A Dissertation
 Presented to the Faculty of the Department of Mathematics University of Houston

In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy
by
Gary A. Feuerbacher
August, 1974

ACKNOWIEDGEMENTS

The author gratefully acknowledges the assistance of his adviser, W.T. Ingram, in the preparation of this dissertation.

WEAKLY CHAINABLE CIRCLE-LIKE CONTINUA

An Abstract of a Dissertation Presented to the Faculty of the Department of Mathematics
 University of Houston

In Partial Fulfillment of the Requirements for the Degree

Doctor of Philosophy
by
Gary A. Feuerbacher
August, 1974

ABSTRACT

This paper investigates the problem of ascertaining which circlelike continua are continuous images of chainable continua. In the second chapter, the notion of the "revolving number" of a map from S^{1} onto S^{1} is introduced and used to classify the planar, non-chainable, circle-like continua by structure: decomposable; "self-entwined" (a notion introduced in chapter 2); indecomposable, non-self-entwined. The main theorem in chapter 3 is a characterization of weakly chainable circle-like continua; the classification scheme of chapter 2 is used to prove this result.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. STRUCTURE OF CIRCLE-LIKE CONTINUA 3
III. MAPPING CHAINABLE CONTINUA ONTO CIRCLE-LIKE
CONTINUA 17
REFERENCES 25

INTRODUCTION

Suppose that for each positive integer i, X_{i} is a compact metric space and f_{i}^{i+1} is a map (continuous function) from X_{i+1} onto X_{i}. Let M be the subset of the Cartesian product space ${ }_{i}^{\infty}{ }_{1}^{\infty} X_{i}$ consisting of the set of all sequences p such that for each i, p_{i} is in X_{i} and $f_{i}^{i+1}\left(p_{i+1}\right)=p_{i}$. Then M, with the relative topology from $\prod_{i=1}^{\infty} X_{i}$, is called the inverse limit of the inverse system (X_{i}, f_{i}^{i+1}), and denoted $\underset{\leftarrow}{\operatorname{Lim}}\left(X_{i}, f_{i}^{i+1}\right)$. If $m>n, f_{n}^{m}$ will denote the composition of the maps $f_{n}^{n+1}, f_{n+1}^{n+2}, \cdots, f_{m-1}^{m} ; f_{m}^{m}$ will denote the identity function on X_{m}. For each positive integer $i, P R$ will denote the natural projection of M onto $X_{i} ; i . e ., P_{i}\left(a_{1}, a_{2}, a_{3}, \ldots\right)=a_{i}$. The theorems in this paper are concerned with inverse limits in which each factor space X_{i} is a circle (i.e., circle-like continua), and in which each factor space X_{i} is an arc (i.e., arc-like, or chainable, continua).

The following theorems will be used frequently:
A. If $\left(n_{1}, n_{2}, n_{3}, \ldots\right)$ is an increasing sequence of positive integers, then M is homeomorphic to the inverse limit of the inverse system $\left(X_{n_{i}}, f_{n_{i}} n_{i+1}\right)$.
(In Theorems B and C, assume that $\left.K=\underset{\leftarrow}{\operatorname{Lim}}\left(Y_{i}, g_{i}^{i+1}\right).\right)$
B. Suppose h is a sequence of maps such that (1) for each positive integer i, h_{i} is a map from X_{i} onto Y_{i}, and (2) for each i, h_{i} o f_{i}^{i+1} $=g_{i}^{i+1} \circ h_{i+1}$. Then the function G from M into $\prod_{i=1}^{\infty} Y_{i}$ defined by $G\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(h_{1}\left(a_{1}\right), h_{2}\left(a_{2}\right), \ldots\right)$ is a map from M onto K.

Definition. (see [1]) Suppose each of A and B is a metric space and each of u and v is a map from A into B. Suppose $c>0$. The statement that $u \underset{c}{=} v$ means that for each point x in $A, \operatorname{dist}_{B}(u(x), v(x))<c$.
C. (Theorem 3 of [1]) Suppose e is a decreasing sequence of positive numbers with sequential limit 0 . Suppose h is a sequence of maps such that (1) for each positive integer $i, h_{2 i}$ is a map from $Y_{2 i}$ onto $X_{2 i}$ and $h_{2 i-1}$ is a map from $X_{2 i-1}$ onto $Y_{2 i-1}$; (2) for each triple (i, j, k) of positive integers with $i<j$ and $k \leq 2 i-1$,

$$
g_{k}^{2 i-1} \circ h_{2 i-1} \circ f_{2 i-1}^{2 j-1} e_{2 i-1}^{=} g_{k}^{2 j-1} \circ h_{2 j-1}
$$

and

$$
g_{k}^{2 i-1} \circ h_{2 i-1} \circ f_{2 i-1}^{2 j-2} \circ h_{2 j-2} e_{2 i-1}^{=} g_{k}^{2 j-2} ;
$$

(3) for each triple (i,j,k) of positive integers with $i<j$ and $k \leq 2 i$,

$$
f_{k}^{2 i} \circ h_{2 i} \circ g_{2 i}^{2 j} e_{2 i}^{=} f_{k}^{2 j} \circ h_{2 j}
$$

and $\quad f_{k}^{2 i} \circ h_{2 i} \circ g_{2 i}^{2 j-1} \circ h_{2 j-1} e_{2 i}=f_{k}^{2 j-1}$.
Then M is homeomorphic to K. In case $X_{i}=Y_{i}$ and h_{i} is the identity map for each i, it suffices that for each ordered triple (i,j,k) of positive integers with $k \leq i<j$,

$$
g_{k}^{i} \circ f_{i}^{j} \quad \overline{\bar{e}}_{i} g_{k}^{j}
$$

and

$$
f_{k}^{i} \circ g_{i}^{j} \quad \bar{e}_{i} f_{k}^{j}
$$

for M to be homeomorphic to K.

CHAPTER II

STRUCTURE OF CIRCLE-LIKE CONTINUA

In [2], Bing characterized the class of non-planar circle-like continua, and in [3], Ingram characterized the chainable circle-1ike continua. In this chapter, the class of non-chainable, planar, circle-like continua is subdivided into three subclasses: the decomposable; the self-entwined (a concept to be introduced in this chapter); the indecomposable, non-self-entwined. This classification scheme is used to prove the main result of chapter III.

The "circle", S ", is the unit circle on the complex plane. If P and Q are two non-antipodal points of the circle, and L the length (in the usual metric) of the minor arc between them, then the distance from P to Q, denoted $|P-Q|$, is defined as $\frac{L}{2 \pi}$. The distance between antipodal points is $\frac{1}{2}$. The "wrapping function", denoted ϕ, is the map from the real line onto S^{1} which sends the number x to $e^{2 \pi i x}$. Let S^{1} be oriented so that ϕ is order-preserving. If A and B are points of S^{1}, then the $\operatorname{arc}[A, B]$ of S^{1} is the ϕ-image of an interval $[a, b], b-a<1$, with $\phi(a)=A$ and $\phi(b)=B$. If C is a point of S^{1}, then we write $\mathrm{A}<\mathrm{C}<\mathrm{B}$ in case there is a number $\mathrm{c}, \mathrm{a}<\mathrm{c}<\mathrm{b}$, with $\phi(\mathrm{c})=\mathrm{C}$. Notice that if $\mathrm{b}-\mathrm{a} \leq \frac{1}{2}$, then $|\mathrm{A}-\mathrm{B}|=\mathrm{b}-\mathrm{a}$. Definition. If f is a map from S^{1} into S^{1}, then the degree of f, denoted deg f, is that integer n such that f is homotopic to the $n-t h$ power of the complex identity function restricted to S^{1}.

The next two definitions are modifications of concepts developed by J.T. Rogers in [4], approached here from a homotopy-theoretic rather than combinatorial point of view.

Suppose f is a map from S^{1} onto S^{1}, and $\operatorname{deg} f \geq 0$.
Definition. Suppose T is an arc in S^{1}. Let u be a lift of $f \mid T, i . e ., u$ is a map from T into the real line, and $f \mid T=\phi o u$. Then $\operatorname{deg}(T, f)$ is defined as diam $u(T)$; this number is independent of which lift map is taken.

In case $\operatorname{deg}(T, f)$ is an integer, $\operatorname{deg}(T, f)$ is the number of times the arc T is "wrapped around" the circle by f.

Lemma 1. Suppose D is the number set to which a number r belongs if and only if there is an $\operatorname{arc} Q$ in S^{1} such that $r=\operatorname{deg}(Q, f)$. Then D is bounded above.

Proof. Since f is uniformly continuous, let $d>0$ be such that any d-ball in S^{1} is mapped into a semi-circle in S^{1}. Let m be an integer greater than $\frac{1}{2 d}$. If A is an arc in S^{1}, then A may be covered by a linear chain of d-balls with no more than m links, implying that $\operatorname{deg}(A, f) \leq \frac{m}{2}$. Definition. Suppose D is as in the hypothesis of Lemma 1. The revolving number of f, denoted $R(f)$, is sup D.
Lemma 2. Suppose P and Q are points of S^{1}. Let T be a point sequence with each value in the interior of the $\operatorname{arc}[Q, P]$, and T converges to P. Let u be a sequence of maps such that for each positive integer i, u_{i} is a lift of $f \mid\left[P, T_{i}\right]$, and $u_{i}(P)=u_{1}(P)=Z$. Then
$\underset{i \rightarrow \infty}{\operatorname{Limit}} u_{i}\left(T_{i}\right)=Z+\operatorname{deg} f$.
Proof. Suppose deg $f=n$. The quotient map $\frac{f}{I^{n}}$ is inessential. Let v be a lift of $\frac{f}{I^{n}}$. Then $\frac{f}{I^{n}}=\phi \circ v$, and $f \stackrel{I}{=} I^{n}$. ($\phi \circ$ \circ). Let $e>0$. Since T converges to P, and v is continuous, let N be a positive integer such that if $m \geq N$, then $\left|T_{m}-P\right|<\frac{e}{2 n+1}$ and $\left|v\left(T_{m}\right)-v(P)\right|<\frac{e}{2}$. Suppose $m \geq N$. Let $[a, b]$ be an interval, $b-a<1$, such that $\phi(a)=P$
and $\phi(b)=T_{m}$. Let h be the inverse map of $\phi \mid[a, b]$. If x is in $\left[P, T_{m}\right]$, then $x^{n}=[\phi(h(x))]^{n}=\phi(n h(x))$. Hence ϕ o $u_{m}=f \mid\left[P, T_{m}\right]$ $=(\phi \circ(\mathrm{nh})) \cdot(\phi \circ \mathrm{v})=\phi \circ(\mathrm{nh}+\mathrm{v})$. There is an integer J such that $u_{m}+J=n h+v$. Thus $u_{m}\left(T_{m}\right)-u_{m}(P)=n h\left(T_{m}\right)-n h(P)+v\left(T_{m}\right)-v(P)$ $=n(b-a)+v\left(T_{m}\right)-v(P)$. Since $\left|T_{m}-P\right|<\frac{e}{2 n+1}, 1-\frac{e}{2 n+1}<b-a<1$, and $n-\frac{e}{2}<n-\frac{n e}{2 n+1} \leq n(b-a) \leq n$. Also $-\frac{e}{2}<v\left(T_{m}\right)-v(P)<\frac{e}{2}$, hence

$$
\begin{aligned}
n-e<n(b-a)+v\left(T_{m}\right)-v(P) & <n+\frac{e}{2} \\
n-e<u_{m}\left(T_{m}\right)-u_{m}(P) & <n+\frac{e}{2} \\
-e & <u_{m}\left(T_{m}\right)-(Z+n)
\end{aligned}
$$

This completes the proof.
Lemma 2 yields immediately $R(f) \geq$ deg f.
Using the results of Ingram in [3] and of McCord (page 29 of [5]), we have

Theorem D. If C is a circle-like continuum, then C is planar and nonchainable if and only if C is homeomorphic to $\operatorname{Lim}\left(X_{i}, f_{i}^{i+1}\right)$, in which each X_{i} is S^{1}, and $\operatorname{deg} f_{i}^{i+1}=1$ for each i.

Notation. "p.n.c.c.1." will mean "planar, non-chainable, circle-1ike".
We are ready to prove the main result of this chapter.
Definition. Suppose M is a p.n.c.c.1. continum as in Theorem D. Then M is said to be in class 1 if, for each positive integer i, there exists a number $Z_{i}, 1 \leq Z_{i}<2$, such that for each positive integer j, $R\left(f_{i}^{i+j}\right) \leq Z_{i}$. We say that M is in class 2 if for each i, and each number $y, 1 \leq y<2$, there is j such that $R\left(f_{i}^{i+j}\right)>y$. Similarly, M is in class A if, for each i, there exists $Z_{i}, I \leq Z_{i}<3$, such that for each positive integer $j, R\left(f_{i}^{i+j}\right) \leq Z_{i}$; also, M is in class B if for each i, and each $y, 1 \leq y<3$, there is j such that $R\left(f_{i}^{i+j}\right)>y$.

Theorem 1. Suppose M is a p.n.c.c.1. continum. Then either M is homeomorphic to a member of class 1 or M is homeomorphic to a member of class 2. Furthermore, either M is homeomorphic to a member of class A or M is homeomorphic to a member of class B.

Proof. Let $M=\underset{\leftarrow}{\operatorname{Lim}}\left(X_{i}, f_{i}^{i+1}\right)$ as in Theorem D. Suppose M is not in class 2. Then there is a number $Z, 1 \leq Z<2$, and there is a positive integer i such that for each $j, R\left(f_{i}^{i+j}\right) \leq Z$. Let D be the set of all ordered pairs (p, y) such that p is a positive integer, y is a number, $1 \leq y<2$, and for each positive integer $j, R\left(f_{p}^{p+j}\right) \leq y$.
Case (1). The domain of the relation D is bounded. Let K be an integer greater than every element in the domain of D. Let Z be a number, $1 \leq Z<2$, and i be a positive integer. Then ($K+i, Z$) is not in D. Thus
 C is in class 2, and M is homeomorphic to C by Theorem A. Case (2). The domain of D is not bounded. Let ($n_{1}, n_{2}, n_{3}, \ldots$) be an increasing sequence of positive integers whose range is the domain of D. Let h be a function whose domain is the domain of D, and h is a subset of D. Let $C=\underset{\sim}{\operatorname{Lim}}\left(X_{n_{i}}, f_{n_{i}}{ }^{n_{i+1}}\right)$. Then C is in class 1. For: if i is a positive integer, then $h\left(n_{i}\right)$ is a number, $1 \leq h\left(n_{i}\right)<2$, such that for each $j, R\left(f_{n_{i}}{ }_{i+j}\right) \leq h\left(n_{i}\right)$. By Theorem A, M is homeomorphic to C. The second assertion of Theorem 1 is proved similarly.

Trivially, class B is a subset of class 2. The collection of all p.n.c.c.1. continua is class $1 \cup$ class $B U$ (class $2 \backslash c l a s s B$). We will see that if M is a p.n.c.c.l. continuum, then M is indecomposable if and only if M is homeomorphic to a member of class 2.

Definition. The continua which are homeomorphic to members of class B will be called self-entwined(this notion is also a modified version of an idea in [4]).

We will see that the self-entwined continua have some of the properties of non-planar circle-1ike continua (e.g., Corollary to Lemma 8; Theorem 5).

Assume, as before, that f is a map from S^{1} onto S^{1}, and $\operatorname{deg} f \geq 0$. Definition. If A is an arc in S^{1}, and t is a lift of $f \mid A$, then there is a subarc B of A such that the map t sends the endpoints of B to the endpoints of the interval $t(A)$. An arc with this property of B will be called "type 1 ".
Lemma 3. If $R(f)>\operatorname{deg} f$, then there is an $\operatorname{arc} D$ in S^{1} such that $\operatorname{deg}(D, f)$ $=R(f)$.
Proof. Let A be a sequence of arcs in S^{1} such that (1) each value of A is of type 1 ; (2) for each i, $\operatorname{deg}\left(A_{i}, f\right) \leq \operatorname{deg}\left(A_{i+1}, f\right)$; (3) $\operatorname{deg}(A, f)$ converges to $R(f)$; (4) letting $A_{i}=\left[P_{i}, Q_{i}\right]$, the point sequence P converges to a point c, and Q converges to a point d. Let L be the limiting set of A. Suppose $c=d$. Then $L=S^{1}$; otherwise, $\underset{i \rightarrow \infty}{\operatorname{Limit}} \operatorname{diam} A_{i}=0$, and $\underset{i \rightarrow \infty}{\operatorname{Limit}} \operatorname{deg}\left(A_{i}, f\right)=0 \neq R(f)$. Let y and z be points of S_{1}, with $y<c<z$. There is a positive integer m such that, for $j \geq m, y<P_{j}<z$, and $P_{j}<z<y<Q_{j}$. Let v be a lift of $f \mid[y, z]$. Let u be a sequence of maps such that for each i, u_{i} is a lift of $f \mid A_{i}$, and for $j \geq m$, $u_{j}(z)=v(z)$. If $j \geq m$, then $u_{j}\left|\left[P_{j}, z\right]=v\right|\left[P_{j}, z\right]$. Thus $\operatorname{Limit}_{i \rightarrow \infty} u_{i}\left(P_{i}\right)=\underset{i \rightarrow \infty}{\operatorname{Limit}} v\left(P_{i}\right)=v(c)$. By an argument similar to that of Lemma 2, $\underset{i \rightarrow \infty}{\operatorname{Limit}} u_{i}\left(Q_{i}\right)=v(c)+\operatorname{deg} f . \quad$ Hence $\underset{i \rightarrow \infty}{\operatorname{Limit}}\left(u_{i}\left(Q_{i}\right)-u_{i}\left(P_{i}\right)\right)=\operatorname{deg} f$.

But each A_{i} is of type 1 , and $\operatorname{deg}\left(A_{i}, f\right)=\left|u_{i}\left(Q_{i}\right)-u_{i}\left(P_{i}\right)\right|$. Therefore $\underset{i \rightarrow \infty}{\operatorname{Limit}} \operatorname{deg}\left(\mathrm{~A}_{\mathbf{i}}, f\right)=\operatorname{deg} f<R(f)$, a contradiction.

We have $c \neq d$, and $L=[c, d]$. Let w be a lift of $f \mid[c, d]$. Let x be a point in the interior of [c,d]. There is a positive integer m such that for $j \geq m, P_{j}<x<Q_{j}$. As in the preceding paragraph, let, for each i, u_{i} be a lift of $f \mid A_{i}$, and for $j \geq m, u_{j}(x)=w(x)$. We have (similar to the previous paragraph) $\operatorname{Limit}_{i \rightarrow \infty} u_{i}\left(P_{i}\right)=w(c)$, and $\operatorname{Limit}_{i \rightarrow \infty} u_{i}\left(Q_{i}\right)=w(d) . \quad$ Thus $\underset{i \rightarrow \infty}{\operatorname{Limit}}\left|u_{i}\left(Q_{i}\right)-u_{i}\left(P_{i}\right)\right|=|w(d)-w(c)|$, and $R(f)=\operatorname{deg}([c, d], f)$.
Definition. If P is an arc in S^{1}, P is of type 1 , and $\operatorname{deg}(P, f)=R(f)$, then P is called a defining arc for $R(f)$.

Lemma 4. Suppose $\operatorname{deg} \mathrm{f} \geq 1$ and $[a, b]$ is a defining arc for $R(f)$. Let t be a lift of $f \mid[a, b]$. Then $t(a)<t(b)$, and $\operatorname{deg}([b, a], f)=R(f)-\operatorname{deg} f$. Proof. Suppose $t(b)<t(a)$. By Lemma 2, let c be a point, $b<c<a$, such that if u is a lift of $f \mid[a, c]$, and $u(a)=t(a)$, then $-\frac{1}{2}<t(a)+\operatorname{deg} f-u(c)<\frac{1}{2}$. If u is such a map, then $t(a)-t(b)+\operatorname{deg} f-\frac{1}{2}<u(c)-t(b)$, and $R(f)+\frac{1}{2} \leq R(f)+\operatorname{deg} f-\frac{1}{2}<u(c)-u(b)$. Hence $\operatorname{deg}([b, c], f)>R(f)$, a contradiction.

To prove the second assertion, let v be a lift of $f \mid[b, a]$, and suppose $v(b)=t(b)$. Lemma 2 yields $v(a)=t(a)+\operatorname{deg} f$, whence $\operatorname{deg}([b, a], f) \geq R(f)-\operatorname{deg} f$. Assume $\operatorname{deg}([b, a], f)>R(f)-\operatorname{deg} f$. No point of $\mathrm{v}([\mathrm{b}, \mathrm{a}])$ is greater than $\mathrm{t}(\mathrm{b})$. Suppose c is a point, $\mathrm{b}<\mathrm{c}<\mathrm{a}$, such that $v(c)<t(a)+\operatorname{deg} f$. Let w be a lift of $f \mid[c, b]$ such that $w(a)=t(a) . \quad$ Then $w(c)=v(c)-\operatorname{deg} f<t(a) . \quad$ But $w(b)-w(c)=t(b)-w(c)>t(b)-t(a)=R(f)$, a contradiction.

Notice that the $\operatorname{arc}[b, a]$ is of type $1: v([b, a])=[v(a), v(b)]$. Theorem 2. If M is a p.n.c.c.1. continuum, then M is indecomposable if and only if M is homeomorphic to a member of class 2.

Proof. Let $M=\underset{\leftarrow}{\operatorname{Lim}}\left(X_{i}, f_{i}^{i+1}\right)$ as in Theorem D. Suppose M is in class 2. By a result of Kuykendall ([6, Theorem 2]), M is indecomposable if and only if for each positive integer n, and each number $e>0$, there are a positive integer j and three points of X_{n+j} such that if K is a subcontinuum of X_{n+j} containing two of them, then dist $n_{n}\left(x, f_{n}^{n+j}(K)\right)<e$, for each point x in X_{n}. Suppose n is a positive integer and $\frac{1}{2}>e>0$. Let j be such that $R\left(f_{n}^{n+j}\right)>2-e$. Let $[A, B]$ be a defining arc for $R\left(f_{n}^{n+j}\right)$, and t a lift for $f_{n}^{n+j} \mid[A, B]$. Then $t([A, B])=[t(A), t(B)]=[a, b]$, with $b>a+1$. Let C be a point in $[A, B]$, with $t(C)=a+1$. Then $[a, a+1] \subseteq t([A, C])$, and $[a+1, b] \subseteq t([C, B])$. By Lemma 4, letting v be a lift of $f_{n}^{n+j} \mid[B, A]$ such that $v(B)=t(B)$, we have $v([B, A])=[a+1, b]$. Now, $\phi([a, a+1])=S^{1}$, and $\phi([a+1, b])$ is either S^{1} or an arc of length greater than $1-e$. Hence $S^{1} \backslash \phi([a+1, b])$ either is not a point set or is an open arc of length less than e. For each point x of S^{1}, $|x-\phi([a, a+1])|=0$, and $|x-\phi([a+1, b])|<e . \quad$ Also, $\phi([a+1, b])=\phi(v([B, A]))=f_{n}^{n+j}([B, A])$; similarly, $\phi([a, a+1]) \subseteq f_{n}^{n+j}([A, C])$ and $\phi([a+1, b]) \subseteq f_{n}^{n+j}([C, B])$. By Kuykendall's theorem, M is indecomposable.

To prove the converse, suppose M is indecomposable. Then for each integer $K \geq 2$, there are K points of M such that M is irreducible between each two of them. A corollary of [6, Theorem 2] is that M being indecomposable implies for each triple (n, p, e), n a positive integer, p an integer, $p \geq 2$, and $e>0$, there are a positive integer j and p points of X_{n+j}
such that if L is a subcontinuum of X_{n+j} containing two of them, then $\operatorname{dist}_{n}\left(x, f_{n}^{n+j}(L)\right)<e$, for each point x in X_{n}. Suppose n is a positive integer and $1>e>0$. Let N be an integer such that $N-2>\frac{1}{e}$. Let j be a positive integer and W be a set of N points of S^{1} such that if A is an arc containing two of them, then $\operatorname{deg}\left(A, f_{n}^{n+j}\right)>1-\frac{e}{N-1}$ (similar to the previous paragraph). Let $\left(p_{1}, p_{2}, \ldots, p_{N}\right)$ be a reversible sequence of points of S^{1}, ordered by the orientation of S^{1}, whose range is the set W. Let v be a lift of $f_{n}^{n+j} \mid\left[p_{1}, p_{N}\right]$. Let, for $1 \leq i \leq N-1$, $\left[a_{i}, b_{i}\right]$ be a subarc of $\left[p_{i}, p_{i+1}\right]$ of type 1 . If, for some i, $v\left(\left[a_{i}, b_{i}\right]\right)=\left[v\left(b_{i}\right), v\left(a_{i}\right)\right]$, then since $v\left(a_{i}\right)-v\left(b_{i}\right)>1-\frac{e}{N-1}$, by Lemma 2, $R\left(f_{n}^{n+j}\right)>2-\frac{e}{N-1}>2-e . S i m i l a r l y$, if, for some i, $v\left(b_{i}\right)-v\left(a_{i+1}\right)>1-e$, then $R\left(f_{n}^{n+j}\right)>2-e$. Assume that for $1 \leq i \leq N-1, v\left(b_{i}\right)-v\left(a_{i}\right)>1-\frac{e}{N-1}$, and for $1 \leq i \leq N-2$, $v\left(b_{i}\right)-v\left(a_{i+1}\right) \leq 1-e ;$ then $v\left(a_{i+1}\right)-v\left(b_{i}\right) \geq e-1$, and $v\left(a_{i+1}\right)-v\left(a_{i}\right)>\underset{N-2}{e-\frac{e}{N-1}}$. Therefore
$v\left(a_{N-1}\right)-v\left(a_{1}\right)=\sum_{i=1}^{N-2}\left(v\left(a_{i+1}\right)-v\left(a_{i}\right)\right)>(N-2)\left(e-\frac{e}{N-1}\right) . \quad$ But $v\left(b_{N-1}\right)-v\left(a_{N-1}\right)>1-\frac{e}{N-1}$, and $v\left(b_{N-1}\right)-v\left(a_{1}\right)>1+(N-2) e-e$. Since $(N-2) e>1$, we have $R\left(f_{n}^{n+j}\right) \geq v\left(b_{N-1}\right)-v\left(a_{1}\right)>2-e$, whence M is in class 2.

Definition. Suppose g is a map from a continuum X onto a continuum Y. Then g is said to be weakly confluent if, for each subcontinuum K of Y, there is a component C of $g^{-1}(K)$ such that $g(C)=K$. Lemma 5. If g is a map from a continuum X onto S^{1}, and g is essential, then g is weakly confluent.

Proof. Suppose g is a map from X onto S^{1}, and g is not weakly confluent. Then g is inessential. For: Let $[p, q]$ be an arc in S^{I} such that no component of $\mathrm{g}^{-1}([\mathrm{p}, \mathrm{q}])$ maps onto $[\mathrm{p}, \mathrm{q}]$ under g . We may assume that $[\mathrm{p}, \mathrm{q}]$ is properly contained in a semi-circle; if not, then let h be a homeomorphism from S^{1} onto S^{1} which sends $[p, q]$ to an arc of length less than $\frac{1}{2}$; if $\mathrm{h} \circ \mathrm{g}$ is inessential, $\mathrm{h}^{-1} \circ \mathrm{~h} \circ \mathrm{~g}$ is inessential. Let $\mathrm{W}=\mathrm{g}^{-1}([\mathrm{p}, \mathrm{q}])$; $\mathrm{Y}=$ the set of all components of $\mathrm{W} ; \mathrm{Y}_{1}=$ the set of components of W which contain a point of $\mathrm{g}^{-1}(\mathrm{p}) ; \mathrm{Y}_{2}=$ the set of components of W which contain a point of $\mathrm{g}^{-1}(\mathrm{q})$. Now, $\mathrm{Y}=\mathrm{Y}_{1} \cup \mathrm{Y}_{2}$. For: suppose J is an element of $Y \backslash\left(Y_{1} \cup Y_{2}\right)$. Then $J \subseteq X \backslash g^{-1}([q, p])$, which is open in X. Let T be the component of $X \backslash g^{-1}([p, q])$ which contains J. Since X is a continuum, \bar{T} contains a point of $\mathrm{g}^{-1}([\mathrm{q}, \mathrm{p}])$. But $\overline{\mathrm{T}} \subseteq \mathrm{W}$, hence $\overline{\mathrm{T}} \subseteq \mathrm{J}$, and J contains a point of $\mathrm{g}^{-1}([\mathrm{q}, \mathrm{p}])$, a contradiction.

If K is a sequence of continua lying in W, then K has a subsequence with a sequential limiting set L, and L is also a continuum lying in W. Since $\mathrm{g}^{-1}(\mathrm{p})$ and $\mathrm{g}^{-1}(\mathrm{q})$ are closed in X , this implies that $\mathrm{Y}_{1}{ }^{*}$ and $\mathrm{Y}_{2}{ }^{*}$ are closed sets. Since no component of W contains both a point of $g^{-1}(p)$ and a point of $\mathrm{g}^{-1}(\mathrm{q}), \mathrm{Y}_{1}{ }^{*}$ and $\mathrm{Y}_{2}{ }^{*}$ are mutually exclusive.

Let r be a function from X into S^{1} such that if x is in $X \backslash W$, then $r(x)=g(x) ; r\left(Y_{1}^{*}\right)=\{p\} ; r\left(Y_{2}^{*}\right)=\{q\}$. Since the r^{-1} image of a set closed in S^{1} is closed in X, r is continuous. But $r(X) \neq S^{1}$, thus r is inessential. Since $r=g$, g is homotopic to r, and g is inessential. Lemma 6. Suppose each of f and g is a map from $S^{\frac{1}{2}}$ onto S^{1}, and deg $g \geq 0$, $\operatorname{deg} f \geq 1$. Then $R(g \circ f) \geq R(g)$.

Proof. In case $R(g)=\operatorname{deg} g$, we have $R(g \circ f) \geq \operatorname{deg}(g \circ f)$
$=(\operatorname{deg} g)(\operatorname{deg} f) \geq \operatorname{deg} g=R(g) . \quad$ Suppose $R(g)>\operatorname{deg} g$. Let P be a defining
arc for $R(g)$, and let t be a lift of $g \mid P$. Since f is essential, thus weakly confluent, let Q be an arc in S^{1} such that $f(Q)=P$. Let u be a lift of $(g \circ f) \mid Q$. Then $(g \circ f) \mid Q=\phi o u$, and $g \mid P=\phi \circ t$. Hence $g \circ f|Q=\phi \circ t \circ f| Q=\phi \circ u$. Thus
$R(g \circ f) \geq \operatorname{diam} u(Q)=\operatorname{diam}(t \circ f)(Q)=\operatorname{diam} t(P)=R(g)$.
Lemma 7. Suppose f is a map from S^{1} onto S^{1}, deg $f=1$, e is a number, $0<e<\frac{1}{2}$, and $R(f)>2$ - e. Then there is a map g from S^{1} onto S^{1} such that $\operatorname{deg} g=1, R(g) \geq 2$, and $f=\overline{\bar{e}} \mathrm{~g}$.
Proof. If $R(f) \geq 2$, then let $g=f$. Suppose $R(f)<2$. Since $R(f)>\operatorname{deg} f$, let $[a, b]$ be a defining arc for $R(f)$. Let t be a lift of $f \mid[a, b]$, and let u be a lift of $f \mid[b, a]$ such that $u(b)=t(b)$. Then $f \mid[a, b]=\phi o t$ and $f \mid[b, a]=\phi o u . \quad$ By Lemma 4, $t([a, b])=[t(a), t(b)]$, and $u([b, a])=[t(a)+1, t(b)]$. Let v be a linear map from $[t(a), t(b)]$ onto $[t(a), t(a)+2]$, with $v(t(a))=t(a), v(t(b))=t(a)+2$. Let w be a linear map from $[t(a)+1, t(b)]$ onto $[t(a)+1, t(a)+2]$, with $w(t(a)+1)=t(a)+1$, and $w(t(b))=t(a)+2$. Let g_{1} be a function from $[a, b]$ into $S^{1}, g_{1}=\phi o v o t ;$ let g_{2} be a function from $[b, a]$ into $\mathrm{S}^{1}, \mathrm{~g}_{2}=\phi$ ow o u. Let $\mathrm{g}=\mathrm{g}_{1} \cup \mathrm{~g}_{2}$. Then g_{1} and g_{2} are continuous, and $g_{1}(a)=g_{2}(a), g_{1}(b)=g_{2}(b)$, hence g is continuous. Since $v o t e t$, w ou $\bar{e} u$, and ϕ is distance-preserving for intervals of length less than $\frac{l_{2}}{2}$, we have $f \underset{\mathrm{e}}{\mathrm{e}} \mathrm{g}$. Since $\operatorname{deg} \mathrm{f}=1$ and $\mathrm{f} \frac{\bar{y}}{\frac{1}{2}} \mathrm{~g}$, $\operatorname{deg} \mathrm{g}=1$, and $R(g) \geq \operatorname{diam} v(t([a, b]))=2$.

Theorem 3. If M is a p.n.c.c.1. continuum, and M is in class 2, then M is homeomorphic to $\operatorname{Lim}\left(Y_{i}, g_{i}^{i+1}\right)$ such that each Y_{i} is $S^{1}, \operatorname{deg} g_{i}^{i+1}=1$, and $R\left(g_{i}^{j}\right) \geq 2$, for each pair of positive integers i and $j, i<j$.

Proof. Let $M=\operatorname{Lim}\left(X_{i}, f_{i}^{i+1}\right)$, each $X_{i}=S^{1}$, and M is in class 2. Let e be the number sequence ($1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots$). Let $p_{1}=1$. Let p_{2} be the first positive integer j such that $R\left(f_{1}^{j}\right)>2-\frac{1}{2}$. Let $F_{1}^{2}=f_{p_{1}}^{p_{2}}$. Let g_{1}^{2} be a map from S^{1} onto S^{1} such that $\mathrm{g}_{1}^{2} \overline{\frac{1}{2}}^{F_{1}^{2}}$, and $R\left(\mathrm{~g}_{1}^{2}\right) \geq 2$.

We proceed by induction. Suppose $p_{1}, p_{2}, \ldots, p_{n}, p_{n+1}$ are defined;
$F_{1}^{2}, F_{2}^{3}, \ldots, F_{n}^{n+1}$ are defined, with $F_{i}^{i+1}=f_{p_{i}}^{p}{ }_{i+1}$ for $1 \leq i \leq n$; $g_{1}^{2}, g_{2}^{3}, \ldots, g_{n}^{n+1}$ are defined, with $R\left(g_{i}^{i+1}\right) \geq 2$, for $1 \leq i \leq n$; for each triple (k, i, j) of positive integers with $k \leq i<j \leq n+1$,

$$
\mathrm{g}_{\mathrm{k}}^{\mathrm{i}} \circ \mathrm{~F}_{\mathrm{i}}^{\mathrm{j}}\left(1-\frac{1}{2^{j-i}}\right) \mathrm{e}_{\mathrm{i}} \mathrm{~g}_{\mathrm{k}}^{\mathrm{j}}
$$

and

$$
\mathrm{F}_{\mathrm{k}}^{\mathrm{i}} \circ \mathrm{~g}_{\mathrm{i}}^{\mathbf{j}}\left(1-\frac{1}{2^{j-i}}\right) e_{i} \mathrm{~F}_{\mathrm{k}}^{\mathrm{j}} .
$$

Using the uniform continuity of the maps from S^{1} into S^{1}, let a >0 such that if x and y are points of S^{1} and $|x-y|<a$, then for $1 \leq \mathrm{k} \leq \mathrm{i}<\mathrm{j} \leq \mathrm{n}+1$,
and

$$
\left|g_{k}^{i} \circ F_{i}^{j}(x)-g_{k}^{i} \circ F_{i}^{j}(y)\right|<\frac{e_{i}}{2^{n+2-i}}
$$

$$
\left|F_{k}^{i} \circ g_{i}^{j}(x)-F_{k}^{i} \circ g_{i}^{j}(y)\right|<\frac{e_{i}}{2^{n+2-i}}
$$

Let $d=\min \left(a, \frac{1}{2} e_{n}\right)$. Let p_{n+2} be the first positive integer j such that $R\left(f_{p_{n+1}}^{j}\right)>2-\frac{1}{2} d$. Let $F_{n+1}^{n+2}=f_{p_{n+1}}^{p_{n+2}}$. Let g_{n+1}^{n+2} be a map from S^{1} onto S^{1} such that $g_{n+1}^{n+2}=\frac{1}{2}=F_{n+1}^{n+2}$ and $R\left(g_{n+1}^{n+2}\right) \geq 2$. Let x be a point of S^{1}. Suppose $1 \leq k \leq i<n+1$. Then

$$
\text { (*) }\left|g_{k}^{i} \circ F_{i}^{n+1}\left(F_{n+1}^{n+2}(x)\right)-g_{k}^{i} \circ F_{i}^{n+1}\left(g_{n+1}^{n+2}(x)\right)\right|<\frac{e_{i}}{2^{n+2-i}}
$$

Also,

$$
\begin{aligned}
& \left|g_{k}^{i} \circ F_{i}^{n+1}\left(g_{n+1}^{n+2}(x)\right)-g_{k}^{n+1}\left(g_{n+1}^{n+2}(x)\right)\right|<\left(1-\frac{1}{2^{n+1-i}}\right) e_{i} . \\
& \left|g_{k}^{i} \circ F_{i}^{n+1}\left(F_{n+1}^{n+2}(x)\right)-g_{k}^{n+1}\left(g_{n+1}^{n+2}(x)\right)\right|<\left(1-\frac{1}{2^{n+2-i}}\right) e_{i} .
\end{aligned}
$$

Hence

The last inequality implies

$$
\mathrm{g}_{\mathrm{k}}^{\mathrm{i}} \circ \mathrm{~F}_{\mathrm{i}}^{\mathrm{n}+2}\left(1-\frac{1}{2^{n+2-i}}\right) \mathrm{e}_{\mathrm{i}} \mathrm{~g}_{\mathrm{k}}^{\mathrm{n+2}}
$$

Similarly,

$$
\mathrm{F}_{\mathrm{k}}^{\mathrm{i}} \circ \mathrm{~g}_{\mathrm{i}}^{\mathrm{n}+2}\left(1-\frac{1}{2^{\mathrm{n}+2-\mathrm{i}}}\right) \mathrm{e}_{\mathrm{i}} \mathrm{~F}_{\mathrm{k}}^{\mathrm{n}+2} .
$$

Now, since $\frac{1}{2} d \leq \frac{1}{2} e_{n+1}$,

$$
\mathrm{g}_{\mathrm{n}+1}^{\mathrm{n}+2} \quad \frac{1}{2}=_{\mathrm{e}+1} \quad \mathrm{~F}_{\mathrm{n}+1}^{\mathrm{n}+2}
$$

Also, since $\frac{e_{k}}{2^{n+2-k}}=\frac{e_{n+1}}{2}$, the inequality (*) yields

$$
\begin{array}{lllll}
& F_{k}^{n+1} \circ g_{n+1}^{n+2} & \frac{1}{2} \bar{e}_{n+1} & F_{k}^{n+2} . \\
\text { Similarly, } & g_{k}^{n+1} \circ \circ F_{n+1}^{n+2} & \frac{1}{2} \bar{e}_{n+1} & g_{k}^{n+2} .
\end{array}
$$

Thus, for each triple (k, i, j) of positive integers, with $k \leq i<j \leq n+2$,

$$
\begin{aligned}
& g_{k}^{i} \circ F_{i}^{j}={ }_{\left(1-\frac{1}{2^{j-i}}\right) e_{i}} g_{k}^{j} \\
& F_{k}^{i} \circ g_{i}^{j}=\frac{I}{\left(1-\frac{1}{2^{j-i}}\right) e_{i}} F_{k}^{j} .
\end{aligned}
$$

Recursively, there exists a sequence $\left(F_{1}^{2}, F_{2}^{3}, F_{3}^{4}, \ldots\right)$ of maps, a sequence $\left(g_{1}^{2}, g_{2}^{3}, g_{3}^{4}, \ldots\right)$ of maps, with $R\left(g_{i}^{i+1}\right) \geq 2$, and a decreasing sequence e of positive numbers with sequential limit 0 , such that for each triple (k, i, j) of positive integers, with $k \leq i<j$,

$$
g_{k}^{i} \circ F_{i}^{j} e_{i}^{=} g_{k}^{j}
$$

and

$$
F_{k}^{i} \circ g_{i}^{j} e_{i}^{=} F_{k}^{j}
$$

Let $K=\operatorname{Lim}\left(X_{i}, g_{i}^{i+1}\right) . \quad B y$ Theorem C, K is homeomorphic to $\operatorname{Lim}\left(X_{i}, F_{i}^{i+1}\right)$, which is homeomorphic to M by Theorem A. Since $R\left(g_{i}^{i+1}\right) \geq 2$, for each i, Lemma 6 yields $R\left(g_{i}^{j}\right) \geq 2$ for $i<j$. This completes the proof.

A similar pattern of argument yields
Theorem 4. If M is a p.n.c.c.1. continuum in class B, then M is homeomorphic to $\underset{\leftarrow}{\operatorname{Lim}}\left(Y_{i}, g_{i}^{i+1}\right)$ such that each $Y_{i}=S^{1}$, $\operatorname{deg} g_{i}^{i+1}=1$, and $R\left(g_{i}^{j}\right) \geq 3$ for each pair of positive integers i and j, with $i<j$.
D.R. Read proved in [7, Theorem 10] that each map from a continuum onto an arc is weakly confluent.

Lemma 8. Suppose each of f and g is a map from S^{1} onto S^{1};
$R(f)>\operatorname{deg} f \geq 1 ; R(g)>\operatorname{deg} g \geq 1 ; R(f) \geq 2$. Then
$R(g \circ f) \geq([R(f)]-2)$ deg $g+R(g)$, in which $[R(f)]$ is the greatest integer not exceeding $R(f)$.

Proof. Let [a,b] be a defining arc for $R(f)$, [$c, d]$ a defining arc for $R(g)$, v a lift for $f \mid[a, b]$, u a lift for $g \mid[c, d]$. Let $\operatorname{deg} g=n$. Let t be a map from S^{1} into the numbers such that $g=I^{n}$. ($\left.\phi \circ \mathrm{t}\right)$. The interval $[v(a), v(b)]$ is contractible with respect to S^{1} (c.r.s ${ }^{1}$), thus $g \circ \phi \mid[v(a), v(b)]$ is inessential. Let z be a lift of g o $\phi \mid[v(a), v(b)]$. Letting h be the identity map on the real line, we have $g \circ \phi\left|[v(a), v(b)]=\left\{I^{n} .(\phi \circ t)\right\} \circ \phi\right|[v(a), v(b)]$
$=\left(\mathrm{I}^{\mathrm{n}} \circ \phi\right) \cdot(\phi \circ \mathrm{o}$ 。 $\circ \phi)|[\mathrm{v}(\mathrm{a}), \mathrm{v}(\mathrm{b})]=(\phi \circ(\mathrm{nh})) \cdot(\phi \circ \mathrm{t} \circ \mathrm{o} \phi)|[\mathrm{v}(\mathrm{a}), \mathrm{v}(\mathrm{b})]$ $=\phi \mathrm{o}(\mathrm{nh}+\mathrm{t} \circ \phi) \mid[\mathrm{v}(\mathrm{a}), \mathrm{v}(\mathrm{b})]=\phi \mathrm{oz}$.

Consider the arcs $[a, b]$ and $[v(a), v(b)]$. Let c ' be the least number $x, v(a) \leq x$, such that $\phi(x)=c$, and $d '$ be the greatest number y, $\mathrm{y} \leqslant \mathrm{v}(\mathrm{b})$, such that $\phi(\mathrm{y})=\mathrm{d}$. Let $\mathrm{c}^{\prime \prime}$ be the greatest number $\mathrm{x}, \mathrm{x}<\mathrm{d}^{\prime}$,
such that $\phi(x)=c$. Then $c^{\prime \prime}-c^{\prime}$ is an integer, and $c^{\prime \prime}-c^{\prime \prime} \geq[R(f)]-2$. Since v is weakly confluent, let [$\left.a^{\prime}, b^{\prime}\right]$ be an arc in $[a, b]$ such that $v\left(\left[a^{\prime}, b^{\prime}\right]\right)=\left[c^{\prime}, d^{\prime}\right]$.

Let w be a lift of $g o f \mid\left[a^{\prime}, b^{\prime}\right]$. Then \varnothing ow $=g \circ f \mid\left[a^{\prime}, b^{\prime}\right]$
$=g \circ \phi \circ v\left|\left[a^{\prime}, b^{\prime}\right]=\phi \circ z \circ v\right|\left[a^{\prime}, b^{\prime}\right]$. We have
$z\left(c^{\prime \prime}\right)-z\left(c^{\prime}\right)=n h\left(c^{\prime \prime}\right)+t\left(\phi\left(c^{\prime \prime}\right)\right)-n h\left(c^{\prime}\right)-t\left(\phi\left(c^{\prime}\right)\right)=n\left(c^{\prime \prime}-c^{\prime}\right)$. A1so
$g \circ \phi\left|\left[c^{\prime \prime}, d^{\prime}\right]=g\right|[c, d] o \phi \mid\left[c^{\prime \prime}, d^{\prime}\right]=\phi$ o u o $\phi\left|\left[c^{\prime \prime}, d^{\prime}\right]=\phi \circ z\right|\left[c^{\prime \prime}, d^{\prime}\right]$.
Thus $z\left(d^{\prime}\right)-z\left(c^{\prime \prime}\right)=u(d)-u(c)=R(g)$. Hence
diam $w\left(\left[a^{\prime}, b^{\prime}\right]\right)=\operatorname{diam} z\left(\left[c^{\prime}, d^{\prime}\right]\right) \geq z\left(d^{\prime}\right)-z\left(c^{\prime}\right)$
$=z\left(d^{\prime}\right)-z\left(c^{\prime \prime}\right)+z\left(c^{\prime \prime}\right)-z\left(c^{\prime}\right)=R(g)+n\left(c^{\prime \prime}-c^{\prime}\right)$. We have
$R(g \circ f) \geq R(g)+([R(f)]-2) d e g g$, completing the proof.
Corollary. Suppose M is a p.n.c.c.1. continuum, $M=\underset{\leftarrow}{\operatorname{Lim}\left(S^{1}, f_{i}^{i+1}\right) \text {, such }, ~}$ that for each i, $\operatorname{deg} f_{i}^{i+1}=1$ and $R\left(f_{i}^{i+1}\right) \geq 3$. Then for each positive integer j, the sequence $\left(R\left(f_{j}^{j+1}\right), R\left(f_{j}^{j+2}\right), R\left(f_{j}^{j+3}\right), \ldots\right)$ increases without bound.

MAPPING CHAINABLE CONTINUA ONTO CIRCLE-LIKE CONTINUA
In [8], Henderson proved that no non-planar circle-like continuum is the continuous image of a continuum c.r. S^{1}. In [4], Rogers proved that no chainable continuum can be mapped onto a circle-1ike continuum which is "self-entwined" (in his sense). In this chapter, Henderson's result is extended to include the circle-like continua which are selfentwined (in my sense). Also, two theorems are proved, each of which states necessary and sufficient conditions for a circle-1ike continuum to be the continuous image of a chainable continuum.

Lemma 9. If X is a continuum, and f a map from X onto S^{1}, and A an arc in S^{1}, and B the complementary arc of A, then either there is a subcontinuum H of X such that $f(H)=A$ or there is a subcontinuum K of X such that $f(K)=B$.

Proof. Let A be an arc in S^{1}, and B its complement. One easily sees that the proposition holds in case X is an interval of length at least 1 , and f is ϕ. Suppose X is a continuum. If f is an essential map from X onto S^{1} then f is weakly confluent, and we have the conclusion of the lemma. If f is an inessential map from X onto S^{1} then any lift map t of f is weakly confluent; letting D be the appropriate subinterval of $t(X)$, and M a subcontinuum of X such that $t(M)=D$, either
or

$$
\begin{aligned}
& f(M)=\phi(t(M))=\phi(D)=A \\
& f(M)=\phi(t(M))=\phi(D)=B
\end{aligned}
$$

Theorem 5. Suppose M is a self-entwined p.n.c.c.1. continuum. Then M is not the continuous image of a continuum c.r. S^{1}.

Proof. Suppose M is self-entwined, and X is a continuum c.r. S^{1}. We may assume, by Theorem 4, that $M=\underset{\leftarrow}{\operatorname{Lim}}\left(S^{1}, f_{i}^{i+1}\right)$, with $\operatorname{deg} f_{i}^{i+1}=1$, and $R\left(f_{i}^{i+1}\right) \geq 3$, for each i. Suppose g is a map from X onto M. Then $P R_{1} \circ g$ is inessential; let u be a lift of PR_{1} o g . Let, by the corollary to Lemma 8 , n be a positive integer such that $R\left(f_{1}^{n}\right)>(\operatorname{diam} u(X))-1$. Let [a,b] be a defining arc for $R\left(f_{1}^{n}\right)$; t a lift of $f_{1}^{n} \mid[a, b]$; v a lift of $f_{1}^{n} \mid[b, a]$. Suppose H is a subcontinuum of X such that $P R_{n} \circ g(H)=[b, a]$. Then $\phi \circ \mathrm{u}\left|\mathrm{H}=\mathrm{PR}_{1} \circ \mathrm{~g}\right| \mathrm{H}=\mathrm{f}_{1}^{\mathrm{n}} \circ \mathrm{PR}_{\mathrm{n}} \circ \mathrm{g}\left|\mathrm{H}=\varnothing \circ \mathrm{V} \circ \mathrm{PR}_{\mathrm{n}} \circ \mathrm{g}\right| \mathrm{H} . \quad$ By Lemma 4, $\operatorname{diam} u(H)=\operatorname{diam} v\left(P R_{n}(g(H))\right)=\operatorname{diam} v([b, a])=R\left(f_{1}^{n}\right)-1>\operatorname{diam} u(X), a$ contradiction. Similarly, if K is a subcontinuum of X such that $P R_{n} \circ g(K)=[a, b]$, then $\operatorname{diam} u(K)=\operatorname{diam} t([a, b])=R\left(f_{1}^{n}\right)>\operatorname{diam} u(X)$, a contradiction.

Theorem 6. A circle-like continuum is the continuous image of a chainable continuum if and only if it is the continuous image of a continuum c.r.s ${ }^{1}$.

Proof. Necessity is trivial, since chainable continua are c.r.s ${ }^{1}$. Suppose $C=\underset{\sim}{\operatorname{Lim}}\left(S^{1}, f_{i}^{i+1}\right)$, and g is a map from a continuum X onto C, with X c.r. S^{1}. Let i be a positive integer. Let t_{i} and t_{i+1} be lifts of PR_{i} o g and $P R_{i+1} \circ g$, respectively. Since the arc is c.r. ${ }^{1}$, let $f_{i}^{i+1} \circ \phi \mid t_{i+1}(X)=\phi \circ h$. We have

$$
\begin{aligned}
& P R_{i} \circ g=f_{i}^{i+1} \circ P R_{i+1} \circ g \\
& \phi \circ t_{i}=f_{i}^{i+1} \circ \phi \circ t_{i+1} \\
& \phi \circ t_{i}=\phi \circ h \circ t_{i+1}
\end{aligned}
$$

Since X is connected, let M be an integer such that $t_{i}=h \circ t_{i+1}+M$.

Let h^{\prime} be the map $h+M$. Then $t_{i}=h^{\prime} o t_{i+1}$. We have h^{\prime} a map from $t_{i+1}(X)$ onto $t_{i}(X)$, and $\phi \circ h^{\prime}=\phi \circ h=f_{i}^{i+1} \circ \phi \mid t_{i+1}(X)$.

Let, for each positive integer $j, Y_{j}=t_{j}(X)$, with t_{j} a lift of $P R_{j}$ og; $p_{j}=\phi \mid Y_{j} ; k_{j}^{j+1}$ be the map from Y_{j+1} onto Y_{j} such that $p_{j} \circ{ }_{j}^{j+1}=f_{j}^{j+1} \circ p_{j+1}$. Then, by Theorem B, C is the continuous image of $\underset{\leftarrow}{\operatorname{Lim}}\left(Y_{i}, k_{i}^{i+1}\right)$, a chainable continuum.

To prove Theorem 7, the main result, a technical lemma is required. Lemma 10. Suppose each of f and g is a map from S^{1} onto S^{1} such that $\operatorname{deg} f=\operatorname{deg} g=1, R(g) \geq 2$, and d is a number, $0 \leq d<1$, such that $R(f \circ g) \leq 2+d$ and $R(f) \leq 2+d$. Let $[a, b]$ be a defining arc for $R(g)$ and w be a lift of $g \mid[a, b]$. Let $w([a, b])=[p-1, q]$. The map $f o \phi \mid[p, p+1]$ is inessential; let t be a lift of it. Then diam $t([p, p+1]) \leq 1+d$. Proof. Let $\mathrm{f} \circ \phi \mid[\mathrm{p}, \mathrm{p}+1]=\phi \circ \mathrm{t}$. Let $\mathrm{t}([\mathrm{p}, \mathrm{p}+1])=[\mathrm{A}, \mathrm{B}]$. Suppose B - A $>1+\mathrm{d}$. Let $\mathrm{p}<\mathrm{x}<\mathrm{p}+1$. Then $\phi([\mathrm{p}, \mathrm{x}])$ is an arc. Let z be a lift of $f \mid[\phi(p), \phi(x)]$. Then $f o \phi|[p, x]=\phi \quad o t|[p, x]=\phi \quad o z o \phi \mid[p, x]$. We may assume that $z o \phi|[p, x]=t|[p, x]$.

Since this argument holds for each number x between p and $\mathrm{p}+1$, there is a map u on the ray $[\phi(p), \phi(p+1))$ such that $u \circ \phi|[p, p+1)=t|[p, p+1)$. Now, if $p<x<p+1, f|[\phi(p), \phi(x)]=\phi \circ u|[\phi(p), \phi(x)]$. By Lemma 2, since $\operatorname{deg} \mathrm{f}=1$, Limit $u(\phi(x))=u(\phi(p))+1$. $x \rightarrow p+1$

There is a proper subinterval Y of $[p, p+1]$ such that $t(Y)=[A, B]$.
For: We have $t([p, p+1))$ connected, and $t([p, p+1])=t([p, p+1)) \cup t(\{p+1\})$. Hence one of 3 statements is true:
(a) $t([p, p+1))=(A, B]$;
(b) $t([p, p+1))=[A, B)$;
(c) $t([p, p+1))=[A, B]$.

Suppose (a) holds. Then $t(p+1)=A$. But
$t(p+1)=\underset{x \rightarrow p+1}{\operatorname{Limit}} t(x)=\underset{x \rightarrow p+1}{\operatorname{Limit}} u(\phi(x))=u(\phi(p))+1 . \quad$ Since $u(\phi(p)) \geq A$,
$t(p+1) \geq A+1$, a contradiction. Suppose (b) holds. Then $t(p+1)=B$. As before, $t(p+1)=u(\phi(p))+1=t(p)+1$. Thus $t(p)=t(p+1)-1$ $=B-1>A$, since $B-A>1$. Hence there is a number $e, p<e<p+1$, such that $t(e)=A$. Then $t([e, p+1])=[A, B]$. Suppose (c) holds. Then there are numbers j and k in $[p, p+1)$ such that $t(j)=A$ and $t(k)=B$.

In either case, there is a proper subinterval $[e, r]$ of $[p, p+1]$ such that $t([e, r])=[A, B]$. We may assume that the endpoints of $[e, r]$ are mapped to the endpoints of $[A, B]$ by t. In case $r<p+1$, $t \mid[e, r]=u$ o $\phi \mid[e, r]$. In case $r=p+1$, let u^{\prime} be a lift of $f \mid[\phi(e), \phi(r)]$ such that $u^{\prime}(\phi(e))=t(e)$. Then, by the previous argument, $t \mid[e, r]$ $=u^{\prime} \circ \phi \mid[e, r]$. Relabel $u=u^{\prime}$ if necessary. Then either $u(\phi(e))=A$ and $u(\phi(r))=B$ or $u(\phi(e))=B$ and $u(\phi(r))=A$.

Suppose $u(\phi(e))=B$. Let v be a map from the ray $[\phi(e), \phi(e)$) into the numbers, v an extension of u, such that $f \mid[\phi(e), \phi(e))=\phi \circ v . \quad B y$ Lemma 2, $\underset{x \rightarrow e+1}{\operatorname{Limit}} \mathrm{v}(\phi(x))=v(\phi(e))+1=B+1 . \quad$ But $B+1-A>2+d$, and $v(\phi(r))=u(\phi(r))=A$. Hence there is a point y of S^{1}, $\phi(\mathrm{r})<\mathrm{y}<\phi(\mathrm{e})$, such that $\mathrm{v}(\mathrm{y})-\mathrm{v}(\phi(\mathrm{r}))=\mathrm{v}(\mathrm{y})-\mathrm{A}>2+\mathrm{d}$, contradicting $R(f) \leq 2+d$. Therefore $u(\phi(e))=A$ and $u(\phi(r))=B$.

Now, $[e-1, r] \subseteq[p-1, p+1] \subseteq w([a, b])$. By an argument similar to that for Lemma 8, there is an arc [$\left.a^{\prime}, b^{\prime}\right]$ lying in $[a, b]$, such that $\operatorname{deg}\left(\left[a^{\prime}, b^{\prime}\right], f \circ g\right) \geq 1+B-A>2+d$, a contradiction. This completes the proof.

The following lemma is easily verified.
Lemma 11. If u is a map from a continuum A onto a continuum B, and v is a map from B onto a continuum C, and $v o u$ is weakly confluent, then v is weakly confluent.

Definition. By "class W " we shall mean the class of all continua Y such that if X if a continuum, and f a map from X onto Y, then f is weakly confluent.

Theorems 10 and 11 of [7] assert that arcs and arc-1ike continua are in class W.

Theorem 7. If C is a circle-like continuum then C is the continuous image of a chainable continuum if and only if either C is chainable or C is not in class W .

Proof. Suppose C is a circle-like continuum not in class W. Let $C=\operatorname{Lim}\left(S^{1}, f_{i}^{i+1}\right)$, and let g be a non-weakly confluent map from a continuum X onto C. Suppose that for all but finitely many positive integers $i, P R_{i} \circ g$ is essential. Then for almost all $i, P R_{i} \circ g$ is weakly confluent. The argument for [7, Theorem 11] implies that g is weakly confluent, a contradiction. Hence for infinitely many, and therefore all, positive integers $i, P R_{i} \circ g$ is inessential. By an argument similar to that for Theorem 6, C is the continuous image of a chainable continuum.

Suppose that C is the continuous image of a chainable continuum X under the map g, and C is not chainable. By [8], C is planar, and by Theorem 5, C is not self-entwined. Let $\mathrm{C}=\operatorname{Lim}\left(\mathrm{S}^{1}, \mathrm{f}_{\mathrm{i}}^{\mathrm{i}+1}\right)$, with $\operatorname{deg} f_{i}^{i+1}=1$ for each i. Let, for each positive integer j, t_{j} be a lift of PR_{j} og. Now, there exist a sequence $\left(\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots\right)$ of numbers, with
$0 \leq d_{i}<1$ for each i, and a sequence $\left(V_{1}, V_{2}, \ldots\right)$ of intervals, with $V_{i} \subseteq t_{i}(X)$ and diam $V_{i}=1$ for each i, such that if i and j are positive integers with $i<j$, and p is a lift of $f_{i}^{j} \circ \phi \mid V_{j}$, then $\operatorname{diam} p\left(V_{j}\right) \leq 1+d_{i}$. The proof of this assertion involves two cases.

Case 1. Suppose C is decomposable. By Theorem 2, C is homeomorphic to a member of class 1 . Let, for each positive integer i, d_{i} be a number, $0 \leq d_{i}<1$, such that for $k>i, R\left(f_{i}^{k}\right) \leq 1+d_{i}$. Let, for each positive integer p, V_{p} be any subinterval of $t_{p}(X)$ with length 1 . Suppose i and j are positive integers, $i<j$. For any proper subinterval U of V_{j}, $\phi(U)$ is an arc in S^{1}, and $\operatorname{deg}\left(\phi(U), f_{i}^{j}\right) \leq R\left(f_{i}^{j}\right) \leq 1+d_{i}$; thus if p is a lift of f_{i}^{j} o $\phi \mid V_{j}$, diam $p(U) \leq 1+d_{i}$. Since this holds for each such U, $\operatorname{diam} p\left(V_{j}\right) \leq 1+d_{i}$.

Case 2. Suppose C is indecomposable. By Theorems 2 and 3, we may assume that for each i and $j, i<j, R\left(f_{i}^{j}\right) \geq 2$. Since C is not self-entwined, let, for each i, d_{i} be a number, $0 \leq d_{i}<1$, such that for $k>i$, $R\left(f_{i}^{k}\right) \leq 2+d_{i}$. Suppose j is a positive integer. By an argument similar to that for Theorem 6, let u be a lift of f_{j}^{j+1} o $\phi \mid t_{j+1}(X)$ such that $u\left(t_{j+1}(X)\right)=t_{j}(X)$. Let $[a, b]$ be a defining arc for $R\left(f_{j}^{j+1}\right)$. Let A be the least number in $\phi^{-1}(a) \cap t_{j+1}(X)$, and let B be the least number in $\phi^{-1}(b) \cap t_{j+1}(X)$. Let r be a lift of $f_{j}^{j+1} \mid[a, b]$ such that $r(b)=r(\phi(B))$ $=u(B)$. Let y be a lift of $f_{j}^{j+1} \mid[b, a]$ such that $y(b)=r(b)$. If $A<B$, then $u([A, B])=r([a, b])=[r(a), r(b)]$, and $[r(a)+1, r(a)+2] \subseteq t_{j}(X)$. If $B<A$, then $u([B, A])=y([b, a])=[r(a)+1, r(b)]$ by Lemma 4, and $[r(a)+1, r(a)+2] \subseteq t_{j}(X) . \quad$ Let $V_{j}=[r(a)+1, r(a)+2]$.

Suppose \mathbf{i} and j are positive integers, $\mathrm{i}<\mathrm{j}$. By Lemma 10 , if p is a lift of $f_{i}^{j} \circ \phi \mid V_{j}$, then $\operatorname{diam} p\left(V_{j}\right) \leq 1+d_{i}$.

Let $\left(d_{1}, d_{2}, \ldots\right)$ be a sequence of numbers and $\left(V_{1}, V_{2}, \ldots\right)$ a sequence of intervals as described. Since each map t_{i} is weakly confluent, let, for each positive integer j, K_{j} be a subcontinuum of X such that $t_{j}\left(K_{j}\right)=V_{j} . \operatorname{Let}\left(K_{i_{1}}, K_{i_{2}}, K_{i_{3}}, \ldots\right)$ be a subsequence of K with a sequential limiting set M. Then M is a continuum.

Now, $g(M)=C$. For: Let y be an element of C. Since, for each j, $P R_{j} \circ g\left(K_{j}\right)=\phi \circ t_{j}\left(K_{j}\right)=\phi\left(V_{j}\right)=S^{1}$, let, for each n, x_{n} be a point of $K_{i_{n}}$ with $P R_{i_{n}} \circ g\left(x_{n}\right)=y_{i_{n}}$. Let z be a cluster point of x, z in M. Suppose $g(z) \neq y$. Let n be a positive integer such that $\operatorname{PR}_{i_{n}} \circ g(z) \neq y_{i_{n}}$. Let U and D be disjoint open sets in S^{1} such that $P R_{i_{n}}(g(z))$ is in U and $y_{i_{n}}$ is in D. Let $Q=\left(P R_{i_{n}} \circ g\right)^{-1}(U)$. Then Q is open in X, and z is in Q. Hence there exists $\mathrm{m}>\mathrm{n}$ with x_{m} in Q . Therefore
$y_{i_{n}}=f_{i_{n}}^{i}\left(y_{i_{m}}\right)=f_{i_{n}}^{i}\left(P R_{i_{m}}\left(g\left(x_{m}\right)\right)=P R_{i_{n}} \circ g\left(x_{m}\right)\right.$ which is in U, since x_{m} is in Q. This involves a contradiction.

Now, for each j, diam $t_{j}(M) \leq 1+d_{j}$. For: Suppose n is a positive integer such that diam $t_{n}(M)>1+d_{n}$. Let $t_{n}(M)=[p, q]$. Let p^{\prime} and q^{\prime} be points of M such that $t_{n}\left(p^{\prime}\right)=p$, and $t_{n}\left(q^{\prime}\right)=q$. Let a be a number such that $0<a<\frac{1}{2}\left(q-p-1-d_{n}\right)$. Let b be a positive number such that if z is a point of X, with $\operatorname{dist}_{X}\left(p^{\prime}, z\right)<b$, then $\left|t_{n}\left(p^{\prime}\right)-t_{n}(z)\right|<a$, and if z is a point of X, with $\operatorname{dis}_{X}\left(q^{\prime}, z\right)<b$, then $\left|t_{n}\left(q^{\prime}\right)-t_{n}(z)\right|<a$. Let m be an integer, $m \geq n$, such that if $j \geq m$, then there are points x_{j} and y_{j} in K_{i} such that dist $X^{\prime}\left(p^{\prime}, x_{j}\right)<b$ and $\operatorname{dist}_{X}\left(q^{\prime}, y_{j}\right)<b$.

Consider $t_{i_{m}}\left(K_{i_{m}}\right)=V_{i_{m}}$. Let u be a lift of $f_{n} \mathbf{i}_{m} \circ \phi \mid V_{i_{m}}$. Then $\phi \circ t_{n}\left|K_{i_{m}}=P R_{n} \circ g\right| K_{i_{m}}=f_{n}^{i_{m}} \circ P R_{i_{m}} \circ g \mid K_{i_{m}}=f_{n}^{i_{m} \circ \phi o t_{i_{m}} \mid K_{i_{m}},}$ $=\phi \circ u \circ t_{i_{m}} \mid K_{i_{m}}$. Hence diam $t_{n}\left(K_{i_{m}}\right)=\operatorname{diam~} u\left(t_{i_{m}}\left(K_{i_{m}}\right)\right) \leq 1+d_{n}$. Let x_{m} and y_{m} be points of $K_{i_{m}}$ such that dist $X_{X}\left(p^{\prime}, x_{m}\right)<b$ and $\operatorname{dist}_{X}\left(q^{\prime}, y_{m}\right)<b$. Then $\left|p-t_{n}\left(x_{m}\right)\right|=\left|t_{n}\left(p^{\prime}\right)-t_{n}\left(x_{m}\right)\right|<a$ and $\left|q-t_{n}\left(y_{m}\right)\right|<a$. We have

$$
\left|t_{n}\left(x_{m}\right)-t_{n}\left(y_{m}\right)\right| \geq(q-p)-\left|p-t_{n}\left(x_{m}\right)\right|-\left|q-t_{n}\left(y_{m}\right)\right|
$$

$$
>q-p-2 a>1+d_{n}
$$

Thus diam $t_{n}\left(K_{i_{m}}\right)>1+d_{n}$, a contradiction.
Suppose j is a positive integer. Then $1 \leq \operatorname{diam}^{t_{j}}(M) \leq 1+d_{j}<2$, and $\phi \mid t_{j}(M)$ is not weakly confluent. Hence $P R_{j} \circ g\left|M=\phi \circ t_{j}\right| M$ is not weakly confluent by Lemma 11. Since deg $f_{i}^{i+1}=1$ for each $i, P R{ }_{j}$ is an essential map from C onto S^{1}, thus $P R{ }_{j}$ is weakly confluent. If g|M were weakly confluent, then $P R_{j} \circ g \mid M$ would be weakly confluent. Therefore $g(M)$ is C and $g \mid M$ is not weakly confluent, implying that C is not in class W. This completes the proof.

REFERENCES

[1]. J. Mioduszewski, "Mappings of inverse limits", Colloq. Math., 10(1963), 39-44.
[2]. R.H. Bing, "Embedding circle-1ike continua in the plane", Canad. J. Math., $14(1962), 113-128$.
[3]. W.T. Ingram, "Concerning non-planar circle-1ike continua", Canad. J. Math., 19(1967), 242-250.
[4]. J.T. Rogers, Jr., "Mapping the pseudo-arc onto circle-1ike, selfentwined continua", Mich. Math. J., 17 (1970), 91-96.
[5]. M. McCord, "Inverse limit systems", doctoral dissertation, Yale University, New Haven, 1963.
[6]. D.P. Kuykendall, "Irreducibility in inverse limits of continua", doctoral dissertation, University of Houston, Houston, 1972.
[8]. G.W. Henderson, "Continua which cannot be mapped onto any nonplanar circle-like continua", Colloq. Math., 23(1971), 241-243.

