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Abstract

In this dissertation, we present a novel distributed Lagrange multiplier/fictitious

domain (DLM/FD) method for simulating fluid-particle interaction in Newtonian

and Oldroyd-B fluids under creeping conditions. The categories go as follows: ter-

minal speed of single ball in Newtonian fluid, rotaing speed of single ball for the

Weissenberg number up to 5.5, trajactories migration and two ball encounters in a

three dimensional (3D) bounded shear flow for the Weissenberg number up to 1. For

rotating speed, two different methodolgies have been considered and the results are

consistent with the exponential results for the Weissenberg number up to 1. For tra-

jactories migration, the ball in Oldroyd-B fluid migrates toward the moving wall and

it moves faster under higer value of the Weissenberg number. For two ball encounters,

the pass and return trajectories of the two ball mass centers are similar to those in a

Newtonian fluid, but they lose the symmetry due to the effect of elastic force arising

from viscoelastic fluids. A chain of two balls can be formed in a bounded shear flow

driven by the upper wall, depending on the value of the Weissenberg number and

the initial vertical displacement of the ball mass center to the middle plane between

two walls, and then such chain tumbles and migrates.
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CHAPTER 1

Introduction

Suspensions of particles in fluids appear in many applications of chemical, biologi-

cal, petroleum, and environmental areas. For the dynamics of rigid non-Brownian

particles suspended in viscoelastic fluids, peculiar phenomena of the particle motion

and pattern induced by fluid elasticity have been reviewed on theoretical predictions,

experimental observations, and numerical simulations in [9]

For particle suspensions in Newtonian fluids, many numerical and experimental

results have been published. Several topics are considered by researchers, such as

random displacements resulting from particle encounters under creeping-flow con-

ditions and the rotation of a neutrally buoyant particle in simple shear flow. The

1



displacements from particle encounters lead to hydrodynamically induced particle

migration, which constitutes an important mechanism for particle redistribution in

the suspending fluid (see, e.g., [42] and the references therein). Binary encounters of

particles is a phenomenon seen when two balls either pass each other or swap their

streamline position.

Particle suspensions in viscoelastic fluids have different behaviors, e.g., strings of

spherical particles aligned in the flow direction (e.g., see [25, 36, 40, 33]) and 2D crys-

talline patches of particles along the flow direction [32] in shear flow. As mentioned

in [38], these flow-induced self-assembly phenomena have great potency for creating

ordered macroscopic structures by exploiting the complex rheological properties of

the suspending fluid as driving forces, such as shear-thinning and elasticity. To better

understand particle interaction in viscoelastic fluids, Snijkers et al., (2013) [38] have

studied experimentally the two ball interaction in Couette flow of viscoelastic fluids

in order to understand flow-induced assembly behavior associated with the string

formation. In a high elasticity Boger fluid, the pass trajectories have a zero radial

shift, but are not completely symmetric. In a wormlike micellar surfactant with a

single dominant relaxation time and a broad spectrum shear-thinning elastic polymer

solution, interactions are highly asymmetric and both pass and return trajectories

have been obtained. Furthermore, shear-thinning of the viscosity seems to be the

key rheological parameter that determines the overall nature of the hydrodynami-

cal interactions, rather than the relative magnitude of the normal stress differences.

The Same conclusion about the role of shear-thinning on the aggregation of many
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particles has been reported [36, 40]. There are numerical studies of the two parti-

cle interaction and aggregation in viscoelastic fluids (e.g., see [6, 20, 41]). Several

non-Newtonian fluid models in bounded shear flow have been considered, such as

Oldroyd-B fluid and Giesekus fluid.

Hwang et al., (2004) [20] applied a finite element scheme to perform two-dimensional

(2D) computational study and obtained the existence of complex kissing-tumbling-

tumbling interactions for two inertialess cylinders in an Oldroyd-B fluid in sliding

bi-periodic frames. The two circular disks keep rotating around each other while

their midpoints come closer and closer to each other.

Choi et al., (2010) [6] used an extended finite element method to simulate two

circular particles in a 2D bounded shear flow between two moving walls for a Giesekus

fluid. Besides that the two disks either passed each other, have reversing trajectories

(return) or rotate as a pair (tumble), they also had another interaction, the two disks

rotated at a constant speed with their mass centers remaining at fixed positions,

respectively.

To simulate the interaction of two spherical particles interacting in an Oldroyd-B

fluid, Yoon et al., (2012) [41] applied a finite element method to discretize fluid flow

with a discontinuous Galerkin approximation for polymer stress. In their numerical

approach, the rigid property of the particles is imposed by treating them as a fluid

having a much higher viscosity than the surrounding fluid. For the two balls initially

located in the same vorticity plane, the balls either pass, return, or tumble in a

bounded shear flow with two moving walls for Weissenberg numbers up to 0.3.
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To study numerically the alignment of two and three balls in a viscoelastic fluid,

Jaensson et al., (2016) [21] developed a computational method which mainly com-

bines the finite element method, the arbitrary Lagrange-Euler method [18], the log-

conformation representation for the conformation tensor [13, 19], SUPG stabilization

[3], and second-order time integration schemes. Using this computational method,

they simulated the motion of two and three balls in bounded shear flows of a vis-

coelastic fluid of Giesekus type with the effect of the shear-thinning. They concluded

that the presence of normal stress differences is essential for particle alignment to

occur, although it is strongly promoted by shear-thinning.

In this dissertation, the phenomena in the fluid-particle system have been in-

vestigated numerically via several different mathematics models. To simulate the

interaction of neutrally buoyant balls in a 3D bounded shear flow of Newtonian and

Oldroyd-B fluids, we have generalized a distributed Lagrange multiplier/fictitious

domain method (DLM/FD) developed in [31] for simulating the motion of neutrally

buoyant particles in Stokes flows of Newtonian fluids from 2D to 3D and then com-

bined this method with the operator splitting scheme and matrix-factorization ap-

proach for treating numerically the constitutive equations of the conformation tensor

of Oldroyd-B fluids. In this matrix-factorization approach, the technique close to the

one developed by Lozinski and Owens in [24], we solve the equivalent equations for

the conformation tensor so that the positive definiteness of the conformation tensor at

the discrete time level can be preserved. In order to capture the exponential behavior

and preserve the positive definiteness of the conformation tensor, another approach

for solving conformation tensor of Oldroyd-B fluids, called log-conformation tensor,
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has been developed by Fattal and Kupferman [13]. We derive the formula of a three

dimensional log-conformation tensor and solve the constitutive equation by using

this methodology with operator splitting Lie’s scheme and a finite element method.

Beside the Oldroyd-B model, we have introduced the Carreau model to simulate the

flow of Oldroyd-B fluids with shear-thinning property.

For numerical simulations, we have obtained the following numerical results: the

terminal speed of single ball in a Newtonian fluid, the rotating speed of single ball in

an Oldroyd-B fluid, the migration of the balls in an Oldroyd-B fluid and the binary

encounter of two balls in Newtonian and Oldroyd-B fluids. For the rotating speed of a

single ball in a bounded shear flow, the wall effect and the viscoelasticity of fluids are

two major factors that cause the varying of the rotation speed. We have simulated

the rotating speed under four different ratios of the height between two wall over

the diameter of balls to study the wall effect and using ten different Weissenberg

numbers to investigate the effect of viscoelasticity of fluids. For the encounter of two

balls in a bounded shear flow, the trajectories of the two ball mass centers presented

in this dissertation are consistent with those obtained in [41]. We have further tested

the cases of two balls for Weissenberg numbers up to 1 and obtained they either pass,

return, or tumble in a bounded shear flow with two moving walls. The trajectories

of the two ball mass centers lose symmetry due to the elastic force arising from

Oldroyd-B fluids. For the interaction of the two balls in one-wall driven shear flow,

two balls form a loosely connected chain if the initial gap between two balls is small

and the two balls keep rotating with respect to the midpoint between their mass

centers and migrate toward the moving wall.

5



CHAPTER 2

Three-dimensional DLM/FD methods for simulating the

motion of spheres in bounded shear flows of Newtonian fluids

2.1 DLM/FD method for simulating fluid-particle

interaction in Stokes flow

2.1.1 The governing equations

Let Ω be a bounded domain in R3 and let Γ be the boundary of Ω. We suppose

that Ω is filled with a viscous fluid with density, ρf , and contains N moving balls
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2.1. DLM/FD METHOD FOR SIMULATING FLUID-PARTICLE
INTERACTION IN STOKES FLOW

of density ρs. Let B(t) =
N
∪
i=1
Bi(t) where Bi(t) is the i-th solid ball in the fluid for

i = 1, 2, · · · , N . We denote by γi(t) the boundary ∂Bi(t) of Bi(t) for i = 1, 2, · · · , N

and let γ(t) =
N
∪
i=1
γi(t).

For some T > 0, the governing equations for the fluid-particles system is as

follows:

For the fluid flow, we consider the following Stokes equations for Newtonian fluid

−∇ · σ = ρfg in Ω \B(t), t ∈ (0, T ), (2.1)

∇ · u = 0 in Ω \B(t), t ∈ (0, T ), (2.2)

u = g0 on Γ× (0, T ),with

∫
Γ

g0 · ndΓ = 0, (2.3)

u(x, t) = Vi(t) + ωi(t)×
−−−−→
Gi(t)x, ∀x ∈ γi(t), i = 1, 2, · · · , N, (2.4)

where u is the flow velocity, p is the pressure, g denotes the gravity, ρf is the density

of fluid, σ = −pI + 2µfD(u), D(u) = (∇u + (∇u)t)/2 is the rate of deformation

tensor, and µf is the dynamic viscosity of the fluid.
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2.1. DLM/FD METHOD FOR SIMULATING FLUID-PARTICLE
INTERACTION IN STOKES FLOW

1

2

B
2

B
1

Figure 2.1: An example of a region Ω with two spheres.

In (2.3), Γ is the union of the bottom boundary Γ1 and top boundary Γ2 as in

Figure 2.1 and n is the unit normal vector pointing outward to the flow region. The

boundary conditions given in (3.17) are g0 = {−U, 0, 0}t on Γ1 and g0 = {U, 0, 0}t

on Γ2 for a bounded shear flow. We assume also that the flow is periodic in the x1

and x2 directions with the periods L1 and L2, respectively, and in (2.4), a no-slip

condition takes place on the boundary of particles on γ(t), namely

u(x, t) = Vi(t) + ωi(t)×
−−−−→
Gi(t)x, ∀x ∈ γi(t), i = 1, 2, · · · , N, (2.5)

where Vi is the translation velocity, ωi is the angular velocity, Gi is the center of

mass and x is a point on the surface of the particle with
−−−−→
Gi(t)x = {x1−Gi,1(t), x2−

Gi,2(t), x3 −Gi,3(t)}t.

The motion of particle satisfies the following Euler-Newton’s equations:

vi(x, t) = Vi(t) + ωi(t)×
−−−−→
Gi(t)x, ∀{x, t} ∈ Bi(t)× (0, T ), i = 1, 2, · · · , N, (2.6)
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2.2. VARIATIONAL FORMULATION

dGi

dt
= Vi, (2.7)

Mp,i
dVi

dt
= Mig + Fi, (2.8)

d(Ip,iωi)

dt
= Ti, (2.9)

Gi(0) = G0
i , Vi(0) = V0

i , ωi(0) = ω0
i , (2.10)

for i = 1, 2, · · · , N , where Mp,i and Ip,i are the mass and the moment of inertia of the

i-th particle, respectively; Fi and Ti are the hydrodynamic force and torque imposed

on the i-th particle by the fluid.

In (2.8) and (2.9), the hydrodynamic force Fi and torque Ti imposed on the i-th

particle by the fluid are given by

Fi = −
∫
γi

σn dγ, Ti = −
∫
γi

−−→
Gix× σn dγ. (2.11)

2.2 Variational formulation

To obtain a distributed Lagrange multiplier/fictitious domain formulation for the

above problem (2.1)-(2.11), we proceed as in [15, 16], namely: (i) we derive a global

variational formulation of the virtual power type of problem (2.1)-(2.11), (ii) we

then fill the region occupied by the rigid body by the surrounding fluid (i.e. embed

Ω \ B(t) in Ω) with the constraint that the fluid inside the rigid body region has

a rigid body motion, and then (iii) we relax the rigid body motion constraint by

using a distributed Lagrange multiplier, obtaining the following fictitious domain
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2.2. VARIATIONAL FORMULATION

formulation over the entire region Ω.

For convenience of derivation, we assume there is only one ball in the fluid, that

is, we set B(t) as a solid ball in the fluid, γ(t) the boundary of B(t), G(t) the center

of mass of this particle. In the equations of the motion of particle, we set V the

translation velocity of the ball B(t), ω the angular velocity of the ball B(t), Mp and

Ip the mass and the moment of inertia of the ball B(t), respectively; F and T the

hydrodynamic force and torque imposed on the ball B(t) by the fluid, respectively.

To obtain a variational formulation for above problem (2.1)-(2.4), we first define

the following function spaces

Wg0(t) = {v|v ∈ (H1(Ω \B(t)))3, v = V(t) + ω(t)×
−−−→
G(t)x on ∂B(t),

v = g0(t) on Γ,v is periodic in the x1 and x2 directions with

periods L1 and L2, respectively},

W0(t) = {(v,Y,θ)|(v,Y,θ) ∈ (H1(Ω \B(t)))3 × R3 × R3,v = 0 on Γ,

v = Y + θ ×
−−−→
G(t)x on ∂B(t),v is periodic in the x1 and x2

directions with periods L1 and L2, respectively},

and

L2
0(Ω \B(t)) =

{
q

∣∣∣∣q ∈ L2(Ω \B(t)),

∫
Ω\B(t)

q dx = 0

}
.

The variational formulation of the system (2.1)-(2.4) is as follows:
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2.2. VARIATIONAL FORMULATION

For a.e. t > 0, find u(t) ∈ Wg0(t), p(t) ∈ L2
0(Ω \ B(t)),V(t) ∈ R3, G(t) ∈ R3,

ω(t) ∈ R3, such that



−
∫

Ω\B(t)

p∇ · v dx + 2µf

∫
Ω\B(t)

D(u) : D(v) dx + Ip
dω

dt
· θ

+

(
Mp

dV

dt
−Mpg

)
·Y = ρf

∫
Ω\B(t)

g · v dx,

∀(v,Y,θ) ∈W0(t),

(2.12)

∫
Ω\B(t)

q∇ · u dx = 0, ∀q ∈ L2(Ω \B(t)), (2.13)

dG

dt
= V, (2.14)

u(x, 0) = ũ0(x) =


u0(x), ∀x ∈ Ω \B(0),

V0 + ω0 ×
−−→
G0x, ∀x ∈ B(0).

(2.15)

G(0) = G0, V(0) = V0, ω(0) = ω0. (2.16)

To obtain an equivalent fictitious domain formulation, first we fill the ball B(t)

with a fluid of density ρf and suppose that this fluid follows the same rigid body

motion as B(t) itself, which is

u(x, t) = V(t) + ω(t)×
−−−→
G(t)x, ∀x ∈ B(t). (2.17)

Define a function space

W̃0(t) =
{

(v,Y,θ)
∣∣∣(v|Ω\B(t),Y,θ) ∈W0(t),v(x, t) = Y + θ ×

−−−→
G(t)x ∀x ∈ B(t)

}
.
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2.2. VARIATIONAL FORMULATION

Suppose sphere B is made of an homogeneous material of density, ρf , which

follows

ρf

∫
B(t)

g · v dx =
ρf
ρs
Mpg ·Y, ∀(v,Y, θ) ∈ W̃0(t), (2.18)

∇ · v = 0 in B(t), ∀(v,Y, θ) ∈ W̃0(t), (2.19)

∇ · u = 0 in B(t) and D(u) = 0 in B(t). (2.20)

To obtain a fictitious domain formulation, we now define the following function spaces

Vg0(t) =
{
v
∣∣v ∈ (H1(Ω))3,v = g0(t) on Γ

}
,

L2
0(Ω) =

{
q

∣∣∣∣q ∈ L2(Ω),

∫
Ω

q dx = 0

}
.

Combining (2.12)-(2.16) with (2.17)-(2.20), we obtain the fictitious domain for-

mulation as follows:

For a.e. t > 0, find find u(t) ∈ Vg0(t), p(t) ∈ L2
0(Ω), V(t) ∈ R3, G(t) ∈ R3,

ω(t) ∈ R3, such that



−
∫

Ω

p∇ · v dx + 2µf

∫
Ω

D(u) : D(v) dx +Mp
dV

dt
·Y

+Ip
dω

dt
· θ − Fr ·Y = ρf

∫
Ω

g · v dx +

(
1− ρf

ρs

)
Mpg ·Y,

∀(v,Y,θ) ∈ W̃0(t),

(2.21)

∫
Ω

q∇ · u dx = 0, ∀q ∈ L2(Ω), (2.22)
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2.2. VARIATIONAL FORMULATION

dG

dt
= V, (2.23)

u(x, t) = V(t) + ω(t)×
−−−→
G(t)x, ∀x ∈ B(t). (2.24)

u(x, 0) = ũ0(x), ∀x ∈ Ω, (2.25)

G(0) = G0, V(0) = V0, ω(0) = ω0. (2.26)

To relax the rigid body motion constraint (2.24), we introduce a Lagrange mul-

tiplier, λ ∈ Λ(t) = (H1(B(t)))3, and a pairing for any µ ∈ (H1(B(t)))3 and

v ∈ (H1(Ω))3:

〈µ,v〉Λ(t) =

∫
B(t)

(
µ · v + d2∇µ · ∇v

)
dx,

where d is a scaling constant. Typically, we can use the diameter of the particles as

the value for d.

Then we obtain a fictitious domain formulation with Lagrange multiplier as fol-

lows:

For a.e. t > 0, find u(t) ∈ Vg0(t), p(t) ∈ L2
0(Ω), V(t) ∈ R3, G(t) ∈ R3, ω(t) ∈ R3,

λ ∈ Λ(t) such that



−
∫

Ω

p∇ · v dx + 2µf

∫
Ω

D(u) : D(v) dx +Mp
dV

dt
·Y + Ip

dω

dt
· θ

−
〈
λ,v −Y − θ ×

−→
Gx
〉

Λ(t)
= ρf

∫
Ω

g · v dx

+

(
1− ρf

ρs

)
Mpg ·Y, ∀(v,Y,θ) ∈ (H1

0 (Ω))3 × R3 × R3,

(2.27)

∫
Ω

q∇ · u dx = 0, ∀q ∈ L2(Ω), (2.28)
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2.3. FINITE ELEMENT APPROXIMATION AND OPERATOR SPLITTING
SCHEME

dG

dt
= V, (2.29)

u(x, 0) = ũ0(x), ∀x ∈ Ω, (2.30)〈
µ,u(x, t)−V(t)− ω(t)×

−−−−→
G(t)x

〉
Λ(t)

= 0, ∀µ ∈ Λ(t), (2.31)

G(0) = G0, V(0) = V0, ω(0) = ω0. (2.32)

Remark 2.1. Since u is divergence free and satisfies the Dirichlet boundary conditions

on Γ, we can obtain

2

∫
Ω

D(u) : D(v) dx =

∫
Ω

∇u : ∇v dx, ∀v ∈ (H1
0 (Ω))3,

which simplifies the numerical scheme from the computational point of view.

2.3 Finite element approximation and operator split-

ting scheme

2.3.1 Finite element approximation

For the purpose of finding an approximation solution to problem (2.27)-(2.26) by

finite element methods, we need a partition of the flow region, Ω ∈ R3. We have

used an uniform finite element mesh (e.g., see in Figure 2.2) for Ω.

For the space discretization, we have chosen P1-iso-P2 finite element space for the

velocity field and conformation tensor and P1 finite element space for the pressure
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(like in Bristeau et al. [2] and Glowinski [14]). Then we define the following function

spaces:

Vh = {vh
∣∣vh ∈ (C0(Ω̄)

)3
,vh|T ∈ (P1)3 ,∀T ∈ T h, vh is periodic in the x1

and x2 directions with period L1 and L2, respectively },

Vg0h(t) = {vh|vh ∈ Vh,vh|Γ = g0h(t)},

V0h = {vh|vh ∈ Vh,vh|Γ = 0},

L2
h = {qh|qh ∈ C0(Ω̄), qh|T ∈ P1,∀T ∈ T 2h, qh is periodic in the x1

and x2 directions with period L1 and L2, respectively },

L2
0h = {qh|qh ∈ L2

h,

∫
Ω

qh dx = 0},

where h is the space mesh size, T h is a regular tetrahedral mesh of Ω, T 2h is another

tetrahedral mesh of Ω, twice coarser than T h, and P1 is the space of the polynomials

in three variables of degree ≤ 1 and g0h(t) is an approximation of g0(t) satisfying

∫
Γ

g0h(t) · ndΓ = 0.
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Figure 2.2: A tretrahedrization of a cube.

For simulating the particle motion in fluid flow, let us define the finite dimensional

space to approach the space of Lagrange multiplier Λ(t) ( e.g., see [28], [30]). Let

{ξi}Ni=1 be a set of points from B(t) which cover B(t) evenly. The discrete Lagrange

multiplier space is defined by

Λh(t) =

{
µh

∣∣∣∣∣µh =
N∑
i=1

µiδ(x− ξi),µi ∈ R3,∀i = 1, · · · , N

}
,

where x → δ(x − ξi) is the Dirac measure at x = ξi. There are two different

definitions of discretize scalar pairing < ·, · >Λh(t), which will be introduced in next
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section.

Using the finite dimensional spaces defined above, we obtain the following semi-

discretization of the problem (2.27)-(2.32):

For t > 0, find find uh(t) ∈ Vg0h
(t), p(t) ∈ L2

0h, V(t) ∈ R3, G(t) ∈ R3, ω(t) ∈ R3,

λh ∈ Λh(t) such that



−
∫

Ω

p∇ · v dx + 2µf

∫
Ω

∇uh : ∇v dx +Mp
dV

dt
·Y + Ip

dω

dt
· θ

=

(
1− ρf

ρs

)
Mpg ·Y +

〈
λh,v −Y − θ ×

−→
Gx
〉

Λh(t)
,

∀(v,Y,θ) ∈ V0h × R3 × R3,

(2.33)

∫
Ω

q∇ · uh dx = 0, ∀q ∈ L2
h, (2.34)

dG

dt
= V, (2.35)

uh(x, 0) = ũ0h(x), ∀x ∈ Ω, (2.36)〈
µh,uh(t)−V(t)− ω(t)×

−−−−→
G(t)x

〉
Λh(t)

= 0, ∀µh ∈ Λh(t), (2.37)

G(0) = G0, V(0) = V0, ω(0) = ω0, (2.38)

where ũ0h is an approximation of ũ0 such that

∫
Ω

q∇ · ũ0hdx = 0, ∀q ∈ L2
h.
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2.3.2 Collocation method and immersed boundary method

When dealing with a moving particle, B(t), there are several methods have been

considered for enforcing the rigid body motion inside B(t)( e.g., see [16], [18]). First

we introduce the method developed in [16], which is a collocation method and then

discuss a new method which combines the aforementioned collocation method with

the other method which is like immersed boundary methods. (see Section 3.3.1)

For the collocation method, we define the following scalar pairing:

〈µh,vh〉Λh(t) =
N∑
i=1

µi · vh(ξi), ∀µh ∈ Λh(t),vh ∈ Vg0h(t) or V0h.

For immersed boundary methods, we define the following scalar pairing:

〈µh,vh〉Λh(t) =
N∑
i=1

M∑
j=1

µi · vh(ξj)Dh(ξi − xj)h
3, ∀µh ∈ Λh(t),vh ∈ Vg0h(t) or V0h,

where {xj}Mj=1 are the grid points of the finite elements for the velocity, and the

function Dh(X− y) is defined as

Dh(X− y) = δh(X1 − y1)δh(X2 − y2)δh(X3 − y3)

with X = (X1, X2, X3) and y = (y1, y2, y3), and the one-dimensional discrete δh
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defined by

δh(z) =



1

8h

3− 2|z|
h

+

√
1 +

4|z|
h
− 4

(
|z|
h

)2
 , |z| ≤ h,

1

8h

5− 2|z|
h
−

√
−7 +

12|z|
h
− 4

(
|z|
h

)2
 , h ≤ |z| ≤ 2h,

0, otherwise.

2.3.3 Operator splitting scheme

To fully discretize the system (2.27)-(2.32), we first reduce it to a finite dimensional

initial value problem using the above finite element spaces (after dropping most of

the sub-scripts h’s). Next, we use the Lie scheme [7] to decouple the above finite

element analogue of system, (2.27)-(2.32), into a sequence of subproblems and apply

the backward Euler schemes to time-discretize some of these subproblems.

First we consider the following initial value problem:


dφ

dt
+ A(φ) = 0on (0, T ),

φ(0) = φ0,

with 0 < T < +∞. We suppose that operator A has a decomposition such as

A =
J∑
j=1

Aj with J ≥ 2.

Let τ > 0 be a time-discretization step, we denote nτ by tn. Let φn be an

approximation of φ(tn), we can write down the Lie’s scheme as follows:
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Given φ0 = φ0.

For n ≥ 0, φn is known and we compute φn+1 via


dφ

dt
+ Aj(φ) = 0on (tn, tn+1),

φ(tn) = φn+ j−1
J ;φn+ j

J = φ(tn+1),

for j = 1, · · · , J . Applying the Lie’s scheme to the discrete analogue of the problem

(2.27)-(2.32) and using backward Euler’s method to some subproblems, we obtain

the following algorithm:

Given u0 = u0h,G
0 = G0,V

0 = V0,ω
0 = ω0.

For n ≥ 0, un,Gn,Vn,ωn are known, we compute un+1, Gn+1, Vn+1, ωn+1 via the

following steps.

1. We predict the position and the translation velocity of the center of mass at

t = tn+1as follows.

dG

dt
= V(t), (2.39)

Mp
dV

dt
= 0, (2.40)

Ip
dω

dt
= 0, (2.41)

V(tn) = Vn,ω(tn) = ωn,G(tn) = Gn, (2.42)

for tn < t < tn+1. Then set Vn+ 1
2 = V(tn+1), ωn+ 1

2 = ω(tn+1), and Gn+ 1
2 =

G(tn+1).
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Now we get B
n+ 1

2
h based on the center of particle Gn+ 1

2 .

2. We enforce the rigid body motion in B
n+ 1

2
h and solve for un+1 and pn+1 simul-

taneously as follows:

Find un+1 ∈ Vn+1
g0h

, pn+1 ∈ L2
0h, λ

n+1 ∈ Λn+1
h , Vn+ ∈ R3, ωn+1 ∈ R3 such that



−
∫

Ω

pn+1∇ · v dx + 2µf

∫
Ω

∇un+1 : ∇v dx

+Mp
Vn+1 −Vn+ 1

2

∆t
·Y + Ip

ωn+1 − ωn+ 1
2

∆t
· θ

=

(
1− ρf

ρs

)
Mpg ·Y +

〈
λn+1,v −Y − θ ×

−−−−→
Gn+ 1

2 x

〉
Λ
n+1

2
h

,

∀ (v,Y,θ) ∈ V0h × R3 × R3,

(2.43)

∫
Ω

q∇ · un+1 dx = 0, ∀q ∈ L2
h, (2.44)

〈
µ,un+1 −Vn+1 − ωn+1 ×

−−−−→
Gn+ 1

2 x

〉
Λ
n+1

2
h

= 0, ∀µ ∈ Λ
n+ 1

2
h . (2.45)

Finally, we set Gn+1 = Gn+ 1
2 .

In the above, Vn+1
g0h

= Vg0h(tn+1), Λ
n+ 1

2
h = Λh(t

n+ 1
2 ), and Bn+s

h = Bh(t
n+s).
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2.4 On the solution of subproblems from operator

splitting

2.4.1 Solution of the rigid body motion enforcement prob-

lems

In the system (2.43)-(2.45), there are two multipliers, p and λ. We have solved this

system via an Uzawa type conjugate gradient method [15] driven by both multipliers

simultaneously. The general problem of system (2.43)-(2.45) is given as follows:

Find u ∈ Vg0h
, p ∈ L2

0h, λ ∈ Λh, V ∈ R3, ω ∈ R3 such that



−
∫

Ω

p∇ · v dx + µf

∫
Ω

∇u : ∇v dx +Mp
V −V0

4t
·Y

+Ip
ω − ω0

4t
· θ =

(
1− ρf

ρs

)
Mpg ·Y +

〈
λ,v −Y − θ ×

−→
Gx
〉

Λh

,

∀ (v,Y,θ) ∈ V0h × R3 × R3,

(2.46)

∫
Ω

q∇ · u dx = 0, ∀q ∈ L2
h, (2.47)〈

µ,u−V − ω ×
−→
Gx
〉

Λh

= 0, ∀µ ∈ Λh. (2.48)

We solve the system, (2.46)-(2.48), by the following Uzawa type conjugate gradi-

ent algorithm operating in the space L2
0h × Λh :

Assume p0 ∈ L2
0h and λ0 ∈ Λh are given.

We solve the problem:
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Find u0 ∈ Vg0h
, V0 ∈ R3, ω0 ∈ R3 satisfying


µf

∫
Ω

∇u0 : ∇v dx =

∫
Ω

p∇ · v dx +
〈
λ0,v

〉
Λh
,

∀ v ∈ V0h; u
0 ∈ Vg0h

,

(2.49)

Mp
V0 −V0

4t
·Y =

(
1− ρf

ρs

)
Mpg ·Y −

〈
λ0,Y

〉
Λh
, ∀ Y ∈ R3, (2.50)

Ip
ω0 − ω0

4t
· θ = −

〈
λ0,θ ×

−→
Gx
〉

Λh

, ∀ θ ∈ R3, (2.51)

and then compute

g0
1 = ∇ · u0; (2.52)

next find g0
2 ∈ Λh satisfying

〈
µ,g0

2

〉
Λh

=
〈
µ,u0 −V0 − ω0 ×

−→
Gx
〉

Λh

, ∀ µ ∈ Λh, (2.53)

and set

w0
1 = g0

1, w0
2 = g0

2. (2.54)

Then for k ≥ 0, assuming that pk, λk, uk, Vk, ωk, gk
1, gk2, wk

1 and wk
2 are known,

compute pk+1, λk+1, uk+1, Vk+1, ωk+1, gk+1
1 , gk+1

2 , w1
k+1 and wk+1

2 as follows:


µf

∫
Ω

∇uk : ∇v dx =

∫
Ω

wk
1∇ · v dx +

〈
wk

2 ,v
〉

Λh
,

∀ v ∈ V0h; u
k ∈ Vg0h

,

(2.55)
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Mp
V
k

4t
·Y = −

〈
wk

2 ,Y
〉

Λh
, ∀ Y ∈ R3, (2.56)

Ip
ωk

4t
· θ = −

〈
wk

2 ,θ ×
−→
Gx
〉

Λh

, ∀ θ ∈ R3, (2.57)

and then compute

gk
1 = ∇ · uk; (2.58)

next find gk2 ∈ Λh satisfying

〈
µ,gk2

〉
Λh

=
〈
µ,uk −V

k − ωk ×
−→
Gx
〉

Λh

, ∀ µ ∈ Λh, (2.59)

and compute

ρk =

∫
Ω

∣∣gk
1

∣∣2 dx +
〈
gk2 ,g

k
2

〉
Λh∫

Ω

gk1wk
1dx +

〈
gk2,w

k
2

〉
Λh

, (2.60)

and

pk+1 = pk − ρkw1
k, (2.61)

λk+1 = λk − ρkwk
2 , (2.62)

uk+1 = uk − ρkuk, (2.63)

Vk+1 = Vk − ρkV
k
, (2.64)

ωk+1 = ωk − ρkωk, (2.65)

gk+1
1 = gk1 − ρkgk1, (2.66)

gk+1
2 = gk2 − ρkgk2. (2.67)
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If ∫
Ω

∣∣gk+1
1

∣∣2 dx +
〈
gk+1

2 ,gk+1
2

〉
Λh∫

Ω

∣∣g0
1

∣∣2 dx +
〈
g0

2,g
0
2

〉
Λh

≤ ε, (2.68)

then take p = pk+1, λ = λk+1, u = uk+1, V = Vk+1, and ω = ωk+1. Otherwise,

compute

γk =

∫
Ω

∣∣gk+1
1

∣∣2 dx +
〈
gk+1

2 ,gk+1
2

〉
Λh∫

Ω

∣∣gk
1

∣∣2 dx +
〈
gk2 ,g

k
2

〉
Λh

, (2.69)

and set

wk+1
1 = gk+1

1 + γkw1
k, (2.70)

wk+1
2 = gk+1

2 + γkw
k
2 . (2.71)

Then do m = m+ 1 and go back to (2.55).
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2.5 Numerical results

2.5.1 Rotation of a single particle

X
1

X
2

X
3

Figure 2.3: Single ball in a two-wall driven bounded shear flow.

We first have considered the cases of a single neutrally buoyant ball in a bounded

shear flow of a Newtonian fluid. The ball is initially placed at the middle between

two walls, and it remains there in simulation even though it can move freely in fluid.

The computational domain is Ω = (−1, 1)× (−1, 1)× (−H/2, H/2) (i.e. L1 = 2 and

L2 = 2) for different values of the height H. The ball radius is a = 0.15 and its mass

center is initially located at (0,0,0). The blockage ratio is defined by K = 2a/H. The

shear rate γ̇ = 1 so the velocity of the top wall is U = H/2 and that of the bottom

wall is −U = −H/2. The fluid and particle densities are ρf = ρs = 1 and the fluid

viscosity is µ = 1. The mesh sizes for the velocity field is h = 1/48 or 1/64 and the

mesh size for the pressure is 2h, the time step is ∆t = 0.001. For all the numerical
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simulations considered in this section, we assume that all dimensional quantities are

in the CGS (centimeter, gram, and second) units.
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1

 (
ra

d
/s

)

Figure 2.4: The rotating speed with respect to the blockage ratio K for two different
mesh sizes. K is a dimensionless number.

Under creeping conditions, the rotating velocity of the ball with respect to the x2-

axis (see Figure 2.3) is γ̇/2 = 0.5 in an unbounded shear flow in a Newtonian fluid,

according to the associated Jeffery’s solution [22]. In Figure2.4, the ball rotating

velocities have been shown for different values of the blockage ratio. Our numerical

results are in a good agreement with the Jeffery’s solution for most values of the

blockage ratio; but we can observe the wall influence on the rotating velocity for the
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largest value of the blockage ratio, K = 0.3, in Figure2.4.

2.5.2 Sedimentation of a single particle

In this section we have considered the terminal speed of a sedimenting ball in a

vertical channel of infinite length fill led with a Newtonian fluid. The computational

domain is Ω = (−1, 1) × (−1, 1) × (−1, 1). The ball radius is a = 0.1 and its mass

center is initially located at (0,0,0). The fluid and particle densities are ρf = 1,

ρs = 1.5, the fluid viscosity being µ = 1. The mesh sizes for the velocity field is

h = 1/48, 1/64, or 1/80 and the mesh size for the pressure is 2h, the time step

is ∆t = 0.001. We have validated our numerical results (see Table 2.1) with the

theoretical solution, e.g., in [18]. The terminal speed V of a segmenting ball in fluid

is given by the following formula which is derived from Stokes’ law:

V =
2

9

ρs − ρf
µ

ga2 (2.72)

where g is gravity. So for our case the terminal velocity is −1.0896 cm/sec.
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Mesh

Size h

(cm)

Terminal Speed(cm/sec)

Collocation

Method

Immersed Boundary

Method

1/48 -1.0147 -0.9495

1/64 -1.0558 -0.9919

1/80 -1.0662 -1.0151

Table 2.1: The terminal speed in an infinite length vertical channel for two methods
with three different mesh sizes.

2.5.3 Two balls interaction in an one-wall driven bounded

shear flow

In this section, we consider the case of two balls of the same size interacting in an

one wall-driven bounded shear flow fluid as visualized in Figure 2.5. The ball radii

are r = 0.1. The fluid and ball densities are ρf = ρs = 1, the viscosity is µ = 1.

The computational domain is Ω = (−1.5, 1.5) × (−1, 1) × (−0.5, 0.5) (i.e. L1 = 3,

L2 = 2, and L3 = 1). The shear rate is fixed at γ̇ = 1 so the velocity of the top wall

is U = 1.0, the bottom wall is U = 0. The mass centers of the two balls are initially

located on the shear plane at (−d0, 0,4s) and (d0, 0,−4s) , where 4s varies and d0

is 0.5. The mesh size for the velocity field is h = 1/48, the mesh size for the pressure

is 2h, The time step being 4t = 0.001. Then we consider six dimensionless initial

vertical displacements D = 4s/a= 1, 0.5, 0.316,0.255, 0.194, and 0.122.
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X
2

X
1

X
3

Figure 2.5: Two balls in an one wall driven shear flow.
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Figure 2.6: Trajectories of the ball mass center in an one wall driven shear flow: (a)
the balls pass over/under for vertical displacements D = 1, 0.5, 0.316, and (b) the
balls swap for vertical displacements D = 0.255, 0.194, and 0.122. D is a dimension-
less number.
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When two balls move in a bounded shear flow of a Newtonian fluid at Stokes

regime with D = 0.122, 0.194, 0.255, 0.316, 0.5, 1 as in Figure 2.5, the higher ball

takes over the lower one and then both return to their initial heights for those large

vertical displacements D = 1, 0.5, and 0.316. These two particle paths are called

pass (or open) trajectories. For D = 0.255, 0.194, and 0.122, the trajectories of two

balls go cross and lead an exchange of vertical positions of two balls as in Figure 2.6.

These two particle paths are called swapping.

2.5.4 Two balls interaction in a two-wall driven bounded

shear flow

X
1

X
2

X
3

Figure 2.7: Two balls in a two wall driven shear flow.

In this section, we consider the cases of two balls of the same size interacting in a

two-wall driven bounded shear flow fluid as visualized in Figure 2.7. The setup is
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the same as the one-wall driven case except for the velocity setting. For a two-wall

driven bounded shear flow, the velocity of top wall is U = 0.5, and the bottom wall

is U = −0.5. We have considered six different initial vertical displacements D= 1,

0.5, 0.316, 0.255, 0.194, and 0.122. The trajectories with respect to D are shown in

Figure 2.8.
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Figure 2.8: Trajectories of the ball mass center in a two wall driven shear flow: (a)
the balls pass over/under for vertical displacements D = 1, 0.5, 0.316, and (b) the
balls has return trajectories for vertical displacements D = 0.255, 0.194, and 0.122.
D is a dimensionless number.

In Figure 2.8, the outer three pair trajectories are called passing over motion for

D =1, 0.5, and 0.316. The higher ball goes from left to right and the lower ball goes

from right to left and then both return to their initial heights. The inner three pair

trajectories are called swapping or return motion for D = 0.255, 0.194, and 0.122.

Two balls first approach each other and go cross the mid-plane X2 = 0 then repel

and reverse, respectively. Their trajectories are called return trajectories.

To link the computed trajectories in an one-wall driven shear flow mentioned in
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section 2.5.3 to those of two balls having the same initial configuration and moving in

a two-wall driven shear flow with the same shear rate, we have plotted in Figure 2.9

the relative trajectories of the two-ball mass center via the graphs of (xi,1− x̄1, xi,3−

x̄3), for i =1, 2, the mass center of the two balls is xi = (xi,1, xi,2, xi,3), i =1, 2; the

midpoint between two ball mass center x1 and x2 is x̄ = 1
2
(x1 + x2) = (x̄1, x̄2, x̄3)t.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

X
1
 (cm)

-0.2

-0.1

0

0.1

0.2

X
3
 (

c
m

)

Figure 2.9: The relative trajectories of the ball mass center in an one wall driven
shear flow: (a) the balls pass over/under for vertical displacements D = 1, 0.5, 0.316,
and (b) the balls swap for vertical displacements D = 0.255, 0.194, and 0.122. D is
a dimensionless number.

In Figure 2.9, the ball trajectories agree very well for both kinds of shear flow. It

is worth mentioning that the ball trajectories visualized in Figure 2.9 closely resemble

those reported in the Figure 3(b) of [42]. Actually these trajectories also resemble

the streamlines around a freely suspended rotating ball (a torque-free ball) of the

same radius centered at (0, 0, 0) in a two-wall driven shear flow (e.g., see Figure 5.(b)

of [42]). Thus, it is not surprising that there is circulation upstream and downstream

from the ball centered at the origin due to the blockage of the ball and the existence
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of the two walls. Then, the swapping is exactly the motion of the two balls following

the circulation upstream and downstream in a two-wall driven shear flow.
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CHAPTER 3

Three-dimensional DLM/FD methods for simulating the

motion of spheres in bounded shear flows of Oldroyd-B fluids

3.1 Several models of non-Newtonian fluid
3.1.1 Stokes equations

Consider the Stokes equations in Ω × (0, T ) describing a three-dimensional motion

of an incompressible viscous fluid:

−∇ · σ = ρfg,

∇ · u = 0.
(3.1)
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where σ = −pI + τ with pressure, p, and stress tensor, τ, u = (u1, u2, u3) is the flow

velocity, g is the gravity, and ρf is the density of the fluid.

3.1.2 Newtonian model

The constitutive equation of the stress tensor is given by

τ = 2µD(u) (3.2)

where µ is the fluid viscosity of the fluid and D(u) is the symmetric rate of strain

tensor

2D(u) = ∇u + (∇u)t, (3.3)

with the Jacobian of the velocity, ∇u.

3.1.3 The UCM-model

In the Upper-Convected Maxwell model (UCM-model) (e.g., see [23]), the following

constitutive equation was used to describe the viscoelastic stress tensor τE:

λ1
∇
τE + τE = 2ηD(u), (3.4)

where
∇
τE is the upper-convected time derivative of τE and defined by

∇
τE =

∂τE
∂t

+ (u · ∇)τE − τE(∇u)t − (∇u)τE, (3.5)
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where λ1 is the relaxation time of the fluid, and η is the elastic viscosity of the fluid.

So, we have the constitutive equation for the UCM-model

∂τE
∂t

+ (u · ∇)τE − τE(∇u)t − (∇u)τE +
1

λ1

τE =
2η

λ1

D(u). (3.6)

3.1.4 The Oldroyd-B model

In the more general model of Oldroyd-B fluid, we have considered the elastic-viscous

split stress (EVSS) approach [35] in which the stress tensor τ is split into a Newtonian

component τs and a viscoelastic component τE, i.e.

τ = τs + τE, (3.7)

and τs is governed by a Newtonian constitutive equation τs = 2µD(u), and τE

satisfies the UCM constitutive equation (3.6). Thus, the Oldroyd-B model can be

seen as a linear combination of the UCM and the Newtonian models:
−∇ · σ = ρfg,

∇ · u = 0,

λ1
∇
τE + τE = 2ηD(u),

(3.8)
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where σ = −pI + τs + τE. Therefore, equation (3.9) can be written more explicitly

as follows: 
∇p− 2µ∇ ·D(u)−∇ · τE = ρfg,

∇ · u = 0,

λ1
∇
τE + τE = 2ηD(u),

(3.9)

Remark 3.1. Using the definition of conformation tenser C =
λ1

η
τE + I, we obtain

the Oldroyd-B model in terms of C:


∇p− 2µ∇ ·D(u)− η

λ1

∇ · (C− I) = ρfg,

∇ · u = 0,

∂C

∂t
+ (u · ∇)C− (∇u)C−C(∇u)t +

1

λ1

C =
1

λ1

I,

(3.10)

and

η = η1

(
1− λ2

λ1

)
, (3.11)

µ = η1 − η, (3.12)

where η is the fluid elastic viscosity, µ is the solvent viscosity, η1 is the dynamic fluid

viscosity, λ1 is the relaxation time of the fluid, λ2 is retardation time, and I is the

identity matrix. The conformation tensor C is symmetric and positive definite (see

[23]).
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3.1.5 The Carreau model

We also consider Oldroyd-B fluids with the property of shear-thinning. In Oldroyd-B

model, the fluid viscosity η1 is constant in the given domain. To have a shear-thinning

effect in an Oldroyd-B model, the Carreau model [4] has been considered. Under the

Carreau model, the fluid viscosity η1(
·
γe) depends on the fluid velocity and is defined

by

η1(
·
γe) =

η1(
1 + (λ1

·
γe)2

) 1−n
2

, (3.13)

where η1 is the fluid viscosity without shear thinning,
·
γe =

√
2D(u) : D(u) and n

is a positive number less than 1. Then, the Oldroyd-B model with the property of

shear-thinning is given by


∇p− 2µ∇ ·D(u)−∇ ·

(
η

λ1

(C− I)

)
= ρfg,

∇ · u = 0,

∂C

∂t
+ (u · ∇)C− (∇u)C−C(∇u)t +

1

λ1

C =
1

λ1

I,

(3.14)
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3.2 DLM/FD methods for simulating fluid-particle

interaction in Stokes flow

3.2.1 The governing equations

Fictitious domain formulations using distributed Lagrange multiplier for flow around

freely moving particles at finite Reynolds numbers and their associated computa-

tional methods have been developed and tested in, e.g., [15, 16, 14, 27, 28, 26, 29].

For the cases of a neutrally buoyant particle in two-dimensional fluid flows of a

Newtonian fluid at the Stokes regime, a similar DLM/FD method has been devel-

oped and validated in [31]. In this section, we discuss first the formulation of a ball

and then the associated numerical treatments for simulating its motion in a three-

dimensional bounded shear flow of Oldroyd-B fluids. Let Ω ⊂ R3 be a rectangular

parallelepiped filled with an Oldroyd-B fluid and containing N freely moving rigid

spheres Bi centered at Gi = {Gi1, Gi2, Gi3}t for i = 1, 2, · · · , N .

1

2

B
2

B
1

Figure 3.1: An example of a region Ω with two spheres.
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Let ρf be the density of a viscoelasic fluid of Oldroyd-B type and ρs be density

of particles. Let B(t) =
N
∪
i=1
Bi(t).We denote by γi(t) the boundary ∂Bi(t) of Bi(t) for

i = 1, 2, · · · , N and let γ(t) =
N
∪
i=1
γi(t).

For some T > 0, the governing equations for the fluid-particles system are as

follows:

For the fluid flow, the Stokes equations for the Oldroyd-B model are

∇p− 2µ∇ ·D(u)− η

λ1

∇ · (C− I) = ρfg in Ω \B(t), t ∈ (0, T ), (3.15)

∇ · u = 0 in Ω \B(t), t ∈ (0, T ), (3.16)

u = g0 on Γ× (0, T ),with

∫
Γ

g0 · ndΓ = 0, (3.17)

u(x, t) = Vi(t) + ωi(t)×
−−−−→
Gi(t)x, ∀x ∈ γi(t), i = 1, 2, · · · , N, (3.18)

∂C

∂t
+ (u · ∇)C− (∇u)C−C(∇u)t +

1

λ1

C =
1

λ1

I in Ω \B(t), t ∈ (0, T ), (3.19)

C(x, 0) = C0(x), x ∈ Ω \B(0), (3.20)

C = CL on Γ−, (3.21)

where u is the flow velocity, p is the pressure, D(u) = (∇u + (∇u)t)/2 is the rate

of deformation tensor, C is the conformation tensor, µ = η1λ2/λ1 is the solvent

viscosity of fluid, ρf is the density of fluid, g denotes gravity, η = η1−µ is the elastic

fluid viscosity, η1 is the fluid viscosity λ1 is the relaxation time of the fluid, λ2 is

the retardation time of the fluid. In (3.17), Γ is the union of the bottom boundary

Γ1 and top boundary Γ2 as in Figure 3.1 and n is the unit normal vector pointing

41



3.2. DLM/FD METHODS FOR SIMULATING FLUID-PARTICLE
INTERACTION IN STOKES FLOW

outward to the flow region, and Γ−(t) in (3.21) being the upstream portion of Γ at

time t. The boundary conditions given in (3.17) are g0 = {−U, 0, 0}t on Γ1 and

g0 = {U, 0, 0}t on Γ2 for a bounded shear flow. We assume also that the flow is

periodic in the x1 and x2 directions with the periods L1 and L2, respectively, and in

(3.18), a no-slip condition takes place on the boundary of particles γ(t), namely

u(x, t) = Vi(t) + ωi(t)×
−−−−→
Gi(t)x, ∀x ∈ γi(t), i = 1, 2, · · · , N, (3.22)

where Vi is the translation velocity, ωi is the angular velocity, Gi is the center of

mass and x is a point on the surface of the particle with
−−−−→
Gi(t)x = {x1−Gi,1(t), x2−

Gi,2(t), x3 −Gi,3(t)}t.

The motion of particle satisfies the following Euler-Newton’s equations:

vi(x, t) = Vi(t) +ωi(t)×
−−−−→
Gi(t)x, ∀{x, t} ∈ Bi(t)× (0, T ), i = 1, 2, · · · , N, (3.23)

dGi

dt
= Vi, (3.24)

Mp,i
dVi

dt
= Mig + Fi, (3.25)

d(Ip,iωi)

dt
= Ti, (3.26)

Gi(0) = G0
i , Vi(0) = V0

i , ωi(0) = ω0
i , (3.27)

for i = 1, 2, · · · , N , where Mp,i and Ip,i are the mass and the moment of inertia of the

i-th particle, respectively; Fi and Ti are the hydrodynamic force and torque imposed

on the i-th particle by the fluid. In equations (3.25) and (3.26), the hydrodynamic
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force, Fi, and torque, Ti imposed on the i-th particle by the fluid are given by

Fi = −
∫
γi

σn dγ, Ti = −
∫
γi

−−→
Gix× σn dγ. (3.28)

3.2.2 DLM/FD formulation

To obtain a distributed Lagrange multiplier/fictitious domain formulation for the

above problem (3.15)-(3.28), we proceed as in [15, 16], namely: (i) we derive a global

variational formulation of the virtual power type of problem (3.15)-(3.28), (ii) we

then fill the region occupied by the rigid body by the surrounding fluid (i.e. embed

Ω \ B(t) in Ω) with the constraint that the fluid inside the rigid body region has

a rigid body motion, and then (iii) we relax the rigid body motion constraint by

using a distributed Lagrange multiplier, obtaining the following fictitious domain

formulation over the entire region Ω.

For convenience of derivation, we assume there is only one ball in the fluid, B(t)

is a solid ball in the fluid, γ(t) is the boundary of B(t), and G(t) is the center of

mass of this ball. In the equations of the motion of particle (3.15)-(3.21), we set

V, the translation velocity of the particle, ω the angular velocity of the particle,

Mp and Ip the mass and the moment of inertia of the particle, respectively; F and

T the hydrodynamic force and torque imposed on the particle B(t) by the fluid,

respectively.

To obtain a variational formulation for above problem (3.15)-(3.21), we define
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the following function spaces

Wg0(t) = {v|v ∈ (H1(Ω \B(t)))3, v = V(t) + ω(t)×
−−−→
G(t)x on ∂B(t),

v = g0(t) on Γ, v is periodic in the x1 and x2 directions with

periods L1 and L2, respectively},

W0(t) = {(v,Y,θ)|(v,Y,θ) ∈ (H1(Ω \B(t)))3 × R3 × R3,v = 0 on Γ,

v = Y + θ ×
−−−→
G(t)x on ∂B(t), v is periodic in the x1 and x2

directions with periods L1 and L2, respectively},

L2
0(Ω \B(t)) =

{
q

∣∣∣∣q ∈ L2(Ω \B(t)),

∫
Ω\B(t)

q dx = 0

}
,

and

W(Ω \B(t)) =
{

A
∣∣∣A = [aij] ∈M3×3, aij ∈ H1(Ω \B(t)), i, j = 1, 2, 3

}
,

WCL
(Ω \B(t)) =

{
A
∣∣∣A ∈W(Ω \B(t)),A = CL(t) on Γ−

}
,

WC0(Ω \B(t)) =
{

A
∣∣∣A ∈W(Ω \B(t)),A = 0 on Γ−

}
.

The variational formulation of the system (3.15)− (3.21) is as follows:

For a.e. t ∈ (0, T ), find u(t) ∈Wg0(t), p(t) ∈ L2
0(Ω \B(t)), C(t) ∈WCL

,V(t) ∈ R3,
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G(t) ∈ R3, ω(t) ∈ R3, such that



−
∫

Ω\B(t)

p∇ · vdx + 2µ

∫
Ω\B(t)

D(u) : D(v)dx

− η

λ1

∫
Ω\B(t)

v · (∇ · (C− I))dx +

(
Mp

dV

dt
−Mpg

)
·Y

+
d (Ipω)

dt
· θ = ρf

∫
Ω\B(t)

g · v dx ∀(v,Y,θ) ∈W0(t).

(3.29)

∫
Ω\B(t)

q∇ · u dx = 0, ∀q ∈ L2(Ω \B(t)), (3.30)


∫

Ω\B(t)

(
∂C

∂t
+ (u · ∇)C− (∇u)C−C(∇u)t +

1

λ1

C

)
: s dx

=
1

λ1

∫
Ω\B(t)

I : s dx, ∀s ∈W,

(3.31)

dG

dt
= V, (3.32)

u(x, 0) = ũ0(x) =


u0(x), ∀x ∈ Ω \B(0),

V0 + ω0 ×
−−→
G0x, ∀x ∈ B(0).

(3.33)

C(x, 0) = C0(x), ∀x ∈ Ω, (3.34)

G(0) = G0, V(0) = V0, ω(0) = ω0. (3.35)

To obtain an equivalent fictitious domain formulation, first we fill B with a fluid

of density, ρf , and suppose that the fluid follows the same rigid body motion as B

itself, which is

u(x, t) = V(t) + ω(t)×
−−−→
G(t)x, ∀x ∈ B(t). (3.36)
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Define a function space

W̃0(t) =
{

(v,Y,θ)
∣∣∣(v|Ω\B(t),Y,θ) ∈W0(t),v(x, t) = Y + θ ×

−−−→
G(t)x ∀x ∈ B(t)

}
.

Suppose particle B is made of an homogeneous material of density ρf which follows

ρf

∫
B(t)

g · v dx =
ρf
ρs
Mpg ·Y, ∀(v,Y,θ) ∈ W̃0(t), (3.37)

∇ · v = 0 in B(t), ∀(v,Y,θ) ∈ W̃0(t), (3.38)

∇ · u = 0 in B(t) and D(u) = 0 in B(t). (3.39)

To obtain a fictitious domain formulation, we define the following function spaces

Vg0(t) =
{
v
∣∣v ∈ (H1(Ω))3,v = g0(t) on Γ

}
,

L2
0(Ω) =

{
q

∣∣∣∣q ∈ L2(Ω),

∫
Ω

q dx = 0

}
,

and

VCL
(Ω) =

{
A
∣∣A ∈W(Ω),A = CL(t) on Γ−

}
,

VC0(Ω) =
{
A
∣∣A ∈W(Ω),A = 0 on Γ−

}
.

Combining (3.29)-(3.35) with (3.36)-(3.39), we obtain the fictitious domain for-

mulation as follows:

For a.e. t ∈ (0, T ), find u(t) ∈ Vg0(t), p(t) ∈ L2
0(Ω), C(t) ∈ VCL

,V(t) ∈ R3,
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G(t) ∈ R3, ω(t) ∈ R3, such that (p = 0, D(u) = 0, C = I, ∇ · u = 0 in B(t) )



−
∫

Ω

p∇ · v dx + 2µ

∫
Ω

D(u) : D(v) dx

− η

λ1

∫
Ω

v · (∇ · (C− I)) dx +Mp
dV

dt
·Y +

d (Ipω)

dt
· θ

= ρf

∫
Ω

g · v dx +

(
1− ρf

ρs

)
Mpg ·Y, ∀(v,Y,θ) ∈ W̃0(t),

(3.40)

∫
Ω

q∇ · u dx = 0, ∀q ∈ L2(Ω), (3.41)


∫

Ω

(
∂C

∂t
+ (u · ∇)C− (∇u)C−C(∇u)t +

1

λ1

C

)
: s dx

=
1

λ1

∫
Ω

I : s dx, ∀s ∈ VC0 ,C = I inB(t),

(3.42)

dG

dt
= V, (3.43)

u(x, t) = V(t) + ω(t)×
−−−→
G(t)x, ∀x ∈ B(t). (3.44)

u(x, 0) = ũ0(x) (3.45)

C(x, 0) = C0(x), ∀x ∈ Ω, (3.46)

G(0) = G0, V(0) = V0, ω(0) = ω0. (3.47)

To relax the rigid body motion constraint (3.44), we introduce a Lagrange mul-

tiplier, λ ∈ Λ(t) = (H1(B(t)))3, and a pairing for any µ ∈ (H1(B(t)))3 and

v ∈ (H1(Ω))3 such that

〈µ,v〉Λ(t) =

∫
B(t)

(
µ · v + d2∇µ : ∇v

)
dx,
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where d is a scaling constant and, typically, has been used as the diameter of the

particles.

Then, we obtain the fictitious domain formulation over the entire region Ω as

follows:

For a.e. t ∈ (0, T ), find u(t) ∈ Vg0(t), p(t) ∈ L2
0(Ω), C(t) ∈ VCL

,V(t) ∈ R3,

G(t) ∈ R3, ω(t) ∈ R3, λ(t) ∈ Λ(t) such that



−
∫

Ω

p∇ · v dx + 2µf

∫
Ω

D(u) : D(v) dx− η

λ1

∫
Ω

v · (∇ · (C− I)) dx

+Mp
dV

dt
·Y +

d (Ipω)

dt
· θ −

〈
λ,v −Y − θ ×

−→
Gx
〉

Λ(t)

= ρf

∫
Ω

g · v dx +

(
1− ρf

ρs

)
Mpg ·Y,

∀(v,Y,θ) ∈ (H1
0 (Ω))3 × R3 × R3,

(3.48)

∫
Ω

q∇ · u dx = 0, ∀q ∈ L2(Ω), (3.49)


∫

Ω

(
∂C

∂t
+ (u · ∇)C− (∇u)C−C(∇u)t +

1

λ1

C

)
: s dx

=
1

λ1

∫
Ω

I : s dx, ∀s ∈ VC0 ,C = I inB(t),

(3.50)

dG

dt
= V, (3.51)

u(x, 0) = ũ0(x), ∀x ∈ Ω, (3.52)〈
µ,u(x, t)−V(t)− ω(t)×

−−−−→
G(t)x

〉
Λ(t)

= 0, ∀µ ∈ Λ(t), (3.53)

C(x, 0) = C0(x), ∀x ∈ Ω, (3.54)
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G(0) = G0, V(0) = V0, ω(0) = ω0. (3.55)

Remark 3.2. Since u is divergence free and satisfies the Dirichlet boundary conditions

on Γ, we obtain

2

∫
Ω

D(u) : D(v) dx =

∫
Ω

∇u : ∇v dx, ∀v ∈ (H1
0 (Ω))3.

So in relation (3.48) we can replace 2

∫
Ω

D(u) : D(v) dx by

∫
Ω

∇u : ∇v dx. Also the

gravity g in (3.48) can be absorbed into the pressure term.

3.3 Numerical methods

3.3.1 Finite element approximation

For the purpose of finding an approximation solution of problem (3.48)-(3.55) by

finite element methods, we need a partition of the flow region Ω ∈ R3. We used an

uniform finite element mesh for Ω.

For the space discretization, we have chosen P1-iso-P2 finite element space for the

velocity field and conformation tensor and P1 finite element space for the pressure

(like in Bristeau et al., (1987) [2] and Glowinski, (2003) [14]). Then we have the

following function spaces:
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Figure 3.2: A tretrahedrization of a flow region in R3.

Vh = {vh
∣∣vh ∈ (C0(Ω̄)

)3
,vh|T ∈ (P1)3 ,∀T ∈ T h, vh is periodic in the x1

and x2 directions with period L1 and L2, respectively },

Vg0h(t) = {vh|vh ∈ Vh,vh|Γ = g0h(t)},

V0h = {vh|vh ∈ Vh,vh|Γ = 0},

L2
h = {qh|qh ∈ C0(Ω̄), qh|T ∈ P1,∀T ∈ T 2h, qh is periodic in the x1

and x2 directions with period L1 and L2, respectively },

L2
0h = {qh|qh ∈ L2

h,

∫
Ω

qh dx = 0},

where h is the space mesh size, T h is a regular tetrahedral mesh of Ω, T 2h is another

tetrahedral mesh of Ω, twice coarser than T h, and P1 is the space of the polynomials
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in three variables of degree ≤ 1 and g0h(t) is an approximation of g0(t) satisfying

∫
Γ

g0h(t) · ndΓ = 0.

The finite dimensional spaces for approximating VCL(t) and VC0 , respectively,

are defined by

VCLh
= {sh|sh ∈

(
C0(Ω̄)

)3×3
, sh|T ∈ (P1)3×3,∀T ∈ T h, sh|Γ−

h
= CLh(t)},

VC0h
=
{

sh

∣∣∣sh ∈ (C0(Ω̄)
)3×3

, sh

∣∣∣T ∈ (P1)3×3,∀T ∈ T h, sh
∣∣∣Γ−

h
= 0

}
,

where Γ−h = {x |x ∈ Γ,g0h(x, t) · n(x) < 0} . For simulating the particle motion in

fluid flow, let us define the finite dimensional space to approach the space of Lagrange

multiplier Λ(t) (e.g., see [28], [30]). Let {ξi}N(t)
i=1 be a set of points from B(t) which

cover B(t) evenly. The discrete Lagrange multiplier space is defined by

Λh(t) =

µh
∣∣∣∣∣∣µh =

N(t)∑
i=1

µiδ(x− ξi),µi ∈ R3,∀i = 1, · · · , N(t)

 ,

where x→ δ(x− ξi) is the Dirac measure at x = ξi. Then we define a pairing over

Λh(t)×Vg0h(t) (or Λh(t)×V0h) by

〈µh,vh〉Λh(t) =
N∑
i=1

µi · vh(ξi), (3.56)

for µh ∈ Λh(t),vh ∈ Vg0h(t) or V0h. A typical set {ξi}N(t)
i=1 of points from B(t) to be
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used in (3.56) is defined as

{ξi}N(t)
i=1 = {ξi}N1(t)

i=1

⋃
{ξi}N(t)

i=N1(t)+1,

where {ξi}N1(t)
i=1 is the set of those vertices of the velocity grid T h contained in B(t)

and the distance between those vertices and the boundary ∂B(t) is greater than or

equal to h
2
, and selected points {ξi}N(t)

i=N1(t)+1 from ∂B(t).

Figure 3.3: An example of collocation points on the sphere surface.

For simulating particle interactions in Stokes flow, we define a modified pairing

as follows:

〈µh,vh〉Λh(t) =

N1(t)∑
i=1

µi · vh(ξi) +

N(t)∑
i=N1(t)+1

M∑
j=1

µi · vh(ξi)Dh(ξi − xj)h
3, (3.57)

for µh ∈ Λh(t),vh ∈ Vg0h(t) or V0h where {xj}Mj=1 are the grid points of the finite
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elements for the velocity, and the function Dh(X− ξi) is defined as

Dh(X− ξi) = δh(X1 − ξi1)δh(X2 − ξi2)δh(X3 − ξi3),

with X = (X1, X2, X3)t and ξi = (ξi1, ξi2, ξi3)t, and the one-dimensional approximate

Dirac measure δh being defined by

δh(z) =



1

8h

3− 2|z|
h

+

√
1 +

4|z|
h
− 4

(
|z|
h

)2
 , |z| ≤ h,

1

8h

5− 2|z|
h
−

√
−7 +

12|z|
h
− 4

(
|z|
h

)2
 , h ≤ |z| ≤ 2h,

0, otherwise.

where the discrete Dirac measure Dh were developed by Peskin [34].

Applying the above finite dimensional spaces, we obtain the following semi-

discretization of problem (3.48)- (3.55) :

For 0 < t < T , find uh(t) ∈ Vg0h
(t), p(t) ∈ L2

0h, Ch(t) ∈ VCLh
(t),V(t) ∈ R3,

G(t) ∈ R3, ω(t) ∈ R3, λh ∈ Λh(t) such that



−
∫

Ω

p∇ · v dx + µf

∫
Ω

∇uh : ∇v dx

− η

λ1

∫
Ω

v · (∇ · (Ch − I)) dx +Mp
dV

dt
·Y +

d (Ipω)

dt
· θ

=

(
1− ρf

ρs

)
Mpg ·Y +

〈
λh,v −Y − θ ×

−→
Gx
〉

Λh(t)
,

∀(v,Y,θ) ∈ V0h × R3 × R3,

(3.58)
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∫
Ω

q∇ · uh dx = 0, ∀q ∈ L2
h, (3.59)


∫

Ω

(
∂Ch

∂t
+ (uh · ∇)Ch − (∇uh)Ch −Ch(∇uh)

t +
1

λ1

Ch

)
: sh dx

=
1

λ1

∫
Ω

I : sh dx, ∀sh ∈ VC0h
; Ch = I in Bh(t),

(3.60)

dG

dt
= V, (3.61)

uh(x, 0) = ũ0h(x), ∀x ∈ Ω, (3.62)〈
µh,uh(t)−V(t)− ω(t)×

−−−−→
G(t)x

〉
Λh(t)

= 0, ∀µh ∈ Λh(t), (3.63)

Ch(x, 0) = C0h(x), ∀x ∈ Ω, (3.64)

G(0) = G0, V(0) = V0, ω(0) = ω0, (3.65)

where ũ0h is an approximation of ũ0 such that

∫
Ω

q∇ · ũ0hdx = 0, ∀q ∈ L2
h.

Remark 3.3. If we consider our particle as a sphere, then in relation (3.58) the term

d (Ipω)

dt
can be written as Ip

dω

dt
, which is much easier when solving it numerically

(e.g., see [16]).

Remark 3.4. For the two ball interaction in a bounded shear flow, there is no lubri-

cation force between the two balls under creeping flow conditions. Therefore, we are

not allowed to apply an artificial repulsive force to prevent ball overlapping in nu-

merical simulation since such force might alter the trajectories of the two ball mass

centers. To deal with the interaction during the two ball interaction, we have to
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impose a minimal gap of size ch between the balls where c is some constant between

0 and 1, h being the mesh size of the velocity field. Then, when advancing the two

ball mass centers in equation (3.24), we proceed as follows at each sub-cycling time

step: (i) we do nothing if the gap between the two balls at the new position is greater

or equal than ch, (ii) if the gap size of the two balls at the new position is less than

ch, we do not advance the balls directly; but instead we first move the ball centers in

the direction perpendicularly to the line joining the previous centers, and then move

them in the direction parallel to the line joining the previous centers, and make sure

that the gap size is no less than ch.

3.3.2 Operator splitting scheme

To fully discretize system (3.48)-(3.55), we first reduce it to a finite dimensional

initial value problem using the above finite element spaces (after dropping most of

the sub-scripts h’s). Next, we combine the Lozinski-Owens factorization approach

(see, e.g., [24], [17]) with the Lie scheme [7] to decouple the above finite element

analogue of system, (3.48)-(3.55), into a sequence of subproblems and apply the

backward Euler schemes to time-discretize some of these subproblems.

First we consider the following initial value problem:


dφ

dt
+ A(φ) = 0 on (0, T ),

φ(0) = φ0,

with 0 < T < +∞. We suppose that operator A has a decomposition such as
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A =
J∑
j=1

Aj with J ≥ 2.

Let τ > 0 be a time-discretization step, we denote nτ by tn. Let φn be an

approximation of φ(tn), we can write down the Lie’s scheme as follows:

Given φ0 = φ0.

For n ≥ 0, φn is known and we compute φn+1 via


dφ

dt
+ Aj(φ) = 0 on (tn, tn+1),

φ(tn) = φn+ j−1
J ;φn+ j

J = φ(tn+1),

for j = 1, · · · , J .

3.3.3 Operator splitting for using matrix factorization

Since the conformation tensor C is symmetric and positive definite, following the

matrix factorization approach developed in [24], we have considered C = AAt,

where At is the transpose matrix of A. After splitting the constitutive equation of

the conformation tensor, we first have the following three subproblems:


∂C

∂t
+ (u · ∇)C = 0, on (tn, tn+1),

C(tn) = Cn; Cn+ 1
3 = C(tn+1),

(3.66)


∂C

∂t
+

1

λ1

C− (∇u)C−C(∇u)t = 0, on (tn, tn+1),

C(tn) = Cn+ 1
3 ; Cn+ 2

3 = C(tn+1),

(3.67)
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∂C

∂t
=

1

λ1

I, on (tn, tn+1),

C(tn) = Cn+ 2
3 ; Cn+1 = C(tn+1),

(3.68)

Now we derive equivalent equations of (3.66) and (3.67) in the following.

Lemma 3.5. For a matrix A, a given u ∈ R3 and a positive constant λ1, we have

(i) if A satisfies the equation

∂A

∂t
+ (u · ∇)A = 0, (3.69)

then C = AAt satisfies the equation
∂C

∂t
+ (u · ∇)C = 0;

(ii) if A satisfies the equation

∂A

∂t
+

1

2λ1

A− (∇u)A = 0, (3.70)

then C = AAt satisfies the equation

∂C

∂t
+

1

λ1

C− (∇u)C−C(∇u)t = 0.

Proof. (i) Given
∂A

∂t
+ (u ·∇)A = 0, multiplying the equation by At to the right,

we obtain

∂A

∂t
At + (u · ∇)AAt = 0. (3.71)

Multiplying the transpose of the equation by A to the left, we obtain

A
∂At

∂t
+ A(u · ∇)At = 0. (3.72)
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Adding (3.71) and (3.72) gives

∂ (AAt)

∂t
+ (u · ∇)

(
AAt

)
= 0.

Thus, we get

∂C

∂t
+ (u · ∇)C = 0.

(ii) Given
∂A

∂t
+

1

2λ1

A− (∇u)A = 0, multiplying the equation by At to the right,

we obtain

∂A

∂t
At +

1

2λ1

AAt − (∇u)AAt = 0. (3.73)

Multiplying the transpose of the equation by A to the left, we obtain

A
∂At

∂t
+

1

2λ1

AAt −AAt(∇u)t = 0 (3.74)

Adding (3.73) and (3.74) gives

∂ (AAt)

∂t
+

1

λ1

AAt − (∇u)AAt −AAt(∇u)t = 0.

Thus, we obtain

∂C

∂t
+

1

λ1

C− (∇u)C−C(∇u)t = 0.

Therefore, we can solve the equations (3.69) and (3.70) for A instead of the
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equations (3.66) and (3.67) for C and the resulting matrix C = AAt is , at least

semi-positive definite at the discrete level. The finite dimensional subspaces VALh
(t)

and VA0h
for A can be defined by the way similar to the spaces VCLh

(t) and VC0h
.

Applying the Lie’s scheme in [7] to the discrete analogue of the problem (3.58)-

(3.65) with C = AAt and using the backward Euler’s method to some subproblems,

we obtain:

Given u0 = u0h,C
0 = C0h,G

0 = G0,V
0 = V0,ω

0 = ω0.

For n ≥ 0, un,Cn,Gn,Vn,ωn are known, we compute the approximate solution at

t = tn+1 via the following steps:

1. We first predict the position and the translation velocity of the center of mass

as follows.

dG

dt
= V(t), (3.75)

Mp
dV

dt
= 0 (3.76)

Ip
dω

dt
= 0, (3.77)

V(tn) = Vn,ω(tn) = ωn,G(tn) = Gn, (3.78)

for tn < t < tn+1. Then set Vn+ 1
4 = V(tn+1), ωn+ 1

4 = ω(tn+1), and Gn+ 1
4 =

G(tn+1). With the center Gn+ 1
4 we get in the above step, the region of B

n+ 1
4

h

occupied by the particle is determined. Set Cn+ 1
4 = I in B

n+ 1
4

h and Cn+ 1
4 = Cn

otherwise.

2. Then we enforce the rigid body motion in B
n+ 1

4
h and solve un+ 2

4 and pn+ 2
4
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simultaneously as follows:

Find un+ 2
4 ∈ Vn+1

g0h
, pn+ 2

4 ∈ L2
0h, λ

n+ 2
4 ∈ Λ

n+ 1
4

h , Vn+ 2
4 ∈ R3, ωn+ 2

4 ∈ R3 such

that

−
∫

Ω

pn+ 2
4∇ · v dx + µf

∫
Ω

∇un+ 2
4 : ∇v dx

− η

λ1

∫
Ω

v ·
(
∇ ·
(
Cn+ 1

4 − I
))

dx

+Mp
Vn+ 2

4 −Vn+ 1
4

4t
·Y + Ip

ωn+ 2
4 − ωn+ 1

4

∆t
· θ

=

(
1− ρf

ρs

)
Mpg ·Y +

〈
λn+ 2

4 ,v −Y − θ ×
−−−−→
Gn+ 1

4 x

〉
Λ
n+1

4
h

,

∀ (v,Y,θ) ∈ V0h × R3 × R3,

(3.79)

∫
Ω

q∇ · un+ 2
4 dx = 0, ∀q ∈ L2

h, (3.80)

〈
µ,un+ 2

4 −Vn+ 2
4 − ωn+ 2

4 ×
−−−−→
Gn+ 1

4 x

〉
Λ
n+1

4
h

= 0, ∀µ ∈ Λ
n+ 1

4
h , (3.81)

and set Cn+ 2
4 = Cn+ 1

4 .

3. We first find the matrix factor of Cn+ 2
4 such that An+ 2

4 (An+ 2
4 )t = Cn+ 2

4 and

compute An+ 3
4 via the solution of



∫
Ω

dA(t)

dt
: s dx +

∫
Ω

(
un+ 2

4 · ∇
)

A(t) : s dx = 0,∀s ∈ VA0h

A(tn) = An+ 2
4 ;

A(t) ∈ Vn+1
ALh

, t ∈ [tn, tn+1],

(3.82)

and set An+ 3
4 = A(tn+1).
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4. We compute An+1 via the solution of


∫

Ω

[
An+1 −An+ 3

4

∆t
−
(
∇un+ 2

4

)
An+1 +

1

2λ1

An+1

]
: s dx = 0,

∀s ∈ VA0h
; An+1 ∈ Vn+1

ALh
,

(3.83)

and set

Cn+1 = An+1(An+1)t +
4t
λ1

I. (3.84)

Finally, we set un+1 = un+ 2
4 , Gn+1 = Gn+ 1

4 , Vn+1 = Vn+ 2
4 , and ωn+1 = ωn+ 2

4 .

In the above,Vn+1
ALh

= VALh
(tn+1), Vn+1

g0h
= Vg0h(tn+1), Λ

n+ 1
4

h = Λh(t
n+ 1

4 ), and

Bn+s
h = Bh(t

n+s).

3.3.4 Operator splitting scheme for having Carreau model

The operator splitting scheme for having the Carreau model, we have modified Step

2 in Section 3.3.3 as follows:

2’. We first compute

(
·
γ
n
)2

= 2D(un) : D(un), (3.85)

and then obtain the viscosity η1, the solvent viscosity µ and the elastic viscosity

η by

η1

(
·
γ
n
)

=
η1(

1 + (λ1
·
γ
n
)2
) 1−n

2

, (3.86)
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µ
(
·
γ
n
)

= η1

(
·
γ
n
) λ2

λ1

, (3.87)

η
(
·
γ
n
)

= η1

(
·
γ
n
)
− µ

(
·
γ
n
)
. (3.88)

Then we enforce the rigid body motion in B
n+ 1

4
h and solve the stokes problem

simultaneously as follows

Find un+ 2
4 ∈ Vn+1

g0h
, pn+ 2

4 ∈ L2
0h, λ

n+ 1
4 ∈ Λ

n+ 2
4

h , Vn+ 2
4 ∈ R3, ωn+ 2

4 ∈ R3 such

that



−
∫

Ω

pn+ 2
4∇ · v dx + µf

∫
Ω

∇un+ 2
4 : ∇v dx

+Mp
Vn+ 2

4 −Vn+ 1
4

4t
·Y + Ip

ωn+ 2
4 − ωn+ 1

4

4t
· θ

= 2

∫
Ω

(
µf − µ

(
·
γ
n
))

(D(un) : ∇v) dx

+

∫
Ω

v ·

∇ · η
(
·
γ
n
)

λ1

(
Cn+ 1

4 − I
) dx

+

(
1− ρf

ρs

)
Mpg ·Y +

〈
λn+ 2

4 ,v −Y − θ ×
−−−−→
Gn+ 1

4 x

〉
Λ
n+1

4
h

,

∀ (v,Y,θ) ∈ V0h × R3 × R3,

(3.89)

∫
Ω

q∇ · un+ 2
4 dx = 0, ∀q ∈ L2

h, (3.90)

〈
µ,un+ 2

4 −Vn+ 2
4 − ωn+ 2

4 ×
−−−−→
Gn+ 2

4 x

〉
Λ
n+1

4
h

= 0, ∀µ ∈ Λ
n+ 1

4
h . (3.91)

and set Cn+ 2
4 = Cn+ 1

4 .
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Remark 3.6. In order to use faster solver to solve above system (3.89)-(3.91), we have

chosen to keep constant viscosity and move the difference to the right hand side of

(3.89) with the velocity obtained at the previous time step.

3.3.5 Operator splitting for using logarithm conformation

tensor

Besides matrix factorization approach, we have considered the log-conformation rep-

resentation for the conformation tensor which is the technique first developed in

[13].

We consider two decoupled subproblems of constitutive equation by using oper-

ator splitting scheme:

∂C

∂t
+ (u · ∇)C = 0, (3.92)

∂C

∂t
+

1

λ1

C− (∇u)C−C(∇u)t =
1

λ1

I. (3.93)

To keep the conformation tensor C positive definite and resolve the exponential

behavior of C, we have used the following the log-conformation representation for

the conformation tensor to solve the above subproblems (3.92)-(3.93). In [13], it was

shown that with u being a divergence-free velocity field and C a symmetric positive

definite tensor field, the velocity gradient ∇u can be decomposed as

∇u = O + S + NC−1, (3.94)

where O and N are skew-symmetric, and S is symmetric, trace free, and commutes
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with C.

Solving the subproblems (3.92) − (3.93) by using these matrices, we obtain the

scheme as follows:

∂C

∂t
+ (u · ∇)C = 0, (3.95)

∂C

∂t
− (OC−CO)− 2SC =

1

λ1

(I−C). (3.96)

Remark 3.7. Given the decomposition of ∇u in (3.94) and assume O and N are

skew-symmetric, and S is symmetric, trace free, and commutes with C. We get

equation (3.96) from (3.93) as follows:

First we replace ∇u by O + S + NC−1 and get

∂C

∂t
+

1

λ1

C− (O + S + NC−1)C−C(O + S + NC−1)t =
1

λ1

I. (3.97)

Since O and N are skew-symmetric, and S is symmetric and commutes with C, we

obtain

∂C

∂t
+

1

λ1

C−OC− SC−N−COt −CSt −C(C−1)tNt =
1

λ1

I, (3.98)

then

∂C

∂t
+

1

λ1

C−OC− SC−N + CO− SC + C(C−1)tN =
1

λ1

I, (3.99)
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Since C is symmetric, C(C−1)t = (C)t(C−1)t = I, we obtain

∂C

∂t
+

1

λ1

C−OC−N + CO− 2SC + N =
1

λ1

I, (3.100)

After simplifying (3.100), we get (3.96) as follows

∂C

∂t
− (OC−CO)− 2SC =

1

λ1

(I−C). (3.101)

Remark 3.8. To compute O, S, and N from a divergence-free velocity field u for a

three-dimensional case, we can derive then as follows:

(i) If the conformation tensor C is proportional to unit tensor, then set S =

∇u + (∇u)T

2
and O = 0.

(ii) Otherwise, diagonalize C via

C = R


λ1 0 0

0 λ2 0

0 0 λ3

Rt,

and set


m11 m12 m13

m21 m22 m23

m31 m32 m33

 = Rt(∇u)R,

where λ1, λ2, λ3 are eigenvalues of C with respect to the eigenvectors in R. Then
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we obtain

S = R


m11 0 0

0 m22 0

0 0 m33

Rt, O = R


0 ω12 ω13

−ω12 0 ω23

−ω13 −ω23 0

Rt (3.102)

with ω12 =
λ2m12 + λ1m21

λ2 − λ1

, ω13 =
λ3m13 + λ1m31

λ3 − λ1

, and ω23 =
λ3m23 + λ2m32

λ3 − λ2

.

Remark 3.9. Since the conformation tensor C is a symmetric positive definite matrix,

it can always be diagonalized as C = RΛRt, and then we have logC = R log(Λ)Rt

where R is an orthogonal matrix.

Assume ψ = logC. Solving the subproblems (3.95) − (3.96) by using the loga-

rithm of conformation tensor ψ, we obtain the scheme as follows:

∂ψ

∂t
+ (u · ∇)ψ = 0, (3.103)

∂ψ

∂t
− (Oψ −ψO)− 2S =

1

λ1

(e−ψ − I). (3.104)

To get the conformation tensor C by using constitutive equation for log C, we

replace (3.82)-(3.84) by (3.105)-(3.107) when solving the constitutive equation:

3’. We set ψn+ 2
4 = log

(
Cn+ 2

4

)
and compute ψn+ 3

4 via the solution of



∫
Ω

∂ψ(t)

∂t
: s dx +

∫
Ω

(
un+ 2

4 · ∇
)
ψ(t) : s dx = 0,∀s ∈ VC0h

ψ(tn) = ψn+ 2
4 ,

ψ(t) ∈ Vn+1
log(CLh

), t ∈ [tn, tn+1],

(3.105)
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and set ψn+ 3
4 = ψ(tn+1) and un+ 3

4 = un+ 2
4 .

4’. We set Cn+ 3
4 = eψ

n+3
4 and On+ 3

4 + Sn+ 3
4 + Nn+ 3

4

(
Cn+ 3

4

)−1

= ∇un+ 3
4 and

compute ψn+1 via the solution of


∂ψ(t)

∂t
−
(
On+ 3

4ψ(t)−ψ(t)On+ 3
4

)
− 2Sn+ 3

4 = 0,

ψ(tn) = ψn+ 3
4 ,

ψ(t) ∈ Vn+1
log(CLh

), t ∈ [tn, tn+1],

(3.106)

and set ψn+1 = ψ(tn+1) and C̃n+1 = eψ
n+1

. Then we solve


∂C

∂t
=

1

λ1

(I−C),

C(tn) = C̃n+1,

C(t) ∈ Vn+1
CLh

, t ∈ [tn, tn+1]; set Cn+1 = C(tn+1)

(3.107)

In (3.106), it is better to use exact solution, which is available, instead of solving it

numerically.

3.4 On the solution of the subproblems from op-

erator splitting

3.4.1 Solution of the advection subproblems

We solve the advection problem (3.82) by a wave-like equation method as in, e.g.,

[10, 14]. After translation and dilation on the time axis, each component of the
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velocity vector u and of the tensor A is solution of a transport equation of the

following type:


∂ϕ

∂t
+ (U · ∇)ϕ = 0in Ω× (tn, tn+1),

ϕ(tn) = ϕ0, ϕ = gon Γ− × (tn, tn+1),

(3.108)

where ∇ ·U = 0 and
∂U

∂t
= 0 on Ω × (tn, tn+1). Thus, (3.108) is equivalent to the

well-posed problem:



∂2ϕ

∂t2
−∇ · ((U · ∇ϕ)U) = 0in Ω× (tn, tn+1),

ϕ(tn) = ϕ0,
∂ϕ

∂t
(0) = −U · ∇ϕ0, ϕ = gon Γ− × (tn, tn+1),

(U · n)

(
∂ϕ

∂t
+ (U · ∇)ϕ

)
= 0on Γ \ Γ− × (tn, tn+1).

(3.109)

Solving the wave-like equation (3.109) by a classical finite element/ time stepping

method, a variational formulation of (3.109) is given by



∫
Ω

∂2ϕ

∂t2
vdx +

∫
Ω

(U · ∇ϕ)(U · ∇v)dx+∫
Γ\Γ−

U · n∂ϕ
∂t
vdΓ = 0,∀v ∈ W0,

ϕ(tn) = ϕ0,
∂ϕ

∂t
(tn) = −U · ∇ϕ0, ϕ = gon Γ− × (tn, tn+1),

(3.110)

with the test function space W0 defined by W0 = {v|v ∈ H1(Ω), v = 0on Γ−}.

Let H1
h be a C0-conforming finite element subspace of H1(Ω). We define W0h =

H1
h ∩W0. We suppose that lim

h→0
W0h = W0 in the usual finite element sense. Next, we
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define τ1 > 0 by τ1 =
4t
Q

where Q is a positive integer, and we discretize problem

(3.110) by


ϕ0 = ϕ0,∫

Ω

(ϕ−1 − ϕ1)vdx = 2τ1

∫
Ω

(Uh · ∇ϕ0)vdx, ∀v ∈ W0h, ϕ
−1 − ϕ1 ∈ W0h,

(3.111)

and for q = 0, 1, 2, · · · , Q− 1,



ϕq+1 ∈ H1
h, ϕ

q+1 = ghon Γ−,∫
Ω

ϕq+1 + ϕq−1 − 2ϕq

τ2
vdx +

∫
Ω

(Uh · ∇ϕq)(Uh · ∇v)dx

+

∫
Γ\Γ−

Uh · n
(
ϕq+1 − ϕq−1

τ

)
vdΓ = 0, ∀v ∈ W0,

(3.112)

where Uh and gh are the approximates of U and g, respectively.

Remark 3.10. Scheme (3.111)-(3.112) is a centered scheme which is formally second

order accurate with respect to space and time discretizations. To be stable, scheme

(3.111)− (3.112) has to verify a condition such as τ1 ≤ ch, which c of order of
1

‖U‖
.

Since the advection problem is decoupled from the other ones, we can choose proper

time step here so that the above condition is satisfied. If one uses the trapezoidal rule

to compute the first and the third integrals in (3.112), the above scheme becomes

explicit and ϕq+1 is obtained via the solution of a linear system with diagonal matrix.

Remark 3.11. Scheme (3.111)−(3.112) does not introduce numerical dissipation, un-

like the upwinding schemes commonly used to solve transport problems like (3.108).
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3.4.2 Solution of the system (3.106)

Given matrices O, S, and ψ0 in Ω× (tn, tn+1). In the system (3.106), we solve tensor

ψ via an initial value problem of ordinary differential equation as follows:


dψ(t)

dt
− (Oψ(t)−ψ(t)O)− 2S = 0, in Ω× (tn, tn+1),

ψ(tn) = ψ0,
(3.113)

For the tensor, ψ(t), satisfying equation (3.113), we actually have its exact solution

ψ(tn+1) = eO4tψ(tn)e−O4t + 2S4t, (3.114)

where 4t = tn+1 − tn. Therefore, we do not need to solve it numerically.

3.4.3 Solution of the rigid body motion enforcement prob-

lems

In the system (3.79)-(3.81), there are two multipliers, p and λ. We have solved

this system via an Uzawa conjugate gradient method [15], which is driven by both

multipliers. The general problem of system (3.79)-(3.81) is given as follows:
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Find u ∈ Vg0h
, p ∈ L2

0h, λ ∈ Λh, V ∈ R3, ω ∈ R3 such that



−
∫

Ω

p∇ · v dx + µf

∫
Ω

∇u : ∇v dx− η

λ1

∫
Ω

v · (∇ · (C− I)) dx

+Mp
V −V0

4t
·Y + Ip

ω − ω0

4t
· θ

=

(
1− ρf

ρs

)
Mpg ·Y +

〈
λ,v −Y − θ ×

−→
Gx
〉

Λh

,

∀ (v,Y,θ) ∈ V0h × R3 × R3,

(3.115)

∫
Ω

q∇ · u dx = 0, ∀q ∈ L2
h, (3.116)〈

µ,u−V − ω ×
−→
Gx
〉

Λh

= 0, ∀µ ∈ Λh. (3.117)

We solve the system, (3.115)-(3.117), by the following Uzawa conjugate gradient

algorithm operating in the space L2
0h × Λh:

Assume p0 ∈ L2
0h and λ0 ∈ Λh are given.

We solve the problem:

Find u0 ∈ Vg0h
, V0 ∈ R3, ω0 ∈ R3 satisfying


µf

∫
Ω

∇u0 : ∇v dx =

∫
Ω

p∇ · v dx +
η

λ1

∫
Ω

v · (∇ · (C− I)) dx +
〈
λ0,v

〉
Λh
,

∀ v ∈ V0h; u
0 ∈ Vg0h

,

(3.118)

Mp
V0 −V0

4t
·Y =

(
1− ρf

ρs

)
Mpg ·Y −

〈
λ0,Y

〉
Λh
, ∀ Y ∈ R3, (3.119)
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Ip
ω0 − ω0

4t
· θ = −

〈
λ0,θ ×

−→
Gx
〉

Λh

, ∀ θ ∈ R3, (3.120)

and then compute

g0
1 = ∇ · u0; (3.121)

next find g0
2 ∈ Λh satisfying

〈
µ,g0

2

〉
Λh

=
〈
µ,u0 −V0 − ω0 ×

−→
Gx
〉

Λh

, ∀ µ ∈ Λh, (3.122)

and set

w0
1 = g0

1, w0
2 = g0

2. (3.123)

Then for k ≥ 0, assuming that pk, λk, uk, Vk, ωk, gk
1, gk2, wk

1 and wk
2 are known,

compute pk+1, λk+1, uk+1, Vk+1, ωk+1, gk+1
1 , gk+1

2 , w1
k+1 and wk+1

2 as follows:


µf

∫
Ω

∇uk : ∇v dx =

∫
Ω

wk
1∇ · v dx +

〈
wk

2 ,v
〉

Λh
,

∀ v ∈ V0h; u
k ∈ Vg0h

,

(3.124)

Mp
V
k

4t
·Y = −

〈
wk

2 ,Y
〉

Λh
, ∀ Y ∈ R3, (3.125)

Ip
ωk

4t
· θ = −

〈
wk

2 ,θ ×
−→
Gx
〉

Λh

, ∀ θ ∈ R3, (3.126)

and then compute

gk
1 = ∇ · uk; (3.127)
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next find gk2 ∈ Λh satisfying

〈
µ,gk2

〉
Λh

=
〈
µ,uk −V

k − ωk ×
−→
Gx
〉

Λh

, ∀ µ ∈ Λh, (3.128)

and compute

ρk =

∫
Ω

∣∣gk
1

∣∣2 dx +
〈
gk2 ,g

k
2

〉
Λh∫

Ω

gk1wk
1dx +

〈
gk2,w

k
2

〉
Λh

, (3.129)

and

pk+1 = pk − ρkw1
k, (3.130)

λk+1 = λk − ρkwk
2 , (3.131)

uk+1 = uk − ρkuk, (3.132)

Vk+1 = Vk − ρkV
k
, (3.133)

ωk+1 = ωk − ρkωk, (3.134)

gk+1
1 = gk1 − ρkgk1, (3.135)

gk+1
2 = gk2 − ρkgk2. (3.136)

If ∫
Ω

∣∣gk+1
1

∣∣2 dx +
〈
gk+1

2 ,gk+1
2

〉
Λh∫

Ω

∣∣g0
1

∣∣2 dx +
〈
g0

2,g
0
2

〉
Λh

≤ ε, (3.137)

then take p = pk+1, λ = λk+1, u = uk+1, V = Vk+1, and ω = ωk+1. Otherwise,
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compute

γk =

∫
Ω

∣∣gk+1
1

∣∣2 dx +
〈
gk+1

2 ,gk+1
2

〉
Λh∫

Ω

∣∣gk
1

∣∣2 dx +
〈
gk2 ,g

k
2

〉
Λh

, (3.138)

and set

wk+1
1 = gk+1

1 + γkw1
k, (3.139)

wk+1
2 = gk+1

2 + γkw
k
2 . (3.140)

Then do m = m+ 1 and go back to (3.124).

For Oldroyd-B fluid with the property of shear-thinning, the system (3.89)-(3.91)

can also be solved by the same algorithm. The only difference are that there is an

extra term

2

∫
Ω

(
µf − µ

(
·
γ
n
))

(D(un) : ∇v) dx,

and the elastic viscosity is not a constant any more.

3.5 Numerical results

3.5.1 Rotation of a single particle

We have considered the cases of a single neutrally buoyant ball placed at the middle

between two walls initially with different values of the relaxation time λ1 in a bounded

shear flow of Oldroyd-B fluids. The densities of the fluid and that of the particle

are ρf = ρs = 1 and the viscosity η1 = 1. The computational domain is Ω =
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(−a, a)× (−b, b)× (−c, c) (i.e. L1 = 2a, L2 = 2b, and L3 = 2c). The shear rate γ̇ = 1

sec−1 so the speed of the top wall is U = c and that of the bottom wall is −U = −c.

For all the numerical simulations, we assume that all dimensional quantities are in

the CGS units. We have obtained the rotating angular velocity with respect to the

x2-axis for different values of λ1.
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Figure 3.4: Single ball in a two-wall driven bounded shear flow as r=1/2 and L=10.

First, to study the wall effect on the particle rotating angular velocity, we consider

the mass center of the ball is fixed at (0, 0, 0) with three different λ1 and define the

blockage ratio K = 2r/L3 with five particle radii r = 1/10, 1/5, 1/3, 2/5, 1/2. The

retardation time is λ2 = λ1/8. The associated values of the Weissenberg number Wi

( = λ1γ̇) are 0.5, 0.75, and 1.0. In order to assure the unperturbed conditions, the

computational domain is Ω = (−L/2, L/2) × (−L/2, L/2) × (−1, 1) where L = 20r

and L3 = 2. The three different blockage ratios K as same as those cases in [8] (see

Figure 3.5) for the validation are considered in this section.
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Figure 3.5: The angular velocity of the particles with respect to the ratio 1/K for
four different Weissenberg numbers Wi. K and Wi are dimensionless numbers. The
numerical results in Maxwell fluid ( denoted by 4 ) are taken from in [8] and the
results we have obtained in Oldroyd-B fluid are denoted by “*”.

As Wi < 0.5 and 1/K > 2.5, the angular velocity we have obtained is very close

to the result in [8]. But as Wi > 0.5, our angular velocity is smaller then the one in

Maxwell fluid.

Second, to study the effect of viscoelasticity on the particle angular velocity, we

consider fixed mass center with six different ratios β = λ1
λ2

. The mass center of the

ball is fixed at (0, 0, 0) all the time. The particle radius r is 0.1. The computational

domain is Ω = (−1.5, 1.5)× (−1.5, 1.5)× (−1.5, 1.5). We have obtained the rotating
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angular velocity with respect to the x2-axis for ten different values of the relaxation

time λ1. The associated values of the Weissenberg number Wi (= λ1γ̇) are 0.01, 0.1,

0.25, 0.5, 1, 1.6, 2.6, 3.56, 4.2, and 5.5. The ratios β are 1.7, 1.8, 1.9, 2, 4, and 8. In

Figure 3.7, when Wi > 1 we also get the numerical results which are smaller than the

experimental results in [37] but the numerical results are getting larger and closer to

the experimental results as β is getting smaller.
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Figure 3.6: Single ball in a two-wall driven bounded shear flow as r=1/10 and L=3.

77



3.5. NUMERICAL RESULTS

0.01  0.1 1 10

Weissenberg number

0

0.1

0.2

0.3

0.4

0.5

A
n
g
u
la

r 
V

e
lo

c
it
y
 (

ra
d
/s

)

Figure 3.7: The angular velocity of the particles with respect to ten different Weis-
senberg numbers Wi in log-scale. The experimental results in Boger fluid are taken
from [37] and our numerical results in Oldroyd-B fluid are obtained for the ball with
fixed mass center for six β. Wi and β are dimensionless numbers.

3.5.2 Migration of a single particle in an one-wall driven

bounded shear flow

It is known that particles migrate toward moving wall in shear flow of viscoelastic

fluids (e.g., see[11]). To study the Migration of a single particle in an one-wall

driven bounded shear flow, we have considered the cases of a single ball placed at
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the middle between two walls initially with respect to five relaxation times λ1 in a

bounded shear flow of Oldroyd-B fluids. The associated values of the Weissenberg

number Wi are 0.01, 0.1, 0.5, and 1.0. The ball radii are r = 0.1. The fluid and ball

densities are ρf= ρs = 1, the viscosity being η1 = 1. The computational domain is

Ω = (−1.5, 1.5)× (−1, 1)× (−0.5, 0.5) The shear rate is fixed at γ̇ = 1 so the velocity

of the top wall is U = 1, the bottom wall being U = 0. The mesh size for the velocity

field and the conformation tensor is h = 1/48, the mesh size for the pressure is 2h,

The time step being 4t = 0.001. The mass center of the ball is located at (0, 0, 0)

initially. The results we have with respect to five different Wi are in Figure 3.8.

Besides translating along the flow direction, the ball migrations along the gradient

direction toward the moving (top) wall.
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Figure 3.8: Heights of the single ball mass center in an one-wall driven bounded
shear flow for five Wi form 0.01 to 1. As Wi increases, the particle migrates faster
to the moving top wall. Wi is a dimensionless number.
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As mentioned in [11, 12], the fluid viscoelasticity is the major factor affecting

the migration toward the moving wall. The migration dynamics is amplified by the

higher fluid viscoelasticity. In Oldroyd-B fluid flow, the fluid elasticity is controlled

by the Weissenberg number Wi. Figure 3.8 shows that the particle moves toward the

top moving wall in one-wall driven shear flows. The particle under higher Wi goes

up more rapidly than the particle under lower Wi. As Wi= 1, the particle goes up to

the wall with a small gap in limited time and then stays and moves forward along the

wall. These results at least, qualitatively agrees with the experimental observations

reported in [38].

3.5.3 Two ball interacting with large initial distance in a

two-wall driven bounded shear flow

In this section, we consider the cases of two balls of the same size interacting in a

bounded shear flow of Oldroyd-B fluids as visualized in Figure 3.9. The ball radii

are r = 0.1. The fluid and ball densities are ρf= ρs = 1, the viscosity being η1 =

1. The computational domain is Ω = (−1.5, 1.5)× (−1, 1)× (−0.5, 0.5) (i.e. L1 = 3,

L2 = 2, and L3 = 1). The shear rate is fixed at γ̇ = 1 so the velocity of the top wall

is U = 0.5, that of the bottom wall being −0.5. The mass centers of the two balls

are located on the shear plane at (−d0, 0,4s) and (d0, 0,−4s) initially, where 4s

varies and d0 is 0.5. The time step being 4t = 0.001. Then we have considered six

to seven dimensionless initial vertical displacements D = 4s/a.
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Figure 3.9: Two balls in a two-wall driven bounded shear flow.

When two balls move in a bounded shear flow of a Newtonian fluid at Stokes

regime with D = 0.122, 0.194, 0.255, 0.316, 0.5, 1 as in Figure 3.10, the higher

ball takes over the lower one and then both return to their initial heights for those

large vertical displacements D = 1, 0.5, and 0.316. These two particle paths are

called pass (or open) trajectories. But for smaller vertical displacements, D = 0.255,

0.194, 0.122, they first come close to each other and to the mid-plane between the

two horizontal walls, then, the balls move away from each other and from the above

mid-plane. These two particle paths are called return trajectories. Both kinds are

on the shear plane as shown in Figure 3.10 for Wi=0 (Newtonian case) and they are

consistent with the results obtained in [42].
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Figure 3.10: Trajectories of the two ball mass centers in a two-wall driven bounded
shear flow for Wi=0 where the higher ball (initially located above x3 = 0 and at
x1 = −0.5) moves from the left to the right and the lower ball (initially located
below x3 = 0 and at x1 = 0.5) moves from the right to the left: (a) the balls pass
over/under for vertical displacements D = 1, 0.5, and 0.316, and (b) the balls return
for vertical displacements D = 0.255, 0.194, 0.122. D is a dimensionless number.
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Figure 3.11: Trajectories of the two ball mass centers in a two-wall driven bounded
shear flow for Wi=0.1 where the higher ball (initially located above x3 = 0 and at
x1 = −0.5) moves from the left to the right and the lower ball (initially located
below x3 = 0 and at x1 = 0.5) moves from the right to the left: (a) the balls pass
over/under for vertical displacements D = 1, 0.5, (b) the balls return for vertical
displacements D = 0.42, 0.316, and (c) the balls tumble for vertical displacements
D = 0.255, 0.194, 0.122. D is a dimensionless number.
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Figure 3.12: Trajectories of the two ball mass centers in a two-wall driven bounded
shear flow for Wi=0.25 where the higher ball (initially located above x3 = 0 and
at x1 = −0.5) moves from the left to the right and the lower ball (initially located
below x3 = 0 and at x1 = 0.5) moves from the right to the left: (a) the balls pass
over/under for vertical displacements D = 1, 0.5, (b) the balls return for vertical
displacements D = 0.42, 0.316, and (c) the balls tumble for vertical displacements
D = 0.255, 0.194, 0.122. D is a dimensionless number.
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Figure 3.13: Trajectories of the two ball mass centers in a two wall driven bounded
shear flow for Wi=0.5 where the higher ball (initially located above x3 = 0 and at
x1 = −0.5) moves from the left to the right and the lower ball (initially located below
x3 = 0 and at x1 = 0.5) moves from the right to the left: (a) the balls pass over/under
for vertical displacements D = 1, 0.5, (b) the balls return for vertical displacements
D = 0.42, 0.316, 0.255, and (c) the balls tumble for vertical displacements D =
0.194, 0.122. D is a dimensionless number.
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Figure 3.14: Trajectories of the two ball mass centers in a two wall driven bounded
shear flow for Wi=0.75 where the higher ball (initially located above x3 = 0 and
at x1 = −0.5) moves from the left to the right and the lower ball (initially located
below x3 = 0 and at x1 = 0.5) moves from the right to the left: (a) the balls pass
over/under for vertical displacements D = 1, 0.5, 0.42, (b) the balls return for vertical
displacements D = 0.316, 0.255, and (c) the balls tumble for vertical displacements
D = 0.194, 0.122. D is a dimensionless number.
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Figure 3.15: Trajectories of the two ball mass centers in a two-wall driven bounded
shear flow for Wi=1 where the higher ball (initially located above x3 = 0 and at
x1 = −0.5) moves from the left to the right and the lower ball (initially located
below x3 = 0 and at x1 = 0.5) moves from the right to the left: (a) the balls pass
over/under for D = 1, 0.5, 0.38, (b) the balls return for D = 0.316, 0.255, 0.194, and
(c) the balls tumble for D = 0.122. D is a dimensionless number.
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For the two balls interacting in an Oldroyd-B fluid with D = 0.122, 0.194, 0.255,

0.316, 0.42, 0.5, 1, we have summarized the results for Wi=0.1, 0.25, 0.5, 0.75, and

1 in Figure 3.21 to 3.25.
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Figure 3.16: Trajectories of one ball mass center started above the mid-plane in a
two-wall driven bounded shear flow for vertical displacements D=0.5. After two balls
pass over/under each other, the trajectories first go toward the mid-plane then lift
up but don’t return to the initial vertical position like the case in a Newtonian fluid.
D is a dimensionless number.

As in a Newtonian fluid, there are results of pass and return trajectories concern-

ing two ball encounters; but the the trajectories of the two ball mass centers loose the

symmetry due to the effect of elastic force arising from viscoelastic fluids. For exam-

ple, in Figure 3.16 there are open trajectories of the ball started above the mid-plane

associated with D = 0.5 for Wi=0.1, 0.25, 0.5, 0.75, and 1. These trajectories are
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much closer to the mid-plane after two balls pass over/under each other. The fluid

elastic force is not strong enough to hold them together during passing over/under,

but it already pulls the balls toward each other and then change the shape of the

trajectories.

Another series of passing over trajectories as shown in Figure 3.17. There are

the open trajectories the ball started above the mid-plane associated with D = 1 for

Wi=0.1, 0.25, 0.5, 0.75, and 1. Instead of elastic force between two balls, the force

from the moving wall effect is stronger and it leads the ball migrates toward the

moving wall. As mentioned in section 3.5.2, the ball migrates faster under a higher

Wi.
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Figure 3.17: Trajectories of one ball mass center started above the mid-plane in a two-
wall driven bounded shear flow for vertical displacements D=1. D is a dimensionless
number.
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Figure 3.18: The tumbling motion as Wi = 1.0 and D = 0.255. For each frame,
the horizontal direction is X1 axis and vertical direction is X3 axis. Wi and D are
dimensionless numbers.
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For higher values of Wi considered in this section, there are less return trajecto-

ries; instead it is easier to obtain the two ball chain once they run into each other.

Actually depending on the Weissenberg number Wi and the initial vertical displace-

ment 4s, a chain of two balls can be formed in a bounded shear flow, and then such

chain tumbles. For example, for D = 0.316, the two balls come to each other, form

a chain and then rotate with respect to the midpoint between two mass centers for

Wi=0.1, 0.25, 0.5, 0.75, and 1. In Figure 3.18 it is a series of time frames of tumbling

motion as Wi= 1.0 and D=0.255
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Figure 3.19: Phase diagram for the motion of two balls based on the initial vertical
displacement D and Weissenberg number Wi in a two-wall driven bounded bounded
shear flow. Wi and D are dimensionless numbers.

The details of the phase diagram of pass, return, and tumbling are shown in

88



3.5. NUMERICAL RESULTS

Figure 3.19. The range of the vertical distance for the passing over becomes bigger

for higher Weissenberg numbers. For the shear flow considered in this article, the

increasing of the value of the Wi with a fixed shear rate is same as to increase the

shear rate with a fixed relaxation time. This explains why, for Wi=1, two balls

can have bigger gap between them while rotating with respect to the middle point

between two mass centers since the two balls are kind of moving under higher shear

rate. Those tumbling trajectories are actually associated with the closed streamlines

around a freely rotating ball centred at the origin.

3.5.4 Two ball interacting with small initial distance in a

two-wall driven bounded shear flow
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Figure 3.20: Two balls in a two-wall driven bounded shear flow.
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In this section, we have considered the cases of two balls of the same size interacting

in a bounded shear flow driven by walls as visualized in Figure 3.20. The ball radii

are r = 0.1. The fluid and ball densities are ρf= ρs = 1, the viscosity being η1 = 1.

The computational domain is Ω = (−1.5, 1.5)× (−1, 1)× (−0.5, 0.5). The shear rate

is fixed at γ̇ = 1 but the velocity of the top wall is U = 1, the bottom wall being

U = 0. The mesh size for the velocity field and the conformation tensor is h = 1/48,

the mesh size for the pressure is 2h, The time step being 4t = 0.001.

In order to study the interactions of two balls besides passing and swapping

behaviors (e.g., see [20], [21], [41]), we have considered the mass centers of the two

balls are located on the shear plane at (−x0, 0, z0) and (x0, 0,−z0) initially such that

the angle between the mid-plane x3 = 0 and the line segment of two initial locations

of mass center of particle is 175◦ counterclockwise. We define the gap size = d− 2r

where d is the distance between two mass centers of particle and r is 0.1.

For the two balls interacting in Oldroyd-B fluid with gap= h/2, h, 2h, and 3h

where h is the mesh size, we have summarized the results for Wi=0.1, 0.25, 0.5,

0.75, and 1 in Figure 3.21 to Figure 3.25. We have plotted in Figure 3.21 to 3.25 the

relative trajectories of the two ball mass centers via the graphs of (xi,1− x̄1, xi,3− x̄3),

for i =1, 2, the mass center of the two balls being xi = (xi,1, xi,2, xi,3), i =1, 2; the

midpoint between two ball mass center x1 and x2 is x̄ = 1
2
(x1 + x2) = (x̄1, x̄2, x̄3)t.
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Figure 3.21: Trajectories of the two ball mass centers in a two-wall driven bounded
shear flow for Wi=0.1 where the higher ball (initially located above x3 = 0) moves
from the left to the right and the lower ball (initially located below x3 = 0) moves
from the right to the left: all the balls tumble for gap = 3h, 2h, h, h/2. The unit of
mesh size h is centimeter and Wi is a dimensionless number.
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Figure 3.22: Trajectories of the two ball mass centers in a two-wall driven bounded
shear flow for Wi=0.25 where the higher ball (initially located above x3 = 0) moves
from the left to the right and the lower ball (initially located below x3 = 0) moves
from the right to the left: all the balls tumble as gap = 3h, 2h, h, h/2. The unit of
mesh size h is centimeter and Wi is a dimensionless number.
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Figure 3.23: Trajectories of the two ball mass centers in a two-wall driven bounded
shear flow for Wi=0.5 where the higher ball (initially located above x3 = 0) moves
from the left to the right and the lower ball (initially located below x3 = 0) moves
from the right to the left: the balls tumble for gap = 3h, 2h, h, h/2. The unit of
mesh size h is centimeter and Wi is a dimensionless number.
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Figure 3.24: Trajectories of the two ball mass centers in a two-wall driven bounded
shear flow for Wi=0.75 where the higher ball (initially located above x3 = 0) moves
from the left to the right and the lower ball (initially located below x3 = 0) moves
from the right to the left: the balls tumble then kayaking for gap = 3h, 2h, h, h/2.
The unit of mesh size h is centimeter and Wi is a dimensionless number.
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Figure 3.25: Trajectories of the two ball mass centers in a two-wall driven bounded
shear flow for Wi=1 where the higher ball (initially located above x3 = 0) moves
from the left to the right and the lower ball (initially located below x3 = 0) moves
from the right to the left: the balls tumbling then kayaking for gap = 3h, 2h, h, h/2.
The unit of mesh size h is centimeter and Wi is a dimensionless number.

For all cases we have considered in Figure 3.21 to 3.25, all the behaviors are

tumbling for gap = 3h, 2h, h, h/2. Besides balls rotating around one another with a

fixed axis, there is also a behavior that the two balls rotate but not around a fixed

axis as Wi = 1 and gap = 3h, 2h, h, h/2. The behavior is similar to the motion of

kayaking for a long body. As seen in Figure 3.26, it is a series of frames of kayaking

behavior of the two balls for Wi = 1.0 and gap = 3h. To describe this behavior, two

balls first chain and tumble while the two ball mass centers are on the shear plane

X2 = 0. Then two balls still rotate around one another but the two ball mass centers

are not on the shear plane.
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Figure 3.26: The kayaking motion as Wi = 1.0: the initial distance between two
particles is 2r+gap where r = 0.1, gap=3h. For each frame, the horizontal direction
is X2 axis and vertical direction is X3 axis. The unit of mesh size h is centimeter
and Wi is a dimensionless number.
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3.5.5 Two ball interacting with small initial distance in an

one-wall driven bounded shear flow
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Figure 3.27: Two balls in an one-wall driven bounded shear flow.

In this section, we have considered the cases of two balls of the same size interacting

in a bounded shear flow driven by the upper wall as visualized in Figure 3.27. The

ball radii are r = 0.1. The fluid and ball densities are ρf= ρs = 1, the viscosity being

η1 = 1. The computational domain is Ω = (−1.5, 1.5) × (−1, 1) × (−0.5, 0.5). The

shear rate is fixed at γ̇ = 1 but the velocity of the top wall is U = 1, the bottom

wall being U = 0. The mesh size for the velocity field and the conformation tensor

is h = 1/48, the mesh size for the pressure is 2h, The time step being 4t = 0.001.

In order to study the interactions of two balls besides passing and swapping

behaviors (e.g., see [20], [21], [41]), we have considered the mass centers of the two

balls are located on the shear plane at (−x0, 0, z0) and (x0, 0,−z0) initially such that
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the angle between the mid-plane x3 = 0 and the line segment of two initial locations

of mass center of particle is 175◦ counterclockwise. We define the gap size = d− 2r

where d is the distance between two mass centers of particle and radius r is 0.1.

For the two balls interacting in Oldroyd-B fluid with gap= h/8, h/4, h/2, h, 2h,

and 3h where h is the mesh size, we have summarized the results for Wi=0.1, 0.25, 0.5,

0.75, and 1 in Figure 3.28 to Figure 3.32. We have plotted in Figure 3.28 to 3.32 the

relative trajectories of the two ball mass centers via the graphs of (xi,1− x̄1, xi,3− x̄3),

for i =1, 2, the mass center of the two balls being xi = (xi,1, xi,2, xi,3), i =1, 2; the

midpoint between two ball mass center x1 and x2 is x̄ = 1
2
(x1 + x2) = (x̄1, x̄2, x̄3)t.

As seen in Figure 3.29, we show the passing behaviors for gap = 3h which is

different from the case under a two-wall driven fluid flow. But two-ball chain tumbles

around a fixed axis in the middle of the two ball mass centers for gap = 2h, h, h/2,

h/4, h/8. It is worthy to mention the tumbling behavior for gap = 2h. Two balls

first approach with each other then chain and rotate in a while, then two balls still

rotate but they rotate separately in a short time, but after the distance between

two balls approaches a certain maximum separation distance, the two balls start to

rebound then chain rotate again. This behavior is called kissing-tumbling-separation

phenomena which has also obtained in an Oldroyd-B fluid in [20].
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Figure 3.28: Trajectories of the two ball mass centers in an one-wall driven bounded
shear flow for Wi=0.1 where the higher ball (initially located above x3 = 0) moves
from the left to the right and the lower ball (initially located below x3 = 0) moves
from the right to the left: (a) the balls pass over/under for gap = 3h, and (b) the
balls tumble for gap = 2h, h, h/2, h/4, h/8. The unit of mesh size h is centimeter
and Wi is a dimensionless number.
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Figure 3.29: Trajectories of the two ball mass centers in an one-wall driven bounded
shear flow for Wi=0.25 where the higher ball (initially located above x3 = 0) moves
from the left to the right and the lower ball (initially located below x3 = 0) moves
from the right to the left: (a) the balls pass over/under for gap = 3h, and (b) the
balls tumble for gap = 2h, h, h/2, h/4, h/8. The unit of mesh size h is centimeter
and Wi is a dimensionless number.
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Figure 3.30: Trajectories of the two ball mass centers in an one-wall driven bounded
shear flow for Wi=0.5 where the higher ball (initially located above x3 = 0) moves
from the left to the right and the lower ball (initially located below x3 = 0) moves
from the right to the left: the balls tumble for gap = 3h, 2h, h, h/2, h/4, h/8. The
unit of mesh size h is centimeter and Wi is a dimensionless number.
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Figure 3.31: Trajectories of the two ball mass centers in an one-wall driven bounded
shear flow for Wi=0.75 where the higher ball (initially located above x3 = 0) moves
from the left to the right and the lower ball (initially located below x3 = 0) moves
from the right to the left: the balls tumble for gap = 3h, 2h, h, h/2, h/4, h/8. The
unit of mesh size h is centimeter and Wi is a dimensionless number.
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Figure 3.32: Trajectories of the two ball mass centers in an one-wall driven bounded
shear flow for Wi=1 where the higher ball (initially located above x3 = 0) moves
from the left to the right and the lower ball (initially located below x3 = 0) moves
from the right to the left: (a) the balls tumble for gap = h/4, h/8, and (b) the
balls tumbling then kayaking for gap = 3h, 2h, h, h/2. The unit of mesh size h is
centimeter and Wi is a dimensionless number.

For higher Wi = 0.5, 0.75, 1.0 in Figure 3.30 to 3.32, all the behaviors are tumbling

for gap = 3h, 2h, h, h/2, h/4, h/8. In Figure 3.33 is a series of frames of the two-ball

tumbling behavior for Wi = 0.5 and gap = 3h. The kissing-tumbling-separation

phenomena have been seen for higher gap sizes. Besides tumbling motions, the

kayaking motion have been observed as Wi= 1. As seen in Figure 3.34, it is a series

of frames of the two-ball kayaking behavior for Wi = 1 and gap = 3h. For a long

body like a prolate ellipsoid, we say that it tumbles on the shear plane if its long axis

rotates on the shear plane (i.e. rotating on the shear plane with respect to one of its

short axis perpendicular to the shear plane). Such tumbling motion is not a stable

state for higher values of Wi. Two ball chain can been seen as a loosely connected

long body so that it should behave like a long body. Its long axis migrates away

from the shear plane for high values of Wi so the motion changes from tumbling to

kayaking.
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Figure 3.33: The tumbling motion as Wi = 0.5: the initial distance between two
particles is 2r+gap where r = 0.1, gap=3h.For each frame, the horizontal direction
is X1 axis and vertical direction is X3 axis. The unit of mesh size h is centimeter
and Wi is a dimensionless number.
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Figure 3.34: The kayaking motion as Wi = 1.0: the initial distance between two
particles is 2r+gap where r = 0.1, gap=3h. For each frame, the horizontal direction
is X2 axis and vertical direction is X3 axis. The unit of mesh size h is centimeter
and Wi is a dimensionless number.
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Figure 3.35: Trajectories of two ball mass centers in an one-wall driven bounded shear
flow for gap =3h. The unit of mesh size h is centimeter and Wi is a dimensionless
number.
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Figure 3.36: Phase diagram for the motion of two balls based on the initial gap size
gap and Weissenberg number Wi in an one-wall driven bounded shear flow. The unit
of mesh size h is centimeter and Wi is a dimensionless number.
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For gap =3h and five considered Wi, trajectories of two ball mass centers are

shown in Figure 3.35. For Wi= 0.1 and 0.25, the higher one takes over the lower one

and both migrate toward the top moving wall. For Wi= 0.5, 0.75, and 1, the higher

first catch up the lower one to form a chain and they rotate around one another and

migrate toward the moving wall as a cluster.

The details of the phase diagram of pass, tumbling, and tumbling then kayaking

are shown in Figure 3.36. There are more tumbling-kayaking behaviors for a larger

Weissenberg numbers.
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CHAPTER 4

Conclusions and Future work

4.1 Conclusions

In this dissertation, we presented a new distributed Lagrange multiplier/fictitious

domain method for simulating fluid-particle interaction in three-dimensional Stokes

flow. A conjugate gradient method driven by both pressure and distributed Lagrange

multiplier, called a one-shot method, has been developed to solve the discrete Stokes

problem while enforcing the rigid body motion within the region occupied by the

particle. The methodology is validated by comparing the numerical results of a

neutrally buoyant particle in either Newtonian or Oldroyd-B fluids.
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For the cases of two ball encounters under creeping flow conditions in a top-

wall driven shear flow of Newtonian fluids, the trajectories of the two ball mass

centers are consistent with the results obtained in [42] and also with those of the

two balls in a two-wall driven shear flow. The swapping trajectories in a one-wall

driven shear flow are actually like those of two balls coming toward each other and

then later moving away in a two-wall driven shear flow due to the presence of the

two walls. For the cases of a two-ball encounter under creeping flow conditions in

a two-wall driven shear flow of Oldroyd-B fluids there are three different trajectory

behaviors: pass, tumbling, and return trajectories; but the the trajectories of the

two ball mass centers lose symmetry due to the effect of elastic force arising from

viscoelastic fluids. Instead of returning back to the initial vertical displacement in

Newtonian fluids, the balls migrate toward the moving wall and then rapidly migrate

in higher viscoelasticity fluids. For two balls located close to each other initially in

a top-wall driven shear flow of Oldroyd-B fluids, we have obtained that three binary

encounters : pass, tumbling, and tumbling then kayaking. Since tumbling motion is

not a stable motion, the two ball mass centers couldn’t stay on shear plane all the

time when two-ball chain tumbles.

4.2 Future work

The string of particles phenomenon in viscoelastic shear flow (see Fig. 4.1) has been

observed experimentally in ,e.g., [25] and [39]. The numerical results of the three
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balls alignment in a viscoelastic fluid of Gieskus type has been obtained in [21]. How-

ever, their balls have been initially placed specially at certain position. Numerical

simulation of particle strings in shear flow of viscoelastic fluids haven’t been actually

obtained to the best of our knowledge. It is believed that the property of the shear

thinning is the key factor to have the string phenomenon of many particles. There-

fore, the next step is to model the fluid-particle system by taking into account the

shear thinning effect through the combination of the Carreau and Oldroyd-B models

proposed in this dissertation and then simulate particle interactions in shear flow via

such resulting model.

Figure 4.1: Particles alignment in polyisobutylene solution (J. Michele et al. Rheol.
Acta 1977)

Another extension of the current dissertation work is to consider the finitely

extensible nonlinear elastic (FENE) dumbbell model for viscoelastic fluid flow. In

order to study the properties of dilute polymer fluid, the motion of polymer molecules

in the fluid is modeled as a suspension of dumbbells or spring chains with finite
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extensibility (e.g., see [1] and [5]). It would be interesting to consider the fluid-

particle and particle-particle interactions in non-Newtonian fluid flow of FENE type

with particles and study the effect of the finite extensibility on the particle chains.
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