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ABSTRACT

The mechanical modeling of hydraulic fractures is a mathematically complex
problem involving the coupling between the equations that describe fracturing of and
fluid flow through the porous rock, and fluid flow inside the fractures. Simulation
of these physical processes can offer critical insights into practical design problems
associated with hydraulic fracturing technology. However, exploration of the influence
of the relatively large number of control variables defining the design space is limited
by the available computational resources. Generally speaking, the computational time
can become a bottleneck for practical usage of available hydraulic fracture simulators.
Acknowledging this limitation, this thesis presents a series of combined analytical-
computational models that enable efficient simulation of the propagation of multiple
non-planar hydraulic fractures, within the context of hardware-conscious advanced
numerical techniques.

Hydraulic fracture simulations are often coupled with the fluid flow within the
surrounding porous rock. This thesis realizes the need for computationally efficient
porous media flow simulations that achieve a similar level of efficiency as the fast
hydraulic fracturing models. Remarkable computational efficiency is achieved through
the novel formulations of numerical techniques and the state-of-the-art computational
methods: reduced-order modeling of the hydraulic fracturing, and the application of

physical block solvers to the porous media flow.
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1 Introduction and motivation

Hydraulic fracturing refers to the process of initiating and propagating cracks
within a rock formation by injection of a highly pressurized fluid. This technology,
which creates permeable channels within the reservoir that allow the hydrocarbons
to flow to the surface, has been successfully implemented by the petroleum industry
since the late 1940s to stimulate oil and gas wells (Montgomery and Smith, 2010;
Economides and Nolte, 2000). Other applications of hydraulic fracturing include
waste disposal (Abou-Sayed et al., 1989), rock mining (Jeffrey and Mills, 2000), and
geothermal energy extraction (Brown, 2000).

Modeling of fluid pressure-driven cracks has become an integral part of the hy-
draulic fracturing treatment by providing guidance for characterizing and stimulating
reservoirs. The physical processes occurring during hydraulic fracturing include the
initiation and propagation of the fractures within the rock formation, the flow of the
pressurized fluid inside the fractures, and the flow of the fluids present in the reservoir.
The early hydraulic fracture models, which include those of Khristianovich-Geertsma-
De Klerk (KGD) (Khristianovic and Zheltov, 1955; Geertsma and De Klerk, 1969),
Perkins-Kern-Nordgren (PKN) (Perkins and Kern, 1961; Nordgren, 1972), radial (Abe
et al., 1976), and the pseudo-3D (P3D) (Settari and Cleary, 1986; McLennan and Pi-
cardy, 1985), are amenable to analytical treatment because they are based on highly
simplified physical descriptions. However, the stringent assumptions adopted by the
models severely limit their range of applicability (Warpinski et al., 1993). With the
advances in computational power, more realistic and in turn complex numerical mod-
els have been presented for a three-dimensional crack configuration (Vandamme and
Curran, 1989; Sherman et al., 2015; Kumar and Ghassemi, 2015; Dontsov and Peirce,
2017) and multiple hydraulic fractures (Kresse et al., 2013; Damjanac et al., 2013;

Wu et al., 2017; Dontsov and Peirce, 2016b). The complexity of numerical models



used as a design tool for hydraulic fracturing treatment is limited by the amount of
available computational resources. While, in some cases, expensive simulations are
justified, the computational efficiency of hydraulic fracture models is critical to the
practical exploration of the design parameter space. These design applications benefit
from trading some of the accuracy of the numerical solution for better computational
efficiency. However, this pursuit may come at the cost of low accuracy and possi-
bly, for certain situations, unrealistic results. A detailed review of recent advances
in numerical modeling of hydraulic fracturing is presented in (Adachi et al., 2007;
Lecampion et al., 2018).

This study is dedicated to the investigation and further advancing of compu-
tationally efficient and accurate methods of hydraulic fracture modeling that ac-
count for fluid-driven propagation of cracks within and the flow of fluid throughout
a porous rock formation. The classical approach in hydraulic fracture models con-
sists of the analysis of a crack in an elastic medium whose surfaces are pressurized
by a fluid (Adachi et al., 2007; Peirce and Detournay, 2008). Some models consider
the flow of fluids in the medium containing the cracks, which is important for un-
derstanding the transfer of reservoir fluid during and after the hydraulic fracturing
treatment. Models have also been formulated that account for the effects on fracture
propagation of the additional stresses arising from the flow of fluid through the porous
rock (Boone and Ingraffea, 1990; Vandamme and Roegiers, 1990; Kovalyshen, 2010;
Sherman et al., 2015; Yoshioka and Bourdin, 2016; Damjanac and Cundall, 2016;
Baykin and Golovin, 2018; McClure et al., 2018; Rezaei et al., 2019; Chukwudozie
et al., 2019). This suggests that the “full” problem can be expanded into two coupled
sub-problems: one that considers the propagation within a rock formation of a crack
whose surfaces are pressurized by a flowing fluid, and another that considers fluid flow

within the rock formation. The coupling comes via the flow and traction boundary



conditions on the crack surface. The first problem will henceforth be referred to as
the hydraulic fracture problem, and the second one will be referred to as the fluid
flow problem.

Due to the two-dimensional (2D) nature of a crack’s gecometry, the fracture prop-
agation problem can be formulated solely in terms of fracture opening and tractions
over the crack surface, without specifying solid media deformations and stress else-
where. This method, which is referred to as the boundary element method, reduces
the boundary value problem to an integral equation over the crack surface. The
method, therefore, significantly decreases the number of unknowns in the simula-
tions, in that the fields within the volume are not involved in the solution procedure.
This is in contrast to the finite element method, in which the unknowns include
the displacements throughout the volume. However, because the boundary element
method operates on integral equations, the discretization leads to a dense system of
algebraic equations, while the finite element method results in a sparse system. From
the computational point of view, the numerical solution of dense systems of equations
is arithmetically more intensive than that of sparse systems, meaning that it requires
more basic arithmetic operations performed by the computing unit. As a result, if
the problem size is large, the boundary element method requires a significantly larger
number of computing unit operations than the finite element method. At the same
time, the boundary element method’s requirements for computer memory are signif-
icantly smaller than those of the finite clement method. An important feature of
the boundary element method is the convenience of deriving reduced-order models,
which replace the original formulation by an approximate model preserving the most
important physical phenomena. Reduced-order models offer a balance between accu-
racy and computational efficiency, but this approach is problem specific and requires

a deep understanding of key physical processes. Such models have been extensively



studied and implemented in fracture simulations (Kresse et al., 2013; Wu et al., 2017,
2012; Olson, 2008; Adachi and Peirce, 2008; Weng, 1992: Dontsov and Peirce, 2015a,
2016a; Wu and Olson, 2015; Dontsov et al., 2019). This study focuses on the fur-
ther development of this approach in the context of multiple interacting non-planar
hydraulic fractures.

The problem of fluid flow outside cracks often complements the hydraulic fracture
propagation problem, either as a simplified empirical law, as a set of governing equa-
tions for three-dimensional fluid flow through poroelastic medium, or as something
in between (Carter, 1957; Kanin et al., 2020b,a; Boone and Ingraffea, 1990; Boone
et al., 1991; Vandamme and Roegiers, 1990; Sherman et al., 2015; Rezaei et al., 2019;
Chukwudozie et al., 2019). Three-dimensional porous media flow offers the best ac-
curacy for multiple fractures of complex topology. Because the domain of interest
involves the whole three-dimensional space, the problem is formulated using the fi-
nite element method. As was mentioned, in this case, the number of unknowns in
the equations is much larger than in the fracture propagation problem. However, the
efficiency of finite element simulations can be increased by using special methods of
solving sparse systems of equations, in the way the boundary element method cannot.
Modern approaches employ splitting matrices into blocks based on the physics of the
problem and then applying preconditioners and solvers to each block (Brown et al.,
2012). In this study, we undertake this approach in the context of porous media fluid
flow problems.

To summarize, this dissertation includes the following objectives:

(1) Develop a computationally efficient reduced-order model for multiple non-planar
hydraulic fractures and assess the accuracy of its predictions with those of reference
models, for a wide range of problem parameters.

(2) Accelerate finite element method simulations of fluid flow problems by using



iterative block solvers and preconditioners for algebraic linear systems.

The coupling of the reduced-order models for hydraulic fracturing with the three-
dimensional fluid flow in porous media may not be reasonable, because those models
typically have significantly different levels of computational efficiency. However, as
the model order reduction accelerates the hydraulic fracturing problem, the state-of-
the-art computational techniques developed for the finite element simulations may
bring the computational efficiency to the level comparable with that of the reduced-
order models for hydraulic fracturing. Therefore, we identified the stated objectives
with the intent to make such coupling justified.

The dissertation is structured as follows. Chapter 2 presents the problem formu-
lation for multiple non-planar hydraulic fractures and describes the concept of model
order reduction. A review of hydraulic fracture models for multiple cracks is discussed
in Section 2.1. Problem statement and assumptions are given in Section 2.2. Gov-
erning equations for the fully 3D problem are presented in Section 2.3. The concept
of model order reduction is explained in Section 2.4.

Chapter 3 introduces the reduced-order model for multiple planar hydraulic frac-
tures with constant height, which is a development of the enhanced blade-like model
for a single crack. The first goal of this chapter is to highlight the differences be-
tween various types of reduced-order models for hydraulic fracturing. In particular,
we investigate local and non-local approaches to elasticity, which, together with the
lubrication equation, represent the physical processes related to solid deformations,
fracture toughness, and fluid viscosity. Because leak-off has little influence on the
aforementioned processes, it is omitted in this chapter. The second goal of this chap-
ter is to evaluate the accuracy and limitations of the developed reduced-order model.
The model is validated against the reference fully 3D model for single and multiple

fracture cases. One observed limitation, related to the inaccuracy of fluid pressure, is



addressed in Chapter 4. The history of blade-like hydraulic fracture models, range of
applicability, and assumptions are described in Section 3.1. The governing equations
of the reduced model for multiple planar hydraulic fractures with constant height are
presented in Section 3.2. The results of the model are validated in planar cracks case
for a broad range of parameters in Section 3.3. The summary of the chapter is given
in Section 3.4. The limitations of the model are addressed in the next chapter.

In Chapter 4, the more advanced reduced-order model for multiple non-planar
hydraulic fractures is presented. In particular, the following limitations of the model
in Chapter 3 are addressed: constant height assumption, inability to model fractures
at early times, planar fracture configurations, and inaccurate global fluid balance
evaluation. The model is based on the enhanced pseudo-3D model and extends the
approach to the case of multiple cracks, aimed to overcome the first two limitations.
The non-planar fractures are introduced, whose propagation paths are determined by
enforcing that their front is associated with a null Mode I stress intensity factor.
The last limitation is addressed by deriving the correction for fluid pressure near the
wellbore. The description of the pseudo-3D class of models and basic assumptions are
given in Section 4.1. The governing equations of the reduced-order model for multiple
non-planar hydraulic fractures are presented in Section 4.2. The results of the model
validation for planar cracks and fracture turning are detailed in Section 4.3. The
summary of the chapter is given in Section 4.4.

Chapter 5 describes the problem of fluid flow in porous media, which is often
solved in conjunction with the hydraulic fracturing problem. The motivation for such
coupling is described in Section 5.1. The governing equations for the coupled system,
including the poroelasticity, porous media fluid flow, and the fracture propagation,
are presented in Section 5.2. Section 5.3 presents the computational paradigm for

efficient and scalable modeling of porous media flow via Darcy ’s model and double



porosity-permeability model. The scaling results are computed with the developed
software package and well-established scientific libraries. The chapter is summarized
in Section 5.4. Note that the implementation of the coupling itself is left to future
work.

Chapter 6 concludes the dissertation by summarizing the main objectives and the
results of the study, and also proposing future work topics. The chapter is followed

by the reference list and appendices.



2 Problem formulation for multiple non-planar hy-

draulic fractures

2.1 Background

This chapter introduces the mathematical model for multiple non-planar hydraulic
fractures and describes the concept of model order reduction. Due to the focus on
the fracture propagation processes, the formulation considers the porous media flow
in its simplified version through Carter’s law. Particularly, the boundary condition
for the fluid flow into the surrounding rock is represented by a simplified diffusion
model, uncoupling the fracture problem from the three-dimensional porous media
flow problem. The rock deformations are modeled according to linear elasticity, via
the integral equations arising in the displacement discontinuity method (DDM). The
fluid flow inside the cracks is modeled according to the lubrication theory. Problem
statement and assumptions are detailed in Section 2.2. Governing equations for the
fully 3D problem are presented in Section 2.3. The concept of model order reduction

is explained in Section 2.4.

2.2 Problem statement and assumptions

We consider the problem of multiple interacting hydraulic fractures growing in-
side a rock formation of homogeneous properties that is subjected to three layers of
confining stress, as illustrated in Fig. 1. The rock is assumed to be linear elastic,
brittle, and permeable, whereby its properties are characterized by Young’s modulus
E, Poisson’s ratio v, Mode I fracture toughness K., and Carter’s leak-off coefficient
C'p (Carter, 1957). The fracturing fluid is incompressible Newtonian with dynamic
viscosity p; the effect of gravity on the fluid pressure is neglected. We assume zero

fluid lag at the fracture front, which is typically the case under high confinement
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Figure 1: (a) Schematics of multiple hydraulic fractures propagating from a wellbore
inside a rock with symmetric stress barriers. (b) Scheme of a vertical cross-
section of a hydraulic fracture inside a rock with symmetric stress barriers.

conditions occurring underground (Garagash and Detournay, 2000; Detournay and

Garagash, 2003; Detournay and Peirce, 2014).

With the reference to Fig. 1a, the global coordinate system x = (z,y, z) is centered
at the injection point of the first fracture with the z-axis being parallel to the wellbore
that is drilled in the minimum horizontal stress direction. The y-axis is referred to as
the vertical direction and is parallel to the vertical stress, while the x-axis is parallel
to the maximum horizontal stress direction. It is also assumed that the fractures
remain vertical non-planar, i.e., that they can turn only in the xz-plane. This is
a reasonable assumption since the vertical stress is much larger than the horizontal
stresses under the typical operating conditions. Figure 1b shows a vertical cross-
section of a hydraulic fracture subjected to stress barriers, where h is the total fracture
height, and w is fracture opening. We assume that the confining stress in the three
layers is distributed symmetrically with respect to the y-axis so that the middle layer
with height H is subjected to the compressive stress o, while the magnitude of the
stress in the surrounding layers is increased by Ao.

The formulation of the mathematical model follows the description provided next.

We consider Ny vertical hydraulic fractures that are driven by fluid injected from the
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Figure 2: (a) Side view of the hydraulic fracture problem for N fractures; fractures are
vertical; the total injection rate @y is distributed between the fractures. (b)
Top view of the hydraulic fracture problem; Fractures can be non-planar.
(¢) Top view of the kth hydraulic fracture and its unfolded planar view. (d)
Schematics of the deformations caused by the displacement discontinuity
vector in the local coordinate system.

10



horizontal wellbore located in the middle layer. Figure 2a shows a side view of the
problem. The spacing between neighboring perforations in the wellbore from which
the cracks originate is denoted by S. The fluid pressure inside the wellbore, py,
is considered to be spatially constant, i.e., the pipe friction is neglected. However,
the perforation pressure drop, caused by fluid entering the fractures through narrow
perforation holes, is included. Consequently, the pressure inside the fracture at the
location of the wellbore differs from pg and is denoted by p;. for the kth fracture. The
total injection rate () is distributed between the fractures, such that the kth fracture
receives the injection rate ). Note that the cross-sections of the fractures in Fig. 2a
are vertical.

Figure 2b is the top view of the non-planar (curved) fractures. For the purpose
of computation of the stress interaction between the fractures, a local coordinate
system (z1, 9, x3) is introduced. These directions are defined, such that z; lies along
the fracture, x4 is vertical, and x5 is perpendicular to the fracture surface.

The thin laminar flow inside the fracture can be approximated using lubrication
theory and formulated as a two-dimensional problem over the fracture surface. Since
the fracture surface may be curved, we utilize the coordinates © and ¢ that represent
the position along the fracture length and height, respectively, with the origin being at
the injection point. The relation between the coordinate systems is shown in Fig. 2c.
Note that each fracture has its own set of coordinates.

The elastic interaction between the fractures is formulated using the displacement
discontinuity method. Let the displacement discontinuity vector across the fracture
surface be D. It is convenient to consider D in the local coordinate system xy, o,
and z3, shown in Fig. 2d. For the displacements w; (i = 1,2,3) corresponding to

the directions of the local coordinate system, the components of the displacement
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discontinuity vector D are defined as

. i=1,2,3, (2.1)

where Dy, Do are the shear components (crack-sliding displacements) and Dj is the
normal component (crack-opening displacement). The crack-opening displacement is
henceforth written as w, i.e., the fracture width.

As mentioned previously, modeling propagation of multiple hydraulic fractures
requires the coupling of the following physical phenomena: i) elastic equilibrium of
the rock medium in view of the presence of multiple fractures in a formation, ii) fluid
distribution between the fractures, iii) viscous fluid flow and the associated pressure
drop along the fracture, and iv) the propagation condition that governs the position
of the fracture front. All are addressed in the next section within the context of 3D
fractures. These relations will then be used as a basis for constructing the reduced
pseudo-3D models. As detailed in the next sections, the problem is formulated in
terms of fracture opening w(x,t) and the position of a fracture front at any time ¢.
To reduce the number of numerical constants, the following definitions are adopted
in this paper:

/ / E / 2 i !
n= 12,[1,, F=—— K = % K]C, C :2CL, (22)

1—v?
where F’ is the plane strain modulus, ' is the scaled fluid viscosity, C’ is the scaled

leak-off coefficient, and K’ is the scaled fracture toughness of the rock formation.

2.3 Governing equations for fully 3D problem

Elasticity relation. First, we present the integral equations that relate stresses

and displacements in the displacement discontinuity method (Crouch and Starfield,

12
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Figure 3: Elastic interaction between fractures.

1983; Hills et al., 1996). Figure 3 schematically shows the problem, in which the
opening of the ky, fracture at x’ imparts a stress field at the surface of the iy, fracture
at x. Because the fracture surfaces may be curved, we define the normal to the
fracture surface at x’ as n’, and the normal at x as n. The angle between the positive
direction of the z-axis and n is denoted as #, and for n’ as ¢'.

The stresses produced by the displacement discontinuity (DD) field can be cal-
culated based on the Green’s function approach. Therefore, we consider a point
displacement discontinuity at x’ that induces a stress field at x. Since x and x’ have
different local coordinate systems, it is necessary to introduce coordinate transfor-
mations. The vector x — X’ is expressed as x1, To, 3 in the system local to x’. The
stress tensor in terms of 1, xo, x3 and Dy, Dy, D3, in the local coordinate system, is

denoted by oP and is expressed in terms of the derivatives of the potential

D; .
¢; = i=1,2,3. (2.3)

)
Va3 + a3+ a3

The exact relation between o and ¢; is given in Appendix A. The same stress tensor

in the coordinate system local to x, is found via tensor transformation,

o7 (x,x') = T(x,x)o? (x — x')T(x,x)7, (2.4)
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where T is the matrix of rotation from the local coordinate system at x’ to the local
system at x:
cos(d —6") 0 sin(6—¥6)
T = 0 1 0 . (2.5)
—sin(@ —60") 0 cos(f —¢)

The contributions of point displacement discontinuities to the stress tensor given by

Eq. (2.4) can be integrated over Ay to yield the stress field from the k-th fracture

ot (x) = /A &7(x, x')dAL. (2.6)

The total stress tensor at any point is a superposition of the stress fields produced

by all fractures and the geological stress field o, and is written as

N
a:Zak—i—ag. (2.7)
k=1

The total stress field must satisfy the traction boundary conditions along fracture
surfaces. The normal component of traction in the ky, fracture is equated with the
fluid pressure, and the shear component is set to zero since the fluid is unable to

sustain shear stress. These two conditions lead to

o-nf=—pn*, xeAd, k=1...N; (2.8)

It is worth mentioning that while (2.8) is written in terms of stress components, it is
actually a function of the displacement discontinuities as detailed in Appendix A.
The assumptions that lead to the vertical crack configuration and the applied
stress field render the shear component of displacement discontinuity in the vertical
direction, D,, irrelevant. For this reason, only the components of stress o that
correspond to directions x; and x3 are considered. It is convenient to denote the

relevant components of the displacement discontinuity vector D; and D3 respectively
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by D, and D,,. Similarly, the relevant total stress components o3 and o33 are denoted

by o5 and o,,.

Flux balance and lubrication equation. Hydraulic fractures are driven by fluid
injected from a wellbore. Figure 2 shows N vertical hydraulic fractures emanating
from the same wellbore. The injection rate (o represents the total fluid flux that is

distributed among the fractures, such that

N
ZQk = Qo, (2.9)
k=1

where () is the fluid flux into the ky, fracture. Fluid pressure pg inside the wellbore
is considered constant throughout the pipe’s length (i.e., viscous friction in the pipe
is ignored). The fluid pressure experiences a drop by the amount of Apy e upon
entering the k;, fracture as a result of the perforation friction. Thus for the kth

fracture, the pressure equilibrium at the wellbore requires that

Pk + Apppert =po, k=1...Ny, (2.10)

wellbore

where py, e is the value of the fluid pressure at the location where the wellbore
intersects the ky;, fracture surface. For the case of n perforation holes for the kth port
of entry, the pressure drop can be found from the following expression (Cramer, 1987;
Crump and Conway, 1988)

8pQ3

—_ 2.11
7202, din’ (211)

Apk,perf =

where p is the density of the fluid, Cyy, is the dimensionless discharge coefficient for
the k;, perforation cluster that represents the effect of the perforation shape on the

pressure drop (Lord, 1994; Romero et al., 1995; El-Rabaa et al., 1997), while dj, is
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the corresponding perforation diameter.

Fluid balance inside the ky, fracture is formulated in terms of the previously
defined fracture opening w;. To account for the fracture curvature, the fluid flux
due to pressure gradient is written in terms of the coordinate system (Z, 37); therefore

V= (%, 82) denotes the surface gradient in the balance of fluid, which is written as

<

P o s o
% +V- dk _|_q}§ak'0ff(;c’y7t) = Qk(t)5($,y), ($7y) € Ak, k=1.. Nf? (212)

where qi is the two-dimensional fluid flux inside the ky, fracture, q}fak")ff is the fluid
leak-off from the ky, fracture into permeable rock, and the right-hand side represents
the fluid flux coming from the wellbore into the ky, fracture. Following Carter’s

model (Carter, 1957), the fluid leak-off term can be written as

c’ )
——, t > tox(T,9),
q}ceak—off(il:;7 ,g7 t) — t_t07k(x’y) , k; —_= 1 . Nf7 (213)

Oa t < tO,k(i‘vg)v

where to (2, §) is the time at which the fracture front was located at (z, 7).
The fracture opening is significantly smaller than all other fracture dimensions.
This allows the application of the lubrication approximation to the thin laminar flow

inside the fracture, so that the flux obeys Poiseuille’s law
qr = ——,Vpk, k= 1...Nf, (2.14)

which, combined with the fluid balance Eq. (2.12), yields the Reynolds equation (or

lubrication equation) for each fracture

ow 1 ‘ - L
i V(i) =g Qud(E,9). (@.9) € A k=1, Ny (215)
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The zero fluid lag assumption renders the lubrication equation applicable along all

fracture surfaces. Recall that the effect of gravity is neglected.

Fracture propagation. The zero fluid lag problem is computationally difficult
because the coalescence of the fluid front and the fracture front yields a free boundary
problem with singular fluid pressure at the fracture front. However, it has been shown
that in situations of vanishing fluid lag, it is more efficient to utilize the boundary
condition for a zero-lag situation (Detournay and Peirce, 2014), in which the zero
fluid pressure boundary condition of the finite lag case is replaced by a zero flux
condition. In addition to the zero flux condition, the fracture opening and the shear
displacement discontinuity in the immediate vicinity of the crack front corresponds to
the asymptotic lincar clastic fracture mechanics (LEFM) solution (Rice, 1968; Tada
et al., 2000), which, in terms of the distance from the front s, can be written as

32 K 51/2

w=\/—

—0 2.16
T E' )8 ’ ( )

where K7 is the Mode I stress intensity factor, and

D, = gﬁslﬂ

— , s—0, (2.17)

where Kj; is the Mode I stress intensity factor. Here the relations between the
width and shear DD in terms of the corresponding local values are w = D3 and
D, = D;y. Note that for the vertical fractures and applied loading considered here
the Mode I11 stress intensity factor is not relevant. For relatively brittle materials
such as rock, it is assumed that the crack will extend according to one of the local
symmetry criteria (Erdogan and Sih, 1963). To first order, these criteria, which

assume the material is tension-weak, predict the same extension direction. The zero
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Mode I1 stress intensity factor criterion demands that, as the crack extends, its front
is characterized by a null Mode 1T stress intensity factor. The maximum hoop stress
criterion dictates that the crack extends in the direction that is normal to the direction
of the principal stress (parallel to the direction of zero shear stress) produced by the
crack before its extension. For the sake of convenience in the simulation procedure,
the present formulation uses the zero Mode I criterion to select the direction of the
crack extension, and the position of the crack front is determined by setting the Mode
I stress intensity factor of the extended crack equal to the fracture toughness. Thus

write

K[ = KIC; (218)

where this stress intensity factor corresponds to the new crack front, for which its
Mode I1 factor is zero.

The above equations define the exact problem for a three-dimensional hydraulic
fracture. Numerical solution of this problem requires a representation of each crack
surface by a two-dimensional mesh. Prohibitive amounts of computational resources
are therefore required to solve the 3D problem when it is used in hydraulic fracture
simulators, whose goal is to search for optimal configurations. To address the chal-
lenge, in the next section, we develop a procedure that relies on approximations of the
crack opening in the vertical dimension to reduce the dimensionality of the problem

while maintaining a remarkable level of accuracy.

2.4 Reduced-order modeling

It has been established that the coupling and associated competition between var-
ious physical phenomena involved in hydraulic fracturing, including fluid viscosity,
fracture toughness, and fluid leak-off, result in a complex multiscale behaviour (De-

tournay, 2004, 2016). Computational methods such as the finite element method
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(FEM) (Chen, 2013; Salimzadeh and Khalili, 2015; Gordeliy et al., 2019), the dis-
placement discontinuity method (Peirce and Detournay, 2008; Dontsov and Peirce,
2017), and the phase-field method (Mikelié¢ et al., 2015; Chukwudozie et al., 2019) are
capable of resolving the multiscale nature of the singularities along the crack front,
but only if extremely fine meshes are used. This makes such methods computation-
ally expensive and thus severely limits their use in design applications that require
fast solutions and extensive exploration of the design parameter space.

The reduced-order modeling concept is based on the approximation of the original
model’s governing equations to reduce the number of variables to be computed. The
method relies on additional assumptions such as radial symmetry or plane strain
conditions and forgoes some information about the solution, but in return, it can
offer a significant increase in computational efficiency. The choice of assumptions
is critical to the accuracy of this method, due to strong limitations on the possible
solutions imposed by the assumptions. In particular, it is important that model order
reduction preserves the multiscale behavior, one of the deciding factors in the fracture
evolution.

The early reduced-order models for hydraulic fracturing use the classical KGD,
PKN, and P3D solutions to reduce the problem to one-dimensional (1D) along the
crack length (Settari and Cleary, 1986; Palmer, 1983; Palmer and Carroll, 1983;
Adachi et al., 2010). These models do not fully account for the multiscale behav-
ior inherent to hydraulic fractures. This limitation has been addressed in subsequent
studies (Adachi and Peirce, 2008; Weng, 1992; Dontsov and Peirce, 2015a, 2016a;
Linkov and Markov, 2020; Skopintsev et al., 2020), in particular in the enhanced
PKN (EPKN) and the enhanced P3D (EP3D) models (Dontsov and Peirce, 2015a,
2016a). It is worth mentioning that the EPKN and the EP3D models were formulated

for a single hydraulic fracture.
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Another approach to model order reduction comes from the asymptotic analysis of
the solution near the tip. The pre-computed near-tip asymptotic solutions have been
used to approximate the whole near-tip region of the finite crack (Peirce and Detour-
nay, 2008; Gordeliy and Peirce, 2013; Dontsov and Peirce, 2017; Zia and Lecampion,
2020). This method does not change the dimensionality of the problem, but it con-
siderably reduces the number of variables related to the near-tip solution along the
perimeter of the crack. On a side note, the asymptotic solutions for the near-front re-
gion have been derived for different types of fluid rheology, such as Newtonian (Gara-
gash et al., 2011; Dontsov and Peirce, 2015c¢), power-law (Dontsov and Kresse, 2018),
Carreau (Moukhtari and Lecampion, 2018), and Herschel-Bulkley (Bessmertnykh and
Dontsov, 2019). Because it is necessary to have such solutions readily available for
computational purposes and storing them in computer memory may be undesired,
the alternative was offered in the form of fast approximate solutions (Dontsov and
Peirce, 2015¢; Dontsov and Kresse, 2018; Bessmertnykh and Dontsov, 2019).

In this study, we develop a model order reduction technique for multiple non-
planar hydraulic fractures, based on the approach undertaken in the EPKN and
EP3D models. In addition, the crack near-tip region is approximated by the near-tip
asymptotic solution. The developed models are validated against the implicit level
set algorithm (ILSA) (Peirce and Detournay, 2008; Peirce and Bunger, 2015; Dontsov
and Peirce, 2017), which is a displacement discontinuity-based hydraulic fracturing
simulator capable of modeling multiple planar hydraulic fractures in isotropic elastic
media. ILSA gradually changes the fracture front position, to capture the necessary
multiscale behavior associated with the near-tip asymptotic solution, and numerically

solves the unreduced governing equations of the full 3D problem.
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3 Reduced-order model for multiple planar hydraulic

fractures with constant height

3.1 Background

This chapter describes the reduced-order model for multiple planar hydraulic frac-
tures with constant height. The geometry of the problem is illustrated in Fig. 4. The
origins of the model under study are traced to one of the early classical models, called
as Perkins-Kern-Nordgren (PKN) model (Perkins and Kern, 1961; Nordgren, 1972).
The PKN model considers a vertically oriented planar hydraulic fracture with a con-
stant height. The constant height idealization reflects the idea that the reservoir
layer of constant height is surrounded by layers with much larger confining stress,
preventing fractures from growing in the vertical direction. It is worth mentioning
that, in the classical approach, the length of the fracture is assumed to be much larger
than the height. As a consequence, the PKN model does not accurately represent
fracture propagation at early times when the fracture length is less or comparable
to the height of the reservoir layer. Due to relatively small computational costs, the
PKN model is often used as a basis for constructing more sophisticated models, such
as when multiple hydraulic fractures propagate simultaneously from a single wellbore
or when a network of hydraulic and natural fractures is considered (Kresse et al.,
2013; Wu et al., 2017).

It is known that the classical PKN model is unable to capture the effect of fracture
toughness in the lateral direction. Two toughness-dependent pressure boundary con-
ditions were proposed to address this limitation. The first one provides a value for the
pressure that is based on the energy calculations (Sarvaramini and Garagash, 2015),
and the second one utilizes the pressure value from the radial fracture propagating

in the toughness dominated regime (Nolte, 1991). Recently, a non-local elasticity
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Figure 4: Problem geometry for blade-like or PKN type models.

approach was introduced in the enhanced PKN (EPKN) model (Dontsov and Peirce,
2016a), which replaces the plane strain limit of the elasticity integral with a more
accurate approximation. The elliptic cross-section (as in the classical PKN model) is
used to reduce the two-dimensional integral to a one-dimensional form by perform-
ing analytical integration in the fracture height direction. The fracture toughness
is introduced through the toughness-dependent asymptotic solution at the fracture
tip, which is used to advance the crack front. Another approach to account for the
non-local elastic interactions is typically taken in the modeling of multiple hydraulic
fractures and a fracture network problem (Olson, 2008; Kresse et al., 2013; Wu et al.,
2017). These studies employ the two-dimensional displacement discontinuity method
(2D DDM), which uses pressure-width relation that is based on the plane strain elas-
ticity integral but utilizes the correction factor that accounts for a finite fracture
height.

The developed model introduces several important modifications to the single

crack EPKN formulation (Dontsov and Peirce, 2016a). First, the modeling of multiple
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cracks involves a fixed mesh algorithm, instead of the moving mesh. Second, the
method extends the non-local elasticity relation to the stress tensor’s normal and shear
components not restricted to the fracture plane. These modifications are aimed at
accurate evaluation of the physical processes related to clasticity, fracture toughness,
and fluid viscosity, which are typically most difficult to model together. Leak-off is
omitted for simplicity because it does not influence the aforementioned processes.
However, the algorithm can be easily modified to account for leak-off, as shown in
Chapter 4.

The accuracy of the developed model is compared to other reduced models for a
single blade-like or PKN hydraulic fracture, with the emphasis on evaluating differ-
ent approaches to non-local elasticity, including the EPKN and the 2D DDM. The
results obtained with the developed model for multiple cracks are validated against
the implicit level set algorithm (ILSA) (Peirce and Detournay, 2008; Dontsov and
Peirce, 2017). The latter is a fully coupled hydraulic fracturing simulator for multiple
planar hydraulic fractures, which solves the governing equations related to the full
3D problem. In particular, we investigate the influence of the fracture spacing and
height on the accuracy of the solution for a case of five simultaneously propagating
planar hydraulic fractures with constant height. The results presented in this chapter

are published in (Protasov and Donstov., 2017; Protasov et al., 2018).

3.2 Governing equations

This section is organized as follows. We start by outlining the EPKN model’s main
feature related to plane strain approximation. Then, derivation of the approximate
stress tensor is performed, in which both normal and shear components are considered.
Next come the governing equations of the reduced-order model for multiple cracks,

which will henceforth be referred to as mEPKN. Finally, derivation of the approximate
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Ttip— i'tip+

Figure 5: (a) 2D mesh over the fracture surface used in DDM. (b) 1D mesh used
in EPKN method. (¢) EPKN mesh element representing a fracture cross-
section, following the plane strain solution in Eq. (3.1).

lubrication equation is presented, and followed by the propagation criteria for the

lateral fracture fronts.

3.2.1 Model order reduction

In this section, we implement model order reduction, based on the EPKN approx-
imation (Dontsov and Peirce, 2016a), to the problem of multiple hydraulic fractures
formulated in Chapter 2. Additionally, the following assumptions are imposed: pla-
nar fracture growth, constant fracture height, and zero leak-off. First, we introduce

the approximation procedure of the EPKN method (Dontsov and Peirce, 2016a).

Fracture opening and approximation procedure. Consider a vertical hydraulic
fracture propagating in the reservoir layer of height H between stress layers with much
larger confining stress, as illustrated in Fig. 5a. The fracture height is constant and
equal to H, and the lateral fracture front is flat. The lateral and the vertical coordi-

nates in the fracture plane with the origin at the wellbore are denoted by = and v,
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respectively. Figure ba also shows a two-dimensional numerical mesh arising in the
DDM approach. Instead of 2D mesh, the EPKN based model order reduction em-
ploys a one-dimensional mesh along the fracture length, as depicted in Fig. 5b. Here,
Zyip+ and Typ— represent the coordinates of the lateral fronts. Because the fracture
length is assumed to be much longer than the height, the fracture opening can be ap-
proximated by the plane strain solution, and the vertical fluid flow is negligible. The
EPKN mesh element, approximated by the plane strain solution, is shown in Fig. 5c,
where, in addition, the local coordinate system of the mesh element z, x5, x3 is intro-
duced for convenience. In particular, the relation between stress and displacements
is given in the local coordinate system.

Solution for the fracture opening under plane strain condition can be written as

N 8H K, 27 2
Wwys(7) = — 1— (E) ; (3.1)

where K is the stress intensity factor at the vertical fracture tip. The model order
reduction is based on the vertical averaging of functions that depend on g by the

following expression

- H/2
o= [ @D 32

—H/2
where f is referred to as the average or the effective function. The plane strain
solution given by Eq. (3.1) is the main approximation used in the EPKN model.
Together with the averaging procedure given by Eq. (3.2), these expressions allow to

formulate the problem in terms of the average fracture opening w, such that
R 25"
wn(a) = u@n 1 () (3.3
T H

where w depends only on the lateral coordinate z.
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Approximate elasticity relation. Here we describe the procedure for the approx-
imate calculation of stress, which follows the approach to non-local elasticity used in
the EPKN model (Dontsov and Peirce, 2016a), and provides the elasticity relation
for multiple interacting fractures.

In the EPKN model, the normal component of displacement discontinuity vector
has the elliptical shape, according to (3.1). For the shear component, the relation
between the shear displacement discontinuity and the shear stress in the limit of
plane strain can be obtained by taking the corresponding limit of the elasticity equa-

tion (2.6) (see also Eq. (A.1) in Appendix A), which results in

(3.4)

g __
013 =013 =

B /H” D (})d
2L+ w)dm J g (w2 — 75)*
Since the integral’s kernel is identical to that for the normal stress expressed in terms
of normal DD, then the application of a constant shear stress field leads to an elliptical
shape of shear displacement discontinuity D;(z}) along x5, see for example (Adachi

et al., 2010; Tada et al., 2000).
To summarize, the displacement discontinuity has the following expression in the

EPKN model in terms of the local coordinates 1, x5, 23

Di(z1,x5) = Dy(x1)1/1 — 423/ H?, (3.5)

where f)Z denotes the maximum value of D; at a cross-section. Here D3 = w represents
fracture opening, while D; = Dy corresponds to shear in the (z,z) plane. Another
shear component D is neglected.

The expression given by Eq. (3.5) is used to calculate stress given by Eq. (2.6).

For convenience, we provide the expression for stress potential for a single fracture
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element of length Az; and height H as

Az /2 H/2 1 1—4 H2
P =/ / '732/ debda’, i=1,2,3. (3.6)
—Azy/2J—H/2 xl—xl) + af + a3

The latter expression can be analytically integrated over the height direction, resulting
in

Azx1/2 B
b = / o D) s ot H) das, (3.7)
—Az1/2

where the exact expression for the function [ is given in the Appendix B. It is
worth mentioning that Eq. (3.7) requires one-dimensional numerical integration, while
the equivalent integral for the fully 3D model is two-dimensional. This allows to
significantly reduce computational costs. Once the potential is computed, all stress
components can be evaluated, see Appendix A.

The traction boundary conditions (2.8) are slightly modified in the reduced-order
model. Specifically, only a single point along the vertical direction at g = 0 takes

part in the calculations, resulting in

o(z,7=0)-n(%) = —p(F)n(F), FTe€A, k=1...N; (3.8)

Such boundary conditions ensure continuity of the normal stress between fluid and

solid as well as reflect the fact that fluid cannot sustain shear stress.

Flux balance and approximate lubrication equation. The distribution of

fluxes entering each fracture depends on the perforation friction and the total flux
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(o, which, following Eq. (2.9) and (2.10) can be written as

Ny
> Qu=Qo (3.9)
k=1
and Pr| 0 —|—Apk7pcrf:p0, k= 1Nf (310)
z=0,y=

Since we consider the fractures propagating horizontally along their length (Z-
direction) and restricted from vertical growth (g-direction), the fluid flow can be
calculated based on Poiseuille flow of a Newtonian fluid in an elliptic DDM element

of the ky, fracture as
12w3 Opy
w2 0x’

Tk = (3.11)

where py is the fluid pressure in the k;;, fracture that varies only with respect to the
lateral coordinate & according to the assumptions stated earlier. This expression is
obtained by substituting elliptical width profile (3.3) into (2.14) and performing inte-
gration (3.2) analytically. The fluid balance in each fracture (2.12) can be averaged

using (3.2) to obtain

0w (Z) | 03() _ @

ot or .~ @) (8.12)

where we consider zero leak-off case.

Fracture propagation. The constant fracture height assumption of the PKN type
models represents the influence of stress barriers of significant magnitude on the
fracture propagation. The confining stress inside the barriers is considered large
enough to prevent the vertical fracture growth. Consequently, it is not necessary to
consider a propagation criterion in the vertical direction.

The lateral fracture front propagates according to the LEFM asymptotics (2.16)

and the propagation condition (2.18). The LEFM asymptotics is formulated in terms
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Since the planar fractures are considered in this chapter, the turn criterion stemming

from (2.17) is irrelevant and therefore the propagation is governed by K; = Kj..

3.2.2 Near-tip asymptote

Propagation is determined by the near-front behavior, which involves complex
stress singularities produced by the interaction of the fluid with the cracked solid.
Many computational models of hydraulic fracturing do not consider these singular-
ities, and instead, adopt only the square root-singular stress field that arises in the
linear elastic fracture mechanics theory of (dry) cracks. The importance of incorpo-
rating the correct near-front behavior of hydraulic fractures was highlighted in recent
works (Peirce and Detournay, 2008; Detournay and Peirce, 2014; Dontsov and Peirce,
2017). Specifically, the presence of fluid introduces viscosity and fluid leak-off in the
vicinity of the crack front. Here we ignore the effect of fluid lag. The general form of
the singular behavior in the near-front region involves the competition between the
processes related to viscous energy losses, energy expenditure on breaking the rock
and fluid leak-off. Therefore, depending on the parameters of the problem, LEFM
asymptotic solution (Eq. (2.16)) may be valid only extremely close to the front, see,
e.g., (Garagash et al., 2011).

Capturing this multiscale behavior near the fracture front using standard com-
putational methods requires a very fine discretization and is therefore computation-

ally expensive. The practical way to overcome this mesh requirement is considered
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in (Dontsov and Peirce, 2015¢), in which the approximate solution for the near-front
region that captures the effects of toughness, viscosity, and leak-off, is developed.
This allows the numerical discretization to use a coarser mesh near the fracture front.
Note that the fracture opening for the aforementioned multiscale asymptotics follows
LEFM solution (2.16) and propagation condition, given by (2.18), in the vicinity of
the crack front, but it also extends it to account for the effects of leak-off and viscosity.
For completeness, the details of the multiscale near-front asymptotics are presented

in Appendix C.

3.2.3 Outline of numerical algorithm

Next, we provide a brief description of the numerical algorithm used in the model
for multiple blade-like fractures, from now on called “mEPKN”. The discretization
strategy follows the fixed mesh approach, described in Appendix D. The extensive
details of the algorithm are provided in Appendix E. Each fracture is discretized into
elements along 7, as illustrated in Fig. 5b. The total number of mesh elements of
all fractures is denoted by N. The height of each element is constant and denoted
by H due to the stress barrier limitation in the PKN model. The position and
orientation of each mesh element, except for the tip elements, are fixed. The tip
elements can extend representing the lateral fracture propagation. At each time step,
the extension is computed to satisfy the fracture propagation condition (3.14). To
decrease the discretization error, the algorithm splits the tip element into two new
elements once its length exceeds a predefined value. The split procedure is done in
agreement with the near-tip asymptotic solution. This procedure is also detailed in
Appendix E.

The effective fracture opening w is discretized in a piece-wise constant fashion over

1 —N)

the numerical mesh, so that w = (@',...,w") is the vector of the effective element
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width. The tractions at midpoint of each element are computed from the elasticity
relation given in Appendix A and the elastic potential in Eq. (3.7) integrated over the
surface of each mesh element, see Appendix B. The stress tensor is then computed,
and the traction boundary conditions (3.8) are applied. The normal tractions at cach
element, expressed in terms of w, are combined into the array p = (p!,...,p").
Next, the vector p is substituted into the lubrication equation (3.12) to obtain
fluxes. The temporal and spatial derivatives are discretized using the backward and
the central finite difference, respectively. The global fluid balance in the wellbore
allows to compute the fluxes @y from the fluid pressure p using (3.9) and (3.10).
Finally, the near-tip asymptotic solution in Eq. (3.14) is used to compute the tip
element length based on its effective width, thus determining positions of the lateral

(k) (k)

fronts &y, and Zy, .

3.3 Numerical results
3.3.1 Plane strain hydraulic fracture

In order to examine the accuracy of the numerical algorithm, the results are
compared to the existing solutions for plane strain fracture geometry. It is, there-
fore, important to briefly outline the governing equations for the plane strain (or
Khristianovic-Geertsma-de Klerk (KGD)) hydraulic fracture. The first one is the
lubrication equation, which is written as
w3 Op

(@), 4z = —?% (3.15)

v O _ Qo
ot 0 H

Here, the expression for the fluid flux has a different numerical coefficient from the

PKN model, and w = w. The KGD elasticity equation is derived under plane strain
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conditions, yielding

p@) = -2 / ) g, (3.16)

The boundary condition for the plane strain problem are derived from the LEFM
asymptotics (2.16) and the propagation condition (2.18).

The results of the developed reduced-order model based on the EPKN method
were computed for the KGD geometry by setting the fracture height H = 500 m,
while the largest length among all cases considered is less than 130 m. In addition,
as was stated before, we assume no leak-off for simplicity at this point. Solution with
leak-off is examined in Chapter 4.

In the absence of leak-off, as considered in this study, the solution depends on a

single dimensionless parameter (Hu and Garagash, 2010)

K/4 1/4

This parameter has a meaning of the dimensionless fracture toughness and determines

the regime of propagation. In the situation of no leak-off, there are two regimes, the
toughness dominated regime (denoted by K) and the viscosity dominated regime
(denoted by M). As shown in (Dontsov, 2017), K, 2 4.8 corresponds to the K
regime and K, <0.7 corresponds to the M regime.

The obtained results were validated against the reference KGD model (Dontsov,
2017) for various problem parameters. The comparison between the numerical solu-
tion (black lines) and the reference solution (red lines) (Dontsov, 2017) is shown in
Fig. 6. Two parameters are kept the same in all computations: the fracture toughness
K. =3 MPa-m'/? and the injection rate Qo/H = 1073 m?/s. The top panel corre-
sponds to the toughness dominated (K) regime, for which £=10 GPa, u=10"3 Pa:s,

and, as a result, K,, =4.8. The middle panel examines the solution for the M — K

32



— KGD

—— EPKN

0 10 20 30 40 50 60
x [m]

Figure 6: Comparison between the numerical solution (black lines) and the analytical
solution (red lines) for the fracture width variation at different time instants
for the K, M — K, and M regimes .
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transition, for which £ = 35 GPa, u = 10~ Pa-s, and, consequently, K,, = 1.9.
The bottom panel compares the results for the viscosity dominated (M) regime, for
which F =35 GPa, p=10""! Pa-s, and the corresponding dimensionless toughness is
K,,=0.6.

The numerical results show a good agreement with the reference solution for all
regimes of propagation. In addition, the results corresponding to different time in-
stants in Fig. 6 represent the effect of mesh discretization, because the propagation
regime of the plane strain solution does not change with time and is self-similar. The
numerical mesh has a different number of elements at early and later times. In par-
ticular, the =100 s solution corresponds to the course mesh, the t=300 s represents
a finer mesh, and the largest number of elements is used in the ¢=>500 s solution. Re-
sults in Fig. 6 verify the ability of the algorithm to accurately model the propagation
condition (2.18) even on a coarse mesh, for which less than ten elements per fracture

half-length is used to represent the solution.

3.3.2 Pressure estimation in models with non-local elasticity

There is also an alternative way to incorporate the non-local elasticity into the
PKN model. The approach is based on the 2D displacement discontinuity method
(2D DDM) (Kresse et al., 2013; Wu et al., 2017; Olson, 2008), in which the plane
strain elasticity relation is used with height correction coefficients. To describe the
method, we temporarily use x; to denote the global coordinates x,y, z. The arising

elasticity relation is often written in the discretized form as

Di = C%ij, CZQJD = AijCij, (318)
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where Cj; are the plane strain influence coefficients

£ Az
C,,=—— =, 3.19
J 47 (%—xj)Q— ATzZ ( )

and the height correction factor is given by

|z — 24°

[Nljey

(@ — ;) + (H/)?

where a =1 and g = 3.2 are empirically derived constants. Two versions of this
approach are implemented. In the first one, w; represents the average width, i.e.,
4

w. In the second version, w; is taken to be the maximum width, i.e w|,—o = Zw.

Performance of both approaches is evaluated for completeness.

To better understand the difference between the EPKN and 2D DDM methods,
this section compares the tractions produced by a single element with constant width.
Fig. 7 plots the normalized pressure versus distance that is normalized by the element
size a for different aspect ratios of H/a={0.1,1,10}, where H is the fracture height.
The origin is located in the middle of the fracture, and only x > 0 region is shown
due to symmetry. The pressure due to the EPKN fracture is calculated using the
approximate elasticity integral (3.6) and is shown by the solid black line. Two 2D
DDM results are shown by the dashed and the dotted lines. In the first one, denoted
by 2D DDM—w, the averaged width w is used in (3.18). In the second one, denoted
by 2D DDM—w,—¢, the maximum width w|,—q= %w is substituted into (3.18).

First, let us approximate the whole PKN fracture by a single element, so that
a=2[, where [ is the fracture half-length. Since the fracture length is much longer than
the fracture height for the PKN model, then the result with H/a = 0.1 qualitatively
represents the overall (average) pressure response. The pressure inside the fracture

is substantially underestimated by both 2D DDM methods, which, as will be shown
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Figure 7: Pressure response from a single element for EPKN and 2D DDM numerical

models for different ratios H/a = {0.1,1,10}, where H is fracture height
and a is the element size.
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later, translates into a smaller pressure for the corresponding PKN fractures. To
investigate the mid-range elastic interactions, consider a fracture that consists of
elements with the size a =h. The middle picture in Fig. 7 plots the pressure due to
such an eclement. The self effect (i.c., p(x =0)) is still underestimated by both 2D
DDM models, and the elastic interaction between the elements at this length scale is
also different from the EPKN model. This will lead to a different fracture shape and
length predictions. The case H/a =10 highlights the elastic interactions at a scale
that is small compared to the fracture height, which is similar to a KGD fracture.
As a result, the EPKN elastic integral (3.6) reduces to the KGD elasticity integral
and the 2D DDM correction coefficients (3.20) reduce to unity, in which case the
overall response is equivalent to the KGD model as well. Note that the maximum
width should be used in the 2D DDM method to achieve a good match with the KGD
solution.

Results in Fig. 7 demonstrate that the small scale elastic interactions incorporated
into the EPKN and 2D DDM models are in a good agreement, but the mid-range
and the long-range elastic interactions are substantially different. These qualitative
observations will be verified in the next section, where the predictions of various PKN
models will be compared to the reference solution.

In the next section, the non-local elasticity equation of the 2D DDM method is
solved together with the lubrication equation in Eq. (3.12) and the boundary condition

given by Eq. (2.18) to obtain the results for fracture propagation problem.

3.3.3 Single blade-like hydraulic fracture

This section evaluates the accuracy of different reduced-order models for blade-
like of PKN hydraulic fracture. In particular, we show the results of the reduced-

order models that utilize the classical PKN solution in its purest form, alongside the
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more advanced methods, including the model under study. The reference solution is
provided by ILSA. In addition, we include the previously published data in (Dontsov
and Peirce, 2016a).

First, it is necessary to give a brief description of the reduced-order models in
question. The classical PKN model uses the plane strain elasticity relation, written
as

_ 2E'w

P =, (321)

which, when substituted into the lubrication equation in Eq. (3.12), results in

Jw  6E Pw' Qo
ot  mwH 032 H

(), (3.22)

where, for simplicity, we additionally assumed no leak-off. The corresponding bound-
ary condition at the fracture tip is formulated for w or p through Eq. (3.21). In
particular, the classical PKN model employs w=0 at the tip, which does not account
for the lateral fracture toughness. Different boundary conditions have been proposed

to account for the fracture toughness, which can be written as

2K, s
— =4/ —=Kji., 3.23
PE i —H Pr ip Vei I ( )

where the first one is based on energy principles (Sarvaramini and Garagash, 2015),
and the second one takes the pressure from an equivalent radial fracture with the
diameter H (Nolte, 1991). These boundary conditions in Eq. (3.23) are rewritten in

terms of w using Eq. (3.21), to yield

| VmHK, o (W)sm VHK. (3.24)
e tip N E’ ’ R tip N 2 E’ ' ’

In summary, the PKN model with local elasticity consists of solving the lubrication
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equation given by Eq. (3.22) with either of the boundary conditions in Eq. (3.24)
and (3.24).

Figures 8 and 9 compare the widths (at y = 0) and pressures variations for the
following problem parameters: K. = {0.47, 0.94, 1.57} MPa- m'/? (different pan-
els correspond to different values of fracture toughness), £ = 3.3 GPa, v = 0.4,
Qo=1.7mm?/s, H=0.05m, and u=30.2 Pa-s. These parameters correspond to a lab-
oratory experiment in (Jeffrey and Bunger, 2007). The Implicit Level Set Algorithm
(ILSA) (see, e.g., (Peirce and Detournay, 2008)) is a fully planar hydraulic fracturing
simulator and is therefore used in this study as the reference solution (shown by the
solid grey lines). The “EPKN” (dashed black lines) represents the EPKN model for
a single hydraulic fracture developed in (Dontsov and Peirce, 2016a), which imple-
ments the moving mesh technique and the curved lateral fracture tip. The “EPKN
flat 1”7 (dotted black lines) refers to the same model, in which the curved fracture tip
is replaced by the flat tip. The “EPKN flat 2”7 (solid red lines) represents the model
under study that implements the fixed mesh approach required for modeling of mul-
tiple fractures. The “2D DDM—w@” (solid blue lines) denotes the 2D DDM model
based on w described in Section 3.3.2, while the “2D DDM—w|,—¢” (solid green lines)
refers to the w|,—o=2w based 2D DDM model. Finally, the “PKN—pg” (dashed red
lines) and the “PKN—pg” (dashed blue lines) represent the local elasticity models
with pressure-based boundary conditions given by (3.24). It must be noted that the
data for PKN—pg and PKN—pg models is adopted from (Dontsov and Peirce, 2016a).

As can be observed from Figs. 8 and 9, the “EPKN flat 17 and “EPKN flat 2”
agree well between each other for all cases, which demonstrates that both algorithms
(i.e., moving mesh and fixed mesh) provide consistently similar results. Because the
EPKN model with curved lateral fracture tip matches the reference ILSA data for all

cases, the curved fracture tip into the EPKN model. It is, therefore, important to
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implement the curved fracture tip into the EPKN model. Both 2D DDM models are

unable to provide accurate results and lead to the underestimation of fracture length

by approximately 20%. The fluid pressure is substantially smaller than that for the

reference solution. This agrees with previous observations in Fig. 7, where the single

element self-effect pressure was several times smaller for the 2D DDM methods. The

PKN—pg and PKN—pgr models are able to estimate the overall fracture length and

width while missing some details of the fracture width variation. The energy-based

approach (PKN—pg) provides estimates that are more accurate than the PKN—ppg

results. So, if a simple PKN model with local elasticity should be used, then the

PKN—pg model is a more appropriate choice.
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Figure 8: Comparison of different PKN models in terms of fracture width at y=0 for
different values of fracture toughness.
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Figure 9: Comparison of different PKN models in terms of fluid pressure for different
values of fracture toughness.

3.3.4 Multiple parallel blade-like hydraulic fractures

In this section, we present the results of the developed reduced-order model for
multiple planar hydraulic fractures with constant height. The computed solution is
compared to the reference solution obtained by ILSA for five equally spaced parallel
hydraulic fractures.

The problem parameters in the simulation are the following: Young’s modulus
E = 20 GPa, Poisson’s ratio v = 0.2, fracture toughness K;. = 1.6 MPay/m, fluid
viscosity g = 3 - 1072 Pa-s. In this simulation, we consider no fluid leak-off, but the
mEPKN model is able to capture non-zero leak-off. Constant wellbore injection rate

of Qo = 0.03 m3/s is used, and the flux distribution between fractures depends on
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the perforation friction. We present a series of simulations for different test cases
without perforation friction and with large perforation friction. In addition, spacing
S between fractures varied from 5 to 30 m. The fracture height is taken as 20 m in
all cases.
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Figure 10: Numerical solution for five parallel constant height hydraulic fractures
with low perforation friction. (a) mEPKN and (b) ILSA. (c) fracture
surface area vs time for S = 20 m. (d) fracture surface area vs spacing at
t =351 s.

The results of the simulations for the case of no perforation friction are presented
in Fig. 10. Figure 10a shows the final fracture geometry that is computed using
the mEPKN model at time instant ¢ = 351 s and for the spacing S = 20 m. The
numerical solution can be visually compared to that obtained by ILSA in Fig. 10b.
As can be seen from the figures, both solutions have similar behavior.

The black line around the fracture footprint in Fig. 10b denotes the exact position
of the fracture front in ILSA. Because ILSA models 3D hydraulic fractures, the lateral

fracture fronts are curved. In contrast, the mEPKN solution has flat lateral fronts,
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which affects accuracy. It was shown that the inclusion of a curved fracture front
increases the accuracy of the EPKN model (Dontsov and Peirce, 2016a).

The evolution of fracture surface area versus time is provided in Fig. 10c. The
solutions of the mEPKN and ILSA are superimposed for comparison for spacing
S = 20 m. The numbers in the legend denote fracture numbers starting from the
outermost fracture at z = 0. Due to symmetry, fractures 5, 4 have the same properties
as fractures 1, 2. Thus they are not present in the figure.

The dependence of the fracture surface area on spacing S between the fractures
is given in Fig. 10d. Here, the results are compared at time instant ¢ = 351 s. The
ILSA results are shown by markers due to scarcity of the computed results, while
mEPKN results are plotted by lines. This is dictated by the computational efficiency
of the algorithms.

The discrepancy between the results in Fig. 10d for S < 20 m arises due to the
inaccurate estimation of the fluid pressure at the injection points by the mEPKN
model. In particular, the mEPKN model does not account for logarithmic pressure
singularity at the injection point. Inaccurate calculation of fluid pressure leads to error
in the fluid flux distribution, which, in turn, causes the discrepancy in the fracture
area. Lower values of spacing correspond to the stronger interaction between fractures
causing a larger error, while larger spacings have a low error. Even without accounting
for the logarithmic pressure singularity at the injection points, the computationally
efficient mEPKN model captures the behavior of the fracture propagation for the case
of zero perforation friction.

The results of simulations for the case of large perforation friction (which leads
to a uniform flux distribution) are presented in Fig. 11. Figures 11a and 11b show
the fracture footprints for spacing S = 20 m computed with the mEPKN and ILSA,

respectively. The evolution of fracture surface area versus time for spacing S = 20 m
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Figure 11: Numerical solution for five parallel constant height hydraulic fractures

with limited entry. (a) mEPKN and (b) ILSA. (c¢) fracture surface area vs

time for S = 20 m. (d) fracture surface area vs spacing at ¢ = 351 s.
is shown in Fig. 11c, where the mEPKN and ILSA solutions are put together for
comparison. The variation of fracture area versus spacing S is given in Fig. 11d for
time instant ¢ = 351 s. Large perforation friction results in a uniform flux distribution
among the fractures and, given zero leak-off, all fractures have the same volume.
However, the outer cracks exert additional pressure on the inner fractures, decreasing
their fracture opening and increasing their surface area. The mEPKN model shows a
good agreement with the reference solution for the case of large perforation friction,
as can be seen from the evolution of the fracture surface area versus time in Fig. 11c.
Variation of the fracture surface area versus spacing S, shown in Fig. 11d, indicates
that the mEPKN agrees with the reference ILSA solution for the various spacings
considered. The fact that the mEPKN model gives more accurate results for large
perforation friction than zero perforation friction shows that the estimation of fluid

pressure plays an important role in the flux distribution.
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3.4 Summary

In this section, we presented the developed reduced-order model for multiple pla-
nar hydraulic fractures with constant height. The model is referred to as mEPKN.
We chose to develop the model for multiple hydraulic fractures based on the EPKN
model, after the analysis of several reduced-order models.

The EPKN model was originally implemented for a single symmetric fracture as
an extension of the classical Perkins-Kern-Nordgren (PKN) model. To model multiple
fractures, we implement several modifications to the EPKN model. First, the fixed
mesh replaces the moving mesh, which is necessary for multiple fractures and allows
further extension to non-planar configurations. Due to the fixed mesh approach,
this study implements a different propagation algorithm from the one in the EPKN
model. The second modification is related to the approximate elasticity equation
that has to account for both normal and shear stress components as well as out-of-
plane configurations. In addition, the developed algorithm utilizes the multiscale tip
asymptotic solution, which relaxes the mesh size requirement.

We analyzed different approaches for reduced-order modeling that use the PKN
model, including models with local elasticity and models with non-local elasticity.
The PKN models with local elasticity utilize the pressure boundary condition, derived
either from the energy analysis of the problem or from the equivalent radial fracture
problem. Two PKN models with non-local elasticity are: i) enhanced PKN (EPKN)
model, which uses the first-order approximation of the elasticity equation obtained by
considering the plane strain limit of the problem; ii) 2D displacement discontinuity
method (2D DDM), which derived the approximate elasticity equation by adding an
empirically derived height correction factor to the plane strain elastic solution.

To evaluate the qualitative difference between the models, we compare pressure

responses from a single fracture element (with constant width). The single element
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pressure comparison between the EPKN and 2D DDM methods highlighted the dif-
ferences in the pressure response, which is especially noticeable inside the element
for long fractures, for which 2D DDM predicts smaller pressure values. Next, the
accuracy of the models is determined by comparing the results with the reference so-
lution for plane-strain and blade-like hydraulic fractures. This analysis showed great
accuracy of the EPKN model in a single fracture case and its potential for modeling
of multiple fractures.

Finally, the developed model is validated against the reference solution for a case
of multiple parallel hydraulic fractures with constant height. In particular, we con-
sider five uniformly spaced parallel fractures. We investigate the effect of perforation
friction and spacing on the results. The mEPKN model agrees with the reference
solution when the spacing between fractures is greater than the fracture height. A
discrepancy in the flux distribution was observed for the zero perforation friction case,
which happens due to inaccurate flux distribution. However, the mEPKN model still
captures the qualitative behavior of the problem. The method for accurate calculation
of flux distribution is introduced in the next chapter.

The reduced-order model for multiple planar hydraulic fractures with constant
height, developed in this study, is a promising method for modeling complex fracture
problems as it permits a generalization to multiple curved fractures, possess high
computational efficiency, and is shown to have a reasonable accuracy for a wide set

of problem parameters.
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4 Reduced-order model for multiple non-planar hy-

draulic fractures

4.1 Background

This chapter presents the reduced-order model for multiple non-planar hydraulic
fractures. Figure 12 shows the geometry of the problem. The model is based on
the enhanced pseudo-3D (EP3D) model (Dontsov and Peirce, 2015a), which is, in
turn, extends the classical pseudo-3D (P3D) solution. The P3D models consider
vertically oriented hydraulic fractures propagating inside the reservoir layer, which
is surrounded by layers with larger confining stress. The vertical fracture growth
outside of the reservoir layer is limited because of the additional confining stress.
The P3D solution allows the problem to be reduced to one-dimension, similar to the
PKN models. At the same time, the P3D formulation differs from the PKN one in
that the fracture height is not constant.

The classical solution has been extensively studied and applied in hydraulic frac-
ture models (Settari and Cleary, 1986; Palmer, 1983; Palmer and Carroll, 1983; Adachi
et al., 2010). However, due to the inability to fully characterize the effects associ-
ated with fluid viscosity and fracture toughness by using the classical P3D solution,
several attempts have been made to improve it (Adachi and Peirce, 2008; Weng,
1992; Dontsov and Peirce, 2015a). To address the known drawbacks of the classical
P3D model, the enhanced pseudo-3D model (EP3D) (Dontsov and Peirce, 2015a)
introduces non-local elasticity interactions, a correction for viscous resistance in the
vertical direction of the fracture, a curved crack front, and the near-front asymptotic
solutions. It is shown that these modifications allow the accurate modeling of a single

planar fracture under both viscosity-dominated and toughness-dominated conditions,
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Figure 12: Problem geometry for P3D type models.

i.e., they capture the effects of fluid viscosity and toughness for the lateral and ver-
tical growth. Further extension of the model to account for the effect of leak-off and
coupling with proppant transport has been addressed in (Skopintsev et al., 2020) for
the case of a planar fracture.

In extending the EP3D approach to the case of multiple non-planar hydraulic
fractures, the formulation differs in many significant ways to the existing enhanced
pseudo-3D formulation for a single fracture. First, it involves a fixed mesh instead
of a moving mesh, similar to the reduced-order model based on the EPKN method
presented in the previous chapter. Here, the numerical mesh is additionally modi-
fied to account for non-planar cracks and vertical crack growth. Second, the method
employs the approximate non-local elasticity relation of the EPKN based model and
combines it with the EP3D approach. Third, this work pioneers the use of tip asymp-
totic solutions for the problem of non-planar fractures. Finally, the formulation more
accurately estimates the fluid pressure on the portions of the crack surfaces near the
wellbore, which is especially important for computing the flux distribution between

the fractures.
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To evaluate the accuracy of the numerical algorithm, we compare the results with
the analytical models for plane strain and radial fractures, and with a numerical
reference model for a planar fracture. For the latter, we use the Implicit Level Set
Algorithm (ILSA) (Peirce and Detournay, 2008; Dontsov and Peirce, 2017), which
provides accurate solutions of three-dimensional configurations involving arbitrarily
shaped planar fractures. The choice of the reference model was also driven by its
mathematical formulation, which is similar to the EP3D model but, in contrast,
solves the exact three-dimensional equations numerically while the EP3D model ap-

proximates them for faster computations.

4.2 Governing equations

To ensure completeness and to demonstrate that the model extension to multiple
cracks involves significant challenges, we examine the necessary modifications to the
EP3D model (Dontsov and Peirce, 2015a) in the following sections. It will become ap-
parent that the extension requires careful treatment of the elastic interaction between
the cracks, the pressure distribution in the fluid phase, and fluid leak-off phenomena.

This section is organized in the following order. We first outline the EP3D model’s
plane strain approximation. Next comes the application of the approximation pro-
cedure on the governing equations that leads to a reduced-order model for multiple
cracks, which will henceforth be referred to as mEP3D. Then, derivation of the ap-
proximate stress tensor is performed, in which both normal and shear components
are considered. Afterward, derivation of the approximate lubrication equation is pre-
sented, and followed by the propagation and crack-turning criteria for the vertical
and the lateral fracture fronts. Finally, derivation of a more accurate value for the

fluid pressure inside the fracture near the injection point is presented.
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(a) Wellbore 4

(b) EP3DY .
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ST 8

Ttip— tip+

Figure 13: (a) 2D mesh over the fracture used in DDM. (b) 1D mesh used in EP3D
method. (¢)-(d) EP3D mesh element representing a fracture cross-section,
following the plane strain (¢) and the radial (d) solutions, see Eq. (4.1).

4.2.1 Model order reduction

This section applies the model order reduction based on the EP3D method to
the problem of multiple hydraulic fractures formulated in Chapter 2. We start by
describing the approximation procedure developed in the EP3D model (Dontsov and

Peirce, 2015a).

Fracture opening and approximation procedure. Consider the ky, fracture
in a rock formation with symmetric stress layers. It is convenient to represent the
fracture in the planar view, whereby it is parametrized by the coordinates & and v,
where the former is the distance from the wellbore to the center of the mesh element
and the latter is the vertical coordinate, as illustrated in Fig. 13a. The 2D mesh
reflects typical discretization that is used for fully 3D numerical computations. The

EP3D model reduces the discretization to 1D, as illustrated in Fig. 13b, where T+
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and Zyp— denote the coordinates of the lateral fronts. The lack of discretization in
the vertical direction is compensated by using an approximate analytical solution
for the vertical cross-section, schematically shown in Fig. 13c, where hg(Z) is the
height of its cross-section at Z. Here, the local coordinate system x1, xo, x3 is used in
addition to the coordinates & and g for the computation of stress for curved fractures.
These approximate expressions are derived from the plane strain solution under the
assumption that I, > hy(Z) for the vertical cross-sections far from the lateral front,
and from the radial solution, for the ones close to the lateral front. Both analytical
solutions correspond to a uniformly pressurized fracture and satisfy the toughness
propagation criterion. It is also assumed that for any cross-section the fluid flux qi
is predominantly horizontal, and, consequently, that the fluid pressure p; does not
depend on the vertical coordinate, i.e., x5 = 0 and py, = pi(T).

While the fracture is growing in the middle layer and has not yet reached the
stress barriers, the radial approximation is applied. After the crack has extended
through the stress barriers, the opening of the vertical cross-section is approximated

as that corresponding to a plane strain crack. Thus, for the ky, fracture, we have

o u’k,radial(jyg)a hk(f) S H,

u’k,plane strain («%; Z]), hk (5:) > H.

The crack opening for a uniformly pressurized radial crack of diameter d can be

written as
o 4K (%)

Wradial (T, 7) = E,—mx(% 7), (4.2)
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and for a plane strain fracture as

4K;(2)

Wplane strain(ajvy) = WX(x’?f) ~ N ) (43)
+4Aa {—Nln Hx(z,9) + 2g¥(%) Eln X(7,7) + (T) ]
TE Hx(%,5) = 2g9(2)| 2 |x(&,9) —¢@)|]

where x(Z,7) = /he(Z)? — 492, ¥(Z) = /he(2)? — H?, and d = \/hy(2)? + 422
In addition to approximating the fracture opening by (4.1), the model order re-

duction utilizes the vertical averaging, which for an arbitrary function, f, is given

/hk (Z)/2 ( )
7) dj. 44
H hi(Z)/

The purpose of vertical averaging is to replace the vertical variation of any quan-

by

tity by a single value. Note that the result is not strictly the average because it is
normalized by H and not by h(Z). First, the averaging procedure is applied to the
approximate fracture opening given by (4.1). The expressions for the radial (4.2) and

plane strain (4.3) solutions, averaged by (4.4), yield the following relations for the ky,

fracture
WK[(ZE’) ~\\2 T
| apvema™” il ) < H,
B(F) o . (4.5)
™ ](ZIS) (hk(i'))z + _G\/(hk(j;»Q — fIQ7 hk(f> > H,

HE'\/27h(z)

which does not depend on the vertical coordinate y and gives a direct relation between

the height h(Z) and the effective fracture opening wy(Z).

Approximate elasticity relation. Next, we consider the elastic interaction be-

tween fractures. Specifically, the approximation of the elasticity relation (2.6) is
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described. As was mentioned, the stress relations are considered in the local coordi-
nate system x, rs, x3, shown in Fig. 2c, due to the curved fractures. Following the
approach of EP3D, where the width is approximated by two ellipses for the purpose
of elasticity computations, we extend this methodology for all DD components and
for non-planar geometry. First, both the normal and the shear components must be
considered in computations. Second, in contrast to the case of a single planar frac-
ture for which stresses are computed only along the fracture plane, multiple fractures
require computation of the stresses at generic locations in space x; and x3 where the
neighboring fractures are located. Note that we still take x5 = 0 since we consider
that all fractures propagate from the wellbore at the same vertical coordinate.

In order to compute the stresses, we employ a similar procedure as in (2.6), but
extend it for the problem under consideration as discussed above. In particular, the
following approximation is used for the displacement discontinuity vector, expressed

in the local coordinate system,

Di(xy1,x5) = DMxy)y/1 — 422 /h2 + D7 (21)4/1 — 422 /b3, (4.6)

where h is the fracture height at the considered point and ha,, D!, and D?A” are

defined below. The normal component and the shear components are considered
separately. First, the term with D! is matched with the elliptic part of the displace-
ment discontinuity given by (4.1). Then, D:},)LA” and ha, are calculated to satisfy
the following two conditions: the approximate expression with two ellipses yields the
same effective cross-sectional area as (4.1), and in the plane strain limit, described in
Appendix B, the solution matches the exact relation.

Because the shear confining stress is uniform in the EP3D model, the shear compo-

nent of displacement discontinuity has the elliptic shape similar to the EPKN model,

see Chapter 3 for details. Therefore, D?ﬁ" = 0and Dy o(w1, 22) = D y(21)/1 — 423 /Rh2.
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The approximation for the displacement discontinuity vector is substituted into
the elasticity integral in (2.6), where integration over the fracture surface can be sep-
arated into the integration over the fracture length and height. It is more convenient
to consider the integration over a single fracture element in terms of the potential ¢;

in the local coordinate system:

Az1/2 h(x)/2 D: ) ) ( )
Gi =/ / - dehdx), i=1,2,3. 4.7
“Awij2 w2 A/ (21 —2))? + 28 + 22 .

By substituting (4.6) into (4.7) and performing integration analytically over the height

direction, we have

Az /2
¢; = /A / DMy I (1, 29, w3, 24, h) + D' (20) 1 (21, 22, 23, 7, hao) dz),  (4.8)
—Ax1/2

where the exact expression for the function [ is given in Appendix B. Note that the
elasticity integral in (4.7) in the fully 3D model requires two-dimensional numerical
integration, while the numerical integral in (4.8) after the EP3D model’s reduction is
one-dimensional.

The reduced model follows the stress boundary condition given by (2.8) of the
full problem. However, only a single point along the vertical direction, § = 0, is
considered, similar to the mEPKN model. However, because of the horizontal fluid
flux assumption of the mEP3D model, the traction boundary condition is formulated
in terms of the effective fluid pressure py(Z), which is defined in the next paragraph.

The boundary condition is written as

o(%,5=0)-n(z) = —pp(@)n(i), ieAy, k=1...N;. (4.9)

As will be explained in Section 4.2.3, is important to differentiate the local fluid

pressure and the effective fluid pressure in the equation for the global fluid balance.
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Flux balance and approximate lubrication equation. In the following discus-
sion of the EP3D model, we refer to p as to the local pressure that can vary in both &
and g directions, while p is the average pressure along the height direction. It should
be noted that the effective pressure is approximately equal to the local pressure in the
majority of the fracture due to the horizontal flux assumption. However, an exception
occurs near the wellbore, where the point injection source is used. Therefore, the fluid
flux distribution (2.9) and pressure equilibrium (2.10) are formulated in terms of the

local pressure, yielding

Ny
S Q0= Qo (4.10)
k=1
and pk’~ 0. O—I—Apk,pcrf:po, l{}:].Nf (411)
2=0,5=

A method to estimate the local pressure based on its effective counterpart is presented
in Section 4.2.3.
The expression for the effective fluid flux based on the Poiseuille’s law is given by

1 hi./2 Opr(Z, ) w? 1 Opr(2) hi,/2
7 (7) = — TP )3 di s — 3 di 4.12
G (2) Hy / o 0T Wi @Y Hy' 0F /hk /2 Wi 49, (4.12)

which utilizes the average pressure p(Z) in the EP3D model. The integral on the
right-hand side of (4.12) is calculated numerically.
The lubrication equation for the ky, fracture in Eq. (2.15) is reduced to one di-

mension by applying the vertical averaging given by Eq. (4.4) on Eq. (2.15), yielding

(%) aqk /W ? Qi
dy = —0(2). 4.13

It is worth mentioning that the latter expression accounts for leak-off, in contrast to

Eq. (3.12) in the mEPKN model.
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Fracture propagation. The position of the vertical fracture front is determined by
Eq. (4.5), which relates the height and the effective width. The effect of fluid viscosity
on this relation is taken into account by modifying the propagation condition in the
vertical direction

K; = Kj, + AKysovs, (4.14)

where AK}5°U accounts for the viscous resistance on the fracture propagation, see
the details in Appendix F. The lateral fracture front, however, uses the LEFM asymp-
totics given by Eq. (2.16) for the fracture opening at the tip, and the propagation
condition in Eq. (2.18). It should be noted that, while the EP3D model is formulated
in terms of the effective fracture opening w(z), the LEFM asymptotics is applied to

the fracture opening w(z,y) at § = 0, yielding

o 4 2K, ) o
wk(l”y = 0) = ;wk(SU) = ?E(xtip%- - 55)1/2 T — Tip+,
. . (4.15)
wi (&, = 0) = ;u‘;k(x) — ?ﬁ(fc — By )2 E o ey

The Mode 11 solution given by Eq. (2.17) and the local symmetry condition can be
formulated as

D, =0, 7— Fyps, OF & — Fyip. (4.16)
The direction of the lateral fracture front propagation is determined by the turning
criteria in Eq. (4.16).
4.2.2 Near-tip asymptote and fracture turning

The motivation for using the near-tip asymptote in hydraulic fracture modeling
was presented in Chapter 3. In the context of the original EP3D model (Dontsov
and Peirce, 2015a), it used either LEFM or viscous asymptote depending on the

problem parameters. Subsequently, the model was upgraded in (Dontsov and Peirce,
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2015b) with the two-process asymptote that simultaneously captures the effects of
toughness and viscosity, while neglecting leak-off. In contrast to the previous studies,
in this paper, we utilize the complete crack-front asymptotes, in which all three
primary physical mechanisms are included. The details of the multi-scale near-front

asymptotics are presented in Appendix C.

4.2.3 Near-wellbore pressure correction

The EP3D model’s lubrication equation is the reduced version of the full lubrica-
tion equation. The full equation corresponds to a two-dimensional fluid flow inside
the fracture, while its reduced counterpart considers only the one-dimensional flow in
the lateral direction. As a result of this reduction, the approximate pressure repre-
sents the effective cross-sectional pressure, which depends only on z and is constant
along y. This approximation is accurate throughout the fracture length as long as
the pressure does not vary significantly along the vertical direction. However, the
pressure stemming from the fully 2D solution is singular at the injection point (or
wellbore). Panels (a) and (b) in Fig. 14 show schematics of the two-dimensional and
the reduced one-dimensional problems, respectively. The fluid flux at the injection
point (wellbore) has a vertical component, Fig. 14a, while the EP3D approach as-
sumes a horizontal fluid flux, as shown in Fig. 14b. This leads to different pressure
profiles for the 1D model’s solution and the 2D model’s solution (evaluated along
y = 0), which are illustrated in Fig. 14c. The results shown are computed with the
EP3D model for the 1D flow, and EP3D model with pressure correction accounting
for the 2D flow, as discussed below. The problem parameters correspond to the M
regime (see Table 3) for a single fracture at ¢t = 2000 s. The 1D flow model under-
estimates the fluid pressure at the wellbore compared to the 2D flow model. At the

same time, they agree further away from the source.
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® Wellbore = Flow

Figure 14: Scheme of the fluid flow inside a fracture. (a) Two-dimensional model (b)
One-dimensional model used in P3D fracture. (¢) The comparison of the
effective pressure p and the local pressure p(z) for the corresponding 1D
and 2D flow problems where & = 0 is the position of the wellbore.

Next, we propose a solution to this problem by analyzing the 2D flow problem
separately near the wellbore and far from the wellbore. In addition, since the near-
wellbore behavior is under investigation, we focus only on the flux and the source
terms in the lubrication Eq. (2.12), while neglecting the effects of leak-off and fracture
width change.

With the reference to Fig. 14a and the assumptions outlined above, the problem

under consideration can be formulated as

Viq(@,§) =Qz,9), q= 7 Vp, (4.17)
which is subject to boundary conditions
w’ dp (%, 9)
q;(Z,£h/2) = — ~ =0. 4.18
e e (4.18)

By integrating (4.17) in the vertical and horizontal directions, as well as using (4.18),
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we can compute the effective flux as

h/2 Q
G T 4.19

which is constant along the T axis. At the same time, assuming that w is constant, the
above equations can be solved analytically using the method of images. Consequently,

the flux along the central line (7 = 0) is given by

q:(,0) = % coth ( hj) : (4.20)

The above expression asymptotically behaves as % near the wellbore and 2% far

away from the injection point. To incorporate the effect of variable fracture width,
approximately, note that the far field behavior for the flux along the central line is
given by

Q wﬁ 0

:(2,0) = op— &> M. (4.21)

Therefore, in order to correct for the width variation, we change (4.20) with

w? i wg_
q:(2,0) = Qv =0 coth (ﬂ—; %0>. (4.22)

This expression accurately captures both the near wellbore behavior, as well as the far
field solution. Finally, by substituting the expression for the flux in terms of pressure

into (4.19) and (4.22), we obtain

8p T w~ op(7)
% = tanh (H — ) EE (4.23)

where p;(Z) = p(#,0) is denotes variation of the local pressure along the # axis.

The EP3D model uses the radial crack solution to approximate segments of the
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crack for which h < H. Since at the early time the whole crack follows the radial
solution, here we compare the effective and the local pressures for the case of radial
symmetry. The lubrication Eq. (4.17) can be solved assuming radial symmetry. The
flux along the central line is

G = ——. (4.24)

The effective flux at the vertical cross-section of height h corresponding to & can be

found by considering the flux through radial sector, yielding

h
0z = % arctan (%> . (4.25)

By following the same logic as before, Eq. (4.24) and (4.25) can be used to obtain the

relation between the effective pressure and the local pressure as

817 - 2x wg:() h 8pl
% H arctan | — | ==. (4.26)

This relation is similar to Eq. (4.23) near the injection point. However, far from the
injection point this equation yields a different result.

The above Eq. (4.23) and (4.26) relate p;(Z) to p(Z) up to a constant. The con-
stant can be determined by considering p(Z,0) and p(Z) near the lateral crack front,
where the fluid flux is mostly horizontal, and the difference between the local and the
effective pressure vanishes. However, on the basis of the zero fluid lag assumption,
the numerical algorithm equates the effective fluid pressure to the normal component
of elastic stress tensor throughout the crack surface up to the tip. The stress tensor
at the crack tip is known to be singular. Due to this singularity, the numerical error
in the effective fluid pressure near the tip is large. Particularly, a small variation in
the size of the tip mesh element affects the tip element’s effective pressure. Alterna-

tively, the local pressure can be estimated by considering the average characteristic
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of the local pressure and the effective pressure. The elasticity relation based on the
approximate potential in Eq. (4.8) can be inverted and integrated to obtain the in-
tegral condition on the effective pressure based on the crack volume. Recall that
the approximate potential considers constant pressure at cach vertical cross-section.
While not an exact analysis of the local pressure, the inverted elasticity relation can
be applied to the local pressure to estimate the crack volume. This method provides
a robust approach for the local pressure estimation since it is stable with respect to
mesh variations. The numerical solution shows that when the crack volume condi-
tion is applied to Eq. (4.23) and (4.26), both result in very similar flux distributions.
This happens because both equations yield the correct singularity of pressure at the

injection point, and the crack volume condition ensures equal average values.

4.2.4 Outline of numerical algorithm

In this section, we provide a brief description of the numerical algorithm, leaving
the details to Appendix G. The algorithm is similar to the one used in the mEPKN
model in Chapter 3 and involves the fixed mesh approach, which is detailed in Ap-
pendix D. The fracture is divided into multiple elements along its length (Z-direction)
as shown in the discretization scheme in Fig. 13b. The position and orientation of
each mesh element, except for the tip elements, are fixed. At each time step, the tip
elements extend to satisfy the fracture propagation condition given by Eq. (3.14). The
tip element is split into two when its length grows past the control value. However,
the procedure differs from the one in the mEPKN model. To account for non-planar
fractures considered in the mEP3D model, the variable direction of the tip elements
represents fracture curving according to the turn criteria given (4.16). In contrast

to the mEPKN model, the height of each element is not constant and depends on
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the stress barrier magnitude and the effective width through the approximate rela-

tion (4.5).
The effective fracture opening @ is combined into the vector w = (w!,..., @").
Then, the vector of fracture height values b = (hy,...,h") is computed from w

using Eq. (4.5), allowing the system of equations to be written in terms of the ef-
fective width w only. The tractions are computed from the approximate elasticity
relation given in Appendix A and Appendix B and the traction boundary conditions
(Eq. (4.9)). The effective pressure values at each element are combined into the vec-
tor p= (p*,...,p"). Next, the vector p is used in the lubrication equation (3.12) to
solve for w.

Before computing the global fluid balance in the wellbore, the local pressure p;(0)
at the wellbore is obtained from the effective pressure p using Eq. (4.23). The global
fluid balance in the wellbore, given by Eq. (2.9) and (2.10), is solved using the local
pressure, which provides the accurate flux distribution Q).

The near-tip asymptotics (3.14) provides the tip element length based on w, which

(k) )

trasnfers to the position of the lateral fracture fronts Zy;,, and :iEf _. The angle of

the tip elements is computed according to Eq. (4.16).

4.3 Numerical results

The mEP3D model’s capabilities are illustrated in this section through several
examples. Since mEP3D is a reduced-order model, it is first benchmarked against
existing analytical and numerical solutions for different fracture geometries. In par-
ticular, we consider the following cases: plane strain and radial hydraulic fractures,
a single planar hydraulic fracture with symmetric stress barriers, and multiple hy-
draulic fractures under symmetric stress barriers. In contrast to Chapter 3, here, the

plane strain hydraulic fracture is validated for a more general case with leak-off.
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4.3.1 Plane strain hydraulic fracture

We start the analysis by considering the simplest case of a plane strain hydraulic
fracture. Such a problem has been thoroughly studied in (Adachi and Detournay,
2002; Garagash and Detournay, 2005; Garagash, 2006; Adachi and Detournay, 2008;
Detournay, 2004; Dontsov, 2017). It is known to have four different fracture propaga-

tion regimes: toughness-storage (K), viscosity-storage (M), toughness-leak-off (K),

and viscosity-leak-off (M). The propagation regime of plane strain fracture is char-

acterized by the following two dimensionless parameters (Dontsov, 2017),

IN& 1/4 h3E'C6
m = T=1l—"=3
( ) 1oy

referred to as dimensionless toughness and time for plane strain fracture. Note that
in this paper Qg has the dimensions of m3/s.

In order to model the plane strain hydraulic fracture propagation with mEP3D,
we consider a crack with a constant height that is much larger than its length, and
whose width is constant along the height direction. The accuracy of the developed
mEP3D model in the plane strain case is then determined by comparison with the
reference solution. The complete solution of the plane strain problem that accounts
for different propagation regimes has been obtained numerically in (Hu and Garagash,
2010; Dontsov, 2017). As a reference solution, we used a fast solution for plane strain
fracture from (Dontsov, 2017).

Figure 15a shows the parameter space of K, and 7 on a logarithmic scale. The
colored lines show the boundaries of the propagation regimes. The colored circles show
the location of the five parameter sets provided in Table 1 and used in calculations.
Red, blue, green, and purple circles in Figure 15a are located close to K, M, M, and

K propagation regimes, respectively, and therefore are referred to by the regime name
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and notation. The yellow circle corresponds to the intermediate (or mixed) regime.
This choice of parameters allows us to cover the parametric space, thus ensuring the
validity of the numerical solution in a wide range of parameters.

Other plots in Figure 15 show the fracture opening at time instants ¢ = {100, 500,
1000} s for the propagation regimes consistent with Figure 15a. The mEP3D numer-
ical solution is shown by the colored lines with a staircase-type behavior resulting
from the finite grid size, while the reference solution is shown by the black lines. The
numerical results show a good agreement with the reference solution for all regimes
of propagation. The results that correspond to different ¢ = {100, 500, 1000} s can be
used to judge the effect of mesh size on the accuracy of the algorithm. The numerical
solution has a good accuracy even for the coarse mesh of seven elements per total

fracture length at ¢t = 100 s.

Table 1: Problem parameters for a plane strain hydraulic fracture and the corre-
sponding regimes of propagation: toughness-storage (K), viscosity-storage
(M), toughness-leak-off (K), viscosity-leak-off (M), and the mixed regime.

K. E v K Cr Qo H

[MPa-m'/?] [GPa] [cP] [m/s'/?] [m®/s] [m]

K 1 9.5 0.2 3 3-1007 5-107*% 50
M 1 15 0.2 200 3-1077 1073 50
K 1 3 0.2 3 5-100% 2.107% 50
M 1 15 0.2 10 1074 1072 50
Mixed 1 15 0.2 20 3-10% 4-107* 50

To compare the numerical algorithm with the reference solution from a different
perspective, in Fig. 16 we consider the evolution of the following parameters in time:
the fracture width w, the fluid pressure p in the middle between the fracture center
and the fracture tip, the fracture length [, and the efficiency n defined as the ratio
between fracture volume and the total pumped fluid volume. The efficiency is the
lowest for high leak-off as the fracture volume is reduced in this case, as in K and

M regimes in Fig. 16d. The numerical algorithm has a good agreement with the
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Figure 15: Comparison between the numerical solution (colored lines) and the ref-
erence solution (black lines) for plane strain hydraulic fracture. Fracture
opening for plane strain hydraulic fracture (b)—(f) at ¢ = {100, 500, 1000} s
for different propagation regimes from (a).

reference solution at 0 < ¢ < 1000 s. The K regime tends to have a more pronounced

step-wise behavior of the fracture width and pressure caused by high leak-off and high

fracture toughness.

4.3.2 Radial hydraulic fracture

This section presents the verification of the mEP3D numerical model for the case
of a single radial hydraulic fracture. The problem of radial (or penny-shaped) hy-
draulic fracture has also been extensively studied in (Detournay, 2004; Savitski and
Detournay, 2002; Bunger et al., 2005; Bunger and Detournay, 2007; Madyarova, 2003).
The complete numerical solutions have been obtained in (Madyarova, 2003; Dontsov,
2016).

Similarly to the plane strain case, the radial hydraulic fracture propagation has
four limiting regimes: toughness-storage (K), viscosity-storage (M), toughness-leak-

off (K), and viscosity-leak-off (M) determined by the following parameters (Dontsov,
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Figure 16: Comparison between the numerical solution (dashed lines) and the ref-
erence solution (solid lines) for plane strain hydraulic fracture. Fracture
opening, (a), fluid pressure, (), fracture length, (¢), and storage efficiency,

(d).

2016),

13 1l 4 18 1/2
_ HENCNQy th( K ) | (4.28)

0= gm [PETO]

referred to as dimensionless leak-off and time for a radial fracture. The comparison

covers all the limiting regimes of propagation and an additional intermediate (mixed)
regime. The parameters for radial fracture simulation are listed in Table 2.

Figure 17a shows the parameter space with the regions of the dominance of the

limiting regimes and the circles closely corresponding to these regimes. Figures 17b-f

show the comparison of the numerical mEP3D (colored lines) and the reference (black

lines) solutions (Dontsov, 2016) for a HF in isotropic medium in terms of fracture

footprint at t = {100,500, 1000} s. Note that the staircase behavior of the mEP3D
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solution emphasizes that the fracture height follows the same piece-wise constant
discretization as the width. The numerical results show a good agreement with the
reference solution for all regimes of propagation. The results show that, while the
EP3D numerical solution is not forced to be radially symmetric, its length and height
follow the radial fracture solution for all regimes of propagation and the intermediate
case.

Table 2: Problem parameters for a radial hydraulic fracture and the correspond-
ing regimes of propagation: toughness-storage (K), viscosity-storage (M),
toughness-leak-off (K), viscosity-leak-off (M), and the mixed regime.

KIC E v H C1L QO
[MPa-m'/?] [GPa] [cP] [m/s'2]  [m?/s]
K 1 9.5 0.2 3 3-1007 5-107*
M 1 9.5 0.2 200 3-1077 1073
fg 1 3 0.2 3 10~ 2-1072
M 1 9.5 0.2 10 1074 1072
Mixed 1 9.5 0.2 10 5-107¢ 1073
. K regime M regime
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Figure 17: Comparison between the numerical solution (solid colored lines) and the
reference solution (solid black lines) for radial hydraulic fracture. Propa-
gation regimes in parameter space, (a), and fracture footprint, (b)—(f) at
t = {100,500, 1000} s.
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Fig. 18 shows time histories of the fracture opening w at the wellbore, fluid pres-
sure p halfway between the injection point and the lateral tip, fracture length [, and
efficiency 1. The solid lines show the reference solution (Dontsov, 2016), while the
dashed lines show mEP3D result. As can be seen from the figure, the mEP3D algo-
rithm has a good agreement with the reference parameters at 0 < ¢ < 1000 s in all

regimes of propagation as well as for the intermediate case.
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Figure 18: Comparison between the numerical solution (dashed lines) and the refer-
ence solution (solid lines) for radial hydraulic fracture. Fracture opening,
(a), fluid pressure, (b), fracture length, (c), and storage efficiency, (d).

4.3.3 Hydraulic fracture in presence of symmetric stress barriers

In this section, we quantify the accuracy of the EP3D model for a planar hydraulic
fracture propagating through symmetric stress barriers. In this case, the fracture
shape remains radial until it reaches the stress barriers. Afterward, propagation in
the vertical direction is diminished by stress barriers, and the fracture elongates in

the horizontal direction.
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The reference solution for this case was obtained using a fully planar hydraulic
fracture simulator based on the Implicit Level Set Algorithm, ILSA (Peirce and De-
tournay, 2008; Dontsov and Peirce, 2017). Note that comparison for the case of one hy-
draulic fracture with no leak-off was performed between EP3D and ILSA in (Dontsov
and Peirce, 2015a). In this section, we perform a similar comparison of mEP3D and
ILSA but for the more general case of non-zero fluid leak-off.

To demonstrate the accuracy of the mEP3D model for a wide range of parameters
in parameter space, we consider different regimes of propagation. However, different
regions of the P3D fracture front can propagate in distinct regimes. Therefore, the
problem parameters are chosen with respect to the propagation regimes of a radial
fracture at the moment it reaches the stress barriers and summarized in Table 3.

Table 3: Problem parameters for a planar hydraulic fracture in a formation with
symmetric stress barriers and the corresponding regimes of propaga-

tion: toughness-storage (K), viscosity-storage (M), toughness-leak-off (K),
viscosity-leak-off (M), and the mixed regime.

K]c E 14 1% CL QO H Ao

[MPa-m'/?] [GPa] cP] [m/s/?] [m?/s] [m] [MPa]

K 1 95 02 3 3.-1007 5-100* 20 0.15
M 1 95 02 200 3-1007 107 20 0.2
K 1 3 02 3 1071 2-1072 20 0.1
M 1 95 02 10 1071 1072 20 0.2
Mixed 1 95 02 10 5-100% 1073 20 0.2

Figure 19 shows a footprint of a hydraulic fracture in a formation with symmetric
stress barriers in different propagation regimes (described above) and at time instants
t = {100,900,3600} s. The results of the mEP3D model (colored lines) are in a
good agreement with ILSA (black lines) except for minor deviations of the crack
shape. While the model supports radial fractures with equal height and length, once
the fracture reaches the stress barriers, its propagation is based on the plane strain
assumption. The deviations of the fracture shape from ILSA’s results are visible for

cases when the height and the length of fractures are comparable. The EP3D model
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Figure 19: Comparison between the numerical mEP3D solution (colored lines) and
the reference ILSA solution (black lines) for a planar hydraulic fracture
in a formation with symmetric stress barriers. Propagation regimes in
parameter space, (a), and fracture footprint, (b)-(f), at ¢ = {100, 900,
3600} s.

produced a similar fracture shape (Dontsov and Peirce, 2015a). Figure 20 shows

the expanded numerical results in terms of fracture opening (a), height (b), length

(c), and storage efficiency (d) versus time. Note that the discrepancies in M and K

regimes at larger times are mostly in the fracture height, while the length and the

width are more accurate. This shows that the averaged lubrication equation(4.13),

the approximate elasticity potential (4.8), and the asymptotic near-tip solution (C.3)

are accurate. The relation between the height and the effective width (4.5) relies on

the plane strain assumption and results in the discrepancy. Otherwise, the results

have a good agreement.

4.3.4 Multiple parallel hydraulic fractures

This section presents the results of the mEP3D model for multiple hydraulic frac-

tures. As for the single P3D fracture, we use ILSA numerical results as a reference
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Figure 20: Comparison between the numerical mEP3D solution (dashed lines) and
the reference ILSA solution (solid lines) for hydraulic fracture under the
condition of symmetric stress barriers for different propagation regimes.
Fracture opening (a), height (b), length (c¢), and storage efficiency (d) vs
time.

solution (Dontsov and Peirce, 2016b). ILSA is limited to the analysis of multiple par-

allel hydraulic fractures, which remain planar as the result of high confining stress.

Therefore, in this section, we present the results for planar fractures even though

mEP3D allows fracture turning. The calculations were performed for different regimes

of propagation and values of spacing between the fractures to cover different possible
scenarios. Most of the results are presented for the case of no perforation friction
when the pressure is equal at the wellbore for each fracture. In some cases, the so-
called limited entry condition was enforced by increasing the perforation friction so
that equal fluxes result in each fracture. The problem parameters used for the exam-

ples in this section are the same as for a single P3D fracture, whose parameters are

given in Table 3, except the fluid flux ¢y which is here prescribed five times larger
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Figure 21: Distribution of fluid flux between multiple parallel hydraulic fractures
propagating under the condition of symmetric stress barriers for differ-
ent fracture spacing S and propagation regimes under the condition of
symmetric stress barriers.

than in Table 3 since five fractures are simulated.

The results are presented for the case of no perforation friction for K regime

at spacing S = 30 m, M regime at S = 20 m, the mixed regime at S = 20 m

and S = 10 m. The results are presented for different values of fracture spacing to

demonstrate code the accuracy of the reduced-order model. Additionally, the results
for M regime are provided for the case of limited entry, i.e., when the flux distribution
is equal between all fractures. The latter condition is often encountered in the field
and is used to promote more uniform fracture growth. The results for K regime are
not presented as the reference solution for this regime was not available, as this regime

is known to be very difficult to represent in numerical computations.

Figure 21 shows the distribution of fluxes between fractures under the assumption
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Figure 22:

Numerical solution for multiple parallel hydraulic fractures propagating
in a formation with symmetric stress barriers for K regime and spacing
S = 30 m. Fracture footprint, (a)-(b), opening, (c), length, (d), height,
(e), and volume, (f).
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of no perforation friction. In this case, the pressure at the wellbore at each fracture
is the same, which results in an uneven fluid flux distribution between fractures. The
results are shown for K, M, and mixed regimes defined as in Table 3 but for larger
(o, as mentioned above. Also, the flux distribution for a mixed regime is shown for
different fracture spacing S = 20 m (Fig. 21c¢) and S = 10 m (Fig. 21d). Due to
the symmetry of the problem, for this and the following cases, we present the results
only for the first, second, and third fractures. The results for the mEP3D model
without pressure correction (dotted lines) are based on the reduced one-dimensional
model that does not capture the near-wellbore pressure singularity, see Section 4.2.3.
As a result, the flux distribution based on this model shows a poor agreement with
the reference ILSA solution (solid lines). The largest deviation is observed when
the viscous effects dominate the solution. In M regime, it occurs throughout the
whole fracture propagation, while for K and mixed regimes, the viscous effects are
observed at the early time of propagation but fade afterward. As the fracture grows,
the velocity of the fracture tip decreases and the effects of fracture toughness and
rock elasticity become more prominent compared to viscous effects. Therefore, the
agreement, improves at larger times for KX and mixed regimes. To improve the model,
the pressure correction introduced for as detailed in Section 4.2.3 leads to accurate
predictions of pressure at the wellbore and, therefore, flux distributions (dashed lines),
which are in good agreement with ILSA.

Figures 22-25 show the full numerical results for K, M, and mixed regimes at
S =20 m and S = 10 m, respectively, which correspond to the cases for which flux
distributions in Figure 21 were illustrated.

Figure 22a-b show the footprints of the five fractures propagating in K regime
for ILSA and mEP3D. The thick black lines denote the horizontal wellbore. The

fractures propagate radially from the wellbore, but upon reaching the stress barriers,
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Figure 23: Numerical solution for multiple parallel hydraulic fractures propagating
in a formation with symmetric stress barriers for M regime and fracture
spacing S = 20 m. Fracture footprint, (a)-(b), opening, (c), length, (d),
height, (e), and volume, (f).

they become elongated in the = direction.

Figure 22c-f show the opening, the length, the height, and the volume of the first,
second, and third fractures for the set of parameters corresponding to M regime. The
solution for the fourth and fifth fractures is identical to the one for the second and the
first fractures due to problem symmetry. The height of the fracture is the maximum
height of the fracture, which corresponds to the element at the wellbore. The fracture
opening corresponds to the maximum fracture opening at the wellbore. To cater for
a possibility of non-planar behavior, we define the maximum length of the fracture as

a sum of the lengths of the individual elements of the one-dimensional mesh. All the

mEP3D numerical results (dashed lines) are in a good agreement with ILSA (solid
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lines) for all fractures for K regime.
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Figure 24: Numerical solution for multiple parallel hydraulic fractures propagating
in a formation with symmetric stress barriers for the mixed regime and
fracture spacing S = 20 m. Fracture footprint, (a)-(b), opening, (c),
length, (d), height, (e), and volume, (f).

Figure 23 shows the numerical results for five fractures propagating in M regime
at spacing S = 20 m. The results are presented in the same form as in Figure 22. For
the M regime, the three inner fractures are only slightly smaller than the two outer
fractures compared to K regime where inner fractures are significantly suppressed.
Note that the fracture spacing used for M regime is 20 m and for K regime is 30 m,
i.e., even when the fractures are close enough in M regime, the inner fractures are
not suppressed compared to K regime where suppression occurs even at the larger
spacing between the fractures. This happens because the M regime is known to make

the flux distribution among fractures more even and, in turn, leads to equal fracture
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sizes. Note that for M regime, the fractures are much less elongated in a horizontal
direction so that fracture height becomes comparable to the fracture length. The
mEP3D results show that the fractures have a peak in height above and below the
wellbore, which introduces a noticeable difference from the ILSA results. This peak
can be explained by the inaccuracy of the plain strain assumption used in the mEP3D
model, which becomes invalid when the fracture height becomes comparable to the
fracture length. This is also why the mEP3D results slightly overestimate the height
of the fractures (Fig. 23e). At the same time, other fracture dimensions and volume

are predicted accurately.
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Figure 25: Numerical solution for multiple parallel hydraulic fractures propagating in
a formation with symmetric stress barriers for mixed regime and spacing
S = 10 m. Fracture footprint, (a)-(b), opening, (c), length, (d), height,
(e), and volume, (f).

Figures 24, 25 show similar numerical results for the mixed regimes at fracture
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spacing S = 20 m and S = 10 m, respectively. For mixed regimes, in contrast to M
regime, the inner fractures are significantly suppressed and the outer fractures have
the largest volume and dimensions compared to the inner fractures. This means that
the fluid viscosity effects are not sufficient to make the flux distribution equal for the
considered combinations of problem parameters. At smaller spacing (Fig. 25), the
three inner fractures are suppressed in higher degree compared to the case of larger
spacing (Fig. 24). The agreement between mEP3D and ILSA is reasonably good for
larger spacing, while for smaller spacing the fracture openings of inner fractures are

slightly overestimated by mEP3D.
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Figure 26: Numerical solution for multiple parallel hydraulic fractures propagating
in a formation with symmetric stress barriers for M regime and fracture
spacing S = 20 m and limited entry. Fracture footprint, (a)-(b), opening,
(c), length, (d), height, (e), and volume, (f).

We also present the results for M regime in Figure 26. For this regime, instead
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of applying the no perforation friction assumption, the fluxes for each fracture are
equal as a result of imposing the limited entry condition. The reason for selecting
this case is because the assumption of no perforation friction results in the total
suppression of the three inner fractures and therefore is trivial. Under limited entry,
all the fractures have similar size, a result that may appear trivial but at the same
time is qualitatively different from previously shown results. The developed mEP3D
model slightly overestimates fracture lengths and underestimates the fracture width
but generally provides good approximations for this case. Note that the fracture
volume is much less than the injected fluid volume, so the error normalized by the

injection volume is practically negligible.

4.3.5 Non-planar fracture growth

(a) (b) ehear

P

N

Figure 27: (a) Scheme of a plane strain fracture with respect to z,y, z. (b) Scheme of
a plane strain fracture turning under applied fluid pressure and far-field
shear stress.
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To validate the fracture turning algorithm, we consider a hydraulic fracture of
length 2a under plane strain conditions in the xz-plane, see Figure 27. The fracture
is subjected to a uniform shear in the far-field, og,ear, and an internal fluid pressure
p. Due to the shear stress, the direction of propagation deviates from the fracture
plane by the angle 6.

First, the turn angle 6 is computed numerically with the mEP3D model for the

following problem parameters: E' = 9.5 GPa, v = 0.2, 4 = 0.2 Pas, Cp, = 3 -
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1077 m/s'2, Qy = 1073 m3/s, a = 3.5 m, and h = 100 m. Here, h is the height
of the fracture in the y direction, which is prescribed sufficiently large compared to
the fracture length a (A > a) to ensure plane strain conditions. The parameters
used correspond to the intermediate propagation regime. The Mode [ stress intensity
factor is prescribed to be K; = 1 MPa-m'/? before the turn. The value of the shear
stress Ognear 18 varied to cover different values of angle 6. The numerical algorithm
does not compute the value of K;; to determine the turn direction. Instead, it seeks
the direction in which the shear displacement at the tip is zero, which corresponds to
K =0.

The results of the numerical simulation are compared to the analytical solution.
The latter is based on the zero Mode IT theory (Cotterell and Rice, 1980), where the

local stress intensity factors (those of the extended crack) are given to first order as

K 0 30 K 0 30
local __ 1 v . i1 . v .
K; =1 |:?)COS <2>+COS (—2>] e {sm <2>+sm (—2)},
K 0 30 K 0 30
local __ I -z o 11 —_ g | —
K5 =7 {51n(2)+bm(2)]+ 1 |:COS<2)+3COb<2):|.

The turn angle corresponding to K9 = 0 is therefore

(4.29)

4K g

K;—/K?+8K?
9:2arctan< ! 1 H). (4.30)

The Mode I stress intensity factor Kj; is prescribed through ognear, using the ana-

lytical result for a plane strain fracture in pure shear stress field (Tada et al., 2000),

KH — OghearV 7QA. (431)

Knowledge of K; and ogpea, is sufficient to determine the turn angle 6 based on the

analytical solution (4.30) with the use of (4.31). This result is used as a reference to
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Figure 28: (a) Numerical solution for a plane strain hydraulic fracture under uniform
shear stress (solid lines). The dashed red lines show theoretical prediction
according to (4.30). (b) Direction of the fracture growth for different values
of Kr;/K;. The solid blue line shows mEP3D numerical solution, while
the red line indicates theoretical prediction (4.30).

validate the initial turn angle computed by the mEP3D model. Figures 28a shows
the crack path and the initial turn angle computed with the mEP3D simulation (blue
lines) and the turn angle according to the reference solution (red lines) at K;;/K; = 6.
The mEP3D fracture in Figure 28a initially propagates at the angle of -67° and then
the angle slowly goes to -45°. The red lines in Figure 28a shows the direction of the
propagation according to the analytical relation (4.30). The initial turn angle of the
numerical solution is in excellent agreement with the analytical relation.

Figure 28b shows the comparison of the initial angle of the fracture turn versus
the ratio of K;/K;. Results of the mEP3D model and analytical prediction are
in a good agreement. Small discrepancies that are observed can be related to the
discretization error in the mEP3D model. Specifically, the near-front part of the
fracture is represented by the rotated planar tip element, which does not capture the
curvature near the tip.

In addition to the solution for a plane strain fracture under applied shear stress,
we present the numerical results for multiple interacting fractures. The results are
computed for the parameters for K, M, K, M, and mixed regimes from Table 3.

The total injection rate is five times ()q since five fractures are considered in this
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example. The spacing between injection points is set to 10 m, and limited entry
is enforced in all cases to intensify the elastic interactions between fractures. The
cracks are initiated at 5° angle from the normal to the wellbore to incorporate a small
asymmetry into the problem and remove solutions with unstable configurations. The
compressive geological stress is applied with the normal component in the x direction
denoted by o7 (maximum horizontal stress), and in the z direction by o2 (minimum
horizontal stress). The selected values of o1 and oy correspond to weak and strong
stress contrasts relative to the fluid pressure. Therefore, the fracture propagation
is not limited to planar surfaces (in contrast to the case when the stress contrast
much larger than the fluid pressure). The minimum stress is kept constant for all
cases, namely 0o = —10 MPa. For K regime, we consider the following two values
of the maximum stress o; = —10.2 MPa (weak contrast), and oy = —10.5 MPa
(strong contrast). For other regimes, namely K, M, M, and mixed regimes, we take
o1 = —10.1 MPa (weak contrast), and o7 = —10.5 MPa (strong contrast).

The results of simulations are presented in Figures 29-33 at 1000 s after the ini-
tiation. The fractures are differentiated by color: blue is the first crack, red is the
second, green is the third, yellow is the forth, purple is the fifth. The black color
indicates the wellbore.

The results of K regime are shown in Figure 29. The weak stress contrast is
presented in Figure 29a and Figure 29b, where the first figure shows the paths of five
cracks in top view on the xz plane, and the second shows the crack footprints on a
side view on the gy plane. The strong stress contrast case is illustrated in Figure 29c¢
and Figure 29d, where the first figure shows the paths of five cracks in top view on the
xz plane, and the second the crack footprints on a side view on the Zy plane. In both
the weak and the strong stress contrast cases, the crack growth in the x direction in

Figures 29a,c is not symmetrical with respect to the wellbore. Since the elastic effects
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Figure 29: Numerical solution for curved hydraulic fractures propagating in K regime
at t = 1000 s under limited entry conditions. (a)-(b): Top and side views
of crack path for weak stress anisotropy o7 = —10.1 MPa, 09 = —10 MPa;
(¢)-(d): Top and side views of crack path for strong stress anisotropy
o1 = —10.5 MPa, oo = —10 MPa.

are strong in K regime, the cracks tend to grow away from each other. Similar results

were obtained in (Dontsov and Suarez-Rivera, 2020) using a fully three-dimensional

hydraulic fracturing simulator. Finally, it is interesting to observe that despite the
small initial crack angle, the cracks 1, 2, 4, and 5 grow in the z direction almost
symmetrically relative to the central fracture.

The M regime fractures are presented in Figure 30 with weak stress contrast in
Figure 29a and Figure 29b, and strong stress contrast in Figure 29¢ and Figure 29d.
The plots show the cracks in top view on the zz plane and side view on the Ty
plane. In both stress contrast cases, the cracks grow symmetrically in the x direction
relative to the wellbore. The fluid viscosity may be the driving factor that preserves
the symmetric growth, which is consistent with the earlier results in (Dontsov and
Suarez-Rivera, 2020). The inclination and asymmetry of the cracks in the z direction

in weak stress contrast in Figure 30a is due to the initial 5° angle to the x axis. The

crack growth in the z direction in strong contrast in Figure 30c is symmetrical with
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respect to the central fracture.

The results of K regime are shown in Figure 31. The weak and strong stress
contrast cases are given in Figures 29a,b and Figures 29c,d, respectively. The cracks’
tendency to grow away from each other is similar to the K regime.

The curved cracks in M regime are shown in Figure 32 with those in weak stress
contrast given in Figure 29a,b and those in strong stress contrast given in Figure 29¢,d.
In weak stress, cracks two and four exhibit attraction to the outer cracks 1 and 5.
Otherwise, the cracks grow more equally in positive and negative & directions than
in the K and K cases, but less than in the M case.

The results of the mixed regime are presented in Figure 33. The weak stress
contrast case is demonstrated in Figure 29a,b, and the strong stress contrast in Fig-
ure 29c¢,d. The cracks grow more equally in positive and negative T directions than

in the K and K cases, but less than in the M case.
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Figure 30: Numerical solution for curved hydraulic fractures propagating in M regime
at t = 1000 s under limited entry conditions. (a)-(b): Top and side views
of crack path for weak stress anisotropy o7 = —10.1 MPa, 09 = —10 MPa;
(¢)-(d): Top and side views of crack path for strong stress anisotropy
o1 = —10.5 MPa, oo = —10 MPa.

This section presented numerical results for the mEP3D model in the context of
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Figure 31: Numerical solution for curved hydraulic fractures propagating in K regime
at t = 1000 s under limited entry conditions. (a)-(b): Top and side views
of crack path for weak stress anisotropy o7 = —10.2 MPa, 09 = —10 MPa;
(¢)-(d): Top and side views of crack path for strong stress anisotropy
o1 = —10.5 MPa, 05 = —10 MPa.

non-planar fractures, which is one of the distinguishing features of the algorithm.

First, the crack front turning algorithm has been validated for a plane strain hy-

draulic fracture subjected to the shear stress field. Then, numerical solutions for five

simultaneously growing non-planar hydraulic fractures have been presented for the
cases of weak and strong stress anisotropy. Results demonstrate that the fracture
behavior varies as a function of the regime of propagation - something that has also
been observed previously using a fully 3D simulator. This once again demonstrates

the algorithm’s ability to capture the primary physical processes that are relevant for

the modeling.

4.4 Summary

This chapter presented a computationally fast hydraulic fracturing model for mul-
tiple non-planar hydraulic fractures (HFs) propagating in a homogeneous linear elastic

rock with symmetric stress layers. The formulation of the method is based on a model
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Figure 32: Numerical solution for curved hydraulic fractures propagating in M regime
at t = 1000 s under limited entry conditions. (a)-(b): Top and side views
of crack path for weak stress anisotropy o7 = —10.1 MPa, 09 = —10 MPa;
(¢)-(d): Top and side views of crack path for strong stress anisotropy
o1 = —10.5 MPa, 05 = —10 MPa.

order reduction of the exact problem, and it extends the enhanced pseudo-3D (EP3D)

model that was originally developed for a single planar fracture. We have made sub-

stantial modifications to the EP3D model to account for multiple non-planar HFs

(mEP3D).

The exact problem is reduced by approximating the crack surface into a series
of piece-wise constant elements along its length by assuming plane strain (or radial)
fracture opening across the vertical cross-section of each element. Similarly to EP3D,
the analytical solutions for plane strain and radial fractures are modified to account
for the fluid viscosity. In addition, we have considered the effect of fluid leak-off.

We have incorporated discretization of the integral equations, that relate displace-
ments and tractions along the crack, by approximating the displacements discontinu-
ities in each vertical cross-section as a combination of ellipses, similar to the EP3D

model. However, due to the non-planarity of the problem, the method has been

extended to include integral equations, responsible for the shear components, and a
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Figure 33: Numerical solution for curved hydraulic fractures propagating in mixed
regime at ¢ = 1000 s under limited entry conditions. (a)-(b): Top and
side views of crack path for weak stress anisotropy o, = —10.1 MPa,
o9 = —10 MPa; (¢)-(d): Top and side views of crack path for weak stress
anisotropy o1 = —10.5 MPa, 0o = —10 MPa.

fixed mesh accounting for a coordinate rotation.

We have implemented a recently developed multi-scale near-tip asymptotic solu-
tion (Dontsov and Peirce, 2015¢) that relaxes mesh size requirements by incorporating
fracture toughness, fluid viscosity, and leak-off fracture propagation regimes at dif-
ferent length scales. The formulation uses the zero Mode II criterion to select the
direction of the crack extension, and the extension is determined according to the
Mode [ stress intensity factor equal to the fracture toughness.

We have identified that the standard approach taken in the EP3D model underes-
timates fluid pressure near the wellbore because of the constant pressure assumption
at any vertical cross-section. This issue is important for multiple fractures due to the
flux distribution equation. We have proposed correction by constructing an equiv-
alent two-dimensional fluid flow problem and solving it for fluid pressure near the

wellbore.

To demonstrate the accuracy of the developed mEP3D model, we verify the results
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of mEP3D by comparison with reference analytical and numerical solutions. The
considered problem cases are a single plane strain hydraulic fracture, a single hydraulic
fracture in isotropic medium (radial crack), and hydraulic fractures in a medium with
symmetric stress layers. The results for the latter case are presented separately for a
single crack and five equally spaced interacting planar cracks. The respective reference
solutions have been obtained using the plane strain hydraulic fracture model, the
radial hydraulic fracture model, and the hydraulic fracturing simulator based on the
Implicit Level Set Algorithm (ILSA) (Peirce and Detournay, 2008). The comparison
tests cover different fracture propagation regimes: viscosity-storage, viscosity-leak-off,
toughness-storage, toughness-leak-off. The propagation regime corresponding to the
symmetric stress layers case describes the state of a radial fracture upon reaching the
stress barriers.

The numerical solutions for fracture opening, height, length, and storage efficiency
are in a good agreement with the reference solutions for all the considered propagation
regimes and different time instants. For multiple hydraulic fractures, in addition, we
have provided the results for the distribution of fluid flux between fractures, which
show the effect of the near-wellbore pressure correction.

To show capabilities of the mEP3D model for non-planar fractures, first, we vali-
date the fracture turning for a single plane strain fracture under shear loading condi-
tions. The angle obtained numerically for this problem is in a good agreement with
the analytical predictions. Next, the results for multiple non-planar HFs have been
demonstrated for different propagation regimes and strong and weak stress contrasts.

The proposed mEP3D model implements an efficient model order reduction for
multiple non-planar hydraulic fractures in symmetric stress layers. The main feature
of the model lies in its computational advantage over the direct solution methods, and

the model has shown to be accurate by validating it against the reference models.
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5 Efficient computation of fluid flow around hy-

draulic fracture

5.1 Background

Most hydraulic fracturing models consider rock to be brittle and elastic, and
account for the poroelasticity effects produced by rock permeability through assump-
tions that simplify the analysis (S. H. Advaniand and Lee, 1990; Adachi et al., 2007;
Adachi and Detournay, 2008; Dontsov and Peirce, 2015a; Wu et al., 2017; Dontsov
and Peirce, 2017; Detournay, 2016; Zia and Lecampion, 2020; Settari et al., 1985;
Madyarova, 2003; Savitski and Detournay, 2002; Bunger et al., 2005; Dontsov, 2016).
These cited models, for example, use Carter’s leak-off law (Carter, 1957), which con-
siders one-dimensional pressure-independent filtration in the direction perpendicular
to the fracture surface. However, in practice, the difference between the pore pres-
sure and the fluid pressure inside the crack varies both spatially and with respect to
time (Gottschling et al., 2010). Some models proposed a pressure-dependent mech-
anism of fluid exchange to replace Carter’s law for radial and semi-infinite hydraulic
fractures (Kanin et al., 2020b,a). The latter model is still based on solving the
one-dimensional diffusion equation perpendicular to fracture, which stems from the
assumption of the smallness of the diffusion length scale relative to fracture size.
For a more general case involving potentially large pressure diffusion zones, a rig-
orous way to describe the fluid filtration is to couple the fluid flow inside the crack
with three-dimensional diffusion throughout the porous media. Realizing the need
for hydraulic fracture simulation in poroelastic media, several studies developed fully
coupled models for single (Boone and Ingraffea, 1990; Boone et al., 1991; Vandamme
and Roegiers, 1990; Kovalyshen, 2010) or multiple fractures (Sherman et al., 2015;

Rezaei et al., 2019; Chukwudozie et al., 2019; McClure et al., 2018). In addition,
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simulation of reservoir flow requires not only a realistic description of fracture propa-
gation but also fluid flow in the surrounding porous medium at the production stage,
where a somewhat similar coupled problem occurs.

This chapter describes the coupling of fluid flow and crack extension in a poroe-
lastic medium. Because this study is concerned with the computational efficiency of
hydraulic fracture simulators, we propose a method that couples the previously dis-
cussed reduced-order models for hydraulic fracture with a computational paradigm
that accelerates the numerical solutions of problems involving fluid flow in porous
media. Such acceleration is possible for the porous media flow problem because it is
formulated in terms of partial differential equations. The fracture propagation prob-
lem, on the other hand, cannot benefit from this technique because the associated
elasticity equations are integral equations. The acceleration of the fracture compo-
nent of the problem is achieved by the previously described reduced-order models.
Here we have prepared the groundwork for this coupled computational approach by
developing a software package used in combination with state of the art scientific
computing frameworks, to enable the necessary tools for accelerated fluid flow sim-
ulations. Several examples of porous media flow problems are given to demonstrate
the potential of this method. The implementation of the coupling itself is beyond the
scope of this thesis and is therefore left to future work.

The chapter is organized as follows. In Section 5.2 we introduce the governing
equations for the coupled problem, including the porous medium flow, fluid flow in-
side the fracture, poroelasticity, and the propagation of the fracture. For illustrative
purposes, we limit the discussion to the case of a single crack. But we note that
the governing equations are formulated without loss of generality, and can be easily
applied to multiple fractures by including the Mode I stress intensity factor calcu-

lation and the criterion of local symmetry to allow the cracks to become nonplanar,
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Figure 34: Scheme of porous media flow problem

in addition to the enforcement of flux balance at the wellbore. The computational
paradigm for efficient computations of porous medium flow is presented in Section 5.2.
The computational efficiency and scaling for a simple case of porous medium flow are
given in Section 5.3.1. Section 5.3.2 presents the computational efficiency and scal-
ing for a more complex double porosity-permeability model. Finally, the chapter is

summarized in Section 5.4.

5.2 Problem formulation

In this section, we formulate the governing equations for the coupled system of
fluid flow in poroelastic medium, fluid flow inside the fracture, and fracture propa-

gation. Figure 34 illustrates a porous domain whose volume is denoted by €2 and



whose boundary is 0€). A set of two-dimensional fracture surfaces in €2 is denoted by
I'. We limit the discussion to the case of a single-phase Newtonian fluid distributed
throughout the volume.

The mass balance equation, which repeats the lubrication equation (2.15) in Chap-

ter 2 in a different form, is given by

ow ,
o +Vr-ar+q = qys in T, (5.1)
w? :
qr = —mvrpf in I, (5.2)
and ¢ = —(q; -np +q -nf) on T, (5.3)

where w is the fracture opening, Vr is the surface divergence, n? denote the normal
to both sides of I', q; is the fluid flux inside the crack, q, is the fluid flux in the
porous medium, py is the fluid pressure inside the crack, p is the fluid viscosity, and
q; is the fluid leak-off from the crack into the porous medium.

Next, we introduce the governing equations for a single-phase, slightly compress-
ible fluid in the poroeclastic medium (Biot, 1941; Lewis and Schrefler, 1998; Zheng
et al., 2003). Considering that 002 = 8};9 U 8};9, where 8{)9 is Dirichlet boundary,

8]{,(2 is Neumann boundary, the equations read

% +V. qr = Qrs in Q’ (54)
(zaV~u+% in Q, (5.5)

K
qr = ——Vp, in €2, (5.6)

i
Dr = PD on 8{)(2, (5.7)
qr-n=gq, on 91,0, (5.8)
and ¢ =—(q, -n; +q; -nf) on I, (5.9)
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where ( is Biot’s increment of fluid mass, ¢, is the volumetric source term (added for
generality), « is Biot’s coefficient, u is the displacement of the porous medium, p, is
the pore pressure, M is Biot’s modulus, K is the permeability tensor, pp is the pre-
scribed pressure on 02p, and g, is the prescribed normal flux on 052,,. Equation (5.6)
represents Darcy’s law.

Assuming the porous domain 2 is elastic and brittle, with 90Q = 95QJ 9%,
where 0% is the Dirichlet boundary and 9%, is the Neumann boundary, the poroe-

lastic stress is written as

o =0 —ap,I in 2, (5.10)
V.o=f in Q, (5.11)
o = Au in Q, (5.12)
oc-n=r on 032, (5.13)
u=up on 07,2, (5.14)
and o np: = —pnps on T, (5.15)

where f denotes the external body force, A is the linear elastic operator representing
Hooke’s law, 7 is the prescribed traction, and uy is the prescribed displacement. It
is worth noting that, when the poroelastic effects are neglected (i.e., @ = 0), the
diffusion zone is much smaller than the fracture size, and the net pressure in the
fracture is much smaller than the difference between the in-situ stress and initial
pore pressure, the reduced equations can be formulated in the integral form (2.6)
and (2.8) using the boundary element method and Carter’s leak-off, as was done in

Chapter 2.
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The initial condition for the governing equations can be formulated as

r|,_,=T° in €, (5.16)
w‘tzo =’ on I'’, (5.17)
Prl,y = Py in Q, (5.18)
and a’t:O =g’ in Q, (5.19)

where '’ is the fracture surface at t = 0, w® denotes the initial fracture opening, p?
is the initial pore pressure, and o° denotes the initial stress.

The fracture opening is related to the displacement by
w=u"-n"+u -n". (5.20)
Recall that cracks in a brittle medium follow linear elastic fracture mechanics solution,
given by

32K
w = ?f{slﬂ onl', s—0, (5.21)

where s is the normal distance inwards from 0I', and K7 is the Mode [ stress intensity

factor. The propagation condition is

K = K., (5.22)

where K. is the effective fracture toughness of the porous medium.
These governing equations form a coupled system that characterizes fluid flow in
porous media, fluid flow inside the cracks, poroelasticity, and crack extension. Fluid

flow in the porous medium is formulated as a three-dimensional problem and is,
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therefore, typically computed using the finite element method. In the next section,

we describe an efficient method for solving the finite element method equations.

5.3 Efficient computation of finite element simulations

Efficient computations of finite element simulations rely on special methods of
solving systems of algebraic equations. To ensure efficient simulations of large prob-
lems, methods to solve linear or nonlinear systems of equations have to be massively
parallel and scalable from the high-performance computing point of view, meaning
that the simulation has to run simultaneously on multiple computing units with
maximum effectiveness. There are two major types of algebraic solvers for systems
of equations: direct solvers and iterative solvers. Parallel direct solvers provide the
most accurate results, but they become too slow for large problems. The accuracy
of iterative solvers can be adjusted, and they are considered faster than the direct
solvers. However, the convergence of iterative solvers depends on the condition num-
ber of the system of equations. Neither direct solvers nor simple implementations
of iterative solvers may be efficient enough for large scale problems. A good conver-
gence rate for iterative solvers is attained not only by selecting the right solver but
also by coupling it with the right preconditioner, which is an operator that changes
the condition number of the system of equations.

Modern approaches use a complex technique described next. Often, the matrix
corresponding to the system of equations can be split into blocks related to different
fields, such as velocity and pressure in the porous media flow problem. Each matrix
block may consist of other blocks, forming a nested structure, where the matrix
elements are at the bottom level. The blocks of the matrix can be operated with as
if they were matrix elements, including applying preconditioners and linear solvers to

all levels of the nested block structure. Because the block structure is defined by the
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physics of the problem, this approach is called physics-based block solvers (Brown
et al., 2012).

The implementation of said methods requires significant programming skills and
is, therefore, the prerogative of computer science. Because the finite element method
has a great impact when applied to engineering problems, there exist several state-of-
the-art scientific libraries for finite element simulations aimed specifically at domain
scientists, one of the most popular of which is FEniCS (Alnzes et al., 2015). In par-
ticular, FEniCS provides massively parallel and scalable finite element simulations
aimed at supercomputers. However, the aforementioned physics based-block solvers
are not readily available in FEniCS. For that purpose, a pFibs package was devel-
oped as a part of this study, to enable efficient computations of porous media flow
problems (Chang et al., 2019). Because of the scientific scope of this manuscript, the
implementation details of pFibs software are omitted.

To evaluate the computational performance and scalability of composable block
solvers, we use the static-scaling concept (Brown, 2016; Chang et al., 2018). First, it
is necessary to introduce the following definitions. Degrees of freedom (Dofs) denote
the total number of unknowns in the discretized problem. The computational rate is
defined as degrees of freedom divided by the time spent on computations. It effectively
shows the number of unknowns solved per unit time, being the measure of efficiency.
In the static-scaling concept, the number of computational units is kept constant,
while the problem size changes. Given this, the computational rate is plotted on the
vertical axis vs the degrees of freedom on the horizontal axis. The purpose of this plot
is to compare the efficiency of computations for different problem sizes. For example,
large problems use a lot of memory. Therefore the computational rate is expected to
go down at some point along the horizontal axis due to the limit on available memory.

For small problems, which are located at the beginning of the horizontal axis, the
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computational rate is also expected to be low, because of the so-called overhead. The
overhead refers to all the processes necessary for the simulation to run, but that are
not directly related to solving the system of equations. Somewhere between these two
limiting cases, the computational rate reaches its maximum. The whole curve on the
static scaling plot is used to evaluate the computational performance of the model.
In particular, the performance is defined not only by the maximum computational
rate but also by the width of the peak that defines positions of the left and the right

boundaries that outline the region of highly efficient computations.

5.3.1 Porous media flow problem

In this section, we demonstrate the use of block solvers to model problems of
flow in porous media. The purpose of the following discussion is to demonstrate the
computational efficiency and scaling of the method. Therefore, to simplify complexity,
we ignore the poroelastic coupling and focus solely on the flow problem.

We consider the use of block solvers and preconditioners to solve the mixed Poisson
problem. First, we introduce the governing equations. Then, we describe the corre-
sponding block structure of the arising system of equations and the solving strategy.
In particular, block solvers and preconditioners are used. Finally, we show the com-

putational efficiency and scalability of this approach in parallel computations.
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Governing equations. The governing equations for the porous media flow problem

can be written as

o+ V=0 in €, (5.23)
%%ﬁr +V-qr = Grs, in Q, (5.24)
Pr ="PD on 95,9, (5.25)
qr-n=gqy, on 81,0, (5.26)
¢ =—(q, ‘ny +q - ng) onT, (5.27)
and  p,|,_, =1} in Q. (5.28)

The time derivative in equation (5.24) is discretized using the backward Euler scheme.
In what follows next, we consider the solution of the governing equations for one time

step of size At.

Block structure. First, to emphasize the block structure of the problem, we denote

W = ( & ) . (5.29)
pT’

The governing equations (5.23)-(5.28) are then formulated as

AT WV 0
<K|—1> w = (—0> . (5.30)
Ve | 7 Grs + TrAc

where the horizontal and vertical lines are drawn to separate blocks.

the solution vector as

Next, we describe the Schur complement approach, which is typically used for

the solution of block problems. For a block problem consisting of two-by-two blocks,
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which can be represented by

(@ 0) () =) san

the Schur complement approach utilizes the following factorization

ED-(ENE) e

where

S=D-CA'B (5.33)

is referred to as Schur complement. The Schur complement approach reduces the
problem of inverting the full matrix to the problem of inverting two blocks, A and S,

since the inverse of (5.32) is

G D)) o

Expression (5.34) is applied as a preconditioner to the linear system (5.30), to
obtain the first approximation of the flux and pressure fields. Here, A is the mass
matrix &I, and we are interested in its inverse of A, which can be approximately
computed. The matrix S has the following form

g ﬁ V. (ﬂl)l v, (5.35)

where the inversion of £1 yields a dense matrix, rendering the related matrix mul-

tiplication costly. To resolve this we adopt an approximation to (%I)fl, which uses
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Figure 35: Static scaling plots for mixed Poisson problem on a unit square (a) or a
unit cube (b) domains. FEniCS default solvers are compared with pFibs
solver with Schur factorization.

the inverse diagonal of A resulting in

5 1 . 7 -1

Next, S~ is calculated using the approximate algorithm.

Computational efficiency and scalability. The numerical results were computed
using the finite element method with FEniCS (Alnees et al., 2015) and pFibs (Chang
et al., 2019). We considered the 2D case on a unit square and the 3D case in a unit
cube. The computations were run on a node with 96 GB of memory and dual Intel
Xeon Gold Skylake 6154 (3.0 GHz, 18-core) processors with 36 processing units in
total. To understand the performance of the computations, we use the static-scaling
concept described in Section 5.3.

The 2D problem had the following number of finite element nodes along each di-

mension: [10, 20, 40, 80, 160, 320, 640, 1280, 2560]. The corresponding number of
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degrees of freedom was equal to: [520, 2040, 8080, 32160, 128320, 512640, 2049280,
8194560, 32773120]. The Schur complement approach was compared to MUItifrontal
Massively Parallel sparse direct Solver (MUMPS) (Amestoy et al., 2000), based on the
Gaussian elimination, and an iterative solver, denoted by gmres/bjacobi (Balay ct al.,
2019). The static scaling plot, presented in Figure 35a, shows that the Schur comple-
ment approach has a much higher maximum computational rate and also the curve
becomes horizontal, meaning that the amount of available memory is greater than
required for this approach even for large problem sizes. The direct solver MUMPS
clearly reaches memory limitation as the problem size increases, and its line curves
down. While the gmres/bjacobi iterative solver is supposed to conserve memory, it’s
performance is worsened by poor convergence. Therefore its maximum computational
rate is much lower than that of the Schur complement approach. In addition, the gm-
res/bjacobi line also curves down, and eventually, the algorithm stops converging.
The Schur complement approach conserves memory and keeps a good convergence
rate due to the effective preconditioning of the system. The difference between the
computational rate between the Schur complement approach and the direct solver
MUMPS is negligible for small problem sizes, but increases by almost two orders of
magnitude before MUMPS reaches memory limit.

The 3D problem had the following number of nodes along each dimension: [10, 15,
20, 30, 40, 80, 160]. The number of degrees of freedom was equal to: [18600, 62100,
146400, 491400, 1161600, 9254400, 73881600]. The comparison used the same solvers
as in the 2D case: MUMPS, gmres/bjacobi, and the Schur complement block solver.
The performance of the solvers, presented in the static scaling plot 35b, is similar
to the 2D case: the Schur complement approach has a better performance than the
other solvers because it conserves memory and preconditions the system. However,

the computational rate of all methods is less than in the 2D case, because of the
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more complex 3D structure of the problem. The Schur complement approach curve
shows memory-related effects on the right side of the plot. The direct solver MUMPS
performs worse than the Schur complement approach even for small problems.

This comparison demonstrates that the physical block solver is much more com-
putationally efficient than the direct solver for this formulation of porous media flow
problem. The next section will consider a more complex case of flow in porous media.

Specifically, we consider the double porosity-permeability problem.

5.3.2 Double porosity-permeability problem

In this section, we consider the double porosity-permeability (DPP) model (Naksha-
trala et al., 2018), which describes the flow of incompressible fluid in a porous medium
with two pore-networks and mass transfer between them. The need to model different
scales of porous networks and the interaction between them may arise in reservoir sim-
ulation. The resulting mathematical model has four-fields: macro velocity-pressure
and micro velocity-pressure, for which this section demonstrates the use of nested
block solvers and preconditioners. The block solver technique is especially important
for many-field formulations with complex block structure such as the DPP model.
We start by introducing the governing equations. The block structure of the arising
system of equations and the solving strategy is described next. Finally, the scalability

results are presented.

Governing equations. The primary goal of this section is to show the advantages
of the block solver technique in many-field formulations with complex block structure
such as the DPP model. Because the block structure of the transient problem is
similar to that of the steady-state problem, we limit our analysis to the steady-state
case.

The macro scale is denoted by subscript 1, the micro scale - by subscript 2. The
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porous medium domain is denoted by 2. The macro-scale pressure and Darcy velocity
fields are denoted by p,; and q,; and the micro-scale fields are denoted by p,o and q,9,
respectively. The governing equations for a steady-response under the DPP model

are

g+ Vp =0 in Q, (5.37)
K
L Gyo + Vppo =0 in Q, (5.38)
Ky
V- qr1 = _é (prl - pr2) + Qrs1 in Qa (539)
i’
and V-q, = +§ (P1 —p2) + Grs2 in Q, (5.40)

where p is the fluid viscosity, K; and K, are the (isotropic) permeabilities of the
macro-scale and micro-scale pore networks, and 3 is a dimensionless characteristic of
the porous medium. The equations above take into account the mass transfer per

unit volume between the macro-scale and the micro-scale pore networks.

X = _g (Pr1 — Pr2) - (5.41)

Considering the domain boundary 09 = 'Y UT5UTYUTY, boundary conditions

for (5.37)-(5.40) are

Dr1 = Po1 on I'}, (5.42)
Pr2 = Po2 on I'}, (5.43)
Qr1 N = Gn1 on I'{, (5.44)
and Q2N = o on ' (5.45)

where pg; and pge are prescribed pressure fields on the boundaries I'} and T, n
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denotes the outward normal to the boundary, and ¢,; and q,., are prescribed normal

components of Darcy velocities on the boundaries I'! and I'3.

Block structure. The DPP model cannot be reformulated in single-field Poisson
form (Joshaghani et al., 2019). We consider grouping the fields using the scale-split,

with the solution vector

qr1
Dr
w=|— (5.46)
qr2
DPr2
The corresponding block structure of governing equations (5.37)-(5.40) is
=1 vV, 0 0 0
V- % 0 _g Qrs1
W = (5.47)
0 0 |&£I V 0
8l w. 8
0 —a V- N drs2

The system (5.47) is preconditioned with so-called multiplicative fieldsplit precondi-
tioner (Balay et al., 2019), in which the preconditioners for each block are applied
sequentially to the residual. Then, the linear solver gmres (Balay et al., 2019) solves
the system. The blocks corresponding to each scale are preconditioned using Schur

factorization (5.32), where

LTIV
Ai Bi\ _ Ki | -
(Ci Di) = ( v. ‘ 5 ) , 1=1,2. (5.48)

I

-1
Since (%I) are dense, the approximation of S; is calculated as

-1
S, = g — V- diag (%I) V. (5.49)

3
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The action of A;! and S;! in equation (5.34) are computed with bjacobi and hypre

algebraic multigrid (Balay et al., 2019) respectively.

Computational efficiency and scalability. This goal of this section is to show
the efficiency of the block solver approach on systems with small memory. The nu-
merical results were computed using the finite element method on a unit square (2D)
and in a unit cube (3D) with FEniCS (Alnees et al., 2015) and pFibs (Chang et al.,
2019). The computations were run on a laptop with 8 GB of memory and dual-core
Intel Core 15 with two processing units in total. We additionally provide the results
computed with the algorithm for DPP used in (Joshaghani et al., 2019), where the
block solvers were used with Firedrake (Rathgeber et al., 2016). The performance of
the computations is analyzed using the static-scaling concept described in Section 5.3.

The number of nodes in each dimension for the 2D unit square was: [100, 150,
200, 250, 350, 400, 600, 800]. The number of degrees of freedom was: [100400,
225600, 400800, 626000, 1226400, 1601600, 3602400, 6403200]. For 3D unit cube, the
number of nodes in each dimension: [10, 15, 20, 30, 40, 50, 60], and total number
of degrees of freedom: [37200, 124200, 292800, 982800, 2323200, 4530000, 7819200].
The static scaling plots, presented in Figure 36, show the performance of the block
solver approach described in the previous section. The performance of the direct
solver is known to be poor when the memory is small, and the problem size is large.
Therefore, it is not presented in the plots. The computational rates corresponding
to the block solvers approach implemented in FEniCS and Firedrake are reasonably
stable for large problems. In particular, the performance remains high even for large
problems, and, as was mentioned, the simulations were run on a system with only 8
GB of memory. This proves that the block solver approach is highly efficient for large
simulations on systems with small memory. The difference in computational rate

between one and two processing units seems small on the plots due to the logarithmic
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Figure 36: Static scaling plots for double porosity-permeability problem on a unit
square (a, b) or cube (¢, d) for 1 and 2 MPI threads. The results were
obtained with Firedrake and FEniCS/pFibs block solvers.

scale, but the ratio is actually close to two. This shows that parallel computations

on many processing units can efficiently accelerate the computations even on small

systems, assuming the block solver approach is applied to finite element simulations

for porous media flow.

5.4 Summary

In this chapter, we introduced a method for further extension of the reduced-
order models for hydraulic fracture, described in Chapter 3 and 4, by coupling them

with fluid flow in porous media. The motivation for such coupling stems from the

106



limited applicability of Carter’s leak-off law used in the reduced-order models, and,
additionally, from the interest to the physics of porous medium flow during the pro-
duction stage of reservoir stimulation. Because 3D simulation of porous medium flow
can become a bottleneck in the coupled model, the investigation of related acceler-
ation methods is crucial. We described a computational paradigm that accelerates
the numerical solutions of porous media flow problems, which in future work can be
coupled with the reduced-order hydraulic fracturing models to create an efficient and
physically realistic hydraulic fracture simulator. Several finite element models were
constructed for the governing equations for porous media flow arising in reservoir
simulation. The state-of-the-art acceleration technique was applied to the said finite
element models using the developed software package pFibs and scientific framework
FEniCS. The result showed high computational efficiency and scalability of this ap-
proach over the regular methods, which makes it a viable candidate for the coupled

model. The implementation of the coupled model is left to future work.
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6

6.1

Conclusions

Main contributions

The main contributions of this study are summarized as:

1.

The analysis of different approaches to efficient and relatively accurate approx-
imations of the elasticity relation that represent the propagation of a crack in
an elastic medium has been performed. Those include the local elasticity as in
the classical PKN models and the non-local elasticity, as in the enhanced PKN
and the 2D DDM model. It is shown that the enhanced PKN approach is the

most accurate.

. A procedure for approximate calculation of elastic interactions between multiple

fractures has been introduced. The procedure extends the non-local elasticity
approach of the enhanced PKN model, which was formulated for a single frac-
ture. The new formulation adds normal and shear stress components, as well as
out-of-plane configurations necessary for multiple cracks in 3D. The accuracy

of the method is shown by comparisons with the reference model ILSA.

. A reduced order model for multiple planar blade-like hydraulic fractures, re-

ferred to as mEPKN, has been developed. The mEPKN model combines the
plane strain approximation of the enhanced PKN model with the developed ap-
proximate elasticity relation. Compared to the enhanced PKN model, mEPKN
is aimed at multiple hydraulic fractures and also considers wellbore fluid bal-
ance. The obtained solution has been validated against the reference model
ILSA (Peirce and Detournay, 2008; Dontsov and Peirce, 2017) for the case of
five uniformly spaced parallel fractures and covering toughness K, viscosity M,

and mixed propagation regimes. The mEPKN model shows good agreement
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with the reference results for most cases. The inaccuracy in the calculation of

flux distribution in the low perforation friction case has been identified.

. A procedure for the accurate evaluation of fluid pressure near the wellbore
has been derived. The procedure considers the correct singularity of the fluid
pressure at the injection point, which is used in the wellbore fluid balance cal-
culation. The comparison with the reference solution shows that the “pressure

correction” results in significantly more accurate flux distribution.

. A reduced order model for multiple non-planar hydraulic fractures, referred to
as mEP3D, has been developed. The mEP3D model is based on the mEPKN
model and the enhanced pscudo-3D model. The mEP3D addresses the following
limitations of mEPKN: inability to model height growth, inability to model non-
planar fracture, inaccurate wellbore fluid balance calculation, inability to model
hydraulic fracture at early times, and no fluid leak-off. The mEP3D model has
been validated against the reference model ILSA for five equally spaced planar
hydraulic fractures in K, M, K, M, and mixed propagation regimes. The
fracture turning has been compared to the analytical predictions for the case of

plane strain hydraulic fracture.

. The multi-scale asymptotic solution for the near-tip region of a hydraulic frac-

ture has been implemented for a non-planar fracture geometry.

. Analysis of multiple hydraulic fractures propagating in different regimes under
the condition of limited entry has been performed. It is shown that the fracture
growth pattern is unstable in the toughness regime, whereby some fractures
grow in one direction, while others grow in the opposite direction. At the same
time, all generated fractures are nearly identical in the viscosity dominated

regime.
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8. A computationally efficient method for simulating flow in porous media has
been presented. The method uses the existing state-of-the-art techniques in
numerical methods and computer science, provided by well-established scientific
libraries. A software package pFibs (Chang ct al., 2019) has been developed to
enable the said techniques for the porous media flow problem. It is shown that
the three-dimensional porous media flow model can be significantly accelerated

to be considered for coupling with the reduced-order hydraulic fracture models.

6.2 Future work

We suggest the following topics for future work that expand the results of this

research:

1. The current model is based on the plane strain solution for a fracture inside three
symmetric stress layers. In order to model multiple layers of confining stress,
typically observed during hydraulic fracturing treatment, the mEP3D model has
to modified by replacing the plane strain approximation of the fracture opening
with the general expression for multiple stress layers and additionally deriving

all the related approximations.

2. The coupling between the hydraulic fracture model with the porous media flow
has been done in the past. In this study, it has been shown that the coupling
between the fast hydraulic fracture models and the three-dimensional porous
media low model can be considered if the flow model is accelerated via the state-
of-the-art computational techniques. As a logical step, the implementation of
the coupling itself can be accomplished, combining hydraulic fracture modeling,

high-performance computing, and computer science fields.
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Appendices

A Stress field of point displacement discontinuity

The stress field o? induced by a point displacement discontinuity can be expressed

through the following relations (Crouch and Starfield, 1983):

£ i
b _
011 = 8_7r[¢3’33 + 2¢113 + 20293 + (1 — 2) 3 90 — Z T3Pk k1)

=1
El 3
Oy = 8—7T[¢3,33 + 2¢9.93 + 2v¢1 13 + (1 — 2v) 311 — Z T3Pk k22)
=1
E i
ol = 8—7T[¢3,33 = w303,
o Ha \ (A1)
Ol3 = §[¢1,33 + Va—@(¢1,2 — ¢a1) — ;xscﬁk,kw],
E' ) 3
Ohy = §[¢2,33 - V0_331(¢1’2 — ¢21) — ;$3¢k7k23],
E' ) i
oly = g[(l — V)a_:a;(¢1’2 + ¢21) — (1 —2v) 312 — ;96‘3%71@12],

where the local coordinate system is centered at the point displacement discontinuity,
and oP is considered at x1, x9, x3. The elastic potential ¢; corresponding to the point
displacement discontinuity is defined in Eq. (2.3), and its derivatives are denoted by

_ 09

- )
(%’j

0%¢; 0¢;

Oz 0z, Divs = Ox 0,0z,

bi; Pijp = (A.2)
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B Approximation of stress tensor

The stress approximation reduces the computational complexity of the reduced-
order models based on the EPKN and EP3D methods. The method is referred to as
the clliptic displacement discontinuity method (EDDM) (Protasov et al., 2018). It
assumes and involves the potential (4.8), the computation of which reduces to the

following integral

Azy/2
¢* = /A P I($1,1‘2,x3,$/1,h) Clﬂ?&, (Bl)
—Azq

where

h/2 \/1 — 4al?/h? ,
= / dzs. (B.2)

I(xq, o, 23,27, h) =
1 e /ey =202 + (2 = 25 + 23
Substituting & = 2x;/h, & = 2x}/h, n = 75 [(z1 — 2})* + z3] into equation (B.2)

yields

. 1 /1 _ ¢
I<I‘17x27x37x/17h) - I(n7£2) - 2 d&é (BB)
-1

n+ (& — &)
The EP3D model’s boundary conditions for stress are formulated at xy = 0, which
corresponds to & = 0. In this case, the integral (B.3) can be calculated analytically,

which results in

1(n,0) =2 1+77[K( ! )—E(Lﬂ n#0, (B.4)

1+n 1+n

where

w/2
K(m) = /0 (1 —msin?0)~Y2 db, (B.5)
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is the complete elliptic integrals of the first kind, and
/2
E(m) = / (1 —msin?0)"2 6. (B.6)
0

is the complete elliptic integral of the second kind.
The elasticity relations (A.1) require computation of derivatives of the integral (B.1)
that transfer to the integral (B.3). The first derivative of (B.3) with respect to & is

zero at & = 0. The expression for the second derivative is

a0 12+ 1 [E (ﬁ) -k (ﬁ)] , n#0. (B.7)

Other derivatives with respect to & and &3 are calculated by differentiating Equa-

8%“22 [f(n, 52)]

tion (B.4) with respect to n(&1,&2). As a result, the computational complexity of the
integral (B.1) corresponds to one-dimension.

For a single fracture element, the numerical integration of the expression (B.1)
requires evaluation of the integrand at several point along x;. The number of these
points affect the accuracy of the numerical integration. The largest numerical error
occurs in the computation of the self-effect, i.c., the stress field that the element
induces on itself, which may require additional evaluation points. However, for self-

effect x3 = 0 and ¢%; can be computed purely analytically, resulting in
2(xq + An 2 _ An
G<_(x1h 2 )>_G<_(x1h 2 )>] (B.8)
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where, GG is given by

G(s) =

mE( ! ) (B.9)

S 1+ s2

The plane strain limit of pressure can be obtained by taking the plane strain
limit of equation (B.8) and using equations (A.1). For the approximate displacement
discontinuity (4.6) the plane strain limit of pressure is

_EDY E' D}
- 2h 2hns

Pps (B.10)

On the other hand, the plane strain solution for pressure that corresponds to the

fracture opening (4.3) yields (Adachi et al., 2007)

p:1/iK1+Aa 1—zarcsin 4 : (B.11)
h T h

These two equations in conjunction with (4.3) and (4.5) can be used to find ha,,
D:’;, and D:};A” in the approximate relation (4.6). In addition, the approximation is
required to maintain the cross-sectional area of the fracture opening. Since the first

term in (4.3) represents an ellipse, the approximation does not change its shape and

1K, [h
Sy (B.12)

h
Dy E’ 27

The cross-sectional area of the approximate relation (4.6) must be equal to the area

of the fracture opening (4.3), which can be found from (4.5). The arca of the second
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term in (4.3) must be equal to the area of the second ellipse, i.e., in (4.6)

AcH
VR H? = S D> . (B.13)

This relation can be combined with (4.3) and (4.5) to yield

2HVRZ =5 \'°
has = _ (B.14)
m — 2arcsin (H/h)
and
2 H 2h
hao . Ao
Dy2e = (Aa [1 — —arcsin (E)}) T (B.15)
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C Multi-scale near-tip asymptotics

log w

log s

Figure 37: Asymptotic solution for the fracture opening w in the near-tip region of
a hydraulic fracture plotted on a logarithmic scale. Red, green, and blue
colors represent the regions corresponding to toughness (k), leak-off (m),
and viscous (m) limiting solutions, respectively, see Eq. (C.1).

Analysis of a semi-infinite fluid-driven crack under plane strain conditions (model
for the near tip region) (Garagash et al., 2011; Detournay, 2016) shows that there
are three limiting regimes of propagation related to domination of either fracture
toughness (k regime), fluid leak-off (7 regime), or fluid viscosity (m regime). The

corresponding crack-opening displacements in the near-front region are given by (Rice,

1968; Lenoach, 1995; Desroches et al., 1994),

K/ 4 /2vcl2 1/8 . IV 1/3
wy, = 581/27 Wi, = B (“T> So/87 Wiy = B <PJE_,) 32/3, (C.1)

where V' is the propagation velocity of the fracture front, K', E', i/, C" are the scaled
toughness, modulus, viscosity, and leak-off (see (2.2)), while 35 = 4/(15'/4(v/2—1)/4)
and S, = 2'/33%/¢ are numeric constants.

As demonstrated in (Garagash et al., 2011), transitions between the regimes occur
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on the following length scales,

K3 2 K8 '8 F2
ok = == | + loin = mems—s bk = —— (C.2)
E2V W E6C2VY ,UIQ V5 MIQ

where [,,; corresponds to the transition from k regime to m regime, lz, — from k
regime to m regime, and [,,,; — from m to m. The closest to the front is the k regime,
which can transition to either m and then to m regime, or directly to m, depending
on the parameters.

The general solution for a semi-infinite hydraulic fracture that incorporates all
the aforementioned limiting regimes was computed numerically in (Garagash et al.,
2011). Figure 37 schematically shows the solution as well as outlines validity regions
for the toughness, leak-off, and viscosity limiting solutions in red, green, and blue,
respectively. For the purpose of the development of the numerical algorithm, as
considered in this study, it is beneficial to utilize the fast approximate closed-form
relation constructed in (Dontsov and Peirce, 2015¢), which has been shown to be
accurate up to 0.14% for the whole parametric space. In this paper, the latter solution,

denoted by w,(s), is used as a propagation condition for the fracture opening, namely
w(s) = wa(s), s=o(L), (C.3)

where L is the characteristic fracture size and s is the distance to the fracture front.
Note that (C.3) captures the behavior outlined in (4.15) in the limit of s — 0. But

it has an extended validity zone, that is determined purely by the fracture size, by

133



capturing the effects of fluid viscosity and leak-off. The exact form of the approximate

solution (C.3) can be found in (Dontsov and Peirce, 2015¢), where it is expressed as

82‘/“/ B Klsl/Z 281/20/
Ewd 6( E'w, 7wavl/Q)7

(C.4)

where gs is an analytic function. One the properties of the solution w,(s) is that

we(s) o< 8°, (C.5)
where
1 K's'/2 2512
575 [1+A< E'w, ’an1/2>] ’ (C.6)

where A is an analytic function. Both functions gs and A are given in (Dontsov and

Peirce, 2015c¢).
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D Fixed mesh approach

D.1 Motivation

(@) /2 N ®) lo/2 .
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Figure 38: Illustration of the moving mesh approach for fracture lengths | = I (a)
and [ = [y (b). Schematics of the fixed mesh approach for fracture lengths
l=1 (c)and l =1y (d).

The original EPKN and EP3D models (Dontsov and Peirce, 2015a, 2016a) deal
with a moving boundary by introducing a scaled coordinate in the  direction,
€ =2z/l(t) (0 < ¢ < 1), where [(¢) is the length of the fracture. The moving
mesh approach offers an efficient way to compute the fracture propagation and au-
tomatically scales the mesh relative to the fracture length. It works well for a single
fracture that is planar and symmetric with respect to . However, in the case of
multiple fractures, it is more convenient to have a spatially fixed mesh in the physical
coordinate . While it is possible to use separate dimensionless coordinates for each
wing of each fracture, this would introduce additional challenges, such as the coor-
dinate transformation and re-computation of the stress tensor. Most importantly,

the fixed mesh approach allows for easier representation of the curved non-planar
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fractures.

Numerical discretizations for the moving mesh and the fixed mesh approaches
are illustrated in Fig. 38. Figure 38a shows the moving mesh for fracture length
[ = [y, where &,&,, &3 are the dimensionless coordinates that correspond to the x
coordinate through x = £/, and A¢ is the dimensionless length of the mesh element.
Figure 38b shows the moving mesh for a larger fracture length [ = l5. The positions
of the fracture elements in dimensionless space £ do not change, and the fracture
propagation is reflected in the change of [ from [; to l;. The velocity of the fracture
propagation V = % is an unknown that is determined by the boundary conditions. In
this approach, the position and the physical length of the mesh elements constantly
change, resulting in mesh stretching. At the same time, the moving mesh approach
keeps the number of mesh elements constant throughout the simulation. Figure 38c
shows the fixed mesh methodology for fracture length [ = [y, while Fig. 38d shows
the fracture with length [ = l,. The positions and lengths of all the mesh clements,
but the tip, are fixed in the physical coordinate . Therefore, the number of mesh
elements increases in time. The tip element length is unknown and is determined by
the propagation condition. Once the length of the tip element reaches a critical value,
it is divided into two smaller elements.

Each element is referred to through the index ¢ = 1,..., N. The element’s position
in space is represented by the coordinate of its midpoint #¥, its length AZ®, its
height A, and its angle with the global 2 axis #). These are combined into the
vectors & = (2, ..., 2T Az = (AzW, ... Az R = (BM ... AT and
0= (00, . .  6NHT
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The effective fracture opening is considered constant within each element and
denoted by w®. These piece-wise constant values are combined into the vector w =
(@M, ..., @™)T. The fluid pressure is considered at midpoint of each element is

=1

denoted by p and combined into the vector p = (p',...,p"™)T . The injection rate

values @, are combined into Q = (Q1,...,Qn;).

D.2 Tip element implementation

In this section, we describe the tip element implementation in the mEPKN and
mEP3D model. The fracture tip element needs special consideration because it affects
the following parts of the algorithm:

(1) the fracture extension which is computed by applying the boundary condition on
the tip element;

(2) the numerical calculation of tractions which relies on the near-tip behavior;

(3) the split of the tip element when its length becomes large enough as the fracture

propagates.
() (b)

Tip element Tip element
N 4 N "4
otiP) . < > T w, R
, T I I
AFHP) AGP)

Figure 39: Fracture near-tip region represented by (a) the tip element of the numerical
mesh, and (b) the asymptotic solution.

As other fracture elements, the tip element is characterized by a single value of
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wMP) since the fracture opening is a piece-wise constant function in the numerical
algorithm, illustrated in Fig. 39a. Alternatively, the tip element is represented by the
near-tip asymptotic solution, illustrated in Fig. 39b. These two representations are
connected by the same volume of the tip element. In particular, the volume of the
tip element of length As, denoted by V(As), is calculated according to the near-tip
asymptotic solution. The exact expression for V(s) is given in Appendix E for the
mEPKN model, and in Appendix G for the mEP3D model.

First, we discuss the tip extension driven by fluid flux, which changes the volume
of the element. The length and the volume of the tip element must be in agreement
with the asymptotic relation (E.3). The condition is schematically shown in Fig. 39.
Therefore, the tip element’s length is computed by solving (E.3) using the the volume
of the tip element,

V(AzEP)) = i) T Az P, (D.1)

This expression directly relates AZMP) and w®P). After solving the lubrication equa-
tion, the fracture is extended by updating the tip elements’ lengths based on the

effective fracture opening.

(a) ()
Tip element Tip sub-elements
- % o A,
> > >
______ T T
A7) A7 p)
L Agew o,

Figure 40: Tip element refinement for clasticity computation. (a) Tip element. (b)
Tip is represented by two sub-elements.
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Next, the near-tip asymptotic solution is used in the tractions calculation. The
approximate elastic potential (B.1) is computed for the piece-wise constant displace-
ment discontinuities along the fracture length. The accurate calculation of tractions
requires a fine discretization of the mesh near the fracture, since the pressure is sin-
gular at the tip. Alternatively, the accurate results can be obtained on a coarse mesh
by using the asymptotic near-tip solution for the fracture opening. This method,
illustrated in Fig. 40, is based on the tip element splitting according to the near-tip
asymptotic solution, which results in the expanded, but still coarse, mesh. The tip
element of length AZ("P) is split into two elements, denoted by 1 and 2 from the

fracture front, with equal lengths

. . Az (tip)
A = AFEP) — xz . (D.2)
Their volumes, V; and Vs, are computed as
Vi =V (Az)/2) Y, = P HAFIP) —p (AFP)/2) (D.3)

The effective width of the new elements, given by

i V i V.
() — —Nl(ti 3 ) — —f(ti 7 (D.4)
HAz™ HAzy™
is used to compute the height of the corresponding elements. The obtained two new
sub-elements replace the tip element in the elasticity computations, and the tractions

are then computed on the expanded mesh.
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Figure 41: Creation of a new tip element. (a) Original tip element. (b) New split tip
element.

Finally, we describe remeshing of the tip elements. Since the length of a tip element
increases in time when the fracture propagates, the tip element may become too
large compared to its original size, which leads to discretization error. The remeshing
procedure is only applied to the tip element keeping other mesh elements intact. The
scheme of the method is shown in Fig. 41. The length of the tip element of the original

mesh at the initial moment of time is denoted by Afgip). The remeshing of the tip

element applies to the evolved mesh when AZ(tP) > 2A:f;[()tip). Once this happens, the
tip element is split into two new elements, denoted by 1 and 2 from the fracture front,
along its length. Element 1 becomes the new tip element and element 2 becomes a

regular channel element. Note that this splitting is different from the one used in the

elasticity calculation. The split is done so that the length of the second element is

Az = Az{P) (D.5)

Y
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and, consequently, the length of the new tip element is
AFY = AFUP) _ AF(P)
The volumes of the new elements are computed as
Vi =V (Aa"™), Vo =@ HAT —  (AF).

The effective width can be computed using relation (D.4).
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E Numerical algorithm of mEPKN model

In this appendix, we describe the numerical algorithm for the mEPKN model.
The model utilizes the fixed mesh approach detailed in Appendix D. The tip element
volume calculation via the asymptotic near-tip solution is given in Section G.1. The

discretized governing equations are presented in Section G.2.

E.1 Tip element volume

In this section, the tip element volume for the mEPKN model is presented. De-
noting the horizontal distance from the tip by s, the fracture opening can be written
as

we(z,7y) = as’, (E.1)

where § is defined in (C.6), and « is a constant, the exact value of which is not
necessary for this derivation. The height of the fracture is constant and equal to
H. We assume that the asymptotic solution (E.1) represents the fracture opening at
y = 0.

Following the fracture opening approximation (3.3), the effective width is written
as

We(Z) = —as’. (E.2)

The asymptotic volume of the tip element of length As can be obtained by integrating

142



the effective fracture opening (E.2)

TH

As
V(AS) = H/O wads = m

wa(As)As (E.3)

where, additionally, a has been substituted from equation (E.1) and the function
wy(As) can be obtained from (C.4).

The volume of the tip element given by Eq. E.3 is used in the numerical algorithm
to compute the fracture extension, the tractions, and to update the mesh with new

elements, as described in Appendix D.

E.2 Discretized governing equations

We start by introducing the discretized elasticity relation arising in the mEPKN
model. The numerically computed pressure in the tip element has the largest error
among other crack segments due to the singular nature of the stress field at the frac-
ture tip and the zero fluid lag assumption. This error leads to the wrong calculation
of fluid flux into the tip element. One way to overcome this limitation is by split-
ting the tip element into two sub-elements. In this case, one can be treated as the
tip element, and the other one is effectively the inner element. Since the primary
source of error is related to the tip, the inner sub-element’s stress field is accurate
and can be used for calculation of fluid flux into the whole tip element, including
both sub-elements. The correct splitting of the tip element is ensured by utilizing
the asymptotic near-tip solution, which also governs the flux between the two sub-

elements. The tip sub-elements are expressed in terms of the tip element volume
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and length. The length of the sub-elements is one half of the tip element, and their
volumes are given by equation (D.4). The original mesh of size N is replaced by the
expanded mesh, which contains tip sub-elements replacing the original tip elements.
Since each tip element yields two sub-elements, the number of elements of the ex-
panded mesh is larger than N and is denoted by N,.. At the center of each element
of this mesh, the piece-wise constant normal and shear displacement discontinuities
are combined into D, = (fo), . DT(ALNC))T and D, = (Dgl), . DgNe))T, and the
stress tensor components into o, = (07(11), . ,a,(lNe))T and o, = (o,(zl), . ,agNe))T.
Note that the vector of normal displacement discontinuity D, has the size N, and
corresponds to the expanded mesh, while the fracture opening vector w has the size
N and corresponds to the original mesh.

The elasticity relation, computed using the stress integral (2.6) and the approxi-

mation for the elastic potential (4.8), reduces to

Op = CnnDn + Cnsta
(E.4)

Os = CsnDn + CssD57

where C,,,,, C,,s, Cs,,, and C, are the elasticity matrices. Each term on the right-hand
side of (E.4) represents matrix-vector multiplication.
After applying stress boundary conditions (4.9) to the elasticity relation (E.4),

the shear displacement discontinuity is expressed as

D,=-C;'C.,D,, (E.5)
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and the pressure values vector of the expanded mesh can be written as

p=—(Cn — C,sC,,'Cy,) D,,. (E.6)

The latter expression relates the pressure and the normal displacements at the ele-
ments of the expanded mesh of size V., including all sub-elements of the tip elements.

Next, the elasticity relation (E.6) is reduced to the original mesh, so that the fluid
flux into the tip element is calculated based on the pressure at its inner sub-element.
The pressure values at other sub-elements are not used in further computations. Be-
cause the vector D, is larger than w, are extra components are written in terms of
fracture opening according to the near-tip asymptotic solution, as detailed in Ap-

pendix D. Overall, the vector of pressure over the regular mesh is

_Cw. (E.7)

]l
I

Note that in the vector of numerical values p, each component corresponds to pressure
at the center of fracture element, with the exception of the tip elements, for which
the pressure corresponds to the center of its inner sub-element.

The subset of p corresponding to the injection points of each fracture is denoted by
Pw. The flux balance, consisting from equations (2.9) and (2.10), takes the following

form

T —
I'u Q - Q07 ) (1) (N) T
with Apperr = (Apperf, s APy ) , (E.8)

DPw + Apperf - pOIm
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(k) _ _8pQf
perf — 72CZ al -

where I, is the vector of ones of size Ny, and Ap
To obtain the discretized lubrication equation (4.13), the time derivative is dis-

cretized by the backward finite difference,

which can be summarized for all elements in a vector form as

1

~ [w — w’]. (E.10)

The derivative of flux is discretized by the central difference scheme as

(E.11)

PN

() and q‘gi_) denote the flux through the two lateral edges located at © =

where ¢ =

z

QIR A‘g(i) and 7 = 700 — Mé(i) respectively. At the tip element, (jgi) is zero at the

edge corresponding to the crack front to satisfy the zero flux boundary condition.
The flux at the edge between adjacent elements ¢ and j can be written by discretizing

equation (4.12) as

(E.12)

T

i1 P9 —p® (0 4 ® 3
P T w2y 70) — 30) 2 '
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The source term is rewritten in the discretized form as

Qu oo Qu b

(E.13)

where 9;;+ is the Kronecker delta function that enables to prescribe the source term
at the injection element denoted by (i*). The source term (E.13) is represented by
the vector g.

Given all of the above, the lubrication equation can be written as

_ L
{EI - AC] w = qs + oW (E.14)

where I is identity matrix and w° is the solultion from the previous time step. De-
noting
1 1

L=—T1-A b= — . E.1

Eq. (E.14) can be written as

Lw =b. (E.16)

The initial guess for w is taken from the solution for the previous time step w”. The
operator L and the right-hand side vector b depend on w, either directly or through
the position the lateral fracture tip. Assuming that this dependence is small relative
to the elastic effects, the system (E.16) is solved for w as a linear system. Then,
L, b, Q, and the position and direction of the lateral fracture fronts are updated

for the new w. The process repeats until convergence. The initial condition for w°
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is constructed from the volume of the radial fracture solution (Dontsov, 2016) with
diameter equal to H.

The lateral extension of the fracture is guided by the growth of the tip elements,
the lengths of which are computed from the effective fracture opening using equa-

tions (E.3) and (D.1).
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F Correction for viscous and leak-off dominated

height growth

As was mentioned in section 4, the concept of apparent fracture toughness allows
accounting for viscous dissipation in fracture height growth (Dontsov and Peirce,
2015a). The classic P3D model employs a constant pressure plane strain solution
and becomes inaccurate in the presence of viscous fluid since the latter may cause a
pressure gradient. To address this problem, the EP3D model (Dontsov and Peirce,

2015a) introduced the apparent toughness
Kapparent — K]c+ AK[C, (Fl)

that replaces fracture toughness in the equations and captures the effect of viscous
resistance on fracture height’s growth via AKj.. First, the correction is estimated for
the case of a plane strain fracture by equating the near-tip asymptotics for toughness

and viscous regimes of propagation at characteristic distance d, which results in
AK, = VBEPBVIBYS > H. (F.2)

The expression for characteristic length is found from dimensional analysis of the

plane strain problem with symmetric stress barriers

Cih
d= h>H.
HAo F.3
1+ 0y 7 (-3)

h'2PAK.
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Here, the constants C; = 0.175 and C5 = 0.5 are fitted to minimize the error of the
approximate solution obtained with the derived toughness correction relative to the
numerically computed result.

The case of a radial fracture is considered separately. The toughness correction

has a similar expression

AKje = Cop'BEPPVIAGYS . b < H (F.4)

but with a different constant C5 = 1.2. Before the radial fracture reaches stress
barriers, i.e., max(h) < H, r = h/2 is the radius of the fracture, and characteristic
length d = r. After the fracture propagates through the barriers, the radial solution
is still used to model the vertical cross-section near the tip region, where the height
is less than H. For these cross-sections, d = b%, where b = 1.5.

The approach is extended to include leak-off in the toughness correction. The cor-
rection for the plane strain fracture is obtained by equating the near-tip asymptotics

of the toughness and leak-off regimes of propagation, yielding

AK . = pMAEBACAVISGYE  h > H. (F.5)

The characteristic length can be found from (F.3), while C} = 0.15 and Cy = 1.2 are

again selected to have the best match to the reference solutions.The correction for

150



the radial fracture case is

AKp = CypVAEPACYAVYOGYE < H, (F.6)

where (5 = 0.6 is obtained by matching the solution to that for the radial fracture

propagating in the leak-off regime (Dontsov, 2016).
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G Numerical algorithm of mEP3D model

This appendix describes the numerical algorithm for the mEP3D model. The
algorithm is based on the fixed mesh approach discussed in Appendix D. We introduce
the tip element volume calculation according to the asymptotic near-tip solution in

Section G.1. The discretized governing equations are given in Section G.2.

G.1 Tip element volume

The effective fracture opening of the tip element is approximated by the radial
fracture solution, according to relation (4.5). Therefore, it is necessary to consider
the asymptotic near-tip solution in radial geometry. By applying the radial fracture
symmetry to the near-tip asymptotic solution (C.5), the fracture opening can be

written as

we(z,y) = ( r?— % — 52)%, (G.1)

where r is the radius, and 0 is defined in (C.6). Note that « is a constant, the exact
value of which is not necessary for this derivation. The height of the fracture is
h = 2v/r? — 2. The distance from the tip at § = 0 is denoted by s = r — Z. Near

the tip, assuming s < r, the solution takes the following form

wa(s) = o (2rs)’ . (G.2)
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Based on this expression, we compute the effective width as

h/2 26 a VL (6 +1)
o VB2 - ) dj=— (- Y G.3
H/h/2 v y> §=g (7= 7) r(o+2) (G3)

where I denotes Gamma function. Note that this effective fracture opening has been
derived from the analytical asymptotics and depends on #, in contrast to w®P) which
is used in the numerical algorithm and does not depend on Z in the tip element. The
asymptotic volume of the fracture fragment with bounds at ¥ = r — As and z = r

can be obtained by integrating the effective fracture opening (G.3)

- wa(As) VAl (0 +1) s AS°
V(As) H/ WedT 2ris) T(0+7) <rAs — 3 ), (G.4)

where, additionally, o has been substituted from equation (G.2) into equation (G.3)
and the function w,(As) can be obtained from (C.4).

The volume of the tip element given by Eq. G.4 is used in the numerical algorithm
to compute the fracture extension, the tractions, and to update the mesh with new

elements, as described in Appendix D.

G.2 Discretized governing equations

This section describes the discretization of the governing equations in the mEP3D
model. Similar to Appendix E, where we described the mEPN algorithm, the numer-
ical calculation of stress requires mesh expansion by refining the tip elements. The

original mesh of size N is replaced by the expanded mesh of size N,. The normal and
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shear displacement discontinuities vectors are D,, and Dy, and the stress tensor com-
ponents are o, and 0. Specific to the mEP3D algorithm, the approximation for the
displacement discontinuity (4.6) adds additional vectors D! = (DZ’(U, Ce DZ’(NC))T

e DZA“’(NG))T, constructed from D,, using equations (B.12)

and D'as = (DZA”’(I)
and (B.15). It is worth mentioning, that the size of vector D,, is V., while the size of
w is N. Those vectors denote the same physical quantity but correspond to different
meshes, the expanded and the original.

The elasticity relation, computed using the stress integral (2.6) and the approxi-
mation for the elastic potential (4.8), is written as

On = Crl;LnDz + CT}LL#(’DZA” + CZSDS7
(G.5)

Os = anDZ + anAaDZAU + C.?SDS7

where C*  Ch. C!

nn? ns’ sn)

and C”, are the elasticity matrices corresponding to the ellipse
with height i, while C"ae and C"4< are the elasticity matrices corresponding to the
ellipse with height ha,. Each term on the right hands side of (G.5) represents matrix-

vector multiplication. The stress tensor can be expressed solely in terms of D, and

D, through the updated clasticity matrices yielding

o, = CnnD'rL + Cnstv
(G.6)

O; = CsnDn + Csst'

The latter expression is similar to Eq. (E.4). Here, however, the elasticity matrices

C.., C,, Cy,, and C,, are defined differently than in Eq. (E.4).
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The stress boundary conditions (4.9) and the elasticity relation (G.6) are used to

obtain the shear displacement discontinuity D, as

Ds = _C;glcsnDny (G7)

and the effective fluid pressure p on the expanded mesh as

Because p represents the expanded mesh, we extract the subset of size N required for
the fluid flux calculation. In addition, the D, is replaced by w, which is represented
by Eq. (E.7).

The mEP3D model implements a procedure for the fluid pressure calculation that
accounts for the singularity at the wellbore. The vector of local pressure values p;
must be computed from p using relation (4.23). Let us denote the gradient operator
on the left-hand side of (4.23) as K which acts on p, and the gradient operator with

a factor on the right-hand side as K; which acts on py, i.e.,

This system is underdetermined, since there is no constraint on the baseline value of
p;. Before this expression can be used to find py, it is necessary to add an additional
requirement for possible values of p;. The approximate elasticity relation (E.7) can

be used to relate the local pressure p; and the volume of the fracture. The inverse
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elasticity matrix is applied to the local pressure vector to obtain the vector of effective
fracture opening. The distribution of this effective fracture opening between elements
near the wellbore is inaccurate. The total volume associated with this vector of
effective fracture opening must be equal to the real volume of the fracture. The
real volume of the fracture can also be represented by the effective pressure and the

elasticity matrix. Given this, the volume constrain reads as

AzTC'p, = AzTC'p. (G.10)

The derived relation is combined with K and K, to obtain the updated operators K
and K. The vector of local pressure values can then be computed from the effective
pressure as

~ —1 .~

Next, the reduced vector of local pressure values containing wellbore elements
Py is extracted from p;. The global fluid balance given by Eq. (2.9) and (2.10), is
represented by Eq. (E.8).

Several terms in the lubrication equation are discretized, similar to the mEPKN
model. The time derivative is discretized by the backward finite difference in Eq. (E.9).
The derivative of flux is discretized by the central difference scheme in Eq. (E.11).
The flux at the crack front is zero.

The flux at the edge between adjacent elements ¢ and j differs from Eq. (E.12),
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and can be written by discretizing equation (4.12) as

. 1 50 — 500 X Gm) - qplm)\
1)~ L (w v >Ag<m>, (G.12)

G ST HE0 — 50 2

m=

where the sum corresponds to the integral of w; over ¢, and Ag(™ is the integration
step in the vertical direction
The leak-off term is included in the mEP3D model. The arising integral is com-

puted numerically for #;;, element as

(4) N .
1 hi /2 / 1 Yh A (2,m)
(—/ ¢ dg) ~ ¢ > _AnT (G.13)

H hi/2 \/t — t()Jc(i', 17) H — t(z,m) ’

=14/t —t;

where Ah(™ and t7"™ track the position of the fracture front in time by storing the
time history of height growth for each fracture element. At m = 0, the value t(()i’o)
denotes the time step when the fracture front reached . For m = 1,..., N, the
value t(()i’m) is the my, time step after tg’o) and AhU™ is the corresponding height
increment at ). The leak-off values from (G.13) are combined into the vector g;.

The discretized form of the source term is given by Eq. (E.13). The source
term (E.13) is represented by the vector gs.

Finally, the lubrication equation can be written as

1 _ I 4
[EI — AC} w=—q +qs + Ew , (G.14)

157



or, equivalently, as

Liw = b, (G.15)

where

1 1
L=—I1-A = — 4+ —w'. 1
A7 C, b ql+qb+Atw (G.16)

The nonlinear system (G.15) is solved as a linear system. First, w is computed, then
h, L, b, Q, and the position and direction of the lateral fracture fronts are updated.
The process repeats until convergence. The solution w at the first time step is
calculated from the radial fracture solution (Dontsov, 2016).

The direction of the lateral front propagation is determined by the zero Mode 11
criteria (4.16). The tip element is allowed to change its angle until the splitting, and
then the resultant new inner element has fixed orientation in space. The turn angle
of the tip element is computed to ensure the components of D, corresponding to the
tip elements are zero, which is equivalent to K;; = 0 at the crack tip. The vector
D, is given by equation (G.7). The lateral extension of the fracture is guided by
the growth of the tip elements, the lengths of which are computed from the effective

fracture opening using equations (G.4) and (D.1).
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