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Abstract

‘We present algorithmic results for the parallel assembly of many micro-scale objects in two and three
dimensions from tiny particles, which has been proposed in the context of programmable matter and
self-assembly for building high-yield micro-factories. The underlying model has particles moving under
the influence of uniform external forces until they hit an obstacle. Particles bond when forced together
with another appropriate particle.

Due to the physical and geometric constraints, not all shapes can be built in this manner; this gives rise
to the TiLT AsSEMBLY PROBLEM (TAP) of deciding constructibility. For simply-connected polyominoes P
in 2D consisting of N unit-squares (“tiles” ), we prove that TAP can be decided in O(N log N) time. For
the optimization variant MAXTAP (in which the objective is to construct a subshape of maximum possible
size), we show polyA PX-hardness: unless P=NP, MAXTAP cannot be approximated within a factor of
QN %]; for tree-shaped structures, we give an Q(N 3 )-approximation algorithm. For the efficiency of the
assembly process itself, we show that any constructible shape allows pipelined assembly, which produces
copies of P in O(1) amortized time, i.e., N copies of P in O(N) time steps. These considerations can
be extended to three-dimensional objects: For the class of polycubes P we prove that it is NP-hard to
decide whether it is possible to construct a path between two points of P; it is also NP-hard to decide
construetibility of a polycube P. Moreover, it is ezpA PX-hard to maximize a sequentially constructible
path from a given start point.

1 Introduction

In recent years, progress on flexible construction at micro- and nano-scale has given rise to a large set of
challenges that deal with algorithmic aspects of programmable matter. Examples of cutting-edge application
areas with a strong algorithmic flavor include self-assembling systems, in which chemical and biological sub-
stances such as DNA are designed to form predetermined shapes or carry out massively parallel computations;
and swarm robotics, in which complex tasks are achieved through the local interactions of robots with severely
limited individual capabilities, including micro- and nano-robots.

Moving individual particles to their appropriate attachment locations when assembling a shape is difficult
because the small size of the particles limits the amount of onboard energy and computation. One successful
approach to dealing with this challenge is to use molecular diffusion in combination with cleverly designed
sets of possible connections: in DNA tile self-assembly, the particles are equipped with sophisticated bonds
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that ensure only a predesigned shape is produced when mixing together a set of tiles, see [31]. The resulting
study of algorithmic tile self-assembly has given rise to an extremely powerful framework and produced a
wide range of impressive results. However, the required properties of the building material (which must be
specifically designed and finely tuned for each particular shape) in combination with the construction process
(which is left to chemical reactions, so it cannot be controlled or stopped until it has run its course) make
DNA self-assembly unsuitable for some applications.

An alternative method for controlling the eventual position of particles is to apply a uniform external
force, causing all particles to move in a given direction until they hit an obstacle or another blocked particle.
As two of us (Becker and Fekete, [4]) have shown in the past, combining this approach with custom-made
obstacles (instead of custom-made particles) allows complex rearrangements of particles, even in grid-like
environments with axis-parallel motion. The appeal of this approach is that it shifts the design complexity
from the building material (the tiles) to the machinery (the environment). As recent practical work by
Manzoor et al. [23] shows, it is possible to apply this to simple “sticky” particles that can be forced to bond,
see Fig. 1: the overall assembly is achieved by adding particles one at a time, attaching them to the existing
sub-assembly.

w €

w0

Figure 1: A practical demonstration of Tilt Assembly based on alginate (i.e., a gel made by combining a
powder derived from seaweed with water) particles on a silicon wafer with obstacles etched in photoresist [23].
The obstacles appear as white lines and block the motion of particles. (a) Alginate particles in initial positions.
(b) After control moves of (e, s, w,n, e, s) (for east, south, west, north), the alginate microrobots move to the
shown positions. (c¢) After (w,n) inputs, the system produces the first multi-microrobot polyomino. (d) The
next three microrobot polyominoes are produced after applying multiple (e, s, w, n) cycles. (e) After the
alginate microrobots have moved through the microfluidic factory layout, the final 4-particle polyomino is
generated.

Moreover, Manzoor et al. [23] argue that it is possible to enhance the overall assembly environment to
allow pipelined construction, as shown in Fig. 2: after constructing the first polyomino, each cycle of a small
control sequence produces another polyomino. However, the algorithmic part of [23] is purely heuristic;
providing a thorough understanding of algorithms and complexity is the content of our paper.
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Figure 2: (Top left) Initial setup of a seven-tile polyomino assembly; the composed shape is shown enlarged
on the lower left. The bipartite decomposition into blue and red particles is shown for greater clarity, but can
also be used for better control of bonds. The sequence of control moves is (e, s, w, n), i.e., a clockwise order.
(Bottom left) The situation after 18 control moves. (Right) The situation after 7 full cycles, i.e., after 28
control moves; shown are three parallel “factories”.

Figure 3: A polyomino (black) that cannot be constructed by Tilt Assembly: the last tile cannot be attached,
as it gets blocked by previously attached tiles.

One critical issue of this approach is the requirement of getting particles to their destination without
being blocked by or bonding to other particles. As Fig. 3 shows, this is not always possible, so there are some
shapes that cannot be constructed by Tilt Assembly.

This gives rise to a variety of algorithmic questions: (1) Can we decide efficiently whether a given
polyomino can be constructed by Tilt Assembly? (2) Can the resulting process be pipelined to yield low
amortized building time? (3) Can we compute a maximum-size subpolyomino that can be constructed? (4)
What can be said about three-dimensional versions of the problem?

1.1 Owur Contribution

Our main contribution is a characterization of deciding constructibility and efficient construction for simply
connected two-dimensional shapes: For a simple polyomino P with NV pixels, we can decide in time O(N log N)
whether P can be constructed; using pipelining, a constructible polyomino can be built in amortized time
O(1). On the other hand, we show that deciding constructibility in 3D is NP-complete. We also provide
a number of additional results on approximation and the constructibility of subpaths; see Table 1 for an
overview.

1.2 Related Work

Assembling polyominoes with tiles has been considered intensively in the context of tile self-assembly. In
1998, Erik Winfree [31] introduced the abstract tile self-assembly model (aTAM), in which tiles have glue
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Dimension | Polyomino Decision Maximization Approximation Constructible Path
2D simple O(NlogN) (Sec. 3) | polyAPX-hard | O(N'/3), Q(v/N) (Sec. 4) | O(NlogN)(Sec. 4)
3D general | NP-complete (Sec. 5) | polyAPX-hard | O(N1/3), - (Sec. 4) | NP-complete (Sec. 5)

Table 1: Results for Tilt Assembly Problem (TAP) and its maximization variant (MAXTAP)

types on each of the four sides and two tiles can stick together if their glue type matches and the bonding
strength is sufficient. Starting with a seed tile, tiles will continue to attach to the existing partial assembly
until they form a desired polyomino; the process stops when no further attachments are possible. For early
examples of related work, see Rothemund and Winfree [24] and Adleman et al. [1] for the running time and
program size for self-assembling squares. Apart from the aTAM, there are various other models like the
two-handed tile self-assembly model (2HAM) [11] and the hierarchical tile self-assembly model [13], in which
we have no single seed but pairs of subassemblies that can attach to each other. Furthermore, the staged
self-assembly model [12,14,16] allows greater efficiency by assembling polyominoes in multiple bins which are
gradually combined with the content of other bins.

All this differs from the model in Tilt Assembly, in which each tile has the same glue type on all four
sides, and tiles are added to the assembly one at a time by attaching them from the outside along a straight
line. This approach of externally movable tiles has been considered in practice at the microscale level using
biological cells and an MRI, see [7,20,21]. Becker et al. [8] consider this for the assembly of a magnetic Gauf§
gun, which can be used for applying strong local forces by very weak triggers, allowing applications such as
micro-surgery.

Using an external force for moving the robots becomes inevitable at some scale because the energy capacity
decreases faster than the energy demand. A consequence is that all non-fixed robots/particles perform the
same movement, so all particles move in the same direction of the external force until they hit an obstacle or
another particle. These obstacles allow shaping the particle swarm. Designing appropriate sets of obstacles
and moves gives rise to a range of algorithmic problems. Deciding whether a given initial configuration
of particles in a given environment can be transformed into a desired target configuration is NP-hard [4],
even in a grid-like setting, whereas finding an optimal control sequence is shown to be PSPACE-complete
by Becker et al. [5]. However, if designing the obstacles is allowed, the problems become more tractable [4].
Moreover, even complex computations become possible: If we allow additional particles of double size (i.e.,
two adjacent fields), full computational complexity is achieved, see Shad et al. [26]. Further related work
includes gathering a particle swarm at a single position [22] and using swarms of very simple robots (such as
Kilobots) for moving objects [9]. For the case in which human controllers have to move objects by such a
swarm, Becker et al. [6] study different control options. The results are used by Shahrokhi and Becker [27] to
investigate an automatic controller.

The construction of polyominoes has also applications in the field of robot swarms, e.g., shape formation.
Werfel and Nagpal [29,30] show how multiple robots can move tiles to a partial assembly to construct a
desired shape in 2D and 3D. Derakhshandeh et al. [17,18] consider the robots as building material, which have
O(1) memory, and provide algorithms letting the robots form or coat shapes. In a very recent paper, Demaine
et al [3,15] show that a robot swarm can be reconfigured in time O(d) unit steps, where d is the maximum
distance of any robot. However, this requires the robots to be well separable. Arbuckle and Requicha [2]
show how a self-organized swarm of robots can construct a certain shape. In case of robot failures or external
disturbance, the swarm is also able to repair the shape.

Further related work includes robots performing various tasks: Thubagere et al. [28] show that robots
made from DNA can simultaneously sort molecular cargoes. Rubenstein et al. [25] consider a swarm of simple
robots moving an object to a desired destination without knowing its shape and weight. Hoffmann [19] proves
that it is NP-hard to decide if a robot can push its way through an area filled with blocks.
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2 Preliminaries

Polyomino: For a set P C Z? of N grid points in the plane, the graph Gp is the induced grid graph,
in which two vertices py,ps € P are connected if they are at unit distance. Any set P with con-
nected grid graph Gp gives rise to a polyomino by replacing each point p € P by a unit square
centered at p, which is called a tile; for simplicity, we also use P to denote the polyomino when
the context is clear, and refer to Gp as the dual graph of the polyomino; P is tree-shaped if Gp is a
tree. A polyomino is called hole-free or simple if and only if the grid graph induced by Z?2\ P is connected.

Blocking sets: For each point p € Z? we define blocking sets Np, Sp C P as the set of all points ¢ € P that
are above or below p and |p; — ¢-| < 1. Analogously, we define the blocking sets E,, W, C P as the set
of all points ¢ € P that are to the right or to the left of p and |p, — gy| < 1.

Construction step: A construction step is defined by a direction d €{north, east, south, west} (abbreviated
by n, e, s,w) from which a tile is added and a latitude/longitude ! describing a column or row. The
tile arrives from (I, oc) for north, (oo,l) for east, (I, —oo) for south, and (—oo,l) for west into the
corresponding direction until it reaches the first grid position that is adjacent to one occupied by an
existing tile. If there is no such tile, the polyomino does not change. We note that a position p can be
added to a polyomino P if and only if there is a point ¢ € P with ||p — ¢||1 = 1 and one of the four
blocking sets, Ny, Ey, Sp or Wp, is empty. Otherwise, if none of these sets are empty, this position is
blocked.

Constructibility: Beginning with a seed tile at some position p, a polyomino P is constructible if and only
if there is a sequence o = ((di1,01), (d2,12),...,(dN—1,In—_1)), such that the resulting polyomino P/,
induced by successively adding tiles with o, is equal to P. We allow the constructed polyomino P’ to
be a translated copy of P. Reversing o yields a decomposition sequence, i.e., a sequence of tiles removed

from P.

3 Constructibility of Simple Polyominoes

In this section we focus on hole-free (i.e., simple) polyominoes. We show that the problem of deciding whether
a given polyomino can be constructed can be solved in polynomial time. This decision problem can be defined
as follows.

Definition 1 (TiLT ASSEMBLY PROBLEM). Given a polyomino P, the TILT ASSEMBLY PROBLEM (TAP)
asks for a sequence of tiles constructing P, if P is constructible.

3.1 A Key Lemma

A simple observation is that construction and (connectivity-preserving) decomposition are the same problem.
This allows us to give a more intuitive argument, as it is easier to argue that we do not lose connectivity
when removing tiles than it is to prove that we do not block future tiles.

Theorem 2. A polyomino P can be constructed if and only if it can be decomposed using a sequence of tile
removal steps that preserve connectivity. A construction sequence is a reversed decomposition sequence.

Proof. To prove this theorem, it suffices to consider a single step. Let P be a polyomino and ¢ be a tile that
is removed from P into some direction [, leaving a polyomino P’. Conversely, adding ¢ to P’ from direction [
yields P, as there cannot be any tile that blocks ¢ from reaching the correct position, or we would not be able
to remove t from P in direction [. |
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(a) Removing ¢ destroys decomposability. The (b) Removing the locally convex tile ¢ leaves the
polyomino can be decomposed by starting with polyomino non-decomposable; it can be decom-
the three tiles above . posed by starting from the bottom or the sides.

Figure 4: Two polyominoes and their locally convex tiles (white). (a) Removing not locally convex tiles may
destroy decomposability. (b) With non-simple polygons we may not be able to remove locally convex tiles.

For hole-free polyominoes we can efficiently find a construction/decomposition sequence if one exists.
The key insight is that one can greedily remove locally convez tiles. A tile t is said to be locally convex if
and only if it is locally extremal, i.e., there are two axis-parallel orthogonal directions for which there is
no tile connected to t; see Fig. 4. If a locally convex tile is not a cut tile, i.e., it is a tile whose removal
does not disconnect the polyomino, its removal does not interfere with the decomposability of the remaining
polyomino.

This conclusion is based on the observation that a minimal cut (i.e., a minimal set of vertices whose
removal leaves a disconnected polyomino) of cardinality two in a hole-free polyomino always consists of two
(possibly diagonally) adjacent tiles. Furthermore, we can always find such a removable locally convex tile in
any decomposable hole-free polyomino. This allows us to devise a simple greedy algorithm.

We start by showing that if we find a non-blocked locally convex tile that is not a cut tile, we can simply
remove it. It is important to focus on locally convex tiles, as the removal of not locally convex tiles can harm
the decomposability: see Fig. 4a for an illustration. In non-simple polyominoes, the removal of locally convex
tiles can destroy decomposability, as demonstrated in Fig. 4b.

Lemma 3. Consider a non-blocked, non-cut, locally convez tile t in a hole-free polyomino P. The polyomino
P —t is decomposable if and only if P is decomposable.

Proof. The first direction is trivial: if P —t is decomposable, P is decomposable as well, because we can
remove the non-blocked tile ¢ first and afterwards use the existing decomposition sequence for P —t. The
other direction requires some case distinctions. Suppose for contradiction that P is decomposable but P — ¢
is not, i.e., t is important for the later decomposition.

Consider a valid decomposition sequence for P and the first tile ¢ we cannot remove if we were to remove
t in the beginning. W.l.o.g., let ¢’ be the first tile in this sequence (removing all previous tiles obviously does
not destroy the decomposability). When we remove ¢t first, we are missing a tile, hence ¢ cannot be blocked
but has to be a cut tile in the remaining polyomino P — t. The presence of ¢ preserves connectivity, i.e.,
{t,t'} is a minimal cut on P. Because P has no holes, then ¢ and ¢’ must be diagonal neighbors, sharing the
neighbors a and b. Furthermore, by definition neither of ¢t and #' is blocked in some direction. We make a
case distinction on the relation of these two directions.

The directions are orthogonal (Fig. 5a). Either a or b is a non-blocked locally convex tile, because ¢
and t’' are both non-blocked; w.l.o.g., let this be a. It is easy to see that independent of removing ¢ or ¢’
first, after removing a we can also remove the other one.

The directions are parallel (Fig. 5b). This case is slightly more involved. By assumption, we have a
decomposition sequence beginning with ¢/. We show that swapping ¢’ with our locally convex tile ¢ in
this sequence preserves feasibility.

The original sequence has to remove either a or b before it removes ¢, as otherwise the connection
between the two is lost when t’ is removed first. After either a or b is removed, ¢ becomes a leaf and
can no longer be important for connectivity. Thus, we only need to consider the sequence until either a



200

201

202

203

'
—r-r—r-r—r'\
|

X X X X X
s

X X X
X X X
X X X ~

O X X X X

Ha|x x x x

|
'
r
|
-
'
r
|
'

1
[ A

~

I
\

(a) If the unblocked directions of ¢ and ¢’ are orthogo-
nal, one of the two adjacent tiles (w.l.o.g. a) cannot
have any further neighbors. There can also be no
tiles in the upper left corner, because the polyomino
cannot cross the two free directions of ¢t and ¢’ (red
marks).

Figure 5: The red marks indicate that no tile is at this position; the dashed outline represents the rest of the

polyomino.

(b) If the unblocked directions of ¢ and ¢ are parallel,
there is only the tile ¢ for which something can change
if we remove t before ¢'.

or b is removed. The main observation is that a and b block the same tiles as £ or ', except for tile ¢ as
in Fig. 5b. However, when ¢ is removed, ¢ has to be a leaf, because a is still not removed and in the
original decomposition sequence, ¢’ has already been removed. Therefore, a tile d # ¢’ would have to be
removed before ¢. Hence, the decomposition sequence remains feasible, concluding the proof. |

Next we show that such a locally convex tile always exists if the polyomino is decomposable.

-~

(a) If the removal direction of ¢ is not crossed, the
last blocking tile has to be locally convex (and has to
be removed before t).

Figure 6: Polyominoes for which no locally convex tile should be removable, showing the contradiction to ¢

\
— /‘

(b) If the removal direction of ¢ crosses P, then P
gets split into components A and B. Component B
has a locally convex tile ¢’ that needs to be removed
before .

being the first blocked locally convex tile in P removed.

Lemma 4. Let P be a decomposable polyomino. Then there exists a locally conver tile that is removable

without destroying connectivity.

Proof. We prove this by contradiction based on two possible cases.

Assume P to be a decomposable polyomino in which no locally convex tile is removable. Because P is
decomposable, there exists some feasible decomposition sequence S. Let P, e denote the set of locally
convex tiles of P and let ¢t € Peopyex be the first removed locally convex tile in the decomposition sequence S.

By assumption, ¢ cannot be removed yet, so it is either blocked or a cut tile.



204

205

206

207

208

209

210

211

212

213

214

215

216

7

218

219

220

222

223

224

235

226

237

228

229

230

232

233

234

235

236

237

238

239

240

242

243

244

245

246

t is blocked. Consider the direction in which we would remove t. If it does not cut the polyomino, the last
blocking tile has to be locally convex (and would have to be removed before t), see Fig. 6a. If it cuts
the polyomino, the component cut off also must have a locally convex tile and the full component has
to be removed before t, see Fig. 6b. This is again a contradiction to ¢ being the first locally convex tile
to be removed in S.

t is a cut tile. P — t consists of exactly two connected polyominoes, P; and P,. It is easy to see that
Py N Pyopvex # 0 and Po N Pegyex 7 0, because every polyomino of size n > 2 has at least two locally
convex tiles of which at most one ceases to be locally convex by adding ¢. (A polyomino of size 1 is
trivial.) Before being able to remove ¢, either P; or P has to be completely removed, including their
locally convex tiles. This is a contradiction to ¢ being the first locally convex tile in S to be removed. [

3.2 An Efficient Algorithm

An iterative combination of these two lemmas proves the correctness of greedily removing locally convex tiles.
As we show in the next theorem, using a search tree technique allows an efficient implementation of this

greedy algorithm.
Theorem 5. A hole-free polyomino can be checked for decomposability/constructibility in time O(N log N).

Proof. Lemma 3 allows us to remove any locally convex tile, as long as it is not blocked and does not
destroy connectivity. Applying the same lemma on the remaining polyomino iteratively creates a feasible
decomposition sequence. Lemma 4 proves that this is always sufficient. If and only if we can at some point
no longer find a matching locally convex tile (to which we refer as candidates), the polyomino cannot be
decomposable.

Let B be the time needed to check whether a tile £ is blocked. A naive way of doing this is to try out
all tiles and check if ¢ gets blocked, requiring time O(N). With a preprocessing step, we can decrease B to
O(log N) by using O(N) binary search trees for searching for blocking tiles and utilizing that removing a tile
can change the state of at most O(1) tiles. For every vertical line z and horizontal line y going through P,
we create a balanced search tree, i.e., for a total of O(N) search trees. An z-search tree for a vertical line x
contains tiles lying on z, sorted by their y-coordinate. Analogously define a y-search tree for a horizontal line
y containing tiles lying on y sorted by their z-coordinate. We iterate over all tiles ¢ = (z,y) and insert the
tile in the corresponding z- and y-search tree with a total complexity of O(N log N). Note that the memory
complexity remains linear, because every tile is in exactly two search trees. To check if a tile at position
(', ") is blocked from above, we can simply search in the (z' —1)-, ’- and (z’ + 1)-search tree for a tile with
y > 3’. We analogously perform search queries for the other three directions, and thus have 12 queries of
total cost O(log N).

We now iterate on all tiles and add all locally convex tiles that are not blocked and are not a cut tile to
the set F' (cost O(N log N)). Note that checking whether a tile is a cut tile can be done in constant time,
because it suffices to look into the local neighborhood. While F is not empty, we remove a tile from F', from
the polyomino, and from its two search trees in time O(log N). Next, we check the up to 12 tiles that could
have been blocked by the removed tile, see Fig. 7. Only these tiles can become unblocked or a locally convex
tile. Those that are locally convex tiles, not blocked, and not a cut tile are added to F'. All tiles behind
those cannot become unblocked as the first tiles would still be blocking them. If one of those tiles becomes
a cut tile, then we remove it from F'. The cost for this is again in O(log N). This is continued until F is
empty, which takes at most O(NN) loops each of cost O(log N). If the polyomino has been decomposed, the
polyomino is decomposable/constructible by the corresponding tile sequence. Otherwise, there cannot exist
such a sequence. A specific start tile can be enforced by prohibiting the removal of that tile. O
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Figure 7: When removing the red tile (dark gray in grayscale), only the yellow tiles (light gray in grayscale)
can become unblocked or locally convex.

3.3 Pipelined Assembly

Given that a construction is always possible based on adding locally convex corners to a partial construction,
we can argue that the heuristic idea of Manzoor et al. [23] for pipelined assembly can be formally realized
for every constructible polyomino: We can transform the construction sequence into a spiral-shaped maze
environment, as illustrated in Fig. 8. This allows it to produce D copies of P in N + D cycles, implying that
we only need 2N cycles for N copies. It suffices to use a clockwise order of four unit steps (west, north, east,
south) in each cycle.

The main idea is to create a spiral in which the assemblies move from the inside to the outside. The first
tile is provided by an initial south movement. After each cycle, ending with a south movement, the next seed
tile of the next copy of P is added. For every direction corresponding to the direction of the next tile added
by the sequence, we place a tile depot on the outside of the spiral, with a straight-line path to the location of
the corresponding attachment.

Theorem 6. Given a construction sequence o := ((d1,l1),...,(dn-1,In—1)) that constructs a polyomino P,
we can construct a maze environment for pipelined tilt assembly, such that constructing D copies of P needs
O(N + D) unit steps. In particular, constructing one copy of P can be done in amortized time O(1).

Proof. Consider the construction sequence o, the movement sequence ( consisting of N repetitions of the
cycle (w, n, e, s), and an injective function m : ¢ — (, with m((w,-)) = e, m((n,)) = s, m((e,-)) = w and
m((s,-)) = n. We also require that m((d;,l;)) = ¢; if for all i’ < i there is a j’ < j with m((ds,l)) = 5
and j is the smallest possible. This implies that in each cycle there is at least one tile in & mapped to one
direction in this cycle.

Labyrinth construction: The main part of the labyrinth is a spiral as can be seen in Fig. 8. Consider a
spiral that is making |¢| many turns, and the innermost point g of this spiral. From ¢ upwards, we make
a lane through the spiral until we are outside the spiral. At this point we add a depot of tiles, such that
after each south movement a new tile comes out of the depot (this can easily be done with bottleneck
constructions as seen in Fig. 8). Then, we proceed for each turn in the spiral as follows: For the j-th
turn, if m_l(Cj} is empty we do nothing. Else if m_l(Cj) is not empty we want to add the next tile.
Let t; be this particular tile. Then, we construct a lane in direction —(j, i.e., the direction from where
the tile will come from, until we are outside the spiral. By shifting this line in an orthogonal direction
we can enforce the tile to fly in at the correct position relating to [;. There, we add a depot with tiles,
such that the first tile comes out after 7 — 1 steps and with each further cycle a new tile comes out
(this can be done by using loops in the depot, see Fig. 8). Depots, which lie on the same side of the
spiral, can be shifted arbitrarily, so they do not collide. These depots can be made arbitrarily big, and
thus, we can make as many copies of P as we wish. Note that we can make the paths in the spiral big
enough, such that after every turn the bounding box of the current polyomino fits through the spiral.

Correctness: We will now show that we will obtain copies of P. Consider any j-th turn in the spiral,
where the i-th tile ¢; is going to be added to the current polyomino. With the next step, both ¢; and
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Figure 8: (a) A polyomino P. Shown is the assembly order and the direction of attachment to the seed (tile
0). (b) A depot (orange; light gray area in grayscale) having loops to delay the tile output and a bottleneck
(purple; dark gray area in grayscale) to guarantee that only one tile can move to the spiral. (c to f) A maze
environment for pipelined construction of the desired polyomino P. After the fourth cycle, each further cycle
produces a new copy of P. Shown states are after a sequence of down (c), left (d), up (e) and right (f) moves.
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Figure 9: Two different sequences. The red tile represents the bounding box of the current polyomino. (Left)
A desired sequence. The latitude intersects the bounding box. (Right) A sequence where the latitude does
not intersect the bounding box.

the polyomino move in direction ¢j. While the polyomino does not touch the next wall in the spiral,
the distance between t; and the polyomino will not decrease. However when the polyomino hits the
wall, the polyomino stops moving and t¢; continues moving towards the polyomino. Wall-hitting is the
same situation as in our non-parallel model: To a fixed polyomino we can add tiles from n, e, s or
w. Therefore, the tile connects to the correct place. Since this is true for any tile and any copy, we
conclude that every polyomino we build is a copy of P.

Time: Since the spiral has at most 4N unit steps (or N cycles), the first polyomino will be constructed
after 4N unit steps. By construction, we began the second copy one cycle after beginning the first
copy, the third copy one cycle after the second, and so on. This means, after each cycle, when the first
polyomino is constructed, we obtain another copy of P. Therefore, for D copies we need N + D cycles
(or O(N + D) unit steps). For D € Q(N) this results in an amortized constant time construction for P.

Note that this proof only considers construction sequences in the following form: If a tile #; increases the
side length of the bounding box of the current polyomino, then the tile is added from a direction with a
longitude/latitude, such that the longitude/latitude intersects the bounding box (see Fig. 9). In the case
there is a tile, such that the longitude/latitude does not intersect the bounding box, then we can rotate the
direction by 4 towards the polyomino and we will have a desired construction sequence. O

4 Optimization Variants in 2D

For polyominoes that cannot be assembled, it is natural to look for a maximum-size subpolyomino that
is constructible. This optimization variant is polyAPX-hard, i.e., we cannot hope for an approximation
algorithm with an approximation factor within Q(N 3 ), unless P = NP.

Definition 7 (Maximum Tilt Assembly Problem). Given a polyomino P, the Mazimum Tilt Assembly
Problem (MAXTAP ) asks for a sequence of tiles building a cardinality-mazimal connected subpolyomino
P CP.

Theorem 8. MAXTAP is polyA PX-hard, even for tree-shaped polyominoes.

Proof. We reduce MAXIMUM INDEPENDENT SET (MIS) to MAXTAP; see Fig. 10 for an illustration. Consider
an instance G = (V, E) of MIS, which we transform into a polyomino Pg. We construct Pg as follows. First,
construct a horizontal line from which we go down to select which vertex in G will be chosen. The line must
have length 10n — 9, where n = |[V|. Every 10th tile will represent a vertex, starting with the first tile on the
line. Let t; be such a tile representing vertex v;. For every v; we add a selector gadget below t; and for every
{vi,v;} € 6(v;) we add a reflected selector gadget below ¢;, as shown in Fig. 10, each consisting of 19 tiles.
Note that all gadgets for selecting vertex v; are above the gadgets of v; if i < j and that there are at most n?
such gadgets. After all gadgets have been constructed, we have already placed at most 19n% + 10n — 9 < 29n?
tiles. We continue with a vertical line with a length of 30n? tiles.

11
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Figure 10: Reduction from MIS to MAXTAP. (Left) A graph G with four vertices. (Right) A polyomino

constructed for the reduction with a feasible, maximum solution marked in gray.

Now, let o* be an optimal solution to MIS. Then MAXTAP has a maximum polyomino of size at least
30n2a* and at most 30n2a* + 29n2: We take the complete vertical part of ¢; for every v; in the optimal
solution of MIS. Choosing other lines block the assembly of further lines and thus, yields a smaller solution.

Now suppose we had an N'~¢-approximation for MAXTAP. Then we would have a solution of at least
ﬁT*, where T* is the optimal solution. We know that an optimal solution has T* > 30n2a* tiles and the

polyomino has at most N < 30n3 4 29n2 < 593 tiles. Therefore, we have at least 59?0_’:% tiles and thus
at least ma* strips, because each strips is 30n?2 tiles long. Consider some ¢ > ;ﬁr + 7 for any n > 0,
then the number of strips is ma* which results in an n'~%-approximation for MIS, contradicting the

inapproximability of MIS (unless P=NP) shown by Berman and Schnitger [10]. O
As a consequence of the construction, we get Corollary 9.

Corollary 9. Unless P = NP, MAXTAP cannot be approrimated within a factor of Q(N%).
On the positive side, we can give an O(y/N )-approximation algorithm for tree-shaped polyominoes.

Theorem 10. The longest constructible path in a tree-shaped polyomino P is a v N-approrimation for
MAXTAP, and we can find such a path in polynomial time.

Proof. Consider an optimal solution P* and a smallest enclosing box B containing P*. Then there must be
two opposite sides of B touching at least one tile of P*. Consider the path S between both tiles. Because
(i) the area Ap of B is at least the number of tiles in P*, (ii) |S| > +/Ap, and (iii) a longest, constructible
path in P has length at least |S|, we conclude that the longest constructible path is a v/N-approximation.
To find such a path, we can search for every path between two tiles, check whether we can build this path,
and take the longest, constructible path. O

Checking constructibility for O(NN?) possible paths is rather expensive. However, we can efficiently approx-
imate the longest constructible path in a tree-shaped polyomino with the help of sequentially constructible
paths, i.e., the initial tile is a leaf in the final path.

Theorem 11. We can find a constructible path in a tree-shaped polyomino in O(N?log N) time that has a
length of at least half the length of the longest constructible path.
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Proof. We only search for paths that can be built sequentially. Clearly, the longest such path is at least half
as long as the longest path that can have its initial tile anywhere. We use the same search tree technique as
before to look for blocking tiles. Select a tile of the polyomino as the initial tile. Do a depth-first search and
for every tile in this search, check if it can be added to the path. If it cannot be added, skip all deeper tiles,
as they also cannot be added. During every step in the depth-first search, we only need to change a single
tile in the search trees, doing O(1) updates with O(log N') cost. As we only consider O(N) vertices in the
depth-first search, this results in a cost of O(IN log N) for a fixed start tile. It is trivial to keep track of the
longest such constructible path. Repeating this for every tile results in a running time of O(N?log N). [

In tree-shaped polyominoes, finding a constructible path is easy. For simple polyominoes, additional
arguments and data structures lead to a similar result.

Theorem 12. In simple polyominoes, finding the longest of all shortest paths that are sequentially constructible
takes O(N2log N) time.

Before we start with the proof of Theorem 12, we show in the next two lemmas that it is sufficient to
consider shortest paths only, and that we can restrict ourselves to one specific shortest path between two
tiles. Hence, we just need to test a maximum of O(n?) different paths.

Lemma 13. In a sequentially constructible path, if there is a direct straight connection for a subpath, the
subpath can be replaced by the straight connection.

-
B AB
',/ 1
r
i ]
I
' o
1
| W L A
| [TT]
\ m
‘ m
. o

Figure 11: A subpath W’ and its shortcut L in green. To block L, A and B must exist. But then, either py
or p; (red tiles) will also be blocked. Therefore, also W’ cannot be built.

Proof. Consider a sequentially constructible path W and a subpath W’ ¢ W that has a straight line L
connecting the startpoint and the endpoint of W’. W.l.o.g., L is a vertical line and we build from bottom to
top. Assume that (W\W’) U L is not constructible. Then at least two structures (which can be single tiles)
A and B must exist, preventing us from building L. Furthermore, these structures have to be connected via
a path (AB or BA, see Fig. 11). We observe that none of these connections can exist or otherwise, we cannot
build W (if AB exist, we cannot build the last tile pg of L; if BA exist, we cannot build the first tile p; of
W’). Therefore, we can replace W’ with L. O

By repeating the construction of Lemma 13 we get a shortest path from tile £; to t3 in the following
form: Let Pi,..., Py be reflex tiles on the path from #; to f3. Furthermore, for every 1 <i < k — 1, the path
from P; to P;;1 is monotone. This property holds for every shortest path, or else we can use shortcuts as in
Lemma 13.

Lemma 14. If a shortest path between two tiles is sequentially constructible, then every shortest path between
these two tiles is sequentially constructible.
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Proof. Consider a constructible shortest path W, a maximal subpath W’ that is z-y-monotone, and a
bounding box B around W’. Due to the L;-metric, any z-y-monotone path within B is as long as W’.
Suppose some path within B is not constructible. Then we can use the same blocking argument as in
Lemma 13 to prove that W’ cannot be constructible as well, contradicting that W is constructible. O

Using Lemma 13 and Lemma 14, we are ready to prove Theorem 12.

Proof of Theorem 12. Because it suffices to check one shortest path between two tiles, we can look at
the BFS tree from each tile and then proceed like we did in Theorem 11. Thus, for each tile we perform a
BFS in time O(N) and a DFS with blocking look-ups in time O(N log N), which results in a total time of
O(N?logN). O

5 Three-Dimensional Shapes

An interesting and natural generalization of TAP is to consider three-dimensional shapes, i.e., polycubes. The
local considerations for simply connected two-dimensional shapes are no longer sufficient. In the following
we show that deciding whether a polycube is constructible is NP-hard. Moreover, it is NP-hard to check
whether there is a constructible path from a start cube s to an end cube t in a partial shape.

As a stepping stone, we start with a restricted version of the three-dimensional problem.

Theorem 15. It is NP-hard to decide if a polycube can be built by inserting tiles only from above, north,
east, south, and west.

[T TTT]T

Figure 12: Top-view on the polycube. There is a vertical part going south for the frue and false assignment
of each variable. We start building at the top layer (crosshatched area) and have to block either the true or
the false part of each variable from above. The blocked parts have to be built with only inserting from east,
west, and south. For each clause, the parts of the inverted literals are modified to allow at most two of them
being built in this way. All other parts can simply be inserted from above in the end.
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Figure 13: Top-view on the polycube. (Left) In the beginning we have to block the access from the top for
either the true or false part of the variable. The variable is assigned the blocked value. (Right) Three gadgets
for a clause. Only two of them can be built if the tiles are only able to come from the east, south, and west.

Proof. We prove hardness by a reduction from 3SAT. A visualization for the formula (z1 V 2 VT3) A (T2 V
T3VTg) A(T1Vx3Vzy4) can be seen in Fig. 12. It consists of two layers of interest (and some further auxiliary
ones for space and forcing the seed tile by using the one-way gadget shown in Fig. 14). Due to the one-way
gadget, at least part of the top layer (crosshatched area in Fig. 12, details in Fig. 13 (Left)) must be built
first. Forcing a specific start tile can be done by a simple construction. For each variable we have to choose
to block the left (for assigning true) or the right (for assigning false) part of the lower layer. In the end, the
remaining parts of the upper layer can trivially be filled from above. The blocked parts of the lower layer
then have to be built with only inserting tiles from east, south, or west. In the end, the non-blocked parts
can be filled in from above. For each clause we use a part (as shown in Fig. 13 (Right)) that allows only at
most two of its three subparts to be built from the limited insertion directions. We attach these subparts to
the three variable values not satisfying the clause, i.e., the negated literals. This forces us to leave at least
one negated literal of the clause unblocked, and thus at least one literal of the clause to be true. Overall, this
allows us to build the blocked parts of the lower layers only if the blocking of the upper level corresponds to
a satisfying assignment. If we can build the true and the false parts of a variable in the beginning, any truth
assignment for the variable is possible.

It is straightforward to see that the whole construction fits into a bounding box of size O(|C|) xO(|V]) xO(1),
where C' is the set of all clauses and V' the set of all variables. |

The construction can be extended to assemblies with arbitrary direction.
Theorem 16. It is NP-complete to decide if a polycube can be built by inserting tiles from any direction.
Proof. We add an additional layer below the construction in Theorem 15 that has to be built first and blocks
access from below. Forcing the bottom layer to be built first can again be done with the one-way gadget

shown in Fig. 14. Finally, we note that the problem of deciding whether a polycube can be built by inserting
tiles from any direction is in NP. H

The difficulties of construction in 3D are highlighted by the fact that even identifying constructible
connections between specific positions is NP-hard.

Theorem 17. It is NP-complete to decide whether a path from one tile to another can be built in a general
polycube.
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Figure 14: (Left) This polyomino can only be constructed by starting at “in” and ending at “out”. (Right)
Generalization to three dimensions. If we start on the right side, then we cannot build the red cube because
it is blocked from all six directions. With these gadgets we can enforce a seed tile.
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Figure 15: (Left) Circuit representation for the SAT formula (z1 VT2 VT3) A (T1V z2 VIT4) A (T2 VgV zg) A
(r1 Vz3 VTy) Az Vay Vay). (Right) Reduction from SAT formula. Boxes represent variable boxes.

Proof. We prove N P-hardness by a reduction from SAT. For each variable we have two vertical lines, one
for the true setting, one for the false setting. Each clause gets a horizontal line and is connected with a
variable if it appears as literal in the clause, see Fig 15 (Left). We transform this representation into a tour
problem where, starting at a point s, one first has to go through either the true or false line of each variable
and then through all clause lines, see Fig. 15 (Right). The clause part is only passable if the path in at least
one crossing part (squares) does not cross, forcing us to satisfy at least one literal of a clause. As one has to
go through all clauses, ¢ is only reachable if the selected branches for the variables equal a satisfying variable
assignment for the formula.

We now consider how to implement this as a polycube. The only difficult part is to allow a constructible
clause path if there is a free crossing. In Fig. 16 (Left), we see a variable box that corresponds to the crossing
of the variable path at the squares in Fig. 15 (Right). It blocks the core from further insertions. The clause
path has to pass at least one of these variable boxes in order to reach the other side. See Fig. 15 (Right) for
an example. Note that the corresponding clause parts can be built by inserting only from above and below,
so there are no interferences. -

6 Conclusion/Future Work

We have provided a number of algorithmic results for Tilt Assembly. Various unsolved challenges remain.
What is the complexity of deciding TAP for non-simple polyominoes? While Lemma 4 can be applied to all
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Figure 16: (Left) Empty variable box. (Right) A clause line (blue, dark gray in grayscale) dips into a variable
box. If the variable box is built, then we cannot build the dip of the clause line.

polyominoes, we cannot simply remove any locally convex tile. Can we find a constructible path in a general
polyomino from a given start and endpoint? This would help in finding a v/N-approximation for non-simple
polyominoes. How can we optimize the total makespan for constructing a shape? And what options exist for
non-constructible shapes?

An interesting approach may be to consider staged assembly, as shown in Fig. 17, where a shape gets
constructed by putting together subpolyominoes, instead of adding one tile at a time. This is similar to staged
tile self-assembly [12,14,16]. This may also provide a path to sublinear assembly times, as a hierarchical
assembly allows massive parallelization. We conjecture that a makespan of O(\/Iv ) for a polyomino with N
tiles can be achieved.

All this is left to future work.

Figure 17: (Left) A polyomino that cannot be constructed in the basic TAP model. (Right) Construction in
a staged assembly model by putting together subpolyominoes.
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