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ABSTRACT 

 Routing vehicles through a traffic network such as a modern-day city has been a much-

studied topic, with routing algorithms such as Dynamic User Equilibrium (DUE) having been well 

documented. The focus of many such works has been on the optimization of average travel time 

through traffic networks aiming for the more efficient routing of vehicles. In this thesis, we outline 

our plans for routing to satisfy arrival deadlines, where vehicles are routed with the primary 

objective of getting somewhere on time. We consider vehicle routing through a smaller section of 

a city, known as a traffic sub-network, using a centralized scheme as a guiding traffic assignment 

agent. We introduce our preliminary implementation of a routing algorithm built on the Selfless 

Traffic Routing (STR) model and Dynamic User Equilibrium (DUE) to show the viability of such 

a scheme on a traffic network. We present our experimental results from running this scheme on a 

real-world traffic network. We consider a pre-vehicle movement rerouting scheme capable of 

being competitive against more informative real-time models. We evaluate DUE-STR and these 

models using the number of arrival-deadline misses and the average travel time performance 

metrics for vehicles. We find mixed results between DUE-STR and other models, with our DUE-

STR model mostly having better results when considering deadline misses and mostly having 

worse results when considering average vehicle travel time. We explore reasons why the results 

may not be quite as good as well as potential solutions to solve these issues. 
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Introduction1 

Getting to work on time in a modern city is slowly becoming more and more difficult as 

the average travel time of a one-way commute hit a new high in the U.S. of 27.5 minutes in 2019 

[1]. Among several strategies proposed to reduce congestion [2], routing traffic more efficiently is 

the vital option that we focus on. Intuitively, studying methods for better vehicle routing typically 

focuses on reducing average travel time for all vehicles throughout the network, by controlling 

congestion [3]. However, exclusively focusing on travel time can lead to drivers arriving late to a 

destination as solely focusing on travel time does not consider individual driver deadlines. Since 

most people travel with a known arrival deadline to their respective destinations, deadline-

prioritized routing algorithms can reduce congestion while minimizing the impact on people's daily 

plans compared to those that do not consider travel deadlines. To satisfy the travel deadline of each 

vehicle, this thesis proposes an efficient approach while also minimizing road congestion, i.e., the 

average travel time of all vehicles. 

Our solution is based on a few assumptions, most namely that all the vehicles in the 

network are autonomous self-driving fully controlled vehicles, routed by a centralized traffic 

routing agent, with full a view of the traffic network. As will be elaborated upon, each routing 

scheme must be able to answer two cardinal questions fundamental to vehicle routes: “how to route 

vehicles”, and “how to predict vehicle travel time on a certain route”. We cover how other methods 

 

1 © © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional 
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted 
component of this work in other works. 
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and our centralized routing controller are able to answer both of these questions. 

To route vehicles based on their deadlines while minimizing the traffic congestion in a 

network, a centralized routing system is needed. However, as [4], [5] point out, such a large-scale 

centralized routing system is intractable with real-time requirements on a huge amount of data 

transmission and computation. Therefore, our scheme divides a large network into multiple sub-

networks, where each sub-network is small in scale so that a centralized routing system is viable 

inside the sub-network [6]. An example of a large network is shown in Figure 1, with the 

boundaries of the many subnetworks outlined in different colors. In this thesis, we focus on 

developing an efficient centralized deadline-prioritized routing algorithm within each sub-network. 

 

Figure 1: An Example of a Network and the Divided Sub-Networks 

  The Selfless Traffic Routing (STR) model [7] has been proposed to solve the routing 

problem inside a sub-network. Here, ̀ `selfless'' means some vehicles may be routed to a route with 

longer travel time to reduce road congestion while their deadlines can still be satisfied. The STR 
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model is still in its infancy [7]; as such our contributions to expanding it include:  

1) using an approximated Dynamic User Equilibrium (DUE) for alternative path generation to 

create a novel vehicle routing algorithm geared towards reducing deadline misses and 

2) showing our algorithm's efficacy through experiments using Simulation of Urban MObility 

(SUMO) [8]. 

  

The remainder of the thesis is thus organized as follows: 

- In Chapter 1 we briefly review the STR model and DUE solution concept as well as cover 

relevant topics making up the core theory behind our model. 

- In Chapter 2 we introduce the proposed novel approach DUE-STR. 

- Finally in Chapter 3 our experimental evaluations of DUE-STR are presented and 

discussed. 
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Chapter 1 Related Work2 

Examples of currently implemented, publicly available tools used to help drivers reduce 

their travel time include Waze [9], Google-maps [10], and Houston TranStar [11]. With support 

from these tools, as well as future self-driving technologies such as those from Tesla [12] and 

Waymo [13], the potential for a fully autonomous grid of self-driving cars becomes a real 

possibility in the future. To this end, routing algorithms concerning autonomous vehicles have 

been studied by various other researchers [4], [3], [14], in order to produce better routing policies 

for the autonomous vehicles of the present and future. However, most of these methods have 

traditionally focused on reducing travel time or “cost” for each individual vehicle. To build up to 

DUE-STR we first discuss earlier algorithms including Dijkstra’s algorithm, the traffic assignment 

problem (TAP), Dynamic User Equilibrium (DUE), one-shot assignment, and finally the selfless 

traffic routing (STR) model. Reviewing these models as well as how they are related to the two 

cardinal questions, will give us a basis for how routing has been calculated in previous methods 

and how our method builds upon them. As mentioned before the two cardinal questions of vehicle 

routing include how to route vehicles and how to predict the travel time of a vehicle using said 

route. We begin creating an understanding of these two questions by considering a basic solution 

to answer the question of “how to route vehicles”: Dijkstra’s Algorithm. 

 

2 Content in this chapter has been taken from the previously published work “Work In Progress: A Solution Based 
on Dynamic User Equilibrium Toward the Selfless Traffic Routing Model” By Thomas Carroll, Albert M. K. Cheng 
and Guangli Dai [30]. 
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1.1. Previous Models and Work 

1.1.1. Dijkstra’s Algorithm 

 

 

Figure 2: A Shortest Path Solution. 

The most primitive version of cost optimization in a route-based problem can be found in 

the shortest path algorithm, Dijkstra’s Algorithm [15]. Dijkstra’s algorithm considers a basic 

connected graph consisting of dots and lines between them (Figure 2), referred to hereafter as 

nodes and edges respectively, where each edge has an associated “cost”. The problem Dijkstra’s 

algorithm is trying to solve is finding the path with the lowest associated cost between two nodes. 

In the case of Figure 2, we try to find the path with the least cost between the origin node A and 

destination node B. The set of origins and destinations, in terms of vehicular routing, is formally 

known as an Origin-Destination (O-D) matrix, which contains the origins and destinations of all 

vehicles in a system. Dijkstra’s algorithm solves the problem by starting at the origin node and 

exploring the nodes immediately connected to the origin node. Dijkstra’s algorithm then moves to 

nodes one by one documenting their connections and associated cost to one another, resulting in 

the shortest path highlighted in green in the 2nd image in Figure 2 (A->N3->N2->B). 
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We can relate this specific example to vehicle routing by considering each node as an 

intersection and each edge a street between two intersections with an associated predicted travel 

time, we will refer to this method as the shortest path method further ahead.  

With a basic solution for the question of “how to route vehicles”, we would now like to 

look at how we might apply a solution to this question on a more theoretical level while considering 

real-time traffic conditions.  

1.1.2. The Traffic Assignment Problem 

While finding the shortest path using Dijkstra’s algorithm may be optimal in a static system 

with no change in the cost of the edges, routing multiple vehicles may change the cost by creating 

congestion on certain edges. For example, if we routed 100 vehicles down the shortest path in 

Figure 2, we may end up with a congested path, meaning that a longer path may end up with a 

better travel time. This type of problem is formally known as the Traffic Assignment Problem 

(TAP) [16], with the overall goal being to minimize travel time for all vehicles in the network by 

assigning different amounts of vehicles to various routes. To answer the first cardinal question 

“how to route vehicles” for the TAP, we consider a solution by John Glen Wardrop, who presents 

two principles of Wardrop equilibrium that can solve the TAP [17]. The Wardrop equilibrium 

considers all vehicles in the network as independent agents aiming to maximize their overall gain 

in a game-theoretic way, which, in the case of a TAP, is minimizing individual travel time. For 

such a scenario, Wardrop states that a type of equilibrium will form in the traffic network when 

given a set of routes from node A to B where the travel time of any used routes are all the same 

and no greater than the travel time of an unused route [17]. This is known as user equilibrium, the 
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first of the two equilibriums, as no single agent can make a choice that is any better or worse than 

their current choice.  

The second of the two equilibriums is known as system optimal equilibrium; here instead 

of individual vehicles behaving selfishly, vehicles work together to reduce the average travel time 

of all vehicles in the network. This version of equilibrium is the version that fully autonomous 

networks of self-driving vehicles bring into the realm of possibility. While we do not focus on 

modifying or aiming for system optimal equilibrium, it is worth mentioning since the selfless 

traffic routing model applies the idea of vehicles working together in pursuit of an objective [7], 

which will be elaborated on more in Section 1.2. 

To give an example of user equilibrium in practice we can consider the diagram in Figure 

3 [18]. We consider a diagram of two nodes, an origin A and destination B (a single entry in an O-

D matrix), with two possible routes and an equation denoting the time it would take to travel down 

a route as a function of the number of vehicles currently assigned to the route per hour (x). Here 

the y-intercept for these functions represents the default amount of travel time a vehicle would 

take to travel down the route based on general parameters like speed limit and distance. This linear 

function is what answers the cardinal question: “how to predict vehicle travel time on a certain 

route” for the TAP. We consider the number of vehicles to be in the unit of thousand/vehicles-per-

hour and the time to be in minutes. For this example, we consider 15,000 vehicles per hour (15 

thousand/vehicles-per-hour), and to achieve a state of user equilibrium in this diagram we want to 

assign vehicles to each value of x such that 𝑡1 =  𝑡2.  
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Figure 3: A Traffic Assignment Problem 

We calculate the solution to Figure 3: 

Given: 

 𝑥1 +  𝑥2 =  15, 𝑡1 =  𝑡2, 𝑡1 =  5 +  3 ∗  𝑥1, 𝑎𝑛𝑑  𝑡2 =  2 +  5 ∗ 𝑥2 

We can solve for 𝑥1 and 𝑥2: 

5 + 3 ∗ 𝑥1 =  2 +  5 ∗ 𝑥2  

-> 𝑥2 =
ଷ ା ଷ ∗ ௫ଵ

ହ
 

-> 𝑥1 +  (3 +  3 ∗  𝑥1)/5 = 15  

-> 𝑥1 =  9, 𝑥2 =  6 

𝑡1 =  32 and 𝑡2 =  32 

 We can thus assign 9,000 vehicles to route 1 and 6,000 vehicles to route 2 (𝑥1 = 9, 𝑥2 =

6) to get an even travel time down both routes of 32 minutes. Thus, from the perspective of a 

driver attempting to move from A to B both routes are equally as good, resulting in a fully realized 

user equilibrium for this system. This TAP example outlines how a route controller might route 

vehicles to create user equilibrium in this example network, however actually implementing a 

similar scheme in a real network such as the one in Figure 1 is significantly more complicated. 
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1.1.3. Dynamic User Equilibrium 

  A big assumption is made when calculating a TAP, specifically the use of a single function 

that can perfectly calculate travel time based on the number of vehicles assigned to a route. Finding 

such a function in a simulation like SUMO, much less in real life, is virtually impossible to create 

on the same level of accuracy as a TAP. Factors such as vehicles that do not match the speed limit, 

the timing of traffic lights, different vehicle accelerations, different vehicle braking speeds, etc. on 

top of the complexity of the network, are to blame for this. As a result, the ideal equations of a 

TAP from Figure 3 are mostly theoretical. So, if these equations are theoretical how can we attempt 

to approximate them in a real-world example and answer the question “how to predict vehicle 

travel time on a certain route”? A simple solution is to use historical trips of vehicles that have 

previously traveled the network and record the conditions of the network at the time of travel.  

Using historical predictions has been used in the past to predict travel time [19], [20] [21] 

to predict vehicle travel time, however these techniques produce approximations of travel times 

and not the idealized functions of Figure 3. As mentioned before creating a perfect travel time 

prediction function is practically impossible; this will result in some error in the number that we 

use to represent travel time. This error will thus affect the user equilibrium in Figure 3, where 

ideally we would want to have the x values as 𝑥1 =  9, 𝑥2 =  6, thus we may have to settle for 

an approximation of 𝑥1 =  7.8, 𝑥2 =  7.2 due to the approximation of travel time. This reveals 

that to achieve user equilibrium in practice solving two approximation problems is required, in 

other words, the two cardinal questions cannot be made optimal in a reasonable time and must thus 

be approximated. This means approximating the travel time of a vehicle from A to B and then 
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creating an approximation of how many vehicles to assign to each route to equalize travel time to 

user equilibrium like Figure 3, all while considering the changing state of the traffic network. We 

would like to look at the method that approximates both problems, by considering the user 

equilibrium approximation method, Dynamic User Equilibrium (DUE), a type of Dynamic Traffic 

Assignment [22]. 

 With continuously changing traffic, we need DUE, which aims to create user equilibrium 

by assigning routes based on changing real-time conditions. A key challenge here is that DUE 

requires the travel time of vehicles to create the user equilibrium, while the travel time of vehicles 

depends on current traffic conditions, which in turn depends on vehicle route assignment handled 

by DUE. Due to the inter-dependency between the travel time and the vehicle route assignment 

determined by DUE, an iterative process must be executed aiming to approximate a DUE. This is 

implemented in Simulation of Urban Mobility (SUMO) [8] in the form of duaiterate [23], meaning 

that to find a good approximation of user equilibrium duaiterate must execute all vehicle trips 

recursively. Duaiterate makes changes to the routes of vehicles between iterations by considering 

the travel time of each vehicle during the previous iteration. Thus, duaiterate is able to use previous 

travel times to solve the problem of approximating travel time, and the changes in routes to 

approximate the user equilibrium in Figure 3 on a network-wide scale. This comes at the tradeoff 

of the resulting routes only being approximations of ideal user equilibrium routes and the large 

computation time needed to run this operation. For reference, running duaiterate on SUMO with 

100 iterations can take upwards of two minutes, with various levels of improvement and sometimes 

regression in average travel time against the control shortest path assignment.  

 A heuristic of DUE known as one-shot assignment [22] is also provided in SUMO in the 
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form of one-shot.py [24]. A One-shot assignment attempts to do what DUE does during execution, 

with the tradeoff of not explicitly aiming to create a perfect user equilibrium. This is done by 

periodically updating the travel time of various edges in the network and assigning vehicles to 

routes based on the travel time of the routes at the time a vehicle requests to be routed (when they 

enter the network). Computationally, one-shot.py is able to generate routes this way in about 2 

seconds, which is roughly the time a single iteration of duaiterate takes to complete. Performance-

wise, the resulting routes are also rather mixed in their performance, typically doing slightly worse 

or slightly better than the control shortest path in terms of average travel time. The results can be 

seen in Chapter 3, Figure 6, where we evaluate the performance of DUE-STR. 

 It should be noted that the computation times of duaiterate and one-shot.py were derived 

from a computer with a 4 core i7-4790k at 4 GHz with 16 Gb of RAM, with Python using roughly 

30% of CPU time. 

 

1.2. The Selfless Traffic Routing Model 

 The STR model first proposes the idea of “selfless'' in traffic routing. The goal of the STR 

model is to guarantee the travel deadline of each vehicle while minimizing the average travel time 

of all vehicles. More specifically, this means a vehicle with a closer deadline (V1) will be routed 

down paths with shorter expected travel times and a vehicle with a farther deadline (V2) will be 

routed down paths with longer expected travel times [7]. This creates a non-optimal route for V2 

whereby this vehicle is routed “selflessly”, allowing V1 to have a greater chance of meeting its 

deadline at the cost of a longer trip for V2. In essence, the STR model provides us with a 
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methodology for solving the cardinal question of “how to route vehicles”. Together with the STR 

model, a testbed, based on Simulation of Urban MObility (SUMO) [8] is built to evaluate the 

performance of different routing policies [7]. Our experimental evaluations in Chapter 3 are 

developed based on this testbed. 

In other previous works that study the traffic routing problem [3], [16], [25], reducing 

average travel time was the main goal, while the deadline of each vehicle is ignored in these models. 

While routing vehicles with the goal of minimizing average travel time is a viable way to increase 

the efficiency of road systems, not considering the travel deadlines of individual drivers can have 

disastrous consequences. Considering the example in Figure 3, we aimed to equalize travel time 

throughout the network, but by doing so have created a “selfish” system where individual drivers 

are looking for the route with the lowest travel time at their own time of travel. This can cause 

problems for vehicles with travel deadlines, as their choice of routes will both be of the same travel 

time. If no route provides a travel time quick enough to allow deadlines to be met, then many 

people may be late to arrive to their destinations. This is an issue that we consider and are able to 

get around through the use of a tool in SUMO in our implementation of DUE-STR, with further 

details provided in Chapter 2. 

1.2.1. Division of Networks into Sub-Networks 

Minimizing deadline misses in a real-time network has been explored before [4], [5], 

however, these implementations have focused on decentralized strategies. A decentralized strategy 

considers local information and general global information such as route distance [5], which means 

the routing algorithm cannot have real-time routing information, i.e., the actions of other vehicles 
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in the sub-network. While a centralized strategy can help utilize the network more efficiently, it 

requires a much larger amount of data transmission and computation. Thus, as discussed in the 

introduction, we divide large-scale networks into smaller sub-networks [6] and develop centralized 

deadline-prioritized routing algorithms in each sub-network. 

In our current implementation, we do not consider the optimal size and area a subnetwork 

should cover, but rather estimate what a sub-network could potentially be. While this scheme may 

be fine for local streets in a non-freeway setting, considering small subnetworks for small stretches 

of freeway especially with no entrance or exits present seems like an obvious waste. We think that 

if ideal splits between subnetworks are to be considered, there must be a split between types of 

subnetworks based on the type of road considered. 
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Chapter 2 DUE-STR3 

Our model is built on SUMO, taking full advantage of its demand modeler tool 

DUAROUTER [8] and DUE approximator tool duaiterate [23]. We aim to combine the STR model 

with DUE to route vehicles in such a way to avoid deadline misses, answering the cardinal question 

of “how to route vehicles”. Our proposed approach, referred to as DUE-STR, intends to swap the 

routes between vehicles so that vehicles with closer deadlines are given routes with lower travel 

time in a single pre-run step. Where a run is when the vehicles traverse the network along their 

routes along with all relevant pre-movement information for vehicles including start time, origin, 

destination, etc. Thus, since DUE-STR only considers this pre-movement information, DUE-STR 

modifies the routes of vehicles prior to any vehicle movement with no real-time updates from 

DUE-STR. We use a K-Nearest Neighbors (KNN) regression model to predict the travel time for 

each route [26], which answers the cardinal question “how to predict vehicle travel time on a 

certain route”. Specifically, DUE-STR aims to use the approximated DUE created by duaiterate, 

so route swaps between vehicles are done such that no new routes are created, but rather the route 

a swapped vehicle travels is different from its original.  

We mentioned earlier in Section 1.2 that user equilibrium has little to no room to consider 

rerouting vehicles due to the equilibrium of travel time created throughout the routes, giving us no 

ability to reroute vehicles with deadlines that cannot be met by the current travel time provided by 

 

3 Content in this chapter has been taken from the previously published work “Work In Progress: A Solution Based 
on Dynamic User Equilibrium Toward the Selfless Traffic Routing Model” By Thomas Carroll, Albert M. K. Cheng 
and Guangli Dai [30]. 
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the available routes. We get around this issue by considering that duaiterate can, on average, only 

manage to create an approximation of user equilibrium. This means that rather than routing 

vehicles in a perfect split like in Figure 3 (9000 route 1, 6000 route 2) an imperfect approximation 

is made such as (7900 route 1, 7100 route 2). This creates an imbalance of travel times between 

the two routes, meaning that we are in fact not working with a perfect user equilibrium. This 

actually works in our favor since we can analyze the results of this imperfect user equilibrium by 

looking at the estimated travel times of each route. We can then swap vehicle routes based on the 

estimated travel time of each route created by duaiterate, prioritizing vehicles with low deadlines, 

while also still having a decent DUE approximated set of routes aimed at improving overall travel 

time over the shortest path method.  

In our current setup of DUE-STR, vehicle trips are generated before any vehicle movement, 

as mentioned before, the problem with this is how to solve the problem of getting good predictions 

of vehicle travel time before execution. We begin by first collecting data on trips through the sub-

network using a more primitive version of DUE-STR. This primitive version of DUE-STR 

generates reroutes similar to our current implementation of DUE-STR but with much less efficacy. 

We use these primitively generated reroutes to generate historical route data, recording the start 

time, distance, number of edges, number of potentially encountered vehicles, a simple estimated 

travel time (sum-of-distance/speed-limit for all edges in a route), and finally actual travel time. 

With this data, we can ensure that acceptable travel time prediction happens before a run. For our 

purposes in this thesis, a KNN regression agent, trained on our collected data for the red sub-

network in Figure 1 is used to predict travel time. To get a prediction, we input the same data that 

we collected, namely the start time, route length, number of edges, number of potentially 
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encountered vehicles, and estimated travel time and we receive a predicted travel time for that 

route. The prediction agent has a mean absolute error (MAE) of  ≈74.9 seconds and a mean 

absolute percentage error (MAPE) of ≈30.26%. MAE is a measure of average absolute error 

between the actual and predicted values. MAPE is a measure of the percentage of the average 

difference between the predicted and true values. 

Mean absolute error is calculated: 

𝑴𝑨𝑬 = ൬
1

𝑛
൰ ∗ ෍ |𝑦𝑖

௡

௜ୀଵ

− 𝑥𝑖| 

 Mean Absolute percentage error is calculated: 

𝑴𝑨𝑷𝑬 =  ൬
1

𝑛
൰ ∗ ෍ |

𝑦𝑖 − 𝑥𝑖

𝑦𝑖
|

௡

௜ୀଵ

 

Where n is the number of entries, y is the true value, and x is the value predicted by the model. 

 This allows us to put the numbers 74.9 seconds and 30.26% into perspective meaning our 

KNN regressor agent has an average absolute error of 74.9 seconds and 30.26% average difference 

between the true and predicted values. Since the travel times are in seconds and we are dealing 

with trips in the hundreds of seconds, the accuracy of the KNN travel time prediction agent is 

acceptable for our experiments. 

The goal of our experimental setup is to showcase our routing scheme by simulating an 

area of high traffic, with vehicles seeking to simply pass through the sub-network by a given time, 

represented by a local-sub-network deadline. We consider the sub-networks in Figure 1, 

specifically the one outlined in red with green dots labeled A-F indicating origin-destination points. 

The focus here is to consider the main roads, thus dots N1 and N2 are excluded from our selection 
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for being connected to neighborhoods, as they are less likely to be used by a vehicle simply looking 

to pass through the sub-network. Following these rules, trips start at one of these points and end at 

another, generating an O-D matrix based on these criteria. 

With an O-D matrix and network as input, we can generate the shortest path base routes by 

using DUAROUTER. DUAROUTER uses Dijkstra's algorithm to output a base routes file 

explicitly defining the route of each vehicle. This base route file is taken alongside the network 

file as input for duaiterate. Duaiterate uses the generated shortest path from the DUAROUTER 

base trips to reroute vehicles throughout the network. A reroute occurs by changing a vehicle’s 

decision at an intersection thus changing a vehicle’s route. Duaiterate outputs a set of DUE-

Approximated ν (nu) routes that include several reroutes of vehicles away from the shortest path. 

We run duaiterate iteratively as mentioned in Chapter 1, setting the number of iterations to 100, 

typically giving us improved performance. The resulting output is a set of new (ν) DUE 

approximated trips, with various vehicle reroutes throughout the sub-network. 

With the DUAROUTER base routes and duaiterate ν routes in hand, we have our input for 

DUE-STR. We begin by taking all vehicles and sorting them in increasing order of deadlines into 

a list 𝑉. We iterate through 𝑉, considering vehicles with the lowest deadlines first. We consider 

each vehicle one at a time, denoted by 𝑉𝑖. Vehicles ahead of 𝑉𝑖 in the list are considered next, 

denoted by 𝑉𝑗  where 𝑗 >  𝑖 ∀ 𝑉𝑗 ∈  𝑉 . Next, it is ensured that 𝑉𝑖  and 𝑉𝑗 have the same 

destination, otherwise, the current 𝑉𝑗 is skipped. If these conditions are cleared, we move to the 

core of the algorithm, where multiple conditions are checked to fully execute a swap. 
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2.1. Algorithm 1: DUE-STR  

Input: Shortest Path Base Routes from DuaRouter, DUE-Approximated ν Routes from 

Duaiterate 

Output: Deadline-Prioritized DUE-Approximated Final Routes 

1: Compare Base and 𝜈 routes to identify and list in 𝐸, all shared 𝑒 edges. 

2: Sort all Vehicles into a list 𝑉 in increasing order of deadlines. 

3: for 𝑖 =  1 →  |𝑉 | and 𝑗 =  𝑖 +  1 →  |𝑉 | do 

4:  if 𝑉𝑖 and 𝑉𝑗 do not have the same destination then 

5:   continue 

6:  end if 

7:     if ∃ edge 𝑒 ∈  𝐸 shared by 𝑉𝑖 and Vj and edges after 𝑒 are completely different, except  

            for the destination, in the 𝜈 route & the expected travel time for routes after 𝑒 of 𝑉𝑖 is 

than that of 𝑉𝑗 then  

8:   swap the edges after 𝑒 of 𝑉𝑖 and 𝑉𝑗. 

9:  end if 

10: end for 

For two vehicles to be viable candidates for swapping, we refer to line 7 in Algorithm 1. 

There is a total of three conditions for a swap to occur that all revolve around the existence of a 

shared edge 𝑒 between 𝑉𝑖 and 𝑉𝑗. A shared edge is an edge that is present in the original shortest 

path routes of two or more vehicles that share the same destination. The shared edge is then an 

edge where one or more of these vehicles reroute away from the shortest route to an alternative 
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route as generated by duaiterate. We thus begin by identifying all shared edges 𝑒 using the base 

and ν routes marking them all in a list 𝐸. This streamlines the process of searching for shared edges 

during swapping later on in the algorithm. 

 

Figure 4: An Example of a Reroute on the Green Vehicle. 

 

We consider the sample case shown in Figure 4. In this example, there are 4 vehicles, each 

following a route represented by a different color. 𝐴, 𝐶, and 𝐷 are various start locations with two 

sub-routes of interest, 𝑅1 and 𝑅2, to the shared destination 𝐵. A shared edge 𝑒, marked in red, is 

a small part of the road right before the intersection 𝑃1. In the base routes in Algorithm 1, all 

vehicles are routed along the shortest path, in this case 𝑅1 to 𝐵. Figure 4 shows the ν routes, where 

the vehicle following the blue line is rerouted from 𝑅1 to 𝑅2 by duaiterate. Next, to accomplish 

the edge swap described in Algorithm 1, DUE-STR will enumerate edges in the green route where 

the green route is treated as the first encountered 𝑉𝑖, which is to say it has the earliest deadline of 

all the other vehicles in our example. The vehicle in the blue route will be found as a 𝑉𝑗 since it 

shares the same edge 𝑒 ∈  𝐸  and the same destination with 𝑉𝑖. If the KNN time prediction agent 

indicates that the expected travel time of 𝑉𝑗 is less than 𝑉𝑖, we mark a potential swap on this edge 

𝑒.  
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After enumerating all feasible 𝑉𝑗's, like the one in the blue route, we choose the best 𝑉𝑗 

with the least expected travel time and swap the edges after 𝑒. Suppose the vehicle in the blue 

route is the chosen 𝑉𝑗, the green and blue routes after 𝑒 will be swapped, as shown in the DUE-

STR Routes graph in Figure 4.  

For instances where multiple shared edges are present along the route of a vehicle, we 

repeat the same as above for each shared edge and return the best 𝑉𝑗 from each of the relevant 

shared edge. We are left with a list of multiple 𝑉𝑗𝑠 with uniquely associated shared edges 𝑒 to 

consider. We again choose the best 𝑉𝑗 from this list and swap the 𝑉𝑖 with the relevant 𝑒. 

Note that though the pink route also includes intersection 𝑃1, it is not considered due to 

not sharing an edge 𝑒; this is to prevent the pink vehicle from making a U-turn. It is also possible 

for more than one 𝑒 to exist, in which case the same process as above occurs, except that the best 

𝑉𝑗  from multiple shared edges are considered and subsequently chosen.  
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Chapter 3 Experiments and Results4 

Our experimental setup consists of different “runs”, where a “run” contains the information 

about the vehicles that will be moving through the red sub-network in Figure 1. This information 

includes between 300 and 500 randomly generated fully controlled vehicles with deadlines in the 

range of 500 to 1000 seconds, a randomly generated O-D matrix detailing the origin and 

destination of each vehicle. Our aim in these experiments is to simulate a sub-network with heavy 

traffic to show the viability of DUE-STR in a high traffic environment where a few choices in 

routing can have a dramatic impact on the performance of the network. The subnetwork in Figure 

1 is generated via a SUMO tool [8] that extracts real-world map data from Open Street Map [27] 

and returns a fully functional SUMO network based on the selected map region. In this case, we 

select a map region close to the University of Houston where the traffic going in and out of the 

area can be expected to be relatively heavy. We test our algorithm with 10 randomly generated 

sets of runs and compare the performance of four generated route files. These route files are 

generated by DUAROUTER using the Dijkstra’s algorithm as an experimental control, a 100-

iteration execution of duaiterate, an execution of one-shot.py using an update time of 10, and 

finally our DUE-STR using the files duaiterate and DUAROUTER created as input. Each routing 

file is tested in a separate execution, simulating the network as all vehicles enter and travel to their 

destinations, where vehicles have the same set of O-D pairs and deadlines, allowing for easy 

 

4 Content in this chapter has been taken from the previously published work “Work In Progress: A Solution Based 
on Dynamic User Equilibrium Toward the Selfless Traffic Routing Model” By Thomas Carroll, Albert M. K. Cheng 
and Guangli Dai [30]. 
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evaluation of multiple algorithms. The deadlines missed and average travel time for the base 

DUAROUTER generated routes, the ν routes from duaiterate, the DUE-STR final routes, and the 

one-shot generated trips are shown in Figure 5 and Figure 6, respectively. The graphs' x-axis shows 

the ID of an individual run followed by a dash and a number representing the number of vehicles 

generated in that particular run. The y-axis represents the number of deadline misses in the case of 

Figure 5 and the average travel time in Figure 6. 

 

Figure 5: Performance of Different Traffic Routing Algorithms 
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Figure 6: Average Travel Time by Run in Seconds. 

3.1. Results of Experiments 

We now compare and analyze the performance of the four routing algorithms and find 

mixed results. In terms of our primary objective deadline misses, DUE-STR outperforms or does 

as well as the other algorithms in runs 0, 4, 5, 6, 7, and 9, outperforms two algorithms in run 1, at 

least one algorithm in run 2, and does worse than all other algorithms in runs 3 and 8. With regards 

to our secondary object average travel time, we see that DUE-STR outperforms or does as well as 

the other algorithms in runs 0, 4, and 6, outperforms two algorithms in runs 1, 5, 7, 8, and 9 at least 

one algorithm in run 2, and does worse than all other algorithms in run 3.  There are a few reasons 
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why DUE-STR might perform worse than the other algorithms: the lack of accuracy in the KNN 

time prediction agent, the strict adherence to DUE, and rerouting before vehicles travel (pre-run). 

We would like to go into further detail with regards to these issues and potential solutions. Starting 

from the top: while the KNN time prediction agent is a strong asset, it only predicts travel times 

before a run, which may cause some error due to not being able to consider the real-time conditions 

of the network, resulting in subsequent error. Furthermore, as shown earlier, the KNN regression 

travel time prediction agent is not 100% accurate. Moving on to the issue of strict Adherence to 

DUE: sometimes only considering the alternative routes created by duaiterates DUE 

approximation, disallows vehicles that need to swap in order to meet their deadline, to miss their 

deadline due to a lack of opportunity to reroute. We make a differentiation between this type of 

lack of opportunity and the lack of opportunity mentioned in Section 1.2 regarding no ability to 

reroute due to all the routes having the same travel time due to user equilibrium. Rather this lack 

of opportunity mentioned here occurs when no shared edges are found for a vehicle, thus a vehicle 

cannot reroute due to the lack of available alternative routes.  To be more explicit, we can reference 

Figure 4 again; the vehicle being referred to here are vehicles like the pink vehicle. As shown in 

Figure 4, the pink vehicle has no valid shared edges 𝑒 and thus no valid 𝑉𝑗 to swap with. The 

evidence of these types of interactions is shown in Figure 7 by the red lines representing the 

vehicles that missed their deadlines.  
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Figure 7: Deadline Miss by Options for DUE-STR 

 The vehicles with no “edge 𝑒 found” (no shared edges found) aka vehicles like the pink 

vehicle in Figure 4, are the largest group of vehicles to miss their deadline in almost every run. 

Furthermore, the rerouting of vehicles can potentially affect the performance of the sub-network, 

moving it either towards or away from a good approximation of DUE, caused by duaiterate 

creating a non-optimal DUE. To elaborate, when two vehicles are swapped, we currently do not 

consider the distance between the two in the network. To be more vivid we can consider Figure 4, 

as shown we swap the routes of the blue and green vehicles, so let us consider that the green and 

orange vehicles start moving at time 50 and the blue vehicle starts at time 0. When we swap green 

and blue this can have an effect on the way green and blue interact with other vehicles. For example, 
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by swapping green and blue, green may end up cutting off orange at the P1 intersection resulting 

in a delay for the orange long enough to make it miss its deadline. We thus see that swapping 

vehicles like this can potentially have a negative impact on other vehicles as well. We can also 

consider the converse, going back to start times, in this example let blue and orange start at time 0 

and green at time 50. If blue takes a right onto route R2 at intersection P1, it delays orange enough 

for orange to miss its deadline. Subsequently, swapping the routes of green and blue removes this 

delay for orange causing it to now meet its deadline. As shown in these examples, swapping can 

have a wide variety of effects on not only the vehicles being swapped but other vehicles throughout 

the network as well. 

 This is generally difficult to predict due to the temporal nature of vehicle routing and is 

the primary reason why duaiterate must run through so many different iterations to attempt to 

improve on the shortest path routes. Furthermore, as previously mentioned, not considering real-

time conditions during swapping has a substantial role in this issue. 

 We would like to discuss potential solutions to these issues. The KNN time prediction 

agent could be made more accurate by considering real-time conditions of routes, giving us the 

potential to consider the number of vehicles ahead, current traffic light conditions, etc. Developing 

the KNN agent to consider these factors and more in real-time will allow us to experiment with 

different time periods in which reroutes occur, such as right as a vehicle enters the network (one-

shot assignment), right before a vehicle reaches a shared edge, etc. This also extends to the issue 

of pre-run re-routes, whereby considering the state of the network at different times may help us 

make better re-routes. This goes back a bit to Chapter 1, where previous solutions [4] [5] 

considered the local state of the network, not considering more than a few edges ahead of current 
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vehicle positions. On the other hand, we aim to leverage the state of the overall sub-network to 

make more informed decisions. Finally, the issue of vehicles with no 𝑒 edges missing deadlines 

could be solved by assigning some vehicles with longer deadlines and the same route to other 

longer routes to “move them out of the way” of the vehicles with closer deadlines. This extension 

of the “selfless” principle most likely requires another scheme other than DUE for alternative route 

generation.  

While there is much room for improvement, on average DUE-STR combines the strengths of 

DUE and STR and was able to improve upon the existing algorithms in a single step, similar to 

one-shot assignment, without iterations unlike duaiterate which can take up to two minutes to get 

100 iterations. This is an impressive result that shows the potential of the STR model on a larger 

network and with further improvement could be shown to be more practical in a real-time 

environment. 
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Chapter 4 Conclusion and Future Work 5 

In this thesis, we described and analyzed our implementation of STR with DUE in the form of 

DUE-STR on a sub-network, highlighting the promise of the STR model as well as current 

implementation weaknesses. Going forward, we look at potential challenges to overcome, such as 

ensuring that the travel time gained from selflessly rerouting is guaranteed to be minimized with a 

rigorous proof as well as, considering vehicles that do not follow the STR controller, or give 

inaccurate deadlines to gain a better route over other drivers, and how to minimize their effects. 

Working on some of the issues on the current implementation of DUE-STR as well as potentially 

looking at moving away from an explicit DUE in favor of other schemes are other areas of 

approach that seem promising. We plan to evaluate our strategies in a smart scaled city with model 

autonomous vehicles currently under construction. 

4.1. Duckietown Scaled City 

We plan to use the Duckietown scaled city [28], [29], consisting of a customizable scaled city 

complete with autonomous vehicles, traffic lights, and roads. The Duckiebots come complete with 

the capability to drive autonomously on said roads as well as receive route instructions from a 

centralized controller, much like the one described in this thesis. Currently, we are in the early 

stages, testing the capabilities of Duckiebots with one already assembled and operating using a 

 

5 Content in this chapter has been taken from the previously published work “Work In Progress: A Solution Based 
on Dynamic User Equilibrium Toward the Selfless Traffic Routing Model” By Thomas Carroll, Albert M. K. Cheng 
and Guangli Dai [30]. 
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Nvidia Jetson board pictured in Figure 8. An example of a fully assembled scaled city is shown in 

Figure 9. 

 

Figure 8: Our First Currently Assembled Duckiebot 
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Figure 9: A Duckietown Scale City as Shown on the Duckietown Website [29] 

Our hope is that with the construction of the scaled city, we will be able to better study and 

understand routing algorithms at a much more physical level outside of a simulation. With these 

challenges and more ahead of us, we continue to aim for a more robust system to help reduce the 

number of people late for work. 
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