic description of flow and tissue deformation incorporates at the time scale of

second. The spatial resolution is relevant with the density of material, i.e., millimeter

scale. The tissue plasticity is consistent at the spatial scale of the individual cells, i.e.,

micro meter scale. The time scale of tissue adaptation evolves with the order of the

cell cycle expressed in hours. We have used separated and weakly coupled modules to
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Figure 1.1: Histomorphology of a vein graft at implantation (a) and at six months
post-implantation (b). [1]

approximate each scale. The coupling among these modules explain the relationship

between tissue plasticity at the cellular level with environment conditions.

Our implementation is modular, which facilitates the agile development of the

model and starts from the basic mecano-biology principle at the cell level. This im-

plementation will help the theoretician and experimentalist by constructing different

hypothesis and then testing with different sets of input parameters. It also serves

as an analysis tool for the computational scientists and surgeons, where they can

use this framework to update, modify and verify their hypotheses and experiments.

The modular nature of our implementation provides an efficient agile development

of this computational tool, which keeps the research process ongoing in the course

of time. We would like to introduce our framework from the medical challenge at

first, then the description of each module in our framework and the most significant

parameter sets in our model and the procedure to identify them. Finally, we will

present the interesting patterns generated by our framework efficiently with respect

to computational time.
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1.1 A short review

The hallmark of vascular occlusive disease is the specific localization patterns and

focal nature of the disease process (Figure 1.1b). Based on morphologic and me-

chanical studies, arterial adaptation to altered shear stress encompasses two distinct

processes; intimal hyperplasia and wall (inward/outward) remodeling [14]. The mi-

gration of smooth muscle cells (SMC) into the intima with the proliferation and

deposition of extracellular matrix (ECM) defines the characteristics of Intimal hy-

perplasia; resulting in narrowing of the arterial lumen (Figure 1.1b). On the other

hand, the preservation or loss of lumen area through reorganization of the cellular

and extracellular components within the media, plays the most significant role in

remodeling. From the surgical outcome, it is observed that the long term patency

of vein graft implantation can be achieved through the modulation of the mediators

that control the balance between these two processes [15]. The acute transposition

of a vein segment from a low pressure and flow environment to the high pressure and

flow arterial system leads to significant structural changes within the wall. These

changes are characterized by an increase in intimal and medial thickness, which lead

to the burst of smooth-muscle cell proliferation with conversion from a contractile to

synthetic phenotype and the extracellular deposition of type I collagen and proteo-

glycans [16]. These early events in vein graft adaptation frequently continue in an

uncontrolled manner, which leads to severe lumen narrowing and subsequent graft

failure. Recent research results from ref [17–19] suggest that the reductions in local

wall shear have been demonstrated to be critical components leading to accelerated

intimal hyperplasia development, limited outward remodeling and vein graft failure.
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Researchers for several decades have been trying to elucidate this connection between

shear stress and vascular remodeling. From in vitro studies, it has been demonstrated

that the genes important to vascular endothelial physiology such as nitric oxide syn-

thase (NOS), endothelin-1, fibroblast growth factor (FGF), platelet-derived growth

factor (PDGF), thrombomodulin are all influenced by the direct action of shear

stress on endothelial function ref [20–22]. Several candidate of shear stress sensors

in endothelial cells have been postulated, which include integrins, ion channels, G

proteins and MAPK coupled receptors. Acting through a shear stress responsive el-

ement, consisting of a 6-bp core element (GAGACC) in many promoter regions, NF-

B, AP-1, Sp-1, and Erg-1 can be activated by changes in the shear stress ref [20–22].

Work in our laboratory has been focused on identifying the key signaling pathways

that control vascular remodeling in intact vasculature. While we have identified a

handful of mediators (TNF, IL1, MMP-2) [20] to be regulated by flow during early

vein graft adaptation, inhibition of these mediators has failed to influence this re-

sponse significantly. Further underscoring this observation is the recent microarray

studies performed in our laboratory, where the vein grafts exposed to divergent shear

stress, was analyzed for their gene expression patterns. Two central questions re-

garding occlusive adaptations (inward remodeling and intimal hyperplasia) following

vascular intervention remain unanswered:

Why does only a subset of patients following vascular injury demonstrate pathologic

occlusive adaptations leading to lumen narrowing and failure of the intervention,

while other patients undergoing the same therapy exhibit a favorable vessel wall

healing response and preservation of the lumen?
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Why is there substantial regional heterogeneity in vascular repair, such that focal

regions of the vascular wall demonstrate advanced occlusive adaptations while neigh-

boring segments are essentially free of disease?

Based on our ongoing investigations, we have hypothesized that the impact of shear

stress on vascular adaptation to be more complex than can be described through

a limited set of key (i.e., cytokine or signaling mediators). Instead, we present the

evolving concept that the physical and biological environments are implicitly linked

and lead to specific vein-graft phenotypes. Through the sequential process of model

development and refinement, the complex relationships between the physical envi-

ronment and the resulting graft morphology will be characterized. This leads to

the development of a framework to understand vascular adaptation using different

modules as we will explain in the following sections.

6



1.2 Scope and organization

In this subsection, I would like to summarize the contents and organizations of my

dissertation briefly. There are four main sections; each divided into different sub-

sections. The first section introduces the problem domain; our goal and strategy.

The second section advances with our strategy to solve the problem; i.e., framework

development; the modules of the framework and their descriptions mainly. The third

section focuses on the scope of the framework to understand the formation of dif-

ferent patterns of the vein graft. We have introduced comparative analysis along

with graphical presentation to explain our research findings. Finally, the last sec-

tion represents the computational and high performance computing aspects of the

framework.

7



Chapter 2

Framework and Modules

In this section, we will follow up with the modules of the framework. We have already

explained in the previous section that the cells inside the vein graft go through

apoptosis or mitosis affected by the shear stress and tension at the wall. As a result,

there are three main modules here. The agent based module (ABM) explains the

cellular activities i.e., the probability of cell apoptosis/mitosis, cell rearrangement

after apoptosis or mitosis etc. Shear stress and tension can be explained using partial

differential equations (PDEs). So our computational framework uses then a hybrid

model that combines ABM and PDEs. The development of the framework followed

by some hypotheses as we will follow up in the following sections.
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2.1 Hypothesis used to generate the framework

Our hypothesis is based on two simple feedback mechanism (F1, F2) driven by the

blood flow velocity and intramural pressure that compete with wall remodeling to

support the phenomenological description accumulated from years of experiments -

see Figure 2.1. This table helps to understand the vein graft adaptation associated

with shear stress from heuristical and experimental perspective. A scale ranging from

-5 to 5 is used to represent a reduction or increase in the parameter (i.e., intimal

thickness), respectively.

Figure 2.1: Biologic Processes in the Vein Graft Adaptation [2].

(F1) Low shear stress promotes SMC division in the intima, which narrows lumen

and gives intima thickening. As a result, it increases flow and shear stress.

(F2) High tension promotes SMC division in the media, which leads to wall thick-

ening. As a result, this lowers the tension, if the difference between the internal and

external pressure stays constant.

These two feedback mechanisms are nonlinear [2] and dependent on the inflamma-

tion. Inflammation triggers monocytes recruitment at the wall. As a result, this

transforms into macrophage inside the wall. This may trigger SMC cell division and

9



cell apoptosis may promote inflammation, vice versa [9]. Additionally, when shear

stress and tension are large enough, apoptosis may take over cell division [13].

The vein graft goes through local and global adaptation associated with the shear

stress and tension as well. For example, when a carotid lumen gets narrowed with

a stenosis, the adaptation mechanism is such that the reduction of resistance to

flow downstream to compensate for some of the blood flow, decays through the vein

graft. Additionally, some of the blood flow may be rerouted to other carotid by the

mechanism. As a result, a thorough investigation of various scenarios is necessary to

explain a potential spectrum of response of the vein graft.

Figure 2.2: Spatial distribution of cell proliferation and apoptosis in rabbit vein
grafts [3].

We have analyzed our rabbit model of shear-modulated vein-grafting adaptation

Ref [21–24] to understand the response of the vein graft under different biologic

10



processes. The vein grafts were implanted into the arterial environment and ob-

served either in low or high shear conditions (Figure 2.2). The spatial distribution of

cell proliferation and apoptosis in the rabbit vein graft was observed using Bromod-

eoxyuridine (BrdU) incorporation and terminal deoxynucleotidyl transferase (dUTP)

nick end labeling (TUNEL) assays ref [24,25].From both Bromodeoxyuridine(Brdu)

and Tunnel experiments, we find that the the injury at the wall (and EEL)is the

main time dependent factor and somehow related to the production of macrophage

and (MCP1, CCR2, with some delay). Since the vein graft tissue gets repaired in the

course of time, we assume a very fast dynamic for cell mitosis that decays in time.

Cell mitosis rate in the intima has the following assumed formula -see Figure 2.2:

rate of mitosis = function of (time) x exp(-Shear/dist to lumen) x function of (Shear).

Similarly cell mitosis in the media has the following assumed formula - see Figure

2.2:

rate of mitosis = function of (time) x function of (Tension).

Eventually, the transfer of biochemical components and migration of cells through

the elastic membrane that separate the intima from the media, couple these two sub-

domains. As a result, this coupling mechanism requires some sets of rules describing

the cellular activities associated with shear stress and tension in a spatial grid of cell

sites, which can be explained with the agent based model (ABM) as we will follow

up in the next section .
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2.2 Agent-Based Module (ABM)

The ABM is well suited to describe the tissue at a cellular level. This bottom-up

approach provides the foundation of a framework for the implementation of biological

rules that can be explicitly tested using experimental models [3]. On the other

hand, Parial Differential Equations (PDEs) are well suited to describe stress-strain

relationship that defines the environmental condition in our problem. As a result, our

current approach corresponds to a hybrid computational framework that integrates

both ABM and PDE approaches. The ABM is responsible for the cell dynamic, i.e.,

SMC division and apoptosis as well as the ECM production/degeneration by SMC.

This simplest uniform description is in fact a Cellular Automata (CA) [36]. CA

consist of a spatial grid of sites that can take a finite number of discrete values, for

example 0 and 1. Each CA site can evolve in discrete time as a function of the values

in its nearest neighbors. We would like to start explaining ABM in one dimension

at first for better understanding and then illustrate in two-dimensional spaces.

12



2.2.1 One-Dimensional Uniform Cellular Automata Model

We assume a one-dimensional line of CA sites; bounded by the lumen of radius

Rlumen.The EEL is denoted as LEEL.

The time scale is in hour. The algorithm scans each CA site in random spatial

order each hour to decide on their eventual change of state according to the CA rules

that we will define below.CA sites are either SMC or ECM. We seed a priori SMC

and ECM in random order with a prescribed proportion θ that is a fixed number in

(0,1) (Figure 2.3).

All CA rules below will come with probabilities. The model is then stochastic

and we should always present statistical results based on many simulations starting

from the same parameter set.

• SMC dynamic : SMC goes through division or apoptosis with periodicity Tcell

= 12 hours. We choose a priori two parameters (0 < Papoptosis, Pdivision < 1)for the

probability law that drives this cellular process. We start with an initial random

distribution of SMC with initial clock randomly generated in the (0, Tcell) interval.

There is no synchronization between SMC and the number of cell event varies from

one time step to the next one.

Every hour the algorithm checks the internal clock tn of the SMC. We use the

notation a|b for a couple of integers (a,b) to say that a divides b.

If Tcell | tn, then the cell may change state: we generate a random number p =

rand(1) in (0,1).

13



If p < Papoptosis, then the cell goes to apoptosis and disappears from the line of

ABM sites. Since there is no empty space possible for the two neighbor ABM sites

to reconnect.

If p > 1 − Pdivision, then the cell divides and we add in its neighborhood a new

cell that expands the line of ABM sites by one unit. The internal clock of the SMC

and its daughter is reset to 0 otherwise, we just increment the clock of the cell by

one unit.

We define dSMC as the dimension of an SMC in the line of ABM sites and use

dSMC= 1.

Because the ABM is a uniform one-dimensional structure, it is easy to provide

an Ordinary Differential Equation (ODE) that describes the population of SMC. Let

Y n
SMC be the total amount of SMC in the ABM line of sites at time tn (n stands for

the time step expressed in hours). We have

∂YECM

∂tc
= (Pproduction − Pdegradation) YSMC , (1)

where tc is the time scale of division. Obviously, equilibrium corresponds to

Papoptosis = Pdivision (2).

Anything different from (1) and (2) leads to extinction ( Pdivision < Papoptosis ) or

exponential growth (Pdivision > Papoptosis )in this rather simplified model.

• ECM dynamic : ECM is either produced or degenerated by SMC. This process

occurs at a different time scale Tmatrix. Typically, Tmatrix << Tcell and Tmatrix = 2

hours. We assume that ECM does not transform itself or move. Actually, the spatial

14



matching of ECM into ABM units is driven by how much ECM can be produced

by an SMC into Tmatrix hours. The model uses three new parameters (P ∗production,

P 1
degradation, P 2

degradation )to drive the dynamic of the SMC−ECM interaction.

The production of an ECM by an SMC is as follows: every time Tmatrix | tn, we

generate a random number p = rand(1) in (0,1).

If p < P ∗production, then the cell produces an ECM unit and we add in its neighbor-

hood a new ABM site corresponds to this new ECM contribution. The probability

that an ABM site contains an ECM unit disappears by degradation depends on the

number of SMC neighbor surrounding that ECM site as follows:

P 1
degradation = P ∗degradation, P

2
degradation = 2P ∗degradation. (3)

Figure 2.4 shows an illustration of the ABM output after few hours.

In this model ECM has no effect on SMC population besides allowing migration.

The ODE model describing the population dynamic of ECM is as follows:

∂YECM

∂tc
∼= (P ∗production − P ∗degradation) YSMC , (4)

assuming that the population of SMC is stable, we keep the proportion of SMC

versus ECM stable if the number of ECM degradation balances the number of ECM

production. This is an approximation because all these events are not a priori inde-

pendent:

(1− θ)[θ2 2 P ∗degradation + 2θ (1− θ) P ∗degradation] = θ Pproduction. (5)

The above rule gives

2 (1− θ) P ∗degradation = Pproduction. (6)
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We have seen that SMC can go either through exponential growth or extinction

if (2) is not satisfied. Because of the one way coupling between the dynamic of SMC

and ECM, once an SMC disappears, the population of ECM remains identical for

the rest of time.

Figure 2.3: Initial distribution of SMC (circles) and ECM (squares).

This model is driven by the following 4 parameters:

0 < Papoptosis, Pdivision, P
∗
production, P

∗
degradation < 1. (7)

As discussed earlier, we expect the system to have asymptotically constant pop-

ulation of SMC and ECM if (2) and (6) are satisfied. We will define that solution
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Figure 2.4: Sequence of SMC/ECM apoptosis/mitosis.

as the basic solution. We are going to produce a minimum new set of mechanical

environment dependent rules in the ABM to support the phenomenon observed in

the experiments with the rabbit vein graft.
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2.2.2 The Coupling of ABM with Environmental Conditions

The rules of the ABM are as follows:

1. All the probability rules will deviate from the equilibrium relation:

Pdivision = Papoptosis, βP ∗degradation = Pproduction. (8)

where β is adjusted numerically to provide a ”basic solution” such that in

the absence of the influence of any mechanical parameters, this solution keeps

asymptotically the same number of SMC/ECM in each layer (see Appendix).

The basic solution is governed by two parameters:

Pdivision = α1 > 0, Pproduction = α2 > 0. (9)

These two parameters should be adjusted to match the time scale of cell division

and extracellular matrix deposition respectively.

2. All the probability rules are weighted by a time factor that mimic the macrophage

activity:

A(t) = exp−( t−Ti
δTi

)2. (10)

As noticed from Figure 2.1, the macrophage contains growth to reach its max-

imum around time Ti and the decay with time scale δTi. This rules gives two

parameters:

Ti = α3 > 0, δTi = α4 > 0. (11)

The ABM rules depend on mechanical environment quantities and this intro-

duces the influence of spatial location and layer type. We will denote ∆τ as the
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deviation from normal shear stress condition (i.e., δτ = τ − τ0.) Similarly, we

will use ∆σ for tension. We will denote τ̄ , σ̄ as a fixed reference value for shear

stress and tension respectively and they are used to normalize these quantities.

3. The position of internal elastic lamina is driven by a one way flow of SMC in

the lumen direction. The probability of an SMC crossing the IEL is

Pthrough = α5A(t) (1 + α13∆τ(y)/τ̄) (1 + α14∆σr(y)/σ̄), α5 > 0. (12)

Initially, we assume arbitrarily that we have 3 cells in the intima, which is

realistic for the rabbit experiment.

4. Cell division in the intima is influenced by the growth factor that have an

exponential decay in the intima, but regulated globally by the shear stress:

∆τ(y) = ∆τwall exp(−y−Rlumen

α8 dSMC
), (13)

Pdivision = 1 + α6 ∆τ(y)/τ̄
1 + α7 ∆τwall/τ̄

. (14)

and in the media:

Pdivision = α1A(t). (15)

5. Cell apoptosis is regulated by the radial stress in the media. In the intima:

Papoptosis = α1A(t) (16)

and in the media:

Papoptosis = (1 + α9 ∆σr(y)/σ̄). (17)

6. Finally, we will assume that ECM degeneration is regulated by the shear stress

in the intima, and tension in the media in the same abstract form. In the

intima:
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P ∗production = α2 A(t), (18)

P ∗degradation = α2 A(t) (1 + α10 ∆τ(x)/τ̄). (19)

and in the media:

P ∗production = α2 A(t), (20)

P ∗degradation = α2 A(t) (1 + α11 ∆σr(y)/σ̄). (21)

It should be noticed that this set of axioms does not impose which factor

up-regulate or down regulate SMC and ECM dynamic, because the vectors

of parameters (α5, α6, α7, α8, α9, α10, α11, α12, α13, α14) have no predefined sign.

Besides these, all rules compute a deviation from the basic solution. For exam-

ple, this rule does not express a true rate of SMC division, ECM production,

which is not needed. We rather focus on the differences in the rate of gain

or lost that is (Papoptosis − Pdivision) and (P ∗production − P ∗degeneration). A rather

simplified one dimensional model was tested against our experimental data [47]

extensively. However, the result was noisy, since the small number of SMC and

ECM in this one-dimensional model was very small to replicate the experimen-

tal data. As a result, we would like to move on with a two-dimensional model,

which we will follow up in the next subsection.
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2.2.3 A Two-Dimensional Model

We will explain the ABM in two-dimensional spaces here. We can even validate

the model using the histology data coming from the cross section of the vein graft.

The two-dimensional model uses a hexagonal grid of sites divided into three re-

gions; lumen, intima and media (Figure 2.5). The algorithm has the main parameter

framework as it is above. We would like to introduce the main modification in the

algorithm (Figure 2.6) here.

Figure 2.5: Two dimensional hexagonal grid of sites.

• In two-dimensional spaces, there is no unique solution to rearrange the sites of

ABM after an SMC/ECM forms or disappears, because there is a fixed hexagonal

grid for our ABM. Existing models of cell-cell contact interaction have a high level
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of uncertainties and are difficult to calibrate in practice. Our assertion is that this

reorganization on a regular ABM grid should correspond to some minimum of me-

chanical energy required to move the SMC and ECM of the ABM’s representation

of the tissue. We will assume that the new cell (after mitosis), or matrix element

(after deposition) pushes its surrounding elements in the ABM along the shortest

path that leads to an empty space (Figure 2.7). This solution minimizes the number

of SMC/ECM moves on the hexagonal grid.Vice versa, the empty site left by the

apoptosis of a cell or the degradation of a matrix element, gets filled by its surround-

ing elements in a way that leaves no cell empty along the shortest path to an empty

space. It is expected that this reorganization in the tissue might be trapped by some

local optimum minimum path. We introduce some noise in the searching algorithm

so that the founded path is close to the minimum path, but may not necessarily be

the absolute global optimum one.

• In the two-dimensional space model, as opposed to the one-dimensional case,

we should have motion of cells at the interface of the lumen or at the interface with

the vein graft’s surrounding. We should move SMC/ECM at those sites next to

these interfaces that systematically increases contact surface between SMC/ECM

elements (Figure 2.8). This motion is applied at each time step of the algorithm,

i.e., every hour. However, we observe in our simulation that this local procedure does

not preserve the circular shape of the interface as expected resulting in the growth

of some mushroom like structure that are not realistic; in particular for the external

wall.

For the external wall, we assume that the surrounding tissue applies some positive
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Figure 2.6: Flow diagram of two dimensional model.

pressure on the outside wall toward the graft center. Consequently, SMC/ECM may

move toward sites that are closer to the center of the graft or increase contact.

Similarly, for the lumen wall, we can assume that the flow applies some positive

pressure in the opposite direction as above. This mixture of both rules keeps the

vein graft getting closer to a cylinder depending on the weight of each rule and the

number of cell migration allowed at each time step.

The probability rule on ECM degeneration in the two-dimensional case must

be revisited: in the one-dimensional case, the probability of ECM degeneration is
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Figure 2.7: Management of the tissue remodeling on the fixed hexagonal grid.

proportional to the number of SMC in its neighbor. In the two-dimensional case, an

ECM element can have up to six SMC neighbors. From our numerical observation

with the two-dimensional basic solution, we found that SMC has the tendency to form

cluster of cells: ECM inside such cluster gets removed. To keep an even distribution

in space for ECM, we have imposed a limit of maximum number of SMC surrounding

an ECM. The probability for an ECM to be degenerated by an SMC is proportional

to the number of SMC neighbors up to two. Above a number of two SMC neighbors,

the probability of matrix degeneration is kept the same. This rule is completely
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Figure 2.8: Motion of an SMC on the hexagonal grid at the lumen wall.

heuristic and motivated by the observation of an ”emergent property” of the ABM.

• In the one-dimensional case, the IEL is defined to be one specific ABM site’s

location. SMC can simply migrate from the media to the intima through that inter-

face. For the simplicity of implementation, we have assumed that the IEL stays close

to a circle and is approximated by an averaged radius. In two-dimensional spaces,

the growth and shrink of the IEL depends on the shear stress generated at the lu-

men wall. We have introduced a parameter,α15 to explain this. The probability of
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growth is proportional to the increase of shear stress and vice versa, the probability

of contraction is proportional to the decay of shear stress:

Poutward/inward = α15
∆τwall

τ̄
. (22)

Occasionally, if the average displacement is larger than half a site diameter or the

standard deviation is more than a cell, we reset the lamina sites on the grid to be a

circle defined by the mean radius of the previous quasi circle.

So far we have explained the ABM in two-dimensional spaces completely. In

the next subsections, we would like to explain the mechanical model that provides

environmental conditions to the cells.
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2.3 Blood Flow Module

In this subsection, we would like to explain the calculation of shear stress inside the

lumen wall (∂Ωlumen). We use a diffusion operator (Figure 2.9) inside the tissue wall

to compute the shear stress induced growth factor (G).

δG
δt

= ∆G;G∂Ωlumen
= τ, (23)

where G is discretized with the P1 Finite Element associated to the hexagonal

grid:

Gi
n+1 −Gi

n =
∑j6
j=j1 G

j
n − 6Gi

n;nε(1, α8). (24)

Figure 2.9: The calculation of the diffusion operator.

α8 is now the number of time steps in an explicit diffusion process on the ABM’s

grid. The diffusion of growth factor depends on the convexity and curvature of

the lumen wall and will be automatically enhanced or reduced versus the standard

exponential decay in the normal direction to the wall based on this dependency. We
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will explain the calculation gradually in the following.

The cross section of the lumen can have irregular shape. The time scale for tissue

plasticity is so large compare to the 1Hz frequency of blood flow that we have assumed

that the cells adapt to the average of the mechanical environment conditions. We

assume that the error we do by neglecting the nonlinear convective term in Navier

Stokes and using a steady flow, is somewhat smaller than the level of uncertainty we

have on the biology. We use zero-velocity boundary condition at the wall (∂Ωlumen)

and the conservation of flux at the time scale of tissue plasticity, i.e.,

∫
∂Ωlumen

udydz = Flux. (25)

We compute a steady potential flow inside the lumen driven by a constant pressure

gradient dP
dx

(Figure 2.10). From that potential flow, we compute the normal shear

stress component τwall at the wall. The set of equation of fully developed duct flow

is

d2u
dy2

+ d2u
dz2

= 1
µ
dP
dx

= Ct, u|∂Ωlumen
= 0, (26)

where µ is viscosity. To solve that problem, we compute the solution of the

standard Poisson problem:

∆v(y, z) = −1, (y, z)εΩlumen, v|∂Ωlumen
= 0. (27)

We have then: u = C0v, (28) where C0 is such that the flux is conserved.

We use a finite volume scheme to compute v on a regular spatial grid and an immersed

boundary implementation of the no slip wall condition v=0 on ∂Ωlumen.

This potential flow should be computed however in the (deformed) geometry of

the vein section that is deformed by the transmural pressure, i.e., the difference of
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Figure 2.10: Steady potential flow.

pressure inside the lumen and the outward wall. The ABM in unloaded configuration

serves as the reference position for all SMC/ECM dynamical changes. We should use

the inverse map of the displacement (Figure 2.12) to retrieve the wall shear stress for

the unloaded geometry. We have also verified the numerical approximation of shear

stress with the analytical solution of shear stress (see Appendix). From Figure 2.11,

it is evident that the numerical approximation of shear stress is consistent with the

analytical solution.

In the next subsection, we would like to explain the module responsible for the

calculation of the tissue deformation.
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Figure 2.11: Shear stress VS lumen radius.

2.4 Tissue Mechanic Module

As explained in the previous section, the vein graft is deformed because of the trans-

mural pressure (Figure 2.12). This transmural pressure generates tension at the

wall, which is ultimately responsible for the division of SMC in the media. We would

like to approximate this tension at the wall so that this can be applied to the ABM

rules associated with tension.

We use a well-known Neo-Hookean hyperelastic model to simulate the tissue

deformation of the vein wall generated by the transmural pressure. This material

form of strain energy potential is given by:
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Figure 2.12: Tissue deformation (Different colors represent the variation of the ten-
sion).

W = µ1/2 (J−2/3I1 − 3) + K/2 (J − 1)2, (29)

where W is the strain energy per unit of volume, I1 is the first invariant of the left

Cauchy-Green deformation tensor, µ1 is the initial shear modulus of the material, K

is the bulk modulus, and J is the determinant of the elastic deformation gradient.

In this Neo-Hookean model, the solid parameters are represented by µ1 and K. In

equation (29), the first part, proportional to µ1, is linked to the trace of the left

Cauchy-Green deformation tensor. This term could be interpreted as quantifying

the effect of stretch on the solid; whereas the second part of equation (29) gives K

proportional to the determinant of the deformation gradient tensor, interpreted as
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the quantification of any change in volume. Therefore an incompressible material

will tend to penalize any change in volume of the solid. For this reason, one inter-

prets the shear modulus and the bulk modulus respectively as the stiffness and the

compressibility of the tissue.

The ABM model works on the unloaded model geometry. From the practical point of

view, the ABM module generates the contour of the lumen (Xl, Yl) and EEL (XE, YE)

in cell dimension. This is converted into a physical domain in millimeter scale. For

the Finite Element simulation, the mesh of this two-dimensional ring shape domain

is generated by Gmsh [36]. Gmsh is distributed under the terms of the GNU General

Public License (GPL) and uses primarily a Delaunay triangulation.

This mesh is then passed to the finite element (FE) software Febio. Febio is an open

source nonlinear finite element solver that is specifically designed for biomechanical

applications [36].

Since we choose to work with a potential steady flow, we use a quasi-static method

that neglect inertia terms. Febio calculates the FE approximation of the tension at

each node of the mesh of the vein graft by using the following formula:

σ =
√

[(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2]/2 , (30)

where λi are the eigenvalues of the stress or strain tensor of each point of the

node (each node has three points) in descending order. All of these calculations

correspond to the boundary condition where Young modulus is 2000, poisson ratio

is 0.49, shear modulus µ1 = 3448 Pa, bulk modulus K = 33333 Pa and internal and

external pressure on the vein graft are 12.66 N and 12.00 N respectively [36]. This

information needs to be passed back to the ABM in the unloaded coordinate system.
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Figure 2.13: Verification of Tissue module.

To verify the tension approximated by the tissue mechanic module, we have

compared the deformation of the lumen wall with different lumen radius and at

constant lumen radius with different transmural pressure. From Figure 2.13, it is

evident that the numerical approximation of tension is consistent with the analytical

solution (Appendix). This concludes the description of tissue mechanic module. We

would like to summarize the interaction among these three modules in the next

subsection.
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2.5 Coupling Mechanism

We already explained in the previous three subsections about the functionality of

each module. At first, the ABM module passes the contour of lumen (Xl, Yl) and

EEL (XE, YE) to the Tissue mechanic module. The tissue mechanic module returns

the deformed shape of the vein graft(i.e., (X ′l , Y
′
l ) and (X ′E, Y ′E)) to the blood

flow module and tension σ(X ′E, Y ′E) back to the ABM module. The ABM module

then updates the number of SMC/ECM based on the probabilistic rules associated

with σ(X ′E, Y ′E). The blood flow module calculates τ(X ′l , Y
′
l ) and τwall(X

′
E, Y

′
E) and

returns this information back to the ABM module. The ABM module then updates

the number of SMC/ECM based on the probabilistic rules associated with τ(X ′l , Y
′
l )

and τwall(X
′
E, Y

′
E) (Figure 2.14).

Figure 2.14: Coupling among three modules.

The data transfer between the ABM and blood flow module occurs through mem-

ory transfer, since the blood flow module is an independent module developed by
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ourselves. On the other hand, the data transfer occurs through transferring files

between the ABM and tissue mechanic module. It is because of the fact that the

tissue mechanic module calculation incorporates two types of software (i.e., Gmsh,

Febio) and these two softwares communicate through files between them.

Both the mechanical modules use the quasi steady approximation. The ABM module

on the contrary is unsteady. The time scale is about an hour, which is appropriate to

count for the cell cycle. The coupling algorithm is adaptive with respective to time.

The ABM receives the shear stress and tension calculated by the two mechanical

modules based on the change of number of cells/matrices. It occurs only when the

lumen and the external wall of the vein graft in the ABM change position enough to

lead to a change of number of cells/matrices to a few percent (i.e., 2%).

Let us consider that we can change anytime our basic potential flow solver by an

off-the-shelf commercial code such as Fluent that provides a more realistic flow or

update our soft tissue mechanic model with something that would be more specific

to the vein wall composition. However as noticed earlier, we believe that most of

the uncertainty in our model comes from the biological component, as noticed in the

experimental measurements.
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Chapter 3

Sensitivity Analysis and Pattern

Formation

In this section, we would like to explain the sensitivity analysis of the ABM. There

are two types of sensitivity analyses we have performed; local and global sensitivity.

These sensitivity analyses will help us to determine which sets of parameters are the

most significant in the vein graft adaptation. Then we can play with those signifi-

cant parameters to generate interesting patterns found in the vein graft adaptation.

Finally, we will cross validate our framework with some sets of differential equations

explaining the vein graft adaptation.
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3.1 Local Sensitivity Analysis

At first, we would like to understand the linear effect of the parameters on the number

of SMC/ECM. We start with a linear sensitivity analysis around the basic solution

state. This local sensitivity analysis presents the effect (deviation of mean, standard

deviation from the basic solution) for a particular parameter of the mathematical

model, keeping other values of the parameters fixed as it is for the basic solution. The

linear sensitivity analysis of SMC/ECM apoptosis/mitosis is based on the following

formula:

P = P0(1 + β ∗ τ/τ̄), (31)

where P0 is the initial probability of SMC/ECM apoptosis. The ratio of τ/τ̄ is ∼

1 (i.e., basic solution). β = α5, α6, ...., α14 and βε(0, β0) where β0 is a value of β such

that (P − P0)/P0 ≤ 10%. Equation (31) will let us test our model with the positive

and negative perturbation of the parameters.

We have run the simulation with this parameter settings in parallel and found out

that some parameters show linear sensitivity α5, α7, α9, while others not. We plot

the positive (red bar in Figure 3.2) and the negative (green bar in Figure 3.2) per-

turbation of the parameters β versus the number of SMC/ECM with their standard

deviation and find out the following main two characteristics:

• Local sensitivity with linear characterisitcs: The parameter α5 shows linear effect

(number of SMC/ECM increaes in the intima and decreases in the media) on the

model as suggested by Figure 3.1. It is also sensitive as the mean and the standard

deviation deviate from the basic solution (black bar). α5 has only positive pertur-
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Figure 3.1: Linear sensitivity of α5 (equation (12)).

bation as suggested by (12). An interesting feature of this linear sensitivity analysis

is that SMC inside the intima increases, while in the media decreases as we apply

positive pertirbation. On the other hand, ECM remains unchanged while we apply

positive perturbation.

α7 has positive and negative perturbation as suggested by (14). It is inversely associ-

ated with SMC division inside the intima and shows linear sensitivity of SMC/ECM

inside the intima and media.

α9 is positively associated with SMC division inside the media (17).So we find linear

sensitivity inside the media here as suggested by Figure 3.3.

• Local sensitivity with nonlinear characteristics: There are other parameters, which

do not show linear sensitivity rather nonlinear characteristics as suggested by Fig-

ure 3.4, 3.5, 3.6. It is evident from Figure 3.4 that the parameter α10 shows
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Figure 3.2: Linear sensitivity of α7 (equation (14)).

nonlinear sensitivity in case of SMC/ECM inside the intima whereas α11 and α13

show nonlinear sensitivity in case of SMC/ECM inside the media (Figure 3.5, 3.6).

This local sensitivity analysis determines the effect of individual parameter on the

number of SMC/ECM. If we want to understand the effect of all the parameters,

we have to perform global sensitivity analysis, which we will explain in the following

subsection.
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Figure 3.3: Linear sensitivity of α9 (equation (17)).

3.2 Global Sensitivity Analysis

The global sensitivity analysis means to figure out the effect (deviation of mean,

standard deviation from the basic solution) of changing the value of the parameters

simulataneously of the model [48]. The objective of this kind of sensitivity analysis

(SA) is to identify critical input (parameters and initial conditions) of a model and

quantifying how the input uncertainty impacts the model outcome. There are several

such techniques as monte-carlo (MC) approach, latin hypercube sampling (LHS),

partial rank correlation coefficient (PRCC), extended fourier amplitude sensitivity

test (eFAST). We have applied PRCC technique to understand the global sensitivity

of the parameters as this method is being widely used in cell biology [35].
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Figure 3.4: Nonlinear sensitivity of α10 (equation (19)).

The PRCC represents the partial rank correlation coefficient between the input and

output variables. In PRCC calculation, the parameters have been uniformly sampled

and then for each set of parameters, the simulation is run to generate the output

(i.e., the number of SMC/ECM inside intima/media). Next,the input and output

matrices have been rank transformed and then correlation coefficient (CC) has been

calculated for each of the input to get the PRCC index [35]. This PRCC index can

be positive or negative which means positive and negative correlation between the

input and output respectively. As for example, in Figure 3.7, where we plot the

PRCC indices for all the parameters, some parameters are positively correlated in

case of SMC/ECM inside intima/media, whereas others are negatively correlated.

The highest positive PRCC index of a parameter means that this parameter plays the

most significant role in SMC/ECM production (i.e., α6 in SMC production inside
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Figure 3.5: Nonlinear sensitivity of α11 (equation (21)).

the intima) and vice versa. This nonlinear sensitivity analysis definitely gives an

idea about which sets of parameters are the most significant to generate interesting

pattern observed in clinical histology.

As for example, α6 is directly connected with the probabilistic rule of SMC generation

inside the intima (15) and the PRCC index from Figure 3.7 also verifies this fact.

We can also introduce variation in SMC generation inside the intima by using those

parameters, which have negative PRCC indices. We can apply this observation from

this nonlinear sensitivity analysis in the production or the degeneration of SMC or

ECM inside the intima or media. This sensitivity analysis definitely gives the startup

formation of generating interesting pattern found in the vein graft adaptation, which

we will elaborate in the next subsection.
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Figure 3.6: Nonlinear sensitivity of α13 (equation (12)).

3.3 Pattern Formation

We would like to explain the underlying principal of the formation of interesting

pattern of the vein graft using our framework in this subsection. We will start from

the results of clinical observations at first.

The vein graft shows two sets of interesting patterns (Figure 3.8) such as intimal

hyperplasia and medial hyperplasia. Intimal hyperplasia is the result of the expan-

sion of intimal region due to increasing number of SMC and ECM inside the intima.

Medial hyperplasia is also the result of increasing number of SMC and ECM inside

the media. Here we would like to explain how these two sets of patterns can be

reformed using our framework started from the basic solution. We will also focus on

other temporary patterns found in the vein graft implantation.

There are two feedbacks associated with the environmental conditions observed in
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Figure 3.7: Nonlinear sensitivity analysis.

the vein graft adaptation; one is associated with the shear stress and another one

with the transmural pressure (Figure 3.9). The relationship between various nodes

in Figure 3.9 has been oriented with either positive or negative sign [2]. A positive

sign between two nodes, A and B means that A is directly connected to the change

of B. Whereas in case of a negative sign means that A is inversely connected to

the change of B. We can clearly identify general types of recurrent feedback loops

involving Shear-Lumen Area and Wall Tension-Wall Thickness from Figure 3.9. We

can observe three closed cycles linking shear stress and lumen wall, one of them with
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Figure 3.8: Pattern Formation (Actual image VS Computer generated image).

all positive signs (Shear − > Outward Remodeling − > Lumen Wall − > Shear)

and two cycles with mixed signs along the path.

Similarly, we can identify two closed cycles linking ’Wall Tension’ and ’Wall Thick-

ness’ (Figure 3.9), one of them with all positive signs. However, we can also find

cross coupling relations between Shear - Wall Thickness, and Wall Tension - Lumen

Area, respectively (Figure 3.9). This can lead to the fact of some of the interesting

patterns formed (i.e., temporal oscillation between inward and outward remodeling)

during vein graft adaptation. Now using this feedback mechanism along with the

results of our sensitivity analysis, we would like to develop some sets of rules, which

will help us to understand the formation of interesting pattern systematically.
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Figure 3.9: Feedback mechanisms in the vein graft adaptation [2].

3.3.1 Intimal Hyperplasia

Here we would like to develop some control mechanisms to explain the pattern formed

during intimal hyperplasia. The feedback mechanism associated with the shear stress

provides a control mechanism, where low shear stress increases the rate of SMC

mitosis inside the intima and higher shear stress decreases this rate. We would like

to apply this concept in our ABM-PDE model to explain the pattern formed here.

At first, we would like to start from the basic solution. Let’s consider the shear stress

at this stage is τi , where our target shear stress is τt and τt > τi. Since low shear
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stress promotes SMC division inside the intima, we will increase the probability of

SMC division inside the intima applying the following rule:

Pdivision = α1(1 + α6 ∗ (τt − τi)/τt). (32)

Our goal is to reach to the target high shear stress τt and hence, we increase

the probability of SMC generation inside the intima by (32), which will increase

intima thickening. Consequently, this intima thickening will reduce the radius of the

lumen, which will ultimately increase the shear stress and reach to the target shear

stress gradually. Once this target shear stress τt (i.e., τi = τt in (32)) is achieved,

the model will be again in the basic solution stage and stabilize gradually. In this

way, we are trying to generate any interesting pattern associated with the intimal

thickness, which will help to understand its formation ultimately.

In this particular testing, the ABM and the blood flow module have been updated

while the transmural pressure is constant as the rule associated with the SMC division

inside the intima is related with the shear stress only. Since the simulation algorithm

is time dependent and the shear stress at each hour does not differ significantly and

the stress calculation is also expensive with respect to time, so this module is updated

after certain period (i.e., 5 days) to calculate the updated shear stress and transfer

this stress value back to the ABM. This update procedure continues until the target

shear stress is achieved.

We run the simulations for different values of intima proliferation rate ( i.e., α6 =

20%, 50%, 75%) and other parameter sets (α1, α2, α3, α4, α5, α6, α7, α8, α9, α10,

α11, α12, α13, α14, α15) with values (0.05, 0.008, 24*14, 24*60, 0, 0.75, 0, 20, 0, 0, 0,

0, 0, 0, 0) for 12 months. The value of β (1) is 2.25 and initial lumen radius is 30 (i.e.,
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Number of cells). The initial shear stress is 0.08 (N/m2) and the target shear stress

is 0.12 (N/m2). We run 15 simulations in 15 different processors and then take the

mean of the results (i.e., number of SMC inside intima, lumen radius, shear stress,

wall thickness) associated with this test. We plot the individual results along with the

mean and standard deviation to understand the stochastic nature of our simulation.

The following figures explain the simulation results of intimal hyperplasia. We apply

the perturbation after 90 days to let the basic solution stabilize.

Figure 3.10: Logistic nature of SMC inside intima.

The result of intimal hyperplasia test shows logistic nature of the growth of SMC

inside the intima (Figure 3.10) and shear stress (Figure 3.14), which leads to the

fact that the model shows sensitivity as soon as we apply perturbation and becomes

stabilized as soon as it reaches to the asymptote of the target high shear stress. The

lumen area remains stable althrough this simulation (Figure 3.12).
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Figure 3.11: Logistic nature of mean SMC inside intima..

Figure 3.12: Stable nature of lumen radius.
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Figure 3.13: Stable nature of mean lumen radius.

Figure 3.14: Logistic nature of shear stress.
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Figure 3.15: Logistic nature of mean shear stress.

Figure 3.16: Growth of wall.

51



Figure 3.17: Growth of mean wall.

3.3.2 Medial Hyperplasia

There is another interesting pattern, which is of interest with the clinical observa-

tion of the vein graft adaptation, and it is known as the medial hyperplasia. This

corresponds to the increase of SMC and ECM inside the media. There is one feed-

back mechanism associated with the tension (Figure 3.9), which is responsible for

the medial growth [2]. From this feedback, it is observed that high tension promotes

SMC division inside the media, which will increase the growth of media. This growth

of media will reduce the tension generated by the surrounding wall of the vein graft,

which will reduce the production of SMC/ECM inside the media.

So we would like to develop a control mechanism using the feedback mechanism as-

sociated with tension, which will help us to explain the pattern formed in medial

hyperplasia. We will start from the basic solution this time as well. Let’s consider
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the tension at this stage is σi, where our target tension is σt and σt < σi. Initial high

tension will promote SMC division inside the media following the rule:

Pdivision = α1(1 + α9 ∗ (σi − σt)/σt). (33)

Our goal is to reach to the target low tension σt, which will reduce the SMC/ECM

generation inside the media. As a result, we increase SMC production inside the

media by applying the probabilistic rule (33) and once the target tension is achieved

(i.e., σi = σt), the model will be back in the basic solution stage and stabilize

gradually. In this way, we are trying to form interesting pattern found in the medial

hyperplasia so that this kind of pattern formation can be explained thoroughly.

In this particular test, the ABM and the tissue mechanic module have been

updated with respect to time as the rule associated with SMC division inside the

media is related with tension only (33). So the tissue mechanic module is updated

after certain period (i.e., 10 days) to calculate the tension, as the update of the tissue

mechanic module at each hour is expensive and the tension does not change within

this short period of time significantly. This update of tissue mechanic module is

continued until the target tension is achieved.

We run the model with the parameter set (α1, α2, α3, α4, α5, α6, α7, α8, α9, α10,

α11, α12, α13, α14, α15) and their values (0.05, 0.008, 24*14, 24*60, 0, 0, 0, 20, 0.20,

0, 0, 0, 0, 0, 0) respectively for 12 months. The value of β (1) is 2.25 and initial

lumen radius is 30 (i.e., number of cells). The initial tension is 0.43 N and the target

tension is 0.38 N. We run 15 simulations in 15 different processors and then take the

mean of the results (i.e., number of SMC inside media, tension, wall thickness etc.).
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The following figures explain the simulation results of medial hyperplasia. We apply

the perturbation after 90 days to let the basic solution stabilize.

Figure 3.18: Logistic nature of SMC inside media.

The result of medial hyperplasia test shows that the growth curve of SMC inside

the media has logistic nature. Another interesting feature of this test is that lumen

radius does not change significantly (Figure 3.23), which is relevant with actual

clinical observation.

3.3.3 Temporal Oscillation

In this section, we show the competition between the intimal hyperplasia and outward

remodeling. In this case, section 3.3.1 and section 3.3.2 have been combined with

different perturbation rate (i.e., 50%, 10%) of the parameters (α6, α9) of interest.
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Figure 3.19: Logistic nature of mean SMC inside media.

Figure 3.20: Decrease of tension.
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Figure 3.21: Decrease of mean tension.

Figure 3.22: Stable nature of lumen radius.
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Figure 3.23: Stable nature of mean lumen radius.

Figure 3.24: Growth of wall thickness.
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Figure 3.25: Growth of mean wall thickness.

Another important feature of this testing is that we apply high perturbation rate

(100%) of ECM degeneration ((19) and (21)) to have oscillatory patterns. It is

because of the fact that both the previous testings increase the number of SMC

inside the intima and media. As a result, we have applied perturbation in the ECM

degeneration by an SMC to get oscillatory patterns of the lumen and the wall. We

run 10 simulations in 10 different processors and plot the variation of lumen radius

and wall thickness individually with the total variation as well. The total variation

has the following formula:

TotalV ariation =
∑n
i=1(|Vti − Vt(i−1)|)/n, (34)

where Vti is the lumen radius or wall thickness at time step t and n is the number

of processors.
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Figure 3.26: Oscillatory characteristic of the lumen radius.

Figure 3.27: Oscillatory characteristic of the total variation of the lumen radius.
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Figure 3.28: Oscillatory characteristic of wall thickness.

Figure 3.29: Oscillatory characteristic of the total variation of wall thickness.
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The interesting feature of this temporary oscillation is that both the variation

of the lumen radius and wall thickness show periodic change in the course of time,

which is relevant to the clinical observations [59].

3.3.4 The validation of different kinds of patterns generated

by the model

We have explained a number of specific pattern formations in the previous sections.

In this section, we would like to focus on different pattern formations associated

with different shear stresses and a fixed tension and how we can explain this pattern

formation with the framework. This analysis will help to advance the validation of

our model with real histological data sets.

Nonlinear histological data fitting is a very difficult task. We are interested to

explain such patterns. Before explaining such real histological patterns, we would

like to fit virtual (i.e., simulated) set of experimental data (i.e., histological data

sets of rabbits vein grafts [1]) by the model. As a result, we would like to define an

efficient objective function with which the fitting is accomplished at first. Next, we

would like to couple a genetic algorithm (GA) having that efficient objective function

with the model to validate the fact that the simulated data sets are reproducible in

a multivariate data analysis environment. As a result, this analysis will reduce the

gap in understanding the formation of nonlinear histological data sets.

The definition of the objective function comes from the key parameters of the

model. We have introduced an efficient approach to determine the required objective
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function to fit nonlinear simulated histological data sets. The simulated data set

corresponds to the area of the lumen and the density map of SMC in the intima

and media. We have considered these two types of data sets, since these are easily

available from biological experiments [1]. The density map of SMC means the ratio

of a cell′s distance from the lumen (d) to the thickness of the wall (d/) (Figure 3.30).

Figure 3.30: The calculation of SMC density map. The ratio of d/d/ represents the
density map of SMC outside the lumen.

As a result, this SMC density map divides the entire wall into different regions

based on the ratio (i.e., 0.1 to 1.0). The density of SMC will differ based on different

shear stresses and tension and the perturbations of the parameters. We have gen-

erated the simulated data sets while varying the shear stress (i.e., low, average and

high stress) and three key parameters (i.e., α5, α6, α9) and other three parameters

(i.e., α12, α13, α15). Additionally, we have applied 0.6N of transmural pressure. As a

result, the simulated data set corresponds to high (5 times higher than the average
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stress), low (10 times lower than the average stress) and average shear stress (10

times higher than initial stress) with different perturbation (i.e., 10%, 50%, 40%,

30%, 10%, 20%) of the parameters (i.e., α5, α6, α9, α12, α13, α15) respectively. The

rest of the parameters have the values of the basic solution of the model.

Figure 3.31: SMC density map at low shear stress.

We have generated 15 sets of virtual data sets (i.e., lumen area, SMC density map)

with the aforementioned settings of the parameters for a month long of simulation.

This 15 data set is divided into three groups based on the shear stress (i.e., low,

average, high), where each group has five data. The density map of SMC has been

normalized with the initial density map of SMC to understand the proliferation of

SMC in different regions of the vein graft (i.e., Figure 3.31 to Figure 3.33). The

average area of the lumen at different shear stress has been also considered to define

the objective function.

63



Figure 3.32: SMC density map at average shear stress.

The objective function will help to regenerate the simulated data sets. We will

run the simulation with different perturbation of the parameters while keeping the

range of the shear stress and tension similar to the already generated histological

data sets. This will allow the objective function to compare the new data sets with

the simulated data sets and the objective function with the best local minimum will

be the required objective function. It is expected that the objective function will

generate the local minimum at the simulated distribution of the parameters. As a

result, we will be able to retrieve the simulated distribution of the parameters from

the objective function. This analysis verifies the fact that the model can regenerate

the simulated data sets, which can be ultimately applied in matching real histological

data sets as we will follow up in the next.

We are interested to retrieve the distribution of one single key parameter at first.
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Figure 3.33: SMC density map at high shear stress.

Next, we will advance our analysis to retrieve the distributions of two key parameters.

Finally, we will highlight on the retrieval of more than two key parameters. There

will be a number of objective functions and we will pick the best-fit one based on

the simulation results. The objective functions associated with a key parameter are

as follows:

F1objective(αi) =
√∑3

j=1(‖AGj − ASj ‖/ASj )2, iε{5, 6, 9}, (35)

F2objective(αi) =
√∑3

j=1

∑10
k=1(‖DG

jk −DS
jk‖/DS

jk)
2, iε{5, 6, 9}, (36)

F3objective(αi) = w1 ∗ F1objective(αi) + w2 ∗ F2objective(αi), iε{5, 6, 9}. (37)

Here ASj and DS
jk are the simulated data sets, which correspond to the average

area of the lumen and the SMC density map respectively. Next, we would like to

regenerate the simulated data sets. As a result, we will run the simultion program

with a deviation (i.e., low to high) of the distribution of the key parameters from
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the simulated distribution. This generated data sets correspond to AGj and DG
jk re-

spectively in the above equations. This provides a detail analysis on the distribution

of the key parameter against the objective function as it is shown in the following

figures (i.e., Figure 3.34 to Figure 3.36).

Figure 3.34: α5 VS objective functions.

It is evident from Figure 3.34 to Figure 3.36 that the three key parameters (i.e.,

α5, α6, α9) regenerate the simulated data sets at their corresponding simulated dis-

tribution (i.e., 10%, 50%, 40%) respectively. As a result, we get the local minimum

of the objective functions at the simulated distribution of the key parameter. We

have added w1 = 0.95 and w2 = 0.05 in equation (35) to get the local minimum
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Figure 3.35: α6 VS objective functions.

of the objective function at the simulated distribution of the key parameters. This

represents the best fit objective function.

One interesting observation from this single key parameter retrieval test is that

parameter α5 shows slight deviation from its corresponding simulated distribution

in (36). We get the local minimum of equation (36) of α5 at 0.15%, whereas the

simulated value of α5 is 10%. It is because of the fact it is not directly involved

in SMC/ECM division/apoptosis. However, we get the best result for α6 since it

is directly involved in the division/apoptosis of SMC/ECM. The parameter α9 also

shows expected result for all the objective functions. This is how we can retrieve the

distribution of the key parameter from the simulated data sets.

Next, we would like to advance our analysis to regenerate the simulated data
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Figure 3.36: α9 VS objective functions.

sets with two key parameters. This requires running the simulation program, while

sampling the two key parameters within the simulated distribution. Next, we can

calculate and plot equations (35) to (37) for different values of the key parameters.

This will provide a two dimensional solution space of the objective functions. We

can retrieve the distribution of the key parameters from the local minimum of this

solution space. We have observed from Figure 3.37 to Figure 3.39 that the local

minimum of the objective functions corresponds to the simulated distribution of the

key parameters. This also proves the fact of regenerating the simulated data sets

with two key parameters.

It is evident from Figure 3.37 to Figure 3.39 that the two key parameters re-

generate the simulated patterns (i.e., dark blue-colored surfaces in Figure 3.37 to
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Figure 3.37: α5 VS α6 VS objective functions.

Figure 3.39) at the corresponding simulated distributions. We have also done surface

response by a key parameter in the two dimensional solution spaces of the objective

functions. This represents the characteristic of the local minimum of the objective

functions. It is evident from Figure 3.40 to Figure 3.42 that the surface response

by a key parameter is consistent with the local minimum of the objective functions.

As for example, α6 represents the local minimum at its simulated distribution (i.e.,

50%) in figure Figure 3.40. It is also consistent with other two key parameters. The

surface response generated by the key parameters also provides a ’concave’ shape

solution space, where the local minimum is the deepest surface of the cave.

Finally, we would like to advance our analysis of regenerating the simulated pat-

terns with more than two key parameters. This will increase the solution space (i.e.,
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Figure 3.38: α6 VS α9 VS objective functions.

at least 103). As a result, we would like to couple a genetic algorithm (GA) with

the model to retrieve the distribution of the key parameters from the simulated data

sets. This coupling will help to find the best-fit solution, since the GA can play the

most significant role browsing through the best-fit parameter sets [60], whereas the

model is responsible for the calculation of the objective function. As a result, we can

calculate the objective function for a specific set of parameters, which corresponds

to a population of the GA. This coupling can become very efficient with respect to

nonlinear data fitting as we will explain in the following.

We have used a traditional GA (i.e., Figure 3.43) having all the characteristics

(i.e., crossover, mutation etc.) of a GA. Initially, the GA generates a number of
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Figure 3.39: α5 VS α9 VS objective functions.

populations each of which consists of a number of gene. Actually, these genes corre-

spond to the key parameters (i.e., α5, α6, α9). As a result, each population has three

genes located in three consecutive positions. The model receives the population sets

from the GA and then returns the value of the objective function associated with

the population (i.e., Figure 3.44). Here, the objective function is the fitness function

of the population. Next, the GA continues with the crossover and mutation based

on the fitness function of the population and sends a new set of population to the

model. This continues until the GA finds the best-fit population (i.e., Figure 3.43).

All the genes we have used have real values ref [61, 62]. This provides more

variation in the populations [63] and there is no conversion needed for a real number

to a binary form for the GA. The GA follows certain steps to perform crossover
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Figure 3.40: Surface response by α6 from Figure 3.37.

and mutation over the existing population. It selects two populations to perform

crossover and mutation. The probability of selecting a population is proportional to

its fitness. In crossover, the GA distributes the genetic values of two selected parents

over the populations. This distribution occurs at a particular index position (i.e.,

crossover index) selected between the size of each population randomly. However,

crossover does not guarantee information that is nonexistent with the population.

The mutation is responsible for this property, while injecting new genetic values in

the population. In mutation, the GA generates a random number between 0 and

1/mutation rate (i.e., muatation rate=0.10) for each of the gene in a population. If

it is 0, then the corresponding gene is sampled between [0,1]. Otherwise, the genetic

values are received from two selected parents. The GA copies the genetic values from

the first parent if gene position < crossover index; otherwise from the second parent.
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Figure 3.41: Surface response by α9 from Figure 3.38.

The above properties of the GA ensure that the local minimum of the objective

function can be achieved after a number of generations. However, the number of gen-

erations can be large to find out the local minimum. This depends on the population

size as well. Generally, more population will provide more variation to the solution,

which will ultimately help the GA to reach to the local minimum. However, the size

of the population also depends on the computing resource of the system. Based on

the available computing resource, we have been able to use 100 populations to run

the GA.

The GA initializes these 100 populations with uniform random distribution and

sends to the model. We have considered the third objective function (37) for the GA

to minimize, since this function combines other two objective functions as well. Next,
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Figure 3.42: Surface response by α5 from Figure 3.39.

we have run the GA for a number of generations and kept track of the minimum

objective value at each generation (Figure 3.45) to figure out the convergence of the

GA.

We have observed interesting result from the GA. The GA retrieves the local

minimum of (37) at different generations (i.e., first, third etc)(Figure 3.41). This is

an interesting feature of the GA, where sampling the best-fit populations might shift

the local minimum. As a result, the local minimum shifts upward and then again

moves downward after a number of generations. It is because of the fact that the

GA performs the crossover and mutation among the existing populations to generate

new populations. Above all, the model has high standard deviation. As a result, we

have retrieved the distribution of the key parameters at different generations of the
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Figure 3.43: The genetic algorithm (GA).

Figure 3.44: The coupling of GA with the model.

GA, since it is same as it is in the single and double parameter retrieval tests, while

in other generations the local minimum shifts. This proves the fact that the model

can regenerate the simulated patterns with three key parameters. We can apply this

novel approach, while fitting real histological data sets [64].
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Figure 3.45: Generations VS minF3objective.
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Chapter 4

High-Performance Computing

In this section, we would like to focus on the implementation details of our com-

putational framework. Our framework is modular consisting of different modules

responsible for different actions followed by the data flow among the modules. Our

implementation focuses on easy to understand development, where we keep the scope

of agile development in our framework to test and validate different hypothesis asso-

ciated with the vein graft adaptation. Our goal of developing the framework remains

in the fact of identifying key parameters responsible in the vein graft adaptation and

then regenerating specific patterns of the vein graft with those parameter sets. The

selection of the key parameters of the model requires the execution of the model

with different range of values of the parameters. As a result, we have incorporated

parallel architecture into our framework to run and test our model with different sets

of values of the parameters efficiently.
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4.1 Module Development

When we start the implementation of the model from the scratch, we use a Matlab

code that allows fast prototyping and presents an easy visual understanding of the

ABM. The implementation is easy to debug but very slow in respect of computation

time. Matlab or other related software allows easy to visualize implementation of

the model. Here the surgeons can be in the design loop as well to get the feedback

for correct implementation.

Once this agile development is finished and we are confident about this Matlab

version of our model, we port this version to C. This C version is fast, modular and

easy to understand. The similarity of naming functions and variables in these two

versions also helps to keep track between this two versions. Finally, both the versions

have been tested with same sets of random numbers to verify the fact that both the

versions generate same output.

Modules Execution time (s)
ABM 1406
Tissue Mechanic Module 726
Flow Module 14
Data transfer between modules 3

Table 4.1: Execution Time of different modules (Simulation time: 1 month, dimen-
sion of the grid: 121x121).

An example of execution time of our model executed on a single processor, is

shown in Table 1. The total execution time is more than 12 times faster than the

Matlab version. We have undertaken the following steps to speed up the C version:

78



• The memory allocation and deallocation is an expensive operation in computer

programming. As a result, we have used static memory space in the heap, since the

heap memory space is fast enough to access [65]. This speeds up our C version since

it does not require memory allocation or deallocation at each simulation hour.

• The simulation program scans through each cell site in a random order at

each simulation hour. As a result, we have used bijective mapping [66] between

the cell index and a random number associated with that index. Next, we sort the

random numbers in nondecreasing order and finally, the program accesses the cell

index based on the sorted random numbers. We have applied merge-sort to sort the

random numbers, since this is one of the fastest sorting algorithms [67].

• The ”‘loop-merging”’is another important program execution time enhancing

mechanism [68]. Generally, it combines several actions of different independent loops

into a single loop [69]. As a result, the execution time speeds up and we have applied

this mechanism in our C version extensively.

Figure 4.1: Convergence of SMC/ECM.
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Apart from a fast execution time, the development is also modular to understand,

debug and track of cellular activities in two dimensional spaces extensively. Addi-

tionally, two dimensional memory allocation is used to store information regarding

cellular activities (i.e., cell type, internal clock time etc.). Since the cellular ac-

tivities are associated with probabilities, monte-carlo simulation approach has been

applied to find out the convergence of the number of cells/matrices. This requires

the program to be run for different number of times and we observed an oscillatory

relaxation pattern of number of cells/matrices - see Figure 4.1. This convergent

result depends on the size of the system. A system of 121x121 sites takes about 15

runs to converge (Figure 4.1), while 241x241 takes about 10 runs to converge. The

number of simulation results also depends on the number of parameters involved in

the simulation program. As a result, we have incorporated parallel architecture into

our implementation to facilitate fast execution and data collection of our simulation

program, which we will follow up in the next section.

4.2 Parallel Architecture

Our ABM-PDE hybrid model has 15 parameters, where the first five has fixed value

and the rest is sampled to test and validate with different hypothesis. As the range

of values of the parameters increase, the number of test with different sets of values

of the parameters also increases, which lead to the fact of introducing parallel imple-

mentation of our model. This parallel architecture of our model will definitely speed

up in fast accumulation of the simulation results.
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We have incorporated master-slave parallel architecture in our framework, where

a single master processor is responsible to distribute parameter sets with different

values and collect results from a number of slave processors. These slave processors

are responsible to run the simulation for a specific period of time with a specific set

of parameters. This master-slave parallel architecture ensures efficient utilization of

the cluster machine, where it runs parallel simulations. If the number of required

slave processors is greater than the number provided by the cluster machine, then

the master processor assigns job to the specific number of slave processors provided

by the cluster machine at first. As soon as a slave processor returns the simulation

results back to the master processor, it assigns another job with another parameter

sets to the slave processor and that is how the load balance is kept among the

slave processors. Since the nonlinear sensitivity analysis requires sampling of the

parameters in a large scale (i.e., > 103) [35], this parallel architecture certainly helps

to get the results efficiently.

Each single processor has Specification
CPU 1.6 GHz Intel Itanium 2 (128) processor
Memory 512 GB of global memory
Operating System Red hat enterprise linux 5

Table 4.2: Specification of the cluster machine.

We have used 18 processors for the linear sensitivity analysis and 200 proces-

sors for the nonlinear sensitivity analysis simultaneously through the job submission

system provided by the high performance computing center at the University of

Houston.
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To calculate the speed up factor of this master slave implementation, we can start

with the equation Ts/Tp at first [70], where Ts is the execution time taken by a single

processor to run the total number of simulations and Tp is the execution time taken

by parallel processors to run the same number of simulation. Here Tp = n/Tpn/ +

cn/Tpn/+Td, where n/Tpn/ is the execution time taken by n/ number of processors

for n/ number of simulations, Td is the data transfer time between master-slave

processors and c is the number of times the slave processors have been assigned to

perform simulation and n = n/+cn/; where n is the total number of simulations. The

more slave processors can be assigned jobs at first, the more speed up can be achieved

for this kind of parallel implementation, since this will reduce the data distribution

time (Td ) among the master-slave processors for the rest of the simulation. .

4.3 Parallel GA-Model Implementation

We have coupled a genetic algorithm (GA) with the model to fit nonlinear histological

data sets (sction 3.3). However, this data-fitting is an expensive operation which

requires a lot of computing time. This requires an efficient implementation of the

GA with the model to improve execution time. In this section, we would like to focus

on this implementation details.

The GA has its own time convergence complexity [76] and the hybrid ABM-PDE

model requires some computing time (Table 4.1). As a result, an efficient integration

between the GA and the model is necessary to improve the overall execution time.

The GA requires to have the fitness values of all of its populations to crossover and
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mutate among the best populations [77]. The model receives the populations from

the GA and calculates the fitness function and returns this to the GA. Since each

population is independent of each other, the model can be executed with a number of

populations simultaneously. As a result, we have incorporated our previous master-

slave parallel architecture to couple the GA with the model (i.e., Figure 3.44).

Figure 4.2: Master slave architecture of GA and the model.

One single processor (master) is responsible to run the GA, while a number

of slave processors equal to the number of the populations will execute the model

simultaneously (i.e., Figure 4.2). When a slave processor completes execution, it

returns the value of the objective function (i.e., fitness value) to the master processor.

The master processor waits for all the slave processors to receive the fitness value of

the populations to move to the crossover and mutation step of the GA. So there is

a delay in receiving the fitness value from all of the slave processors. This can be

improved by applying asynchronous parallelism [78].
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Chapter 5

Conclusion

Understanding the vascular adaptation is a difficult process, since there is a lot of un-

certainty in predicting biological phenomena. Here we have introduced a bottom-up

approach, where we can simulate cellular activities followed by the effect of me-

chanical environment as the shear stress and tension, which can answer some of the

questions raised in the vascular adaptation ultimately. Our computational frame-

work can generate patterns observed in the vascular adaptation and effective sets

of parameters responsible for these patterns. This research finding can be extended

to the gene regulatory system, which is responsible for the cellular activities and

pattern formation. Once we can identify these genes, special drugs responsible for

genetic activities can be introduced so that we can understand vascular adaptation

from the genetic perspective.

We have applied the traditional translation of a medical discovery for the vascular

adaptation here. This follows from the Petri dish to the animal model and finally, the
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result is applied to the clinical application. Prior to this translation, a dual process

to discovery is usually followed: observation from the clinical results and then the

application of different hypotheses to verify the observation. But the difficulty arises

from the incommensurability of the result of the animal model to the human model.

As a result,we have introduced multiscale modeling (MSM) to solve this difficulty.

The question we need to answer with the multiscale modeling covers a broad aspect.

Can we refine the hypothesis for some specific experimental validation? When can

a virtual experiment be considered a reasonable way to test a clinical hypothesis?

How can we use models to optimize the experimental plan, design clinical trials

accelerated translation, reduce the risk of therapeutic failure? How to go from MSM

demonstration of mechanism to clinically-relevant measures (imaging, heat maps,

physiologic variability, etc.) and back?

To address these questions, we are following the cycle: Hypothesis − > Model

− > Simulation − > Experimental Validation, where we can update, test, refine our

model every time we face any question to answer the stack holders (i.e., Surgeons,

Mathematicians, Computer Scientists etc) of this project. According to this cycle, we

build up main hypothesis regarding vascular adaptation in section 1. The hypothesis

includes the probabilistic rules of cellular activities associated with the shear stress

and tesnsion. These rules follow from the clinical and experimental results and

observations.

Next, we incorporate the hypothesis into a computational framework to test dif-

ferent hypotheses in section 2. This framework has different modules to explain

different scenarios in the vascular adaptation. As for example, we have the agent
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based module to explain the cellular activities in a two dimensional space and the

blood flow module and the tissue mechanic module to calculate shear stress and ten-

sion at the wall. As a result, our framework resembles the complex biological system

of vascular adaptation, where the cellular activities are influenced by the external

environmental conditions (i.e., shear stress and tension).

Our next goal is to test and validate the hypothesis associated with the clinical

observation of the vascular adaptation with our computational framework and we

have explained this in section 3. Generally, the vascular adaptation exhibits three

types of patterns in clinical observations. We have generated these patterns virtually

with the framework. We have analyzed the formation of each pattern individually

and as a collection. As a result, these research findings can answer some of the

fundamental questions associated with interesting pattern formations in the vascular

adaptation.

These pattern matching schemes require a large number of computer simulations.

These simulations take a lot of execution time. As a result, we have introduced single

processor to multiple processor execution of the simulations to speed up execution

and data collection from the results. Our implementation is scalable, modular and

parallely efficient. We have applied different techniques used in high performance

computing to improve our computing time, which we have discussed in section 4.

Therefore, we have given our best effort to define a computationally effective and

efficient framework to understand vascular adaptation. Our goal is to prove that our

framework is the best fit to explain vascular adaptation. Once we understand this

adaptation from the cellular perspective thoroughly, we can introduce special drug
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or gene-therapy to control this adaptation. As a result, this approach can be also

applied in other similar interdisciplinary research fields to understand the underlying

principal.
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Chapter 6

Appendix

•Analytical Solution for the Elasticity Model : Here we will discuss the analyt-

ical solution of the tension and shear stress. The analytical modeling of the tension

calculates the mechanical deformation at the cellular level. This analytical model

calculates the radial stress σr, circumferential stress σθ and the displacement u(r) of

the number of cells which take part in SMC/ECM apoptosis/mitosis by the following

equations:

σr(r) = p1r12(1− r22/r2)/(r22 − r12)− p2r22(1− r12/r2)/(r22 − r12), (38)

σθ(r) = p1r12(1− r22/r2)/(r22 + r12)− p2r22(1− r12/r2)/(r22 + r12), (39)

u(r) = C1/2r + C2/r, (40)

where r1 = radius of the lumen, r2 = radius of the EEL, p1 = The pressure on

the lumen and p2 = The pressure on the EEL. The displacement is also associated

with the following equation
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C1 = (λ+ µ)(p1r12 − p2r22)/(r22 − r12) and (41)

2µC2 = (p1− p2)r12r22/(r22 − r12), (42)

where λ and µ are the Lame coefficients: λ = Ev/(1+v)(1−2v), µ = E/2(1+v).

Here E = Young modulus v = Poisson ratio. All of these calculations correspond to

the boundary condition where E is 2000, v is 0.49 and p1 and p2 are 12.665625 N

and 11.999013 N respectively.

•Analytical Solution for Poiseuille Flow : Now we will explain the analytical

solution of shear stress. Blood flow exercises pressure and shear stress on the lumen

wall. We assume a Poiseuille flow:

Q = (πR4
lumen∆Pblood)/8µL, (43)

where Q is the blood flow, Pblood is the pressure drop in a section of the vessel of

length L, and µ is the dynamic viscosity. The shear stress at the wall is then given

by the analytical formula:

τ = 2Umax/r1, (44)

where Umax = 0.3 m/s is the maximum velocity of blood.

• Calculation of β : An ECM is surrounded by six SMCs at most. So β has

the value between 1 and 6. We are interested about the particular value of β, which

corresponds to the basic solution. So we run the simulation with different values of

β (between 1 and 6) and then plot the ratio of ECM at the final hour to the initial

hour.

We find the value of β corresponding to the basic solution (i.e., ecm ratio ≡ 1 in
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Figure 6.1: β VS ECM ratio.

figure 6.1) is 3.25. Next, we run the simulation while varying the value of β between

(2 and 3.25) to find out the convergence of β. The simulation results show that β

converges to 2.25, which has been used in the simulation of results of section 3.
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