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Abstract

This thesis develops a framework to estimate the likelihood in fluid volumes in

a hydrocarbon reservoir. It uses 3C-3D seismic data and well logs from the Black-

foot oilfield (Alberta-Canada). Results from cross validation techniques applied to

distribution maps generated using the geostatistic method (thickness and percentage

of sand) and the neural network method (porosity) are used to estimate the uncer-

tainty related with the predicted distributions in the case of the Blackfoot oilfield

(AB-Canada). These distribution maps as well as the estimated uncertainty associ-

ated with them are used as inputs in two different approaches for the application of

uncertainty analysis in the estimation of hydrocarbon volumes (a Taylor expansion

approach and a Monte Carlo approach). The results obtained using these two ap-

proaches give compatible hydrocarbon volume estimates for the Blackfoot pool, with

P10∼ 12 MMbbl, P50∼ 8 MMbbl, and P90∼ 5 MMbbl. Investigation about sources

of uncertainty in seismic data revealed that the time picking error could explain, in

the case of the Blackfoot reservoir, the uncertainty in the thickness parameter.

In the second part of this project, well log data from the Gulf of Mexico are

used together with fluid substitution method and uncertainty analysis to evaluate

how the observed variability in rock properties of the Gulf of Mexico for each specific

depth value affects the response of the attributes that respond to fluid discrimina-

tion. A larger concern for deeper reservoirs was identified in the predicted results.

Nevertheless, the fluid substitution results were considered robust in most conditions

investigated in this project, allowing discrimination of gas, fizz gas, and water satu-

rated reservoirs in some of the attributes that respond to the fluid content. This last

result could allow the estimate of the missing parameter in the HCPV estimation:

the hydrocarbon saturation distribution map.
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Chapter 1

Introduction

1.1 The general problem

Seismic data has been used to great advantage in the exploration of petroleum re-

sources. Seismic is used in the construction of formation structure maps, which have

to be tied to well log data. In addition, other elements of the basic geometry of

the hydrocarbon trap (e.g. fault) can be derived from seismic data. Recently, the

seismic technology has been recognized as a reliable technology after the update of

the regulations published by the US. Securities and Exchange Commission in 2008

(Sidle and Lee, 2011; US SEC 2008). This means that seismic can now be used to

validate and report petroleum resources and reserves. The general problem related to

the evaluation of the volumetric information related to hydrocarbon reservoirs, which

uses seismic as a fundamental tool, is the subject of this thesis.
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The purpose of seismic interpretation is to extract all available geologic informa-

tion from the seismic data. To do so, seismic data must be understood, specifically

what are the properties related to the origin of the seismic response. Seismic reflec-

tions are related to the interfaces where the acoustic properties of the rocks change –

typically, the density ρ and the compressional (P-wave) and shear (S-wave) velocities,

Vp and Vs respectively. The amplitude of these reflections (the seismic response) is

calculated from the contrasts of the impedances associated with this interface. Thus,

seismic amplitudes represent contrasts in elastic properties between individual layers.

Brown et al. (2011), divided the principal reservoir properties that affect seismic

amplitude in two groups. The first group, which contains the nature of the fluid, the

gross lithology, the pressure, and the temperature, affects the reservoir as a whole (in

first approximation). The second group, which contains porosity, net pay thickness

or net-to-gross ratio, lithological detail, and hydrocarbon saturation, is formed by

reservoir properties that can vary laterally over short distances. Thus, the second

group presents reservoir properties that significantly affect the reserve estimates of a

reservoir penetrated by a small number of wells. Still following Brown et al., lateral

changes in amplitude of reservoir reflections can be caused by changes in any one

or more of these second group of reservoir properties (i.e., there is an inherently

ambiguity). Thus, Brown et al. point out that the interpretative approach to reservoir

evaluation requires that simplifying assumptions be made.

Many of the properties that affect the seismic response can be measured directly

using well logging tools or core samples. Thus, to fully understand the seismic reflec-

tions, rock physics modeling can be used as an important and useful tool associated

with the seismic interpretation procedure. To do so, all well log data should first be
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edited for borehole effects, balanced, and classified on basis of quality (Brown et al.,

2011). In addition, when comparing seismic data with well log data, scale differences

must to be taken into account. With this considerations in mind, integration between

seismic data and well log data, or seismic interpretation and well log interpretation,

constitutes a fundamental process in any reservoir characterization process.

From a purely seismic point of view, seismic interpretation implies picking and

tracking laterally consistent seismic reflectors for the purpose of mapping geologic

structures, stratigraphy and reservoir architecture. The geometrical expression of

seismic reflectors is then mapped in space and time. The ultimate goal of seismic

interpretation is to detect hydrocarbon accumulations, delineate their extent, and

calculate their volumes (PRMS-AD, 2011). Quantitative seismic interpretation tech-

niques can validate hydrocarbon anomalies and give additional information during

prospect evaluation and reservoir characterization (Avset et al., 2005). Among these

techniques are amplitude versus offset (AVO) analysis, acoustic and elastic impedance

inversion, and forward seismic modeling. One of the main advantages of the 3D seis-

mic data compared to well log data is that the former provides a better coverage of

the geologic area associated with a hydrocarbon field. However, the seismic data is

band-limited and is also contaminated by complex noise and phase errors. Hence,

even if a seismic anomaly is present and fits the structure well, the anomaly by itself

significantly lowers risk but is probably insufficient for a reporting of reserve volumes

until confirmed by well control (PRMS-AD, 2011). As additional development wells

are drilled and logged, the interpretation of the seismic data is revised and recali-

brated. Aspects of the seismic interpretation that were initially ambiguous become
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more reliable and detailed as uncertainties in the relationship between seismic pa-

rameters and field properties are reduced (PRMS-AD, 2011). Thus, in any part of

the seismic interpretation process, integration of seismic with well log data interpre-

tation is fundamental, since this integration of geophysical data allows to increasing

confidence in the geophysical interpretation.

Figure 1.1 shows a schematic for a 3D reservoir presenting a gas/oil contact (GOC)

and an oil/water contact (OWC). Figure 1.1 is also useful to illustrate some of the

difficulties associated with the quantification of hydrocarbon volumes in reservoirs.

To evaluate the reservoir’s hydrocarbon volume, each one of the fluid phases presented

in the reservoir must be mapped, as well as the boundaries related to the top and base

of the reservoir. Thus, when a seismic amplitude anomaly is identified as the result

of hydrocarbon saturation, the gas/oil and/or hydrocarbon/water contacts (GOC,

GWC, or OWC) themselves can be mapped across the 3D seismic volume by noting

where the amplitude anomalies terminate downdip (PRMS-AD, 2011). The amplitude

interpretation must be geologic consistent with structural interpretation (Hilterman,

2001). Hence, the terminations of the amplitude anomalies should occur at a common

structural contour within the sedimentary fairway, which is interpreted as the base

of the trapped hydrocarbon - and a possible flat spot maybe observed. As discussed

in Hilterman (2001), flat spots are enhanced if the reservoir is thick, presents enough

dip and is identified on 3D seismic data.

However, if the downdip termination of the anomaly does not follow a structural

contour within the reservoir fairway, there is risk that the seismic amplitude anomaly

is not caused by the presence of hydrocarbon. Another possibility is that the hydro-

carbon reservoir is too thin and/or too steeply dipping to exhibit a readily observable

4



Figure 1.1: A 3D reservoir scheme presenting the gas/oil contact (GOC) and the
oil/water contact (OWC) (modified from Tearpock, 2011).

flat spot but a seismic anomaly is present and fits the structure well; in this case the

anomaly by itself significantly lowers risk but is probably insufficient for the report-

ing of reserve volumes until confirmed by well control (PRMS-AD, 2011). Through

integration with well data and reservoir penetrations, the presence of a hydrocarbon

accumulation can be confirmed, and the seismic amplitude data can be extrapolated

from well control. This extrapolation to locations away from the wells can be done

by generating facies models using several wells in the area (e.g. using geostatistic

analysis), or by correlating them to certain attributes from seismic data (e.g. using

a neural network method). The latter requires accurate correlation of the wells with
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the seismic data, as well as the definition of appropriate rock physics models. In fact,

rock physics is an essential link connecting seismic data to the presence of in situ

hydrocarbons and to reservoir characteristics (Han and Batzle, 2004). Modeling the

effects of fluid on rock velocity and density is a basic method used to estimate the

influence of pore fluids on seismic data. With this purpose, Gassmann’s equations

are the relation most widely used to calculate seismic velocity changes resulting from

different fluid saturations in reservoirs.

The use of multicomponent seismic data is an improvement in the seismic char-

acterization of a hydrocarbon reservoir when compared to traditional P-wave seismic

data. Coupled PP and PS seismic interpretation increases the confidence of the geo-

physical interpretation, as multicomponent seismic data add new measurements for

investigate the subsurface. Through the analysis of multicomponent seismic data,

rock properties as VP/VS can be estimated directly from the data, thus improving the

predictions related to mineralogy, porosity, and reservoir fluid type (Miller, 1996). In

general, two parameters (i.e., P- and S-impedance, or P- and S-wave velocity) can

often be estimated from PP and PS seismic inversion (Miller, 1996).

The VP/VS value extracted from multicomponent data can also be used to iden-

tify sand channels, as the increase in VP/VS with shaliness has been used in seismic

field studies to outline sandstone channels encased in shales (McCormack et al., 1984;

Garotta et al., 1985). This use for VP/VS is validated by well control, as a decrease

in VP/VS correlates with an increase in sand channel thickness as determined from

well log data (McCormack et al., 1984; Garotta et al., 1985). Thus, multicomponent

seismic data can provide an important contribution to the characterization of a hy-

drocarbon reservoir. This contribution will be described in more detail in Chapter
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2.

A last comment about the general problem related to the reservoir volume estima-

tion is that, whatever the methodology used for estimation of resource quantities for

an accumulation of hydrocarbons, it is subject to uncertainty, and should be expressed

as a range. Thus, uncertainty can be defined as the range of possible outcomes in an

estimate (GEPRR, 2001). The use of uncertainties allows to assessing the risk and

optimal decision-making related to some accumulation of hydrocarbon. In addition,

the use of uncertainties allows a better integration among data from different sources

and of different types, and allows also the estimation of the value of additional data

(Avseth et al, 2005).

Recently, Sidle and Lee (2008) discussed a methodology to quantifying the relia-

bility and value of the 3D seismic data. The authors applied a value-of-information

model that includes multiple targets, budgetary constraints, and qualitative models

relating poststack seismic amplitudes and amplitude-variation-with-offset (AVO) pa-

rameters to the quantities of interest for reservoir characterization, such as porosity

and reservoir thickness. The geophysical methods described in their work incorporate

uncertainty in the rock properties (e.g., porosity), errors in acquisition and process-

ing, and other reservoir properties (e.g., thickness), allowing oil companies to base

seismic accuracy assessments on hard data instead of expert assessment. The work

of Sidle and Lee (2008) is related to one of the objectives of this thesis, since when

we assess the uncertainties associated with some data/calculation, we can make a

better interpretation of the results. In the following chapters, uncertainty analysis

will be used to evaluate the confidence of the geophysical estimations carried out in

this thesis.
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1.2 Study area and data employed

This thesis uses two different datasets, each one selected to achieve a different goal

within the umbrella of likelihood. To investigate the reservoir volume uncertainty,

as associated with the volumetric method (see Chapter 2), the Blackfoot reservoir

(AB-Canada) was selected. A reason for this selection is that there is published

research available for this reservoir, which is able to provide the information needed

to carry out a study about the confidence of the estimation of hydrocarbon volumes.

A second dataset is associated with the Gulf of Mexico, and it was selected because

the available data allows an extended use of uncertainty analysis to be applied to

fluid discrimination evaluation.

The Blackfoot field is located southeast of Calgary, in Alberta, Canada, in Town-

ship 23, Range 23 (see Figure 1.2). The hydrocarbon reservoir associated with the

Blackfoot field is the Glauconitic sandstone which is encountered at a depth of ap-

proximately 1550 m and the valley-fill sediments vary from 0 to over 35 m in thick-

ness (Miller, 1996). The reservoir is made up of quartz sandstones with an average

porosity of approximately 18%. Hydrocarbon reservoirs are found in structural and

stratigraphic traps where porous channel sandstones pinch out against non-reservoir

regional strata or low-porosity channel sediments. The main production zone in the

Blackfoot area is the upper Glauconitic Group and the primary fluid in the upper

incised valleys is oil (Feng, 2009). Gas is occasionally present in the upper channel

valleys and whenever it comes out of solution (Miller, 1996; Lu and Margrave, 2001).

The acquisition parameters associated with the 3C-3D seismic data used in this
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thesis is available in Lawson et al. (1996) and the survey was processed with PRO-

MAX software by the CREWES Project, University of Calgary (Lu and Margrave,

1998). A comprehensive explanation of the data associated with this thesis, as well

as about the Blackfoot reservoir, is discussed in Todorov (2000).

Figure 1.2: Base map of Blackfoot area. The 3C-3D survey area was inside the dashed
line (from Lawton et al., 1996) in the right map.

The other region investigated in this thesis is in the shallow part of the Gulf

of Mexico. The well log dataset used in this analysis was provided generously by

Professor Fred J. Hilterman. This well log dataset contains 1,740 samples presenting

measurements for 6 different properties (density for shale and for wet sand, P-wave

velocity for shale and for wet sand, temperature, and mud weight). The well log

samples are from depths of 0.21 km to 3.75 km.
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1.3 Objectives

The objectives related to this thesis can be better described separately for the goals

related for each dataset associated with this thesis, given the main goal which is

related to both datasets: the investigation of the range of values resulting from a

span of inputs. In addition, the objectives will be described as questions that I

intend to answer in this project. These questions are

Part 1 – Blackfoot reservoir: a) How can we estimate the uncertainty related

to geostatistical results? How may we use this uncertainty in the reservoir hydrocar-

bon pore volume (HCPV) estimation process? b) How will we associate uncertainty

with probability in the estimation of geophysical properties? c) How would we asso-

ciate a numerical probability with results obtained using a deterministic approach? d)

Are the uncertainties originating in the seismic as well as in the well log data related

to the uncertainty in the reservoir HCPV obtained from geostatistical analysis?

Part 2 – Gulf of Mexico: a) How does the observed spatial variability in a

well log dataset influence the response of attributes that respond to fluid content in

reservoirs? b) Is the fluid discrimination derived from fluid substitution robust when

we consider the observed spatial variability in the measured properties of a well log

dataset? c) How does depth affect the fluid discrimination in this case?
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1.4 Methodology

In this thesis, I use two different datasets to investigate the two cases (two parts)

being studied. In Part 1 of this thesis (Chapter 2), I first review the results obtained

for Blackfoot oilfield (AB-Canada), as published in a series of papers by Todorov and

Stewart (e.g. Todorov and Stewart, 1997; Todorov, 2000). These authors used 3C-

3D multicomponent seismic data and well log data to generate distribution maps for

thickness, percentage of sand, and porosity associated with the Blackfoot oilfield. The

thickness and the percentage of sand distributions were generated by the authors using

the cokriging geostatistical method (Isaaks and Srivastava 1989), while the porosity

distribution was obtained using seismic inversion and the neural network methods

(Todorov, 2000). From these distributions and the oil saturation in the Blackfoot

field the authors derived an oil column distribution map (shown in Figure 2.8).

Cross validation techniques were applied by Todorov and Stewart (1997) to their

results to evaluate the reliability of the final distributions. I use these cross-validation

results as published by Todorov (2000), which present the associated absolute error

obtained using the blind well procedure, as a way to estimate the uncertainty associ-

ated with the distribution maps of porosity, thickness, and percentage of sand. The

saturation uncertainty is estimated using the well log data available to the Blackfoot

reservoir. Using two different approaches, a Taylor expansion approach (Coleman

and Steele, 2009) and a Monte Carlo simulation approach (Avseth et al. 2005), I

can propagate the uncertainties associated with the source parameters needed for the

hydrocarbon pore volume (HCPV) estimation to the HCPV estimated value itself.

In Part 2 of this thesis (Chapter 3), I use a well log dataset containing 1740
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samples from the Gulf of Mexico presenting measured values for P-wave velocity

(Vp) for shale and for wet sand, density for shale and for wet sand, temperature,

and mud weight to investigate the questions listed in the objectives section of this

thesis. I use the Gassmann’s equation, the Monte Carlo simulation, and the observed

variability in the sample values for specific depths to investigate their effect on the

results of the fluid discrimination technique. The crossplots involving P-Impedance

versus S-Impedance, NI versus PR, λρ versus µρ, and Vp/Vs versus Vp (all of them

described in Hilterman, 2001) were selected to carry out this evaluation.

In this thesis, I have used the Hampson-Russell software to analyse and extract

information from well log data. In addition, I have used Matlab, Scilab and MS-Excel

to analyse well log data and to carry out the calculations associated with uncertainty

analysis.

1.5 Thesis outline and implementation

Sections 1.6 through 1.8 present a discussion about the background needed to bet-

ter understand the ideas developed in the following chapters; specifically, statistical

knowledge, reservoir volume estimation methods and fluid substitution method are

addressed. Chapter 2 presents the discussion about reservoir volume estimation and

confidence. Chapter 3 presents the discussion about fluid discrimination in gas reser-

voirs. Chapter 4 presents a summary of the results obtained in this thesis, and

Chapter 5 describes ideas to be developed in future work.
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1.6 Statistics and Monte Carlo simulation

1.6.1 Basic statistics

In the theory of statistics, the parent population refers to the number of possible

measured values ξi, which in the case of this population consist of an infinite number

of values. Two independent parameters, the mean µ and the standard deviation

σparent characterize the parent distribution when it is a normal distribution. Both

parameters are related to each other through the equation below

σparent =

√∑
(ξi − µ)2

Nparent

(1.1)

In practice, when we take a series of measurements in an experiment xi we take

a selection, or sample, from this parent distribution which results in a distribution

called sample distribution. This distribution is centered on the mean of the data set,

x, and has a standard deviation given by

σsample = sx =

√∑
(xi − x )2

N − 1
(1.2)

The goal in statistical analysis is to make use of this sample distribution to estimate

the mean and standard deviation of the parent distribution. In the limit that N →∞

the parent and sample distributions are the same and x = µ and σsample = σparent.

Another statistical parameter that is important when we perform uncertainty

analysis is the coefficient of variation. The coefficient of variation is given by the

ratio of the mean value and the associated standard deviation. Thus, the coefficient

of variation is a dimensionless quantity, and is used in general to compare uncertainty

involving parameters with different physical units.
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1.6.2 PDF’s and CDF’s

Uncertainty is related to our incomplete knowledge. To describe uncertainties in

a quantitative way, it is common to model the uncertainties as random variables,

and also the use of statistical probability density functions (PDFs) and cumulative

distribution functions (CDFs) to describe the uncertainty quantity. The CDF is

obtained by integrating the PDF, so that the value of the CDF for a random variable

X is equal to the area at the left of x under the PDF plot (see Figure 1.3). Thus, for a

random variable X in the range xi < X < xf , we have that the probability associated

with the random variable X is given by

P (xi < X < xf ) =

∫ xf

xi

f(x) dx (1.3)

where f(x) is the PDF, and the CDF is obtained from equation 1.3 using xi as the

minimum possible value of the random variable X, so that X≤ xf . The CDF describes

the probability that a random variable X with a given probability distribution f(x)

will be found at a value less than or equal to xf , which defines a quantile q for X ≤ xf .

As described in Dubrule (2003), a P90 probability associated with a reservoir is the

reverse of the CDF for a random variable equal to xf . Hence, P90 means that 90%

of the values for X are larger than or equal to xi. The reverse cumulative probability

function commonly is known as expectation curve. In terms of the direct CDF, P90

is equivalent to the quantile q10, since 10% of the values for X are lower than or equal

xf .

The PDF and CDF distributions describe the uncertainty quantity. As described

in Avseth et al. (2005), the moments related to the PDF (e.g., the mean, standard

deviation) tell us about the central tendency and the spread of the random variable.
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Figure 1.3: PDF and CDF of a normal distribution (Gaussian distribution).

One convenient way to handle the uncertainty related to a distribution of points in a

sample, is the use of a parametric approach, in which we choose the PDF as a known

function, and then estimate the parameters of the PDF from the data.

One convenient PDF is the Gaussian distribution, which is characterized by the

mean and the standard deviation related to the sampled data. In the calculations

carried out in this paper, the Gaussian distribution will be used to characterize the

uncertainties associated with the available data. Investigations related to the use of

different PDFs (e.g., lognormal distribution) will not be addressed in this thesis, but

could be the subject of further scientific work. As an example of the use of different

PDFs, one could say that the Gaussian distribution is often used to represent the

PDF of porosity or of random errors, while the lognormal distribution often is used

to model permeability (Dubrule, 2003).

The method presented in this thesis to estimate the uncertainty in the oil volume

prediction makes use of the geostatistic analysis and the “blind well” procedure during

the carrying out of the QC tests as describe in the Chapter 2. Thus, the absolute errors
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related to the “blind well” tests are used to estimate the standard deviation necessary

to characterize the PDF (Gaussian distribution) associated with the values predicted

for each parameter. From this PDF, the CDF related to P10 (10% of probability

associated with a predicted quantity) and P90 (90% of probability associated with

a predicted quantity) are computed (Dubrule, 2003), providing an estimate of the

uncertainty related to a specific value of the oil volume prediction. Chapter 2 discusses

such a case.

1.6.3 Monte Carlo simulation

The Monte Carlo simulation is a powerful tool in uncertainty analysis. It is used in the

volumetric estimation in the case of a probabilistic approach (PRMS-AD, 2011). The

basic methodology of the Monte Carlo simulation is presented in Figure 1.4, which

shows a schematic of Monte Carlo simulation (from Jahn et al., 1998). The Monte

Carlo simulation generates a limited number of possible combinations of variables

which approximates a distribution of all possible combinations (Jahn et al., 1998).

As the number of sets of combinations increases, the result obtained from the Monte

Carlo simulation gets closer of the theoretical result of using all possible combination.

When the statistical moments related to the sample points simulated using the Monte

Carlo simulation get stabilizes, the simulation can be halted.

In specific terms, let us discuss a theoretical example that describes how the Monte

Carlo simulation works. Let us first assume that we have a variable X which we want

to simulate from the multiplication of two independent parameters, α and β. To start

the simulation to evaluate the uncertainty in X from the uncertainties in α and β, I
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Figure 1.4: Schematic of Monte Carlo simulation (from Jahn et al., 1998).

assume that the central limit theorem is valid so that the errors for the variables α and

β are from a normal parent population with mean αtrue and standard deviation σα, in

the case of the variable α, and with mean βtrue and standard deviation σβ, in the case

of the variable β. Then, I run a numerical experiment using these parent populations

for α and β. For these parent populations, N experiments are drawn randomly

from each parent population specified. For each one of the simulated experiments

I multiply in a deterministic manner the two simulated values for α and β. After

enough numerical experiments, I can statistically characterize the variable X using

the simulated values obtained for X.
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If two variables are dependent, the value chosen in the simulation for the depen-

dent variable can be linked to the randomly selected value of the first variable range

(Section 3.3.1 presents an example of correlated Monte Carlo simulation). In addi-

tion, a different PDF can be chosen for each one of the parameters used as a source for

the Monte Carlo simulation. A more detailed discussion of Monte Carlo simulation

can be found in Coleman and Steele (2009) and Avseth et al. (2005).

1.7 Reservoir volume estimation methods

Different methods can be used to estimate the hydrocarbon volume associated with a

reservoir. In general, a specified method is selected as corresponding to the developing

phase of a hydrocarbon field. Three important methodologies to reserve estimation

of hydrocarbon reservoirs are presented next.

Volumetric methods involve the calculation of reservoir rock volume, the hydro-

carbons in place in that rock volume and the estimation of the portion of the hy-

drocarbons in place that ultimately will be recovered. After discovery, during initial

delineation and development of a field, volumetric estimation is the key to estima-

tion. Material balance methods of reserves estimation involve the analysis of pressure

behavior as reservoir fluids are withdrawn. As depletion proceeds and adequate pro-

duction data becomes, material balance may represent a practical second method.

In general, material balance methods result in more reliable reserves estimates than

volumetric estimates (PRMS-AD, 2011). Production decline analysis methods of re-

serves estimation involve the analysis of production behavior as reservoir fluids are

18



withdrawn. Analysis of production decline curve can provide estimation of three im-

portant items: remaining oil and gas reserves, future expected production rate, and

remaining productive life of well or reservoir.

The volumetric estimation is the only means available to assess hydrocarbons

in place prior to acquiring sufficient pressure and production information to apply

material balance techniques (Dean, 2007). In general, recoverable hydrocarbons are

estimated from the in place estimates and a recovery factor that is estimated from

analogue pool performance and/or simulation studies. The volumetric method used

to estimate the petroleum initial in place and analogous methods used to estimate

recovery factors are used during exploration, discovery, appraisal, and initial devel-

opment stages of the exploration and production cycle of any petroleum recovery

project (PRMS-AD, 2011). Chapter 2 presents a more detailed discussion about the

use of the volumetric method in hydrocarbon volume estimation.

1.8 Fluid discrimination

Given the bulk modulus and densities of fluids, the bulk modulus and density of

the solid matrix, and the rock bulk modulus and density at a know saturation, the

Gassmann’s equation allows the calculation of the bulk modulus at any other satura-

tion (Smith et al., 2003):

Ksat = Kdry +
(1− Kdry

Kma
)2

φ
Kfl

+ (1−φ)
Kma

− Kdry

K2
ma

(1.4)
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where Ksat is the saturated bulk modulus, Kdry is the bulk modulus of the porous

rock frame, Kfl is the bulk modulus of the pore fluid, and φ is the porosity.

Basic assumptions involving the use of the Gassmann’s equation (Wang, 2001) are

given by: the rock (both the matrix and the frame) is macroscopically homogeneous

and isotropic; all the pores are interconnected or communicating; the pores are filled

with a frictionless fluid (liquid, gas, or mixture); the rock-fluid system under study

is closed (undrained); the pore fluid does not interact with the solid in a way that

would soften or harden the frame.

The Gassmann’s equation is free of assumptions about pore geometry. However,

if multiple pore types are presented in the rock, more complex models should be

considered (Berryman and Milton, 1991). In this thesis, I adopt a simple application

of the Gassmann’s equation, and assume that all model assumptions described before

are met.

P-wave velocities, VP , are affected by porosity, pore geometry and fluid content,

mineralogy, effective stress, cementation, and fractures (McCormack et al., 1984).

Thus, any of these properties play a role in the observed variation of VP with depth. If

the fluid content effect can be isolated from the other properties, the fluid substitution

method can be applied in a very reliable way, and the Gassmann’s equation can be

used to evaluate the response of VP to different fluids. In Chapter 3, further discussion

and results will be presented about this procedure.
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Chapter 2

Reservoir volume estimation and

confidence

2.1 The volumetric method

As discussed in Section 1.7, in the early stages of the development of a hydrocarbon

field the volumetric method is an important tool used by the oil industry for esti-

mation of petroleum resources. The volumetric method makes use of the volumetric

equation, which is given by (Murtha and Ross, 2009)

OOIP =
A · h · φ · (1− Siw)

Boi

=
GRV ·N/G · φ · (1− Siw)

Boi

, (2.1)

where OOIP is the oil originally in place, A is the reservoir area, h is the net pay

thickness, φ is the porosity, Siw is the initial water saturation, Boi is the initial

formation volume factor, GRV is the gross rock volume, and N/G is the net-to-gross

21



ratio. The terms included in the numerator of the right side of Equation 2.1 define

the hydrocarbon pore volume (HCPV) associated with a reservoir. Thus, the HCPV

is given by

HCPV = A · h · φ · (1− Siw) = GRV ·N/G · φ · (1− Siw), (2.2)

In order to use Equation 2.2 to calculate the hydrocarbon pore volume, previous

estimations of the reservoir’s area, net pay thickness, porosity, and initial water satu-

ration must be carried out. In any form of the volumetric equations presented above,

the net pay thickness, the porosity, the initial water saturation and the net-to-gross

ratio are given by their average values for the specific area or GRV (Murtha and Ross,

2009).

If the depth to the cap rock (one surface) and the depth to the hydrocarbon water

contact (another surface) is determined, the GRV is given by the volume that is in

between these two surfaces. In the absence of fluid-contact data, the lowest known

occurrence of hydrocarbons generally controls the proved limit (Demirmen, 2007).

The geometry of the cap rock of a hydrocarbon reservoir is never very well defined,

thus the depth and lateral location of the spill point (the structurally lowest point in

a hydrocarbon trap that can retain hydrocarbons) are uncertain (Abrahamsen et al.

1998). Another origin for the uncertainty in GRV is the time-to-depth conversion in

seismic observations, as well as possible dips of the top of the formation (PRMS-AD,

2011). In general, the uncertainty in the GRV, or in the Area, is the largest among

the source parameters used in the estimation of reserves (Heiberg and Swinkels 2001,

Abrahamsen et al. 1998, PRMS-AD, 2011). Geostatistical methods can be used to

preserve spatial distribution information and incorporate it in subsequent reservoir
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simulation applications (PRMS, 2007). Thus, geostatistical analysis may improve

estimates of the range of recoverable quantities.

The uncertainty associated with the rock properties originates from the variability

in the rock (PRMS-AD, 2011). It is determined from different techniques (e.g., petro-

physical evaluation, core measurements, seismic response). For fluid properties, a few

well-chosen samples may provide a representative selection of the fluids (PRMS-AD,

2011), although sometimes gradients in fluid composition are observed.

2.1.1 Deterministic versus Probabilistic methods

As discussed in the PRMS-AD (2011), the range of uncertainty of recoverable and/or

potentially recoverable volumes reflects a range of estimated potentially recoverable

volumes. This range of uncertainty may be represented either in deterministic scenar-

ios or by a probabilistic distribution, and it represents the confidence in our volume

prediction.

When using the deterministic method (deterministic scenarios), the resources typ-

ically should be classified as representing low, best (which represents the most realistic

assessment of recoverable quantities), and high estimates, where these estimates are

based on qualitative assessments of relative uncertainty using consistent interpreta-

tion (GEPRR, 2001). Typically in the deterministic method, the first goal is to make

a best estimate of the recoverable volume. After this, estimates of the upside and

downside case of recoverable volumes are made. These three scenarios together al-

low a estimation of the range of uncertainty in the best estimate. One advantage of

this way to estimate the range of uncertainty in the recoverable volume is that this
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approach allows that each assumption adopted can be identified specifically (e.g., a

particular value of the water saturation was used for the best estimate scenario).

However, this range of uncertainty in the best estimate does not allow a direct quan-

titative association with a numerical probability, only an uncertainty associated with

the adopted scenario.

On the other hand, probabilistic methods naturally allow the representation of

the range of uncertainty in terms of percentages. Where probabilistic methods are

used, the probabilities associated with the low, best, and high case scenarios should

be consistent with those values appropriate for the equivalent category of resources

(GEPRR, 2001). For instance, in the P90 estimation range there should be at least

a 90% chance (hence, P90) that the actually recovered volume will equal or exceed

the low estimate scenario. In the same way, in the P10 estimation range one should

concludes that there should be at least a 10% of chance that the actually recovered

volume will equal or exceed the high estimate scenario. Common industry practice

is to use the median (P50) as the best technical estimate for a single reservoir/zone

(PRMS-AD, 2011). P50 gives the quantity for which there is a 50% probability

that the quantities actually recovered will equal or exceed the estimate (PRMS-AD,

2011). In this thesis, I propose to investigate the use of the hydrocarbon pore volume

equation in the estimation of hydrocarbon volumes, using the uncertainty analysis as

the main tool. From this approach, probabilities can be associated with the HCPV

predicted.

Summarizing, the calculation of the volumetric for a hydrocarbon field involves

the combination of a number of input parameters (as presented in Equations 2.1 and

refhpv), each of these has a range of uncertainty in its estimation. This uncertainty
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in the input parameters arises from the inaccuracy in the measured data, plus the

uncertainty as to what the values are for the parts of the field for which there are no

measurements. The uncertainty associated with each parameter may be expressed

in terms of a probability density function (section 1.6.3), and these can be combined

to create a probability density function for OOIP and HCPV. In the description of

range of uncertainties it is common to use CDF curves, in which the hydrocarbon

volumes are associated with cumulative probabilities (Avseth et al., 2005).

2.1.2 Reserves and resources

Petroleum classification systems play an important role in the petroleum industry.

Reserves are defined in the PRMS-AD (2011) as “those quantities of petroleum an-

ticipated to be commercially recoverable by application of development projects to

known accumulations from a given date forward under defined conditions. Reserves

must further satisfy four criteria: They must be discovered, recoverable, commercial,

and remaining (as of a given date) based on the development project(s) applied”.

On the other hand, resources are defined in the PRMS-AD (2011) as encompassing

“all quantities of petroleum (recoverable and unrecoverable) naturally occurring on

or within the Earths crust, discovered and undiscovered, plus those quantities already

produced”. In addition, the resource classification can be subdivided in two groups:

contingent resources and prospective resources.

Contingent resources are defined in the PRMS-AD (2011) as “those quantities of

petroleum estimated, as of a given date, to be potentially recoverable from known

accumulations by application of development projects but which are not currently
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considered to be commercially recoverable due to one or more contingencies. Contin-

gent resources are a class of discovered recoverable resources.”. On the other hand,

prospective resources are defined in the PRMS-AD (2011) as “those quantities of

petroleum which are estimated, as of a given date, to be potentially recoverable from

undiscovered accumulations.”.

The hydrocarbon volumes calculated in this thesis should then be classified as a

resource, because, for instance, no economic evaluation was performed in any step

applied in their calculation (neither considered later). Thus, the criteria associ-

ated with reserves can not be satisfied in this case. Good discussions about eco-

nomic/commercial evaluation of hydrocarbon reserves are available in Rose (2001)

and Bratvold and Begg (2008).

Figure 2.1 shows the resource classification framework as presented in the PRMS-

AD (2011). The Blackfoot reservoir is a producing oilfield, so if a commercial eval-

uation of the field was performed or even available, any estimated OOIP quantity

would be classified as a reserve. However, as previously discussed, this commercial

evaluation is not available for the Blackfoot reservoir. Thus, the OOIP quantity

should be classified as a contingent resource, because the quantities of petroleum in

the Blackfoot reservoir are estimated from discovered accumulations.

The two axis PRMS system described in Figure 2.1 also considers the range of

uncertainty associated with some reserve/resource quantity. If the total petroleum

initially in-place is classified as a reserve, this quantity can be classified as 1P (proved),

2P (proved plus probable), and 3P (proved plus probable plus possible) reserves. The

equivalent categories for projects with contingent resources are 1C, 2C, and 3C, while
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Figure 2.1: The two axis PRMS system: resources classification framework.

the terms low estimate, best estimate, and high estimate are used for prospective

resources.

The quantities calculated in the next sections for the Blackfoot reservoir, the

HCPV values, are related to the OOIP quantity by the initial oil volume factor

Boi (which is unknown, but it is numerically constant in terms of the probabilities

associated with HCPV discussed later). Thus, unless the estimation of Boi, the

values of P90, P50, and P10 estimated in the next sections for the Blackfoot reservoir

should be understood as 1C (proved), 2C (proved plus probable), and 3C (proved

plus probable plus possible) contingent resources, respectively.
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2.2 Geostatistic analysis

Geostatistical modeling makes use of statistical methods to describe mathematically

the variability within any given reservoir unit or pool (GEPRR, 2001). Geostatis-

tical analysis adds spatial correlation to the interpretation process, as well as adds

small scale variability which is hard to identify from seismic only because of their

limited resolution. Geostatistic methods can be incorporated in different stages of a

developing hydrocarbon reservoir, such in defining horizons and estimating reservoir

structures, as well as in the seismic inversion itself.

When applying the geostatistical method, the geoscientist depends on the quality

of the data as well as of the interpretation procedure adopted to characterize some

geological structure. Thus, to use the geostatistical results we have to keep in mind

that them are dependent on the amount of data available, the technical evaluation of

the input data, and the statistical algorithm used in the modeling (GEPRR, 2001).

In fact, the value of the geostatistical analysis depends on the ability to synthesize

all available knowledge and data.

One of the main uses of geostatistic analysis is related to hydrocarbon volume

estimation for a given area. The hydrocarbon volume estimation requires the inter-

pretation and input of data from different sources (seismic, well logs, well cores),

each of them has an inherent uncertainty. Volumetrically, seismic data represents

the most comprehensive data available from the subsurface (GEPRR, 2001). How-

ever, as discussed in Chapter 1, the reliability of the seismic interpretation depends

on the quality of the seismic response and the pick of a given horizon. In addition,

the time-to-depth conversion depends on mathematical models that relate velocity
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and time to depth (PRMS-AD, 2011). These uncertainties are then inherited by top

structure maps, which are used together with hydrocarbon contacts to delineate and

characterize a hydrocarbon pool or field. Another source of uncertainty is the scale

related to each geophysical data available to the interpretation process. Information

provided by well logs, like porosity and water saturation, are from a very different

scale compared to the volumes as viewed by the seismic data. Attempts to address

this last kind of uncertainty, shows that the uncertainty associated with upscaling

procedures in net-to-gross estimations are less than 10% in good quality reservoir,

and about 50% in poorer quality reservoir (Ringrose, 2007).

In the case of the Blackfoot reservoir study made by Todorov (2000), and used

in part in this thesis, geostatistic analysis was used to obtain the properties distri-

bution maps discussed in the next sections. Specifically, Todorov used the cokriging

technique to integrate the 3C-3D seismic interpretation with the well log data and

to add spatial correlation between these properties to the geophysical interpretation.

In addition, geostatistic analysis allows tests to estimate the error in the accuracy of

the results. This last point will be discussed in the next section.

2.3 Estimating the reservoir volume confidence –

the Blackfoot reservoir

As already discussed in Section 2.1, to calculate the hydrocarbon pore volume (HCPV)

estimations of the thickness and extension of the reservoir rock, as well as the quality

of the reservoir rock, its porosity and its oil saturation have to me estimated. In
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addition, to add value for the information of the HCPV estimation, uncertainty anal-

ysis should be carried out, thus resulting in a likelihood associated with the HCPV

predicted.

In this section, first I discuss the process that was applied by Todorov (2000)

to estimate a single HCPV value. Then, I discuss ways to estimate the uncertainty

in each parameter used by Todorov to calculate his HCPV value. Next, use two

different methods to associate a probability with a HCPV estimation. The first

method is based in the Taylor expansion, and allows the association of the HCPV

value predicted by Todorov (2000) with probabilities from errors associated with the

parameters used to estimate HCPV. The second method is a Monte Carlo simulation,

a primarily probabilistic one. The results of both methods are compared, so that both

methodologies can be evaluated upon their results for the Blackfoot reservoir.

The results presented in this chapter were presented as a study case at the 2011

SEG Annual Meeting in the workshop Use of Seismic Technology in Petroleum Re-

sources Estimation and Classification, which was sponsored by the SEG Gas and Oil

Reserve Committee.

2.3.1 Uncertainty in thickness and percentage of sand

Different kinds of thicknesses can be associated with a hydrocarbon reservoir. The

gross thickness is defined as the total thickness of an evaluation interval, typically

between the top of the reservoir and the oil/water contact. Beyond the gross thickness,

there are three types of net thickness: net sand, net reservoir, and net pay thickness

(Worthington, 2009). The differences used among these three types of thickness is,
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in general, the cut-offs applied to the gross thickness.

Of these three last types of thicknesses, Net Pay is a key parameter in the vol-

umetric estimation of hydrocarbon resources, because it identifies those penetrated

geological sections that have sufficient reservoir quality and interstitial hydrocarbon

volume to function as significant producing intervals (Worthington, 2009). However,

as discussed also by Worthington, “there is no universal definition of Net Pay, there is

no general acceptance of its role in integrated reservoir studies, there is no recognized

method for evaluating it, and there are disparate views on how to make use of it.”

With the considerations of the paragraph above in mind, it is important to define

clearly what is each one of the thicknesses associated with reservoir evaluation. Net

sand can be understood as a net potential reservoir, because it describes the thickness

interval which contains rocks that are associated with good reservoirs. In a clastic

geological environment, the net sand thickness is a subinterval of the gross thickness,

and a a cut-off applied in the gamma-ray log (an estimator for the volume of shale) is

in general adopted to characterize the net sand interval. The net reservoir thickness

contain rocks that have been identified as having capability to store fluids and allow

them to flow. In general, a cut-off applied in the porosity log is used to define the

net reservoir thickness from the net sand thickness, and then net reservoir thickness

is a subinterval of the net sand thickness. The net pay thickness comprises the

net reservoir containing a significant volume of hydrocarbons in place. It is then a

subinterval of the net reservoir thickness. The net pay thickness takes into account

the hydrocarbon saturation associated with the reservoir and if the hydrocarbon can

be produced at economic rates. Traditionally, a water saturation cut-off is used to

define the net pay thickness. Figure 2.2 illustrates the differences between net sand,
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net reservoir, and net pay thickness.

Figure 2.2: Interrelationship of formation thicknesses (from Worthington, 2009).

Next, a discussion about the estimation of the percentage of sand and of thick-

ness distribution maps will be discussed, as well as a procedure to estimate their

uncertainty.

SAND PERCENTAGE DISTRIBUTION MAP

The analysis of the isochron maps from multicomponent data allows the compu-

tation of the VP/VS (Todorov, 2000), which is given by

VP
VS

= 2
tPS
tPP

− 1 (2.3)

where tPP is the P-P isochron and tP−S is the P-S isochron.

In the case of the Blackfoot reservoir, the sand/shale distribution mapping was

carried out by Todorov (2000) using an observable correlation between the Gamma-

ray index (GRI) obtained from the gamma-ray log (GR) and the VP/VS value obtained

from the 3C-3D seismic data (see Figure 2.3). As discussed by Potter, Miller, and
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Margrave (1996), clay which is incorporated into the rock matrix will make the rock

less able to resist shearing forces, resulting in an overall increase in the VP/VS with

the shaliness in the Blackfoot area. This result supports an expected correlation

between the VP/VS ratio and the GRI, and was used by Todorov (2000) to map the

distribution of the sand content in the reservoir.

As discussed by Asquith and Krygowski (2004), the GRI is in first order a good

indicator of the shale fractional volume Vsh in sandstone reservoirs. Then, the sand

fractional volume Vss in the same reservoir can be calculated using that Vss = 1−Vsh.

Thus, the information contained in the GR well log can be spread out using geostatis-

tic analysis and the extensive spatially information associated with the 3C-3D seismic

data. In this process, Todorov (2000) used a cokriging technique to carry out the geo-

statistic analysis. Applying the cokriging method, Todorov spread the information of

the GRI to the whole area, using the VP/VS as a vector, then generating a realization

of cokriging GRI distribution map. From the GRI distribution map, Todorov ob-

tained a realization for the sand percentage distribution map. Ten realizations were

generated using this procedure, allowing a meaningful sand percentage distribution

map for the Blackfoot reservoir area. Figure 2.4 shows one of the cokriging GRI

realizations.

The confidence of the cokriging GRI result was evaluated by Todorov using cross-

validation tests. Specifically, Todorov carried out blind well procedures for each one

of the available wells (i.e., 10 wells), obtaining the absolute error associated with the

cokriging GRI prediction for each well location. Figure 2.4 shows also the results for

the cross validation test performed by Todorov. After the verification of the cross

validation test, which validated the cokriging result, a sand percentage distribution
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map was generated from the 10 realizations of the cokriging GRI result. This sand

percentage map was then used by Todorov together with other geophysical data

(described in this chapter) to carry out a single deterministic estimation for HCPV.

To obtain an estimate of the final net sand distribution map from the final percentage

of sand distribution map, in a way consistent to Worthington (2009), a cut-off in the

percentage of sand values have to be applied to the latter.

I have used the results of the cross validation test as described above to evaluate

the uncertainty in the sand distribution map used by Todorov to estimate HCPV.

To do this, I realize that the cross validation test allow a measure of the accuracy of

the cokriging result. In fact, for each well location there are two measurements: the

well log value and the simulated value using cokriging. Both values can be compared,

allowing an estimation of the error in the cokriging prediction. Using the 10 blind

well tests, I obtained from the absolute errors published by Todorov 10 estimates of

the error in the cokriging procedure. Figure 2.5 shows a histogram of the distribution

of the errors obtained from this procedure. Taking the standard deviation of these

errors, I estimated an overall uncertainty of 10% associated with the sand percentage

distribution map provided by Todorov (2000).

THICKNESS DISTRIBUTION MAP AND ITS UNCERTAINTY

To obtain a thickness distribution, Todorov (2000) used geostatistic to integrate a

seismic isochron map derived from the seismic survey and the corresponding thickness

estimated from the well data. In this methodology, the thickness is calculated in all

well locations (in this case, 11 wells). A good correlation was observed by Todorov

between the isochron values obtained from seismic and the thickness calculated at
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Figure 2.3: Two results presented in Todorov and Stewart (1997). Left: Vp/Vs ratio
distribution as obtained from the 3C-3D seismic data. Right: Vp/Vs (from seismic)
versus Gamma-ray (from well logs). A good correlation between the two parameters
can be observed.

the well locations. This correlation was then used to spread the information of the

thickness values in the well locations for the whole area, using a cokriging method.

From this procedure, Todorov obtained a realization for the thickness distribution

map. In total, ten realizations were carried out, and the final thickness distribution

map was obtained from them. This final thickness distribution map was then used in

the estimation of the HCPV value by Todorov.

Cross validation tests were carried out in the same fashion described for the sand

percentage map, in order to evaluate the thickness distribution maps obtained from

the cokriging method. Thus, a blind well procedure was applied for each one of the

11 wells used to estimate the thickness distribution map. Each one of these blind well

tests allowed an estimate of the error associated with the generated thickness map.

Taking the standard deviation of these errors, I estimated an overall uncertainty of 6%
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Figure 2.4: Two results presented in Todorov (2000). Left: The Gamma ray index
after cokriging. The Blackfoot reservoir is inside the encircled red line. Right: result
of the cross validation test for the gamma ray index cokriging.

associated with the sand percentage distribution map provided by Todorov (2000).

2.3.2 Uncertainty in the porosity

As discussed in Jahn et al. (1998), reservoir porosity can be measured using core

samples or from logs. Logging is the most common method employed, since the core

coverage is not complete (Jahn et al., 1998). When the core porosities are available,

the results obtained from both methodologies should be compared to each other. The

main tool for measuring porosity is the formation density log, although other logging

tools can be used, such as the neutron and sonic tools. Section 3.2 discuss some

calculations associated with the porosity property.
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Figure 2.5: Histogram representing the error distribution for the gamma-ray index,
as obtained using the cross validation test (see text for details).

In the case of the Blackfoot reservoir, a porosity distribution map was also gen-

erated by Todorov (2000) using the 3C-3D seismic data. This porosity map was

generated using a method for deducing rock properties based on the integration of

seismic attributes and measured well log curves. The method used was a neural

network method.

This integration was made first by looking for a relationship between the rock

properties and some seismic attribute from the 3C-3D seismic data, at the well loca-

tions. When a suitable relationship was determined, it can be applied to the seismic

volume, and thus a predicted log property volume was then generated. To obtain an

estimate of the final net reservoir distribution map from the final percentage of sand

distribution map, in a way consistent to Worthington (2009), a cut-off in the porosity

values should be applied to the latter.

To apply a quality control test in these calculations, Todorov (2000) tested the
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reliability of the relationship used to map the porosity distribution carrying out cross-

validation tests. The results of the porosity map were then compared to the values

observed in the well locations. This comparison allowed to estimate the error as-

sociated with the porosity predicted by the neural network method. The overall

uncertainty associated with the differences between both values for porosity, using

the methodology applied to the thickness and percentage of sand distribution maps,

was estimated in 11%.

2.3.3 Uncertainty in the oil saturation

The oil saturation Soil is obtained indirectly, from the water saturation Swater, assum-

ing that

Soil = 1− Swater, (2.4)

where is implicit when using this equation that the reservoir has only two fluid phases

(oil and water).

The water saturation is calculated from well log data, in general using the Archie’s

equation (Asquith and Krygowski, 2004). The process of its determination includes

the use of information available in the resistivities and porosities from well logs, from

the drilling mud properties and from the information about the geothermal gradient

in the neighborhood of the well. Different from the cases of the other parameters

involved in the prediction of the oil column, the saturation property can not be easily

spread in a constrained way using the seismic data, since the seismic data does not

correlated in general in a suitable way to the saturation information of the reservoir.
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In his studied of the Blackfoot reservoir, Todorov (2000) adopted a constant value

for the water saturation, and thus for the oil saturation. An oil saturation Soil = 0.75

in the whole reservoir (Swater = 0.25) was made available from producing wells in

the reservoir, and this value was used in the calculations for the oil column carried

out by Todorov (2000). To obtain an estimate of the final net pay distribution map

in a way consistent to Worthington (2009), a cut-off in the water saturation values

should be applied to the data. As no water saturation distribution map was generated

by Todorov (2000), the author in fact used the net reservoir distribution map as an

approximation for the net pay distribution map (because he adopted a constant value

Sw = 0.25 to the whole reservoir). Thus, some overestimation of the HCPV values

can be expected from the Todorov estimate.

The uncertainty in the Swater parameter was estimated from the evaluation of the

standard deviation associated with the variation in the values of Swater calculated

for three wells in the Blackfoot reservoir. Thus, I use the dispersion in the water

saturation values associated with the reservoir interval in depth to calculate the co-

efficient of variation of Swater in the reservoir. The Soil saturation uncertainty was

then obtained from the uncertainty in Swater, resulting in a fractional uncertainty of

10% Although this calculation is not very well constrained, it allows a estimation for

the uncertainty in the hydrocarbon saturation by associating the Soil with variations

presented in the observed values.
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2.3.4 Uncertainty in the area of the reservoir

The reservoir’s area delimits the extension of the hydrocarbon accumulation. To-

gether with the interval thickness, the area allows the estimation of the gross rock

volume (GRV = area× interval thickness). Two different methodologies are in general

used to estimate the reservoir’s area: the area-depth method and the area-thickness

method. Next, I discuss briefly both methods as presented by Jahn et al. (1998).

In the area-depth method, the area is estimated in different depth intervals (in

general going from the top of reservoir to its base). In any value of depth interval,

a value of area is associated. Doing a plot of area versus depth, and connecting the

measured points of the area-depth pairs, a curve describing the area-depth relation-

ship for the top of the reservoir can be derived. If the gross thickness can be estimated

from wells (an average value for the gross thickness), a second curve representing the

area can be derived in the area-depth plot for the base of the reservoir. The area

between the two curves is equal the volume of rock between the two markers. With a

estimation for the oil-water contact (OWC), the area above the OWC is the oil bear-

ing GRV. A limitation of this method is that the gross thickness is constant across

the whole field (Jahn et al., 1998). Figure 2.6 illustrates the area-depth method (from

Jahn et al., 1998).

The area-thickness method is used in general when the assumption of a constant

thickness or a linear trend in the thickness across the field is not valid anymore. In

this case a more complex methodology has to be used. In the case presented as an

example by Jahn et al., the hydrocarbon volume is constrained by the structural

feature of the field and the distribution of reservoir rock. Figure 2.7, from Jahn et al.
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Figure 2.6: The area-depth method, from Jahn et al. (1998).

(1998), is useful to illustrate this methodology.

In the top/left of Figure 2.7, the structure map related to a hypothetical reservoir

is shown (labeled 1), and in the top/right its net sand map (labeled 2). In the

bottom/right, the net oil sand map is shown (labeled 3), and in the bottom/left,

the net oil sand volume is shown (labeled 4). In the example discussed by Jahn et

al. (1998), the reservoir presents a channel sand geometry (thus the thickness is not

constant along the reservoir). The net sand map presented in Figure 2.7 represents

the thickness associated with the channel sand adopted in the example considered by
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Jahn et al. The area associated with the reservoir, and then its gross rock volume,

has to take into account this constraint of the channel sand geometry together with

the structural map which contains the fluid contacts and the top of the reservoir

information. Thus, the structural map and the net sand map are used to obtain the

net oil sand map, which is also shown in Figure 2.7. The final result is obtained

estimating the thickness at different contours in the net oil sand map, and it is shown

with the label 4 in Figure 2.7.

In his work about the Blackfoot reservoir, Todorov (2000) associated the extension

of the reservoir with the area related to a oil column higher than 3 m (see Figure 2.8).

Adopting the result from Todorov, I evaluate the uncertainty in the reservoir’s area

including in the area value the contours close to the contour associated with an oil

column of 3m. The uncertainty in the area estimated in this way was associated with

an uncertainty value of 30% of the reservoir’s area.

2.4 HCPV and its likelihood

As discussed in the previous sections, I used the cross-validation procedure applied

to validate predicted values obtained using geostatistical analysis (thickness and per-

centage of sand distributions) and the neural network method (porosity distribution)

as a way to estimate the overall uncertainty in the results of these distributions. These

overall uncertainties (based on the coefficient of variation; Coleman and Steele, 2009)

were approximately 6% for the thickness, 10% for the percentage of sand, and 11%

for the porosity. I also used the well log data available from the Blackfoot reservoir
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Figure 2.7: The area-thickness method, from Jahn et al. (1998).

to estimate the uncertainty in the water saturation which allowed me to estimate

the oil saturation uncertainty through the coefficient of variation. The oil saturation

uncertainty was estimated to be 10%. I used the information of the oil column dis-

tribution (Figure 2.8) as presented in Todorov (2000) to estimate the uncertainty in

the reservoir area, which was about 30%.

I then used two different approaches to evaluate the overall uncertainty in the
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Figure 2.8: The oil column distribution as in Todorov (2000).

hydrocarbon pore volume (HCPV) estimation from the uncertainties estimated pre-

viously, assuming in both approaches that the parameters used to calculate the hy-

drocarbon pore volume were not correlated to each other.

2.4.1 Taylor expansion approach

The first approach was based on the Taylor expansion (Coleman and Steele, 2009)

and it allowed the calculation of the uncertainty in HCPV using the expression below:( σHCPV
HCPV

)2

=
( σthickness
thickness

)2

+
( σ%sand

%sand

)2

+

(
σφ
φ

)2

+

(
σSoil

Soil

)2

+
(σArea
Area

)2

(2.5)

where %sand is the percentage of sand, φ is the porosity, and Soil is the oil saturation.

The values in the denominators in the equation 1 are the average values for each

property in the Blackfoot reservoir, so that each term presented in Equation 2.5 is the

coefficient of variation (CV = mean/standard deviation) specific for each parameter.
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The coefficient of variation, CV, is a dimensionless quantity and is used in general

to compare uncertainty in properties measured using different units/scales (Deutsch,

2002; Miller and Kahn, 1962).

Equation 2.5 assumes that the parameters associated with the volumetric calcula-

tion are independent to each other. In general this is not the case, since dependencies

between parameters often exist and must be represented in the probabilistic estima-

tion of hydrocarbon volumes (PRMS-AD, 2011). However, in the specific case of the

Blackfoot reservoir, Todorov does not provide any of these dependencies. Thus, it

is more appropriate to use the special case where the parameters are independent to

each other when discussing the uncertainty in the estimated HCPV value. In the case

of considering dependencies in the parameters associated with Equations 2.1 and 2.2,

covariance terms related to the dependent parameters should be added to the right

side of Equation 2.5 (Coleman and Steele, 2009).

In the approach applied for the Blackfoot reservoir the single deterministic predic-

tion for HCPV carried out by Todorov (2000) was used, assuming that this predicted

value represented a best estimate scenario (GEPRR, 2001). After that, the uncer-

tainty in the HCPV prediction using the overall values of the uncertainties obtained

previously for each term in the right side of Equation 2.5 was estimated.

Hence, I used the relationship between the probability density function (PDF)

and the cumulative distribution function (CDF) already discussed in Section 1.6.2, as

well as the estimated uncertainty in the predicted HCPV, calculated using Equation

1, to link a estimated HCPV value with its likelihood (see Figure 2.9). I call this last

procedure probability from errors. An interesting point of the methodology used in
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this first approach is that it can use the estimation of the uncertainty in the parameters

used in deterministic predictions of HCPV to link the best estimate scenario result

with probabilities (using probability from errors). Figure 2.9 shows the predicted

CDF obtained using the Taylor approach discussed in this section, using the estimate

for the uncertainty related to each parameter contained in Equation 2.5, as presented

in the previous sections.

Although the PRMS-AD (2011) discuss ways to link deterministic predictions

of OOIP with probabilities, the PRMS-AD discuss this procedure as a collection

of scenarios which is then translated into a probability curve for OOIP. Thus, the

methodology discussed by the PRMS-AD (2011) is not the same of the described

previously in this section. A comparison of the HCPV prediction using the method

described in this section and the method of collection of scenarios as described in the

PRMS-AD (2011) should be object of future research.

In addition, to evaluate the prediction for the CDF associated with the HCPV esti-

mation described in this section, a second approach was carried out in the uncertainty

analysis for HCPV, which uses a methodology that is primarily probabilistic. Thus,

a Monte Carlo simulation approach was carried out taking into account the same un-

certainty values considered in the Taylor expansion methodology. The Monte Carlo

simulation approach and its results are discussed in the next section.

2.4.2 Monte Carlo approach

The second approach used to evaluate the uncertainty in the HCPV estimated value

was based on the Monte Carlo simulation which allowed a direct link between the
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Figure 2.9: Cumulative distribution function for the hydrocarbon pore volume es-
timation. Hollow square/red: Taylor expansion method. Black/diamond symbol:
Monte Carlo approach. Green square: estimate of Todorov and Stewart.

predicted value of HCPV and its likelihood (the Monte Carlo simulation approach

is primarily a probabilistic one). Section 1.6.3 presents a brief review about how

Monte Carlo simulation works, and Section 3.3.1 discuss briefly the case for a corre-

lated Monte Carlo simulation. A detailed discussion about the use of Monte Carlo

simulation can be found in Coleman and Steele (2009).

The parameters used in the Monte Carlo simulation were given by the uncertainty

values of the parameters as used in the Taylor expansion method. The PDF for all

parameters were adopted as normal distributions. Ten thousand simulations were

carried out in the Monte Carlo simulation. This number was selected because it

guarantees that the statistical parameters associated with the results obtained from
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the Monte Carlo simulation were stable. Figure 2.10 shows the evolution of the esti-

mated standard deviation of the hydrocarbon volume with the number of simulations

used in the Monte Carlo simulation. This result was also verified in equivalent re-

sults for the mean and the median values obtained from the Monte Carlo simulation.

Thus, it can be concluded that increasing the number of simulations does not improve

the final estimation. Figure 2.11 shows the result of one realization obtained using

the Monte Carlo simulation. The predicted CDF as obtained using the Monte Carlo

approach is shown in Figure 2.9.
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Figure 2.10: Standard deviation of the estimated hydrocarbon volume obtained from
the Monte Carlo simulation. When the number of simulations increases (shown in
the horizontal axis of the graphics), the value associated with the predicted standard
deviation (shown in the vertical axis) becomes stable.
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Figure 2.11: Histogram of one realization of the Monte Carlo simulation applied to
the volumetric calculation. The left vertical axis scale shows the relative number of
simulations associated with each bin of the histogram. The right vertical axis scale
shows the value associated with the CDF related to the simulated sample obtained
from the Monte Carlo simulation. The blue/dark points show the value associated
with the PDF for each bin, and the purple points/line show the equivalent normal
distribution which would be obtained using the mean and the standard deviation
value of the simulated sample. The yellow/light points/line show the CDF curve
associated with the simulated sample.

2.4.3 Comparison of the results

Figure 2.9 shows a CDF plot presenting the results obtained using both method-

ologies described previously for HCPV of the Blackfoot reservoir. It also shows the

predicted HCPV value as calculated by Todorov (2000). From Figure 2.9, it can be

seen that both approaches presented compatible hydrocarbon volumes estimations for

the Blackfoot pool, with P10∼ 12 MMbbl (there is 10% of chance that this reservoir

has more than 12MMbbl), P50∼ 8 MMbbl, and P90∼ 5 MMbbl. A recent accounting

(Ken Mitchell, pers. comm., 2011), using the actual amount of oil produced from

the Blackfoot pool, suggests an original oil in place of 5.5 MMbbl. In addition, the

presence now observed of a gas cap in the Blackfoot reservoir (information not avail-

able in the time in which Todorov did his calculations) shows that a initial formation
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volume factor different from one should be used to compare the HCPV estimation

by Todorov (2000) with the OOIP value (2011). However, the value of the oil initial

formation factor is not available.

The two methods used in the precious sections to generate a CDF for the HCPV

associated with the Blackfoot reservoir presented compatible results. Between P20

and P80 both methodologies present results that are remarkably similar. When con-

sidering the tails of the PDF associated with each method, however, the Taylor ex-

pansion approach showed lower HCPV values than the ones predicted by the Monte

Carlo simulation approach.

Thus, upon the assumptions adopted in the investigation described in the pre-

vious sections, both methodologies can be used without any clear advantage of one

methodology over the another. This does not mean that the methodologies used in

this investigation are the most correct to be associated with the Blackfoot reservoir.

For a conclusion like that to be made, further investigation should be made about any

possible dependency associated with the reservoir parameters related to the Blackfoot

reservoir (not considered in my calculations).

However, the fact that both methods generated similar results allows an inter-

esting possibility. The Taylor expansion method used standard propagation errors

procedures to generate the CDF for HCPV. In fact, it can be seen in Figure 2.9 that

there are no predicted HCPV value associated with P50 (the best estimate case) for

the Taylor expansion method. This happens because the Taylor method used the de-

terministic single HCPV value predicted by Todorov (2000). Thus, any deterministic

procedure used to estimate a single value for HCPV (a best estimate case) could be
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associate to a likelihood of the estimation using probability from errors and Taylor

expansion methodology. However, this possibility should include a comprehensive

investigation about the CDF curve predicted by the actual oil companies operating

a hydrocarbon field (which is out of the scope of an academic investigation) and its

comparison with the prediction methodology presented in this thesis.

In addition, further investigation should be made about how the errors in the

parameters used to the HCPV estimation can be obtained from the data used in the

calculation. A very simple attempt was developed in this thesis, for the thickness

error, and it is presented in the next section.

2.5 Seismic error analysis

As discussed in the previous section, the investigation about the possible origin of the

uncertainties associated with the parameters used in the calculation of HCPV could

be very useful to deal with a deterministic single value for the HCPV estimation. The

thickness uncertainty, for example, can be related to the uncertainty in the picking

time.

To do this, I used the time picking error equation (Stewart et al., 1984) to estimate

the uncertainty associated with the time picking procedure. The time picking error

te is given by

te =
1

fm · log2

[
1 +

(
S
N

)2
] (2.6)

where fm is the maximum frequency in the data, and (S/N) is the signal-to-noise

ratio. Figure 2.12 shows the spectral response curves for PP and PS data for the
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Blackfoot reservoir (Goodway and Tessman, 2001). Using Equation 2.6, I then applied

the information of the seismic data of Blackfoot reservoir in the time picking error

equation [fm,PP ∼ 100Hz, (S/N)PP ∼ 30]. I found that the time picking error (te ∼

1.2ms; using Vp= 3783m/s, I estimated a depth error of 4.5m) is consistent with the

overall uncertainty calculated to the thickness parameter using the cross validation

test in the geostatistical method. This result suggests that the time picking error

could explain, in this case, the uncertainty in the thickness parameter. However,

the value of (S/N) is not very well defined in general. Appendix A presents the

mathematical case for the relation between the thickness error and the time picking

error.

Another possible way to determine (S/N) is using the Meunier’s expression (Me-

unier, 2011), in which the signal-strength estimate SSE is given by

SSE(f) = SS(f)
√
SD · NR · RA,

where SSE is an estimator of (S/N) and is a function of frequency, SS is the source

strength, SD is the source density (number of SP per surface unit), NR is the number

of receivers per SP (source point), and RA is the area of the receiver station. The

equation provided by Meunier was derived for use with vibroseis data, which is not

the case in the Blackfoot seismic survey. However, Meunier (2011) also provided a

relationship between the source-strength SS(f) from vibroseis sources and from ex-

plosives. Thus, Meunier (2011) states that experiments have shown that there is an

equivalence in these sources in the bandwidth of 5 to 25 Hz, between 1 kg of explosives

and one 400-kN vibrator sweeping 1.25 Hz/s.

Using this equivalence, and the parameters for SD, NR, and RA from the acquisi-

tion parametrization of the Blackfoot data (Lawton et al., 1996), a SSE about 130 was
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obtained. This value obtained for SSE seems large, and in fact the Meunier equation

was not applied taking into account the attenuation of the seismic wave between the

source and the reflector associated with the time picking event (the source strength

SS was considered independent of frequency in the calculation of SSE). Using the es-

timate for SSE, from Meunier equation, into Equation 2.6 allows a time picking error

of 0.8 ms and a depth error of 2.7 m. Further investigation must be made to evaluate

the use of the Meunier’s expression, which takes into account acquisition parameters,

in the interpreted seismic data used in Equation 2.6.

Figure 2.12: Spectral response curve for PP (left) and PS (right) data (from Goodway
and Tessman, 2001).

2.6 Ultimate recovery confidence – additional case

An additional case presented by Demirmem (20007) was used to compare both method-

ologies described in Section 2.4. The application of these methodologies in the frame-

work described previously requires modifications in the equations used in this thesis
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to estimate the hydrocarbon volumes. However, these modifications can be easily

implemented to match and apply the methodologies described in Section 2.4, and

they are described below.

In his work, Demirmem (2007) discussed different methods used in hydrocarbon

reserves estimation. Specifically about the volumetric method, his work presented

some quantitative results for the reservoir “KK”, and also the mean and the standard

deviation values to each one of the parameters included in the volumetric estimation

presented by him. Table 2.1 presents the values provided by Demirmem (2007) for

the source parameters of the volumetric equation.

In fact, Demirmem calculated the ultimate recovery hydrocarbon volume, which

is given by

UR = OOIP ×RE, (2.7)

where OOIP is the original oil in place and RE is the recovery efficiency. Thus, the

modifications needed in the methods described in Section 2.4 are mainly the inclusion

of new source parameters in the respective calculations.

The equation used by Demirmem (2007) to calculate OOIP presents a small mod-

ification when compared to Equation 2.1, so that the oil formation volume factor

Boi is replaced by the shrinkage factor boi. Thus, in Demirmem (2007), the OOIP is

defined by

OOIP = A · h · φ · (1− Siw) · boi = GRV ·N/G · φ · (1− Siw) · boi, (2.8)

so that Boi = boi
−1.

The method used for Demirmem (2007) to estimate the ultimate recovery (UR)

55



value is based on stochastic reserves calculations for the reservoir KK. The input vari-

ables used in the calculations were assumed independent and lognormally distributed.

The resulting (untruncated) UR distribution is also lognormal. In his simulation, the

lognormal distributions were defined by P90 and P10 parameters, with the other

parameters calculated from the simulation.

Demirmem (2007) does not explain how he defined the uncertainty in the source

parameters of the ultimate recovery equation (the mean and standard deviation val-

ues). Thus, any calculation making use of the Demirmem (2007) data can not be com-

pared directly to the calculations described in Section 2.3 (which made use of error

estimation from geostatistic analysis). However, the values provided by Demirmem

(2007) can be used to compare the predictions for HCPV and UR associated with

both methods described in Section 2.4. To do so, small modifications in these meth-

ods have to be implemented, which consist in the inclusion of terms associated with

boi and RE in Equation 2.5 and in the Monte Carlo simulation. The Taylor expansion

and the Monte Carlo methodologies used the values for the mean and the standard

deviation presented in Table 2.1 as the source parameters needed to estimate UR. In

the case of the Monte Carlo simulation method, a lognormal distribution was used as

the PDF associated with the reservoir’s area. The remaining source parameters were

assumed normally distributed.

The results obtained from this analysis are presented in Table 2.2, which shows

the predicted ultimate recoveries estimate values obtained from Demirmem (2007) as

well as the predictions obtained using the Taylor expansion method and the Monte

Carlo method. Figure 2.13 shows the prediction for HCPV for the reservoir KK, as
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Table 2.1: Information data used in the calculations (modified from Demirmem,
2007).

Parameter P90 P10 P50 Mean STD
A(acre) × 1000 1.20 2.90 1.87 1.98 0.70

h (ft) 70 148 102 106 32
n/g 0.68 0.92 0.79 0.80 0.09
φi 0.18 0.24 0.21 0.21 0.02
Soi 0.64 0.74 0.69 0.69 0.04
boi 0.75 0.79 0.77 0.77 0.02
RE 0.28 0.40 0.33 0.34 0.02

calculated using the Taylor expansion method and the Monte Carlo method. As can

be verified from the values contained in Table 2.2 and Figure 2.14, the results for UR

from the Taylor expansion and the Monte Carlo simulation methods were compatible

with the predicted values from Demirmem (2007).

As in the case of the Blackfoot reservoir, good agreement is observed between

P20 and P80 in the predicted UR/CDFs obtained using both methods presented in

Section 2.4. In the case of P90, the UR value associated with the application of

the Taylor expansion underestimates the obtained by Demirmem (2007) – the Taylor

expansion predicts P90 that is 82% of the predicted P90 by Demirmem (2007). For

P10, the difference in the predictions is less than 2% in any methodology used.

The result for P90 is expected, because each one of the PDFs used by Demirmem

(2007) to perform the calculations assumed a lognormal distribution and the Taylor

expansion method described in Section 2.4 adopted a normal distribution for the UR

value. In the Monte Carlo method, a lognormal distribution was used to simulate the

reservoir’s area values, thus the Monte Carlo method result in a better approxima-

tion for the calculation performed by Demirmem. A better agreement between the

results of Demirmem (2007) and the Taylor expansion method can be obtained if we
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perform the CDF calculation associated with the Taylor expansion assuming UR as

a lognormal distribution (see Figure 2.14). Adopting a lognormal distribution for UR

in the Taylor expansion method also allows a better agreement in the comparison of

the Taylor expansion and the Monte Carlo methods.

Table 2.2: Predicted UR from Demirmem, 2007) and from the Taylor expansion and
Monte Carlo methods (Section2.4)
Estimation P90 P10 P50 Mean STD
UR (MMBL) Taylor expansion - normal case 18.6 81.4 50 50 24.6
UR (MMBL) Taylor expansion - lognormal case 20.3 82.5 44.5 46.1 25.5
UR (MMBL) Monte Carlo 21.9 83.1 44.1 49.5 26.4
UR-untruncated (MMBL) Demirmem (2007) 22.5 81.8 42.9 48.7 26.2
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Figure 2.13: Cumulative distribution function for the hydrocarbon pore volume es-
timation. Hollow square: Taylor expansion method. Solid diamond: Monte Carlo
approach.
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Figure 2.14: Cumulative distribution function for the ultimate recovery estimation.
Orange/square: Taylor expansion method – normal PDF case. Blue/diamond symbol:
Monte Carlo approach. Hollow circle: Demirmem (2007) predictions. Star symbol:
Taylor expansion method – lognormal PDF case.

A LOGNORMAL HCPV DISTRIBUTION IN THE BLACKFOOT RESERVOIR

The lognormal distribution for HCPV used in the reservoir KK can also be applied

to the case of the Blackfoot reservoir. The result is presented in Figure 2.15. From

this Figure, it can be seen that the predictions obtained from the lognormal Taylor

expansion and the Monte Carlo simulation are more consistent in the tails of the

PDFs (extremes in the reverse cumulative probability values) than the case where

the Taylor expansion assumes a normal distribution for HCPV. The Monte Carlo
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simulation does not assume any shape for the HCPV distribution. Thus, the better

match obtained with the lognormal Taylor expansion approach suggests that the

HCPV distribution is more consistent with a lognormal distribution than a normal

one, as expected from the theory (Murtha, 2002).

Figure 2.15: Cumulative distribution function for the HCPV estimation for Black-
foot reservoir. Little square: Taylor expansion method – normal PDF case.
Blue/diamond: Monte Carlo approach. Large square/green: Todorov-Stewart es-
timation. Star symbol: Taylor expansion method – lognormal PDF case.
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Chapter 3

Estimating fluid discrimination

Fluid discrimination is an important part of any exploration project of hydrocarbon

reservoirs. As presented in Chapter 2, the hydrocarbon saturation is one of the

parameters needed to evaluate the hydrocarbon volumes. One way to investigate

the discrimination of fluids makes use of rock physics models and of the Gassmann’s

equation, and then looks for dependence in attributes with different fluid saturation

values. Ultimately, we would find some seismic value or attribute(s) that, with logs,

could predict Sw. This would then be used in Equation 2.1 to help predict OOIP.

In this chapter, I first characterize a well log dataset which contain information

that allows the application of fluid substitution methods. This characterization allows

the estimation of the statistical properties associated with the geophysical properties

contained in the well log dataset. Then, I apply fluid substitution technique in the well

log data. The fluid substitution data is applied for each sample separately. From these

results, I calculated the mean and standard deviation associated with each property
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for each specific value of depth. In this second line of investigation, I can evaluate

which properties/attributes allow a better fluid discrimination. In a third part of this

study, I investigate the robustness of any conclusion achieved in the previous part.

Which properties/attributes sensitive to fluid discrimination investigated before can

overcome the restriction imposed by the spatial variability observed in the well log

data for each specific value of depth? To proceed with this investigation, I use Monte

Carlo simulation to perform uncertainty analysis.

This chapter of the thesis makes use of a well log dataset from Gulf of Mexico

generously provided by Prof. Fred J. Hilterman.

3.1 Applying the fluid substitution method

The P-wave and S-wave velocities (Vp and Vs) are calculated using the following

equations

VP =

√
K + 4/3 · µ

ρ
=

√
M

ρ
(3.1)

and

VS =

√
µ

ρ
(3.2)

where K is bulk modulus, µ is shear modulus, M is the compressional modulus, and

ρ is the bulk density.

To perform fluid substitution, which was briefly discussed in Section 1.8, we have

to realized which terms in equations 3.1 and 3.2 are sensitive to the fluid content. On

the one hand, the shear modulus µ is not sensitive to the variation in the fluid content

(Mavko et al., 2009; Han and Batzle, 2004). On the other hand, K and ρ are sensitive
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to the fluid content. As discussed by Han and Batzle (2004), a explanation for this

difference of sensitivity is that the bulk-volume deformation produced by a passing

seismic wave results in a pore-volume change and causes a pressure increase in pore

fluid (water). This pressure increase stiffens the rock frame and causes an increase in

bulk modulus. Shear deformation, however, does not produce a pore-volume change,

and consequently different fluids do not affect shear modulus. Therefore, any fluid-

saturation effect should correlate mainly to a change in bulk modulus.

The calculation of the effect in density of the variation in the density of the fluid

is simple, and will be present later. In the case of the bulk modulus K we have a

more complex situation. It is well accepted, however, that the Gassmann’s equation

allows the estimation of the fluid content in porous sandstones (Mavko et al., 2009).

Thus, Gassmann’s equations are commonly used in the fluid substitution approach

to predict velocity changes resulting from different pore fluid saturations. There are

different forms to present the Gassmann’s equation (Mavko et al., 2009). One of these

forms is presented below (Han and Batzle, 2004), where Ks (sometimes labeled Ksat)

is the bulk modulus of the saturated rock and Kd is the bulk modulus of the rock

frame (or dry rock). Thus, for a rock with porosity φ,

Ks = Kd + ∆d (3.3)

where ∆d is given by

∆Kd =
Kma (1−Kd/Kma)

2

1− φ−Kd/Kma + φ ·Kma/Kf

(3.4)

and it contains the effect of the fluid in the bulk modulus. In these equations, Kma,

Kf , Kd, Ks, are the bulk moduli of the mineral grain or matrix, fluid, dry rock
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(or porous frame), and saturated rock frame, respectively. The shear modulus is

considered insensitive to the fluid content (Han and Batzle, 2004), thus we have that

µs = µd (3.5)

where µs and µd are the saturated and dry-rock shear moduli. ∆Kd is an increment

of bulk modulus as a result of fluid saturation of dry rock.

In addition to the modification of the saturated bulk modulus Ksat when we

perform a fluid substitution, the bulk density value also has to be modified. The

effect in the bulk density of a variation in the density of the fluid can be calculated

using the equation below,

ρb = φ ρfluid + (1− φ)ρma (3.6)

where ρb is the bulk density of the saturated rock, ρfluid is the fluid density, φ is the

porosity of the rock, and ρma is the density of the rock matrix. In the case in which

the fluid is composed by gas and brine, the fluid density is given by

ρfluid = Sw ρbrine + Sgas ρgas (3.7)

where Sw is the brine saturation, ρbrine is the brine saturation, Sgas is the gas satura-

tion, and ρgas is the gas density. Along the calculations presented in this chapter, I

adopted ρgas = 0.5 gm/cc, and ρbrine is calculated using Equation 3.11. To calculate

the bulk modulus of mineral matrix, we need to know the mineral composition of the

rock. This information is not available from the data, so a value presented by Mavko

et al. (2009) used in sandstones, Kma = 36 GPa, was adopted.

The main assumptions involved with the Gassmann’s equation are (Han and Bat-

zle, 2004):
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1) the porous material is isotropic, elastic, monomineralic, and homogeneous;

2) the pore space is well connected and in pressure equilibrium;

3) the medium is a closed system with no pore-fluid movement across boundaries;

4) there is no chemical interaction between fluids and rock frame (thus, the shear

modulus remains constant),

and were already discussed in Section 1.8.

The fluid substitution method is a well-recognized technique used to understand

and predict how seismic velocities and impedances depend on pore fluids constituents

(Avseth et al., 2005). However, the use of the fluid substitution technique is not with-

out some risk. As discussed by Chaveste and Hilterman (2007), there is ambiguity in

the relationship between rock properties (e.g., P-wave and S-wave velocities, density)

and petrophysical properties (e.g., lithology, porosity, pore fluids). More than one

combination of petrophysical properties can yield the same rock property value.

To apply fluid substitution to the well log dataset available in this study, I first used

the mud weight to calculate the pore pressure, and then used the pore pressure and

temperature information for each depth to calculate the brine density and velocity

in that specific depth (Mavko et al., 2009). In addition, the S-wave velocity data

(VS) was obtained using the VP data and the Greenberg-Castagna relations for the

appropriate lithology (Hilterman, 2001). The porosity was obtained using the density

log and appropriate values for the matrix density and the fluid density (Hilterman,

2001). After these steps, the fluid substitution method was applied to the well log

data, using the Gassmann’s equation. Sections 3.2 and 3.3 present a more detailed

discussion of all steps taken to apply the fluid substitution procedure.
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3.2 Characterizing the well log dataset

The well log database contains samples over a depth range from 700 ft to 12,300 ft

(0.21 km to 3.75 km). The results of the characterization of the well log dataset were

presented separately in two groups: non-seismic attributes/properties and seismic

attribute/properties. The original information contained in the well log dataset was

worked using standard procedures, which are presented next.

3.2.1 Non-seismic attributes/properties

The original information in the well log dataset contains the information about tem-

perature and mud weight. Figure 3.1 shows the variation of the temperature versus

depth. In this figure, the sample data points and the average of the sample data

points for each specific depth are presented. It can be seen in this figure that the

spread in temperature increases with depth. The well log dataset shows a temper-

ature gradient given by T(◦C) = 19.45·depth(km) + 25.01, which is in agreement

with the temperature gradient for Gulf of Mexico as given by Husson et al. (2008).

This temperature gradient was estimated using the least squares method and it is

also shown in Figure 3.1.

The original information in the well log dataset for Gulf of Mexico also includes

measurements of the mud weight. Assuming that the drilling mud weight equals

the formation pore pressure (Bachrack et al, 2007), the mud weight can be used to

estimate the pore pressure through the equation below:

Pp (psi) ' MW · z · 0.052 (3.8)
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Figure 3.1: Temperature versus depth. The blue/diamond points represent the sample
data, while the magenta/square points represent the average value for each depth
interval.

where Pp is the pore pressure in psi, MW is the mud weight in pounds per gallon,

and z is the total vertical depth in feet. If the correct mud weight was used, it is

expected that the actual pore pressure would be 1–2 psi lower than the predicted one

using Equation 3.8 (Castagna, pers. comm., 2011).

Figure 3.2 shows the variation of the pore pressure versus depth. In this figure,

the sample data points are shown in blue/diamond, while the average of the sample

data points for each specific depth are shown in magenta/square. It can be seen in

the pore pressure variation with depth that the spread of the pore pressure values

increases with depth. The pore pressure gradient fits very well a straight line, which
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was obtained with the least squares method The pore pressure gradient is given by

Pp(MPa) = 14.67 · depth(km)− 3.21, which is consistent with the presented Husson

et al. (2008).

Figure 3.2: Pore pressure versus depth. The blue/diamond points represent the
sample data, while the magenta/square points represent the average value for each
depth interval.

Using the information contained in the density logs, the overburden pressure can

be calculated through the equation below (Zoback, 2010):

Poverburden = p0 +

∫ z

0

ρ g z dz (3.9)

where the overburden pressure is given in MPa, the bulk density ρb is given in Kg/m3,

g is the acceleration due to gravity (I adopted 9.8 m/s2), and P0 is the datum pressure.
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Figure 3.3 shows the gradients of the overburden pressure and of the pore pressure,

as a function of the depth z. The gradient values estimated from the plot, using

a straight line fitted using the least square method, were 0.0227 MPa/m for the

overburden pressure (which are in good agreement with the estimated values presented

in Castagna et al. 1993b and Husson et al. 2008).

Figure 3.3: Overburden pressure (blue/diamond) and Pore pressure (red/square)
versus depth.

3.2.2 Seismic attributes/properties

Figure 3.4 shows the variation of the P-wave velocity VP for wet sand (blue/squares)

and for shale (green/diamond) as a function of depth. It can be seen in the figure that
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VP increases with depth, but that there is also a crossover around depth equal to1 km

of the average values of VP for shale and for wet sand. A linear fit carried out using

the least square method shows that the VP for wet sand variation can be described by

the expression V wet sand
P = 0.5914 · z+ 1.6386 (R2= 0.99), where z is in km and VP is

in km/s. The same procedure applied to VP for shale gives V shale
P = 0.4586 ·z+1.741

(R2= 0.99).

Figure 3.4: Average VP versus depth. The blue/square points represent the wet sand
samples, while the green/diamond points represent the shale samples.

Figure 3.5 shows the variation of the density for wet sand and for shale as a

function of depth. It can be seen in figure 3.5 that ρ increases with depth. A linear

fit carried out using least square method shows that the density for wet sand variation

with depth can be described by the expression ρwet sand = 0.000025 · z + 1.99 (R2=
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0.96), where z is in feet and ρ is in gm/cc. The same procedure applied for the

density for shale gives ρshale = 0.000025 · z+ 2.05 (R2= 0.84). These expressions are

consistent with that described in Hilterman (2001).

Figure 3.5: Average bulk density versus depth. The blue/square points represent the
wet sand samples, while the green/diamond points represent the shale samples.

The shear velocity VS was estimated using the Greenberg and Castagna (1992)

equations, applying the relation associated with each related lithology separately

(shale or wet sand). After that, the VP/VS value was calculated. VP/VS as a function

of depth is presented in the figure 3.6, where the sample data points are presented

in blue/diamond (wet sand) and red/circle (shale), and the average value for each

specific depth is presented in magenta/square (wet sand) and green/triangle (shale).
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Figure 3.6: VP/VS ratio versus depth. Wet sand: The sample data points are shown
in blue/diamond, and the average value for each depth interval is shown in ma-
genta/square. Shale: the sample data is shown in red/circle, and the average value
for each depth interval is shown in green/triangle.

The porosity φ was estimated using the density log and the relation given by

(Ezekwe, 2011)

φ =
ρma − ρb
ρma − ρf

(3.10)

where ρma is the rock matrix, ρb is the bulk density, and ρf is the fluid density. In

the calculations carried out in this thesis, a value of ρma = 2.65 g/cm3 was adopted.

The fluid density was calculated using Equation 3.7.

to use Equation 3.7 for the calculation of the fluid density, first I calculated the

brine density using the environmental corrections as presented in Mavko et al. (2009),
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which takes into account the temperature, pressure, and salinity associated with the

fluid. The equation used (from Mavko et al., 2009), is shown below

ρbrine = ρwater + S{0.668 + 0.44S + 10−6[300P − 2400PS + (3.11)

+ T (80− 3T − 3300S − 13P + 47PS]}

where S is the salinity of sodium chloride associated with the brine, T is the temper-

ature, P is the pressure, and ρwater is the density of pure water. In the calculations

presented in this thesis, a constant value for the salinity equal to 25,000 ppm was

adopted. The density for pure water was calculated using the equation presented in

Mavko et al. (2009), and it is given by:

ρwater = 1 + 10−6(−80T − 3.3T 2 + 0.00175T 3 + 489P − 2TP + (3.12)

+ 0.016T 2P − 1.3 · 10−5T 3P − 0.333P 2 − 0.002TP 2

In Equations 3.11 and 3.12 the pressure P is in MPa units, the temperature T is in

◦C, the salinity S is in fractions of one (parts per million divided by 106), and the

density is in g/cm3.

Thus, after the environmental corrections associated with Equations 3.11 and 3.12,

the porosity for wet sand was calculated. Figure 3.7 shows the variation of porosity

for wet sand as a function of depth. Blue/diamond points shows the wet sand sample

data, while the magenta/square symbols show the average porosity estimated for each

depth interval. The porosity values present a large spread along the depth values,

and this spread is reduced only where the dataset does not have enough sample data

points. A linear fitting applied to the average data resulted in an expression for

porosity as a function of depth that is given by φ = −0.0509 ·z+0.402 (R2 = 0.96),

74



where φ is porosity and z is depth in km. The use of this kind this expression to

estimate porosity values for some specific depth should be made knowing that the

spread of the porosity values is large, so that the uncertainty associated with this

estimation is also very large.

Figure 3.7: Porosity for wet sand versus depth. Blue/diamond: sample data points.
Magenta/square: average value for each depth interval.

The P-wave velocity in brine in m/s is given by (Mavko et al., 2009)

Vbrine = Vw+ S (1170− 9.6T − 0.055T 2 − 8.5 · 10−5T 3 + (3.13)

+ 2.6P − 0.0029TP − 0.0476P 2) +

+ S3/2(780− 10P + 0.16P 2)− 1820S2
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where the P-wave velocity in pure water is given by (Mavko et al., 2009)

Vw =
4∑
i=0

3∑
j=0

ωij T
i P j (3.14)

and the coefficients ωij are given by

ω00 = 1402.85 , ω01 = 1.524 , ω02 = 3.437×10−3 , ω03 = −1.197×10−5

ω10 = 4.871 , ω11 = −0.0111 , ω12 = 1.739×10−4 , ω13 = −1.628×10−6

ω20 = −0.04783 , ω21 = 2.747×10−4 , ω22 = −2.135×10−6 , ω23 = 1.237×10−8

ω30 = 1.487×10−4, ω31 = −6.503×10−7, ω32 = −1.455×10−8, ω33 = 1.327×

10−10

ω40 = − 2.197 × 10−7, ω41 = 7.987 × 10−10, ω42 = 5.230 × 10−11, ω43 = −

4.614× 10−13

in both equations, P is the pressure in MPa, T is the temperature in ◦C and S is

the salinity of sodium chloride associated with the brine in fractions of one (parts per

million divided by 106).

The bulk modulus of the wet sand, Kwet sand, can be calculated using the values

of the P-wave velocity and density, together with Equation 3.1. To calculate the

Reuss and Voigt moduli (Avseth et al., 2005), information of the bulk modulus of

the rock matrix (Kma) of sandstones and of the bulk modulus of the brine (Kbrine)

have to be estimated. As discussed previously, a value of Kma = 36 GPa was adopted

in this study (Mavko et al., 2009). The bulk modulus of the brine was calculated

using the velocity and density values computed using Equations 3.11 and 3.13. From

the Reuss and Voigt moduli, the Hill’s modulus was calculated. The result of this

calculation is presented in Figure 3.8. A possible origin for the large spread of the
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Figure 3.8: Bulk modulus for wet sand versus porosity. Blue/diamond show sample
data points, while magenta/square symbols show the average value of the sample
points for each depth interval. Cyan line shows the Reuss modulus, while Green line
shows the Voigt modulus. Black dashed line shows the Hill’s modulus. A regression
curve was fitted to the average value of the sample points for each specific depth, and
is presented as a magenta dashed line.

sample values observed in Figure 3.8 can be associated with mineralogy effects, since

the classification of the lithology between shale and wet sand is subject to cut-offs

and uncertainty. However, as the original information in the well log dataset does

not contain quantitative information from gamma-ray log, this hypothesis can not be

verified.

The well log data was also used for obtaining a locally calibrated relationship
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between the P-wave velocity and the density for wet sands. This relationship will

be used during the fluid substitution procedure, when in Section 3.3.1 a correlated

Monte Carlo approach which uses the expression related to that is applied. The

expression obtained for the locally calibrated data is given by ρ = 0.4241 V 0.1785
P ,

with (R2 = 0.97), and with Vp given in feet and density in g/cm3.

3.3 Fluid substitution

Now that the well log dataset characterization was discussed, the application of fluid

substitution to the wet sand sample data points is described. The effect of three

different saturations were investigated. The first saturation corresponds to the wet

sand case, which have Sw = 1.0. The second saturation corresponds to a reservoir

with characteristics of fizz gas, which Sw = 0.95. The third and last case corresponds

to a gas reservoir with Sw = 0.5.

The effect of the variation of the fluid saturations was investigated using crossplots

that are recognized in the literature as sensitive to the fluid content (Hilterman, 2001).

These crossplots were:

• Vp/Vs versus Vp,

• P-impedance (Ip) versus S-impedance (Is),

• Normal incident reflectivity (NI) versus Poisson reflectivity (PR),

• λρ versus µρ.

The Vp/Vs–Vp crossplot is sensitive to the fluid content because when the rock

pore space is filled with a different fluid, the Vp velocity tends to change as a response
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to the fluid change, while the Vs velocity is insensitive to this fluid change. The

result is that in the Vp/Vs–Vp crossplot, a point representing a specific overall set

of properties of a porous rock will change its position in the crossplot as a response

to the variation of some of the original rock properties. A caveat in the use of this

crossplot to evaluate fluid content is that the Vp/Vs–Vp crossplot is also sensitive to

variations of other properties such as pore pressure, porosity and clay volume (Avseth

et al., 2005).

Figure 3.9 shows the effect of the different saturations and of the lithology in

the Vp/Vs—Vp crossplot. The response to the variation of the lithology shows that

sandstones and shales have different behavior in this crossplot. Figure 3.9 also shows

shale tends to have Vp/Vs ratio that is larger than the Vp/Vs value for sandstones

for a constant value of VP . This is specially clear in the shallow areas, which in this

crossplot corresponds to high Vp/Vs ratio and low Vp.

The effect of the fluid saturation is also clear in Figure 3.9. In the case of a mixture

of gas and brine, when the water saturation is reduced it is possible to discriminate

the wet sand case from the fizz gas case. As the water saturation continues to be

reduced, we can observe in Figure 3.9 that the Vp/Vs ratio becomes insensitive to

the gas saturation — the Vp/Vs ratio becomes essentially flat with VP .

Continuing with the analysis of the effect of the fluid saturation, the case of the

Ip–Is crossplot is discussed. The P-impedance Ip is obtained from the expression

below

Ip = VP ρ (3.15)
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Figure 3.9: Vp/Vs ratio versus Vp. Green/diamond: average value for each depth
for shale. Blue/square: average value for each depth for wet sand (Sw= 1.0). Ma-
genta/circle: average value for each depth for sands with Sw = 0.95 (fizz case).
Yellow/triangle: average value for each depth for sands with Sw = 0.5.

and the S-impedance Is is given by

Is = VS ρ (3.16)

Figure 3.10 shows the results obtained after the fluid substitution procedure. It can

be seen from this plot that at low impedances, corresponding to shallow areas, we

can identify a better discrimination of fluid in the sands. In fact, it can be seen that

the P-impedances for the different saturations follows straight lines which become

closer to each other at higher depths.This, the discrimination of fluids becomes hard

to achieve in deeper reservoirs. The lithology also can be evaluated using the Ip–Is
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crossplot, as can be seen in Figure 3.10.

Figure 3.10: P-Impedance versus S-impedance. Green/diamond: average value for
each depth for shale. Blue/square: average value for each depth for wet sand (Sw=
1.0). Magenta/circle: average value for each depth for sands with Sw = 0.95 (fizz
case). Yellow/triangle: average value for each depth for sands with Sw = 0.5.

The next fluid discriminator to be investigated was the NI–PR crossplot (Hilter-

man, 2001). The normal incident reflectivity (NI) is given by

NI =
Vp2 ρ2 − Vp1 ρ1

Vp2 ρ2 + Vp1 ρ1

(3.17)

where Vp2 and ρ2 correspond to the P-wave velocity and the density for the upper

medium (shale) and Vp1 and ρ1 correspond to the P-wave velocity and the density for
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the lower medium (sand). The Poisson’s reflectivity (PR) is given by

PR =
(σ2 − σ1)

(1 − σavg)2
(3.18)

where σ1 and σ2 correspond to the poisson’s ratio of the upper medium (shale) and

lower medium (sand), respectively. σavg corresponds the average value of both pois-

son’s ratios, so that σavg = σ2+σ1
2

.

Figure 3.11 shows that shallow areas (high negative NI and PR values) present

a better fluid discrimination power than deeper areas. In fact, the average values

for NI and PR calculated for each specific depth shows that at deeper reservoir the

discrimination between all saturations can become pretty difficult, specially in the

case involving the fizz gas case.

The last crossplot used to investigate the fluid discrimination power was the λρ

versus µρ crossplot. This crossplot was proposed by Goodway et al. (1997). λρ was

defined by Goodway et al. as

λρ = (VP ρ)2 − 2 (VS ρ)2 (3.19)

where λρ is a pore-fluid discriminator. The µρ attribute is given by

µρ = (VS ρ)2 (3.20)

As discussed by Hilterman (2001), λρ is the Gassmann’s fluid discriminant since

this attribute is a good approximation for Gassmann’s bulk modulus of the pore-

fluid effect. Figure 3.12 shows the λρ versus µρ crossplot. It can be seen that this

crossplot shows a very good discriminator power, as discussed by Goodway et al.

(1997) and Hilterman (2001). In fact, the three cases upon investigation, Sw = 1.0,
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Figure 3.11: NI versus PR. Green: average value for each depth for shale.
Blue/square: sample data points for wet sand (Sw= 1.0). Magenta/square: aver-
age value for each depth for the wet sand case. Red/circle: average value for each
depth for sands with Sw = 0.95 (fizz case). Yellow/triangle: average value for each
depth for sands with Sw = 0.5. Dashed-dot lines: linear fitting for the sample data
points for wet sand (light pink) and for the average value for each depth for shale
(green).

Sw = 0.95 and Sw = 0.50, present a constant separation in the λρ axis in the average

values calculated for each specific depth. Shallow reservoirs are characterized by small

values of λρ and µρ, while deeper reservoirs are characterized by large values of these

attributes. Good discrimination between shale and sandstone for deeper reservoirs is

also observed in Figure 3.12.

It is important to keep in mind, however, a caveat discussed by Hilterman (2001)
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about this crossplot: any noise presented in the data will also be magnified by this

kind of attribute together with the fluid effect. In the use of this crossplot with

seismic data this caveat can be specially important. Another caveat is that Figure

3.12 presents results for fluid discrimination looking at the average values for each

depth obtained after the fluid substitution of all sample data points, and then does

not consider actually the spread in the sample values. In the next section this last

aspect will be discussed again using a different approach.

Figure 3.12: λρ versus µρ. Green points: average value for each depth for shale.
Blue/square: sample data points for wet sand (Sw= 1.0). Magenta/square: average
value for each depth for wet sand case. Red/circle: average value for each depth for
sands with Sw = 0.95 (fizz case). Yellow/triangle: average value for each depth for
sands with Sw = 0.5.
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3.3.1 Monte Carlo simulation, fluid discrimination, & the

effect of depth

One of the goals of this chapter was to evaluate the effect of uncertainty over geo-

physical attributes that are used by the oil industry to delineate and characterize

a hydrocarbon reservoir. Another goal was to investigate the reliability of the fluid

discrimination procedure based in the fluid substitution results. Both goals are re-

lated to the use of the volumetric equation, because fluid substitution results can be

used in different steps associated with the determination of the values of the source

parameters of the HCPV calculation. The estimation of the fluid discrimination con-

fidence presented in this thesis were obtained from the well log database that contains

samples over a depth range from 0.21 km to 3.75 km.

One interesting consideration about the fluid substitution technique is that at the

same depth different rock properties are found. Thus, studies based on sensitivity

analysis are important to evaluate what are the possibilities in the rock properties in

subsurface that can be needed to understand a specific area. With this idea in mind,

the Monte Carlo simulation technique was used to perform sensitivity analysis, since

distributions of values instead of single average values help to avoid the flaw of aver-

ages (Avseth et al., 2005). Ignoring the variability of rock properties in quantitative

computations can cause critical errors in the decision-making process.

Applying a Monte Carlo simulation involves specific steps. First, it is necessary

to define a domain containing all possible inputs. Second, it is necessary generate

inputs randomly from a probability distribution (PDF) over that domain. Third, it is

necessary carry out a deterministic calculation on the inputs. Fourth, it is necessary
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to aggregate the results.

Figure 3.13: Illustration of the procedure to obtain the statistical properties of the
original information in the well log dataset. Z1 and Z2 correspond to different depths.
The mean and the standard deviation for each original well logged property was
calculated for each specific depth. These statistical parameters were used as source
parameters for the Monte Carlo simulation.

In the case of this research, steps 1 and 2 described above were carried out together.

First, the mean and standard deviation values from the original well log properties

described in Section 3.2 were calculated for each specific value of depth. Figure 3.13

illustrates this procedure. Then, a normal distribution PDF was adopted as describing

the well log information for each depth. One convenient property of the normal

distribution is that it is characterized just by two statistical parameters: the mean

and the standard deviation. Using the mean and standard deviation values calculated
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for each original well log property for each depth, the domain of all possible inputs

(step 1) is generated directly from the carrying out of step 2. After that, each one

of the sampled values with the original well log properties was submitted to the step

3, using the Gassmann’s equation and the fluid substitution procedure as described

in Section 3.1. The results obtaining from this procedure applied in the original well

log data (mud weight, temperature, VP for shale and for wet sand, density for shale

and wet sand), the step 4, are presented next.

In the case of the density, a correlated Monte Carlo approach (Avseth et al., 2005)

was applied making use of the locally calibrated empirical relationship between the

density ρ and VP (Castagna et al. 1993) as a constraint in the simulation. The

procedure was applied as follows. First the mean and standard deviation for VP and

for ρ were calculated. I then used the mean and standard deviation of VP in the

Monte Carlo simulation so that I draw random values for VP from the application of

the latter. This random values of VP were plugged into the locally calibrated relation

observed for VP and ρ. Random values for density, ρMC , were then generated in this

process. For each value of ρMC computed using the Monte Carlo simulation I take the

difference with the observed value for ρ in the well log data, resulting in a sample of

∆ρ = ρ − ρMC . From this sample of ∆ρ, the standard deviation σ∆ρ was calculated

The correlated Monte Carlo for density was then carried out. It consists of using

the random values of VP into the locally calibrated relationship between VP and ρ,

generating a sample of density values from VP . I added then a random Gaussian

error with zero mean and variance equal to the variance of the residuals from the

VP–ρ regression, σ∆ρ. The results obtained from the procedure described above are

presented next.
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EFFECT OF DEPTH

Figures 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, and 3.20 show the results obtained from

the Monte Carlo simulation after applying the observed spatial variability for different

depths. These figures show also four different crossplots that are used in many cases

as sensitive to the fluid content (which were discussed in Section 3.3). As discussed

by Castagna et al. (1993), a better fluid discrimination power is associated with

shallow reservoirs than deeper ones. This conclusion can be verified in Figures 3.14

to 3.20. Next, I discussed the effect of depth in each crossplot contained in the figures

separately.

The top/left plots in Figures 3.14 to 3.20 show the VP/VS versus VP crossplot.

The wet sand case in all figures shows a distribution of points that go along a thin

line corresponding to the fact that VS was calculated from VP as discussed in Section

3.2. The observed correlation in the VP/VS ratio and VP presents a more wide spread

of values when the fizz-gas case (Sw = 0.95) and the gas case (Sw = 0.50) are

considered. This result is because the fluid substitution technique introduces the

variability observed in the rock properties associated with some specific depth in the

values of the VP/VS ratio and VP . In addition, the observed distribution of points in

this crossplot is non-circular, presenting an asymmetrical shape. If we assumed that

the distribution of points can be approximated by an ellipse, we can described the

elliptical distribution of points as tending to have a larger aspect ratio with increasing

depth (the ellipse becomes tight with increasing depth). When the wet sand, fizz-gas,

and gas cases are evaluated as a function of the depth, all cases converge for small

values of the VP/VS ratio and highest values of VP at deeper reservoirs. In reservoirs

deeper than ∼ 2km, these 3 distributions of points tend to superimpose to each other.
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The overall conclusion in this result is that in deeper reservoirs, any estimation about

the fluid content characterization obtained taking into account the VP/VS ratio versus

VP crossplot should included a rigorous investigation and evaluation of its reliability.

Figure 3.14: Different crossplots which are sensitive to fluid discrimination at depth=
0.64 km. Left/top: Vp/Vs vs. Vp. Right/top: µρ vs. λρ. Left/bottom: PR vs. NI.
Right/bottom: IS vs. IP . In all plots, the symbols are: Blue/square: sample data
points for wet sand (Sw= 1.0). Magenta/square: fizz gas case. Yellow/triangle: gas
reservoir case (S, = 0.50). The big circle inside the distribution of points corresponds
to its respective median point.

The bottom/left plots in Figures 3.14 to 3.20 show the PR versus NI crossplot.

This crossplot presents the wider spread of values compared to the other crossplots

presented in these figures. One possible explanation for this result is because the NI

versus PR crossplot incorporates all observed spatial variability related to the original

information in the well log dataset (the NI and PR calculation also include the shale

properties values). The distributions obtained using the Monte Carlo simulation again
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presents an asymmetrical shape, resembling an elliptical distribution of points. As in

the case of the VP/VS versus VP crossplot, the wet sand, fizz-gas, and gas distributions

of points become close to each other with increasing depth. Also, in reservoirs deeper

than ∼ 2km, these 3 distributions of points tend to superimpose at least partially to

each other. Thus, the overall conclusion in this result is that in deeper reservoirs,

any estimation about the fluid content characterization obtained taking into account

the PR versus NI crossplot should included a rigorous investigation and evaluation

of its reliability.

Figure 3.15: Different crossplots which are sensitive to fluid discrimination at depth=
1.25 km. Left/top: Vp/Vs vs. Vp. Right/top: µρ vs. λρ. Left/bottom: PR vs. NI.
Right/bottom: IS vs. IP . In all plots, the symbols are: Blue/square: sample data
points for wet sand (Sw= 1.0). Magenta/square: fizz gas case. Yellow/triangle: gas
reservoir case (S, = 0.50). The big circle inside the distribution of points corresponds
to its respective median point.

The left/top plots in Figures 3.14 to 3.20 show the λρ versus µρ crossplot. As in
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Figure 3.16: Different crossplots which are sensitive to fluid discrimination at depth=
1.62 km. Left/top: Vp/Vs vs. Vp. Right/top: µρ vs. λρ. Left/bottom: PR vs. NI.
Right/bottom: IS vs. IP . In all plots, the symbols are: Blue/square: sample data
points for wet sand (Sw= 1.0). Magenta/square: fizz gas case. Yellow/triangle: gas
reservoir case (S, = 0.50). The big circle inside the distribution of points corresponds
to its respective median point.

the previous crossplots, the spread of the data points increases with depth. Again, the

distributions of data points obtained using the Monte Carlo simulation presents an

asymmetrical shape, resembling an elliptical distribution of points. However, when

the λρ versus µρ crossplot is compared to the other crossplots, it presents an in-

teresting property: the distributions move along approximately parallel curves with

increasing depth. The “distance” measured along the λρ axis seems to be constant

with depth. Thus, the depth seems to have a less important effect in the fluid dis-

crimination in the λρ versus µρ crossplot. This result can suggest that the λρ versus

µρ crossplot could be a more reliable source for fluid discrimination than the other
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Figure 3.17: Different crossplots which are sensitive to fluid discrimination at depth=
2.10 km. Left/top: Vp/Vs vs. Vp. Right/top: µρ vs. λρ. Left/bottom: PR vs. NI.
Right/bottom: IS vs. IP . In all plots, the symbols are: Blue/square: sample data
points for wet sand (Sw= 1.0). Magenta/square: fizz gas case. Yellow/triangle: gas
reservoir case (S, = 0.50). The big circle inside the distribution of points corresponds
to its respective median point.

crossplots considered in this study. As discussed in the last section, however, the use

of the λρ versus µρ crossplot to perform fluid discrimination should also be subject to

rigorous investigation, because any noise presented in the data will also be magnified

by this kind of attribute together with the fluid effect.

The bottom/right in Figures 3.14 to 3.20 show the last of the crossplots used in

this investigation: IP versus IS. As in the case of the VP/VS versus VP and PR

versus NI crossplots, the wet sand, fizz-gas, and gas distributions of points become

close to each other with increasing depth. The overall conclusion obtained from the

IP versus IS crossplot is that in deeper reservoirs, any estimation about the fluid

92



content characterization obtained taking into account this crossplot should included

a rigorous investigation and evaluation of its reliability.

Figure 3.18: Different crossplots which are sensitive to fluid discrimination at depth=
2.90 km. Left/top: Vp/Vs vs. Vp. Right/top: µρ vs. λρ. Left/bottom: PR vs. NI.
Right/bottom: IS vs. IP . In all plots, the symbols are: Blue/square: sample data
points for wet sand (Sw= 1.0). Magenta/square: fizz gas case. Yellow/triangle: gas
reservoir case (S, = 0.50). The big circle inside the distribution of points corresponds
to its respective median point.
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Figure 3.19: Different crossplots which are sensitive to fluid discrimination at depth=
3.40 km. Left/top: Vp/Vs vs. Vp. Right/top: µρ vs. λρ. Left/bottom: PR vs. NI.
Right/bottom: IS vs. IP . In all plots, the symbols are: Blue/square: sample data
points for wet sand (Sw= 1.0). Magenta/square: fizz gas case. Yellow/triangle: gas
reservoir case (S, = 0.50). The big circle inside the distribution of points corresponds
to its respective median point.

GENERAL COMMENTS

The results presented in this section revealed that the depth has an important

effect on the fluid discrimination reliability when we consider the observed spatial

variability of the measured well log data for each depth. As expected, shallow reser-

voirs present a better fluid discrimination power, allowing clearly the discrimination

of wet sand, fizz-gas, and gas-reservoirs in the case studied in this thesis. When the

reservoirs go deeper, a larger concern was identified in the predicted fluid discrim-

ination results. In any case, rigorous investigation and evaluation of the reliability

of the fluid discrimination process should be adopted before any conclusion can be
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Figure 3.20: Different crossplots which are sensitive to fluid discrimination at depth=
3.57 km. Left/top: Vp/Vs vs. Vp. Right/top: µρ vs. λρ. Left/bottom: PR vs. NI.
Right/bottom: IS vs. IP . In all plots, the symbols are: Blue/square: sample data
points for wet sand (Sw= 1.0). Magenta/square: fizz gas case. Yellow/triangle: gas
reservoir case (S, = 0.50). The big circle inside the distribution of points corresponds
to its respective median point.

presented. Nevertheless, the fluid substitution results were considered robust in most

conditions investigated in this thesis, allowing discrimination of gas, fizz gas, and

water saturated reservoirs in at least one of the attributes that respond to the fluid

content (the λρ versus µρ crossplot).

The observed variability in the well log data for a specific depth takes into ac-

count all the empirical trends associated with the subsurface geology in the available

surveyed area. Thus, this suggests that the framework described in this chapter

could be applied in the exploration of areas associated with regions analogous to the

Gulf of Mexico (shallow offshore). This framework could be used in the process of

95



the GRV estimation necessary to apply Equations 2.1 and 2.2, since the fluid sub-

stitution method can be used to constrain the delineation of the top and base of

hydrocarbon reservoirs. Another use of the results obtained with this framework is

that this methodology could be used to roughly estimate, using seismic data, the

hydrocarbon saturation needed to perform the volumetric calculation if the following

assumptions can be verified: 1) the results obtained from the methodology described

in this chapter allows the discrimination of the fluid content in hydrocarbon reser-

voirs; 2) This fluid discrimination power goes through the seismic bandwidth. If these

two assumptions are correct, the framework could allow the estimate of the missing

parameter in the HCPV calculation: a hydrocarbon saturation distribution map.
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Chapter 4

Summary of conclusions

The main objective of this study was to understand how the uncertainties in the

geophysical parameters needed to evaluate the hydrocarbon pore volume (HCPV)

can be used to obtain a more reliable estimation of it. In the first part of this

thesis, the uncertainties of the parameters used to calculate the HCPV were used to

estimate a range of HCPV values for Blackfoot reservoir (AB-Canada). Two different

approaches were used to link the range of estimated HCPV values to their likelihood.

The results obtained using these two approaches presented compatible hydrocarbon

volume estimations for the Blackfoot pool, with P10∼ 12 MMbbl, P50∼ 8 MMbbl,

and P90∼ 5 MMbbl. One of these methodologies, the Taylor expansion approach, can

be used to link deterministic estimations of single values for HCPV to probabilities —

if uncertainty estimations for the source parameters needed for the HCPV prediction

are available. Investigation about the source of uncertainty in seismic data reveals

that the time picking error could explain, in the case of the Blackfoot reservoir, the
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uncertainty in the thickness parameter. Further investigation is needed to confirm

this last result.

An additional case was used to compare the results obtained from the Taylor ex-

pansion approach and the Monte Carlo simulation approach. This last case can not be

used to test the uncertainty evaluation methodology used for the Blackfoot reservoir,

but can be useful to compare the predictions obtained from the two methodologies. In

this additional case, a Taylor expansion approach that adopts the HCPV as a lognor-

mal distribution makes the match between the CDFs from both approaches similar

even in the tails of the PDFs. This shows that the HCPV distribution is a lognormal

distribution as expected by the theory when the source parameters are independent

to each other (Murtha, 2002).

In the second part of this thesis, well log data from Gulf of Mexico revealed a

temperature gradient described by the equation T (◦C) = 19.45 · depth(km) + 25.01,

which is in agreement with the gradient presented by Husson et al. (2008). Gradients

for pore pressure, overburden pressure, porosity, density for shale and for wet sand,

P-wave velocity for shale and for wet sand were also estimated from the well log data,

and are in agreement with previous results for Gulf of Mexico (Hilterman, 2001,

Castagna et al., 1993, Husson et al., 2008).

The results obtained from this second part of the thesis also revealed that the

depth has an important effect on the fluid discrimination reliability when we consider

the observed spatial variability of the measured well log data. As expected, shallow

reservoirs present a better fluid discrimination power, clearly allowing the discrimina-

tion of wet sand, fizz-gas, and gas-reservoirs. When the reservoirs go deeper, a larger
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concern about the fluid discrimination was identified in the predicted results. In any

case, rigorous investigation and evaluation of the reliability of the fluid discrimination

process should be adopted before any conclusion can be presented. Nevertheless, the

fluid substitution results were considered robust in most conditions investigated in

this project, allowing discrimination of gas, fizz gas, and water saturated reservoirs

in at least one of the attributes that respond to the fluid content (the λρ versus µρ

crossplot).

The observed variability in the well log data for a specific depth takes into ac-

count all the empirical trends associated with the subsurface geology in the available

surveyed area. This suggests that the framework described in this second part of the

thesis could be applied in the exploration of areas associated with the regions analo-

gous to Gulf of Mexico (shallow offshore). This framework could also be used in the

process of the GRV estimation/delineation necessary to apply volumetric calculations

since the fluid substitution method can be used to constrain the delineation of the

top and base of hydrocarbon reservoirs. Another use of the results obtained with this

framework is that this methodology could be used to roughly estimate, using seismic

data, the hydrocarbon saturation needed to perform the volumetric calculation if the

following assumptions can be verified: 1) the results obtained from the methodology

described in chapter 3 allow the discrimination of the fluid content in hydrocarbon

reservoirs; 2) This fluid discrimination power goes through the seismic bandwidth.

If these two assumptions are correct, the framework could allow the estimate of the

missing parameter in the HCPV calculation: the hydrocarbon saturation distribution

map, which could be obtained in the same way as the other source parameters used

to perform the HCPV calculation.
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Chapter 5

Future work

From the results presented in this thesis, different lines of investigation can be pro-

posed as future work. Among them are:

• One of the most important lines of investigation associated with the results

obtained with the methodology proposed in Chapter 2 is the comparison of their

predicted CDFs with the CDFs obtained directly from real oil industry evaluation.

This comparison would allow the validation of the methodology used in this thesis.

• The methodology presented in Chapter 2, where the uncertainty in the source

parameters of the volumetric equation were extracted from the comparison between

the well log data and the predicted one, was applied only for the Blackfoot reservoir.

It would be very important to evaluate the obtained results in different reservoirs.

Then, the results obtained in Chapter 2 should be verified with the application of the

methodology in different reservoirs in a future work.
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• One of the assumptions involved with the two approaches described in Chapter

2 is that the source parameters are assumed independent of each other. If this is

not the case, both approaches can consider dependence between source parameters.

Thus, one line of investigation that could be developed in a future work involves

the application of the two approaches in a case where there are dependencies between

source parameters. Some questions that could be asked are: How the results presented

in this thesis are affected in this case? How does the uncertainty degree change

because of this consideration?

• The association between the time picking error and the thickness uncertainty es-

timated using the geostatistic analysis is interesting, but should be investigated more

thoroughly. If confirmed by further investigation, this association would be a very

important result because this could allow the prediction of the thickness uncertainty

directly from the seismic data. A detailed investigation about the relation between

the geophysical data and the error estimate in the source parameters of the volumetric

equation should be performed in a more constrained experiment. The signal-to-noise

ratio associated with the seismic data should also be better defined. Attempts to link

the S/N ratio associated with the properties of the seismic acquired data to the one

in the seismic interpreted data should be performed. The Meunier equation presents

a good starting point.

• Another possibility for investigation would be to use the errors in the parameters

associated with the distribution maps to perform a kriging estimation of the errors.

This would allow a quantification of an uncertainty surface associated with each one

of the distributions maps used in the volumetric estimation. With an uncertainty

surface associated with each one of the source parameters a new methodology could
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be developed. The evaluation of this procedure should be investigated/developed in

a future work.

• The Taylor expansion methodology can be easily used in optimizing problems.

Thus, the Taylor expansion methodology could be used to obtain a best volumetric

model from the geostatistical analysis and the blind well procedure, using the com-

parison between the HCPV obtained from the volumetric method and a estimation

for HCPV obtained by a different method (e.g. material balance method).

• The results obtained from Chapter 3 were obtained from a well log dataset

which did not present other useful properties which could be important in the char-

acterization of the region samples in the well log data. Among these properties are

the volume of shale, resistivity logs, and DTS logs/properties. An interesting line

of investigation would be to apply the methodology described in Chapter 3 with a

well log dataset containing all information needed to perform a wide and thoroughly

investigation.

• Another line of research could be to investigate whether the fluid discrimination

results obtained in Chapter 3 can be verified also in seismic data. If the result is

verified, then seismic data could be used to estimate the hydrocarbon saturation.

• One consequence of the evaluation related to the above, is the generation of a

hydrocarbon saturation distribution map. For example, if the results associated with

Chapter 3 can be applied to the Blackfoot reservoir, this would allow the estimation

of the hydrocarbon saturation distribution map using the methodologies applied by

Todorov (2000) to obtain the thickness, percentage of sand, and porosity distribution

maps. With the hydrocarbon saturation distribution map, a net pay thickness could
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be estimated using seismic data. This distribution map could be used as a new

constraint in the volumetric calculation.
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Appendix A

Thickness error from the time

picking error

The total thickness error is the maximum acceptable error in the thickness. This

maximum error is obtained calculating the maximum thickness and the minimum

thickness, in time, for a given time picking error estimation. This total thickness

error in time is then the difference between the maximum acceptable time thickness

and the minimum acceptable time thickness. Figure A.1 illustrates the approach.

The maximum time thickness is given by

thicknessmaximum = thickness+ ∆t = thickness+ 2te (A.1)

and the minimum time thickness is given by

thicknessminimum = thickness−∆t = thickness− 2te (A.2)
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Figure A.1: Schematic for the total time picking error.

The total time thickness or isochron error is then

thicknesstimeerror = 2∆t = 4te (A.3)

The relationship between the traveltime t and the depth z is given by

z =
V t

2
(A.4)

We have that the relationship between the time picking error te and the error in depth

is given by

∆z =
V ∆t

2
(A.5)

where ∆t = 2 te.
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The total thickness error in depth is then

Thicknesszerror =
V Thicknesstimeerror

2
(A.6)

and then

Thicknesszerror =
V 4te

2
= 2V te (A.7)
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