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ABSTRACT

This paper investigates the problem of ascertaining which circle­

like continue are continuous images of chainable continue. In the 
second chapter, the notion of the "revolving number" of a map from S'*" 

onto S’*" is introduced and used to classify the planar, non-chainable, 

circle-like continua by structure: decomposable; "self-entwined" (a 

notion introduced in chapter 2); indecomposable, non-self-entwined. 

The main theorem in chapter 3 is a characterization of weakly chain­

able circle-like continua; the classification scheme of chapter 2 is 

used to prove this result.
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CHAPTER I

INTRODUCTION

Suppose that for each positive integer i, is a compact metric 

space and is a map (continuous function) from X onto X^. Let 

M be the subset of the Cartesian product space X^ consisting of the 

set of all sequences p such that for each i, p^ is in X^ and 

i+1 00f. (p. ,) = P.« Then M, with the relative topology from .11 X. , is i i+l i r i=l i

called the inverse limit of the inverse system (X^,f, and denoted 

Lim (X^,f^+'*"). If m > n, f™ will denote the composition of the maps 

fn+l fn"*’2 , fm • fm will denote the identity function on X .
n n+1 m-1 m J m

For each positive integer i, PR^ will denote the natural projection of 

M onto X.; i.e., PR.(a., a_, ao, ...) = a.. The theorems in this paperi i 1 2 3’ z i r

are concerned with inverse limits in which each factor space X^ is a cir­

cle (i.e., circle-like continua), and in which each factor space X^ is 

an arc (i.e., arc-like, or chainable, continua).

The following theorems will be used frequently:

A. If (n^, n2» n^, ...) is an increasing sequence of positive inte­

gers, then M is homeomorphic to the inverse limit of the inverse system 

(X , f ni+l ).
n. n.

1 1 i+l
(In Theorems B and C, assume that K = Lim (Y^,g^ ).)

B. Suppose h is a sequence of maps such that (1) for each positive 

integer i, h^, is a map from X^ onto Y^, and (2) for each i, h^ o

i+l ??= g. oh.,, . Then the function G from M into .H, Y. defined byi i+l 1=1 i J

G(a^, a^, a^, . ..) = (h^(a^), 112(32), . ..) is a map from M onto K.
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Definition, (see [1] ) Suppose each of A and B is a metric space and each 

of u and v is a map from A into B. Suppose c > 0. The statement that

u = v means that for each point x in A, dist^(u(x),v(x)) < c.

C. (Theorem 3 of Cl] ) Suppose e is a decreasing sequence of posi­

tive numbers with sequential limit 0. Suppose h is a sequence of maps 

such that (1) for each positive integer i, h^j. is a map from onto 

X„. and h„. n is a map from X„. n onto Y„. n : (2) for each triple (i,j,k)2i 2i-l r 2i-l 2i-l

of positive integers with i < j and k 2i-l, 

2i-l . p2j-l  2j-l .
gk 0 h2i-l ° f2i-l e2i_1 8k ° h2j-l

A 2i-l U U 2j-2and gR o h2._1 o o h = gkJ ;
J 21-1

(3) for each triple (i,j,k) of positive integers with i < j and k 2i, 

^21 , 2j 2j
fk ° h2i ° g2i e2i fk ° h2j

and f^1 oho g^] 1 o h = f^ 1 .
k 2i 2i 2j-l e„. k J 21

Then M is homeomorphic to K. In case X^ = and h^ is the identity map

for each i, it suffices that for each ordered triple (i,j,k) of positive 

integers with k i < j, 

8k ° £i gk 
1

and f,1 o g] = fJ 
k i e. k i

for M to be homeomorphic to K.



CHAPTER II

STRUCTURE OF CIRCLE-LIKE CONTINUA

In [2], Bing characterized the class of non-planar circle-like con- 

tinua, and in [3], Ingram characterized the chainable circle-like continue. 

In this chapter, the class of non-chainable, planar, circle-like continua 

is subdivided into three subclasses: the decomposable; the self-entwined 

(a concept to be introduced in this chapter); the indecomposable, non- 

self-entwined. This classification scheme is used to prove the main 

result of chapter III.

The "circle", s\ is the unit circle on the complex plane. If P 

and Q are two non-antipodal points of the circle, and L the length (in 

the usual metric) of the minor arc between them, then the distance from 

P to Q, denoted |p-q|, is defined as —. The distance between anti­

podal points is The "wrapping function", denoted is the map from 

the real line onto S'*" which sends the number x to e^n^X. Let S'*" be 

oriented so that i is order-preserving. If A and B are points of S'*", 

then the arc [A,B] of S'*" is the ^-image of an interval Ca,b], b-a < 1, 

with ^(a) = A and «$(b) = B. If C is a point of S'*", then we write 

A < C < B in case there is a number c, a < c < b, with d(c) = C. Notice 

that if b-a then |A-B| = b-a.

1 1 Definition. If f is a map from S into S , then the degree of f, denoted 

deg f, is that integer n such that f is homotopic to the n-th power of 

the complex identity function restricted to S'*".

The next two definitions are modifications of concepts developed 

by J.T. Rogers in [4], approached here from a homotopy-theoretic rather 

than combinatorial point of view.
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Suppose f is a map from S onto S , and deg f 0.

Definition. Suppose T is an arc in S'*". Let u be a lift of f|T, i.e., u 

is a map from T into the real line, and f | T = <b o u. Then deg(T,f) is 

defined as diam u(T); this number is independent of which lift map is 

taken.

In case deg(T,f) is an integer, deg(T,f) is the number of times the 

arc T is "wrapped around" the circle by f.

Lemma 1. Suppose D is the number set to which a number r belongs if and 

only if there is an arc Q in S'*" such that r = deg(Q,f). Then D is bounded 

above.

Proof. Since f is uniformly continuous, let d > 0 be such that any d-ball 

in S'*" is mapped into a semi-circle in S'*". Let m be an integer greater 

than . If A is an arc in S'*", then A may be covered by a linear

chain of d-balls with no more than m links, implying that deg(A,f) s 2 w 

Definition. Suppose D is as in the hypothesis of Lemma 1. The revolving 

number of f, denoted R(f), is sup D.

Lemma 2. Suppose P and Q are points of S'*". Let T be a point sequence 

with each value in the interior of the arc Cq,p], and T converges to P. 

Let u be a sequence of maps such that for each positive integer i, u^ 

is a lift of f|[P,T^3, and u^(P) = u^(P) = Z. Then 

Limit u.(T.) = Z + deg f. 
i 00 
Proof. Suppose deg f = n. The quotient map —— is inessential. Let 

v be a lift of —— . Then —— = o v, and f = ln . (<$ o v) . Let e > 0.
In In

Since T converges to P, and v is continuous, let N be a positive integer 

such that if m N, then It - pl < ■ -e. and lv(T ) - v(P)l < .

Suppose m N. Let [a,b] be an interval, b-a < 1, such that ^(a) = P
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and ^(b) = T . Let h be the inverse map of ^|[a,b]. If x is in LP,TmJ, 

then x11 = L^(h(x))]n = ^(nh(x)). Hence o t.P,T J

= (^ o (nh)) . o v) = <l> o (nh + v). There is an integer J such that

u + J = nh + v. Thus u (T ) - u (P) = nh(T ) - nh(P) + v(T )- v(P)

= n(b-a) + v(Tm) - v(P). Since | Tm - p| < , 1 - < b“a <

p np p p
and n - — < n - -r n(b-a) n. Also - -x < v(T ) - v(P) < -r- , hence 2 2n+l 2 m 2

n - e < n(b-a) + v(Tm) - v(P) < n + -^

n - e < u (T ) - u (P) < n +m m m 2
-e < u (T ) - (Z + n) < ^ •

m m 2

This completes the proof.

Lemma 2 yields immediately R(f) deg f.

Using the results of Ingram in [3] and of McCord (page 29 of [5]), 

we have

Theorem D. If C is a circle-like continuum, then C is planar and non- 

chainable if and only if C is homeomorphic to Lim (X^,f^+^), in which 

each is S'*", and deg f^"*" = 1 for each i.

Notation, "p.n.c.c.l." will mean "planar, non-chainable, circle-like".

We are ready to prove the main result of this chapter.

Definition. Suppose M is a p.n.c.c.l. continuum as in Theorem D. Then

M is said to be in class 1 if, for each positive integer i, there exists 

a number 2^,1 < 2, such that for each positive integer j,

R(f^+J) Z^. We say that M is in class 2 if for each i, and each num­

ber y, 1 y < 2, there is j such that R(f^+^) > y. Similarly, M is in

class A if, for each i, there exists Z., 1 Z. < 3, such that for each i i
positive integer j, R(f^+-') Z^; also, M is in class B if for each i,

and each y, 1 y < 3, there is j such that R(f^+^) > y.
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Theorem 1. Suppose M is a p.n.c.c.l. continuum. Then either M is homeo­

morphic to a member of class 1 or M is homeomorphic to a member of class 

2. Furthermore, either M is homeomorphic to a member of class A or M is 

homeomorphic to a member of class B.

Proof. Let M = Lim (X^,f^+'*‘) as in Theorem D. Suppose M is not in class 

2. Then there is a number Z, 1 Z < 2, and there is a positive integer 

i such that for each j, R(f^+J) Z. Let D be the set of all ordered 

pairs (p,y) such that p is a positive integer, y is a number, 1 y < 2, 

and for each positive integer j, R(fP+j) y.

Case (1). The domain of the relation D is bounded. Let K be an integer 

greater than every element in the domain of D. Let Z be a number,

1 5 z < 2, and i be a positive integer. Then (K+i,Z) is not in D. Thus 

there is j such that R(f^'J’:y+^) > Z. Let C = Lim (XTZI ., . Then

C is in class 2, and M is homeomorphic to C by Theorem A.

Case (2). The domain of D is not bounded. Let (n^, Hz, n^, ...) be an 

increasing sequence of positive integers whose range is the domain of D.

Let h be a function whose domain is the domain of D, and h is a subset 

of D. Let C = Lim (X , f ni+l). Then C is in class 1. For; if i is 
n. n. 

1 L
a positive integer, then h(n^) is a number, 1 S h(n^) < 2, such that for 

each j, R(f ni+j) h(n.). By Theorem A, M is homeomorphic to C. The
i

second assertion of Theorem 1 is proved similarly.

Trivially, class B is a subset of class 2. The collection of all 

p.n.c.c.l. continue is class 1 U class B U (class 2 \ class B). We will 

see that if M is a p.n.c.c.l. continuum, then M is indecomposable if and 

only if M is homeomorphic to a member of class 2.
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Definition. The continue which are homeomorphic to members of class B 

will be called self-entwined(this notion is also a modified version of 

an idea in [4]).

We will see that the self-entwined continue have some of the prop­

erties of non-planar circle-like continua (e.g.. Corollary to Lemma 8; 

Theorem 5).

Assume, as before, that f is a map from onto S'*", and deg f 0. 

Definition. If A is an arc in S'*", and t is a lift of f|A, then there is 

a subarc B of A such that the map t sends the endpoints of B to the end­

points of the interval t(A). An arc with this property of B will be 

called "type 1".

Lemma 3. If R(f) > deg f, then there is an arc D in S^" such that deg(D,f) 

= R(f).

Proof. Let A be a sequence of arcs in S'*" such that (1) each value of A

is of type 1; (2) for each i, deg(A^,f) deg(A^+^,f); (3) deg(A,f) 

converges to R(f); (4) letting A^ = the point sequence P con­

verges to a point c, and Q converges to a point d. Let L be the limit­

ing set of A. Suppose c = d. Then L = S ; otherwise. Limit diam A. = 0, 
i -» <»

and Limit deg(A.,f) = 0 4- R(f). Let y and z be points of S , with
i -> oo 1

y < c < z. There is a positive integer m such that, for j^m, y < P. < z.

and P . < z < y < Q. . Let v be a lift of f|[y,z]. Let u be a sequence

of maps such that for each i u. is a lift of f A., and for j m, i 1 i

u (z) = v(z). If j 2: m, then u.|[p.,z] = v|[p.,z]. Thus

Limit = Limit v(P^) = v(c). By an argument similar to that of

Lemma 2, Limit = v(c) + deg f. Hence Limit (u^(Q^)-u^(P^)) = deg f. 
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But each is of type 1, and deg(A^,f) = |u^(Q^) - u^(P^)|. Therefore 

Limit deg(A.,f) = deg f < R(f), a contradiction.
i -4 CO L

We have c 4 d, and L = Cc,d]. Let w be a lift of f|[c,d]. Let x 

be a point in the interior of Ec,d]. There is a positive integer m such 

that for j Pj <x< Qy As in the preceding paragraph, let, for 

each i, u^ be a lift of f|A^ , and for j m, u (x) = w(x). We have 

(similar to the previous paragraph) Limit u.(P.) - w(c), and 
i =o

Limit = w(d). Thus Limit IU£(Q^) ~ ui^i^ = lw(d) ~ w(c)|, and

R(f) = deg([c,d] ,f) .

Definition. If P is an arc in S'*", P is of type 1, and deg(P,f) = R(f), 

then P is called a defining arc for R(f).

Lemma 4. Suppose deg f 1 and [a,b] is a defining arc for R(f). Let 

t be a lift of f|£a,bj . Then t(a) < t(b), and deg([b,a],f) = R(f) - deg f. 

Proof. Suppose t(b) < t(a). By Lemma 2, let c be a point, b < c < a, 

such that if u is a lift of f|[a,c], and u(a) = t(a), then

- % < t(a) + deg f - u(c) < If u is such a map, then

t(a) - t(b) + deg f - % < u(c) - t(b), and 

R(f) + % R(f) + deg f - ^ < u(c) - u(b). Hence deg([b,c],f) > R(f), 

a contradiction.

To prove the second assertion, let v be a lift of f|£b,a], and sup­

pose v(b) = t(b). Lemma 2 yields v(a) = t(a) + deg f, whence 

deg([b,a],f) R(f) - deg f. Assume deg([b,a],f) > R(f) - deg f. No 

point of v([b,a]) is greater than t(b). Suppose c is a point, b < c < a, 

such that v(c) < t(a) + deg f. Let w be a lift of f([c,b] such that 

w(a) = t(a). Then w(c) = v(c) - deg f < t (a) . But 

w(b) - w(c) = t(b) - w(c) > t(b) - t(a) = R(f), a contradiction.
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Notice that the arc Eb,a] is of type 1: v(Eb,a]) = Cv(a),v(b)] .

Theorem 2. If M is a p.n.c.c.l. continuum, then M is indecomposable if 

and only if M is homeomorphic to a member of class 2.

Proof. Let M = Lim (X^,f^+'*") as in Theorem D. Suppose M is in class 2. 

By a result of Kuykendall (Eb, Theorem 2]), M is indecomposable if and 

only if for each positive integer n, and each number e > 0, there are a 

positive integer j and three points of such that if K is a subcon­

tinuum of Xn+j containing two of them, then dist^(x,f^+^(K)) < e, for 

each point x in X^. Suppose n is a positive integer and % > e > 0. 

Let j be such that R(f^+^) > 2 - e. Let Ea,b] be a defining arc for 

R(f^+j), and t a lift for f^+^|EA,B]. Then t(EA,B]) = Et(A),t(B)] = Ea,b], 

with b > a + 1. Let C be a point in Ea,b], with t(C) = a + 1. Then 

Ea,a + 1] E t(EA,C]), and Ea + l,b] t(Ec,B3). By Lemma 4, letting v 

be a lift of f^+^|EB,A] such that v(B) = t(B), we have v(Eb,AJ) = Ea+l,b]. 

Now, ^(Ea,a + 1]) = S'*", and ^(Ea + l,b]) is either S*" or an arc of length 

greater than 1 - e. Hence S'*" \ d(Ea + l,b]) either is not a point set 

or is an open arc of length less than e. For each point x of S*", 

|x - ^(Ea,a + 1])| = 0, and |x - ^(Ea + l,b])| < e. Also, 

^(Ea + l,b]) = e$(v(EB,A])) = f^+^ (Eb,A]) ; similarly, 

eS(Ea,a+l]) £ f^j(EA,c3) and «5(Ea + l,b]) £ f"+j(Ec,Bj). 

By Kuykendall's theorem, M is indecomposable.

To prove the converse, suppose M is indecomposable. Then for each 

integer K 2, there are K points of M such that M is irreducible between 

each two of them. A corollary of Eb, Theorem 2] is that M being indecom­

posable implies for each triple (n,p,e), n a positive integer, p an inte­

ger, p 2, and e > 0, there are a positive integer j and p points of X 
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such that if L is a subcontinuum of ^n+j containing two of them, then 

distn(x,f^"*~J (L)) < e, for each point x in X^. Suppose n is a positive 

integer and 1 > e > 0. Let N be an integer such that N - 2 > — . Let e
j be a positive integer and W be a set of N points of S'*" such that if A 

is an arc containing two of them, then deg(A,f^"*"j) > 1 - ■—- (similar 

to the previous paragraph). Let (p^, P2, ..., p^) be a reversible seq-

1 1uence of points of S , ordered by the orientation of S , whose range is

the set W. Let v be a lift of ^1" ^et, for 1 i N - 1, 

Ca^,b^] be a subarc of tyPe !• f°r some i,

v([ai,bi]) = Cv(bi),v(ai)], then since v(ai) - v(bi> > 1 - , by

Lemma 2, R(fn+-1) > 2 - —^7 > 2 - e. Similarly, if, for some i, 
n N-l

v(b.) - v(a.l1) > 1 - e, then R(fn+J) > 2 - e. Assume that for 
1 i+l n

1^ i 5 n - 1, v(b.) - v(a.) > 1 - -—7 , and for 1 i N - 2, 1 1 N-l

v(b.) - v(a.,-) 1 - e; then v(a.,-) - v(b.) 2: e - 1, and1 i+l i+l 1

v<al+l>

v(aN-l>

- v(a.) > e - —^7 . Therefore
1 N-2 N-1

" v(al) =i21 ^^i+l^ " v<ai)) > (N - 2)(e - But

V(bN-l) " V(W > 1 " and v(b^ - v(a^) > 1 + (N-2)e - e.

Since (N-2)e > 1, we have R(f^+**) v(b^ - v(a^) > 2 - e, 

whence M is in class 2.

Definition. Suppose g is a map from a continuum X onto a continuum Y.

Then g is said to be weakly confluent if, for each subcontinuum K of Y, 

there is a component C of g ^(K) such that g(C) = K.

Lemma 5. If g is a map from a continuum X onto S*", and g is essential.

then g is weakly confluent.
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Proof. Suppose g is a map from X onto S , and g is not weakly confluent. 

Then g is inessential. For; Let Cp,q] be an arc in S^ such that no com­

ponent of g l(Cp,q]) maps onto Cp,q] under g. We may assume that Lp,q] 

is properly contained in a semi-circle; if not, then let h be a homeo­

morphism from S'*" onto S^ which sends Cp,q] to an arc of length less than

if h o g is inessential, h o h o g is inessential. Let W = g ^"(Lp,q]);

Y = the set of all components of W; = the set of components of W which 

contain a point of g ^"(p); Y£ = the set of components of W which contain 

a point of g (q). Now, Y = Y^ U Y£. For; suppose J is an element of

Y \ (Y^UY2). Then J £ X \ g ^(Cq,p])s which is open in X. Let T be the 

component of X \ g \[p,q]) which contains J. Since X is a continuum, T 

contains a point of g ^(Cq,?]). But T E W, hence T J, and J contains 

a point of g ^(Cq»p])> a contradiction.

If K is a sequence of continue lying in W, then K has a subsequence 

with a sequential limiting set L, and L is also a continuum lying in W.

-1-1 * 
Since g (p) and g (q) are closed in X, this implies that Y^ and Y£ 

are closed sets. Since no component of W contains both a point of g ^(p)

-1 * *
and a point of g (q), Y^ and Y£ are mutually exclusive.

Let r be a function from X into S'*" such that if x is in X \ W, then 

r(x) = g(x); r(Y^*) = £p} ; r(Y2*) = {q} - Since the r ■*" image of a set 

closed in S*" is closed in X, r is continuous. But r(X) 4- S'*", thus r is 

inessential. Since r = g, g is homotopic to r, and g is inessential.

11Lemma 6. Suppose each of f and g is a map from S onto S , and deg g 0, 

deg f 1. Then R(g o f) R(g).

Proof. In case R(g) = deg g, we have R(g o f) deg(g o f)

= (deg g) (deg f) 2; deg g = R(g). Suppose R(g) > deg g. Let P be a defining 
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arc for R(g), and let t be a lift of g|p. Since f is essential, thus 

weakly confluent, let Q be an arc in such that f(Q) = P. Let u be a 

lift of (g o f) |q. Then (g o f) | Q = o u, and g|p = o t. Hence 

gof|Q = ^otof|Q = ^ou. Thus

R(g o f) diam u(Q) = diam (t o f)(Q) = diam t(P) = R(g). 

Lemma 7. Suppose f is a map from S'*" onto S'*", deg f = 1, e is a number, 

0 < e < %, and R(f) > 2 - e. Then there is a map g from S'*" onto S'*" such 

that deg g = 1, R(g) 2, and f = g.

Proof. If R(f) 2, then let g = f. Suppose R(f) < 2. Since

R(f) > deg f, let Ca,b] be a defining arc for R(f). Let t be a lift of 

f|La,b], and let u be a lift of f|Cb,a] such that u(b) = t(b). Then 

f|La,b] = i o t and f([b,a] = i o u. By Lemma 4, t(Ea,b]) = [t(a),t(b)], 

and u([b,a]) = Ct(a) + l,t(b)]. Let v be a linear map from [t(a),t(b)J 

onto [t(a),t(a) + 2], with v(t(a)) = t(a), v(t(b)) = t(a) + 2. Let w be 

a linear map from Ct(a) + l,t(b)] onto Lt(a) + 1, t(a) + 2], with 

w(t(a) + 1) = t(a) + 1, and w(t(b)) = t(a) + 2. Let g^ be a function 

from £a,b] into S'*", g^ = i o v o t; let g^ be a function from Ch,a] into 

S'*", g2 = ^owou. Let g = g^ U g^. Then g^ and g£ are continuous, 

and g^(a) = g2(a)» g-^(b) = g2(t)), hence g is continuous. Since v o t = t 

w o u = u, and is distance-preserving for intervals of length less than

%, we have f = g. Since deg f = 1 and f r g, deg g = 1, and e

R(g) diam v(t([a,b])) = 2.

Theorem 3. If M is a p.n.c.c.l. continuum, and M is in class 2, then M 

is homeomorphic to Lim (Y^,g^'*') such that each is S'*", deg = 1» 

and R(g^) s 2, for each pair of positive integers i and j, i < j.
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Proof. Let M = Lim (X.,f^+’*")J each X. = S'*", and M is in class 2. Let e 
_ i i ' i

be the number sequence (1, ... ). Let p. = 1. Let p„ be the
o 12

first positive integer j such that R(f,) > 2 - Let = f ^2 . Let
1 1 Pi

2 11 2 2 2g1 be a map from S onto S such that g = F , and R(gq) 2.
1 1^11

We proceed by induction. Suppose p^, P2, ... , pn, Pn+^ are defined

... , Fn+1 are defined, with F^+^ = f ^i+l for 1 i n;
1 2 n 1 p^ ’

g^, g|, ... , are defined, with R(g^+^) - 2, for 1 i n; for each 

triple (k,i,j) of positive integers with k^i<j^n+l,

and F, o g.k 1

Using the 

such that if x and y are points of S1 and |x - y| < a, then for

Fk •

uniform continuity of the maps from S into S , let a > 0

l^k^i<j^n+l, 
. . . . e.

|g^ o F-?(x) - g1 o F^(y)| < — .
1 k 1 ' °k 1 2n+2-i

e.
 and |r* o gj(x) - o gl(y)| < .

Let d = min(a,%en). Let Pn_|_2 t^e first positive integer j such that

R(fj ) > 2 - ^d. Let F11^! = f ^n+2 . Let gn"*"? be a map from S^ onto 
p ,i n+1 p , - &n+l vrn+l rnH-l

nl , . n+2 „n+2 , , n+2. :> „   nlS such that g = F ,n and R(g 2. Let x be a point of S .n+1 n+1 n+1 r

Suppose l^k^i<n+l. Then

... I i _n+l.„n+2/ . . i -n+1, n+2, . .1 (Fn+1(x)) - gk o F. (gn+1(x))|
e.1 

2n+2-i

.n 1 i -n+1, n+2, .. n+1, n+2, . . 1Also, |sk o F. (g^Cx)) - gk (gn+1(x)) |

tt I i ■rln+l,_n+2, .. n+1, n+2, . . 1Hence |gR o Fi (Fn+1(x)) - gR (Sn+1(x)) I

O - Tfh: >ei

(1 " 2n+2-l 'el
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The last inequality implies

Similarly,

i „n+2 n+2
gk ° F.i 1 Sk

(1 - 2n+2-i^Ci

„i n+2 _n+2
Fk 0 gi "1 *k

(1 - 2n+2-Pci

Now, since %d %e , ’ n+1

,1 • 6k
Also- Slnce

n+2 _ n+2
gn+l %e ,- n+1 '

n+1

the inequality (*) yields
6n+l
2

Similarly,

n+i
Fk

n+2
° gn+l ^n+l

n+1 
gk

n+2
0 Fn+1 %=n+l

n+2 
gk

Thus, for each triple (k,i,j) of positive integers, with k i < j n+2

8k ° 1

(1 -A)e.
2J-i i

gj 
sk

Fk •

Recursively, there exists a sequence (Fp F^, F^, ... ) of maps, a seq­

uence (g^, g^, ••• ) °f maps, with R(g^+'*") 2, and a decreasing

sequence e of positive numbers with sequential limit 0, such that for 

and F, o g.k 6r
(1 - —r~T)e.

-i-i i

each triple (k,i,j) of positive integers, with k i < j,
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and F.1 o g"? = F.J
k i e. k i

Let K = Lim (X^,g^+^). By Theorem C, K is homeomorphic to Lim (X^,F^+'*"), 

which is homeomorphic to M by Theorem A. Since R(g^+'*") 2, for each i,

Lemma 6 yields R(g^) 2 for i < j. This completes the proof.

A similar pattern of argument yields

Theorem 4. If M is a p.n.c.c.l. continuum in class B, then M is homeo­

morphic to Lim (Y^,gJ+^) such that each = S'*", deg = 1» and

R(g^) 3 for each pair of positive integers i and j, with i < j.

D.R. Read proved in C?, Theorem 10] that each map from a continuum 

onto an arc is weakly confluent.

Lemma 8. Suppose each of f and g is a map from S’*" onto S’*";

R(f) > deg f 1; R(g) > deg g 1; R(f) 2. Then

R(g o f) (CR(f)l ~ 2)deg g + R(g), in which [R(f)] is the greatest 

integer not exceeding R(f).

Proof. Let [a,b] be a defining arc for R(f), Cc,d] a defining arc for 

R(g), v a lift for f|[a,b], u a lift for g|[c,d]. Let deg g = n. Let 

t be a map from S'*" into the numbers such that g = in. o t) . The 

interval Cv(a),v(b)J is contractible with respect to S^" (c.r.S^"), thus 

g o «5|[v(a) ,v(b)] is inessential. Let z be a lift of g o £v(a) ,v(b)] .

Letting h be the identity map on the real line, we have

g o e$| Lv(a) ,v(b)] = [ln.(eS o t)} o d|Lv(a) ,v(b)J

= (In o . (.</> o t o (^) I [v(a) ,v(b)] = (</> o (nh)).(«5 o t o | [v (a) ,v (b)]

= i o (nh + t o d)|Lv(a),v(b)] = o z.

Consider the arcs [a,bj and Cv(a),v(b)]. Let c' be the least num­

ber x, v(a) x, such that d(x) = c, and d' be the greatest number y,

y v(b), such that (^(y) = d. Let c" be the greatest number x, x < d'. 
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such that ^(x) = c. Then c" - c* is an integer, and c" - c" [R(f)]-2. 

Since v is weakly confluent, let [a'jb1] be an arc in Ca,b] such that 

v([a',b']) = [c'.d*].

Let w be a lift of g o fj^a'jb1]. Then i o w = g o fJCa'jb'] 

= g o o v|[a’,b'] = o z o vJCa'jb’]. We have 

z(c") - z(c') = nh(c") + t(^(c")) - nh(c') - t(^(c')) = n(c" - c'). Also 

g o e$|[c",d'] = g|[c,d] o ^|Cc",d'] = o u o ^|Ec",d'J = o z|[c",d']. 

Thus z(d’) - z(c") = u(d) - u(c) = R(g). Hence 

diam w([a' ,b*]) = diam z(Cc',d']) 2: z(d') - z(c')

= z(d’) - z(c") + z(c") - z(c’) = R(g) + n(c" - c'). We have 

R(g o f) 2 R(g) + ([R(f)] - 2)deg g, completing the proof.

Corollary. Suppose M is a p.n.c.c.l. continuum, M = Lim (S^,f^+^), such 

that for each i, deg = 1 and R(f^^) 2 3. Then for each positive 

integer j, the sequence (R(£]+1) , R(f f2), R(ff3), ... ) increases with- 

out bound.



CHAPTER III

MAPPING CHAINABLE CONTINUA ONTO CIRCLE-LIKE CONTINUA

In [8], Henderson proved that no non-planar circle-like continuum 

is the continuous image of a continuum c.r.s\ In > Rogers proved 

that no chainable continuum can be mapped onto a circle-like continuum 

which is "self-entwined" (in his sense). In this chapter, Henderson's 

result is extended to include the circle-like continue which are self­

entwined (in my sense). Also, two theorems are proved, each of which 

states necessary and sufficient conditions for a circle-like continuum 

to be the continuous image of a chainable continuum.

Lemma 9. If X is a continuum, and f a map from X onto S'*", and A an arc 

in S*", and B the complementary arc of A, then either there is a subcon­

tinuum H of X such that f(H) = A or there is a subcontinuum K of X such 

that f(K) = B.

Proof. Let A be an arc in S*", and B its complement. One easily sees 

that the proposition holds in case X is an interval of length at least 1 

and f is Suppose X is a continuum. If f is an essential map from X 

onto S'*" then f is weakly confluent, and we have the conclusion of the 

lemma. If f is an inessential map from X onto S*" then any lift map t 

of f is weakly confluent; letting D be the appropriate subinterval of 

t(X), and M a subcontinuum of X such that t(M) = D, either

f(M) = ei(t(M)) = (25(D) = A 

or f(M) = eS(t(M)) = «5(D) = B. 

Theorem 5. Suppose M is a self-entwined p.n.c.c.l. continuum. Then M 

is not the continuous image of a continuum c.r.S'*".
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Proof. Suppose M is self-entwined, and X is a continuum c.r.S . We may 

assume, by Theorem 4, that M = Lim (S^,f^+^) , with deg = 1» and 

R(f^+'*") 3, for each i. Suppose g is a map from X onto M. Then PR^ o g

is inessential; let u be a lift of PR^ o g. Let, by the corollary to 

Lemma 8, n be a positive integer such that R(f^) > (diam u(X)) - 1. Let 

Ca,b] be a defining arc for R(f^); t a lift of f“lCa,b]; v a lift of 

f^|[b,a]. Suppose H is a subcontinuum of X such that PR^ o g(H) = [b,a]. 

Then i o u|h = PR, o gin = f^1 o PR og|H=^ovoPR o gin. By Lemma 4 Lin n
diam u(H) = diam v(PRn(g(H))) = diam v(Cb,a]) = R(f^) - 1 > diam u(X), a 

contradiction. Similarly, if K is a subcontinuum of X such that

PRn o g(K) = [a,b], then diam u(K) = diam t([a,b]) = R(f”) > diam u(X), 

a contradiction.

Theorem 6. A circle-like continuum is the continuous image of a chain­

able continuum if and only if it is the continuous image of a continuum 

c.r.S1.

Proof. Necessity is trivial, since chainable continua are c.r.S1. Sup­

pose C = Lim (S1,!1"*"1), and g is a map from a continuum X onto C, with X 

c.r.S1. Let i be a positive integer. Let t^ and be lifts of PR^ o g 

and 0 respectively. Since the arc is c.r.S1, let

f1+1 o ^lt.,-(X) = (6 o h. We have 
i 1 i+l

PR. o g = f^+1 o PR.,, o g 
i i i+l

</> o t. = f1+1 o d o t . , , 
1 1 1+1

dot. = d o h o t.,, i i+l

Since X is connected, let M be an integer such that t. = h o t.,, + M. i i+l
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Let h' be the map h + M. Then t. = h' o t.,- . r i i+l

t^+^(X) onto t^(X), and o h’ = i o h = o

We have h' a map from

of

Let, for each

= ^Iy.; beI J J
1 j+1 c j+1ok. = f. o

J J

positive integer j, Y. = t.(X), with t. a lift of PR. o g;

the map from Y.,, onto Y. such that
j+1 J

Pj+1 * Then, by Theorem B, C is the continuous image

Lim (Y^,k^ ), a chainable continuum.

To prove Theorem 7, the main result, a technical lemma is required.

Lemma 10. Suppose each of f and g is a map from onto S'*" such that

deg f = deg g = 1, R(g) 2, and d is a number, 0 d < 1, such that

R(f o g) 2 + d and R(f) 2 + d. Let Ca>b] be a defining arc for R(g) 

and w be a lift of g|[a,b]. Let w([a,b]) = [p-l,q]. The map f o ^|[p,p+l] 

is inessential; let t be a lift of it. Then diam t([p,p+lj) 1 + d. 

Proof. Let f o 6$|[p,p+l] = o t. Let t(Cp,p+l]) = [A,B]. Suppose 

B - A > 1 + d. Let p < x < p+1. Then ^([p,x]) is an arc. Let z be a 

lift of f | Eei(p) ,e$(x)]. Then f o f<|[p,x] = i o t|Cp,x] = o z o ei|[p,x]. 

We may assume that z o ^|[p,x] = t|Cp ,x] .

Since this argument holds for each number x between p and p+1, there 

is a map u on the ray [^(p),^(p+l)) such that u o Ep,p+1) = t|Ep,p+l).

Now, if p < x < p+1, f | E^(p) i o u| E«$(p), ^(x)] . By Lemma 2, since 

deg f = 1, Limit u(e$(x)) = u(^(p)) + 1.
x -♦ p +1

There is a proper subinterval Y of EPiP+13 such that t(Y) = Ea,b].

For; We have t(Ep,p+l)) connected, and t(Ep,p+l]) = t(Ep,p+l)) U t((p+l}).

Hence one of 3 statements is true;

(a) t(Ep,p+l)) = (A,b3; (b) t(Ep,p+l)) = EA,B); (c) t(Ep,p+l)) = EA,B]. 
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Suppose (a) holds. Then t(p+l) = A. But 

t(p+l) = Limit t(x) = Limit u(^(x)) = u((6(p)) + 1. Since u(^(p)) A, 
x "• p+1 x p+1 

t(p+l) A+l, a contradiction. Suppose (b) holds. Then t(p+l) = B. 

As before, t(p+l) = u(e$(p)) + 1 = t(p) + 1. Thus t(p) = t(p+l) - 1 

= B - 1 > A, since B - A > 1. Hence there is a number e, p < e < p+1, 

such that t(e) = A. Then t([e,p+l]) = La,b]. Suppose (c) holds. Then 

there are numbers j and k in Ep,p+1) such that t(j) = A and t(k) = B.

In either case, there is a proper subinterval Ee,r] of Ep5p+ll such 

that t(Ee,r] ) = Ea,b]. We may assume that the endpoints of Ee,rJ are 

mapped to the endpoints of EA,B] by t. In case r < p+1, 

t|Ce,r] = u o d|Le,r]. In case r = p+1, let u* be a lift of f | E<^ (e), ^(r)3 

such that u'(^(e)) = t(e). Then, by the previous argument, t|Ce,r] 

= u1 o $|[e,r3. Relabel u = u' if necessary. Then either u(^(e)) = A 

and u(^(r)) = B or u(^(e)) = B and u(^(r)) = A.

Suppose u(^(e)) = B. Let v be a map from the ray C^(e),^(e)) into 

the numbers, v an extension of u, such that f | C^(e),d(e)) = i o v. By 

Lemma 2, Limit v(^(x)) = v(«6(e)) + 1 = B + 1. But B + l- A>2 + d, 
x e+1

and v(^(r)) = u(^(r)) = A. Hence there is a point y of S'*", 

^(r) < y < (6(e), such that v(y) - v(^(r)) = v(y) - A > 2 + d, contradic­

ting R(f) 2 + d. Therefore u(«6(e)) = A and u(«6(r)) = B.

Now, [e-l,r] £ [p-1,p+1] 5 w([a,b]). By an argument similar to that 

for Lemma 8, there is an arc [a'jb1] lying in [a,b], such that 

deg([a',b'],f o g) 1 + B -A > 2 + d, a contradiction. This completes 

the proof.
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The following lemma is easily verified.

Lemma 11. If u is a map from a continuum A onto a continuum B, and v is 

a map from B onto a continuum C, and v o u is weakly confluent, then v 

is weakly confluent.

Definition. By "class W" we shall mean the class of all continua Y such 

that if X if a continuum, and f a map from X onto Y, then f is weakly 

confluent.

Theorems 10 and 11 of C7] assert that arcs and arc-like continua 

are in class W.

Theorem 7. If C is a circle-like continuum then C is the continuous image 

of a chainable continuum if and only if either C is chainable or C is not 

in class W.

Proof. Suppose C is a circle-like continuum not in class W. Let

C = Lim (S'*",f^+'*‘) , and let g be a non-weakly confluent map from a con­

tinuum X onto C. Suppose that for all but finitely many positive inte­

gers i, PIL o g is essential. Then for almost all i, PR^ o g is weakly 

confluent. The argument for [7, Theorem 11] implies that g is weakly 

confluent, a contradiction. Hence for infinitely many, and therefore all, 

positive integers i, PR^ o g is inessential. By an argument similar to 

that for Theorem 6, C is the continuous image of a chainable continuum.

Suppose that C is the continuous image of a chainable continuum X 

under the map g, and C is not chainable. By Ls], C is planar, and by 

Theorem 5, C is not self-entwined. Let C = Lim (S^,f^+^), with 

deg = 1 for each i. Let, for each positive integer j, t be a lift 

of PRj o g. Now, there exist a sequence (d^, d2, ... ) of numbers, with
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0 cL < 1 for each i, and a sequence (V^, ••• ) of intervals, with

e t^(X) and diam = 1 for each i, such that if i and j are positive 

integers with i < j, and p is a lift of f^ o V, then diam P(Vj) 1+d^. 

The proof of this assertion involves two cases.

Case 1. Suppose C is decomposable. By Theorem 2, C is homeomorphic to

a member of class 1. Let, for each positive integer i, d. be a number,

1c0 d^ < 1, such that for k > i, R(f^) 1 + d^. Let, for each positive

integer p V be any subinterval of t (X) with length 1.
P P

Suppose i and

j are positive integers, i < j. For any proper subinterval U of V, ^(U) 

is an arc in S'*", and deg(^(U),f^) S R(f^) 1 + d^; thus if p is a lift

of fJ o e$|v., diam p(U) 1 + d^. Since this holds for each such U,

diam pCVj) 1 + d. .
i

Case 2. Suppose C is indecomposable. By Theorems 2 and 3, we may assume 

that for each i and j, i < j, R(f^) 2. Since C is not self-entwined,

let, for each i, d. be a number, 0 d. < 1, such that for k > i,i i

R(fj.) 5 2 + d^. Suppose j is a positive integer. By an argument simi- 

= u(B).

u(tj+1(X)) = t.(X).

the least number in i "L(a) D t 

(i5"1(b) Cl t (X). Let r

o ^|t., (X) such thatlar to that for Theorem 6, let u be a lift of f. 
J

Let [a,b] be a defining arc for R(fJ"1"1). Let A be

l/.s r. (x) and let B be the least number in 
j+1

be a lift of fj+'*"|[a,b]such that r(b) = r(^(B)) 

Let y be a lift of f^^jCbja] such that y(b) = r(b). If A < B,

then u([A,B]) = r([a,b]) = [r(a),r(b)], and [r(a)+l,r(a)+2] £ t^(X).

If B < A, then u([B,A]) = y(Cb,a]) = [r(a)+l,r(b)] by Lemma 4, and 

[r(a)+l,r(a)+2] £ t (X). Let = [r(a)+l,r(a)+2]. 
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Suppose i and j are positive integers, i < j. By Lemma 10, if p is a 

lift of f^ o then diam P(Vj) 5 1 + d^.

Let (dp &2’ • • • ) be a sequence of numbers and (Vp ... ) a 

sequence of intervals as described. Since each map t^ is weakly confluent 

let, for each positive integer j, be a subcontinuum of X such that 

t.(K.) = V.. Let (K. , K. , K. , ... ) be a subsequence of K with a seq-
J J J 11 12

uential limiting set M. Then M is a continuum.

Now, g(M) = C. For; Let y be an element of C. Since, for each j,

PRj o §(Kj) = o bj^j) = = f°r eacb ni xn be a point

of K. with PR. o g(x ) = y. . Let z be a cluster point of x, z in M.
n n n

Suppose g(z) 4 y. Let n be a positive integer such that PR. o g(z) 4 y. .
n n

Let U and D be disjoint open sets in S such that PR. (g(z)) is in U and
-1 n

y. is in D. Let Q = (PR. o g) (U). Then Q is open in X, and z is in 
n n

Q. Hence there exists m > n with x in Q. Thereforem
y. = f'Sn (y. ) = f^m (PR. (g(x )) = PR. o g(x ) which is in U, since

n n m n m n
x is in Q. This involves a contradiction, m

Now, for each j, diam t (M) 1 + d . For; Suppose n is a posi­

tive integer such that diam tn(M) > 1 + d^. Let bn(M) = Ep3qJ. Let p1 

and q1 be points of M such that t^p*) = p, and ^(q1) = q. Let a be

a number such that 0<a<^(q-p 1 -d ). n Let b be a positive number

such that if z is a point of X, with distx(p',z) < b, then 

ltn(Pl) - bj/2)! < a» 311(3 if z is a point of X, with dist^(q’,z) < b, 

then |tn(q') - tn(z)| < a. Let m be an integer, m n, such that if

j m, then there are points x. and y. in K.
J J

and dist„(q*,y.) < b.X j

such that dist„(p',x.) < b j/
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Consider t. (K. ) = V. . Let u be a lift of f m o i V. . Then i x i ' i n 1 im m m m

dot K. = PR o g K. = f m o PR. o g K. = f m o d o t. K. n1 i n 1 i n i 1 i n i 1 im m mm mm

= d o u o t. K. . Hence diam t (K. ) = diam u(t. (K. )) ^ 1 + d . 1'1 n i i i nmm m mm
Let x and y be points of K. such that dist„(p’,x ) < b andm 'm r i Xxr ’ nrm
dist (q'>y ) < b. Then Ip - t (x )I = It (p1) - t (x )I < a and 

X -m. 1 n m 1 1 n r n m 1

q - t (y ) < a. We have 1 n nr 1
It (x ) - t (y )| s (q - p) - |p - t (x )| - |q - t (y )|
1 nx nr n Jnr 1 Ir n nr 1 1 n n m 1

>q-p-2a>l + d . r n

Thus diam t (K. ) > 1 + d , a contradiction, n i nm
Suppose j is a positive integer. Then 1 diam t. (M) 1 + d. < 2, and 

djt^M) is not weakly confluent.

confluent by Lemma 11. Since deg

tial map from C onto S , thus PR.

Hence PR.
J

o g|M = d o t|m is not weakly

f^^ = 1 for each i, 
i

is weakly confluent.

PR. is an essen- 
J

If g|M were weak­

ly confluent, then PR. o g|M would be weakly confluent. Therefore g(M) 

is C and g|M is not weakly confluent, implying that C is not in class W.

This completes the proof.
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