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Abstract

It is shown that the presence/absence pattern of 1000 random oligomers of length 12—-13 in a bacterial
genome is sufficiently characteristic to readily and unambiguously distinguish any known bacterial
genome from any other. Even genomes of extremely closely-related organisms, such as strains of
the same species, can be thus distinguished. One evident way to implement this approach in a practical
assay is with hybridization arrays. It is envisioned that a single universal array can be readily designed
that would allow identification of any bacterium that appears in a database of known patterns. We
performed in silico experiments to test this idea. Calculations utilizing 105 publicly-available
completely-sequenced microbial genomes allowed us to determine appropriate values of the test
oligonucleotide length, n, and the number of probe sequences. Randomly chosen n-mers with a
constant G + C content were used to form an in silico array and verify (a) how many n-mers from
each genome would hybridize on this chip, and (b) how different the fingerprints of different genomes
would be. With the appropriate choice of random oligomer length, the same approach can also be
used to identify viral or eukaryotic genomes.
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1. INTRODUCTION

All species of living organisms have unique genomes whose nucleotide sequence distinguishes
them from any other organism. Molecular approaches for identifying bacteria and viruses have
relied on identifying one or more unique subsequences (oligonucleotides, or “n-mers”) in these
genomes, whose presence in a sample can be used as an individual microbial/viral
“fingerprint” [1-4]. There are a variety of ways in which such a unique subsequence can be
used to devise specific assays. For example, the appropriate oligomers can be used as PCR
primers or as hybridization probes [5]. This approach is limited by the fact that it depends on
specific knowledge about a target sequence within the organism of interest. If the organism is
a novel isolate this information will not be available. If it is a close relative of a known strain,
then the target may not be sufficiently unique to distinguish the two. This can be a major
practical obstacle. For example, a probe targeting the 16S rRNA gene of Bacillus anthracis
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would be likely to detect non-pathogenic B. thuringensis strains as well. Moreover, any single
unique subsequence found by analysing known genomes or specific genes may always be
present by chance in some other genome. Therefore, what is thought to be a unique identifier
may ultimately fail at an inopportune time. Finally, the unique identifier can be present in an
organism under study but nevertheless not available for hybridization for experimental reasons
such as cleavage, inaccessibility, etc.

An alternative solution to identification utilizes sets of the sequences (probe sets) selected from
a reference sequence. Such a probe set can be designed to encompass a known set of
polymorphic sequences for a specific portion of the genomic DNA. For instance, Gingeras et
al. [6] designed a set of probes capturing known polymorphisms within the rpoB gene sequence
for Mycobacterium tuberculosis. The resulting high-density oligonucleotide array was able to
uniquely identify Mycobacterium isolates. It can however be inferred from the literature [6]
that the array would not be able to reliably and successfully identify species that do not share
homologous regions with the rpoB gene of M. tuberculosis. Probe sets have also been designed
using the Escherichia coli genomic sequence as a reference, specifically with microbe
identification in mind [7,8]. In both cases cited, subsequences known to occur frequently in
E. coli were selected for probes. This probe set was then used for identification of closely-
related species (Xanthomonas [7] and Salmonella enterica isolates [8]). When considering
more distantly-related organisms or more complex ones, e.g., multicellular organisms, E.
coli may not serve as an appropriate reference sequence.

Herein we present the theoretical underpinnings for an alternative strategy suggested by
genome sequence comparisons. The essence of the idea is to collect experimental information
about the presence or absence of each member of a set of non-specific (even randomly chosen)
short subsequences (n-mers) in a genome of interest. The total number of possible
oligonucleotides, 4", increases as oligonucleotide length n increases. For sufficiently small
values of n, a given genome will be large enough for all possible n-mers to be present. For
greater values of n, the number of alternative n-mer sequences becomes extremely large and
despite the considerable size of a genome, most n-mers will never occur. For a given genome,
however, there is always an intermediate value of n, for which a reasonable fraction of
oligomers will occur, while many do not. If enough probes of these intermediate lengths are
monitored, the pattern of presence and absence should constitute a highly unique “molecular
fingerprint” of the organism being characterized. This pattern can be readily matched to a
library of known patterns to identify a bacterial or viral strain, or to identify related organisms.

One way to match this approach to experimental practice is to print probes complementary to
a representative number of n-mers on a single cDNA array. When DNAs from different
microbes are hybridized to the arrays, patterns will be produced indicating the presence/
absence of each n-mer in each genome. We show herein that with a reasonable array size (~1000
spots) and appropriate lengths of the subsequences (n = 12-13 nucleotides for bacteria) the
probability of error (the probability that two different organisms will have the same pattern) is
negligibly small [9,10]. Therefore, such a random array can be used as a “universal identifier”.

The work presented here establishes the theoretical feasibility of the approach by showing that
more than enough probes exist to construct an experimentally reasonable universal identifier
array. In silico hybridizations using such arrays are used to examine the utility of the arrays in
distinguishing both distantly- and closely-related organisms. Analysis of these results allows
us to determine the best values of n and m (where m is the number of G and C nucleotides in
the n-mer—its GC content). The results obtained clearly indicate that a universal random array
may be used for efficient identification of microbial organisms (including close relatives).
Original data and results can be found on the supplementary data website
http://www.bioinfo.uh.edu/publications/universal_identification/.
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2. METHODS

2.1. Computational background

The sequences of 105 complete microbial genomes with sizes ranging from 0.58 Mb to 9.11
Mb were obtained from the NCBI database. Performing a statistical analysis of long
subsequences (of sizes > 11) is a challenging task. Unique algorithms and specialized data
structures (counting arrays and incomplete search trees) were developed for this purpose
[11-13]. These algorithms provided superior time and memory efficiency for the computations.

2.2. Hypothesis of randomness

The total number of n-mers in a genome G is approximately equal to the genome length M.
Let Ng be the number of different n-mers in G. We introduce the frequency of the presence of
n-mer Sin a genome G as f (S,G) = Ng/4". Note here that the frequency of presence is not the
same as the frequency (or probability) of occurrence within a given genome (where the actual
number of occurrences is also taken into account); see Appendices A and B for more details.
We have recently shown by analysing a large number of publicly available sequenced genomes
[10] that in the range Mg < 4", the frequency of presence is very close to that theoretically
expected in agenome of random sequence. For the case of equal single-nucleotide probabilities,
Pa = Pc = pg = pt = 1/4, we have for a random genome,

Jo=1—exp (—M)

411 (1)

This frequency is the same for all n-mers with a given n. When M < 4", we have fg ~ M/4".
The existence of a range where the n-mer content of genomes can be considered as nearly
random (a “random domain’) provides a starting point for our approach.

In order to take the GC content into account, one may generalize egn 1, allowing for the
different single nucleotide probabilities. Hybridization rules dictate that in the overall two-
strand genome, the number of A nucleotides will be equal to the number of T, and a similar
correspondence will be found between G and C. We have also found that analysis of a single
strand sequence (see Figure 1) will usually give a similar fraction of A as of T (and G as of C)
on a single strand, i.e. there is no strand preference for particular nucleotides. Therefore, we
accept that pg = pc =py and pa =pt =12 —p;.

However, nucleotides A and C can appear with different probabilities: p; # 1/2 — p1. Let nq be
the number of nucleotides d (= A, C, G, T) in a given n-mer, such that ng + nc + na+ nt =n.
The frequency of the presence of n-mer S with the GC content m = ng + n¢ inarandom genome
takes on the form (see appendix A),

[(S)=1-eMrs,
n n, N N n—-m
ps=p, pi P =P (3 - p1) .

Below we will compare this equation, which is valid for an idealized random genome, with
the results of our computational experiments on real microbial genomes.
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2.3. Choosing the value of n

Let us consider a typical hybridization experiment. In accordance with the random genome
model, egn 2, we expect that out of L n-mers placed on a chip, Lf n-mers will be present in the
genome G. Let G be exposed to the chip, and the n-mer S be present both in the genome and
in the set of probes placed on the chip. Since our experiment is not perfect, S will not necessarily
be detectable on the chip [10]. Assume that the probability of detected hybridization is the
same for any probe and equals pnyp, (for an ideal experiment, phyp = 1). The number of probes
expected to hybridize (the average size of a fingerprint), K, is given by:

<K>:[7h_vp Lf.

Assuming that hybridization at different array sites precedes independently, the uncertainty in
the fingerprint size can be found using the binomial distribution,

We wish the relative uncertainty in the fingerprint size to be small,

loa Phyb 1
—£ = 2 ~ <1

Ky \Lf(1-pmo) VLS

e.g. choosing the relative uncertainty ~ 0.3, we have Lf ~ 10. Therefore, f cannot be extremely
small, for in such a case the array size would have to be excessively large to provide reliable
identification. In accordance with egns 1 and 2, the frequency of presence depends on two
parameters: the genome size M and the oligonucleotide size n. M is set by the type of organism
of interest. For bacteria, the genome size M is in the range 10% < M < 107, see Figure 2. However,
one can achieve a manageable value of f by changing n. The prediction of formula (1), in
agreement with experimental experience for microbial genomes, leads to the choice n = 12,
which ensures that f is in the range 0.1 < f < 0.5. This estimation from the random genome
model is in good agreement with the results of computer experiments with real genomes.

2.4. Probability of error in identification of microbial genomes

Let us estimate the probability of error in discriminating organisms by their fingerprints on a
random array which consists of L n-mers. Assume that we need to discriminate between two
genomes G, and G, of corresponding sizes M1 and My. Let G4 contain N1 and G, contain N,
different n-mers, and let N1, n-mers be present simultaneously in both genomes (this is the
size of the intersection G1 N G, of the n-mer content of G; and G»). The probability ¢ that the
random array fails to distinguish the two genomes is equal to & = [1-(N1 + No — 2N1,)/4"-
(see Appendix C for the derivation of ¢). Given an acceptable error probability ¢ one can now
estimate the appropriate array size:

1= loge
log[1—(Ny+N, —2N1»)/4"1 )
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We would like to stress the logarithmic dependence of the array size L on the error level ¢ (or,
equivalently, the exponential decay of the error level with increasing array size). This feature
is of principal importance for the analysis under discussion.

3. RESULTS AND DISCUSSION

We generated in silico random 12-mer arrays of size L = 1000 with various values of GC
content m. The expected fingerprint that would be seen on the random array (the set of n-mers
present simultaneously in the genome and on a given chip) was generated for each of 105 real,
sequenced bacterial genomes. Typical results are shown in Figures 3—7. The sizes of the
microbial fingerprints on chips with GC content m = 6 and m = 4 are plotted in Figures 3 and
4 as the red curves. The fingerprint sizes for random “genomes” with the same lengths and GC
content, calculated from eqn 2, are shown by the blue curves. The results of the random genome
model with equal nucleotide probabilities, eqn 1, are plotted as green curves. Every point
corresponds to a genome; the horizontal axis is the genome length. An agreement is observed
between the real genome fingerprints and ones generated from random “genomes”. This
confirms our hypothesis of the random presence of n-mers in genomes in the size range M <
4n,

Next we considered the intersections of fingerprints (number of common n-mers) for every
genome pair (105 x 104/2 = 5460 pairs in total). The results for the arrays with GC content
m =6 and m = 8 are depicted in Figures 5 and 6 as scatter plots of intersection sizes for real
genomes against the intersection sizes for random-sequence “genomes” of the same length and
GC content (in accordance with eqn 2). For species that are not close relatives of each other,
we have a high correlation of the results for real and random genomes, i.e. the points on the
scatter plot are close to the solid (x = y) line. Intersection sizes for close relatives are larger
than those arising randomly, and the corresponding points appear above the x =y line (see also
[9]). In Figures 5-7 we label the genomes that have the most similar fingerprints; all of which
are closely related. These are four strains of Escherichia coli and Shigella flexneri, two strains
of Mycobacterium tuberculosis, two strains of Streptococcus pneumoniae, etc.; see Table 1.

Even for close relatives the difference in fingerprints is sufficient to distinguish between them.
This is demonstrated in Figure 7, where we show the distribution of ratios of the size of the
intersection of the two fingerprints, F1 N F,, over the size of the union of the same two
fingerprints, F1 U Fyp,

_size(Fy N Fy)
" size(F; U Fy)

(for identical fingerprints, R = 1). Again, the real genome results are shown against the
corresponding results from random-sequence “genomes” with the same lengths and GC
contents. The principal part of the graph is formed by the species that are not close relatives
of each other. Far above lie the points representing close relatives (see Table 1). Note, that the
fingerprints of all close relatives still differ in several probes (n-mers), and, generally, can be
discriminated. This illustrates that substantial differences occur even at strain level, and even
modest-sized arrays (by today’s standards) will be able to distinguish very closely related
strains. Higher resolution can be achieved with larger array sizes.

4. CONCLUSIONS

We have compared the fingerprint sizes for different microbes and the sizes of intersections
of fingerprints for all of the microbial pairs, with the corresponding results for random-
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sequence genomes of the same length and GC content. Remarkably good correspondence with
the random model has been found. This means that the n-mer size and GC content can be chosen
in such a way that all of the microbes have fingerprint sizes big enough to be identified and
the fingerprints of different microbes are sufficiently different to ensure a very low probability
of misidentification. Fingerprint sizes, intersection sizes and the probability of
misidentification can be estimated from the random genome model.

The results of the in silico experiments presented in this report indicate that discrimination of
bacterial species is achievable with randomly designed arrays. Furthermore, the random-array
approach provides distinguishable fingerprints even for closely related organisms. Thus, the
probability of misidentification as a result of subsequent genomic mutation is negligible due
to the fact that the pattern has a one-to-one or linear correspondence to the difference between
the sets of n-mers in each genome. Itis also clear that the same approach will work with viruses
and eukaryotic organisms, though the numerical parameters will change.

The overriding advantage of the random-array approach described here is that a single
experimental system can be used for any and all bacteria. No sequencing will be required. One
will only need to compare the pattern appearing on the array against a library of known patterns.
In addition to the constraints described here (on GC content), the arrays can be further
constrained to not hybridize to known backgrounds of various types, e.g., human and human
SNP DNA. Finally, it should be pointed out that the essence of the method is a cumulative
summary of yes/no distinctions for a large number of probes. Hence alternative versions of the
assay can be constructed in which the pattern is generated computationally after the data is
collected. For example, a series of PCR amplifications might be used to generate the yes/no
distinctions.
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APPENDICES

A. The frequency of presence of n-mers in arandom sequence

Let G be a random sequence of length M of four characters {A,C,G, T}, and S be one of the
an

4" possible subsequences of length n (“n-mer”). We will enumerate them, so that ZH will

stand for the sum with respect to all n-mers. Let F M- (S, k) be the probability that S appears

k times in G (the frequency of appearance of S in G). To define this probability one can imagine

a random statistical set of N sequences of the same length. If in this set there are Ny sequences

that contain S exactly k times, then

N

M.n T k

FESs 8=

Let f™. N(S) be the probability that S is present in G (the frequency of presence),

M
fM.H(S):ZFM.n(S’k):l _ FMﬂ(S,O).
k=1

All of the related statistical information is contained in the distribution of probabilities of
coappearance of n-mers in G, P(n-mer S appears kg times, S=1,2,...,n),

n

st =M —n+1=M,,
S=1
where My, is a total number of n-mers in G. We will denote this distribution by:
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P(ky,ky, ... kg, ... .k )=P({k}).
This distribution has a multinomial form,
4" kg
ps'S
Pk h=M| |2
§=1 5" (4)

4

. - > k=M, . .
Here the product is taken over all configurations, such that {—{ and pg is the probability
to find the n-mer Sin G. If n = 1, pg are reduced to the “elementary probabilities”, p; to find
the character | in G, | = {A,C,T,G}. Assume that p; are given, and n-mers are composed in a
random manner (i.e. the characters in S are not correlated), then

Ps=DP\Dy---De»  S=[AT...C]. ®)

One finds immediately the frequency of appearance of S in G,

M”!lqu'rk

O T

ky Tes) kI(M,—F)!
qszl_pS

_ . = =2 .
The mean number of appearances, Ks, the variance rrf:kf — (k) , covariance
o2, =kk, — kk,, and the correlation coefficient C;, =0, /o o, are given as follows,

ES :ang 5
gr;=Mupx s>
o, == Mupsp,,

Ps P
Cu:_ vV L
(IS(]T

Let us find the probability of presence, fM: " (S) =1 — FM. " (S, 0) =1 — (1— p5)Mn. One may

use the mean number of appearances as a new variable, y=M, p, =k, and consider the common
Poisson limit of the Bernoulli distribution:

fMn(8)=1-(1- ML,,)M" > 1-e?
y=M,p;. (6)

In the case of equal probabilities p; = 1/4, we have the homogeneous distribution of n-mers,
p; = 1/4" and we arrive at the frequency of presence for a random genome with equal nucleotide
probabilities [9].
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In the microbial genomes considered here nucleotides A and T appear with nearly equal
probabilities; the same is true for nucleotides C and G, as seen in Figure 2. However, nucleotides
A and C appear with different probabilities:

Pg=Pc=P1
PA=pP:=1/2-p1.

The distribution of the values of the probability pg + pc = 2p; to find G and C nucleotides in
different microbial genomes is shown in Figure 2b.

The probability to find the n-mer S depends on the GC content m = ng + n¢

n n n n
Ps=P\"Pr' P PG’
n—m
=pr(5-m) @

The frequency of presence, f(S), is constant for a given GC content m; however f(S) depends
on m and on the probability p;. There are Ny, different n-mers of GC content m,

2”n'
Np= o ZNm 4",
ml(n —m)! m=0 (8)

It means that the average number of n-mers of GC content m in a random genome G of size
M is given as

’
Mm:f(Sms Pl)Nm, ()

where f and Ny, are given by egns 6, 7 and 8. When p; = 1/4, we recover the homogeneous
case,

S M=) Nu=4"f(S)=M .

m m

where M’ is a total number of different n-mers in G.

B. Intersections of two random genomes

Consider two random genomes G; and G, of sizes M1 and M, and probabilities of G and C
nucleotides p1 and py, correspondingly. The probability that the n-mer of GC content m be
present in both genomes is fM1 (S, p1) ™2 (Sy, p2).

We find the total number of n-mers that are expected to be present in both genomes (“the size
of the intersection of G1 and G,"), multiplying by N, and summing up the terms with different
values of m:
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n
ZNmel (Sm, Pl)sz(va 172)-

m=0

C. Estimation of the probability of error

Let us estimate the probability to make an error in discriminating organisms by their
fingerprints on a random array that consists of L n-mers. Assume that we need to discriminate
between the two genomes G1 and G, of corresponding sizes Mq and M. Let G, (G,) contain
N1 (N,) different n-mers and N1, n-mers are present simultaneously in both genomes (this is
the size of intersection Gy N G5 of the n-mer contents of G, and Gy, see Fig. 8). The union
G1 U Gy contains N1 + N, — N1 n-mers. Probabilities to find an arbitrary n-mer S,

. . N N Np
correspondingly, in Gy, G, G1 N Gy and G1 U G, are P\= g P2= g P2= 0, L+ P —
P12, respectively.

Consider a joint fingerprint of G; U G,. Two genomes can be distinguished if this fingerprint
contains n-mers from the set B = G U Gy — G4 N Gy; if all of the n-mers in the joint fingerprint
belong to the sets A=G1 N Gy or C=1—- Gy U Gy, the two genomes cannot be distinguished
(the set of all n-mers = A + B + C). The probability that an arbitrary n-mer S& Bis1—p; —
p2 + 2p12 and the probability that the random array fails to distinguish the two genomes (i.e.
all of the n-mers in the joint fingerprint find themselves in A or C) isequal to e = (1 —p; —

p2+2p1)-.
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Figure 1.
Co-presence of (a) A versus T and (b) G versus C nucleotides in microbial genomes. (Only
one strand of every genome is considered.)
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Figure 2.

Distribution of (a) genome lengths and (b) GC contents (binned into 10% ranges) for microbial
genomes. The horizontal axes represent (a) the genome length and (b) the probability pg +
pc of appearance of G and C nucleotides in a genome.
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Figure 3.

Sizes of microbial fingerprints on an array of L = 1000 randomly chosen 12-mers with GC
content m = 6. Every point represents a genome, the horizontal axis being the genome length.
Fingerprint sizes for 105 real genomes (blue) are compared to the ones for random-sequence
genomes with the same length and GC content (red) and for random genomes with the same
length and uniform nucleotide distribution pa = pc = pg = pt = 1/4 (green).
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Figure 4.
The same as Fig. 3 except that the GC content m = 8.
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Figure 5.

Intersections of fingerprints for 105 microbial genomes on an array of L = 1000 randomly
chosen 12-mers with GC content m = 6. Intersection sizes for real genomes are shown against
the intersection sizes for random genomes with the same length and GC content. For most of
the genome pairs intersection sizes are close to the ones for random “genomes” (i.e. the points
on the scatter plot are close to the solid line (x =y). Deviations are observed for closely related
species; some of them are marked and listed in Table 1.
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Figure 6.
The same as Fig. 5 but for GC content m = 8.
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0.18

Ratios, (size of intersection of positive probes)/(size of union of positive probes), for pairs of
fingerprints of 105 microbial genomes on the given chip of L = 1000 and m = 6. Results for
real genomes are shown against the ones for random “genomes” with the same length and GC
content. Close relatives appear far from the rest of the points. Even the most similar pairs
(strains of the same species; designated by their genome-list indices) can be distinguished.
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Figure 8.
The n-mer content of the intersection of two genomes.
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Table 1

Closely related species as they appear in Figs 5-7.

© 00 N oo o B~ W N

11
12
13
14
15
16
17
18
19
20
21

BA000007
AE005174
U00096

AE014075
AE005674
AL123456
AE000516
AE006468
AL513382
AE005672
AE007317
AE009949
AE014074
AE004092
AL732656
AE009948
NC004556
AE003849
BA000017
BA000018
BA000033

Escherichia coli 0157:H7

Escherichia coli 0157:H7

Escherichia coli K-12 MG1655
Escherichia coli CFT073

Shigella flexneri 2a str 301
Mycobacterium tuberculosis
Mycobacterium tuberculosis CDC1551
Salmonella typhimurium LT2

Salmonella typhi strain CT18
Streptococcus pneumoniae

Streptococcus pneumoniae R6
Streptococcus pyogenes strain MGAS8232
Streptococcus pyogenes MGAS315
Streptococcus pyogenes strain SF370 serotype M1
Streptococcus agalactiae NEM316
Streptococcus agalactiae

Xylella fastidiosa Temeculal

Xylella fastidiosa

Staphylococcus aureus strain Mu50
Staphylococcus aureus strain N315

Staphylococcus aureus MW

J Biol Phys Chem. Author manuscript; available in PMC 2010 April 27.

Page 19



