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Abstract

One of the “holy grails” of soft multifunctional materials is to design a material that

is simultaneously capable of (i) large deformation under the application of a moderate

external stimuli such as an electric or magnetic field and (ii) generating appreciable electric

field under the application of moderate forces. Such soft materials enable applications

that range from sensors, actuators, artificial muscles, self-powered biomedical devices, soft

robotics to energy harvesting. In this dissertation, we focus on three different aspects of

the design of soft multifunctional materials:

(1) Use of immobile embedded charges (called electrets) to obtain an emergent piezo-

electric or flexoelectric response in a soft material Specifically, we show the underlying

mechanisms for the weak apparent piezoelectric effect in flexure mode of electret beams

and how to appropriately design such structures for energy harvesting applications.

(2) Imagine a material that will produce electricity via a contactless, wireless signal.

Further, we hope that this material is capable of large deformation reminiscent of soft

robots. This would all be possible if soft magnetoelectric materials were available; paving

the way for applications such as remote drug delivery, wireless energy harvesting, multiple

state memories among others. Here, for the first time, using the concept of hard magnetic

soft matter in combination with electrets, we design and create a soft magnetoelectric

material that exhibits an extremely strong, self-biased magnetoelectric effect. Further,

using programmable pattern of deposition of magnetic dipoles and charges, we report a giant

magnetoelectric coefficient in an ultra-soft deformable material that retains its strength even

under infinitesimal external fields and at low frequencies.

(3) Liquid crystal elastomers are an interesting class of soft materials that combine the

elasticity of rubber with the ordered structure and mobility of liquid crystals. In this work,

we present a nonlinear theory to couple mechanics, electrical fields and light in nematic liq-

uid crystal elastomers. In particular, we incorporate the effect of photomechanical coupling

and flexoelectricity.
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Chapter 1

Overview

Inspired by nature, scientists have been attempting to develop soft materials and systems

that can undergo large deformations and safely interact with living organisms [27, 28]. As a

result, over the last two decades, the nascent field of soft robotics has begun to come of age

[29]. The progress in this field has led to development of robots which can roll [30], jump [31],

elongate [32], squeeze [33] and climb [34]. These advancement would not have been possible

without soft materials. In addition to robotics, soft materials find applications in stretchable

and wearable electronics [35], tissue engineering [36], health monitoring devices [37], surgical

devices [38], biomedical implants [39], large deformation sensors [40] and actuators [41],

and energy harvesting [42]. In addition to softness, the material has to be responsive to

an expedient stimulus for many of these applications. The focus of this dissertation is to

engineer new functionalities into soft materials that facilitates the generation of electricity

under the application of mechanical forces, magnetic fields and light. The outline of the

dissertation is as follows and we have provided motivation and context within each chapter

so that all the chapters are largely self-contained.

Chapter 2 and 3 focus on the design of apparent piezoelectric materials through the use

of embedded immobile charges called electrets.

In Chapter 4 and 5, we present the design of a material that leads to arguably the world

record for the highest (emergent) magnetoelectricity in a soft material. While our focus was

on the theoretical and computational work, with the help of our experimental collaborators,

we are able to show proof of the key concepts proposed by our theory and also an excellent

agreement with experimental characterization. In Chapter 6, we present a novel theory that

links the phenomenon of flexoelectricity, light and deformation in liquid crystal elastomers.

Our theoretical and computational examples illustrate how light may be used to harvest

electrical energy.
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Chapter 2

Nonlinear Bending Deformation of Soft Electrets and Prospects

for Engineering Flexoelectricity and Transverse Piezoelectric-

ity

Soft materials that exhibit electromechanical coupling are an important element in the

development of soft robotics, flexible and stretchable electronics, energy harvesters, sensor

and actuators. Truly soft natural piezoelectrics essentially do not exist and typical dielectric

elastomers, predicated on electrostriction and the Maxwell stress effect, exhibit only a one-

way electromechanical coupling. Extensive research however has shown that soft electrets

i.e. materials with embedded immobile charges and dipoles, can be artificially engineered to

exhibit a rather large piezoelectric-like effect. Unfortunately, this piezoelectric effect—large

as it may be—is primarily restricted to an electromechanical coupling in the longitudinal

direction or what is referred colloquially as the d33 piezoelectric coefficient. In sharp con-

trast, the transverse piezoelectric property (the so-called d31 coefficient) is rather small.

This distinction has profound implications since these soft electrets exhibit negligible elec-

tromechanical coupling under bending deformation. As a result, the typically engineered

soft electrets are rendered substantively ill-suited for energy harvesting as well as actua-

tion/sensing of flexure motion that plays a critical role in applications like soft robotics.

In this work, we analyze nonlinear bending deformation of a soft electret structure and

examine the precise conditions that may lead to a strong emergent piezoelectric response

under bending. Furthermore, we show that non-uniformly distributed dipoles and charges in

the soft electrets lead to an apparent electromechanical response that may be ambiguously

and interchangeably interpreted as either transverse piezoelectricity or flexoelectricity. We

suggest pragmatic routes to engineer a large transverse piezoelectric (d31) and flexoelectric

coefficient in soft electrets. Finally, we show that in an appropriately designed soft electret,

even a uniform external electric field can induce curvature in the structure thus enabling
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its application as a bending actuator.

2.1 Introduction

One of the ”holy grails” of soft multifunctional materials is to design a material that is

simultaneously capable of (i) large deformation under the application of a moderate electric

field1, (ii) generating appreciable electric field under the application of moderate forces, and

(iii) (specifically) exhibit the features embodied in (i)-(ii) for bending deformation. Such

soft materials with a pronounced electromechanical coupling enable applications that range

from sensors [43], actuators [44], artificial muscles [45], self-powered biomedical devices [46],

soft robotics [28] to energy harvesting [47, 48, 49]. The reader is referred to the following

reviews and references therein for an overview [44, 50, 28, 51, 47, 52, 53, 54].

The simplicity of the aforementioned requirements is somewhat deceptive. Piezoelectric

materials deform when subjected to electrical stimuli and vice-versa, but the hard crys-

talline ones such as lead zirconium titanate (PZT), that exhibit a strong electromechanical

coupling, are not capable of large deformations. Piezoelectric polymers like Polyvinylidene

Fluoride (PVDF) do not exhibit strong electromechanical coupling (when compared to the

crystalline piezoelectrics) and, with an elastic modulus in the range of 1 GPa, are not really

that soft [55]. Dielectric elastomers are an alternative to piezoelectrics. They are capable

of large deformation but require imposition of rather high voltage. In a remarkable work,

Keplinger et al. [56] demonstrated an areal increase of nearly 1700% for an acrylic mem-

brane. However, dielectric elastomers operate via the mechanism of Maxwell stress and/or

electrostriction2. In dielectric elastomers, due to the Maxwell stress effect or electrostric-

tion, an electric field exerts a force proportional to E2 where E is the applied electric field.

This force is somewhat small unless an appropriately large voltage difference is imposed.

Even then, only soft dielectrics such as elastomers (with an elastic modulus of 1 MPa or

less) deform appreciably for practically feasible applied electric fields. Most importantly,
1–or other stimuli of interest such as magnetic fields, temperature among others
2In this work we will not distinguish between the Maxwell stress effect and electrostriction since they are

mathematically similar and this distinction does not impact the central message of our work. For further
discussion on this topic, see [57, 58, 59]
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electrostriction is a one-way coupling i.e. an electric field will produce deformation but a

mechanical stress will not induce any electricity—unlike in piezoelectric materials. Due the

absence of this converse effect, energy harvesting is not easily possible unless creative design

augmentations are made3. Additionally, the quadratic dependence of the deformation on

electric fields implies that upon reversal of the applied voltage, the deformation will not

reverse.

Another alternative are soft electrets. Therein, (typically) polymer foams are impreg-

nated with immobile charges and dipoles [62, 63, 64]. Both experimental and theoretical

work has shown that electrets exhibit a rather large apparent piezoelectricity. Remarkably,

an apparent (longitudinal) piezoelectric coefficient4 as high as 1200 pC/N–six times that

of PZT– has been measured in polypropylene foams [65]. Charge stability is a concern in

electrets and their application is restricted to room temperature where the trapped charges

tend to stabilize for sufficiently long times to enable engineering applications.

Bending deformation, in the context of piezoelectrics, dielectric elastomers and elec-

trets, must be specifically highlighted which represents a unique challenge. Conversion of

a mechanical motion into electricity (i.e. energy harvesting) is a key application area for

multifunctional soft materials and is most facile under bending-type deformation as opposed

to simple compression or stretching. Further, a variety of sensing and actuation contexts,

including soft robotics, require flexure motion5. Bending deformation yields lower reso-
3cf. [60, 61] for further details. Also, a somewhat deeper consideration will reveal that their approach

for energy harvesting from dielectric elastomers can be considered as a special form of electrets where the
charges reside on the surfaces.

4There are several equivalent ways to parametrize the piezoelectric property viz. as relation between the
electric displacement and stress or polarization or strain; among others. In a widely used formalism, the
electric displacement vector D is related to stress tensor σ through the third order piezoelectric tensor dijk

(Di ∼ dijkσjk). Odd order tensors can only exist in non-centrosymmetric crystal structures and therefore
piezoelectricity is restricted to only a limited set of materials. Furthermore, symmetry considerations for
typical piezoelectric materials allows for only six independent components for the property tensor (out
of the maximum possible 27). The electric displacement in the poling direction of material D3 can be
correlated to three normal stresses σ11, σ22 and σ33 using contracted notation for piezoelectric coefficients:
D3 ∼ d31σ11 + d32σ22 + d33σ33. The d33 (longitudinal) piezoelectric coefficient is important when both
deformation (or stress) and polarization (or electric displacement) are in the poling direction (thickness
direction in this chapter) and d31 plays a pivotal role when the stress and electric displacement are in
perpendicular direction with respect to each other.

5There are several interesting uses of bending based energy generators from electromechanical coupling
e.g. from the natural contractile and relaxation motions of the heart, lung, and diaphragm for self-powered
wearable and implantable biomedical devices [46] or to harvest wind energy by using a piezoelectric flag [66].
Examples of sensors and actuators include micromotors [67], micropumps [68], robots [69] and cooling fans
[70].
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nance frequencies and larger attainable strain which is especially advantageous for small

size generators with limited environmental mechanical forces [71, 72].

Figure 2.1: Bending piezoelectric actuator is based on the so-called d31 piezoelectric effect.
Typically, this actuator is made of two layers of piezoelectric materials with
opposite poling directions.

The preceding paragraph underscores the importance of bending deformation, however,

the following issues are notable:

1. Naive bending of a typical piezoelectric material will generate negligible electricity.

The reason is simple. Assuming the neutral axis to be centered in the cross-section

of the structural element, the polarization above the neutral line due to tension is ex-

pected to substantively cancel the polarization below the neutral axis due to compres-

sive strains. Accordingly, bending piezoelectric devices are nearly always bimorphs.

We remark that the bending piezoelectric device is based on the d31 piezoelectric ef-

fect (or transverse piezoelectricity) which is defined as the linear coupling between

deformation in axial direction and electric field in thickness direction. The working

principle of bending piezoelectric actuator is shown in Fig. 2.1 where two layers of

piezoelectric film with oppositely poled directions are attached to each other. An ex-
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(a) (b) (c)

Figure 2.2: (a) Electrical energy may be harvested from bending deformation of a material
with suitable form of electromechanical coupling, (b) and (c) The flexure actu-
ator functionality of an electromechanical material.

ternally applied electric field creates a positive strain in one of the films and a negative

one in the other; resulting therefore in the flexure of the entire structure.

2. Special arrangements are also required to ensure bending actuation of dielectric elas-

tomers under an electric field.The application of an electric field on a dielectric elas-

tomer thin film structure will simply compress the film in its thickness direction. As an

example of an approach to induce flexure, He and coworkers [73] used pre-stretched

films. Of course, as already indicated earlier, since the Maxwell stress effect/elec-

trostriction are a one-way electromechanical coupling, sensing and energy harvesting

is not easily possible.

3. Since electrets exhibit an apparent piezoelectricity—and a rather large one at that—

they would appear to be a viable solution. Unfortunately, this is not the case. As

well-articulated by the experimental papers [64, 3] , the emergent piezoelectricity of

electrets is largely restricted to the longitudinal direction i.e. a large d33 piezoelectric

coefficient but a very small value for d31 piezoelectric coefficient is reported. This

shortcoming ensures that bending/harvesting is not easily possible6.
6There is an interesting and singular exception to the low d31 reports for electrets. Zhang et al. [1]

explored a rather special microstructure which did exhibit a notable d31 piezoelectric coefficient however a
clear quantitative explanation was not presented. In due course, we will attempt to rationalize their results
based on our developed models.
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4. It is germane here to allude to another type of electromechanical coupling mecha-

nism that has generated much attention in recent years—flexoelectricity. In this phe-

nomenon, a strain gradient generates electrical polarization7. Various experiments

have confirmed the existence of flexoelectricity in different materials including soft

polymers [74, 75], hard crystalline ceramics [76, 77] and biological membranes [78, 79].

Furthermore, several review articles have recently summarized theoretical and exper-

imental activities in this topic [80, 81, 82, 83, 84, 85]. In addition, several numerical

studies have been preformed to analyze flexoelectric behavior of materials. Thai et al.

[86] presented an approach to construct a numerical framework which can account for

both flexoelectricity and the Maxwell stress effects in finite deformation and also can

treat material interfaces effectively. Ghasemi et al. [87] presented a topology opti-

mization of flexoelectric composites to enhance electromechanical performance. Since

bending is in fact the most suitable form of strain gradient that can elicit a flexoelec-

tric response, flexoelectricity could be considered as a reliable mechanism for bending

based electro-mechanical devices. However, the effect is rather weak, and very large

strain gradients (or extreme bending curvatures) are required for the flexoelectric ef-

fect to be significant. Only at nano-scale feature size is this effect considerable where

a large strain gradient is easily achievable. However, we note that in the converse flex-

oelectric effect, an electric field gradient is required to create curvature and uniform

electric field will not bend the material [83].

With the preceding paragraphs as the appropriate context, the following questions mo-

tivate the current work:

1. What are the theoretical underpinnings for the small value of transverse piezoelectric-

ity (d31 coefficient) in typical electret foams?

2. Based on a suitable theoretical model, what are the physical and quantitative insights

to engineer a large transverse piezoelectric coefficient in electrets?
7Flexoelectricity is characterized through the linear relation between polarization P and strain gradient

∇S mediated by a fourth order flexoelectric tensor f such that Pi ∼ fijkl
∂Sjk

∂Xl
).
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3. Is it possible to create an electret structure that will directly couple curvature to

uniformly imposed electric fields and vice-versa? This is not possible in piezoelectrics

and dielectric elastomers

4. As well-established, embedding charges and dipoles in soft materials lead to an emer-

gent piezoelectric response. Directly relevant to the preceding question, can embed-

ding charges and dipoles lead to an emergent flexoelectricity as well?

To answer the afore-posed questions, in this chapter, we rigorously analyze the nonlin-

ear deformation of soft electrets under in-plane deformation. We provide insights into the

reasons underlying the marginal d31 effect in conventional soft electrets under an in-plane

stretch. Using the developed theoretical framework, we propose design guidelines to create

a substantial emergent d31 in electrets such that electrical energy is harvested from flexure

(Fig. 2.2(a)). Specifically we determine the emergent piezoelectric and flexoelectric coeffi-

cients. Intriguingly, we also are able to demonstrate that with appropriate design of charge

and dipole placements in electrets, bending can be directly induced with the application of

a uniform electric field—(Figs. 2.2(b) and 2.2(c)).

The chapter is organized as follows. In section 2.2, a general theoretical framework for

nonlinear electrostatics of deformable media is summarized in a form suitable for the present

work. In section 2.3, we present an analysis of conventional soft electrets under in-plane

deformation to understand the experiments showing a small d31 effect. Bending behavior of

soft dielectrics is presented in section 2.4 and several physically meaningful design scenarios

are discussed in section 2.5.

2.2 General theoretical framework

There are numerous, essentially equivalent, ways that electrostatics of deformable con-

tinua may be formulated [88, 89, 90, 91, 92, 93, 94, 95, 96, 57, 58]. In this work, we have

favored the exposition by Liu[97] who has also compared the various formulations that exist

in the literature.
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Let ΩR be a continuum deformable body in the reference configuration. This body

is located in an ambient medium such that body and ambient medium occupy domain

VR. Thermodynamic state of the body is described by deformation χ : ΩR → R3 ( which

maps material points X from the reference configuration to the spatial points x in the

current configuration Ω) and polarization P̃ : ΩR → R3. Deformation and polarization

outside of the body are zero. Moreover, the gradient, divergence and curl operators in the

current configuration are denoted by ”grad”, ”div” and ”curl”, respectively. Gradient in

the reference configuration is denoted by ”∇”. The deformation gradient tensor is defined

as F = ∇χ and the Jacobian is J = det F.

Maxwell’s equations in the current configuration take the following familiar form

curl e = 0, div d = ρe, d = ϵ0e + p in V, (2.1)

where e, d, p and ρe are the true electric field, the electric displacement, the polarization,

and the external charge density in the current configuration, respectively. Also, ϵ0 denotes

the electric permittivity of the ambient medium. From the first of Eq.(2.1), we can define a

scalar electric potential ξ : ΩR → R, such that e = −gradξ. Composition map can be used

to denote e, d and p in the reference configuration

E = e ◦ χ, D = d ◦ χ and P = p ◦ χ. (2.2)

In addition we define the nominal electric displacement D̃, the nominal electric field Ẽ and

the nominal polarization P̃ as

Ẽ = FT E, D̃ = JF−1D and P̃ = JP. (2.3)

Maxwell’s equations in the reference configuration can then be derived to be

∇ · D̃ = ρ̃e and D̃ = −ϵ0JC−1∇ξ + F−1P̃ in VR, (2.4)

where ρ̃e = Jρe ◦ χ for volume electric charge density and for surface charge density, J
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should be replaced with the surface Jacobian.

The total free energy of the system is written as8

F [χ, P̃] =
∫

ΩR

ψ[X; F, P̃] +
∫

V

ϵ0
2 |e|2 +

∫
ΓD

ξbD̃ · nR −
∫

SN

t̃e · χ, (2.5)

where ψ : R3 ×R3×3 ×R3 → R is the internal energy function of the body ΩR and nR is the

unit normal to the boundary ∂VR. Also, ξb : ΓD → R and t̃e : ∂SN → R3 are the imposed

boundary potential and traction (dead load), respectively, applied on the surfaces ΓD and

SN (Fig. 2.3). In addition, as it is shown in Fig. 2.3, Dirichlet boundary condition χ = χb

(χb : SD → R3) and Robin boundary condition D̃ · nR = Db (Db : ΓR → R) are imposed on

the surfaces SD and ΓR, respectively.

Figure 2.3: Continuum deformable body in the reference configuration and applied bound-
ary conditions.

Based on the principle of minimum free energy, the equilibrium state of the system is

the state that minimizes the free energy of the system subject to the constraint imposed by

the Maxwell’s equations

min{F [χ, P̃] : (χ, P̃) ∈ S and (χ, P̃) satisfies (2.4)}, (2.6)
8We emphasize that the domain of the second integral on the right hand side of Eq.(2.5) is not reference

configuration. We can write this term in the reference configuration as∫
V

ϵ0

2 |e|2 =
∫

VR

ϵ0

2 ∇ξ · JC−1∇ξ.
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where S is the admissible set of functions over which the minimization is performed

S = {(χ, P̃)| χ ∈ C2(ΩR;R3),
∫

ΩR

|P̃|2 < +∞}. (2.7)

Equilibrium equations of the system are the Euler-Lagrange equations associated with

(2.6) which may be derived using standard variational calculus. Imposing boundary condi-

tions χ = χb on SD, ξ = ξb on ΓD and D̃ · nR = Db on ΓR, following system of governing

equations and natural boundary condition should be solved simultaneously to determine

the equilibrium state of the system:

F−T ∇ξ + ∂ψ

∂P̃
= 0 in ΩR, (2.8a)

∇ · (−ϵ0JC−1∇ξ + F−1P̃) = ρ̃e in VR, (2.8b)

∇ ·
(
Σ̃ + Σ̃MW

)
= 0 in ΩR, (2.8c)

∇ · Σ̃MW = 0 in VR\ΩR (2.8d)

and
(
Σ̃ + Σ̃MW

)
· nR − t̃e = 0 on SN , (2.8e)

where Σ̃ is given as

Σ̃ = ∂ψ

∂F , (2.9)

and Σ̃MW is the Piola-Maxwell stress

Σ̃MW = −ϵ0
2 J |E|2F−T + E ⊗ D̃. (2.10)

We chose the following form of the internal energy density function

ψ[X; F, P̃] = W elast(F) + |P̃|2

2J(ϵ− ϵ0) , (2.11)

where W elast is the strain energy function and can be chosen to appropriately model the

constitutive nature of the materials being examined. Also, ϵ is electric permittivity of

material. Substituting Eq.(2.11) into equilibrium equations and writing all of the quantities
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in the current configuration, we have

gradξ + p
ϵ− ϵ0

= 0 in V, (2.12a)

div d = ρe in Ω, (2.12b)

div(σ + σ′MW ) = 0 in Ω, (2.12c)

div σMW = 0 in V \Ω (2.12d)

and (σ + σ′MW ) · n − te = 0 on Sn, (2.12e)

where σ, σ′MW and σMW are the Cauchy stress, Maxwell stress inside the body and

Maxwell stress outside the body, respectively, and are given by

σ = 1
J

∂W elast

∂F FT , (2.13)

σ′MW = e ⊗ d − ϵ

2(e · e)I (2.14)

and σMW = e ⊗ d − ϵ0
2 (e · e)I. (2.15)

2.3 A model to explain low d31 effect in conventional

electrets

As already alluded to earlier, there has been compelling experimental indication for large

value of (apparent) longitudinal piezoelectric coefficient d33 in electret foams[3]. Theoret-

ically also, Deng et al. [98, 99] have derived how the Maxwell stress, elastic heterogeneity

and the presence of pre-existing charges or dipoles conspire to lead to this emergent lon-

gitudinal piezoelectric effect. We also remark that recently, Liu and Sharma [100] have

presented a homogenization theory for the effective properties of electrets. In this section,

we examine a paradigmatical model of the conventionally fabricated electrets to explain

the experimentally observed low values of emergent transverse piezoelectric coefficient d31

[3]. To do so, we analyze the in-plane stretching of the representative electret configuration

shown in Fig. 2.4. This electret consists of two different materials on top and bottom which
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are referenced with subscripts ”t” and ”b”, respectively. Let X = XeX + Y eY + ZeZ be

representation of points in the Lagrange coordinates while points in Euler coordinates are

denoted by x = xex + yey + zez. The domains of these two materials are

ΩRb
={(X,Y, Z) ∈ R3 : −H ≤ X ≤ αH, |Y | ≤ L, |Z| ≤ W} and (2.16a)

ΩRt ={(X,Y, Z) ∈ R3 : αH < X ≤ H, |Y | ≤ L, |Z| ≤ W}, (2.16b)

where |α| < 1 is a constant that parametrizes the interface between the two materials.

Figure 2.4: Dielectric made of two different layers with embedded external charges under
in-plane tension and short circuit boundary condition.

A layer of external charges with surface charge density q is inserted at the interface X =

αH. As shown in Fig. 2.4, the two-material film is stretched in the Y direction9. Assuming

plane-strain deformation, the deformation in Z direction vanishes. In what follows, we

will refer to X and Y directions, respectively, as the thickness and in-plane directions. In

the present case, the deformation in both these directions is uniform and the deformation

gradient for both layers is given by

F = λ1ex ⊗ eX + λ2ey ⊗ eY + ez ⊗ eZ , (2.17)
9We remark that in the presently defined coordinate system, the longitudinal piezoelectric coefficient will

be defined by examining the electric response in the X-direction in response to mechanical loading in the
X-direction—as discussed in the theoretical models of Deng et al. [98, 99]
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where λ1 and λ2 are, respectively, the stretches in the thickness and in-plane direction. The

incompressibility constraint (J = λ1λ2 = 1) implies that λ2 = 1
λ1

. For the ease of notation,

in what follows, we drop the subscript 1 and write λ1 = λ here and henceforth. In order to

explore the implication of incompressibility constraint, we add one more term to the total

free energy of the system given in Eq.(2.5)

∫
ΩR

−La(J − 1), (2.18)

where La is a Lagrange multiplier. Also, ΩR may be replaced with ΩRt or ΩRb
to derive

the equilibrium equations for each of the layers. Due to this modification of free energy,

Eq.(2.9) and (2.13) are updated as

Σ̃ = ∂ψ

∂F − LaJF−T , (2.19)

and σ = 1
J

∂W elast

∂F FT − LaI. (2.20)

To model the mechanical behavior of the materials, we choose the incompressible neo-

Hookean constitutive law and accordingly, the internal energy W elast may be expressed

as

W elast = µ

2 (tr(FT F) − 3), (2.21)

where µ is the shear modulus. We remark that the choice of this particular hyperelastic

constitutive model is not central to the main conclusions of this chapter.

Two mechanically compliant electrodes are attached to the top and bottom surfaces of

the electret structure and a short circuit electrical boundary condition is imposed (Fig. 2.4)

to facilitate the definition of an apparent piezoelectric coefficient in response to mechanical

stimulus. The objective is to determine the induced dielectric displacement as a result of the

applied mechanical deformation or stress. The geometry of the structure and deformation

assumptions ensures that the considered problem is essentially one-dimensional in nature

with the electric field that varies only in the thickness direction. From Eq.(2.12a) and (2.1)
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we have

p = (ϵ− ϵ0)e, d = ϵe and e = −dξ

dx
ex. (2.22)

Substituting Eq.(2.22) and (2.21) into (2.8) and using Eq.(2.11), equilibrium equations for

each layer become:

d
dX

[
µi

(
λ− 1

λ3

)
− La

λ
+ ϵi

2λ3

( dξ
dX

)2 ]
= 0 (2.23a)

and d
dY

[
− Laλ− ϵi

2λ

( dξ
dX

)2 ]
= 0, (2.23b)

and the boundary conditions are given as

[
µi

(
λ− 1

λ3

)
− La

λ
+ ϵi

2λ3

( dξ
dX

)2 ]∣∣∣∣∣
X=γiH

X=αH

= 0 (2.24a)

and
[

− Laλ− ϵi
2λ

( dξ
dX

)2
− t̃ei

]∣∣∣∣∣
Y =L

Y =−L

= 0, (2.24b)

for i = b and t. γb = −1 and γt = 1. t̃e
i = t̃ei eY is the imposed traction (dead load) applied

to each layer on the surfaces |Y | = L. As evident from the Maxwell’s equations, the electric

field is homogeneous within each layer. Therefore, eliminating La from system of equations

(2.23), using boundary conditions (2.24), the equilibrium equation for each layer reduces

to:

µi

(
λ4 − 1

)
+ ϵi

( dξ
dX

)2
+ λt̃ei = 0 for i = b, t. (2.25)

Given the short circuit boundary condition, the electric potential on the top and bottom

surfaces remains zero and the electric potential at the interface is considered to be equal

to an unknown value V , where V will be determined using the interface condition. Using

these values for electric potential at boundaries and solving the Maxwell equation (2.12b)

for each layer, electric potential difference is derived as

dξ
dx =


− V

ht
for the layer at the top,

V
hb

for the layer at the bottom,
(2.26)
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where ht = λ(1 −α)H and hb = λ(1 +α)H are the deformed thicknesses of top and bottom

layers, respectively. Considering the fact that surface charge density q in the reference

configuration will change to λq in the current configuration, the interface condition is used

to determine V

ϵt
V

ht
+ ϵb

V

hb
= λq. (2.27)

Using Eq.(2.27) and substituting Eq.(2.26) into (2.25), the traction in each layer required

to maintain this deformation can be determined. We note that the electric displacement in

each layer is also homogeneous and, dt and Dt are identified such that for the layer at the

top we have d = dtex and D̃ = DteX . Substituting Eq.(2.26) into Eq.(2.22) we obtain

dt = ϵtλqhb

ϵthb + ϵbht
. (2.28)

Dt is derived substituting Eq.(2.28) into Eq.(2.3)

Dt = q

1 + ϵb(1−α)
ϵt(1+α)

. (2.29)

In order to measure the d31 piezoelectric coefficient of an actual piezoelectric material,

an in-plane stretch similar to what is shown in Fig. 4 is applied. The piezoelectric coefficient

can then be determined by measuring the change in the electric displacement in the thickness

direction, DX , in response to the applied in-plane normal tractions where the following

constitutive relation for piezoelectricity is used10 [101, 102]

Di = ϵijEj + dijkΣjk, (2.30)

where Di, ϵij , Ej , dijk and Σjk are, respectively, components of the electric displace-

ment, dielectric tensor, electric field, piezoelectric tensor and stress tensor. Using con-

tracted notation and considering material symmetry d31 = d32, Eq.(2.30) reduces to DX =

d31(ΣY Y + ΣZZ) in absence of external electric field and in presence of normal in-plane
10We remark that this constitutive relation is based on linearized theories of piezoelectricity which do to

consider the incompressibility constraint. To connect our work as closely as possible to constitutive equations
what experimentalists are likely to use, we employ (2.30) in this work.
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stresses. We can therefore determine the piezoelectric coefficient by measuring the change

in the electric displacement in response to the applied loading. Analogously, in the case of

the electret structure under consideration, we use the same notion to define an apparent

piezoelectric coefficient

dapp
31 = d(Df

t −Di
t)

dλ

(
d⟨ΣY Y + ΣZZ⟩

dλ

)−1
, (2.31)

where Df
t = Dt is the electric displacement after deformation and determined in Eq.(2.29)

and Di
t = Dt |̃te=0 is the electric displacement in the absence of an externally applied loading.

In what follows, for any parameter f , we define ⟨f⟩ = 1
2H

∫H
−H f(X)dX. As evident from

Eq.(2.29), in our considered electret structure (which is representative of conventionally

fabricated electrets), Df
t −Di

t is zero. Therefore, the emergent dapp
31 piezoelectric coefficient

is also zero. This is to be contrasted with the derivation for the large dapp
33 coefficient

obtained for soft electrets [98]. Physically, when a mechanical load in thickness direction is

applied to the electret structure being considered, deformation distributes non-uniformly.

This non-uniformity of deformation results in an appreciable value for the dapp
33 piezoelectric

coefficient. The material inhomogeneity is central to enable non-uniform deformation and

the consequent non-zero dapp
33 coefficient. This fact it is reflected in the expression11 [98, 99]

for dapp
33

dapp
33 = − 2qHtHbϵtϵb

3(ϵtHb + ϵbHt)2 ( 1
µt

− 1
µb

). (2.32)

In short, as long as deformation is non-uniformly distributed inside the material (µt ̸= µb)

a non-zero dapp
33 is predicted. However under in-plane stretch, the deformation is almost

uniform everywhere in the electret.

The simple derivation in this section explains the root cause for low dapp
31 coefficient and

highlights that, to obtain a non-zero transverse piezoelectric response, a non-homogeneous

deformation in the thickness direction must be engineered. This observation and our model

also suggests the reason for a non-trivial d31 effect for electret polymer films observed by

Zhang et al. [1]. They showed that electrets made of fluoroethylene propylene films with
11We remark in passing that Deng et al. [98, 99] defined the apparent piezoelectric coefficient in a slightly

different manner but to within a trivial scaling factor, the physics is identical.
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charged parallel-tunnel voids can have a very large d31. Based on our developed model,

we speculate that the reason for this large piezoelectric coefficient is the specific design

that they used which permits large deformation in the voids while polymer sections remain

almost undeformed. For more clarification, consider Fig. 2.5(a) which shows a polymer foam

with two parallel-tunnel voids in its undeformed configuration. Under an in-plane loading,

the film undergoes a deformation similar to what is shown in Fig. 2.5(b). The shape of

voids alter significantly, but there is almost no deformation in the polymer sections and

deformation in distributed non-uniformly between air voids and polymer sections leading

therefore to a large bending piezoelectric effect.

(a)

(b)

Figure 2.5: Cross-section of a specif electret polymer film fabricated by Zhang et al. [1] (a)
Undeformed configuration (b) Deformed configuration.

2.4 Flexure behavior of soft electrets

A non-trivial d31 piezoelectric coefficient is essential for a strong electromechanical re-

sponse under flexure. To enable the design of electrets, and armed with insights from the

preceding section, we perform a nonlinear analysis of the bending deformation of an electret

structure. To our knowledge, there is no such analysis in the literature. Specifically we will

consider both soft electret structure made of a single homogeneous material as well as com-

posite electrets with two different materials. Specifically, we will, to a large extent possible,

carry out a fully three-dimensional analysis as opposed to using the kinematics of a beam

theory. Retaining the complexity of treating a three-dimensional object will allow us to
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show that the change in thickness (which is not captured in conventional beam theories)

plays a crucial role in the nonlinear bending deformation of soft electrets. To distinguish

between our analysis and a beam-type consideration, we will often refer our considered

structure as a “block” rather than a “beam”. We remark here that in the purely mechanical

context, flexure of a three-dimensional block was first analyzed by Rivlin [103]. Our work

is its generalization to the electromechanical case.

V

V: Applied voltage

(a)

V

(b)

Figure 2.6: Soft dielectric block under bending deformation and external electric field: (a)
reference configuration (b) current configuration.

2.4.1 Bending of a homogeneous dielectric block under an external

electric field

In order to elucidate the shortcomings of conventional soft dielectrics as a bending sensor

and actuator, we first analyze the nonlinear flexure problem of a homogeneous dielectric

block that is not an electret i.e without embedded charges or dipoles. The reference and

current configurations are shown in Fig. 2.6 where the three-dimensional representation of

the block is due to the fact that we don’t treat our structure as a “beam”. The block in the

reference configuration is denoted by

ΩR ={(X,Y, Z) ∈ R3 : |X| ≤ H, |Y | ≤ L, |Z| ≤ W}, (2.33)
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(a) (b)

Figure 2.7: Schematic of the coordinate systems used in the reference and current config-
urations. (a) Cartesian coordinates are used in the undeformed block. (b) A
cylindrical coordinate based is employed for the deformed block.

where H, L and W are the block’s geometrical dimensions. As shown in Fig. 2.7, the Carte-

sian coordinate bases {eX , eY , eZ} are used to denote material points X. The cylindrical

polar coordinates {er, eθ, ez} are employed to identify points in the current configuration.

To describe bending of the block, we follow the approach presented by Rivlin [103] who ad-

dressed the corresponding (purely) mechanical problem. The complete nonlinear boundary

value problem (even in the purely mechanical case) is quite difficult. To simplify matter, we

make the following kinematic assumption that the set of all material points initially located

at any plane normal to eX are deformed to a set of points located in a curved cylindrical

surface with constant radius and, similarly, the set of all material points initially located at

any plane normal to eY are deformed to a set of points located in a plane with constant θ

and there is no deformation in the Z-direction (See Fig. 2.7).

A general deformation in the cylindrical coordinates can be expressed as

x = r(X)er + z(Z)ez, (2.34)

where er = er(θ) and θ = θ(Y ). From Eq.(2.34), the deformation gradient is

F = dr(X)
dX

er ⊗ eX + r(X)dθ(Y )
dY

eθ ⊗ eY + dz(Z)
dZ

ez ⊗ eZ . (2.35)

Imposing incompressibility constraint J = 1 to the aforementioned class of deformation
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requires r, θ and z to obey the following relations

r(X) =
√

2AX +B, θ(Y ) = Y

A
and z(Z) = Z, (2.36)

where A and B are unknown constants. We identify r1 = r(−H) and r2 = r(H). Associated

with these deformations, we can write the deformation gradient as

F = A

r
er ⊗ eX + r

A
eθ ⊗ eY + ez ⊗ eZ . (2.37)

Similar to the stretch problem in section 2, we employ the incompressible neo-Hookean

constitutive law given in Eq.(2.21) and therefore the Cauchy stress σ in the dielectric is

given as

σ = µFFT − LaI. (2.38)

Ignoring non-radial components of electric field for simplicity and using Eq.(2.1) and (2.12a),

electric displacement and polarization can be written in terms of the electric potential as

follows:

p = (ϵ− ϵ0)e, d = ϵe and e = −dξ

dr
er. (2.39)

Consequently, Maxwell’s equations and the boundary conditions in the absence of external

charges but with the block subjected to a potential difference are


−1

r
d
dr

(
ϵr dξ

dr

)
= 0,

ξ(r1) = 0 and ξ(r2) = V.

(2.40)

Electric field in the current configuration is determined by solving (2.40):

e = −V

r

1
log r2

r1

er. (2.41)

Having electric field, we can calculate Maxwell stress from (2.14). Then total stress is

obtained as

σ + σ′MW = σ∗
rrer ⊗ er + σ∗

θθeθ ⊗ eθ + σ∗
zzez ⊗ ez − LaI, (2.42)
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where
σ∗

rr = µ
A2

r2 + ϵ

2

(
dξ

dr

)2
,

σ∗
θθ = µ

r2

A2 − ϵ

2

(
dξ

dr

)2
,

and σ∗
zz = − ϵ

2

(
dξ

dr

)2
.

(2.43)

Equilibrium equation (2.12c) in the radial direction can be written as:

dσ∗
rr

dr
− dLa

dr
+ 1
r

(σ∗
rr − σ∗

θθ) = 0. (2.44)

To simplify the solution, we express A and B in terms of r1 and r2. Using equations

r1 = r(−H), r2 = r(H) and Eq.(2.36) we have

A = r2
2 − r2

1
4H and B =r2

2 + r2
1

2 . (2.45)

To solve the equilibrium equation, we impose the following boundary conditions:

tr = (σ∗ − LaI) er = 0 at r = r1 and r = r2, (2.46a)

M =
∫ r2

r1
r(σ∗

θθ − La)dr, (2.46b)

where M is the bending moment over unit width of the block and tr is the surface traction

for the surface with unit normal er.

Integrating Eq.(2.44) and using first Eq. of (2.46a), the Lagrange multiplier La can be

determined to be

La = σ∗
rr +

∫ r

r1

1
r̂

(σ∗
rr(r̂) − σ∗

θθ(r̂)) dr̂. (2.47)

For future expedience, we also introduce the radial stretch λ and radius ratio Λ:

λ = |r2 − r1|
2H , Λ = r2

r1
. (2.48)

With the relation for the Lagrange multiplier at hand, using relations (2.45) and (2.48),

we can solve the second boundary condition in (2.46a) for λ. With the substitution of the

stretch in Eq.(2.46b), all quantities can be expressed in closed-form in terms of Λ. The
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stretch and bending moment can then be derived to be:

λ4 = 16Λ2

(Λ + 1)4 − (Λ − 1)2

(Λ + 1)2 log2(Λ)
ϵV 2

µH2 , (2.49)

and M = 2H2µ
(
Λ4 − 4Λ2 log(Λ) − 1

)
(Λ2 − 1)2 . (2.50)

We introduce κ̄ = r2−r1
r1

as a representation for the curvature. Curvature κ̄ will be positive

if r2 > r1 and vice-versa. The ratio Λ in (2.48) can be easily related to curvature through

relation:

Λ = 1 + κ̄. (2.51)

From the nonlinear relation (2.49), we observe that the stretch depends on both the cur-

vature and the applied electric field. However, the bending moment is independent of the

applied potential difference and the effect of electric field on curvature emerges only through

a change of thickness. If the thickness in the deformed configuration remains unchanged

from the reference configuration, then the electric field will not have any impact on curvature

since curvature bending moment relation (2.50) is independent of the electric field.

In many practical applications, thickness of the film is much smaller than the radius of

curvature even when the film undergoes large deformation. In such a case, |κ̄| ≪ 1. This

condition is also valid for thick blocks under small deformations. It is therefore instructive

to linearize (2.50) and (2.49) for the cases with |κ̄| ≪ 1. Ignoring higher order terms, stretch

and bending moment can then be expressed as

µ
(
λ4 − 1

)
= −ϵ

(
V

2H

)2
+ o(κ̄), (2.52)

and M = 4
3H

2µκ̄+ o(κ̄). (2.53)

We remark that in the flexure problem discussed in this section as well as the stretch problem

discussed in section 2.3, in absence of mechanical loading, deformation is only caused by

the applied electrical field. Since there is no kinematic constraint against the change of

thickness in the models used for both the bending and stretch problems, the derived change

of thickness in response to the applied electrical field should be the same for both models.
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Indeed, Eq.(2.52) is exactly the same as (2.25) when the applied traction is zero. Also,

several other interesting conclusions may be drawn by a careful consideration of Eq.s (2.52)

and (2.53):

1. Equation (2.52) is independent of curvature κ̄ and the external electric field is the

only reason for the change of thickness.

2. Equation (2.53) is independent of V . Although the value of κ̄ depends on the thickness

of the block in the deformed configuration, and alteration in the external electric field

will change the thickness and consequently curvature but ignoring the effect of external

electric field on the thickness of the block will lead to the complete de-correlation of

the curvature of the film and the external electric field.

3. Even if we account for the change of the thickness due to external field and its ef-

fect on the curvature, their relation is quadratic (see Eq.(2.52)). This observation

implies that a change in the direction of the electric field will not change the direction

of deformation thus limiting the application of ordinary soft dielectrics as bending

actuators.

4. Equation (2.53) shows that in the absence of bending moment (M = 0) curvature κ̄

is zero. This, in turn, signifies that no matter how large the applied electric field,

flexure will not ensue in absence of an applied mechanical bending moment.

These aforementioned points emphasize that ordinary soft dielectrics are unsuitable, at

least if used naively, as bending sensors and actuators. We will show in the next section

that electrets offer a rather rich set of avenues to tweak flexure response of soft dielectrics.

2.4.2 Bending deformation of a homogeneous block with embedded

charges—an electret

We now turn our attention to the problem that is at the heart of the central goal of the

manuscript. We reconsider the nonlinear flexure problem of a soft dielectric block but now
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containing a distributed (and embedded) immobile layer of charge12. We consider such a

layer of charge with surface density q to be located at the plane X = Xch in the reference

configuration (Fig. 2.8) where Xch = αH and α is an indicator of the position of the

charge layer. This parameter can take values between −1 and 1. The plane containing

electric charges will deform to a curved surface with the radius r = rch. The total charge

inside the dielectric is conserved and with that, the charge density in the current (deformed)

configuration may be expressed as

ρe = q
A

rch
δ (r − rch) , (2.54)

where δ(·) is the one-dimensional Dirac delta function and A was defined earlier in Eq.(2.36).

𝑋𝑐ℎ

Figure 2.8: A layer of charges is embedded in a soft dielectric.

Invoking the premise that the electric field only exists in the radial direction, using

(2.12a) and (2.12b), and employing the short circuit boundary condition, the electric field

in the current configuration is obtained as

e = qA

ϵr

H(r − rch) −
log

(
r2
rch

)
log

(
r2
r1

)
 er, (2.55)

12As typically understood in electrets, the charges and dipoles are immobile in the sense that they do not
flow in the time scale (and temperature regime) of interest but do convect with deformation. Depending on
the material properties, electret configuration and ambient temperature, discharge can occur on a time scale
varying from days to decades [104, 64].
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where H(·) is the Heaviside step function. We defer for now the discussion on the influence

of external voltage and the actuator mode application of this structure. As done in prior

sections, the stretch can be evaluated analytically in terms of the radius ratio Λ and other

properties of the dielectric block

λ4 = 16Λ2

(1 + Λ)4 (1 + q̄2
0C11

) , (2.56)

where q̄0 = q√
ϵµ . The coefficients Cij depend on Λ and α and their complete expressions

are recorded in Appendix 2.7.1. The bending moment necessary to maintain the desired

deformation in terms of radius ratio using (2.46b) is

M = 2H2µ
(
Λ4 − 4Λ2 log(Λ) − 1 + q̄2

0C12
)

(Λ2 − 1)2 + q̄2
0C13

. (2.57)

Equation (2.57) should be contrasted with Eq.(2.50). In the case of an electret, the electric

field created by the embedded charges influences the bending deformation of the block not

only through the change of the thickness but also through a direct effect on the bending

moment-curvature relation. In order to further clarify the effect of embedded charges on

the bending deformation of thin films, we express the stretch and bending moment in terms

of only the leading order terms of κ̄

λ4 = λ4
0 +D11κ̄+ o(κ̄) (2.58)

and M

4µH2 =M0 +D12κ̄+ o(κ̄), (2.59)

where

λ4
0 = 4

(1 − α2) q̄2
0 + 4 , (2.60)

and M0 = − q̄2
0α(1 − α2)

2q̄2
0(1 − α2) + 8 . (2.61)

Coefficients Dij are recorded in the Appendix 2.7.1. Both Eq.(2.59) and (2.58) depend

on κ̄ and q̄0. The simple implication of this observation is that the coupling between the

mechanical and electrical state of the dielectric block is significantly more intricate and
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stronger in electret structures as compared to ordinary dielectrics. Notably, any change

in the amount of charge or the position of charge layer will change the bending moment

required to cause a specific value of curvature even if we were to ignore changes in the

thickness. This is in contrast to what we observed in Eq.(2.53) for the small-deformation

case of a thin homogeneous film under an external applied electric where the effect of the

external voltage only emerges from a change in the thickness.

Equation (2.59) can be solved for κ̄ to derive an approximate linear relation for the

curvature in terms of the bending moment

κ̄ ≈ M

4µH2D12
− M0
D12

. (2.62)

A rather interesting property of the electret may be realized from (2.62); unless the charge

layer is exactly located in the middle of the block ( α = 0), a nonzero curvature will develop

even in the absence of external mechanical loading. In other words, existence of Maxwell

stress in non-symmetric block (block in which charge layer in not located in the mid-plane)

leads to bending of the block. Setting M = 0, Eq.(2.62) may be used to ascertain that a

nonzero curvature exists in the structure even in the absence of any mechanical loading.

In addition to embedded charges, we can also consider the effect of an external voltage to

investigate actuator application of the electret structure. For this purpose, the Maxwell’s

equations are solved using the embedded charge given in (2.54) and boundary condition

used in (2.40) to derive the electric field:

e = 1
ϵr

AqH(r − rch) −
Aq log

(
r2
rch

)
+ V ϵ

log
(

r2
r1

)
 er. (2.63)

Following a similar process as before, the mechanical boundary conditions are imposed to

determine the stretch in terms of radius ratio and then all quantities are expressed in terms

of the radius ratio. Since the process is straightforward but the resulting equations are rather

long, we avoid listing them here and the details may be found in Appendix B. After deriving
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the nonlinear bending moment radius ratio relation, we linearize this relation for |κ̄| ≪ 1

and derive an expression similar to (2.59) with modified values for D12 and M0. Relation

for D12 is given in Eq.(2.7.89). In order to provide insights into the bending behavior of

electret under external voltage (in absence of any mechanical loading) we simply update

the expression of M0 presented in Eq.(2.61). The modified M0 may be derived to have the

following form:
M0 =

(
1 − α2

)
q̄0×

Ẽ0

√(
Ẽ2

0 − 1
) (

(α2 − 1) q̄2
0 − 4

)
+ α

(
Ẽ2

0 − 1
)
q̄0

2 (1 − α2) q̄2
0 + 8 ,

(2.64)

where Ẽ0 = V
2H

√
ϵ
µ . An intriguing implication from (2.64) is that in the presence of external

electric field and absence of mechanical loading, a non-zero value for curvature is obtained—

even for symmetric electrets (α = 0). Moreover, this curvature depends on the value of

external electric field and any change of the external field will also alter the curvature. As

will be discussed in the next section, this behavior may be interpreted as converse bending

piezoelectric behavior.

2.4.3 Identification of the apparent flexoelectric and d31 piezoelectric

coefficients in electrets

As shown in the prior section, if a fixed bending moment is maintained, an electric field

can change the curvature of the electret structure and conversely, a change in curvature

can lead to a change in the electric field. This can be made more explicit by examining the

electric displacement. For a short circuited electret strucuture, D̃ may be determined by

using Eq.(2.55), (2.39) and(2.3)

D̃ = q

(
H(X −Xch) − log (C22)

log (Λ)

)
eX . (2.65)

Electric displacement in Eq.(2.65) depends on Λ, signifying that electric displacement

changes with the change of curvature. Using Taylor series for small values of κ̄ we can
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elucidate a linear relation between the change of electric displacement and curvature

D̃ = Df eX =
(
Di + 1

4q(1 − α2)κ̄+ o(κ̄)
)

eX . (2.66)

In the present context, we may identify the initial state as the zero curvature (flat) state

and the curved state as the final deformed state of the bending. Denoting Df and Di,

respectively, to represent the electric displacement in the final and initial states, we can

write Di as

Di =


1
2q(1 + α) for X > Xch,

−1
2q(1 − α) for X < Xch.

The linear relation between curvature and electric displacement, or polarization, is a

tell-tale signature of flexoelectricity. In an experimental setting, flexoelectric coefficient of

a material can be determined by measuring the electric current generated during bending

deformation. We use such a gedanken on these lines to define an apparent (and emergent)

flexoelectric coefficient for the electret structure [105].

Interchangeably, and somewhat ambiguously, the same basic logic may also be inter-

preted as an emergent d31 piezoelectric coefficient. However, this requires some further

nuanced discussion. As already discussed briefly in the introductory section, because the

average strain is zero in bending, a (net) electric polarization is not generated from the

bending deformation of a single layer piezoelectric film unless a bimorph configuration is

used. Bending of a piezoelectric bimorph with opposite poling directions (shown in Fig.

2.9) leads to the development of a non-zero (net) electric polarization inside the material.

In addition, a uniform external electric field can cause bending in the bimorph with oppo-

site poling directions. We remark that an electret with embedded charges is similar to a

bimorph with opposite poling directions. So, in order to interpret the flexure of electrets in

terms of emergent piezoelectric or interchangeably, flexoelectric response, we must compare

it with either a piezoelectric bimorph or a homogeneous material with flexoelectric effect.

Since it is not possible to analytically solve a non-linear three-dimensional bending problem

of a flexoelectric or piezoelectric block, we use a simple linear piezoelectric or flexoelectric

Euler-beam theory to find the correlation between mechanical loading and induced charge.
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Then, this correlation is compared with the results of our nonlinear model for electrets to

suggest expressions for the apparent flexoelectric and piezoelectric coefficients.

Poling direction:

(a)

M M

(b)

Figure 2.9: Piezoelectric bimorph made of two layers of piezoelectric materials with different
poling directions. (a) Undeformed configuration (b) Deformed configuration.

Apparent piezoelectric coefficient. The definition of the apparent piezoelectric

coefficient requires the solution to the bending problem of a bimorph. The derivation is

recorded in Appendix 2.7.3 and specifically the central result used in this section appears in

(2.7.130). In contrast to the piezoelectric beam model, our model for the flexure of an electret

is nonlinear and three-dimensional. To relate them and derive apparent piezoelectricity as

would be measured in experiments, we introduce the notion of average curvature ⟨κ⟩ as

⟨κ⟩ = 1
2H

∫ r2

r1

1
r
dr = κ̄

2H + o(κ̄). (2.67)

Apparent bending stiffness κapp
b and apparent piezoelectric coefficient dapp

31 of the electret

structure can therefore be defined as

κapp
b =

(
∂⟨κ⟩
∂M

)−1
, (2.68)

and dapp
31 = −

2κapp
b

3µH
∂Df

∂M
. (2.69)
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Equation (2.67) can be used to replace κ̄ with ⟨κ⟩ in Eq.(2.62) and extract the average

curvature of the block and the electric displacement (2.66) in terms of bending moment.

Then, substituting Eq.(2.59) into Eq.(2.69) we have:

dapp
31 = − q

3µ(1 − α2). (2.70)

It is clear that the best position for the charge layer, which maximizes the emergent and

apparent piezoelectric coefficient, is exactly in the middle of the block. Furthermore, there

is an inverse relation between material stiffness and the apparent dapp
31 piezoelectric coeffi-

cient of the electret block.

Apparent flexoelectric coefficient. To alternatively interpret the electret structure

in terms of flexoelectricity, we must first define an apparent flexoelectric coefficient. This

requires the solution for the bending problem of a homogeneous flexoelectric beam and the

relevant derivation is recorded in Appendix 2.7.4. The key result we use in this section is

Eq.(2.7.140) and based on this, we may define the apparent flexoelectric coefficient fapp of

the electret structure as

fapp = 1
(ϵ− ϵ0)

∂Df

∂M
κapp

b . (2.71)

Substituting Eq.(2.66) into (2.71), the apparent flexoelectric coefficient is derived as

fapp = Hq

2(ϵ− ϵ0)
(
1 − α2

)
. (2.72)

The apparent emergent flexoelectric coefficient in (2.72) is directly proportional to the thick-

ness of the block and therefore an increase of the thickness would appear to be a way to

increase the flexoelectric coefficient. This notion is somewhat deceptive however. We must

recognize that increasing the thickness will also require substantially larger mechanical en-

ergy to bend the structure (which scales with H3). In addition, it should be mentioned that

the reason for negligible flexoelectric effect in conventional materials at large scales is that

in this effect, polarization is proportional to strain gradient and there is an inverse relation
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between magnitude of strain gradient and characteristic size-scale of the problem. However,

for the electret structure under consideration, the apparent flexoelectric coefficient is not

a structure-independent constant as in the case of a non-electret material. The apparent

flexoelectric coefficient of the electret structure increases with increasing size scale which

compensates for the decrease of strain gradient with increasing size scale and in this sense it

leads to a size-independent effect. Finally, we remark that, in the present setting of a simple

homogeneous electret structure, the maximum apparent flexoelectric coefficient corresponds

to the electret in which the charge layer is located exactly in the middle of the block (α = 0).

Energy conversion ratio. In addition to flexoelectric and piezoelectric coefficients, a

physically meaningful measure to study is the effectiveness of the electret material to convert

applied mechanical energy into electric energy as compared with conventional piezoelectric

materials. For this purpose, we compare the amount of energy required to induce an iden-

tical amount of electric charge at the electrodes. Electric charge induced at electrodes for

the electret structure is Df −Di and can be computed from Eq.(2.66). For the appropriate

interpretation, this value may be equated to the induced charge on the electrode surface of

the comparison piezoelectric material—which is equal to d given in Eq.(2.7.129). For this

comparison, the bending moment Mpiezo which should be applied to piezoelectric material

in order to induce d = Df −Di can be determined from (2.66) and (2.7.129):

Mpiezo = q(1 − α2)κb

2Hb31(ϵ33 − ϵ0) κ̄+ o(κ̄), (2.73)

where b31 is the piezoelectric coefficient introduced in (2.7.114) and ϵ33 is the dielectric

coefficient in the poling direction of material. The mechanical energy required to induce this

amount of charge is obtained through the work done on the system by means of the applied

bending moment. The work done by the applied bending moment on piezoelectric material

with unit volume is equal to Wpiezo = M2
piezo

2Hκb
where κb is given in (2.7.127). Substituting

the value of the bending moment from (2.73), Wpiezo can be determined as

Wpiezo = 12q2(1 − α2)2κb

b2
31(ϵ33 − ϵ0)2I

κ̄2 + o(κ̄2). (2.74)
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Also, using Eq.(2.59), the work done by the applied mechanical loading to deform a unit-

volume electret from an initially flat configuration to deformed configuration is given as

Welectret = 1
2L× 2H (M − 4µH2M0)θ

∣∣∣∣Y =L

Y =−L

. (2.75)

Substituting Eq.(2.57) and (2.36) into Eq.(2.75), and using Eq.(2.56), (2.45) and (2.48),

Welectret can be written as

Welectret = µ
(
1 + q̄2

0D14
)

3
(
1 + q̄2

0
4 (1 − α2)

) 3
2
κ̄2 + o(κ̄2). (2.76)

With these required energetic quantities at hand for both the piezoelectric and electret

materials, we define Energy Conversion Ratio (ECR) as

ECR = Wpiezo

Welectret
. (2.77)

If we consider a single crystal barium titanate piezoelectric film with ϵ33 = 109ϵ0, d31 =

−34.5 pC/N and c11 ≈ 124 GPa [106] and a symmetric polypropylene (PP) electret with

q = 10−3 C/m2, µ = 0.95 MPa and ϵ = 2.35ϵ0 [107], we will have ECR = 0.23. This implies

that in barium titanate, the mechanical energy required to produce a given amount of

electrical energy is almost four times less than that of PP electret. However, although in this

example, the ECR value for electret is smaller than 1 and energetically it is more favorable to

use barium titanate film, soft electrets can tolerate much larger deformation. Furtheremore,

it is evident that ECR ∝ q2(1−α2)
µ and that increasing the amount of embedded charges or

using softer materials can be used to increase ECR.

2.4.4 The effect of embedded dipoles on the apparent flexoelectric and

d31 piezoelectric behavior

In addition to embedded charges, embedded dipoles are also used in electrets. The

widely used soft cellular polymer foams may be considered to consist of embedded dipoles

in voids of a soft matrix. As shown in Fig. 2.10, these polymer foams are soft porous
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materials with huge number of entrapped air voids such that volume fraction of voids are

often more than 50 percent. Trapped charges on the surfaces of voids create large dipoles

inside the foam (Fig. 2.10(a)). In some sense, this is analogous to large dipoles created

by the charge layer in the composite of the preceding section and the top and bottom

electrodes. In this section, we use a layered structure to model voided film where there is a

layer of air between two layers of polymer (Fig. 2.10(b)). Embedded charges with surface

charge densities q and −q exist at the interface of the air layer and polymer layer to mimic

dipoles. Two parameters α1 and α2 have been introduced to identify position of charge

layers. The solution to the bending problem of an electret made of two layers of different

materials is given in Appendix 2.7.5. This can be extended for a soft dielectric block made

of three different layers. We avoid giving details of the derivation for this case since the

process is identical to what was presented before. Ignoring higher order terms and following

the same notation introduced in Eq.(2.66), electric displacement for this structure is given

as

Df = Di + qϵr(α2
2 − α2

1)
(2 + Ha

H (ϵr − 1))2 κ̄+ o(κ̄), (2.78)

where ϵr = ϵ/ϵ0 and Ha is the thickness of air layer. Note that Df − Di for all three

layers is the same. In charged polymers, dipoles are almost uniformly distributed inside

the material. It is clear that for a symmetric distribution of embedded dipoles (α2 = −α1),

change in the electric displacement will be zero and bending will not induce any change in

the charges induced at the electrodes. This explains the reason for the observation of small

d31 in charged polymer foams. However, there is a simple way to obtain desirable values

for α1 and α2 and a non-symmetric distribution of dipoles. The basic ideas are illustrated

in Fig. 2.11(a). Essentially, electret structures can be combined with non-electret material

(i.e. ordinary dielectric) to facilely create the asymmetry needed to obtain a non-trivial

d31. Although we do not present further details, a slight modification to the current models

(developed so far) may be easily used to find the apparent properties of a film composed

asymmetric electret structures shown in Fig. 2.11(b).

Upon substituting Eq.(2.78) into Eq.(2.71) and (2.69) the apparent flexoelectric coeffi-
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(a) (b)

Figure 2.10: (a) Existence of external dipoles in polymer foams. (b) A layered structure
is used to model charged porous polymer. Constants α1 and α2 show the
positions of charge layers.

(a) (b)

Figure 2.11: Methods to break symmetry in distribution of dipoles. (a) Attachment of a
non-electret material to an electret material. (b) Attachment of two asymmet-
ric electrets.

cient and apparent piezoelectric coefficient can be derived:

fapp = 2Hqϵr
(ϵ′ − ϵ0)

α2
2 − α2

1
(2 + Ha

H (ϵr − 1))2 (2.79)

and dapp
31 = − 4qϵr(α2

2 − α2
1)

3µ(2 + Ha
H (ϵr − 1))2 , (2.80)

where µ in (2.80) is an effective shear modulus which accounts for both polymer section

and air voids. Qualitatively, the results do not differ in any significant manner from the

previous section.

2.5 Results and discussion

The nonlinear models presented in the preceding sections can be used to obtain several

interesting insights into the design of flexoelectricity and d31 piezoelectricity in soft electrets.

However, first, in order to highlight the similarities and differences between conventional

dielectrics and electret materials, we present the bending deformation behavior of an ordi-

nary soft dielectric in Fig. 2.12. Relations (2.49) and (2.50) have been used to draw this
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figure. In Fig.2.12(a) we illustrate the change in thickness of a soft dielectric block under the

action of a combined bending moment and electric field. As expected, Fig. 2.12(a) shows

that applying a constant external electric field leads to the thinning of the block. As it

was discussed earlier in preceding sections, this change of thickness leads to emergence of a

coupling between electric field and curvature of the block. Change of curvature in response

to applied electric field is shown in Fig. 2.12(b) to investigate possibility of using ordinary

dielectrics as bending actuator. We introduce the following dimensionless measure of the

curvature κ̄0 = κ̄
λ and use this quantity throughout the section. Figure 2.12(b) shows that

for fixed non-zero values of bending moment, increasing external field results in the increase

of the curvature observed in the block. However it is evident, from this figure, that if the

applied bending moment is zero, electric field alone will not induce a change in curvature.

In the other words, some pre-existing curvature should be present to observe a coupling

between the curvature and electric field for ordinary dielectrics. This is one of limitations of

dielectric actuators. Another one is that the electromechanical coupling in the non-electret

soft dielectric block is generated from Maxwell stress effect which, by nature, is quadratic

with respect to electric field. Accordingly, a change in the direction of the applied electric

field will not alter the direction of the induced curvature.

Flexure behavior of electret with a single layer of embedded charge. The for-

mulation presented in section 2.4.2 is used to analyze the flexure behavior of the electrets

with embedded charges. Equations (2.56) and (2.57) are used to plot the variation of the di-

mensionless bending moment with dimensionless curvature in Fig. 2.13 for a short circuited

electret with asymmetric distribution of charges (α = 0.5). As evident, the presence of the

charge has a profound effect on the bending moment-curvature relation. In particular, the

curvature does not vanish even when the applied bending moment is zero. This is due to

the asymmetric distribution of charges and consequently a non-uniform state of Maxwell

stress inside the material.

As discussed earlier, when two layers of piezoelectric materials with opposite poling di-

rections are exposed to an external electric filed in the thickness direction; the d31 converse

piezoelectric effect leads to bending. The same behavior is seen in electrets. Using (2.7.113),
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(a)

(b)

Figure 2.12: Behavior of soft dielectric block under the action of a combined bending mo-
ment and electric field. (a) Change of thickness in response to applied electric
field and bending moment. (b) Coupling between electric field and curvature.

fig. 2.14 shows that an electret made of a dielectric with a layer of charge with q̄0 = 0.225

bends in response to external electric field and in absence of any external mechanical load.

This value of electric charge will be attainable upon insertion of a layer of electric charge

with q = 10−3 C/m2 into a PP film with µ = 0.95 MPa and ϵ = 2.35ϵ0 [107]. Furthermore,

Fig. 2.14 shows that the direction of curvature depends on the direction of applied field.
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Figure 2.13: Effects of external charges on the curvature of the block for α = 0.5.

Figure 2.14: Converse piezoelectric behavior of electret with q̄0 = 0.225.

This linear relation is in contrast with the quadratic behavior of an ordinary dielectric under

external voltage in the absence of external charges and proves the capability of soft electrets

to be used as a bending actuator. The emergent d31 effect is stronger when the charge layer

is in the middle of the block (α = 0).

Energy harvesting application and emergent properties of electrets. The

possibility of using electrets as sensors and their apparent and emergent piezoelectric/flex-
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oelectric coefficients are studied in Figs. 2.15 to 2.18. Bending of a short circuited electret

changes the electric field and electric polarization inside the material. In order to show this

electro-mechanical coupling, we use Eq.(2.65) to plot the change of electric displacement

versus the dimensionless curvature in Fig. 2.15 for a homogeneous dielectric with an embed-

ded layer of electric charge.The change of the electric displacement, and hence the capability

to generate current, in response to changes in curvature illustrates the potential application

of the electret structure as an energy harvester and sensor. Also, for small curvatures a

linear change is observed in the electric displacement. Since the flexoelectric behavior is

the linear development of polarization in response to imposed curvature in vicinity of zero

curvature (small deformation), this change of the electric displacement and consequently

electric polarization seen in electret can be interpreted as an emergent flexoelectric-like be-

havior and this effect is stronger when charge layer is closer to the middle surface of the

block. Plotting the apparent flexoelectric coefficient using the definition in (Eq.(2.72)) in

Fig. 2.15(b), we see that a flexoelectric coefficient of the order of fapp(ϵ− ϵ0) ≈ 10−8C/m is

possible for an electret with micro scale thickness and with a realistic surface charge density

q = 10−3 C/m2.

Fig. 2.16 shows the apparent d31 piezoelectric coefficient for a PP film with µ =

0.95MPa with one layer of external charges using Eq.(2.70). The apparent piezoelectric

coefficient is found to be roughly ten times more than the corresponding value of barium

titanate where dBaT iO3
31 = −34.5 pC/N [106] and q = 1 mC/m2. While a high longitudinal

piezoelectric coefficient for electrets has been already reported, this is the first prediction

for such a large d31 value.

In order to present the piezoelectric coefficient for a polymer with embedded dipoles,

we consider a polymer foam with H = 30µm and assume an air volume fraction of 50% or

Ha = H (see Fig. 2.10). Initially dipoles have a symmetric distribution and the apparent

piezoelectric coefficient is zero. Another piece of the identical polymer film of thickness

H0, free of dipoles, is attached to the electret material (Fig .2.11(a)). A shear modulus of

µ = 1MPa is assumed. The apparent piezoelectric coefficient for this structure versus thick-

ness of the attached film is shown in Fig.2.17 using Eq.(2.80). The apparent piezoelectric
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(a)

(b)

Figure 2.15: Flexoelectric behavior of the electret. (a) Charge harvested in the bending
deformation of a short circuited electret. (b) Apparent flexoelectric coefficient
of a homogeneous film with q̄0 = 0.225.

coefficient increases with H0 until it obtains an optimum. The thickness which maximizes

the apparent piezoelectric coefficient of the structure depends on the electric permittivity

of the material and can be determined mathematically from: H0 = 2H +Ha(ϵr − 1).

In what follows, we use Equations (2.74), (2.76) and (2.77) to plot the ECR coefficient to

compare energy conversion efficiency of an electret with a single layer of embedded charge

to a homogeneous barium titanate piezoelectric. Barium titanate properties are considered

40



Figure 2.16: Apparent piezoelectric coefficient for a PP film with a layer of external charge
inserted versus position of charge layer

Figure 2.17: Apparent piezoelectric coefficient of a polymer film with embedded dipoles
attached to another material free of dipoles with thickness H0.

as ϵ33 = 109ϵ0, d31 = −34.5 pC/N and c11 ≈ 124 GPa [106]. As expected from prior

results, Fig. 2.18(a) shows that ECR is maximized when the charge layer is located in

the middle of the block. Furthermore, increasing the amount of surface charge density to 2

mC/m2 in an electret with a shear modulus 0.95 MPa will perform almost as well as barium

titanate. Given that the electret is capable of orders of magnitude larger deformation, this

comparision is quite astounding. Another avenue to obtain an higher ECR is suggested

in Fig. 2.18(b). The figure shows that softer electrets have higher ECR and an order of
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(a)

(b)

Figure 2.18: ECR coefficient to compare energy efficiency of electret with a barium titanate
piezoelectric material. (a) ECR versus α for an electret with µ = 1 MPa and
ϵ = 2.35ϵ0. (b) ECR versus shear modulus of electret for an electret q = 10−3

C/m2.

magnitude reduction in the shear modulus can dramatically increase the ECR.

2.6 Concluding remarks

Soft electret materials have been proposed as candidates for applications that require a

strong electro-mechanical coupling as well as a capability for large deformation. Although
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a large apparent d33 piezoelectric coefficient has been reported for some soft polymer foam

electrets, their d31 piezoelectric coefficient is rather small and the electro-mechanical cou-

pling in flexure motion is quite weak. In this work we provide a physical rationale for

observed low value of d31 in typical electrets. We analyze the behavior of electrets under

bending deformation and pathways to obtain substantive d31 piezoelectricity or alternatively

a flexoelectric like behavior, are suggested. Our central formulation is quite general and

may be used, beyond the simple examples studied in the present work, for future numerical

design and optimization of flexoelectric and bending piezoelectric electrets. We obtain the

following insights:

1. The microstructure of electrets must lead to non-trivial inhomogeneous deformation

for the emergence of d31 piezoelectric effect.

2. Ordinary dielectrics may not fit applications that require a linear electro-mechanical

coupling in bending deformation. The reason is that some pre-existing curvature is

required to observe coupling between externally applied electric field and curvature

in dielectrics. Also, even when pre-existing curvature is present, this coupling only

depends on the magnitude of electric field and it is independent of the direction of

the field.

3. A converse d31 piezoelectric behavior is obtained for an electret with one layer of

embedded charges, implying that an externally applied electric field can bend this

electret and a change in the direction of electric field will also alter the direction of the

deformation. In addition, bending of such an electret will also alter the electric field

and polarization inside the material and this change of polarization can be interpreted

as either a d31 piezoelectric effect or alternatively, flexoelectricity.

4. We estimate the apparent flexoelectric and d31 piezoelectric coefficient for electrets and

suggest approaches to improve the overall energy conversion ability of the material.
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2.7 Appendices

2.7.1 Coefficients Cij, Dij and Eij introduced in section 2.4

The coefficients Cij are defined as:

C11 = (log (C22)
log(Λ) )2 − (1 − α) log

(
C2

22
)

C21 log(Λ) , (2.7.81)

C12 =
(
Λ4 − 1

)
log2 (C22)

log2(Λ)

+
log

(
C2

22
) (
C21Λ2 log

(
2

C21

)
+ C23

)
C21 log(Λ) − C23

C21
, (2.7.82)

C13 =
(
Λ2 − 1

)2 ((α− 1) log(Λ) log
(

C2
22
Λ

)
+ C21 log2 (C22)

)
C21 log2(Λ)

, (2.7.83)

C21 = 1 + Λ2 + α(Λ2 − 1), (2.7.84)

C22 =
√

2Λ√
C21

, (2.7.85)

C23 = (1 − α)
(
1 − Λ4

)
, (2.7.86)

and C24 = (Λb − 1)
Λb

√
α+ 2Λ2

b − 1
α+ 1 . (2.7.87)

Coefficients Dij are given as

D11 = 8q̄2
0α(1 − α2)

(4 + q̄2
0(1 − α2))2 , (2.7.88)
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D12 = D13 + α
(
1 − α2) Ẽ0q̄0

((
1 − α2) q̄2

0 − 8
)

3
(
(1 − α2) q̄2

0 + 4
)2 ×

(
√(

1 − Ẽ2
0

) (
(1 − α2) q̄2

0 + 4
)

+ αẼ0q̄0), (2.7.89)

D13 = q̄4
0(1 − α2)3 + q̄2

0(−44α4 + 24α2 + 20) + 64
12(q̄2

0(1 − α2) + 4)2 , (2.7.90)

and D14 = 1
16

(
−11α4 + 6α2 + 5 + q̄2

0
(1 − α2)3

4

)
. (2.7.91)

In Eq.(2.7.89) for coefficient D12, the contributions of both electric field and electric charges

have been considered. So, the electric field Ẽ0 should be set to zero in the relation (2.7.89)

to obtain coefficient D12 used in Eq.(2.59).

Coefficients Eij are given as

E11 = (α+ 1) (Λb + 1)4

4 (ϵt log (Λb) + ϵb log(C24))2 ×

(
(α− 1)ϵt log2 (Λb) − ϵb log2(C24)

(
α+ 2Λ2

b − 1
))
, (2.7.92)

E12 = (Λ2 − 1)2, (2.7.93)

E13 = (C21 − 2)(3C21 + 2), (2.7.94)

E14 = (1 − α)(Λ2 − 1)(3 + 5Λ2 + 3α(Λ2 − 1)), (2.7.95)

E15 = (2 −
√

2C21)
4 × (2 +

√
2C21)5, (2.7.96)
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E16 = −2E21(1 − α)(Λ2 − 1)
Λ2 , (2.7.97)

E17 = −(2 +
√

2C21)4, (2.7.98)

and E18 =
E22(1 +

√
C21

2 )4

8Λ2(Λ2 − 1)2
(
ϵb log(C22) + ϵt log(

√
C21

2 )
)2 , (2.7.99)

where

E21 = α2 + (α+ 1)2Λ4 − 2(α− 7)(α+ 1)Λ2 − 14α

+ 4
√

2
√
C21

(
α
(
Λ2 − 1

)
+ Λ2 + 3

)
+ 17, (2.7.100)

and E22 = (α− 1)
(
Λ2 − 1

)
ϵa log2

(√
C21√
2

)
− 4Λ2ϵa log (C22) log2

(√
C21√
2

)

+ Λ2ϵb log2 (C22)
(
−αΛ2 + α− 2 log (C21) − Λ2 + 1 + log(4)

)
. (2.7.101)

2.7.2 Derivation of relation between bending moment and curvature for

electret under external voltage introduced in section 4.2

In order to determine the relations for stretch and bending moment in terms of curvature

for the electret shown in Fig. 2.8 which is also under an external electric voltage, Eq.(2.63)

is substituted into Eq.(2.43) to determine the stresses. The boundary condition given in

second equation of (2.46a) can be written as:

F11 + F12λ
2 + F13λ

4 = 0, (2.7.102)

where

F11 = 4(Λ − 1)
(
Ẽ2

0(1 − Λ)2(1 + Λ)
Λ2(log Λ)2 − 4

1 + Λ

)
, (2.7.103)
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F12 = 4Ẽ0q̄0(−1 + Λ2)2

C21Λ2(log Λ)2 × (C21 log(C22) + (−1 + α) log(Λ)) , (2.7.104)

F13 = (−1 + Λ)(1 + Λ)3

C21Λ2(log(Λ))2 × F21, (2.7.105)

and F21 = C21q̄
2
0(log(C22))2 + 2q̄0(−1 + α) log(C22) log(Λ)

+(log(Λ))2
(
1 + q̄2

0(1 − α) + Λ2 − α(1 − Λ2)
)
.

(2.7.106)

Also, Eq.(2.63) is used to write the boundary condition (2.46b) as

8M
H2µ

= F14 + F15λ
2 + F16λ

4, (2.7.107)

where

F14 = −4Ẽ2
0
(
Λ2 − 1

)
log2(Λ)

− 8Ẽ2
0

log(Λ) + 8
(
3Λ2 + 1

)
Λ2 − 1 , (2.7.108)

F15 = −4Ẽ0(Λ + 1)q̄0
(
C21

(
Λ2 − 1

)
log(C22) +

(
C21 − 2Λ2) log(Λ)

)
C21(Λ − 1) log2(Λ)

, (2.7.109)

F16 = λ4(Λ + 1)2

C21(Λ − 1)2 log2(Λ)
× F22, (2.7.110)

and F22 =2q̄2
0 log(C22) log(Λ)

(
(α− 1)

(
Λ2 − 1

)
+ C21 log(Λ)

)
+ C21q̄

2
0 log2(C22)

(
Λ2 − 2 log(Λ) − 1

)
+ log2(Λ)

(
2C21 log(Λ) + C21

(
Λ2 − q̄2

0 − 1
)

+ 2Λ2q̄2
0

)
.

(2.7.111)

We now simply solve Eq.(2.7.102) for stretch λ and substitute the solution into (2.7.107).

This will yield the relation between bending moment and curvature. Since the algebra is

simple and the non-linear bending moment curvature relation is extremely tedious, we only

present its Taylor series expansion for small κ̄:

M

4µH2 = M0 +D12κ̄+ o(κ̄), (2.7.112)

where M0 and D12 is given by (2.64) and (2.7.89), respectively. As a result, curvature

induced in the block because of electrical loading and in absence of bending moment is
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determined as

κ̄0 = κ̄

λ
= − M0

D12λ
. (2.7.113)

2.7.3 Solution for bending problem of piezoelectric bimorph beam

introduced in section 4.3

In this section, we present the solution to the bending problem of a piezoelectric bimorph.

The final result is necessary to define the apparent piezoelectric coefficient for the electret

problem considered in Section 4.3. Using Euler beam kinematics, we find a relation for

piezoelectric coefficient in terms of applied bending moment. Consider Fig. 2.9 which

shows a material composed of two layers of the same piezoelectric material with opposite

poling directions. Let x and z be, respectively, axial and thickness directions of the beam.

Axial elastic modulus of the material is denoted by c11 and both layers have the same

thickness H . We assume a unit width for the beam and the length of the beam is 2L.

This beam is deformed in response to bending moment M applied at the two ends. Short

circuit boundary condition is imposed using two mechanically compliant electrodes which

are attached to the surfaces z = ±H. The energy density function can be expressed as [97]

ψ[x; u,p] = 1
2S·cS + 1

2p·D−1p + p·BS, (2.7.114)

where u and c, S are displacement, fourth order elasticity tensor and linear strain tensor,

respectively. Also, D = ϵ − ϵ0I where ϵ is the dielectric tensor and B is third order

piezoelectric tensor. In a one-dimensional setting, ϵ and B can be replaced by ϵ33 and

B31, respectively. Since the beam is composed of two layers of the same piezoelectric

materials with opposite poling directions, we introduce piezoelectric coefficient b31 such that

for B31 = b31 for z > 0 and B31 = −b31 for z ≤ 0. Also, We can relate B31 piezoelectric
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coefficient to commonly used d31 coefficient as 13

d31 = −B31(ϵ33 − ϵ0)
c11

. (2.7.115)

Based on Euler beam kinematics, the deformation u for the beam is given as

u = −z ∂uz(x)
∂x

ex + uz(x)ez. (2.7.116)

Consequently, linear strain tensor is simply derived as S = −z ∂2uz(x)
∂x2 ex ⊗ ex. Due to

the piezoelectric effect and in response to deformation, polarization is developed inside the

bimorph. We assume that the polarization and electric field are only developed in the

thickness direction (p = pez and e = − dξ
dz ez). Accordingly the Maxwell equation (2.4)

reduces to:

−ϵ0
d2ξ

dz2 + dp

dz
= 0. (2.7.117)

Also, free energy of the system can be written as

F [uz, p] =
∫

Ω

[ 1
2c11z

2
(
∂2uz(x)
∂x2

)2

+ |p|2

2(ϵ33 − ϵ0) − pB31z
∂2uz(x)
∂x2

+ ϵ0
2

(
−dξ

dz

)2 ]
−M

∂uz(x)
∂x

∣∣∣∣x=L

x=−L

,

(2.7.118)

where all quantities are expressed in a one-dimensional setting. The equilibrium state of
13There are multiple ways to present constitutive equations for piezoelectricity. From (2.7.114), we can

relate stress components σij to electric field components Ek and strain component Skl through the following
relations

σij =
(
cijkl −Bmij(D−1)mnBnkl

)
Skl + DkmBmijEk,

where Dkm are the components of tensor D. Another alternative for the constitutive relation for piezoelectric
materials may be expressed as

Sij = sE
ijklσkl + dkijEk,

where sijkl and dkij are, respectively, components of compliance tensor and piezoelectric tensor and super-
script E indicates that the quantity has been measured in constant or zero electric field. Introducing sE

mnij
−1

such that sE
mnij

−1
sE

ijkl = δmkδnl this constitutive relation can be rearranged as

σij = sE
ijkl

−1
Skl − sE

ijkl

−1
dmklEm,

Comparing this constitutive relation with the stress-strain relation presented based on the energy formulation
and assuming cijkl −Bmij(D−1)mnBnkl ≈ cijkl, we arrive at the relation in (2.7.115) for a one-dimensional
model.

49



the system is obtained by minimizing the free energy of the system subjected to Maxwell’s

equations:

min{F [uz, p] : (uz, p) ∈ S and (uz, p) satisfies (2.7.117)}, (2.7.119)

where S is the admissible set of functions

S = {(uz, p)| uz ∈ C4([−H,H];R),
∫

Ω
|p|2 < +∞}. (2.7.120)

Using standard calculus of variation, equilibrium equations and boundary conditions for a

beam with unit width are derived as

c11I
∂4uz

∂x4 − ∂2

∂x2

(∫ H

−H
B31pzdz

)
= 0, (2.7.121)

dξ

dz
+ p

ϵ33 − ϵ0
−B31z

∂2uz

∂x2 = 0, (2.7.122)[
c11I

∂3uz

∂x3 − ∂

∂x

(∫ H

−H
B31pzdz

)]∣∣∣∣x=L

x=−L

= 0, (2.7.123)

and
[
c11I

∂2uz

∂x2 −
∫ H

−H
B31pzdz −M

]∣∣∣∣x=L

x=−L

= 0, (2.7.124)

where I =
∫H

−H z2dz. Polarization can be determined in terms of displacement by substi-

tuting Eq.(2.7.122) into Eq.(2.7.117):

p = ϵ0(ϵ33 − ϵ0)
ϵ33

B31
∂2uz

∂x2 z + (ϵ33 − ϵ0)2

ϵ33

H

2 b31
∂2uz

∂x2 . (2.7.125)

Substituting Eq.(2.7.125) into Eq.(2.7.121), we have

κb
∂4uz

∂x4 = 0, (2.7.126)

where κb is an apparent bending stiffness:

κb =c11I − (ϵ33 − ϵ0)(3ϵ33 + ϵ0)
4ϵ33

b2
31I. (2.7.127)
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Solving Eq.(2.7.126) using boundary conditions Eq.(2.7.123) and (2.7.124), we find that the

relation between bending moment and deformation is

M

κb
= ∂2uz

∂x2 . (2.7.128)

Equation (2.7.128) can be used to describe all quantities in terms of applied bending moment

M . Electric displacement d = dez can be determined using Eq.(2.7.128), (2.7.125), (2.7.122)

and (2.1), namely

d = Mb31(ϵ33 − ϵ0)H
2κb

. (2.7.129)

Physically, M
κb

and d represent the curvature of the Euler beam and induced charge at the

electrodes, respectively. The piezoelectric coefficient of this bimorph can be obtained by

measuring the electric displacement due to bending and by using relation (2.7.129). From

Eq.(2.7.129) and (2.7.115) we have

d31 = − 2κb

c11H

∂d

∂M
. (2.7.130)

2.7.4 Solution for bending problem of flexoelectric beam introduced in

section 4.3

The solution of bending of an Euler beam accounting for flexoelectricity is presented

here and is needed to define the apparent flexoelectric coefficient for the electret considered

in Section 4.3. The procedure is similar to what was documented in Appendix 2.7.3 for a

piezoelectric bimorph. We assume that the beam has dimensions 2H × 2L and with unit

width. Coordinates are considered to be similar to Fig. 2.9 and following Euler beam

kinematics, deformation is considered to be same as Eq.(2.7.116). We assume polarization

only exists in thickness direction and introduce pS(x) =
∫H

−H p(x)dz where p = p(x)ez. The

energy density function is given as [108, 105]:

ψ[x;uz, p
S ] = 1

2c11I(∆uz)2−fpS∆uz + 1
2a|pS |2, (2.7.131)

51



where f is flexoelectric coefficient14. Also, ∆(·) is Laplace operator and a = 1
2H(ϵ−ϵ0) where

ϵ is electric permittivity for this homogeneous flexoelectric material. From Eq.(2.7.131), the

free energy of the system can be written as

F [uz, p] =∫ L

−L

[ 1
2c11I

(
∂2uz(x)
∂x2

)2

−fpS ∂
2uz(x)
∂x2 + 1

2a|pS |2
]
dx−M

∂uz(x)
∂x

∣∣∣∣x=L

x=−L

.

(2.7.132)

Again, using standard calculus of variation, the equilibrium equations and boundary con-

ditions are derived as

∂2

∂x2

(
c11I

∂2uz

∂x2 −fpS

)
= 0, (2.7.133)

apS − f
∂2uz

∂x2 = 0, (2.7.134)[
∂

∂x

(
c11I

∂2uz

∂x2 −fpS

)]∣∣∣∣x=L

x=−L

= 0, (2.7.135)

and
[
c11I

∂2uz

∂x2 −fpS −M

]∣∣∣∣x=L

x=−L

= 0. (2.7.136)

Substituting Eq.(2.7.134) into Eq.(2.7.133), we have

κb
∂4uz

∂x4 = 0, (2.7.137)

where κb here is

κb =c11I − 2Hf2(ϵ− ϵ0). (2.7.138)

Using Eq.(2.7.137) and boundary conditions Eq.(2.7.135) and (2.7.136), relation between

bending moment and deformation is derived exactly similar to Eq.(2.7.128). This relation
14In some of the literature, flexoelectric tensor µ is defined such that constitutive relation between po-

larization Pi, strain gradient ∂Sjk

Xl
and electric field Ei is expressed as Pi = DijEj + µijkl

∂Sjk

∂Xl
,where Dij

is a component of D. However, we can also define the flexoelectric tensor f such that the internal energy
density function is given by ψ = W elast + 1

2Pi(D−1)ijPj + fijklPi
∂Sjk

∂Xl
+ ∂Sij

∂Xj
gijklmn

∂Slm
∂Xn

. This internal

energy density function will lead to the following equation:Pi = DijEi − Dijfjklm
∂Sjk

∂Xl
. So, we can conclude

that Dijfjklm = −µijkl or in a one-dimensional setting, f(ϵ− ϵ0) = −µflexo.

52



may be used to write down the electric displacement d = dez in terms of bending moment:

d = M

κb
f(ϵ− ϵ0). (2.7.139)

We observe that the flexoelectric coefficient of the beam may be identified by measuring

curvature and induced charge at the electrodes. Flexoelectric coefficient is determined from

Eq.(2.7.139):

f = κb

(ϵ− ϵ0)
∂d

∂M
. (2.7.140)

2.7.5 Bending of soft composite dielectric block

In a prior work, Bigoni et al. [109] extended Rivlin’s analysis of a purely mechanical

flexure problem of a soft block to that of a composite consisting of multiple layers. In this

section, we use their analysis as a starting point and extend their analysis for a dielectric

electret structure made of two materials where a layer of electric charge with surface charge

density q has been inserted at their interface of two materials (Fig. 2.19). Throughout this

section, we will use subscripts t and b to describe properties of layers on top and bottom,

respectively. Two different coordinate systems are used to specify material points in the

reference configuration for the two different materials.

(a) (b)

Figure 2.19: A composite block made of two layers with two different dielectric materials and
a layer of charge is inserted between two layers. (a) Undeformed configuration.
(b) Deformed configuration.
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ΩRb ={(Xb, Y, Z) ∈ R3 : |Xb| ≤ H
α+ 1

2 , |Y | ≤ L, |Z| ≤ W} and (2.7.141a)

ΩRt ={(Xt, Y, Z) ∈ R3 : |Xt| ≤ H
1 − α

2 , |Y | ≤ L, |Z| ≤ W}. (2.7.141b)

We consider the same class of deformation and kinematic constraints as we did in the

preceding sections while analyzing homogeneous structures:

rb =
√

2AbX +Bb, θb = Y

Ab
, z = Z for layer b and

rt =
√

2AtX +Bt, θt = Y

At
, z = Z for layer t.

(2.7.142)

Electric boundary conditions are identified as

ξ(r1) = 0, (2.7.143a)

ξ(r2) = 0, (2.7.143b)

and ξ(rch) = Vi, (2.7.143c)

where r1, rch and r2 are the inner radius, interface radius and outer radius of the deformed

structure, respectively. The voltage Vi is the unknown electric potential at the interface

of two materials and is created due to insertion of the charge layer. Charge distribution

is exactly same as Eq.(2.54). So, using Maxwell’s equations, voltage Vi can be determined

from following equation

Aq = Vi

(
ϵb

log rch
r1

+ ϵt
log r2

rch

)
. (2.7.144)

Consequently, the electric field in the layers may be determined to be

eb = −Vi

r

1
log rch

r1

er,

and et = Vi

r

1
log r2

rch

er.

(2.7.145)

Since purely circular bending is considered, the mechanical boundary conditions for the
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model are as follows

θb(L) = θt(L), (2.7.146a)

rb = rt at r = rch, (2.7.146b)

trb = (σ∗
b − LabI) er = 0 at r = r1, (2.7.146c)

trt = (σ∗
t − LatI) er = 0 at r = r2, (2.7.146d)

JtrK = 0 at r = rch, (2.7.146e)

and M =
∫ rch

r1
r(σ∗

θθb − Lab)dr +
∫ r2

rch

r(σ∗
θθt − Lat)dr. (2.7.146f)

Lagrange multipliers Lab and Lat can be determined solving equilibrium equation for each

layer and using boundary conditions (2.7.146c) and (2.7.146d)

Lab = σ∗
rrt +

∫ r

r1

1
r′
(
σ∗

rrb(r′) − σ∗
θθb(r′)

)
dr′

and Lat = σ∗
rrt +

∫ r

rch

1
r′
(
σ∗

rrt(r′) − σ∗
θθt(r′)

)
dr′

−
∫ r2

rch

1
r

(σ∗
rrt(r) − σ∗

θθt(r)) dr.

(2.7.147)

From Eq.(2.7.146a), we conclude that Ab = At = A. Similar to Eq.(2.45), A, Bb

and Bt can be expressed in terms of r1, r2 and rch and using continuity of deformation

(Eq.(2.7.146b)) at the interface between two materials, r = rch, deformation can be ex-

pressed in terms of the two independent constants

λb = | rch − r1
(1 + α)H | and Λb = rch

r1
, (2.7.148)

where Λ2 = Λ2
b+α−1

α . Finally, Eq.(2.7.146e) can be used to determine stretch λb in terms of

radius ratio Λ

λ4
b =

32C11Λ2((1 − α2)µt + (α+ 1)2µb)(√
C11 +

√
2
)4

((1 − α2)µt + (α+ 1)2µbΛ2) − 16q2E11

,
(2.7.149)

where coefficients Eij are listed in the Appendix 2.7.1. Also, Eq.(2.7.146f) can be written
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in terms of radius ratio and stretch

M = H2q2λ4
bE18 + H2

64E12

{
32(E13µb + E14µt) + λ4

b

[
E15µb + E16µt

− E17(µb − µt) log
( 2
C21

)
+ 2E17µa log(Λ)

]}
.

(2.7.150)

We can simply substitute Eq.(2.7.149) into (2.7.150) to obtain a relation between the radius

ratio and bending moment. Also, in order to extract a linear relation similar to (2.59), the

resulting relation can be linearized for small values of κ̄ using Taylor series expansion and

Eq.(2.51). Since the linearized relation is rather long, we avoid presenting it here and just

present the following limiting case:

lim
κ̄→0

M

4H2 = q2(1 − α2)((1 − α)2ϵbµt − (α+ 1)2µbϵt)
4 ((1 − α)ϵb + (α+ 1)ϵt)2 ×(

(α+ 1)µb + (1 − α)µt + (1 − α2)q2

(1 − α)ϵb + (α+ 1)ϵt

)−1

.

(2.7.151)

Earlier we had emphasized that for an electret made of a single material, a non-zero cur-

vature is observed in the block even in the absence of mechanical loading unless the charge

layer is located exactly in the middle of the block. However, Eq.(2.7.151) shows that a non-

zero bending moment is required to maintain a flat block even if the charge layer is located

in the middle. In the other words, for a composite electret, and in absence of mechanical

loading, a non-zero curvature can be observed in the block even if the charge layer is lo-

cated in the middle of the block. The reason is that the material in-homogeneity intensifies

non-uniformity of the Maxwell stress inside the material and this non-uniform distribution

of stress bends the block.

As before for a single homogeneous electret material, the definitions (2.71) and (2.68)

may be used to determine the apparent flexoelectric coefficient of the composite block

fapp = 1
(ϵ′ − ϵ0)

2Hq
(
1 − α2) ϵtϵb

(αϵt − αϵb + ϵt + ϵb)2 . (2.7.152)
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where ϵ in relation (2.71) has been replaced with ϵ′ and is defined as

2
ϵ′

= (1 + α)
ϵb

+ (1 − α)
ϵt

. (2.7.153)

In contrast to a homogeneous electret, we now note that the optimal position for the charge

layer is not in the center of the structure and there is an optimum thickness for each layer

which maximizes the apparent flexoelectric coefficient.
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Chapter 3

Homogenization of Electrets with Ellipsoidal Microstructure

and Pathways for Designing Piezoelectricity in Soft Materials.

True piezoelectricity in soft materials is rare if not virtually non-existent. This impedes

applications where both large deformation and a strong electromechanical coupling are de-

sirable e.g. soft robotics, biomedical sensors and actuators, a class of energy harvesting

devices among others. The widely used soft dielectric elastomers rely on the electrostatic

Maxwell stress effect for electromechanical coupling which is a one-way quadratic effect,

requires extremely large voltage for actuation and does not allow for the facile conversion of

mechanical deformation into electricity. Prior research has shown that embedding (and sta-

bilizing) immobile charges or dipoles in soft matter i.e. creating so-called electrets, can lead

to an emergent piezoelectric effect. In this work, using a recently developed homogenization

theory for soft electret materials, we derive closed-form expressions to design soft apparently

piezoelectric materials with an ellipsoidal microstructure. Specifically, we determine both

effective longitudinal (d33) and transverse (d31) piezoelectric coefficients of the material and

study impact of the material properties on these two coefficients. Conventional electrets

exhibit a rather weak d31, which is quite disadvantageous for applications where flexure is

important (e.g. energy harvesting). Either an elastic, or a dielectric contrast is essential to

the emergence of piezoelectricity in electrets and, depending on the microstructural details,

these two effects can either strengthen or diminish the other. Our results indicate that the

microstructure and material properties which lead to an optimum d33 effect are different

from the conditions underlying the optimal d31 response. The maximum d31 effect is ob-

served in electrets where the inclusions are mechanically harder but dielectrically softer than

the matrix material. Finally, we find that a significantly large d33 piezoelectric response is

possible for spheroid inclusion microstructures with large aspect ratios.
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3.1 Introduction

Soft materials are capable of large deformation and thus enable applications in the area

of soft robotics[110], stretchable and wearable electronics[111], large deformation sensor

and actuators [112, 40] and biocompatible devices [113]. A key imperative in the design of

soft materials is to induce a mechanical response when subjected to a suitable stimuli e.g.

electrical or magnetic fields fields, pH, temperature among others. Many applications of

soft materials require a piezoelectric effect–a two way linear coupling between electric field

and mechanical deformation. However, piezoelectricity only exists in noncentrosymmetric

crystals [114]. These materials are hard and brittle materials and are ill-suited for some

of the aforementioned applications. The electromechanical coupling in soft dielectrics is

limited to the electrostatic Maxwell stress effect (or alternatively electrostriction). Due

to electrostriction, all dielectric material deform in response to an applied electric field

[95]. However, this effect is rather weak so hard dielectrics barely exhibit any discernible

deformation. While soft materials like dielectric elastomers are well-able to exploit this

form of electromechanical coupling, we note that electrostriction is a nonlinear (quadratic)

coupling where the deformation scales as the square of the imposed electric field. This

implies that deformation does not reverse if the imposed electric field is reversed [115]. In

addition, electrostriction is a one-way coupling i.e. the material deforms in response to an

electric field but the applied deformation does not generate an electric field [94]. Finally,

significantly large electrical fields are necessary to induce actuation.

There appear to be two approaches to engineer a piezoelectric-like behavior in otherwise

non-piezoelectric soft materials: (i) exploitation of the phenomenon of flexoelectricity [82,

83, 81], and (ii) embedding immobile charges and dipoles in materials thus creating so-

called electrets. Discussion of flexoelectricity is beyond the scope of this work and we refer

the reader to several original works [116, 117, 118, 119, 120, 121, 122, 123, 124, 124, 125,

126] and review articles [127, 81, 128, 85] for further information. The exploitation of

electrets as materials that can mimic piezoelectrics began in earnest in the eighties when

researchers created soft foamy polymers with charges and dipoles trapped on void surfaces

[129, 130, 64, 129]. Piezoelectric coefficient as large as 1200 pC/N has been reported for
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Figure 3.1: Longitudinal and transverse piezoelectric effects in electret materials which is
composed of a matrix and embedded inclusions.

such materials[65, 131].

Electret materials have been subject of experimental research for several decades [132,

64, 133] including recent in the context of 2D materials. They have found applications

in microphones [134], sensors[135], data storage[136]. Electret materials are specifically

interesting for energy harvesting applications as they offer a higher power output compare

to electromagnetic or intrinsic piezoelectric counterparts at low frequencies [137, 138]. Thus,

electrets have been widely studied for energy harvesting applications [139, 140]. At this

point of development, electret materials with large surface charge densities can be easily

fabricated [141]. In addition, there has been several successful attempts for improving

charge stability in electrets—a key issue impeding their practical application. For example,

Luo et al. [142] developed a spray coating method for charge deposition to improve long

term charge stability.

Recently, a few theoretical studies have also provided insights into the design of elec-

tromechanical coupling in electret materials. Deng et al. [98, 99] presented a continuum

model to explain the emergence of piezoelectricity in simple 1-D layered electret structures.

They were able to interpret existing experimental results in which a large longitudinal piezo-

electric effect (so-called d33 effect) is frequently observed in electret materials(see Fig. 3.1

for explanation of longitudinal and transverse piezoelectric effect). We remark that the

transverse piezoelectric coefficient is singularly important for applications (so-called d31 ef-

fect) such as energy harvesting and in general, for both sensing and actuation where flexure
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(the most facile deformation mode) is important. However, conventional electrets exhibit a

large d33 but not d31. Rahmati et al. [143] created a model to explain the reason for small

transverse piezoelectric effect in charged polymer foams and propose simple beam-based

designs to improve this feature. Recently, Liu and Sharma [100] presented a comprehensive

theory of homogenization of electret materials. Works prior to this reference focussed on

simple boundary value problems to illustrate apparent piezoelectricity. In the work of Liu

and Sharma, they were able to rigorously predict a true bulk piezoelectric effect and the

conditions necessary to achieve this. Specifically, they also presented some explicit results

for effective piezoelectric properties of some simple specific microstructures (e.g. laminates).

In addition, they showed that either elastic mismatch or dielectric mismatch in electrets is

essential for the emergence of an apparent piezoelectric effect. We remark that electrets

have also been used to create other forms of multifunctional materials such as magneto-

electrics [144, 144, 145], pyroelectric/electrocaloric materials [146] or understand biological

phenomena.

Despite the work on electrets so far, there remain several unanswered questions about

the emergent piezoelectric. effect:

• Elastic heterogeneity is essential for the emergence of piezoelectricity in electrets how-

ever it is unclear how the interplay of elastic properties impact the average piezoelectric

response.

• Although a large d33 piezoelectric coefficient has been achieved in electrets, the d31

effect is usually quite small[3]. What design strategy may be employed to improve d31

coefficient in electrets?

• Liu and Sharma [100] argue that either elastic or dielectric mismatch must be present

in electrets for apparent piezoelectricity. What is the interplay between dielectric and

elastic mismatch in terms of tuning the effective response of electrets?

• Existing theoretical work have typically analyzed one-dimensional (or quasi-one-dimensional)

electrets. While these studies have been insightful, little is known about how a 3D

dimensional microstructure could impact the effective piezoelectric response of elec-
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trets.

In this chapter, using the broad homogenization theoretical framework of Liu and

Sharma [100], we analyze soft electret materials with ellipsoidal inclusions. The ellipsoidal

microstructure is versatile enough for us to comment on issues such as the role of aspect ratio

of heterogeneities and address the questions and observations highlighted in the preceding

section.

3.2 A Summary of Homogenization Theory for Electrets

In this section, we present a very brief summary of the homogenization theory for

electrets presented by Liu and Sharma [100]. The essential relations required to determine

effective properties of electrets are listed in this section without presenting the details. See

Liu and Sharma [100] for detailed derivation.

3.2.1 Energy formulation

We follow the the exact same notation as the notation used by Liu and Sharma [100].

The deformable elastic body of the electret in the reference configuration is denoted by D.

The deformation y and the nominal polarization p are two independent thermodynamic

variables which describe the state of the system (y,p) : D → R3 × R3. Material points in

the reference configuration are denoted by x. Also, deformation gradient tensor, Jacobian

and the right Cauchy-Green deformation tensore are denoted by F = ∇y, J = detF and

C = FT F, respectively. The electric potential is represented by ξ : D → R. Dirichlet

boundary condition has been applied to the whole boundary of the body ∂D :

ξ = ξb on ∂D and y = x + ub on ∂D, (3.2.1)

where ξb and ub are, respectively, prescribed electric potential and displacement on the

boundary. Following convention is used fo inner products of tensors: for third order tensor

A and second order tensor B we have A : B = AijkBjkei, for forth order tensors A and B

we have AB = AijklBklmn(ei ⊗ ej ⊗ em ⊗ en) and for second order tensor A and vector a
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we have Aa = Aijajei.

The free energy of the system is expressed as

F [y,p] =
∫

D

[
Ψ(∇y,p) + ϵ0

2 ∇ξ · JC−1∇ξ
]

dx

+
∫

∂D
ξbn · (−ϵ0JC−1∇ξ + F−1p),

(3.2.2)

where Ψ : R3×3 ×R3 → R is the internal energy density function. Also, ϵ0 and n are electric

permittivity of the vacuum and unit normal to the boundary, respectively. The equilibrium

state of the system is the state that minimizes free energy give in the Eq.(3.2.2) and also

satisfies the Maxwell equation. The Maxwell equation in the reference configuration is

expressed as

∇ · (−ϵ0JC−1∇ξ + F−1p + F−1pe) = ρe, (3.2.3)

where pe and ρe are external electric dipoles and charges, respectively. In order to obtain a

linear theory, we restrict ourselves to the regime of small deformation and moderately small

electric field

∇u ∼ ε ≪ 1 and p ∼ ε1/2, (3.2.4)

where u(x) = y(x) − x is the displacement. We Introduce tensors χ, C and M as

χ = ∂2Ψ
∂p∂p , C = ∂2Ψ

∂F∂F , and M = 1
2

∂3Ψ
∂F∂p∂p , (3.2.5)

where all derivatives have been evaluated at (F,p) = (I,0). Using the Taylor series expan-

sion and the scaling given in the Eq.(3.2.4), the free energy can be decomposed [147, 58, 97]:

F [y,p] = F (0) + F (1) + F (2) + o(ε2), (3.2.6)

where F (0) := F [y = x,p = 0],

F (1)[p] =
∫

D

[1
2p · χp + ϵ0

2 |∇ξ|2
]

dx +
∫

∂D
[ξbn · (−ϵ0∇ξ + p + pe)] dx ∼ ε, (3.2.7)

and F (2)[u,p] =
∫

D

[1
2∇u · C∇u + ∇u · M(p ⊗ p) + ∇u · σMW

]
dx ∼ ε2, (3.2.8)
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where σMW is given as

σMW = −ϵ0
2 |∇ξ|2I + ϵ0∇ξ ⊗ ∇ξ − ∇ξ ⊗ p. (3.2.9)

We identify the forth order electrostrictive coupling tensor A as

Aijkl = (M)ijk′l′(χ−1)kk′(χ−1)ll′ + ϵ0
2 Tijkl + 1

2[δik(χ−1)jl + δil(χ−1)jk], (3.2.10)

where the fourth-order tensor T : R3×3 → R3×3 is given as

TF = F + FT − (TrF)I ∀F ∈ R3×3,

Tijkl = δikδjl + δilδjk − δijδkl.

(3.2.11)

We identify the dielectric tensor as ϵ = ϵ0I+χ−1. The dielectric tensor and the electrostric-

tive coupling tensor for isotropic materials are expressed as ϵ = ϵI and A = ϵ
2T. We can use

first of Eq.(3.2.7) to write equilibrium equations of the system in terms of electric potental

and displacement

∇ · (−ϵ∇ξ + pe) = ρe in D, (3.2.12)

and ∇ · (C∇u + A (∇ξ ⊗ ∇ξ)) = 0 in D. (3.2.13)

3.2.2 Effective propeties of the electrets

We assume electrostatic body of the electret D has a periodic microstructure (see Fig.

3.2). The rescaled unit cell (or RVE) of the composite is denoted by Y = (0, 1)3 ⊂ D.

We identify fast variables x̃ = x/δ, where δ is the scaling parameter δ reflects the fine

microstructure of the composite as compared with the macroscopic length-scale of the do-

main D. For a domain D,
∫

D
− denotes the average of the integrand on D. Dielectric tensor,

stiffness tensor and electrostrictive coupling tensor are assumed to be Y -periodic functions:

(
ϵ(δ)(x),C(δ)(x),A(δ)(x)

)
= (ϵ# (x̃) ,C# (x̃) ,A# (x̃)) , (3.2.14)
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where x̃ = x
δ is the fast variable.

Effective stiffness and effective electric permittivity tensor

We identify the effective electric permittivity tensor ϵeff, the effective stiffness tensor

Ceff and the effective electrostrictive tensor Aeff as [58, 147]

ϵeffē =
∫

Y
− [ϵ#(x̃)(−∇ξē)] for ē ∈ R3, (3.2.15)

CeffH̄ =
∫

Y
− [C#(x̃)(∇uH̄)] for H̄ ∈ R3×3, (3.2.16)

H̄ · Aeff(ē ⊗ ē) =

and
∫

Y
− [∇uH̄ · A#(x̃)(∇ξē ⊗ ∇ξē)] for (ē, H̄) ∈ R3 × R3×3, (3.2.17)

where the electric potential ξē ∈ Pē and uH̄ ∈ UH̄ satisfy unit cell equilibrium equations

div[ϵ#(x̃)(−∇ξē)] = 0 (3.2.18)

and div[C#(x̃)(∇uH̄)] = 0. (3.2.19)

Also, admissible spaces Pē and UH̄ are defined as

Pē ≡
{
ξ : −

∫
Y

− ∇ξ = ē and ∇ξ is Y-periodic
}

(3.2.20)

and UH̄ ≡
{

u :
∫

Y
− ∇u = H̄ and ∇u is Y-periodic

}
. (3.2.21)

Multiscale analysis and effective piezoelectric tensor

We represent microstructural distribution of external dipoles and charges by (p(δ), ρδ).

We assume a periodic distribution for external charges and dipoles inside the material:

(p(δ), ρδ) =
(

p̄ + p#(x
δ

), ρ̄+ 1
δ
ρ#(x

δ
)
)
, (3.2.22)
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Figure 3.2: A schematic of a periodic microstructure. The color in each unit cell could be
heterogeneities or external, immobile positive and negative charges.

where p# and ρ# are Y -periodic functions

∫
Y

− (p#, ρ#) = 0. (3.2.23)

Existence of external charges and/or dipoles will lead to a piezoelectric effect in elec-

tret materials. We use multiscale analysis based on the method of two-scale convergence

[148, 149] in order to define effective piezoelectric tensor. Using scaling discussed earlier,

electrostatic problem is decoupled from the elasticity. Thus, we perform multi-scale analysis

on the electrostatic equilibrium equation first. The local electric field can be determined

solving


div[−ϵ(δ)∇ξ(δ) + p(δ)] = ρ(δ) in D,

ξ(δ) = ξb on ∂D.
(3.2.24)

The goal of current theory is to analyze the behavior of the material in the limit δ → 0.

Following the formal procedure of multiscale analysis, the solution to Eq.(3.2.24) is given
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as

ξ(δ)(x) = ξ(0)(x, x̃) + δξ(1)(x, x̃) + · · · , (3.2.25)

where x̃ 7→ ξ(i)(x, x̃) is Y-periodic for all i and
∫

Y
ξ(i)− = 0 if i ̸= 0. Using chain rule we can

rewrite gradient and divergence operators as ∇ → ∇x + 1
δ ∇x̃ and div → divx + 1

δ divx̃. It

can be proved that the first order of the solution (3.2.25) is independent of the fast variable

x̃ = x
δ and can be determined from following equation


divx

(
−ϵeff∇xξ

(0) + χD(p̄ + d̄′)
)

= ρ̄ in D

and ξ(0) = ξb on ∂D,
(3.2.26)

where χD = 1 on D and χD = 0 otherwise. Also, d̄′ is defined as

d̄′ =
∫

Y
− ϵ#(−∇x̃ξ

′), (3.2.27)

and ξ′ ∈ P0 and is a solution to the following equation

divx̃[ϵ#(x̃)(−∇x̃ξ
′) + p#] = ρ# in Y. (3.2.28)

The equation (3.2.28) is a key equation in the calculation of the effective piezoelectric tensor

which we will use later. Also, ξ′ can be related to ξ(1) defined in the Eq.(3.2.25). For more

details, reader is referred to the [100].

Next, we can analyze the elasticity problem using a similar procedure as we used for the

electrostatic problem. The mechanical equilibrium equation is expressed as


div[C(δ)∇u(δ) + A(δ)∇ξ(δ) ⊗ ξ(δ)] = 0 in D

and u(δ) = ub on ∂D.
(3.2.29)

The solution to above equation can be written as

u(δ)(x) = u(0)(x, x̃) + δu(1)(x, x̃) + · · · , (3.2.30)
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where u(i)(x, x̃) is Y-periodic for all i and
∫

Y
u(i)− = 0 if i ̸= 0. We identify u′

1 ∈ U0 which

satisfies

divx̃
[
C#(x̃)∇x̃u′

1 + 2A#(x̃)(∇x̃ξ
′ ⊗ ∇x̃ξē)

]
= 0. (3.2.31)

It can be shown that the macroscopic displacement u(0) is independent of the fast variable

(u(0) = u(0)(x)). The boundary value problem for the macroscopic displacement u(0) is

given as


divxσ = 0, in D

and u(0) = ub on ∂D,

(3.2.32)

where the total stress σ is defined as

σ ≡ Ceff∇xu(0) − Beff∇xξ
(0) + Aeff(∇xξ

(0) ⊗ ∇xξ
(0)) + σ0. (3.2.33)

The second order tensor σ0 is independent of the average electric field and strain. The

definition of the tensor σ0 is available in [100]. Also, Beff is the effective piezoelectric tensor

and is defined as

Beffē =
∫

Y
− [C#(x̃)∇x̃u′

1 + 2A#(x̃)(∇x̃ξ
′ ⊗ ∇x̃ξē)]. (3.2.34)

3.3 Effective piezoelectric properties of an electret with

ellipsoidal inclusion

In this section, we use the theory presented earlier to obtain the effective piezoelectric

properties of an electret with ellipsoidal inclusion. The unit cell of the material is shown in

the Fig.3.3(a). We assume both matrix and inclusion are homogeneous isotropic materials.

We identify unit cell by Y and the inclusion is represented by Ω. We denote the stiffness

tensor for the matrix (resp. inclusion) by Cm (resp. Cp). Also, we represent the electric

permittivity the tensor of the matrix and inclusion with ϵm = ϵmI and ϵp = ϵpI, respectively.

We assume that there exist a nonzero uniform polarization ps inside the inclusion. In order
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(a) Three dimensional view.

𝑎1 𝑎3
𝑥1

𝑥3

(b) Front view.

Figure 3.3: The schematic of the electret material with ellipsoidal inclusion. (a) Three
dimensional view. (b) Front view.

to determine the piezoelectric tensor for this material, first we need to solve electrostatic

equations (3.2.28) and (3.2.18). Introducing the variable χp (resp. χm) such that χp = 1

(resp. χm = 1) for x ∈ Ω (resp. x ∈ Y/Ω) and χp = 0 (resp. χm = 0) otherwise, we rewrite

these two equations as

div[−(ϵmχm + ϵpχp)∇ξ′ + psχp] = 0 in Y (3.3.1)

and div[−(ϵmχm + ϵpχp)∇ξē] = 0 in Y, (3.3.2)

where ∫
Y

− ∇ξ′ = 0 and
∫

Y
− ∇ξē = −ē. (3.3.3)

After we solve electrostatic equations (3.3.1) and (3.3.2), we need to solve elasticity equation

(3.2.31) which can be rewritten as

div
(
(Cpχp + Cmχm)∇u′ + σ(e)

)
= 0, (3.3.4)

69



where here we have dropped the subscript 1 from u′
1 for brevity. Also, we identify σ(e) as

σ(e) = ϵ#T(∇ξ′ ⊗ ∇ξē). (3.3.5)

Effective dielectric tensor is defined as

ϵeffē = −
∫

Y
− ϵ#∇ξē. (3.3.6)

Once we have determined ξ′, ξē and u′ we can obtain the effective piezoelectric tensor using

Beffe =
∫

Y
−
[
C#∇u′ + σ(ē)

]
. (3.3.7)

3.3.1 Solution to electrostatic problems

The solution for equations (3.3.1) and (3.3.2) is obtained solving following equation for

the ellipsoidal inclusion

div(−∇ψ̂m + mχp) = 0, (3.3.8)

where m ∈ R3 is a constant vector and ∇ψ̂m → 0 at the infinity. In order to obtain

solution for Eq.(3.3.8), we express ψ̂m and m in terms of their Fourier transforms ψ̄m and

m̄, respectively:

ψ̂m =
∫
R3
ψ̄m(k)exp (ik · x) dk, (3.3.9)

and m =
∫
R3

m̄(k)exp (ik · x) dk. (3.3.10)

Substituting Eq.(3.3.10) and (3.3.9) into (3.3.8), we have

∫
R3

(
ψ̄mkiki + im̄jkj

)
exp (ik · x) = 0. (3.3.11)

Thus, ψ̄m can be determined as

ψ̄m = − ikjm̄j

kiki
. (3.3.12)
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Now consider the Green’s function G(x − x′) as

G(x − x′) = 1
4π

1
|x − x′|

. (3.3.13)

The Green’s function G(x − x′) is expressed in terms of its Fourier transform Ḡ(k) as

[150, 151]

G(x − x′) =
∫
R3
Ḡ(k)exp

(
ik · (x − x′)

)
dk, (3.3.14)

where

Ḡ(k) = 1
(2π)3

1
kiki

. (3.3.15)

Substituting Eq.(3.3.12) into Eq.(3.3.9) and using Eq.(3.3.15) we have:

ψ̂m = −(2π)3
∫
R3
G,jm̄jexp (ik · x) dk, (3.3.16)

where G,j is the Fourier transform of G,j where throughout this chapter subscript “,” means

partial derivative. For example, G,j = ∂G
∂xj

. Using convolution theorem we can rewrite

(3.3.16) as [151]

ψ̂m = −
∫

Ω
G,j(x − x′)mjdx′. (3.3.17)

We identify function Φ(x) =
∫

Ω
1

|x−x′|dx′. For constant m and using Eq.(3.3.17) and

(3.3.13), we express ∇ψ̂m as

∇ψ̂m = Qm for x ∈ Y, (3.3.18)

where Qij = − 1
4π Φ,ij . We introduce following elliptic integrals

I(s) = 2πa1a2a3

∫ ∞

s

ds
∆(s) , (3.3.19)

Ii(s) = 2πa1a2a3

∫ ∞

s

ds
(a2

i + s)∆(s) (3.3.20)

and Iij(s) = 2πa1a2a3

∫ ∞

s

ds
(a2

i + s)(a2
j + s)∆(s) , (3.3.21)
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where

∆(s) =
√

(a2
1 + s)(a2

2 + s)(a2
3 + s). (3.3.22)

Components of Qij for elliptical inclusion with principal semi-axes a1, a2 and a3 can be

determined as [150, 152]

Qij = Q−
ij = 1

4π (δijII(0)) for x ∈ Ω, (3.3.23)

and Qij(x) = Q+
ij = 1

4π (δijII(s) − xiII,J) for x ∈ R3/Ω, (3.3.24)

where the following summation convention has been used: repeated lower case indices are

summed up from 1 to 3; upper case indices take on the same numbers as the corresponding

lower case ones but are not summed. Note that can be proved that for elliptical shapes the

electric field inside the inclusion is constant [153, 154]. Also, the elliptical integrals (3.3.19),

(3.3.20) and (3.3.21) can be explicitly determined for several kinds of ellipsoid. Here, in

this chapter, we consider a prolate spheroid with radii a1, a2 and a3 (see Fig. 3.3(b)). For

prolate spheroid with a2 = a3 < a1, the components of Q tensor for interior points (Q−)

can be determined substituting Eq.(3.3.19) into Eq.(3.3.23)

Q− = Q−
11e1 ⊗ e1 +Q−

22e2 ⊗ e2 +Q−
33e3 ⊗ e3, (3.3.25)

where {e1, e2, e3} represents the coordinate system and

Q−
33 = Q−

22 =

a2
3a1

2(a2
1 − a2

3)3/2 ×

a1
a3

(
a2

1
a2

3
− 1

)1/2

− cosh−1a1
a3

 (3.3.26)

and Q−
11 = 1 − 2Q−

22. (3.3.27)

Also, using jump conditions, the solution on the outer surface of the inclusion can be

determined in terms of the solution inside the inclusion as

∇ψ̂m|∂Ω+ = Q−m − (n · m)n. (3.3.28)
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Having the solution (3.3.18) for the equation (3.3.8), we can determine ∇ξ′ and ∇ξē. We

introduce m1 and m2 as

m1 = [ϵmI + (ϵp − ϵm)Q−]−1ps (3.3.29)

and m2 = (ϵp − ϵm)[ϵmI + (ϵp − ϵm)Q−]−1ē. (3.3.30)

By setting m = m1 and m = m2 in Eq.(3.3.8), the electric fields ∇ξ′ and ∇ξē can be

determined respectively. The solution to Eq.(3.3.1) and (3.3.2) is given as

∇ξ′ = ∇ψ̂m1 (3.3.31)

and ∇ξē = −ē + ∇ψ̂m2 . (3.3.32)

In order to determine piezoelectric coefficient defined in the Eq.(3.3.7), we need to

calculate
∫

Y
− σ(ē). We have

∫
Y

− σ(ē) = (1 − θ)
∫

Y/Ω
− σ(ē) + θ

∫
Ω

− σ(ē). (3.3.33)

The second term on the right hand side of the Eq.(3.3.33) can be simply determined sub-

stituting Eq.(3.3.18), Eq.(3.3.31) and Eq.(3.3.32) into Eq.(3.3.33)

θ

∫
Ω

− σ(ē) = −θϵpT
(
Q−m1 ⊗ ē

)
+ θTϵp

(
Q−m1 ⊗ Q−m2

)
. (3.3.34)

As the values of the components of the tensor Q are not constant for the points located

outside the inclusion, it is difficult to determine the first integral on the right hand side of

the Eq.(3.3.33). Obtaining explicit relations for the effective piezoelectric tensor will not be

possible unless we express all volume integrals in terms of the solutions obtained for electric

fields inside the inclusion. Therefore, from Eq.(3.3.3), we write

∫
Y/Ω

− ∇ξ′ = −θ
1 − θ

∫
Ω

− ∇ξ′ = −θ
1 − θ

Q−m1 (3.3.35)

and
∫

Y/Ω
− ∇ξē = 1

1 − θ

(
−ē − θ

∫
Ω

− ∇ξē

)
= −ē − θ

1 − θ
Q−m2. (3.3.36)
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We introduce ∇ξ(1)
ē and ∇ξ′(1) such that

∇ξē =
(∫

Y/Ω
− ∇ξē

)
+ ∇ξ(1)

ē for x ∈ Y/Ω (3.3.37)

and ∇ξ′ =
(∫

Y/Ω
− ∇ξ′

)
+ ∇ξ′(1) for x ∈ Y/Ω, (3.3.38)

where ∫
Y/Ω

− ∇ξ′(1) = 0 and
∫

Y/Ω
− ∇ξ(1)

ē = 0. (3.3.39)

Substituting Eqs.(3.3.37) and (3.3.38) into Eq.(3.3.33), we have

(1 − θ)
∫

Y/Ω
− σ(ē) = (1 − θ)ϵm

∫
Y/Ω

− T
(
∇ξ′(1) ⊗ ∇ξ(1)

ē

)
+

(1 − θ)ϵmT
([∫

Y/Ω
− ∇ξ′

]
⊗
[∫

Y/Ω
− ∇ξē

])
.

(3.3.40)

We can ignore the first term on the right hand side of the Eq. 3.3.40 and rewrite this

equation as

(1 − θ)
∫

Y/Ω
− σ(ē) ≈ (1 − θ)ϵmT

([∫
Y/Ω

− ∇ξ′
]

⊗
[∫

Y/Ω
− ∇ξē

])
. (3.3.41)

Substituting (3.3.41), (3.3.34), (3.3.36) and (3.3.35) into (3.3.33), we have

∫
Y

− σ(ē) = θ(ϵm − ϵp)T
(
Q−m1 ⊗ ē

)
+ θ

(
θ

1 − θ
ϵm + ϵp

)
T
(
Q−m1 ⊗ Q−m2

)
. (3.3.42)

Equation (3.3.42) can be expressed in terms of ϵeff, ϵm, ϵp and θ. In order to do so, we

rewrite Eq.(3.3.6) as

−
∫

Y
− ϵ#∇ξē = −

∫
Y

− (ϵm − χp(ϵm − ϵp)) ∇ξē = ϵeffē. (3.3.43)

Therefore, from (3.3.18),(3.3.31) and (3.3.32) we have

Q−m2 = 1
θ(ϵm − ϵp)

(
ϵeff − ϵmI + θ(ϵm − ϵp)I

)
ē (3.3.44)
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and Q−m1 = − 1
θ(ϵm − ϵp)2

(
ϵeff − ϵmI + θ(ϵm − ϵp)I

)
ps. (3.3.45)

Substituting Eq.(3.3.44) and (3.3.45) into (3.3.42), the average stress
∫

Y
− σ(ē) is expressed

in terms of ϵeff, ϵm, ϵp and θ:

∫
Y

− σ(ē) = − 1
ϵm − ϵp

T [(ϵ∗ps) ⊗ ē] −
(

θ

1 − θ
ϵm + ϵp

) 1
θ(ϵm − ϵp)3T {(ϵ∗ps) ⊗ (ϵ∗ē)} ,

(3.3.46)

where

ϵ∗ =
(
ϵeff − ϵmI + θ(ϵm − ϵp)I

)
. (3.3.47)

3.3.2 Elasticity problem

Next, we consider the elastic unit-cell problem (3.3.4). The source term σ(ē) physically

can be interpreted as an eigenstress induced by electric fields. It clear that the eigenstress

σ(ē) is uniform inside Ω since ∇ξ′ and ∇ξē are both uniform on Ω. Further, since ξ′
,jj = 0

and ξē,jj = 0 in R3 \ Ω, we find that

σ
(ē)
ij,j = ϵξ′

,ij(ξē),jϵξ
′
,j(ξē),ij − ϵξ′

,jij(ξē),j − ϵξ′
,j(ξē),ji = 0 in R3 \ Ω. (3.3.48)

Therefore, Maxwell stress is divergence free if restricted to interior or exterior of Ω. Jump on

the Maxwell stress over the surface of ellipsoid can be determined substituting Eq.(3.3.28),

(3.3.31), (3.3.32) to (3.3.5)

t(ē) := Jσ(ē)Kn = σ∗n + p∗n, (3.3.49)

where

σ∗ = (ϵm − ϵp)T
[
(Q−m1) ⊗ (−ē + Q−m2)

]
− ϵm

[
(−ē + Q−m2) ⊗ m1 + (Q−m1 ⊗ m2)

]
,

(3.3.50)

and

p∗ = ϵm(m1 · n)(m2 · n). (3.3.51)
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If there exist both elastic and dielectric contrast, we need to solve Eq.(3.3.4). We rewrite

this equilibrium equation as

div
(
Cm∇u′ − χp(Cm − Cp)∇u′ + σ(ē)

)
= 0. (3.3.52)

Using Eq.(3.3.49), the solution to equilibrium equation (3.3.52) is given as [155]

u′(x) = −
∫

Ω

[
∇xGelast(x − x′) :

(
σ∗ + (Cm − Cp)

(
∇xu′(x)

) )]
dx′

+
∫

∂Ω
[Gelast(x − x′)n∗(x′)p∗]dx′,

(3.3.53)

where Gelast(x − x′) is the elasticity greens function for isotropic materials and is given as

Gelast(x − x′) = 1
16πµm(1 − νm)|x − x′|

×(
(3 − 4νm)δij +

(xi − x′
i)(xj − x′

j)
|x − x′|2

)
(ei ⊗ ej),

(3.3.54)

where µm and νm are shear modulus and poisson’s ratio of the matrix material. It is not

easily possible to solve Eq.(3.3.53) for u′ analytically. This is because existence of the

term containing surface integral. This problem is equivalent of the conventional inclusion

problem with nonuniform eigenstrain. In order to simplify this equation, we replace p∗ with

< p∗ >= 1
S

∫
∂Ω p

∗dS, where S is the surface area of the inclusion. Therefore, we identify

Σ∗ = (σ∗+ < p∗ > I) and write Eq.(3.3.49) as

t(ē) ≈ Σ∗n = [σ∗ + ϵm ((m1 ⊗ m2) : (N))] n, (3.3.55)

where the tensor N is defined as

N = 1
S

∫
∂Ω

[ninjei ⊗ ej ]dS. (3.3.56)
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For the ellipsoidal inclusion with principal semi-axes a1, a2 and a3 aligned along e1, e2 and

e3 directions, the components of N are determined as [156]

N = 1
S

2π(a1a2a3)2
∫ ∞

0

δij(ei ⊗ ej)
(a2

I + t2)∆ dt, (3.3.57)

where summation convention is suppressed for upper case indices and

∆ =
√

(a2
1 + t2)(a2

2 + t2)(a2
3 + t2). (3.3.58)

For a prolate spheroid with a1 = a2 and a3 > a1, we have

N = N11e1 ⊗ e1 +N22e2 ⊗ e2 +N33e3 ⊗ e3, (3.3.59)

where

N33 = N22 = 2
S
π(a1a2a3)2 ×

√
1 − k2

2a4
3k

2 ×
[√

1 − k2 − (1 − 2k2)sin−1k

k

]
(3.3.60)

and N11 = 2
S
π(a1a2a3)2 ×

√
1 − k2

a4
1k

2

[
sin−1k

k
−
√

1 − k2

]
, (3.3.61)

and k2 = 1 − (a3
a1

)2. Therefore, substituting Eq.(3.3.55) into Eq.(3.3.52) we have

div
(
Cm∇u′ − χp(Cm − Cp)∇u′ − Σ∗) = 0. (3.3.62)

The solution for (3.3.62) is given as

u′(x) = −
∫

Ω

[
∇xGelast(x − x′) :

(
Σ∗ + (Cm − Cp)

(
∇xu′(x)

) )]
dx′. (3.3.63)

In order to obtain the solution of the Eq.(3.3.63), we define the fourth order auxiliary tensor

S as

S = −1
2(ei ⊗ en ⊗ ej ⊗ ep)

(∫
Ω

[
∂2Gelast

ij (x − x′)
∂xp∂xn

+
∂2Gelast

nj (x − x′)
∂xp∂xi

]
dx′
)
. (3.3.64)
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The tensor S can be related to so-called Eshelby tensor SE by SE = SC or

(C−1)qrmn(SE)ijmn = 1
2 ((S)ijqr + (S)ijrq) . (3.3.65)

It is obvious that tensor S does not satisfy one of the minor symmetries. Similar to the Es-

helby tensor SE, the components of the auxiliary tensor S can be determined for ellipsoidal

inclusion by substituting Eq.(3.3.54) into Eq.(3.3.64). Reader is referred to the textbooks

[152] and [151] for details of the integration of the relation (3.3.64) for elliptical inclusions.

We have calculated the tensor S and listed its components in the Appendix. It should be men-

tioned that, throughout this chapter, we define we define F−1 as the inverse of an arbitrary

fourth order tensor F if (F−1)ijkl = (F−1)jikl = (F−1)ijlk and (F−1)ijkl(F)klmnAmn = Aij

for any symmetric Aij .

Substituting Eq.(3.3.64) in to Eq.(3.3.63), the linear strain ε′ = 1
2(∇u′ + (∇u′)T ) can

be written as

ε′ = S
(
Σ∗ + (Cm − Cp)ε′) . (3.3.66)

Using the definition given for the inverse of fourth order tensors, the strain ε′ is determined

as

ε′ = (Cp − Cm + S−1)−1ΣSYM, (3.3.67)

where

ΣSYM = 1
2
(
Σ∗ + (Σ∗)T

)
+ 1

2S S
−1
(
Σ∗ − (Σ∗)T

)
. (3.3.68)

3.3.3 Effective elastic and piezoelectric properties

In this section, we determine the effective stiffness tensor Ceff and the effective piezoelec-

tric tensor Beff for the material shown in the Fig. 3.3. In order to determine effective stiffness

tensor defined in the Eq.(3.2.16), we need to solve Eq.(3.2.19). The equation (3.2.19) can

be written in following fashion

div (Cm∇uH̄ − χp(Cm − Cp)∇uH̄) = 0, (3.3.69)
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where
∫

Y
− ∇uH̄ = H̄. We define u′

H̄ such that ∇u′
H̄ = ∇uH̄ − H̄. Thus, from Eq.(3.3.69),

∇u′
H̄ can be determined solving following equation

div
(
C#∇u′

H̄ − χp(Cm − Cp)H̄
)

= 0. (3.3.70)

As H̄ is arbitrary, we set (Cm − Cp)H̄ = ΣSYM. Substituting this relation into Eq.(3.3.70)

yields

div
(
C#∇u′

H̄ − χpΣSYM
)

= 0. (3.3.71)

The solution to (3.3.71) is given as

1
2
(
∇u′

H̄ + ∇u′T
H̄

)
=
(
Cp − Cm + S−1

)−1
ΣSYM. (3.3.72)

Substituting the solution (3.3.72) in to the definition (3.2.16), a linear equation for effective

stiffness tensor is derived as

CeffH̄ =
∫

Y
− C#∇uH̄ =

∫
Y

− [C#(∇u′
H̄ + H̄)] =

C̄H̄ + θ(Cp − Cm)
(
Cp − Cm + S−1

)−1
ΣSYM,

(3.3.73)

where C̄ =
∫

Y
− C. From Eq.(3.3.73), the effective stiffness tensor is determined as

Ceff = C̄ + θ(Cp − Cm)
(
Cp − Cm + S−1

)−1
(Cm − Cp). (3.3.74)

Substituting Eq.(3.3.67) into Eq.(3.3.7), the effective piezoelectric tensor can be written

as
Beffe =

∫
Y

−
[
σ(ē)

]
+ θ

∫
Ω

− [(Cp − Cm)∇u′] =∫
Y

−
[
σ(ē)

]
+ θ(Cp − Cm)

(
Cp − Cm + S−1

)−1
ΣSYM.

(3.3.75)

From Eq.(3.3.74) we have

Beffe =

=
∫

Y
−
[
σ(ē)

]
+ (Ceff − C̄)(Cm − Cp)−1ΣSYM.

(3.3.76)
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Substituting Eq.(3.3.46) into (3.3.76), we obtain a linear set of equations which can simply

be solved to determine each component of the piezoelectric tensor Beff

Beffe = (Ceff − C̄)(Cm − Cp)−1ΣSYM − 1
ϵm − ϵp

T [(ϵ∗ps) ⊗ ē]

−
(

θ

1 − θ
ϵm + ϵp

) 1
θ(ϵm − ϵp)3T {(ϵ∗ps) ⊗ (ϵ∗ē)} .

(3.3.77)

The equation (3.3.77) gives us a linear set of equations which can simply be solved to de-

termine each component of the piezoelectric tensor Beff. The effective piezoelectric tensor

depends on the effective electric permittivity tensor ϵeff and effective stiffness tensor Ceff

which can be determined using Eqs.(3.3.44) and (3.3.74), respectively. It is clear from

Eq.(3.3.77) that the effective piezoelectric tensor linearly depends on the residual polariza-

tion ps. Also, from Eq.(3.3.42) and (3.3.75), it is obvious that existence of elastic mismatch

or dielectric mismatch is necessary condition to have a non-zero piezoelectric coefficient.

The effective piezoelectric tensor Beff relates electric field to stress and vice versa (see the

relation (3.2.33)). We can define third order piezoelectric tensor eff which can be used to

relate electric field to strain and vice versa. The piezoelectric tensor deff is defined as

−(C)eff
ijkl(deff)mkl = (Beff)ijm (3.3.78)

or

(deff)mij = −((Ceff)−1)ijkl(Beff)klm. (3.3.79)

In what follows, we will use contracted notation and denote d333, d311, d111 and d133 by d33,

d31, d11 and d13, respectively.

3.4 Results and discussion

In this section, we use the formulation presented earlier and calculate effective piezoelec-

tric coefficients for the material shown in the Fig. 3.3 in which a prolate spheroid with radii

a1, a2 and a3 has been embedded in a matrix material (a2 = a3 < a1). Unless otherwise

stated we set ϵm = 2.35ϵ0, µm = 2.35ϵ0 and µm = 1 MPa, θ = 0.05 and a1 = 5a3. Also,
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we assume inclusion is softer than matrix with µm = 103µp and νm = νp. In addition, we

assume the inclusion has the polarization ps = pse3. We will change all these material prop-

erties and investigate effects of each one of them on the effective piezoelectric coefficients of

the material.

We investigate the effect of direction of polarization inside the material on the effective

piezoelectric coefficients in the Fig. 3.4. We have set

ps = ps (cos(α)e3 + sin(α)e1) , (3.4.1)

and plotted different piezoelectric coefficients with respect to the angle α. This figure shows

that the d31 and d33 coefficients are maximum if the polarization is along the e3 direction.

The d31 and d33 decreases as the polarization direction rotates from e3 direction toward e1

direction and these coefficients become zero when residual polarization is perpendicular to

the e3 direction. This result implies that if polarization is along e3 direction and we apply

an external electric field along e1 direction, we will not observe any piezoelectric effect and

the material will behave similar to a conventional dielectric material. A similar results is

reported for d11 and d13 piezoelectric coefficients where these two coefficients are zero at

ps = ±pse3 and they peak at ps = ±pse1.

Figure 3.4: Rotation of preexisting dipole and its effect on effective dimensionless piezo-
electric coefficients of a composite material with ellipsoidal inclusion.

In addition, Fig. 3.4 shows that d33 (resp. d11) piezoelectric coefficient is always greater
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than d31 (resp. d13) piezoelectric coefficient for all values of α. This implies that the when

an electric field is applied along the polarization direction of the material, the first order

deformation observed along the polarization direction is always greater than the first order

deformation observed along the direction perpendicular to polarization direction of the

material. For the rest of this chapter we set ps = pse3 and focus on d33 and d31 coefficients.

(a) Dimensionless effective d33 coefficient. (b) Dimensionless effective d31 coefficient.

Figure 3.5: The effect of elastic contrast on the effective (a) d33 and (b) d31 piezoelectric
coefficients.

(a) Dimensionless effective d33 coefficient. (b) Dimensionless effective d31 coefficient.

Figure 3.6: The effect of elastic contrast on the effective (a) d33 and (b) d31 piezoelectric
coefficients.
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Figure 3.5 show the effective piezoelectric coefficients versus ratio of inclusion shear

modulus over matrix hear modulus ( µp

µm
) for different ratios of materials electric permittiv-

ity ϵp

ϵm
. We have set the matrix electric permittivity to ϵ = 2.35ϵ0 which is equivalent to

polypropylene (PP) electric permittivity [107] and plotted piezoelectric coefficients. Note

that the electric permittivity of the inclusion cannot be less than vacuum electric permittiv-

ity and minimum possible value for electric permittivity ratio is ϵp

ϵm
= 1/2.35 ≈ 0.5. Thus,

we have plotted piezoelectric coefficients for 0.5 ≤ ϵp

ϵm
≤ 2. We will further study effect of

electric permittivity ratio later. Figs. 3.5(a) and 3.5(b) show that in absence of dielectric

mismatch ( ϵp

ϵm
= 1) and elastic mismatch ( ϵp

ϵm
= 1) both piezoelectric coefficients d31 and

d33 are zero and as the ratio ϵp

ϵm
increases to the values greater than one or decreases to the

vale less than one the magnitude of the piezoelectric effect increases. Figure 3.5(a) shows

that as the ratio µp

µm
increases d33 decreases toward negative values while Fig. 3.5(b) shows

as the ratio µp

µm
increases d31 increases toward positive values. Also, Fig.3.5 shows that

increasing µp

µm
to the values greater than 100 or decreasing it to the values less than 0.01

will not have a considerable impact on the value of the effective piezoelectric coefficients.

In addition, Fig. 3.5(a) shows that increasing the ratio ϵp

ϵm
from 0.5 to 2 shift d33 graph

upward and Fig. 3.5(b) shows that increasing the ratio ϵp

ϵm
from 0.5 to 2 shift d31 graph

downward. This means that coexistence of elastic mismatch and dielectric mismatch may

intensify or weaken piezoelectric effect. For example, for a composite material composed

of a soft inclusion embedded in a hard matrix ( µp

µm
≪ 1), increasing ϵp

ϵm
from 0.5 to 0.8 in-

creases d33 coefficient and decreases d31 coefficient to almost zero. However, if the inclusion

is harder than the matrix material ( µp

µm
≫ 1), increasing ϵp

ϵm
from 0.5 to 0.8 increases d31

coefficient but decreases d33 coefficient.

Figures 3.6(a) and 3.6(b) show the effect of dielectric mismatch on the effective d31 and

d33 piezoelectric coefficients, respectively. These figures show that sharp dielectric contrast

with a very large value of ϵp

ϵm
leads to insignificant piezoelectric effect. Also, these figures

show the maximum d33 achieved is for a material with ϵp

ϵm
≈ 11 and soft inclusion in a hard

matrix ( µp

µm
≤ 10−2) while the maximum d31 piezoelectric coefficient is for hard inclusions

embedded in soft matrices where inclusion has small ϵp

ϵm
ratio. Based on Fig. 3.5 and 3.6, we

can conclude that the material composition that will lead to maximum d33 effect is not the
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same as the material composition that will lead to maximum d31 effects. The formulation

we presented here can be used to design materials with optimum desirable piezoelectric

effect.

(a) Dimensionless effective d33 coefficient. (b) Dimensionless effective d31 coefficient.

Figure 3.7: The effect of inclusion volume fraction and the compressibility of the material on
the effective (a) d33 and (b) d31 piezoelectric coefficients( µp

µm
= 10−3, ϵp

ϵm
= 0.5,

νp = 0.1).

The effect of material compressibility on the effective piezoelectric coefficient is studied

in the Fig.3.7. We have set the inclusion poisson’s ratio to νp = 0.1 and plotted d31 and d33

versus volume fraction for different values of matrix poisson’s ratio νm in Fig.3.7(a) and Fig.

3.7(b), respectively. It is clear that as volume fraction of inclusion increases piezoelectric

coefficients also increase. Also, these figures show that as νm increases both d31 and d33

piezoelectric coefficients. This means that compressibility improves the piezoelectric effect.

Figure 3.8 shows the impact of the spheroid aspect ratio a1
a3

on the piezoelectric behavior

of composite material. We have assumed that the material is composed of a soft inclusion

embedded in a hard matrix (µp/µm = 10−3). Figure 3.8(a) shows that the magnitude of d33

piezoelectric coefficient increases as the aspect ratio increases unless there is no dielectric

mismatch in which case the change in the aspect ratio will not have a significant impact on

the piezoelectric coefficient. On the other hand, Fig. 3.8(b) shows that the d31 piezoelectric

coefficient remains almost unchanged as the aspect ratio increases. Fig.3.8 shows that

the d33 coefficient can be two to three orders of magnitude larger than d31 piezoelectric
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(a) Dimensionless effective d33 coefficient. (b) Dimensionless effective d31 coefficient.

Figure 3.8: The effect of inclusion aspect ratio on the effective (a) d33 and (b) d31 piezo-
electric coefficients.

coefficient. This behavior is consistent with experimental measurement of piezoelectric

coefficients of charged polymer foams in which d33 coefficient has been reported to be two

orders of magnitude greater than the d31 coefficient [3]. Based on this figure, we can conclude

that one simple way to design composite material with large d33 piezoelectric coefficient is

to use composite material is composed of spheroid inclusions with large aspect ratios.

Figure 3.9: Comparison of the effective piezoelectric coefficients of electrets with spheroid
inclusions with piezoelectric coefficients of PZT [2] and charged PP polymer
foam [3].
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The effective piezoelectric coefficient of a composite electret material with spheroid

inclusion with a1/a3 = 100 and θ = 0.3 versus residual polarization ps = pse3 has been

plotted on Fig.3.9. In addition, we have plotted the piezoelectric coefficients of PZT [2] and

a charged polymer foam electret material [3]. This figure shows that for ps ≈ 10−4 C/m2,

both d31 and d33 coefficients of electret material considered in this work are almost equal

to piezoelectric coefficient of charged the PP polymer foam. As the residual polarization

increases to ps ≈ 10−2, d31 piezoelectric coefficient of the electret with spheroid inclusion

becomes close to that of a PZT material while d33 coefficient of the material considered in

this work is two orders of magnitude greater than the piezoelectric coefficient of the PZT.

This figure shows that electret material with large residual polarization can exhibit giant

piezoelectric effect.

3.5 Conclusion

In summary, we used the theory of homogenization for presented by Liu and Sharma

[100] in order to find the effective properties of a composite material in which an elliptical

inclusion with nonzero electric polarization embedded in a matrix material. We analytically

calculated effective electric permittivity tensor and stiffness tensor for this material. In

addition, we presented close form solution for the effective piezoelectric tensor of the material

in presence of both elastic mismatch and dielectric mismatch. We thoroughly investigated

effect of all material properties on piezoelectric coefficients of the material. We showed

that both elastic mismatch and dielectric mismatch can lead to a piezoelectric effect but

these two may act against each other and weaken piezoelectric effect of the material. In

addition we showed that effects of different material properties of constituent on different

piezoelectric coefficients are not the same.
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3.6 Appendix

3.6.1 The components of auxiliary Eshelby tensor S for a unit cell with

ellipsoidal inclusion.

The integration of Eshelby tensor has been explained in the Eshelby’s original paper

[154] and the textbooks [151] and [152]. We have followed the same approach as explained

in the [151] and calculated component of auxiliary Eshelby tensor S defined in Eq.(3.3.64).

The components of S for an ellipsoidal inclusion is given as

S1111 = CA

(
CB

CA
− 2

)
I1 − 3CAa

2
1I11, (3.6.1)

S1122 = CA

(
I1 − a2

2I12
)
, (3.6.2)

S1212 = CA

(
− CB

2CA
I2 − 1

2a
2
1I12 − 1

2a
2
2I12 + 1

2I1

)
(3.6.3)

and S1221 = CA

2

(
I2 − a2

1I12 − CB

CA
I1 − a2

2I12

)
, (3.6.4)

where CA and CB are constants related to material properties of the matrix material and

are defined as

CA = − 1
a6πµm(1 − νm) (3.6.5)

and CB = − 1
4πµm

+ 1
16πµm(1 − νm) , (3.6.6)

and Ii,j are elliptical integrals defined in Eq.(3.3.20) and (3.3.21). All other components of

the tensor S can be obtained by permutation of (1, 2, 3) indices.
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Chapter 4

Giant Magnetoelectricity in Soft Materials Using Hard Mag-

netic Soft Material

Imagine a material that will produce electricity via a contactless, wireless signal. Fur-

ther, we hope that this material is capable of large deformation reminiscent of soft robots

and is soft enough to conform to irregular or curved geometries. This would all be possible

if soft magnetoelectric materials were available; paving the way for applications such as re-

mote drug delivery, energy harvesting, soft robots, multiple state memories among others.

Here, for the first time, using the concept of hard magnetic soft matter in combination with

electrets, we design and create a soft magnetoelectric material that exhibits an extremely

strong, self-biased magnetoelectric effect. Further, using programmable pattern of deposi-

tion of magnetic dipoles and charges, we report a giant magnetoelectric coefficient in an

ultra-soft deformable material that retains its strength even under infinitesimal external

fields and at low frequencies.

4.1 Introduction

The magnetoelectric (ME) property is rare in single phase (natural) materials and re-

stricted to certain hard exotic crystals that satisfy a stringent set of material symmetry

constraints [157, 158, 159]. An alternative approach is to create artificial ME materials

using composites of piezoelectric and magnetostrictive materials [160, 161, 162, 163, 164].

While such composites may exhibit significant magnetoelectricity [165, 166, 167], they are

typically hard brittle materials and often painstakingly fabricated and frequently contain

environmentally toxic materials such as lead. Even polymer based ME composites (in par-

ticular PVDF and its copolymers) which are regarded as lead-free, flexible and light weight

class of ME composites, are not suitable candidate for applications in soft robotics, biology

88



and medicine due to several reasons: First, truly soft ME composite do not exist! Even

flexible PVDF based ME composites have elastic modulus on the order of several GPa and,

therefore, are not really soft. Second, an external DC bias-field is often necessary to achieve

an appreciable ME coupling in composites and this renders the resulting devices quite bulky

and hinges on the integration of electronics [168]. We emphasize that the magnetoelectric

coefficient α of such materials (which embodies the strength of the interconversion between

electrical and magnetic fields) is directly proportional to the externally applied magnetic

field he, and thus becomes negligible for small fields unless a pre-existing DC bias magnetic

field is present. Finally, ME composites exhibit strong coupling only at high frequencies

rendering them unsuited for wireless energy transfer for implantable medical devices where

high frequency magnetic field may cause safety issues [169]. Examples of low frequency

application includes targeted drug delivery [170], brain stimulation [171], and tissue regen-

eration [172].

Recently, we have made some progress in creating soft ME materials based on silicone

rubber by exploiting the so-called Maxwell stress effect and electrets [145, 144]. While

the fabricated materials were indeed mechanically soft, the magnetoelectric coefficient was

modest especially under weak magnetic fields (and thus shares the same disadvantage as ME

composites in that the magnetoelectric coefficient depends linearly on the external applied

field (α ∝ he)).

In this work, however, we make a significant breakthrough. We use the concept of hard

magnetic soft matter [173, 25, 174] and electrets (–referred in the following as hard magnetic

soft electrets–HMSE). HMSEs are soft materials in which magnetically hard micro particles

and electric charges and dipoles are embedded in a way to exhibit non-uniform magnetic

field strain (See Fig. 4.1). The electrets provide the basis for an apparent piezoelectric-like

behavior. As our theoretical work shows (see Methods and Supplementary Information (SI)

Section), in this concept, the mechanical strain ε is linearly proportional to magnetic field

ε ∝ Brhe and the magnetoelectric coefficient of these materials becomes independent of the

externally applied magnetic field(α ∝ q0B
r). Here, Br is the residual magnetic flux density

due to hard-magnetic particles and q0 is the electret charge density. Therefore, HMSEs can

enable extremely large ME coupling coefficient even under extremely small magnetic fields
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and there is no need for a DC bias field.

We show that guided by a rigorous theoretical and computational framework, HMSEs

with giant ME voltage coupling coefficient αeff
ME ≥ 1 can be designed and fabricated in a

rather facile manner. Indeed, the fabrication scheme for the HSMEs is accomplished at low

temperatures and amenable for small scale and miniaturized applications. We remark that

any soft dielectric material can be used to as the basis for the HSMEs e.g. rubber. As we

demonstrate, the ME effect can be designed (even optimized) by modifying the arrangement

of electric charges/dipoles or altering the alignment of magnetic particles inside the material.

Specifically, for a system made of an electret polytetrafluoroethylene (PTFE) thin film

layered with micro-hard-magnetic particle embedded silicone rubber, we demonstrate a

room temperature ME voltage coupling coefficient of 332.7 mVcm−1Oe−1 at low frequency

(1Hz) and zero bias field. Finally, upon programmed patterned magnetic dipoles (guided

by theory), under flexure deformation mode, we are able to report a giant ME voltage

coupling coefficient of 15.36 Vcm−1Oe−1 at resonance frequency of 6 Hz in an elastically

uniform material with elastic modulus of 55 KPa. To the best of our knowledge, this is

the only soft material fabricated so far which exhibits a “giant” ME effect. In fact, the

ME coupling coefficient of our fabricated material is even comparable to the highest values

reported in the literature for polymer based ME composite but with the caveat that our

material is extremely soft (capable of large deformation), operable at low frequencies and no

bias field is required(see Table-1 and Figure S1 in the SI for a comparison to other material

systems.)

4.2 Results: Emergent magnetoelectricity in

tension-compression deformation mode

The materials preparation is described in Methods. In the simplest design, HMSE is

composed of two disc shape layers. One layer consists of a neodymium-iron-boron mi-

croparticles(NdFeB) in the soft rubber (Ecofelx-0010) which we refer to as NMISR and the

second one is polytetrafluoroethylene(PTFE) thin film sandwiched between two mechani-

cally compliant electrodes(see inset of Fig. 4.2a and Fig. S2 ). A layer of surface charge
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was deposited onto one surface of the PTFE thin film by the corona charging technique

to create the electret. PTFE is known to be better for electret charge stability [175] . In

addition, since PTFE is no ferromagnetic, it hardly deforms under a magnetic field, while a

nonzero strain is developed in NMISR layer in response to an applied magnetic field. This

non-uniform deformation is vital to the appearance of a electromechanical response in the

material(see Eq. S8 in the SI). In order to compare the behavior of HMSEs with previously

developed Soft Magnetic Soft Electrets (SMSEs) [176], we also fabricated and examined a

SMSE sample by attaching a soft magnetoactive rubber to a charged PTFE layer. The soft

magnetoactive rubber which is denoted by IMISR is a mixture of iron microparticles and

soft rubber (see Methods for details on fabrication of SMSE samples).

Our theoretical results show that an application of external magnetic field to HMSE

will lead to expansion (resp. contraction) of NMISR along the thickness direction if applied

field is in the same (resp. opposite) direction of the residual magnetic field, while PTFE

layer remains almost undeformed. This non-uniform deformation alters the electric field

inside the material which, under short circuit boundary condition, leads to the transfer of

electric charges from one electrode to the another. This magnetic field induced transfer

of charges can be interpreted as the ME effect. We have experimentally measured electric

output charges generated as result of an AC magnetic field with frequency of 1 Hz applied

to both HMSE and SMSE samples. The output charge versus time is plotted in the Fig.

S3. Measured output charges are used to calculate the ME voltage coupling coefficient of

material using the relation αeff
ME = ∂(∆Q)

CeffH∂he , where ∆Q, H and Ceff, respectively, are the to-

tal output charges, total thickness and the effective capacitance of the material. The values

of Ceff = 44.4 pF and Ceff = 34.5 pF have been experimentally measured for both HMSE

and SMSE samples. Figure 4.2a shows the voltage coupling coefficient of two samples for

different magnetic fields. This figure also illustrates that the voltage coupling coefficient

of the SMSE is linearly proportional to the magnetic field and more importantly it van-

ishes at zero magnetic field (as expected). Therefore, SMSEs are similar to conventional

ME composites, and show an exceedingly weak response for modest magnetic fields. This

necessarily implies that a DC bias magnetic field has to be used to increase the sensitivity

of SMSEs. On the contrary, αeff
ME of HMSE is constant with respect to external magnetic
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field, and is experimentally measured to be around 204 mV cm−1Oe−1, which is significant

for practical applications [177]. As evident from the figure, our theoretical prediction of

ME voltage coupling coefficient is consistent with experimental results (details of the theo-

retical approach is in the Methods section and SI ). The mechanistic underpinnings for the

distinct behavior of HMSEs compare to SMSEs and ME composites is further highlighted

in the Fig. S4 where we illustrate strain versus applied magnetic field for NMISR, IMISR

and magnetostrictive samples. We note a linear relationship between strain and external

magnetic field for NMISR which is consistent with theoretical predictions (see SI ). How-

ever, magnetic field induced strain in ME composites and SMSE vary quadratically with

the external magnetic field. As a result, output charge in SMSEs and ME composites de-

pends quadratically on the external field. This behavior is also obvious from Fig. S3 where

frequency of output charge in HMSE is the same as the frequency of external field while

in SMSEs, the frequency of output charge is twice as large as the applied field. The linear

relationship between external magnetic field and output charges for HMSE is shown in the

Fig. S5. As a result, the ME voltage coupling coefficient, which is the derivative of output

charge with respect to magnetic field, is independent of external field in HMSEs.

Figure 4.1: A schematic illustration of HMSE composed of two layers of dielectric mate-
rial(s) with a layer of embedded charges at the interface (charge layer shown
with dark brown color).

According to our theoretical predictions (see SI ), αeff
ME can be improved by either in-

creasing surface charge density or increasing residual magnetic flux density in the materials.

Experimental results for these two strategies, respectively, are shown in Fig. 4.2b and Fig.
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S6. As we can observe from Fig. 4.2b, αeff
ME monotonically increases as the interface charge

density of two layers increases. The linear dependence of αeff
ME on the interface charge den-

sity is in agreement with theoretical prediction (S8). The maximum surface charge density

we are able to achieve experimentally is ≈2 mC/m2 and the maximum ME voltage coupling

coefficient we have achieved with this design of HMSE is 332.7 mV cm−1Oe−1. This value

was measured at a very small frequency of 1 Hz. This result proves that HMSE materials

can can exhibit very strong ME effect in weak magnetic fields and under very small fre-

quencies without the need for a DC bias magnetic field. To the best of our knowledge, this

is the first known soft material with such a compelling magnetoelectric effect without a DC

bias magnetic field. Finally, in Table-1 and Fig. S1 (SI ), we may note that the ME effect

of our fabricated material at such small frequency is comparable to the highest self biased

ME voltage coupling coefficient achieved with polymer based ME composites.

4.3 Flexure deformation mode and “giant”

magnetoelectricity

In the design of HMSE presented in the preceding section, the ME effect is mediated

by tension and compression deformation of the material. Since non-uniform deformation

is necessary to generate a piezoelectric like effect in electret materials, having a hard layer

in the structure of HMSE (which hardly deforms with respect to the magnetoactive layer)

is essential to achieve ME effect in the previous design for compression/tension. This stiff-

ens the overall material somewhat (although the material is still relatively soft compared to

other contenders like composites). However, the manifestation of electromechanical coupling

in electret materials is not just restricted to compression/tension [178, 179]. In a flexure

mode, electrets can exhibit a large electromechanical effect regardless of whether they are

elastically uniform (or not). The flexure deformation mode is also important because reso-

nance frequency in bending deformation is much smaller than compression. Finally, we can

theoretically show that in HMSEs designed in the tension and compression mode, we have

αeff
ME ∝ Brq0 and for HMSEs designed for the flexure mode, we have αeff

ME ∝ ARBrq0 (see

SI ), where AR is the structural aspect ratio (typically greater than 10). Therefore, bend-
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ing induced ME effect is at least one order of magnitude larger than tension/compression

induced effect.

(a) (b)

Figure 4.2: (a) The ME voltage coupling coefficient of HMSE and SMSE measured at differ-
ent magnetic fields. (b) The ME voltage coupling coefficient of different HMSEs
with different interfacial charge densities measured at he = 627 Oe.

(I)(I) (II) (III)

(IV) (V) (VI)

(b) (c)

(a)

Figure 4.3: (a) Steps of creating PHMSE. (b) Stress-strain graph of three PHMSE samples.
(c) Comparison of experimental and numerical simulation results for deforma-
tion of PHMSE under different static magnetic fields.

94



While it is difficult to achieve magnetic field induced bending deformation in SMSE

materials, hard magnetic materials can be programmed to undergo any form of deformation

in response to applied magnetic field [180]. This provides an extensive design space for

designing HMSEs with desirable deformation and enhanced ME property. To demonstrate

this, we create a programmed HMSE (–abbreviated as PHMSE) which is designed to exhibit

bending deformation in response to an applied magnetic field.

Fig. 4.3a represents the steps for creating PHMSE (with further details in Methods).

The shape programmability in PHMSEs is achieved by deforming the material in the mag-

netization step (4.3a step IV). Thus, we bend and fix the double-layer magnetoelastomer

and apply a magnetic filed as high as 1.2T to the material which leads to alignment of mi-

croparticles along the applied field. Due to the high coercivity and high residual magnetic

flux density of NdFeB micro particles, after alignment, the magnetization profile remains

stable even after the magnetic field has been turned off. Once the magnetization magnetic

field is removed and the deformation is reversed, the magnetic micro particles which are

anchored to matrix material rotate as the material element rotates. The residual flux den-

sity achieved is Br = 0.0767. The profile of the residual flux density has been theoretically

calculated in Eq.(4.4.2). The material has dimensions 22×12×1.85 mm, Ceff =6.40 pF and

q0 = 0.0488 mC/m2 unless otherwise stated. We remark that since the thickness of PTFE

is negligible compare to thickness of the overall material, overall the material is essentially

uniform elastically. The softness of the fabricated material may be readily (and visually)

appreciated from Fig. 4.3b. In addition, Fig. 4.3b shows the stress-strain response of the

material indicating that the material can be stretched more than 10 times its size (– its

elastic modulus is roughly 55 KPa).

We show the deformation behavior of PHME under a uniform DC magnetic field in Fig.

4.3c. As a uniform vertical field is applied to material, the magnetic particles tend to align

themselves along the applied external field. The alignment of the particle occurs by defor-

mation of the material as these hard-magnetic particles are anchored to the material points.

Therefore, the whole material bends in response to applied magnetic field. The curvature

of the material increases as the magnetic field increases (Fig. 4.3c). The deformation is

asymmetric with respect to the magnetic field since the residual field is not symmetric with
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respect to neutral axis of the beam. In addition to experimental results, we have also used

numerical computation of our nonlinear fully coupled electro-magneto-mechanical theory

to study the behavior of PHMSEs (see Methods and SI for details on the computational

approach). As evident from Figure 4.3c, our numerical results are in good agreement with

experimental results.

We measure frequency response of the PHMSE by applying an AC external magnetic

field to the PHMSE. Figure 4.4a shows the ME voltage coupling coefficient and the output

charge of the PHMSE in response to an external magnetic fields with amplitude of 12 Oe

and the frequency of 1-10Hz. As fully anticipated by our theory, no ME effect is in evidence

if the sample is not charged. The resonance frequency of PHMSE is near 6 Hz where the

output charge reaches its peak value. At the peak point, we obtain a giant ME voltage

coupling of αeff
ME ≈ 11.2 V cm−1Oe−1. We emphasize that we obtain this extraordinarily

large ME effect at low frequency and without any external DC bias field. The effect of

the magnitude of the applied AC magnetic field on the ME coupling of the material is

shown in Fig. 4.4b which illustrates that the output charge increases linearly with increase

of amplitude of external field and ME voltage coupling coefficient of the material remains

almost unchanged. This implies that our fabricated PHMSEs can exhibit giant ME coupling

at extremely weak magnetic fields.

Output Charge

ME Voltage Coupling Coefficient

(a) (b)

Figure 4.4: (a) ME voltage coupling coefficient and output charge for charged PHMSE and
non-charged sample under different frequencies (he = 12). (b) The ME voltage
coupling coefficient and output charge of PHMSE at resonance.
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(a) (b)

Figure 4.5: (a) Effect of interfacial surface charge density on the ME voltage coupling coeffi-
cient and output charge of PHMSE under AC magnetic field with the frequency
of 6 Hz and amplitude of 12 Oe. (b) the deflection versus output charge.

Similar to HMSEs, the αeff
ME of PHMSEs can be further increased by increasing charge

density. Fig. 4.5a reveals there is a linear relationship between interface surface charge

density and the voltage coupling coefficient of the material. As charge density increases,

∆Q and αeff
ME increase. We have been able to achieve a value of αeff

ME = 15.36 Vcm −1Oe−1

when the static charge density is equal to 0.078 mC/m2. To the best of our knowledge, this

is the first soft material created with giant ME voltage coupling. This is one of the largest

self biased ME voltage coupling coefficients even when compared with polymer based ME

composites (see Table-1 and Fig. S1).

The PHMSEs are not mechanistically different from HMSEs in this sense that their ME

effect is strain mediated. The trends seen in the output charge behavior of PHMSE follows

exact the trends as seen for deflection (see Fig. S7 and 4.4a). Any two external stimuli which

result in the same deformation will lead to same electric signal. To better show this insight,

the deflection versus output charges obtained from experimental observation is shown in

Fig. 4.5b. The experimental results have been obtained by applying magnetic fields with

different frequencies but the same amplitude. In addition, we also plot the deflection versus

output charge obtained from our numerical simulations conducted for the static condition in

which different deflections obtained by applying magnetic field with different magnitudes.

We remark that we have previously shown that, for an electret under pure symmetric
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bending, the output charges can be determined as ∆Q = A1
4q0Hκ, where A, H and κ are,

respectively, surface area of the electrode, thickness of the material and curvature of the

material. We can use this relation for cantilever beam to obtain a rough analytical relation

between curvature and output charge. Curvature of a cantilever under pure bending can be

roughly approximated as κ = 2δ
L2 , where δ is the tip deflection and L is the length. Therefore,

the output charge may be roughly approximated as ∆Q = Aq0H
δ

2L2 . This relation has been

used in Fig. 4.5b to make a closed-form analytical prediction. Interestingly, despite the

obvious approximations, we obtain a very good agreement between experimental, analytical

and numerical results in Fig. 4.5b. From this, we arrive at two conclusions: First, the ME

effect in PHMSEs is strain mediated. Second, the relation ∆Q = A1
4q0Hκ can be used

to obtain a reasonably good approximation for charge curvature relationship and electret

materials can be used as a soft curvature sensor (for instance, in the context of biomedical

applications).

4.4 Methods

4.4.1 Fabrication of disk shape HMSEs and SMSEs

The NMISR is prepared by mixing NdFeB microparticles with silicone elastomer(Ecoflex

00-10) at prescribed weight fraction (NdFeB particles: Ecoflex00-10=1:1). The mixture is

poured into a mold to obtain desired geometry and the cured at 80◦C for 10 min. The final

disk shape NMISR has the diameter of 40 mm and thickness of 1 mm (Fig. S2). A nonzero

residual flux density is achieved in the material by applying a magnetization field with

magnitude of 1 T. The magnitude of residual flux density of NMISR layer is Br = 0.058T

and its direction is align with the thickness direction of the material. The NMISR layer is

attached to a disk shape PTFE layer with the thickness of 30 µm and the same thickness

as NMISR layer. Before bonding two layers together, a layer of electric charges is deposited

onto one surface of the PTFE thin film by the corona charging technique (Fig. S8). During

the corona charging, a voltage difference of 5.7 kv is applied between the conductive needle

and the grid (see (Fig. S8) which leads to ionization of air and movement of charges toward

PTFE layer. The surface charge density of PTFE layer q0 is measured by measuring the
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electric potential on the surface of the PTFE layer Vs using an electrostatic voltmeter (TRek

MODEL P0865). The Vs and q0 are related through

q0 = ϵeffVs

H
, (4.4.1)

where ϵeff is the effective electric permittivity of the material. Unless otherwise stated, the

surface charge density achieved for all samples was q0 = −1.95 mC/m2.

4.4.2 Fabrication of PHMSE

The steps for fabrication of PHMSE is illustrated in the Fig. 4.3. In the first step,

we mix the NdFeB particles with silica gel (Ecoflex 0020) in equal proportion to obtain

the turbid solution. Thin magnetoactive elastomers is prepared by centrifugal suspension

coating. Then, by cutting, and stick the two layers of magnetic elastomers together, we

obtain double layer magnetoactive elastomers with size of the 22 × 12 × 1.85 mm. At this

stage, the magnetic particles inside the material are randomly oriented and overall residual

magnetic field of the material is zero. In order to program the material in a way that

it bends in response to external magnetic field, we bend the material and place it in a

magnetic field with magnetic flux density of 1.2 T. The radius of curvature is 11.14 mm.

After removal of the magnetic field, the bending deformation is reversed. Using the model

presented by Rivlin [103] for the flexure of rectangular incompressible block, the profile for

residual magnetic flux density in the material is determined as [178, 180]

B̃r = F−1
b

[
−Brcos

((2Y − L)α
L

)
er +Brsin

((2Y − L)α
L

)
eθ

]
, (4.4.2)

where Fb is the deformation gradient for the bending deformation of the rectangular block.

Also, L represents length of the block( beam) and 0 ≤ Y ≤ L. In addition, Br is the

magnitude of the residual magnetic flux density α is the bending angle applied in the

magnetization step. Unless otherwise stated, Br = 0.0767 and α = 52◦. Next, we debond

two layers of the material from each other and a charged PTFE layer between two layers of

magnetoactive elastomer and bond three layers together. The charge density of the interface
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is q0 = −0.048 mC/m2 unless otherwise stated. Finally, we coat the sample surface with

liquid metal as electrode.

Measurement of material properties

Electroforce 3230 - TA testing machine is used to perform uniaxial testing and de-

termine Young’s modulus of the material. The effective capacitance of the material Ceff

is determined using an impedance analyzer(Keysight E4990A, America). The relation

Ceff = ϵeffA/H is used to determine the effective dielectric properties ϵeff of the mate-

rial, where H is the thickness of the material and A is the surface area. Also, the reidual

magnetic flux density Br is related to magnetization M r with the relation Br = µ0M
r.

The magnetic hysteresis loop(he − M r) was plotted by Vibrating Sample Magnetometer

MPMS-squid VSM-094. Figure S9 shows the magnetic hysteresis loop for hard magnetic

particle and soft magnetic particle.

Measurement of the magnetic field induced deformation and the output

charges

A customized solenoid is used to generate AC magnetic field. Unless otherwise stated,

magnetic field with amplitude of 627 Oe and frequency of 1 Hz is used for disk shaped

HMSEs and magnetic field with amplitude of 12 Oe and frequency of 6 Hz is used to study

PHMSEs. The magnetic field induced deformation is measured using a Laser Scanning

Vibrometer (Polytec OFV-5000, Germany). The output charge of the material is measured

using a charge amplifier(Bruel & Kjaer 2692, Denmark). The measurement equipment and

diagram are shown in the Figs. S10 and S11, respectively.

4.4.3 Theoretical modeling of the HMSEs

We use energy formulation to derive governing equations for magneto-electro-elastic

behavior of a HMSEs. The distinction between reference configuration ΩR and current

configuration Ω is essential for capturing electro-mechanical coupling in the electret mate-

rials theoretically. Therefore, conventional linear elasticity models are unable to capture

ME effect in the HMSEs and we have to use a nonlinear coupled formulation. Based on
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the principle of minimum free energy, the equilibrium state of the system is the state that

minimizes free energy of the system. Using the deformation χ and the polarization p as

two independent thermodynamic variables, We express free energy of the system as

F [χ,p] =
∫

ΩR

W elast +
∫

Ω

|p|2

2(ϵ− ϵ0) +
∫

Ω

ϵ0
2 |e|2 −

∫
ΩR

FB̃r · he, (4.4.3)

where ϵ, ϵ0 and he are, respectively, electric permittivity of the material, electric permittivity

of the vacuum and external magnetic field. Also, W elast denotes elastic energy density of

the material and F is the deformation gradient tensor. Our theory is based on the premise

that the equilibrium state of the system must satisfy the Maxwell equation. The Maxwell

equation for a material with charge density ρe in the current configuration is expressed as

div (ϵ0e + p) = ρe in Ω. (4.4.4)

We use standard calculus of variation to derive Euler-Lagrange equations and boundary

conditions for the equilibrium state of the system. More details on the theoretical modeling

of the HSMEs can be found in the SI Section.

4.4.4 Computational modeling of PHSMEs

Based on the nonlinear coupled formulation discussed earlier, we develop a finite element

model in order to study ME effect in PHMSEs. We use open source finite element software

FEniCS [181] to implement finite element formulation. We derive weak form of the govern-

ing equations of the system and encode weak formulation in Python using mathematical

operators available in FEniCS. The FEniCS meshing component mshr which allows capabil-

ity of defining subdomains is used to create mesh for this problem. We assume the material

is incompressible and use neo-Hookean constitutive equation for elastic behavior of the ma-

terial. The numerical values for material properties is consistent with the values obtained

using our experimental measurement. More details on the finite element implementation,

meshing and validation of the numerical solution is available in the SI Section.
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4.5 Supplementary Information

4.5.1 Comparison of ME voltage coupling coefficient of PHMSEs and

polymer based composites

Table 4.1: Comparison of properties of PHME with existing polymer based ME composites

Constitution

ME

Voltage

Coefficient

(Vcm-1Oe-1)

Frequency

(Hz)

DC

Bias

Field

(Oe)

Soft

and

Stretchable

Ref

CFO-CNT-PVDF/P(VDF-TrFE)
/CFO-CNT-PVDF

0.0167 1000 0 No [4]

P(VDF-TrFE)/ Fe3O4 0.0008 6000 1500 No [182]
P(VDF-TrFE)/ CoFe2O4 0.0065 6000 2600 No [182]
P(VDF–TrFE)/CoFe2O4 0.164 16200 2600 No [5]
P(VDF-TrFE)/BiFeO3-BaTiO3 0.357 150000 600 No [6]
Cellulose/Metglas 1.41 56100 4.2 No [7]
PVDF/Gd5Si2.4Ge1.6 2.2 (50000, 70000) 5000 No [8]
P(VDF-TrFE)/[C4mim][FeCl4] 10 10000 0 No [9]
PVDF-HFP/Metglas 20 20 4 No [10]
PVDF/Metglas 22 20 1.6 No [11]
PVDF/Metglas 30 25400 2 No [12]
PVDF/epoxy/Fe39Ni39Mo4Si6B12 53 (30000, 45000) 5.3 No [13]
PVDF/Fe64Co17Si7B12 145.6 46800 4.7 No [14]
PVDF-HFP/Metglas 320 68000 4 No [10]
P(VDF-TrFE)/Metglas 850 27.8 6 No [15]
PHMSE 15 6 0 Yes

Figure 4.6 compares the ME voltage coupling coefficient of PHMSEs with the highest

values reported in the literature for ME voltage coupling coefficient of polymer based ME

composites [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. The dash

horizontal line shows αeff
ME = 1. The solid red circles show the self bias ME materials. It is

clear that the PHMSEs is the only self bias ME material with frequency under 100 Hz and

αeff
ME ≥ 1. Also, Table-1 shows that PHMSEs are the only soft and stretchable ME material

with giant ME effect.
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Figure 4.6: Comparison of ME voltage coefficient of PHME with ME voltage coefficient of
polymer based ME composites [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23]. Color bar shows DC bias magnetic field.

4.5.2 The photographs of a PTFE film and a NMISR film

Figure 4.7: The photographs of a PTFE film and a NMISR film.
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4.5.3 Comparison of output charges of the HMSE and SMSE.

HMSE

SMSE

Figure 4.8: Experimental measurement for output charges of HMSE and SMSE under AC
magnetic field.
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4.5.4 Comparison of the deformation between IMISR, NMISR and

Terfenol-D

Figure 4.9: Experimental results for the magnetic field induced strain of NMISR, IMISR,
and Terfenol-D. The deformation of Terfenol-D has been collected from Yang
et al. [24].
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4.5.5 Linear relationship between magnetic field and output charge in

HMSE

Figure 4.10: Magnetic field dependence of the output charge,where he
0 is the amplitude of

the external magnetic field .

4.5.6 Effect of residual magnetic flux density on ME effect of the HMSE

Figure 4.11: Effects of residual magnetic flux density of HMSEs on the ME behavior. (a)
The effect of residual magnetic flux density on ME voltage coupling coefficient
of the material. (b) Residual magnetization versus magnetic field used to align
hard magnetic microparticles.
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4.5.7 Magnetic field induced deflection in the PHMSE for different

frequencies

Figure 4.12: Deflection versus frequency for PHME under AC field with amplitude 12 Oe.

4.5.8 Corona charging

Figure 4.13: The photograph and the schematic diagram of the corona charging.
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4.5.9 The hysteresis behavior of IMISR and NMISR

Figure 4.14: The hysteresis loop of iron particles and NdFeB particles. NdFeB particles
exhibit high magnetic energy density and coercivity.

4.5.10 The measuring equipment for ME effect in HMSEs

Figure 4.15: The measuring equipment used for soft magnetoelectric materials.
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Figure 4.16: Measurement schematic diagram of soft magnetoelectric materials.

4.5.11 Theory of hard magnetic soft electret

A nonlinear magneto-electro-mechanically coupled theory for large deformation of hard

magnetic soft electrets is presented here. We avoid presenting all the details of derivation

as there are several similar derivations available in the literature [97, 25, 178]. We must

distinguish between continuum deformable body of the material in the reference configura-

tion ΩR ⊂ R3 and current configuration Ω ⊂ R3 as the magnetoelectric coupling in these

materials is non-linear in nature. To avoid confusion between gradients in the reference

and deformed configurations, we reserve the symbol ∇ for the gradient in the reference

configuration and the gradient and divergence in the current configuration is denoted by

“grad” and “div”, respectively. Identifying the deformation χ and the polarization p as two

independent thermodynamic variables, we express the total free energy of the system as

F [χ,p] =
∫

ΩR

W elast +
∫

Ω

|p|2

2(ϵ− ϵ0) +
∫

Ω

ϵ0
2 |e|2 −

∫
ΩR

FB̃r · he, (4.5.1)

where F = ∇χ is the deformation gradient tensor, B̃r is the magnetic flux density repre-

sented in the reference configuration. In addition, ϵ, ϵ0 and he are, respectively, electric

permittivity of the material, electric permittivity of the vacuum and external magnetic

field. Also, W elast denotes elastic energy density of the material and using incompressible
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neo-Hookean constitutive equation is expressed as

W elast[F] = G

2 (tr(FT F) − 3), (4.5.2)

where G denotes the shear modulus of the material. Our theoretical formulation is based

on this premise that the Maxwell equation must to be satisfied. The Maxwell equation in

the current configuration is expressed as

div (ϵ0e + p) = ρe in Ω, (4.5.3)

where ρe is the charge density of the material.

Figure 4.17: Hard magnetic soft electret made of two layers of materials with different
material properties.

Double layer HMSE

Now consider hard magnetic soft electret shown in Fig. 4.17. This electret consists

of two different materials on top and bottom which are referenced with subscripts ”t”

and ”b”, respectively. The top layer has thickness Ht and thickness of bottom layer is

denoted by Hb. There is a layer of charge between two layers with surface charge density

q0. Material is sandwiched with two mechanically compliant electrodes on top and bottom
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and a short circuit boundary condition has been applied. There is uniform residual magnetic

flux density B̃r = Br
t eX (resp. B̃r = Br

t eX) in top (resp. bottom ) layer. Material will

deform in response to externally applied magnetic field he = heex. Since two layers have

different material properties, deformation in two layers will not be equivalent. Assuming

uniform deformation, the deformation gradient tensor for each layer be expressed as

F = λtex ⊗ eX + λ
−1/2
t ey ⊗ eY + λ

−1/2
t ez ⊗ eZ for Hb < X < Hb +Ht

(4.5.4)

and F = λbex ⊗ eX + λ
−1/2
b ey ⊗ eY + λ

−1/2
b ez ⊗ eZ for 0 < X < Hb,

(4.5.5)

where λ represents the magnetic field induced stretch in any of the layers. Substituting Eq.

4.5.4 and Eq.(4.5.5) into Eq.(4.5.1) and using standard variational calculus of variation, the

stretch in each layer is determined as

λt − 1 ≈ Br
t h

e

3Gt
(4.5.6)

and λb − 1 ≈ Br
bh

e

3Gb
, (4.5.7)

where we have linearized final equations assuming |λ − 1| ≪ 1 and ignored effect of the

Maxwell stress.

Having stretches in each layer, we can determine electric field and electric displacement

in each layer. Substituting Eq. 4.5.4 and Eq.(4.5.5) into the Maxwell equation, electric

displacement in top layer is determined as

Dt ≈ Di + qHtHbϵbϵt(λb − λt)
(Htϵb +Hbϵt)2 , (4.5.8)

where Di is the deformation independent part of the electric displacement.

For conventional magnetostrictive/piezoelectric composites, magnetoelectric coupling

coefficient is defined as [183, 184]

αij = ∂Pi

∂he
j

, (4.5.9)
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where he
i and Pj , respectively, are components of magnetic field and electric polarization

defined in a linear framework where there is no difference between reference and current

configurations. Also, magnetoelectric voltage coefficient αME is defined as α = ϵαME, where

ϵ is the electric permittivity tensor of the material [185, 186]. In experimental settings and

under short circuit boundary condition, polarization is often determined measuring electric

charges. This is due to the reason that when electric field is zero, electric displacement and

electric polarization are equivalent. Similarly, here, we perform a thought experiment and

define the effective magneto electric voltage coefficient for hard magnetic soft electrets αeff
ME

as

αeff
ME = 1

ϵeff
∂Dt

∂he , (4.5.10)

where ϵeff is determined from following equation

Ht +Hb

ϵeff = Ht

ϵt
+ Hb

ϵb
. (4.5.11)

The effective magnetoelectric voltage coefficient of the material can also be written in terms

of the output charges ∆Q = DtA and the effective capacitance of the material Ceff = ϵeffA
H :

αeff
ME = 1

CeffH

∂(∆Q)
∂he

, (4.5.12)

where he is the external magnetic field (he = heeX), A is the surface area of the electrodes

and H = Ht +Hb is the total thickness of the material. Effective voltage coefficient for the

hard magnetic soft electret (shown in Fig. 4.17) is derived substituting Eq.(4.5.8) into eqn

(4.5.12)

αeff
ME = 1

ϵeff
q0HtHbϵbϵt

(Htϵb +Hbϵt)2 × 1
3

(
Br

b

Gb
− Br

t

Gt

)
. (4.5.13)

Hard magnetic Euler beam

In this section, we aim to derive an approximate relation for the ME voltage coupling

of the HMSEs mediated by bending deformation. As the analytical solution is not possible

for this problem, we will make several simplifying assumptions.

Consider HMSE shown in the Fig. 4.18. The residual magnetic flux density of the
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Figure 4.18: Euler beam made of Hard magnetic soft electret materials.

material is uniformly aligned along the axis of the beam B̃r = BreX . This material bends

in response to applied magnetic field he = heeY and the bending will lead to an ME effect.

We assume the deformation is small (|∇u| ≪ 1) and use Euler beam theory. Ignoring

contribution of electric terms in the Eq.(4.5.1) and minimizing free energy with respect to

deformation, the relationship between applied magnetic field and induced curvature κ = ∂2u
∂x2

in the material is obtained as

∂2u

∂x2 = heBr

G

4L
H2

(
1 − x

L

)
. (4.5.14)

We cannot use the solution provided in this section to determine output charge of a

hard magnetic soft electret under bending deformation because it was a linear decoupled

problem. The relation between magnetic field and curvature is illustrated in Eq.(4.5.14).

To obtain analytical relation between output charge and magnetic field, the fully coupled

problem has to be solved which is rather difficult nonlinear problem. However, Rahmati

et al. [178] presented a simple relationship between curvature and output charge for an

electret under pure bending. According to their model, the output charge is related to

curvature κ through Dt = 1
4q0Hκ where q0 is the surface charge density at the interface

of two materials. Therefore, for illustrative purposes, the scale of the output charge for a

hard magnetic sof electret with uniform distribution of residual magnetic flux density under
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bending deformation can be roughly approximated as

Dt ∝ heBr

G
ARq0, (4.5.15)

and, as a result, we have

αeff
ME ∝ (AR)B

r

G

q0
ϵeff . (4.5.16)

Finite element implementation

In addition to experimental efforts, we use finite element simulation to show ME effect

in PHMEs under bending deformation. Consider a PHMSE material with the thickness

H and length L. The material is composed of two identical layers with layer of electric

charges with surface charge density q0 at their interface. The scematics of this material

is similar to Fig.4.18 but any desirable profile can be used for the residual magnetic flux

density B̃r. The bending is induced in the material in response to the external magnetic

field he = heeY . Assuming a plane strain deformation, the weak form of the governing

equation for this problem is given as

∫ L

0

∫ H/2

−H/2

(
∇w1 · (−ϵF−1F−T ∇ξ)

)
dY dX +

∫ H/2

−H/2
w1

∣∣∣∣
Y =0

q0dX = 0, (4.5.17)
∫ L

0

∫ H/2

−H/2

[
∇w2 :

(
∂W elast

∂F
− LaF−T + Σ̃MW

elec − he ⊗ B̃r

)]
dY dX = 0,

(4.5.18)

and
∫ L

0

∫ H/2

−H/2
[w3 (detF − 1)] dY dX = 0, (4.5.19)

where the hydrostatic pressure La is a Lagrange multiplier which has been introduced to

enforce incompressibility constraint. Also, w1, w2 and w3 are test functions corresponding

to electric potential ξ, displacement u and the the hydrostatic pressure La, respectively.

Also, Σ̃MW
elec is the Maxwell stress and is given as

Σ̃MW
elec = − ϵ

2J |F−T ∇ξ|2F−T − F−T Gradξ ⊗ (−ϵF−1F−T ∇ ξ). (4.5.20)
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As the Taylor-Hood elements have been successfully used in various coupled problems

[187, 188], we implement Taylor-Hood element in which the deformation is interpolated

quadratically and linear shape functions are used for electric potential and hydrostatic

pressure. This variational problem is solved using FEniCS [181], a collection of free and

open-source software components created to solve PDEs. The short circuit electrical bound-

ary condition ξ = 0 has been applied to surfaces Y = ±H/2. The deformation is fully con-

strained on the cantilever side of the beam (X = 0). The FEniCS meshing component mshr

which allows capability of defining subdomains is used to create mesh for this problem. The

mesh size parameter has set to be 500 for all the results on this paper. Mesh convergence

study shown in Fig. 4.19 shows by changeing mesh resolution from 500 to 900, less than

1% difference in results observed.

(a) (b)

Figure 4.19: Mesh convergence study.

The material is assumed to be incompressible neo-Hookean (Eq.(4.5.2)) with shear mod-

ulus G = 18.33KPa. The electric permittivity of the material is set to ϵ = 5.0676ϵ0, where

ϵ0 is the electric permittivity of vacuum. Unless otherwise stated, the charge density of the

interface is q0 = −0.048 mC/m2. The output charge ∆Q over surface area of the electrode

A can be determined as

∆Q
A

= 1
L

∫ L

0

(
Df (X) −Di(X)

)
dX, (4.5.21)

where Df and Dt are the electric displacements in presence and absence of external magnetic

field, respectively.
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We have checked accuracy of our finite element model by comparing the results obtained

using our model and the experimental and simulation results given by Zhao et al. [25] for

a hard magnetic soft material with uniform residual magnetic flux density under magnetic

field induced bending deformation. The deflection of the material versus dimensionless

magnetic field is plotted in the Fig. 4.20 where a good agreement is observed between our

results given by Zhao et al. [25].

Figure 4.20: Comparison of the current numerical solution with experimental and simula-
tion results given by Zhao et al. [25]. The pre-existing magnetic flux density is
uniformly oriented along the horizontal axis of the material in the undeformed
configuration. A uniform external magnetic field (Bapplied = µ0h

e) is applied
to material in the vertical direction to cause bending deformation. Comparison
of simulation and experimental results for vertical displacement of the tip of
the beam under different external magnetic fields.
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Chapter 5

Theory of Hard Magnetic Soft Materials to Create Magneto-

electricity

Materials that generate electrical signals upon exposure to a well-controlled stimuli are

high desirable. In that context, magnetoelectrics are unusual in the sense that the stimulus

may be applied remotely (and wirelessly) without recourse to any physical contact. Wireless

energy harvesting, remotely triggered biomedical agents, soft robots among others are some

of the applications of such materials. The magnetoelectric property however is somewhat

elusive in natural materials and artificial composites designed to exhibit this effect are in-

variably hard materials, require a pre-existing magnetic field and only exhibit a non-trivial

coupling at high frequencies. Our recent experiments (presented elsewhere) demonstrated

a facile route to create highly deformable soft magnetoeletric materials predicated on the

concept of programmable hard magnetic soft materials with embedded immobile electric

charges (electrets). In this work, we offer a nonlinear theoretical framework to both under-

stand the emergent magnetoelectric effect in this class of soft materials as well as to design

novel structures and devices with tailored functionality. Specifically, we are able to show

that mechanical strain convects residual electrical and magnetic field states to mediate an

unprecedented strong magnetoelectric coupling that is independent of the applied external

magnetic field and retains its potency at low frequencies. We analytically solve simple il-

lustrative examples to establish insights and present a finite element approach to handle

complexities that may be otherwise intractable. The predictions of our theory agree very

well with published experiments.
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5.1 Introduction

There are several compelling reasons to develop magnetoelectric materials. Such ma-

terials enable extremely low power memories where data is written electrically but read

magnetically [189]. Electrical energy may be harvested simply by the remote application

of a magnetic field, which may be used for wireless charging of small-scale devices or sens-

ing [190]. In a rather fascinating recent study, hollow magnetoelectric capsules were used

drug delivery. Upon suitable application of a magnetic field, nano-electroporation mediated

release of drugs at cancer sites was achieved [191]. We remark that biological media is

transparent to magnetic fields thus is of special relevance for biomedical application1.

Naturally occurring single-phase magnetoelectric materials are scarce and the reason is

simple. Such materials must couple magnetic order parameter (typically found in a class

of metals) with electrical polarization order (found in certain types of dielectrics). This

contradictory requirement and other associated details (see [157, 158] for further informa-

tion) imply that the discovered single phase natural magnetoelectrics, aside from being

rare, have an exceedingly low magnetoelectric coupling; especially at temperature range

typically associated with engineering applications [159]. A survey of research activities in

the field of multiferroics (which are magntoelectric) can be found in several review articles

[192, 193, 194, 195, 196, 197, 198, 199, 200].

An expedient route to design magnetoelectrics has been by creating composites com-

posed of magnetostrictive (ferromagnetic) and piezoelectric (ferroelectric) constituents. The

emergent magnetoelectric effect in such composites is due to the cross coupling between

magnetostrictive and piezoelectric phases and is (usually) mediated through mechanical de-

formation. The strain generated in the magnetostrictive phase of the composite, in response

to applied magnetic field, is transferred to piezoelectric phase through interface of two phases

and the developed strain in the piezoelectric phase generates electrical polarization. Such
1A fact we rely on in medical equipment like MRI-magnetic resonance imaging where human bodies can

be subjected to enormous magnetic fields. An analogous exposure to electrical fields, of course, would be
fatal.
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composites, like single phase magnetoelectrics are rather hard materials and earlier studies

reported magnetoelectric voltage coupling coefficients that did not surpass 0.1 Vcm−1Oe−1

[201, 183]2. In early 2000s, theoretical [160, 161] and experimental [162, 163, 164] research

confirmed the existence of giant ME effect (with the voltage coupling coefficient greater

than 1 Vcm−1Oe−1), in composites containing magnetostrictive rare-earth-iron alloy Tb1–

xDyxFe2 (Terfenol-D). This observation made these composites desirable for technological

applications. Further research into development of ME composite have enabled giant ME

effect in different composite materials which contain polymer or ceramic as piezoelectric

phase and a variety of magnetostrictive materials, including ferrites [165], Fe-Ga alloy [166]

and Metglas [167]. We refer the reader to several reviews for a survey of the research in the

topic [202, 203, 204, 205, 206, 207, 208, 177, 209].

Notwithstanding the progress made on the subject of magnetoelectrics, especially in

the context of composites, we reiterate that soft magnetoelectrics are rather elusive. Soft

materials capable of large elastic deformation offer new functionalities would not have been

possible with their hard counterparts—e.g soft robotics, health care [113], stretchable, flex-

ible and wearable electronics [51] among others. We remark that although there have been

successful attempts in creating materials for power harvesting from different sources of en-

ergy including mechanical [210], thermal [211], chemical [212] or optical [213], surprisingly

limited progress has been made in the development of soft materials suitable for magneto-

electric conversion despite all the advantages it could potentially offer.

There are several other disadvantages that plague the current state-of-the-art in com-

posite magnetoeletrics:

• The design and fabrication of magnetoelectric composite is a complex process as there

are a large number of factors including connectivity, microstructure, volume fraction of

individual phases, the composite structures among others [203] that must be carefully

tailored to achieve large magnetoelectric effect and avoid problems such as current
2The magnetoelectric voltage coupling coefficient αME is defined as α = ϵαME, where ϵ is the electric

permittivity tensor of the material and the magnetoelectric coupling coefficient α = ∂P
∂he quantifies change

in the polarization of the material P in response to applied magnetic field he.
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leakage and substrate clamping [202]. The magnetoelectric coupling in these materials

strongly depends on the strain transfer between the different phases and this aspect

is not simple to control [208].

• A key disadvantage of the current high quality magnetoelectric composites are that

they are not mechanically soft. Polymer based composites which, compare to ceramic

and magnetic alloy based composites, offer some recourse however the ones created so

far (see [209] and references therein) are thin materials that can accommodate defor-

mations similar to bending in which deflection may be quite large but strain is small.

This is partially because truly soft piezoelectric materials do not exist. Appreciable in-

trinsic piezoelectricity only exists in hard brittle materials with non-centrosymmetric

crystals [203, 98, 178, 99]. Although some polymers such as PVDF and its co-polymers

exhibit piezoelectricity in their semi-crystalline phase, the magnitude of their stiffness

is in the range of GPa which is not considered soft enough [214, 215, 216, 217].

• Another significant disadvantage of magnetoelectric composites is that a static bias

magnetic field is required for the composites to exhibit a significant coupling. As

mentioned earlier, the magnetoelectric coupling in a composites is realized through

the so-called “product property” of the two piezoelectric and magnetoelastic phases.

The magnetic field induced strain generated in the magnetoactive phase is transferred

to the piezoelectric which leads generation of an electric signal. The strain or stretch

developed in a magnetostrictive material depends quadratically on the external mag-

netic field. Thus, the magnetoelectric coupling coefficient of the material (which is

related to the rate of change of strain with respect to external magnetic field) depends

linearly on the external magnetic field. Therefore, the magnetoelectric coefficient of

the composites depends on the applied external field and is asymptotically zero as

the applied field diminishes. Accordingly, an additional external applied static bias

magnetic field is necessary to achieve a non-trivial magnetoelectric coupling in com-

posites. This places requirements of additional weight and space [168] rendering any

sort of miniaturization difficult. We remark that, in the past decade, notions of in-

troducing internal/self- bias field in composite to replace the external bias field have
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been proposed [218, 219, 175, 220, 221]. However, most self-biased composites are

bulky in size and their fabrication requires special synthesis process which leads to

additional steps in developing functional devices [201].

• Typical magnetoelectric composites exhibit strong a strong coupling only at high

frequencies and their coupling coefficient significantly diminishes at small frequencies.

This is unfortunate since many applications such as targeted drug delivery [170], brain

stimulation [171], tissue regeneration and wireless energy transfer for implantable

medical devices require lower frequency (since high frequency magnetic field may

cause safety concenrs) [169].

Recently, we have proposed a new mechanism to create magnetoelectric coupling using

soft materials like rubber and without the need for piezoelectric and magnetostrictive mate-

rials [222, 176]. The central idea is to embed immobile charges or dipoles in a soft material

(–such materials are called electrets) and ensure that the magnetic permeability of the ma-

terial is higher than that of vacuum (by introducing a modest fraction of magnetic particles

that do not appreciably alter the mechanical stiffness). We showed both theoretically [222]

and experimentally [223] that these soft magnetic electret(SMSE) materials exhibit a magne-

toelectric effect. The mechanism underpinning such materials is predicated on the fact that

electrets exhibit a significant artificial piezoelectric-like behavior [178, 98, 99, 100, 224, 62].

Based on the Maxwell stress effect, any material with relative permeability greater than

one will deform in response to an external magnetic field. A non-uniform deformation in

the electret materials can lead to a piezoelectric effect. Therefore, a magnetoelectric ef-

fect can be seen in SMSEs made of two different layers with different material properties.

To the best of our knowledge, soft SMSEs are the only soft ME “materials” developed so

far, even though there is precedent of ME coupling in soft “structures” through embedding

multiferroic nanoparticles in soft materials [170, 225, 226, 227] or through electromagnetic

induction [228, 229].

Despite the progress made recently in the context of soft magnetoelectric materials (sum-

marized in the preceding paragraph), the magnetoelectric coupling itself is rather small
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unless extraordinarily large magnetic fields are applied. This is because the relationship

between magnetic field and strain induced as a result of the Maxwell stress is quadratic

in SMSE materials. In this sense, SMSEs behave similar to magnetoelectric composite

materials where a bias magnetic field required to achieve strong magnetoelectric coupling.

Furthermore, since there is a quadratic relationship between strain developed in the ma-

terial and applied magnetic field, the SMSEs are not sensible to the direction of applied

magnetic field and the magnetoelectric response only depends on the magnitude of the

applied field. This restricts application of SMSEs as magnetoelectric sensors. Moreover,

non-uniform strain is required to achieve a large magnetic effect under uniform magnetic

field in SMSEs and it is not straightforward to induce non-uniform strain without an elastic

mismatch.

A recent development pertaining to a novel class of magnetosensitive materials present

an alternative solutions to create soft materials that exhiit a giant magnetoelectric effect.

Zhao et. al. used soft elastomers with embedded high-coercivity hard-magnetic micropar-

ticles [25]. A high remnant residual flux density allows them to exhibit a linear relationship

between strain and magnetic field. Using the notion of programming the pattern of mag-

netic dipoles, tailored magnetic actuation can be achieved and remarkable experimental

and theoretical results have been reported in a rather short time.

In this work, we present a mathematical theory that combines the concept of hard

magnetic soft materials with electrets (HMSE). Like in prior works, the magnetic dipoles

can be programmed—which we will refer to as programmable hard magnetic soft elec-

trets(PHMSEs). Thus HMSEs are dielectric materials with immobile residual electric

charges/dipoles and residual magnetic flux density(Fig. 5.1). The magnetoelectric effect

will emerge in HMSEs if the magnetic field generates a non-uniform strain in the material.

We present a nonlinear coupled theory for the behavior of HMSEs. We also present a finite

element (FE) implementation of the theory. Similar to SMSEs, the simplest possible geome-

try for HMSEs is composed of a bi-layer with different elastic or/and different magnetic flux

density with a layer of external charges at the interface. Moreover, as it is quite simple to
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Hard Magnetic Particle

Electric Charge

Figure 5.1: Schematics of the hard magnetic soft electret materials.

program residual flux density of hard magnetic soft materials to exhibit desired form of de-

formation [180], we propose PHMSEs in which non-uniform strain is generated in response

to a uniform external magnetic field due to presence of gradient in the residual magnetic

flux density in the elastically homogeneous soft material. Since bending deformation yields

lower resonance frequency and large strain gradient, we design a PHMSE with the residual

magnetic flux density tailored to obtain bending deformation in response to uniform mag-

netic field. We show that the the bending deformation mediated coupling in HMSEs can

lead to a remarkably strong magnetoelectric effect. We find excellent agreement between

our theoretical predictions and experimental realization of both HMSEs and PHMSEs.

This chapter is organized as follows. Theoretical study of the HMSEs is presented in the

section 5.2. The governing equation and bounday conditions require to analyze behavior

of the HMSEs is presented in the section 5.2.1 using a variational approach. Moreover,

we prove the symmetry of the Cauchy stress in these material in this section 5.2.2. A

simple FE implementation for incompressible HMSEs is presented in the section 5.3. The

voltage coupling coefficient for a bi-layer HMSE is determined in the section 5.4.1. A rough

estimate the voltage coupling coefficient enabled through magnetic field induced bending

deformation of a HMSE is obtained in the section 5.4.2. We elaborate shape programmable
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feature of HMSE materials in the section 5.4.3. The results obtained using FEA is available

in the section 5.5. In the section 5.5.1, we compare our FE results with the results given by

Zhao et al. [25]. The ME energy harvesting using a parallel plate capacitor made of hard

magnetic soft material is studied in the section 5.5.2. The behavior of a PHMSE under

magnetic field induced bending is studied in the section 5.5.3.

5.2 Theory of hard magnetic soft electrets

In this section, we present a variational approach to derive the governing equations and

boundary conditions for hard magnetic soft electret materials. We also comment on the

symmetry of the stress tensor–a notion that appears occasionally to be misinterpreted in

the literature.

5.2.1 Formulation

As will become evident, the emergent magnetoelectric effect (ME) requires accounting

for nonlinear deformation and accordingly we must distinguish the continuum deformable

body in the reference configuration ΩR ⊂ R3 and current configuration Ω ⊂ R3. The defor-

mation χ transforms material points X in the reference configuration to the spatial points x

in the current configuration. We reserve the symbol ∇ for the gradient in the reference con-

figuration and the differential operators in the current configuration are denoted by “grad”

and “div”. Hard magnetic soft electret materials contain both pre-existing immobile charges

or dipoles as well as residual magnetic fields. We denote the residual magnetic flux density

of the material by br : Ω → R3 and the external charge density by ρe : Ω → R. Since the

magnetic particles are magnetically hard, the magnetic permeability of the material may be

taken to be the same as that of the vacuum. The Maxwell equations may then be written

as:

e = −gradξ, div(d) = ρe, d = ϵ0e + p, in D, (5.2.1)

h = −gradϕs − gradϕe div(b) = 0, b = µ0h + br in R3, (5.2.2)
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Figure 5.2: Continuum deformable body and surrounding medium in the reference config-
uration.

where D is the medium in which the body is located (see Fig. 5.2). ξ : D → R is the

electric potential and p : Ω → R3 is the polarization in the current configuration. The

field d represents the electric displacement. True total magnetic field and magnetic flux

density are denoted by h and b, respectively. The electric permittivity of the vacuum is

denoted by ϵ0. Externally applied magnetic field and self-magnetic field due to existence of

residual field both contribute to the total magnetic field. The external magnetic potential,

which exists even if there in no material, is denoted by ϕe : R3 → R and the self magnetic

potential, which vanishes if residual field is zero, is represented by ϕs : R3 → R. We identify

applied magnetic flux bapp = −µ0gradϕe = µ0he, where he is the external magnetic field.

Since bapp is divergence free in R3, we can rewrite Eq.(5.2.2) as

divbs = div (−µ0 gradϕs + br) = 0 in R3. (5.2.3)

As conventional, the deformation gradient is F = ∇χ, the right Cauchy-Green strain tensor

C = FT F and the Jacobian J = detF. The Maxwell equations in the reference configuration

can be written as

∇ · D̃ = ρ̃e, D̃ = −ϵ0JC−1∇ξ + F−1P̃, in DR (5.2.4)

and ∇ · B̃s = 0, B̃s = −µ0JC−1∇ϕs + B̃r, in R3, (5.2.5)
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where

P̃ = Jp, ρ̃e = Jρe and B̃r = JF−1br. (5.2.6)

Dirichlet boundary condition χ = χb are imposed on SD and tractions t̃e are applied

on SN (SD ∪ SN = ∂ΩR) (Figure 5.2). An external voltage ξ = ξb may be imposed on ΓD

and D̃ · N = Db on ΓN where ΓD ∪ ΓN = ∂DR and N denotes unit normal to the boundary

in the reference configuration. Also, gradϕs → 0 as |X| → ∞.

The free energy of the system is postulated as [97, 230]

F [χ, P̃] = U [χ, P̃] + Eelec[χ, P̃] + Emagnet[χ] −
∫

SN

t̃e · χ, (5.2.7)

where U [χ, P̃] is the internal energy, Eelec[χ, P̃] and Emagnet[χ] are the total electric and

magnetic field energy, respectively. The internal energy U [χ, P̃] may be further sub-divided

as [97, 230]

U [χ, P̃] =
∫

ΩR

Ψ[F, P̃ ] =
∫

ΩR

W elast[F] +
∫

ΩR

|P̃|2

2J(ϵ− ϵ0) , (5.2.8)

where ϵ is the electric permittivity of the material and the internal energy density func-

tion Ψ : R3×3 × R3 → R prescribes the electro-elastic constitutive laws of the material.

Contribution of electric field energy Eelec to the total internal energy is expressed as

Eelec =
∫

DR

ϵ0
2 JC−1∇ ξ · ∇ ξ +

∫
ΓD

ξbN · D̃. (5.2.9)

Finally, Emagnet by

Emagnet =
∫
R3

µ0
2 |h|2 =

∫
R3

µ0
2 |gradϕe|2 +

∫
R3

µ0
2 |gradϕs|2 +

∫
R3
µ0gradϕs ·gradϕe. (5.2.10)

The first term on the right hand of Eq.(5.2.10) is independent of deformation and polar-

ization and can be dropped. Multiplying both sides of Eq.(5.2.3) by the external magnetic
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potential ϕe and integrating over R3, we can show that (5.2.10) can be written as

Emagnet =
∫
R3

µ0
2 |gradϕs|2 −

∫
Ω

1
µ0

br · bapp =
∫
R3

µ0
2 JC−1∇ϕs · ∇ϕs −

∫
ΩR

1
µ0

FB̃r · bapp.

(5.2.11)

The equilibrium state minimizes free energy of the system

min
(χ,P̃)∈S

F [χ, P̃], (5.2.12)

where admissible space S is defined as

S ≡ {(χ, P̃) ∈ H1(ΩR;R3) × L2(ΩR;R3) | χ = χb on SD}. (5.2.13)

Imposing Maxwell’s equations as constraint, we use the standard variational process to

derive the governing Euler-Lagrange equations associated with Eq.(5.2.12). We avoid pre-

senting details of derivation here since the procedure is standard and key elements may be

found in many references including (as example) Liu [97]. The system of equations for the

equilibrium state are

F−T ∇ξ + P̃
J(ϵ− ϵ0) = 0 in ΩR, (5.2.14)

∇ · D̃ = ρ̃e in DR, (5.2.15)

∇ · B̃s = 0 in R3, (5.2.16)

∇ ·
(
Σ + Σ̃MW

elec + Σ̃MW
magnet

)
= ∇ ·

( 1
µ0

bapp ⊗ B̃r
)

in ΩR, (5.2.17)

∇ ·
(
Σ̃MW

elec + Σ̃MW
magnet

)
= 0 in DR \ ΩR, (5.2.18)

∇ ·
(
Σ̃MW

magnet

)
= 0 in R3 \ DR, (5.2.19)

JΣ + Σ̃MW
elec + Σ̃MW

magnet − 1
µ0

bapp ⊗ B̃rK · N + t̃e = 0 in ∂ΩR, (5.2.20)

and JΣ̃MW
elec + Σ̃MW

magnetK · N = 0 in ∂DR. (5.2.21)
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where

Σ = ∂W elast

∂F , (5.2.22)

Σ̃MW
elec = − ϵ

2J |F−T ∇ξ|2F−T − F−T Gradξ ⊗ (−ϵ0JC−1 ∇ ξ + F−1P̃), (5.2.23)

and Σ̃MW
magnet = −µ0

2 J |F−T ∇ϕs|2F−T + µ0JF−T ∇ϕs ⊗ C−1∇ϕs. (5.2.24)

Identifying σ = 1
J ΣFT , σMW

elec = 1
J ΣMW

elec FT and σMW
magnet = 1

J ΣMW
magnetFT , we may also write

equilibrium equations in the current configuration as

div (−ϵgradξ) = ρe in D, (5.2.25)

div (−µ0 gradϕs + br) = 0 in R3, (5.2.26)

div
(
σ + σMW

elec + σMW
magnet

)
= div( 1

µ0
bapp ⊗ br) in Ω, (5.2.27)

div
(
σMW

elec + σMW
magnet

)
= 0 in D \ Ω, (5.2.28)

div
(
σMW

magnet

)
= 0 in R3 \ D, (5.2.29)

Jσ + σMW
elec + σMW

magnet − 1
µ0

bapp ⊗ brK · n + te = 0 on ∂Ω (5.2.30)

and JσMW
elec + σMW

magnetK = 0, on ∂D, (5.2.31)

where we have used Eq.(5.2.14) to eliminate polarization from the equations.

5.2.2 Symmetry of the Cauchy stress

A frequent contention is that in the context of magnetism “stress” is asymmetric. Usu-

ally, such statements emerge due to the difference in how the so-called ”stress” is identified.

Here in this section, we use the method of virtual power to prove symmetry of the true

Cauchy stress that consists of several sub-parts. Each of the sub-part can certainly be

asymmetric but the to the total Cauchy stress as identified by us below is symmetric. We

write the rate of change of internal energy as

W =
∫

ΩR

(Σ + Σ̃MW
elec + Σ̃MW

magnet) · Ḟ. (5.2.32)
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The power expended by any rigid transformation is zero. Therefore, for any skew symmetric

tensor Q we have

W =
∫

P
(Σ + Σ̃MW

elec + Σ̃MW
magnet) · QF =

∫
P

(Σ + Σ̃MW
elec + Σ̃MW

magnet)FT · Q = 0. (5.2.33)

where P is any arbitrary closed smooth subset of ΩR. Consequently, (Σ+Σ̃MW
elec +Σ̃MW

magnet)FT ·

Q = 0 and since Q is a skew tensor we can conclude that

(Σ + Σ̃MW
elec + Σ̃MW

magnet)FT = F(Σ + Σ̃MW
elec + Σ̃MW

magnet)T , (5.2.34)

or equivalently

σ + σMW
elec + σMW

magnet = (σ + σMW
elec + σMW

magnet)T . (5.2.35)

5.3 Numerical solution procedure for incompressible

materials

The equations in the preceding section can only be solved analytically for simple geome-

tries. To handle non-trivial boundary value problems we have developed a finite element

solution for the our framework. There are several implementations for similar coupled prob-

lems available in the literature [231, 232, 25]. We use an approach which enables numerical

solutions without using any commercial packages. Our computational procedure for incom-

pressible materials, with minor modifications, can be used for compressible materials as

well. The weak form of the governing equations of the system is given as

∫
DR

∇w1 · D̃ +
∫

DR

w1ρ̃e = 0, (5.3.1)∫
R3

∇w2 · B̃s = 0, (5.3.2)∫
R3

[
∇w3 :

(
θ1Σ − θ1LaF−T + θ2Σ̃MW

elec + Σ̃MW
magnet − θ1

1
µ0

bapp ⊗ B̃r
)]

= 0

(5.3.3)

and
∫

ΩR

[w4 (detF − 1)] = 0, (5.3.4)
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where (w1, w2,w3, w4) ∈ W and

W ≡{(w1, w2,w3, w4) ∈ H1(DR;R) ×H1(R3;R) ×H1(R3;R3) × L2(ΩR;R)
∣∣

w1 = 0 on ΓD, w3 = 0 on SD}.
(5.3.5)

Also, θ1 (resp. θ2) is equal to 1 inside ΩR (resp. DR ) and zero otherwise. The hydrostatic

pressure La is a Lagrange multiplier which has been introduced to enforce the incompress-

ibility constraint to avoid numerical oscillations and volumetric locking. We make use of

Taylor-Hood elements which implies that the order of shape functions used for the discretiza-

tion of displacement is one order higher than the that for the pressure. The Taylor-Hood

elements have been successfully used in various problems [187, 188]. It can be proved that

Taylor-Hood elements satisfy the Ladyzhenskaya–Babuska–Brezzi (LBB) condition which

is required for the stability of mixed method in incompressible elasticity and Stokes flow

[233, 234, 235, 236]. Therefore, we use quadratic interpolation for displacement and lin-

ear shape function for electric potential, magnetic potential and hydrostatic pressure. The

actual solution of the equations is through the open-source solver FEniCS [181]3.

5.4 Illustrative analytical examples

5.4.1 Magnetoelectricity under tension or compression

Consider the hard magnetic soft electret configuration shown in Fig. 5.3. This elec-

tret consists of two different materials on top and bottom which are referenced with sub-

scripts ”t” and ”b”, respectively. Let X = XeX + Y eY + ZeZ be the representation of

the points in the Lagrange coordinates while points in the Euler coordinates are denoted

by x = xex + yey + zez . The top layer has thickness Ht and thickness of bottom layer is

denoted by Hb. There is a layer of charge between two layers with surface charge density q0.

The material is sandwiched between two mechanically compliant electrodes on top and bot-

tom and short circuit boundary condition is imposed. There is uniform residual magnetic

flux density B̃r = Br
t eX (resp. B̃r = Br

t eX) in top (resp. bottom ) layer. The material will
3The FEniCS files to computationally solve the equations are available on....
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deform in response to an externally applied magnetic flux density bapp = bappex. Since the

two layers have different material properties, deformation in two layers will not be the same4.

Let the deformation gradient tensor for each layer be expressed as

F = λtex ⊗ eX + λ
−1/2
t ey ⊗ eY + λ

−1/2
t ez ⊗ eZ for Hb < X < Hb +Ht,

(5.4.1)

and F = λbex ⊗ eX + λ
−1/2
b ey ⊗ eY + λ

−1/2
b ez ⊗ eZ for 0 < X < Hb.

(5.4.2)

Considering uniform deformation, thickness of each layer in the deformed configuration

Residual Magnetic Flux Density

Electric Charge

S

X

Y
Z

N

Figure 5.3: The schematic of bilayer HMSE made of two layers with different material
properties.

may be determined to be:

ht = λtHt, (5.4.3)

and hb = λbHb. (5.4.4)

4It is important to note that unequal deformation in the two layers may lead to the bending. However,
for this simplified example, we ignore this contribution
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Moreover, considering short circuit boundary condition and assuming uniform electric field

in both top and bottom layers, electric fields can be derived to be

e = − dξ
dx =


V
ht

for hb < X < hb + ht

− V
hb

for 0 < X < hb,

(5.4.5)

where, using Maxwell’s equations, V is determined from the following equation

ϵt
V

ht
+ ϵb

V

hb
= q0. (5.4.6)

We use the incompressible neo-Hookean constitutive relation:

W elast[F] = Gi

2 (tr(FT F) − 3) for i = t, b (5.4.7)

where G denotes the shear modulus of the material. Ignoring the self-magnetic field

(Gradϕs ≈ 0), the equilibrium equations for each layer reduces to

(λ2
t − 1

λt
) − λtB̄t + ϵt

Gt

(
V

ht

)2
= 0, (5.4.8)

and (λ2
b − 1

λb
) − λbB̄b + ϵb

Gb

(
V

hb

)2
= 0. (5.4.9)

where B̄ = µ−1
0 G−1B̃r · bapp and B̄t and B̄b are the corrseponding values of B̄ in top and

bottom layers, respectively. We can then analytically determine the linearized solution for

the above equations assuming |λb − 1| ≪ 1 and |λt − 1| ≪ 1:

λt ≈ 1
1 − B̄t/3

− ϵt/3Gt

1 − B̄t/3

(
Hbq0

Htϵb +Hbϵt

)2
, (5.4.10)

and λb ≈ 1
1 − B̄b/3

− ϵb/3Gb

1 − B̄b/3

(
Htq0

Hbϵt +Htϵb

)2
. (5.4.11)

Unless an external electric field is applied to the material, the magnitude of electric Maxwell

stress is often negligible. Ignoring the effect of electric Maxwell stress in Eqs.(5.4.10) and
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(5.4.11), we can rewrite the last two equations as

λt − 1 ≈ Br
t b

app
t

3µ0Gt
(5.4.12)

and λb − 1 ≈
Br

b b
app
b

3µ0Gb
. (5.4.13)

With the stretches in each layer at hand, we can determine both the electric field and

electric displacement. Electric displacement in top layer is expressed as D̃ = DteX where

Dt is determined by substituting Eq.(5.4.6) into Eq.(5.4.5):

Dt ≈ Di + qHtHbϵbϵt(λb − λt)
(Htϵb +Hbϵt)2 , (5.4.14)

where Di is the deformation independent part of the electric displacement. For brevity and

ease in presentation of equation, we have assumed d ≈ D̃ in derivation of Eq.(5.4.14).

For conventional magnetostrictive/piezoelectric composites, magnetoelectric coupling

coefficient is defined as [183, 184]

αij = ∂Pi

∂he
j

, (5.4.15)

where he
i and Pj , respectively, are the components of the magnetic field and electric polar-

ization defined in a linear framework where there is no difference between reference and cur-

rent configurations. Also, magnetoelectric voltage coefficient αME is defined as α = ϵαME,

where ϵ is the electric permittivity tensor of the material [185, 186]. In experimental settings

and under closed circuit boundary condition, polarization is often determined by measuring

electric charges. This is due to the reason that when the electric field is zero, electric dis-

placement and electric polarization are equivalent. Similarly, here, we perform a thought

experiment and define the effective ME voltage coupling coefficient for HMSE αeff
ME as

αeff
ME = µ0

ϵeff
∂Dt

∂bapp , (5.4.16)
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where ϵeff is determined from following equation

Ht +Hb

ϵeff = Ht

ϵt
+ Hb

ϵb
. (5.4.17)

The effective magnetoelectric voltage coefficient of the material can also be written in terms

of the output charges ∆Q = DtA and the effective capacitance of the material Ceff = ϵeffA
H

αeff
ME = 1

CeffH

∂(∆Q)
∂he

, (5.4.18)

where he is the external magnetic field (he = heeX), A is the surface area of the electrodes

and H = Ht + Hb is the total thickness of the material. Effective voltage coefficient for

the hard magnetic soft electret (shown in Fig. 5.3) is derived by substituting Eq.(5.4.10),

(5.4.11) and (5.4.14) into Eq.(5.4.16)

αeff
ME = 1

ϵeff
q0HtHbϵbϵt

(Htϵb +Hbϵt)2 × 1
3

(
Br

b

Gb
− Br

t

Gt

)
. (5.4.19)

If the bottom layer does not deform in response to the magnetic field, αeff
ME can be be further

simplified as

αeff
ME = − 1

ϵeff
q0HtHbϵbϵt

(Htϵb +Hbϵt)2 × Br
t

3Gt
. (5.4.20)

Several interesting aspects may be noted in Eq.(5.4.20). First, the ME voltage coupling

coefficient of the HMSE is independent of external magnetic field. Therefore, as external

field approaches to zero, αeff
ME remains unchanged. This behavior is in contrast with the

behavior of ME composites and SMSEs where their ME voltage coupling coefficient vanishes

at zero external magnetic field. Also, Eq.(5.4.20) shows αeff
ME ∝ Br for HMSEs while we

have shown that for SMSEs αeff
ME ∝ µ0h

e. This implies that the voltage coupling coefficient

of a HMSE with Br ∼ 1T under external field Br ∼ 1mT is three orders of magnitude

larger than a SMSE material under same external magnetic field.
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5.4.2 Flexure deformation and magnetoelectricity

Flexure is arguably the most suitable deformation mode for energy harvesting and there-

fore it is of interest to explore the ME effect under bending. We also remark that the reso-

nance frequency of the bending model is smaller than for tension and compression. Finally,

since bending is inherently a non-uniform deformation process, a strong electromechanical

coupling can be generated in electret materials [178] which may then amplify the magneto-

electric response. Pertaining to this, we note that it is not easily possible to create bending

deformation with SMSE materials however quite simple in the context of hard magnetic

soft materials as already demonstrated in past work [25]. The flexure problem for HMSE

materials is rather difficult to solve analytically however we attempt an approximate solu-

tion using Euler-Bernoulli beam theory assumptions (Fig. 5.4). We will comment on the

accuracy of the results in the next section where we will present numerical solutions.

Figure 5.4: Schematic of HMSE material that undergoes bending deformation in response
to applied magnetic field. The gold arrows show the direction of residual flux
density and red circles are electric charges.

Consider the hard magnetic material shown in the Fig. 5.4. The residual magnetic flux

density of the material is uniformly aligned along the axis of the beam B̃r = BreX . Due

to the pattern of residual magnetic dipoles, this particular configuration undergoes bending

deformation in response to applied magnetic field across the thickness of the material. We

assume the deformation is small (|∇u| ≪ 1) and the effect of the Maxwell stress is negligible.

The applied magnetic flux density is denoted by bapp = bappeY . Using Euler-Bernoulli beam
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theory, the displacement u can be expressed as

u = −Y ∂uY

∂X
eX + uY eY . (5.4.21)

We assume a unit width for the beam and use Euler-Bernoulli theory to express the internal

energy of the material as

U [uY ] =
∫ L

0

3
2GI

(
∂2uY

∂X2

)2

− H

µ0

∂uY

∂X
bappBr

dX. (5.4.22)

The moment of inertia for beam with unit width is I = 1
12H

3. The equilibrium equations

of the beam is derived using standard calculus of variation as

dU [uY + εη]
dε

∣∣∣∣
ε=0

=
∫ L

0

(
3GI ∂

2uY

∂X2
∂2η

∂X2 − H

µ0

∂η

∂X
bappBr

)
dX =(

3GI ∂
2uY

∂X2
∂η

∂X

)]L

0
−
(

3GI ∂
3uY

∂X3 η + H

µ0
bappBrη

)]L

0

+
∫ L

0

[
η
∂

∂X

(
3GI ∂

3uY

∂X3 + 1
µ0
bappBr

)]
dX = 0.

(5.4.23)

Thus, the deflection of cantilever beam may be obtained by solving the following system of

equations
∂

∂X

(
3GI ∂

3uY

∂X3 + 1
µ0
bappBr

)
= 0,

uY (X = 0) = ∂uY

∂X

∣∣∣∣
X=0

= ∂2uY

∂X2

∣∣∣∣
X=L

= 0,

and
(

3GI ∂
3uY

∂X3 + H

µ0
bappBr

) ∣∣∣∣
X=L

= 0.

(5.4.24)

Considering a uniform magnetic field and uniform residual magnetic field, the magnetic

field induced deflection of the beam can simply be obtained by solving system of equations

(5.4.24)
uY

L
= 2(AR)2 b

appBr

Gµ0

(
(x
L

)2 − 1
3(x
L

)3
)
, (5.4.25)

where AR = L/H is the aspect ratio of the material. Thus, the local curvature of the beam
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κ = ∂2u
∂x2 is determined as

∂2u

∂x2 = bappBr

Gµ0

4L
H2

(
1 − x

L

)
. (5.4.26)

We cannot use the solution provided in this section to determine output charge of a

hard magnetic soft electret under bending deformation because it was a linear decoupled

problem. The relation between magnetic field and curvature is illustrated in Eq.(5.4.26).

To obtain an analytical relation between the output charge and magnetic field, the fully

coupled problem has to be solved which is a rather difficult nonlinear problem. However,

Rahmati et al. [178] presented a simple relationship between curvature and output charge

for an electret under pure bending. According to their model, the output charge is related

to curvature κ through Dt = 1
4q0Hκ where q0 is the surface charge density at the interface

of two materials. Therefore, for illustrative purposes, the scale of the output charge for

a hard magnetic soft electret with uniform distribution of residual magnetic flux density

under bending deformation can be roughly approximated as

Dt ∝ bappBr

Gµ0
ARq0, (5.4.27)

and, as a result, we have

αME ∝ (AR)B
r

G

q0
ϵeff . (5.4.28)

Eq.(5.4.28) shows that the ME voltage coupling coefficient of the material shown in the Fig.

5.4 linearly depends on the aspect ratio of the material.

5.4.3 Shape programmable property of HMSEs

Hard magnetic soft elastomers can be quite easily programmed to develop any desirable

deformation in response to external magnetic field by designing the residual flux density

profile of the material [180]. As the ME response of the material directly depends on

the actuation strain in these materials, the ME response too can be designed by suitably

programming the residual flux density. The profile of the residual flux density in these

materials depends on the deformation imposed to the material during magnetization step.

In this section, we will show that if the material is helt in a bent configuration during
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the magnetization step, the residual magnetic profile of the material will reflect this bent

shape. This behavior can be generalized to any desired pattern of deformation. We have

chosen flexure deformation mode for illustrative purpose because our theoretical calculations

showed that the ME effect mediated with bending deformation can lead to a significantly

strong ME effect (Eq.(5.4.28)). We calculate the profile for residual magnetic flux density

of the material in this section and subsequently use a numerical approach (next section) to

evaluate the ME response.

Figure 5.5 illustrates the three steps for creation of a PHMSE which bends in response to

magnetic field. Initially, the magnetic micro-particles inside the material are randomly ori-

ented and the residual magnetic flux density of the material is zero(Fig. 5.5a). In the second

step, a pure bending deformation is imposed to the material and a large magnetic field is

imposed on the structure(Fig. 5.5b). The deformation gradient tensor for this deformation

is denoted by Fb. In this step, magnetic micro particles rotate and align themselves with

the external field and, as a result, a net magnetic flux density is created inside the material.

The re-alignment of the magnetic micro particles itself does not create any substantive de-

formation in the material. Due the high coercivity and high residual magnetic flux density

of NdFeB micro particles, subsequent to the alignment, the magnetization profile remains

stable even after we the magnetization magnetic field of step two is turned off. Thus, in

the last step, we remove the magnetic field used to magnetize the material and reverse the

deformation. The magnetic micro particles are anchored to the matrix material and they

rotate as the material element rotates. Therefore, the reversed deformation developed from

step two to step three leads to creation of the residual magnetic flux density profile shown

in the Fig. 5.5c.

We denote the magnetic flux density in step three by B̃r. The residual magnetic flux

density in the configuration shown in the step two is denoted by bmag and is expressed as

bmag = −Brcos(θ)er +Brsin(θ)eθ. (5.4.29)
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Figure 5.5: The steps for creating PHMSE. (a) Undeformed configuration. (b) The desired
deformation is induced and the pre-magnetization magnetic field is applied.
(c)The imposed deformation and applied magnetic field is removed.

The magnetic flux densities bmag and B̃r are related to each other through the third of

Eq.(5.2.6) B̃r = det(Fb)F−1
b bmag. Therefore, we need to determine the deformation Fb

in order to determine the profile for magnetization flux density. The analytical solution

for large elastic deformation of material under pure bending was first presented by Rivlin

[103]. Motivated by Rivlin’s solution, recently we have derived the solution for bending

deformation of electret materials [178]. We simply present the final expression for Fb. The

reader is referred to Rivlin [103] and Rahmati et al. [178] for further details.

The material point in the undeformed configuration (step one and three) are denoted by

X = XeX +Y eY . The spatial points in step two are denoed by r = rer. For a deformation

that is a pure symmetric plane strain bending such that material point each plane originally

located in plane with normal eY (resp. eX) will transfer to a plane with normal er (resp.

eθ) as a result of this deformation. The desired bending angle α (see Fig. 5.5b) is achieved

by controlling the bending moment applied to the material. Stipulating incompressibility,
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the deformation gradient Fb is determined as

Fb = L

2α× r(Y )er ⊗ eY + 2α× r(Y )
L

eθ ⊗ eX , (5.4.30)

where

r(Y ) =

√
(r2

2 − r2
1)Y
H

+ r2
2 + r2

1
2 and θ(X) = (2Y − L)α

L
. (5.4.31)

and r1 and r2, respectively, are radii of curved surfaces initially located at Y = 0 and Y = H

(Fig. 5.5b). For a neo-Hookean constitutive response and traction-free boundary surfaces

normal to er, r1 and r2 may be determined by solving the following nonlinear system of

algebraic equation

L

α
= r2

2 − r2
1

H
and

(
r2 − r1
H

)4
=

16 r2
2

r2
1(

r2
r1

+ 1
)4 . (5.4.32)

Finally, the magnetic flux density at each point of PHMSE is determined substituting

Eqs.(5.4.30) and (5.4.29) into third of Eq.(5.2.6)

B̃r = BrL

2αr(Y )sin [θ(X)] eX − 2Brαr(Y )
L

cos [θ(X)] eY . (5.4.33)

Clearly, the obtained profile for the residual flux density restores information about the

deformed configuration in the magnetization step. We will use this profile in the subsequent

section in our numerical simulations. Unless otherwise stated, we set value of Br = 0.0767

T and use the profile given in Eq.(5.4.33) in all simulation results.

5.5 Numerical results, comparison with experiments and

discussion

In this section, we use the formulation presented in the section 5.3 to simulate the ME

behavior of HMSE and PHMSEs using the open source finite element code, FEniCS. In

order to check accuracy of our computational model, first we compare our results with the
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available theoretical, experimental and numerical results. Then, we present solutions for the

bending deformation of HMSEs and PHMSEs. Throughout this section, we have assumed

that the self magnetic field is negligible(∇ϕs ∼ 0). We use the incompressible neo-Hookean

constitutive law given in the Eq.(5.4.7) and plane strain conditions. Unless otherwise stated,

Ythe oung’s elastic modulus of the material is set to 55 KPa, the magnitude of the residual

flux density is Br = 0.0767, the electric permittivity of the material is equal to ϵ = 5.0676ϵ0

and the interface charge density is q0 =0.0488 mC/m2. Also, the length and the thickness

of the sample, respectively, are set to be L = 22 mm, H = 1.85 mm. These numerical values

are consistent with the material fabricated and examined by the Qian Deng Research Group.

5.5.1 The bending deformation of hard magnetic soft elastomer without

electrets

As the first step of our analysis, we simulate the material shown in the Fig. 5.4 without

considering effects of external charges (ρ̃e = 0). The residual flux density is uniformly

aligned with the axis direction of the material and an external magnetic field is applied

across the thickness of the material. This problem has been solved by Zhao et al. [25]

both numerically (using an ABAQUS UMAT) and experimentally. Figure 5.6 shows that

there is an excellent agreement between our finite element results and the experimental

and simulation results given by Zhao et al. [25]. Figure 5.6(a) compared the deformed

configuration from our simulation with the experimental observations for two materials

with two different aspect ratios under the same magnetic field. Also, Fig. 5.6(b) shows that

the deflection versus dimensionless magnetic field for materials with different aspect ratios

and we see excellent agreement with Zhao et al. [25].

5.5.2 Magnetoelectric energy harvesting using parallel plate capacitor

made of hard magnetic soft elastomer

In the next step, we illustrate the ability of electric energy harvesting by applying an

external magnetic field to a parallel plate capacitor made of hard magnetic soft elastomer

and compare the numerical results with analytical results. Consider the material shown in
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(a)

(b)

Figure 5.6: Comparison of the current numerical solution with experimental and simulation
results given by Zhao et al. [25]. (a)The deformed configuration for |br||Bapp|

Gµ0
=

0.0094 and AR = L
H = 10. (b) The vertical displacement of the tip of the beam.

the Fig. 5.7(a) where residual magnetic field is aligned parallel with the thickness direction

of the material. A voltage difference V has been applied across the thickness of the material.

Once a magnetic field is applied to the material along the thickness direction and in the

opposite direction with respect to residual field, the material tends to compress. This

compression increases the electric field inside the material and enables material to do work

142



on the boundary electric device. This work can be determined as

W = −
∫

ΓD

[
ξb

(
D̃ − D̃i

)
· N
]
, (5.5.1)

where D̃i = limBapp→0 D̃. The value of W can be determined analytically. The procedure

for analytical solution is very similar to what was mentioned in section 5.4.1. The only

difference is that, here, we enforce a plane strain condition to be consistent with numerical

calculations. Under plane strain condition, equilibrium equation is written as

(λ4 − 1) − λ3 B̃r · bapp

Gµ0
+ ϵ

G

(
V

H

)2
= 0, (5.5.2)

where λ is the stretch along the thickness direction. Assuming |λ− 1| ≪ 1, above equation

can be linearized and solved for λ. The calculated value of the stretch can be substituted

in Eq.(5.5.1) to determine energy harvested at the boundary. Therefore, the electric work

done on the boundary electric device for G−1µ−1
0 |br||bapp| ≪ 1 is determined as

W̄ = W

A
×
(
ϵ
V

H
× |br||bapp|

G−1µ−1
0

)−1

≈ 8 − 4Ē2(
4 − 3Ē2

)2 , (5.5.3)

where A is the top surface area of the material. Also, dimensionless electric energy Ē is

defined as

Ē = V

H

√
ϵ

G
. (5.5.4)

The relation (5.5.3) has been used to generate Fig. 5.7(b). Good agreement is seen

between our analytical results and simulations. Also, it is clear in the relation (5.5.3)

that W̄ is independent of the magnetic field and only depends on dimensionless electric

field. Our numerical solution for compression problem also shows that W̄ is independent

of magnetic field. Therefore, we can conclude that magnetic field will not change W̄ in

the compression problem under small strain assumption. In the other words, according

to Eq.(5.5.3), the amount of electric energy can be harvested at the boundary W linearly

increases as dimensionless magnetic field G−1µ−1
0 |br||bapp| increases.
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(a)

(b)

Figure 5.7: The electric energy harvesting by applying magnetic filed to a parallel plate
HMSE capacitor. (a) Schematics of the material. (b) The electric energy har-
vested by applying a magnetic field to a parallel plate capacitor made of HMSE.

5.5.3 The magnetoelectric effect in PHMSEs

In the next step, we simulate the behavior of the PHMSE shown in the Fig. 5.8. The

profile of the residual magnetic flux density is given in the Eq.(5.4.33). We assume the

material is cantilevered from the left end and a magnetic field across its thickness is applied

(he = heeY ). The short circuit electrical boundary condition ξ = 0 has been applied to

surfaces Y = ±H/2. The deformation is fully constrained on the cantilever side of the
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beam (X = 0). Unless otherwise stated, a layer of external charges with the surface charge

density q0 = −0.048 mC/m2 has been inserted to the material at Y = 0. Due to existence of

interface charges, the electric potential inside the material is not zero even in absence of the

external loading. Therefore, we have to compare the solution in two states, in presence and

absence of the externally applied magnetic field, in order to determine generated voltage

inside the material. We identify the generated electric potential ξ − ξ0, where ξ0 is the

electric potential of the system determined at he = 0. Similarly, the output charge ∆Q

over surface area of the electrode A can be determined as

∆Q
A

= 1
L

∫ L

0

(
Df (X) −Di(X)

)
dX, (5.5.5)

where Df is defined as Df = (D̃ · eY )|Y =H determined at he = heeY . Also, Dt is defined as

Dt = (D̃ ·eY )|Y =H determined at he = 0. The ME voltage coupling coefficient is calculated

substituting Eq.(5.5.5) into Eq.(5.4.18)

αeff
ME = 1

ϵeff

∂

∂he

(
1
L

∫ L

0
Df (X)dX

)
. (5.5.6)

Figure 5.8: Schematic of the PHMSE. The gold arrows show the direction of residual mag-
netic field.

We have ensured mesh convergence for our FENICS calculations (see Fig. 5.9). Figure

5.10 compares our simulation results with experimental observations for this problem and

good agreement is found. The shape programmable ability of the PHMSE is illustrated in

this figure where a uniform magnetic field leads to a non-uniform deformation. Also, it is

clear that the deformation is not symmetric with respect to the magnetic field. This is be-

cause the direction of residual magnetic field is not symmetric. Therefore, as the direction
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(a) (b)

Figure 5.9: Mesh convergence study.

(b)

(a)

(c)

Figure 5.10: The deformed configuration observed in the experiment versus the deformed
configuration obtained using FE model for the PHMSE under different (a)
positive and (b) negative magnetic fields. (c) The deflection of the material.

of the applied magnetic field is reversed, the direction of the deformation does not reverse

completely.

Figure 5.11a shows the deformed configuration and contours of generated dimensionless

electric potential for different values of magnetic fields. The dimensionless electric potential

is defined as ϵ(ξ − ξ0)/(q0H), where ξ, ϵ, q0 and H, respectively, are electric potential,
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Figure 5.11: The numerical results showing ME effect in PHMSE. (a) Contour plots showing
changes observed in the distribution of electric potential. (b) Dimensionless
deflection, (c) dimensionless output charges and (d) the ME voltage coefficient.

electric permittivity, surface charge density at the interface and the thickness of the mate-

rial. The potential ξ0 is the electric potential at each point in absence of external magnetic

field. This figure shows that the applied magnetic field changes the distribution of elec-

tric potential and the electric field is generated within the material in response to applied

magnetic. The generated electric field increases as external magnetic field increases. The

contours of generated electric potential are compared with strain components in the Fig.

5.12. Evidently, inhomogeneous strain leads to the presence of electric potential difference

and this implies that emergence of electric potential difference and ME effect is mediated

by strain gradients. It is convenient to achieve magnetoelectric coupling through bending

deformation since bending is one of the simplest way to induce strain gradient in the ma-

terial without using a composite structure (last section).

The dimensionless vertical displacement of the tip point of the beam is shown in Fig.
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(c) (d)

Figure 5.12: The contours of (a) dimensionless generated electric potential (b-d) and strain
components for PHMSE where E = FT F − I.

5.11b for beams with different aspect ratios (AR = L/H). Also, the dimensionless output

charges ∆Q
Aq0

(calculated using (5.5.5)) versus applied dimensionless magnetic field Brbapp

µ0G is

plotted in Fig. 5.11c. A larger deflection and output charge is observed for the materi-

als with larger aspect ratios under small magnetic fields. However, as the magnetic field

increases, the deflection and output charges increase until they reach a plateau where max-

imum deflection and output charges have been reached. For beams with greater ARs, the

maximum deflection is reached at smaller magnetic fields. In addition, we observe that the

deformation (and consequently output charges) is not symmetric with respect to the applied

magnetic field. This is because the residual field is not symmetric. Figure 5.13 shows a

symmetric behavior in HMSEs with residual field uniformly aligned along the axis of the

beam (B̃r = BreX). Figure 5.13 shows that for the material with a symmetric alignment

of the residual field, imposing external magnetic fields with opposite signs will lead to de-

flections (Fig. 5.13b), output charges (Fig. 5.13b) and magnetoelectric voltage coupling

coefficients (Fig. 5.13c) with the opposite sign.
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Figure 5.13: The numerical results showing ME effect in HMSE with uniform residual mag-
netic field. (a) Contour plots showing changes observed in the distribution
of electric potential. (b) Dimensionless deflection, (c) dimensionless output
charges and (d) the ME voltage coefficient.

We show, using Fig. 5.11, that external magnetic field induces bending and electric

charges can be harvested at the electrodes attached to the surface of material in response

to the bending. This resulting magnetoelectric effect can be quantified using the magne-

toelectric voltage coupling coefficient. The ME voltage coupling coefficient of the PHMSE

is numerically calculated using relation (5.5.6). The voltage coupling coefficients versus

magnetic field for PHMSEs with different aspect ratios are plotted in Fig. 5.11d. A gi-

ant value (greater than 1 Vcm−1Oe−1) for voltage coupling coefficient of the material is

reported at zero external magnetic field. The ME voltage coupling at zero magnetic field

increases as AR increases. This shows that PHMSEs not only enable substantially large

ME coupling but they make it unnecessary to have a bias magnetic field. Thus hard mag-

netic soft electret form a unique class of materials which provide soft and biocompatible
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magnetielectric property which is significantly sensitive to weak magnetic fields. This value

is even comparable with highest values of the ME voltage coupling coefficients of polymer

based magnetoelectric composites.

(a) (b)

Figure 5.14: The effect of surface charge density in ME effect in PHMSEs under bending
deformation. (a) FE results for ∆Q/A versus he for different values of interface
charge density. (b) FE results for the αeff

ME versus q0.

Effect of interfacial charge density. There is a direct relationship between interface

charge density and the amount of charge tjat can be harvested from the PHMSEs under

magnetic field induced bending deformation. Results obtained from our finite element

model shows that the larger the interface surface charge density is, more electrical energy

can be harvested (5.14a). The voltage coupling coefficient versus interface surface charge

density for PHMSEs under different external magnetic field is plotted in Fig. 5.14b. A

linear relation between ME voltage coupling coefficient of the material and interface charge

density is reported.

Effect of deformation resulting from the magnetization step. The magnetoelec-

tric effect in PHMSEs may be impacted by the initial curvature induced in the material in

the magnetization stage. The initial curvature is controlled by bending angle α (see the

inset of Fig. 5.15) which has a direct impact on the profile of residual magnetic flux density

given in Eq.(5.4.33). The effect of bending angle in magnetization stage on the ME effect

of the PHMSE is studied in the Fig. 5.15. Evidently, the output charge can be modified by

changing the bending angle in the pre-magnetization stage. This is a proof of concept that
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Figure 5.15: The effect of bending angle in the pre-magnitization stage on the harvested
electric charges of PHMSE. The length of the beam is 35 mm and its thickness
is 0.8 mm. Also, q0 = 0.1 mC/m2.

shows PHMSE materials can be customized to show desired actuation and magnetoelectric

effect that may be tailored for a particular application. We remark that past work has

shown that hard magnetic soft materials can be easily programmed to actuate into very

complex configurations in response to uniform external magnetic field. Thus, very complex

electric signals can be produced in response to applied magnetic field [180] paving the way

for remote transfer of information.

5.6 Concluding remarks

In summary, as a replacement for ME composite materials, we introduced hard mag-

netic soft electret materials as a new class of materials which enable large deformation and

strong ME coupling in one single material. In sharp contrast to ME composite materials

and recently developed soft magnetic electret materials, we showed that ME effect in hard

magnetic electrets can be independent of magnetic field. Therefore, HMSEs show a sig-

nificant ME coupling at infinitesimal magnetic fields without any bias magnetic field. We

showed the ME effect in soft HMSEs are strain mediated. The magnetic field independent

ME effect of HMSEs is attributed to their linear magnetic filed-deformation relation. Our

investigation indicated that the room-temperature magnetoelectric voltage coefficient in a

simple bi-layer HMSE is as high as 332.7 mVcm−1 Oe−1. Also, we showed that HMSEs can

simply be programmed to exhibit a ME effect mediated by desired deformation. We showed
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giant voltage coupling coefficient of greater than 15.36 Vcm−1 Oe−1 is simply possible in

elastically homogeneous PHMSE at resonance frequency of 6 Hz in which ME effect is me-

diated by bending deformation. Therefore, HMSEs are the first known soft materials with

giant ME coupling which eliminate the bias magnetic field requirement.
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Chapter 6

Theory of Photo-Flexoelectricity in Nematic Liquid Crystal

Elastomers and the Coupling of Light, Deformation and Elec-

tricity

Photoactive nematic liquid crystal elastomers permit generation of large mechanical de-

formation through impingement by suitably polarized light. The light-induced deformation

in this class of soft matter allows for devices such as transducers and robots that may be

triggered wirelessly. While there is no ostensible direct coupling between light and electric-

ity in nematic liquid crystal elastomers, in this work, we take cognizance of the fact that the

phenomenon of flexoelectricity is universal and present in all dielectrics. Flexoelectricity

involves generation of electrical fields due to strain gradients or conversely, the production

of mechanical deformation through gradients of electrical fields. Barring some specific con-

texts, the flexoelectric effect is in general rather weak in hard materials. However, due to

the facile realization of strain gradients (e.g. flexure) in soft materials, we expect flexo-

electricity to be highly relevant for liquid crystal elastomers thus, prima facie, furnishing

a deformation-mediated mechanism to couple light and electricity. In this chapter, we de-

velop a nonlinear theory of photo-flexoelectricity for nematic liquid crystal elastomers and

analyze the precise conditions underpinning an appreciable coupling between light and elec-

tricity. A careful scaling analysis reveals that there is an optimal size-scale at which the

flexoelectricity-mediated photo-electric effect is maximized. We find that with conservative

estimates of the flexoelectric coefficients of these materials, the electrical power generation

is rather modest for typical optical load. However, our proposed coupling is an appro-

priate modality for optical sensing. Furthermore, design of next-generation liquid crystal

elastomers with high flexoelectricity as well as exploitation of size-effects could ameliorate

extraction of electrical power from light illumination.
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6.1 Introduction

The prospects of producing electricity through radiation and specifically, light, needs

little motivation. The mechanism is wireless and thus can be remotely administered and

proceeds at maximal speed allowed by the known physical laws (Fig. 6.1). The intense

and storied research in the broadly defined field of photovoltaics is a testament to this. In

this work, we attempt to understand the mechanics underpinning of coupling between light

and electricity in an entirely different class of materials: photoactive nematic liquid crystal

elastomers.

Figure 6.1: Optimum size scale for manifestation of photo-flexoelectric effect.

Crudely, a liquid crystal elastomers (LCE) is a marriage between conventional rub-

bery polymers and liquid. The result is a rubber-like very soft solid but one that appears to

inherit several idiosyncracies of the liquid crystal structure [237]. They can exhibit large de-

formation (up to 400%)[238] in response to wide range of stimuli including heat[239], electric

field[240], magnetic field[241] and light[242]. The explored applications for these materials

include soft robotics [243], optics[244], biomedicine[245, 246] and consumer devices[247].

In addition, recent developments in synthesis methods for LCEs have simplified the fabri-

cation processes which has focused considerably increased attention on these materials [248].
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The LCE materials are cross linked polymer network containing mesogens[249]—rigid

rod like molecules that have a strong tendency toward self-organization [238]. The meso-

gens are covalently linked to a polymer chain backbone where flexibility of polymer net-

work permits rotation and motion of mesogens retaining liquid crystalline property of the

material[248, 250]. The LCEs can exhibit different phases and their phase transition can

lead to large macroscopic strains. Fig. 6.2 shows an LCE initially in the the so-called

nematic phase (where mesogens are aligned in one direction). Application of an external

stimulus such as heat can trigger phase transition from this nematic to isotropic state in

which nematic mesogens are randomly oriented. This causes a contraction along the di-

rection of nematic mesogens. The LCEs can be found in different phases distinguished by

the positional and orientation order of the mesogens: e.g. nematic, smectic and cholestric.

Further discussion on the molecular structure of LCE’s is avoided and we simply refer the

reader to several overviews on this topic. The focus of our work is on the more common

embodiment of LCEs based on the nematic phase.

Central to this chapter is the very unique property of the LCEs pertaining to photo-

induced actuation [309, 310, 311, 312, 313]. Essentially, light can induced rapid, large

and reversible strain in these materials. The strain generated in the LCEs in response to

light irradiation can be due to either photothermal or photochemical reasons[316]. The

photothermal effect is due to conversion of light to heat inside the material which can

raise the temperature and trigger phase transition (thus leading to a large deformation).

Photothermal effect is not th subject of current work and we refer the reader to other works

for further information (see reviews [317, 318, 319]). On the other hand, the photochemical

effect may be observed in the LCEs if liquid crystal molecule contain photoisomerizable

groups such as azobenzene[320]. The irradiation of light to azobenzene molecules can lead

to trans→cis and cis→trans isomerizations generating a macroscopic deformation. The

trans→cis isomerization occurs when azobenzene molecules are exposed to UV light. This

isomerization changes the shape of the molecules from rod-like to strongly kinked rods

which act as impurities and dilute the nematic ordering and lead to nematic to isotropic

phase transition [320]. This phase transition can be reversed by exposing the material to
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visible light[321]. In addition to this effect, the exposure of NLCE to a polarized light can

induce reorientation of the nematic mesogens[316]. The light induced reorientation effect,

also known as the Weigert Effect [322], is a result of repeated trans–cis–trans isomerization

cycles in response to polarized light irradiation[323]. Several experimental studies have

highlighted photo-induced reorientation in nematic liquid crystal polymers [324, 325, 326].

Stimulus off

Stimulus on

Isotropic Phase Nematic Phase

Figure 6.2: Schematic illustration of strain induced as a result of phase transition in LCE
in response to stimulus.

From the viewpoint of the development of mathematical theories to describe LCE’s,

three broad topics are relevant to the present study)1: mechanical behavior, electromechan-

ical coupling, photoactivity. We briefly summarize the some representative literature on

each of these in the following paragraphs.

In an early work, a phenomenological strain energy function for ideal nematic solids was

proposed by Bladon et al. [257]—the so-called BTW model. This neo-classical strain-energy

function, which is a simple extension of the classical theory of rubber based on Gaussian

polymer chains, emerged from statistical mechanics considerations of LCE microstructure

[258]. Several other followed. For instance, a continuum theory for nematic elastomers

was presented by Anderson et al.[259] where they considered directional effect of nematic

mesogens by introducing orientational forces –which were distinct from conventional defor-

mational forces– that expend power over the time-rate of the orientation field and required

that these forces comply with an orientational momentum balance. This approach was mo-

tivated by Ericksen [260] and Leslie [261] works originally developed to study liquid crystals.

Chen and Fried [262] emphasized the need to correctly incorporate kinematic constraints
1Of course, we focus only on aspects germane to the topic of our paper and there are many aspects

pertaining theory for LCE’s that are beyond the scope of our paper e.g. statistical mechanics of LCE’s at
the microscale, atomistics considerations
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while DeSimone and Teresi[263] refined anisotropic part of BTW model and presented two

new nonlinear models. In contrast to the BTW model, the approach of DeSimone and Teresi

was able to capture the semi-soft behavior of LCEs. Agostiniani and Antonio DeSimone

[264] presented an Ogden type extension of free energy of nematic elastomer. In addition to

monodomain LCEs, extension of theoretical approach to polydomain LCEs is also available

in the literature[265, 258].

The behavior of LCE’s under the action of electrical fields has also received attention

in the literature [266, 267, 240]. LCE’s are not piezoelectric so the key electromechanical

coupling mechanism (at least the one explored in the literature) is that due to electrostatic

Maxwell stress. A conventional dielectric elastomer film, when subjected to a potential

difference across its thickness, tends to due to the contract along the direction of an ap-

plied electric field [178, 48, 268, 269, 270]. However, LCEs may contract[240, 271, 272] or

expand [273, 274] along the direction of applied electric field. This distinction is due to

the markedly different microstructure of LCEs compared to conventional elastomers. The

LCEs have an anisotropic dielectric tensor [237] and the material properties along the direc-

tion of the nematic mesogens are different from the perpendicular direction. The electrical

Maxwell stress generates a compressive force in an LCE thin film sandwiched between two

electrodes and under electric potential difference but this effect is anisotropic and this force

depends on the alignment direction of the nematic mesogens [272]. Also, the electric field

may trigger reorientation of nematic mesogens which tend to align themselves with electric

field[275]. This behavior that leads to an expansion along the direction of the electric field is

also due to anisotropic nature of the LCEs[276]. Therefore, there is a competition between

the Maxwell stress and reorientation effects in these materials[277] and the response is sig-

nificantly more nuanced as compared to conventional elastomers and highly variable based

on the boundary condition of the problem and material properties including viscoelastic

behavior[277]. Modeling the complex electro-mechanical response of LCEs has motivated

several theoretical studies [278, 276, 279, 280, 281, 282, 283, 284, 285, 286, 287, 275, 277].

Although it has been shown that the effect of the Maxwell stress could be considerable

[240, 271, 272], the effect the Maxwell stress is rarely considered [287, 275, 277, 288]. In

addition, these theoretical works often have focused on one specific boundary value problem
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and they are not extendable to other problems. Among some recent works, Pampolini and

Triantafyllidis[289] proposed a variational formulation for nematic continua with a poten-

tial energy depending on four independent variables (the displacement, director, specific

polarization and electric displacement perturbation) and used their developed theory to

study bifurcation of an infinite layer of a nematic liquid crystal confined between two par-

allel plates and subjected to a uniform electric field perpendicular to these plates under full

anchored boundary conditions (so-called Fréedericksz transition phenomena). Also, Xu and

Huo [287] used the continuum model given by Zhang et al.[290], which was originally based

on dissipation principle for viscoelastic solids with micro order, and extended it to dielectric

LCEs to study Fréedericksz transition.

Light-induced actuation in photoactive LCE’s has been modeled by several groups

[327, 328, 329, 330, 331, 332, 333]. Many studies have primarily focused on one specific

class of deformation such as bending [328, 332] or they do not consider effect of the light

polarization [334, 335, 331]. Recently, Bai and Bhattacharya [336] used a free-energy de-

veloped by [337] to study photomechanical coupling in a photoactive LCE under both light

illumination and mechanical stress. They explored the effect of light polarization direction

on the reorientation of nematic directors and showed that nematic mesogens tend to align

themselves in the direction perpendicular to light polarization direction.

We find it somewhat ironic that although the phenomenon of flexoelectricity was first

noted in liquid crystals [291], a theory for flexoelectricity in LCE’s is conspicuously absent.

While flexoelectricity in conventional elastomers (to various degrees of sophistication) has

been addressed, there is little literature on this effect in LCEs (with just a few exceptions

which we will highlight below). In liquid crystals, flexoelectricity refers to electrical po-

larization caused by a gradient of the mesogens orientation pattern [291, 292, 293]. The

mechanism of flexoelectricity in liquid crystals depends on the molecule shape of the meso-

gens(see Fig. 6.3)[85]. As shown, for wedge (pear) shaped molecule (Fig. 6.3a) a splay

arrangement of the molecules leads to generation of a non-zero polarization and for banana

shaped molecules(Fig. 6.3b) polarization is produced in response to bending arrangement

of the molecules[298]. For rod shaped molecules shown in Fig. 6.3c, both bending and splay

rotation of molecules can break the anti-parallel polarization symmetry of the polarization
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and create a net polarization [299, 300]. The formation of a quadrupoles can also contribute

to exhibition of flexoelectric effect (Fig. 6.3c) [300]. It has been observed experimentally

that liquid crystals with rod shaped molecule have flexoelectric coefficient in the order of

1 pC/m while the flexoelectric coefficient of the banana shaped molecules is three orders

of magnitude larger [301, 296, 297, 302]. As already hinted earlier, we are aware of just a

few works on LCE’s. Harden et al. [304] experimentally showed side bent bent core LCEs

can exhibit a “giant” flexoelectric coefficient(∼ 30 nC/m). Chambers et al. [305] reported

a large flexoelectric coupling in a calamitic LCE swollen with bent-core liquid crystal (∼

20 nC/m). Recently, Rajapaksha et al. [306] also observed a flexoelectric-like response in

ionic LCE.

In this chapter, to explore the interplay between light, mechanics and electricity, we

develop a nonlinear theory for flexoelectricity for nematic liquid crystal elastomers that

also incorporates, photoactivity, Frank elasticity, and anisotropy. Also, we present linearized

form of the equation and asymptotic theories which have been proposed to facilitate the

analytic solution of future boundary value problems. Moreover, we develop a dissipative

dynamic model for LCEs including effects of electro-mechanical coupling. Furthermore,

we present finite element implementation of theory and investigate flexoelectric behavior of

LCEs under stretch and bending deformations. We study size effect in flexoelectric behavior

of LCEs and show that LCEs may enable a photo-flexoelectric effect.

6.2 Formulation

Notation:Let VR be the body of the nematic elastomer in the reference undeformed con-

figuration. The deformation χ maps reference configuration VR to the current configuration

V . The material points in the reference configuration are denoted by x and the material

points in the current configuration are denoted by y. The boundary of the body in the

current (rep. reference) configuration is denoted by ∂V (resp. ∂VR). The unit normal

to the surface in the current (rep. reference) configuration is denoted by ν (resp. νR).

The gradient operator in the Lagranian (resp. Eulerian) coordinates are represented by ∇

(resp. ∇y). The thermodynamic state of the NLCE is described by order parameter Q,
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Figure 6.3: The mechanism of the flexoelectricity for LCs with (a) wedge (pear) shaped
molecules, (b) banana shaped molecules and (c) rod shaped molecules.

director field n, polarization p and deformation y, (Q,n,p,y) : V → R × R3 × R3 × R3.

It is important to note that we ignore variations of the order parameter and assume it

remains constant unless material is exposed to light. Therefore, we will present general

theory assuming it is variable but later on we simplify the theory assuming this variable

is constant. Also, it is worthwhile to note that the reference configuration is an isotropic
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phase with randomly distributed director field before the nematic transition. The reference

configuration is undeformed but it is not stress free.

We identify deformation gradient tensorF, Jacobian J , the right Cauchy-Green strain

tensor C, the left Cauchy-Green strain tensor B and the polarization in the reference

configuration P̃ as

F = ∇y, J = detF, C = FT F, B = FFT and P̃ = Jp. (6.2.1)

We identify electric potential ξ : V → R and electric field e = −∇yξ. Our theory is

established based on this premise that the electrostatic Maxwell equation has to be satisfied.

The Maxwell equation in the current and reference configurations are expressed as

d = −ϵ0∇yξ + p div(d) = 0 in V, (6.2.2)

and D̃ = −ϵ0JC−1∇ξ + F−1P̃ Div(D̃) = 0 in VR. (6.2.3)

Moreover, we identify the material properties An and Dn as

Dn = ϵ0 [(ϵc − ϵa) n ⊗ n + ϵaI] , (6.2.4)

An = (Dn − ϵ0I)−1 = A1n ⊗ n +A2I, (6.2.5)

and A1 = − ϵc − ϵa
ϵ0(ϵc − 1)(ϵa − 1) , A2 = 1

ϵ0(ϵa − 1) , (6.2.6)

where ϵa (resp. ϵc) is the relative permittivity along the a-axis (resp. c-axis) of the mesogen.

Also, ϵ0 is the electric permittivity of the vacuum.

The total free energy F tot of the system for a flexoelectric NLCE under electro-thermo-

opto-mechanical loading is expressed as

F tot[Q,n,p,y] = U ee[Q,n,p,y] + FFrank[∇n,y] + Fflexo[n,p]

+ Fopt[Q,n] + Eelect[y,p] + UBC[ξ,y],
(6.2.7)

where FFrank, Fflexo, Fopt, Eelect and UBC, respectively, are the contribution of the Frank

elasticity, flexoelectricity, optical effects, electric energy and boundary conditions to the
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free energy of the system. Also, U ee is the internal electro-elastic internal energy which is

defined as

U ee[Q,n,p,y] =
∫

VR

W elast +W anis + 1
2JAnP̃ · P̃, (6.2.8)

where W elast is the internal elastic energy density of the LCE and W anis is the energy

contribution due to anisotropy of the nematic mesogens in the load free state. As it was

discussed in the introductory section, we use the internal energy density given by DeSimone

and Teresi [263]

W elast = µ

2J
−2/3(FFT ) · (FnFT

n)−1 + 1
2κ(J − 1)2, (6.2.9)

where µ and κ are shear modulus and bulk modulus of the material. Also, Fn is defined as

Fn = a1/3n ⊗ n + a−1/6 (I − n ⊗ n) , (6.2.10)

where a is a material parameter characterizing the amount of spontaneous strain is gen-

erated along the nematic director direction as a result of the isotropic-to-nematic phase

transformation [338]. It is a combined measure of the degree of order and of the strength

of the nematic elastic coupling [338]. Here, we assume the NLCE is prolate (a > 1) which

means isotropic-to-nematic phase transformation leads to expansion along the nematic di-

rection. Also, we will ignore effect of temperature on all material properties including a

assuming constant temperature, well below the isotropic-to-nematic transition temperature.

The existence of the energy term W anis is due to the fact that the fabrication process of

the LCEs is often lead to an anisotropic isotropic to nematic phase transition which means

that, in the symmetry breaking phase transformation leading to a nematic phase, the parent

phase is not really isotropic [263]. Also, it has been shown experimentally that the LCEs

with localized alignment of the nematic directors can be fabricated [339]. Therefore, it is

important to consider effect of this anisotropic behavior in the formulation. Using a simple

model given by by DeSimone and Teresi [263], the energy term W anis is expressed as

W anis = µβ

2 J−2/3(FT F) : (FT
Na

FNa)−1, (6.2.11)
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where Na is the prescribed direction of the anisotropy and FNa is defined as

FNa = a1/3Na ⊗ Na + a−1/6 (I − Na ⊗ Na) . (6.2.12)

Also, µβ is a material constant that characterizes how large the anisotropic contribution may

be. We also consider opto-mechanical coupling effects in this paper. The energy densities

(6.2.9) and (6.2.11) needs to be updated in order to consider optical effects. In this case, the

energy densities are function of variable order parameter Q. We will use following energy

densities for this purpose [336]

W elast = µ

2
[
(FFT ) : L−1

n + log (detLn)
]
, (6.2.13)

where Ln is given as

Ln = 3Qn ⊗ n + (1 −Q)I. (6.2.14)

Similarly, we can update anisotropic part of the energy to be function of the order parameter.

In order to avoid confusion between light dependent (6.2.13) and light independent energy

densities(6.2.9), we introduce two parameters a1 and a2 and express energy elastic and

anisotropic energies as

W elast =1
2µa1|F|2 + 1

2µa2|FT n|2 (6.2.15)

and W anis =1
2µβa1|F|2 + 1

2µβa2|FNa|2. (6.2.16)

If the optical effects are included in the analysis

a1 = 1
1 −Q

, a2 = 1
1 + 2Q − 1

1 −Q
, (6.2.17)

and if the optical effects are exclude from the analysis

a1 = a1/3 and a2 = a−2/3(1 − a). (6.2.18)
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It should be mentioned that by setting a1 = 1 and a2 = a − 1, the elastic energy density

(6.2.15) is reduced to BTW energy density [257, 340].

We have included the effect of the Frank elasticity term in Eq.(6.2.7). This is against

common formulation of LCEs where the effect of the Frank elasticity is neglected as the

Frank elasticity coefficient KF is often very small and the effect of the Frank elasticity is

negligible [252]. As it will be shown here, the Frank elasticity effect is a size dependent

effect and this effect becomes stronger at smaller size scale where the flexoelectric effect

becomes important. Also, it will be shown that the formulation becomes thermodynami-

cally unstable if we include flexoelectric effect and neglect the Frank elasticity effect. The

energetic contribution of the Frank elasticity to the free energy of the system is given as

FFrank[∇n,y] =
∫

V

1
2KF |∇yn|2 =

∫
VR

1
2KFJ |∇nF−1|2. (6.2.19)

Also, electric energy term is given as

Eelect[y,p] =
∫

V

ϵ0
2 |e|2 +

∫
Γc

D

ξbd · ν =
∫

VR

ϵ0
2 J |F−T ∇ξ|2 +

∫
ΓD

ξbD̃ · νR, (6.2.20)

where ΓD ⊂ ∂V is the part of the surface of the material on which electrical Dirichlet

boundary condition has been applied and Γc
D is the same surface in the current configuration.

Also, ξb : ΓD → R is the prescribed electric potential applied on the surface of the LCE.

The coupling between elasticity and light is included in the formulation through Fopt[Q,n]
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which is given as [336]

Fopt[Q,n] =∫
VR

W opt =
∫

VR

µn(1 − c(Q,n))
[
g−1(Q)Q− logZ(Q) − 1

2(1 − c(Q,n))J̄nQ
2
]
,

(6.2.21)

g(x) = −1
2 − 1

2x + 1
2x

√
3x
2

exp(3
2x)∫√ 3x

2
0 exp(y2)dy

, (6.2.22)

Z(Q) = exp
[
g−1(Q)

]
1 + g−1(Q)(1 + 2Q) (6.2.23)

and c(Q,n) = f
I
[
1 +Q(3(n · m)2 − 1)

]
3 + I [1 +Q(3(n · m)2 − 1)] , (6.2.24)

where m is a unit normal representing direction of applied light to the material. Also,

I, f , J̄n and µn respectively, represent light intensity, fraction of photoactive mesogens,

interaction between mesogens and photoactivation modulus. We introduce splay fs and

bending fb flexoelectric coefficients and express Fflexo as

Fflexo[n,∇n,F,p] =
∫

V
−fs(∇y · n)(p · n) + fb(n × (∇y × n)) · p

=
∫

V
−fs(∇y · n)(p · n) + fb(∇yn)p · n − fb(∇yn)T p · n

=
∫

VR

−fs(∇n : F−T )(P̃ · n) + fb∇nF−1P̃ · n − fbF−T (∇n)T P̃ · n.

(6.2.25)

It should be mentioned that following symmetry arguments, it has been proven that fb and

fs are only nonzero components of flexoelectric tensor [291, 341]. Also, we should note that

the common practice in formulation of flexoelectric effect for the liquid crystals is to use

electric field as independent thermodynamic variable and describe the flexoelectric energy

as [295]

Fflexo =
∫

V
es(∇y · n)(∇yξ · n) − eb(n × ∇y × n) · ∇yξ, (6.2.26)

where eb and es are flexoelectric coefficients. However, we use polarization as independent

variable and, therefore, prefer the energy (6.2.25) over the energy (6.2.26). Also, the sign

convention for two different terms given in (6.2.26) are different in different literature and

communities [295, 342, 252, 291].
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As it was mentioned, we assume that an electric potential ξb has been applied on the

surface ΓD. Also, D̃ · νR = 0 on ΓN ( ΓD ∪ ΓN = ∂VR). In addition to that, y = yb on SD

and the LCE is under dead load t̃a : SN → R3 such that SD ∪SN = ∂VR. Also, the direction

of the nematic director may be prescribed on the parts of the boundary. For brevity in the

illustration of the equations, we have not considered Dirichlet boundary condition for the

nematic director in this section. The UBC is expressed as

UBC[ξ,y] = −
∫

SN

t̃a · y. (6.2.27)

As presentation of the equations in a dimensionless manner simplifies interpretation of

the problem and ease numerical solution, we identify following dimensionless variables

¯̃P := P̃
√
ϵ0µ

, ξ̄ := ξ

H

√
ϵ0
µ
, Ān := ϵ0An, Ā1 := ϵ0A1, Ā2 := ϵ0A2,

f̄b := fb

H

√
ϵ0
µ
, f̄s := fs

H

√
ϵ0
µ
, K̄F := KF

µH2 , µ̄β := µβ

µ
and κ̄ := κ

µ
,

(6.2.28)

where H is the characteristic length of the LCE. We identify dimensionless gradient opera-

tors as

∇̄ := H∇ and ∇̄y := H∇y. (6.2.29)

From this point forward, we will only deal with dimensionless equations. For the brevity of

the presentation, we will drop over bar but all the equations are dimensionless.

The equilibrium state of the system is the state that satisfies these boundary condition

and minimizes free energy of the system. We use standard calculus of variation to derive

governing equilibrium equation of system. For a given state (Q,n, P̃,y) the infinitesimal

admissible variation is given as (Q,n, P̃,y) → (Qδ,nδ, P̃δ,yδ) = (Q + δQ1,n + δn1, P̃ +

δP̃1,y + δy1) such that δ ∈ R and |δ| ≪ 1. Therefore, F → Fδ = F + δF1 and ∇n →

∇nδ = ∇n + δ∇n1.
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The variation of internal energy U ee is given as

U ee[Qδ,nδ, P̃δ,yδ] = U ee[Q,n, P̃,y] + δ

∫
VR

[(
∂W elast

∂Q
+ ∂W anis

∂Q

)
Q1 + 1

J
AnP̃ · P̃1

+
(
∂W elast

∂n +A1(n · P̃)P̃
J

)
· n1 +

(
∂W elast

∂F + ∂W anis

∂F − 1
2J (AnP̃ · P̃)F−T

)
: F1

]
.

(6.2.30)

The variation of the Frank elasticity energy term is given as

FFrank[∇nδ,yδ] = FFrank[∇n,y] + δ

∫
VR

ΣEL : F1 +KFJ∇nF−1F−T : ∇n1, (6.2.31)

where

ΣEL = 1
2JKF F−T |∇nF−1|2 − JKF F−T (∇n)T (∇n)F−1F−T . (6.2.32)

We refer the reader to the reference [97] for the details of the derivation for variation of the

electric energy (6.2.20) and here only present the final expression as

Eelect[yδ, P̃δ] = Eelect[y, P̃]

+ δ

∫
VR

[
F−T ∇ξ · P̃1 +

(
−1

2JF−T |F−T ∇ξ|2 + (−F−T ∇ξ) ⊗ (−JC−1∇ξ + F−1P̃)
)

: F1

]
.

(6.2.33)

Also, the variation of the optical energy term is given as

Fopt[Qδ,nδ] = Fopt[Q,n] + δ

∫
VR

[
∂W opt

∂Q
Q1 + ∂W opt

∂n · n1

]
. (6.2.34)

Finally, the variation of the flexoelectric energy term is given as

Fflexo[nδ,∇nδ,Fδ, P̃δ] = Fflexo[n,∇n,F, P̃]

+ δ

∫
VR

[
Σflexo : F1 + P̃flexo · P̃1 + nflexo · n1 + mflexo : ∇n1

]
,

(6.2.35)
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where

Σflexo = fsF−T (∇n)T F−T (P̃ · n) − fbF−T (∇n)T n ⊗ F−1P̃ + fbF−T (∇n)T P̃ ⊗ F−1n,

(6.2.36)

P̃flexo = −fs(∇n : F−T )n + fbF−T (∇n)T n − fb∇nF−1n, (6.2.37)

nflexo = fb∇nF−1P̃ − fbF−T (∇n)T P̃ − fs(∇n : F−T )P̃, (6.2.38)

and mflexo = −fsF−T (P̃ · n) + fbn ⊗ F−1P̃ − fbP̃ ⊗ F−1n. (6.2.39)

We introduce the Lagrnage multiplier λp in order to enforce incompressibility constraint

detF = 1. In addition, we include the Lagrnage multiplier λn in order to enforce constraint

|n| = 1. Moreover, from Eqs.(6.2.15), (6.2.16) and (6.2.30), we identify Σ and Σanis as

Σ = a1F + a2n ⊗ FT n (6.2.40)

and Σanis = µβ [a1F + a2FNa ⊗ Na] . (6.2.41)

Also, we introduce the Maxwell stressΣMW as

ΣMW = −1
2JF−T |F−T ∇ξ|2 + (−F−T ∇ξ) ⊗ (−JC−1∇ξ + F−1P̃) − 1

2J (AnP̃ · P̃)F−T .

(6.2.42)

Substituting (6.2.30), (6.2.31), (6.2.33), (6.2.34),(6.2.35), (6.2.15) and (6.2.16) into (6.2.7),

The weak form of the equations can be written as

d

dδ
F tot

[
Q+ δQ1,n + δn1,F + δF1, P̃ + δP̃1

] ∣∣∣∣
δ=0

=∫
VR

{
Q1

∂

∂Q
(W opt +W elast +W anis)+

F1 :
[
Σ + Σanis + ΣEL + ΣMW + Σflexo − λpJF−T

]
+ P̃1 ·

[
F−T ∇ξ + 1

J
AnP̃ + P̃flexo

]
+

n1 ·
[
a2FFT n +A1(n · P̃)P̃

J
+ nflexo + ∂W opt

∂n − 2λnn
]

+

∇n1 :
[
KFJ∇nF−1F−T + mflexo

]}
−
∫

SN

t̃a · y1 = 0.

(6.2.43)

Finally, the equilibrium equations for a flexoelectric NLCE under opto-electro-mechanical
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of the system are derived as

∂

∂Q
(W opt +W elast +W anis) = 0, (6.2.44)

∇ ·
(
Σ + Σanis + ΣEL + ΣMW + Σflexo − λpJF−T

)
= 0, (6.2.45)

F−T ∇ξ + 1
J
AnP̃ + P̃flexo = 0, (6.2.46)

− ∇ ·
(
KFJ∇nF−1F−T + mflexo

)
+ a2FFT n +A1(n · P̃)P̃

J
+ nflexo + ∂W opt

∂n − 2λnn = 0, (6.2.47)

∇ ·
(
−JC−1∇ξ + F−1P̃

)
= 0, (6.2.48)

n · n = 1, (6.2.49)

and detF = 1. (6.2.50)

The boundary conditions are given as

y = yb on SD, (6.2.51)

νR ·
(
Σ + Σanis + ΣEL + ΣMW + Σflexo − λpJF−T

)
= t̃a on SN , (6.2.52)

− νR ·
(
KFJ∇nF−1F−T + mflexo

)
= 0 on ∂VR,

(6.2.53)

ξ = ξb on ΓD (6.2.54)

and νR · D̃ = 0 on ΓN . (6.2.55)

6.3 Upper bounds for flexoelectric coefficients

In this section, we will find the upper bound for flexoelectric coefficients which satisfy

thermodynamics stability condition. The energy will not be bounded unless the following

condition is satisfied

E = 1
2KF |∇yn|2 + 1

2p ·Anp − fs(∇y · n)(p · n) +fb(∇yn)p · n − fb(∇yn)T p · n ≥ 0. (6.3.1)
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Using Eq.(6.2.5), Eq.(6.3.1) can be written as

E = 1
2KF |∇yn|2+A1

1
2(p·n)2+A2

1
2(p·p)−fs(∇y ·n)(p·n)+fb(∇yn)p·n−fb(∇yn)T p·n ≥ 0.

(6.3.2)

We introduce pn and pt such that p = pt + pn where pn = (p · n)n. Therefore, we can

write eq (6.3.2) as

E = 1
2KF |∇yn|2 + (A1 +A2)1

2 |pn|2 +A2
1
2 |pt|2

− fs(∇y · n)(pn · n) − fb(pt + pn) ·
(

∇yn− (∇yn)T

2 n
)

≥ 0.
(6.3.3)

From eqn (6.3.3), we can conclude that following conditions have to be satisfied in order to

obtain thermodynamic stability

A1 +A2 ≥ 0 and A2 ≥ 0. (6.3.4)

We introduce ∇dev
y n as

∇dev
y n = ∇yn + (∇yn)T

2 − 1
3(∇y · n)I. (6.3.5)

Therefore, we have

1
2KF |∇yn|2 = 1

2KF |∇dev
y n|2 + 1

6KF (∇y · n)2 + 1
4KF |∇y × n|2. (6.3.6)

Using equaion above, we can write eqn (6.3.3) as

E = 1
2KF |∇dev

y n|2 +
(

1
6KF − 3

2
f2

s

A1 +A2

)
(∇y · n)2

+ 1
2

(
1
2KF − 2f2

b

A1 +A2
− 2f2

b

A2

)
|∇y × n|2

+ A1 +A2
2

[
(pn ⊗ n) − fs

A1 +A2
(∇y · n)I − 2fb

A1 +A2

∇yn − (∇yn)T

2

]2

+ A2
2

[
(pt ⊗ n) − 2fb

A2

∇yn − (∇yn)T

2

]2

≥ 0.

(6.3.7)
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From equation above we can conclude that

KF ≥ 4 fb2

A2 +A1
+ 4fb

2

A2
and KF ≥ 9 f2

s

A1 +A2
. (6.3.8)

Equations (6.3.8) and (6.3.4) establish two constraints which must satisfy in order to main-

tain thermodynamic stability.

6.4 Flexo-electro-mechanical coupling in NLCE under small

deformation and large electric field and large nematic

reorientation

In order to simplify the theory, we will use small strain assumption to simplify the theory.

As it was discussed in the introductory section, nematic dielectric sometimes are made of

densely cross linked polymer network which does not undergo large deformation. In this

case, we can relax large deformation assumption in order to simplify equations. However,

the linearization process have to be done in a rigorous way which does not ignore some

coupling features of the material such as electro-mechanical coupling due to the Maxwell

stress. Therefore, here we present a linear theory for electro-mechanical behavior of a

nematic dielectric including effects of flexoelectricity. As optical energy is highly nonlinear,

we assume there is no opto-mechanical coupling and

Fopt = 0. (6.4.1)

Thus, we use elastic energy densities (6.2.9) and (6.2.11) in this section. Moreover, we

assume the isotropic to nematic transition of the material will not lead to a large defor-

mation. We replace the material constant a, used in Eqs.(6.2.10) and (6.2.12), with the

material constant γ such that a1/3 = γ + 1 and |γ| ≪ 1. Using Taylor series expansion we
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have

(FnFT
n)−1 = (1 + γ)I − 3γn ⊗ n + 3γ2n ⊗ n + o(γ2) (6.4.2)

and (FT
Na

FNa)−1 = (1 + γ)I − 3γNa ⊗ Na + 3γ2Na ⊗ Na + o(γ2). (6.4.3)

Let u : VR → R3 be the deformation (∇u = F − I). Assuming small deformation (|∇u| ∼

ε ≪ 1) we can present linear form of the elastic energies densities (6.2.9) and (6.2.11) as

W elast = ∂W elast

∂F

∣∣∣∣
F=I

: ∇u + ∇u : ∂
2W elast

∂F∂F

∣∣∣∣
F=I

∇u + o(ε2), (6.4.4)

and W anis = ∂W anis

∂F

∣∣∣∣
F=I

: ∇u + ∇u : ∂
2W anis

∂F∂F

∣∣∣∣
F=I

∇u + o(ε2). (6.4.5)

Substituting Eqs.(6.4.2), (6.4.3), (6.2.9) and (6.2.11) into (6.4.4) and (6.4.5), we obtain

following linear dimensionless elastic energies

W elast = |Ed − E∗(n)|2 + 1
2κ (Tr(E))2 + o(ε2, εγ, γ2) (6.4.6)

and W anis = µβ|Ed − E∗(Na)|2 + o(ε2, εγ, γ2), (6.4.7)

where

E = ∇u + (∇u)T

2 , Ed = E − 1
3TrE and E∗(n) = 3γ

2

(
n ⊗ n − 1

3I
)
. (6.4.8)

It should be mentioned that dimensionless form of all energy densities presented in this

section have been obtained by dividing the dimensional form the energy density by shear

modulus of the material. The linear form of the dimensionless Frank elasticity energy terms

is given as

WFrank = 1
2KFJ |∇nF−1|2 = 1

2KF |∇n|2 + σEL : ∇u + o(ε), (6.4.9)

where

σEL = 1
2KF |∇n|2I −KF (∇n)T ∇n. (6.4.10)
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In addition electrical the electric part of the energy U ee given in the Eq.(6.2.8) can be

written in the following linear dimensionless fashion

ϕ[P̃,n] =
∫

VR

1
2J P̃ · AnP̃ =

∫
VR

1
2P̃ · AnP̃ −

∫
VR

1
2P̃ · AnP̃(∇ · u) + o(ε). (6.4.11)

Using divergence theorem, the electric energy term Eelect given in the Eq.(6.2.20) can be

written in following dimensionless fashion

Eelect =
∫

VR

1
2J |F−T ∇ξ|2 +

∫
ΓD

ξb(−JC−1∇ξ + F−1P̃) · νR

=
∫

VR

(
−1

2J |F−T ∇ξ|2 + F−T ∇ξ · P̃
)
.

(6.4.12)

Using Taylor series expansion, we have

Eelect =
∫

VR

[
−1

2 |∇ξ|2 + ∇ξ · P̃ + σ′MW : ∇u
]

+ o(ε), (6.4.13)

where

σ′MW = −1
2 |∇ξ|2I + (−∇ξ) ⊗ (−∇ξ + P̃). (6.4.14)

Similarly, we can linearize flexoelectric energy terms as

Fflexo =
∫

VR

P̃ · pflexo + σflexo : ∇u + o(ε), (6.4.15)

where

pflexo = −fs(∇ · n)n + fb(∇n)T n − fb(∇n)n (6.4.16)

and σflexo = fs(P̃ · n)(∇n)T − fb(∇n)T n ⊗ P̃ + fb(∇n)T P̃ ⊗ n. (6.4.17)

Finally, we can express total free energy for the regime of small deformations as

F tot[u,n,P] =
∫

VR

[
|Ed − E∗(n)|2 + 1

2κ (Tr(E))2 + µβ|Ed − E∗(Na)|2 + 1
2KF |∇n|2

+ (σEL + σflexo + σMW) : ∇u + 1
2P̃ · AnP̃ − 1

2 |∇ξ|2 + ∇ξ · P̃ + P̃ · pflexo
]

−
∫

SN

ta · u,

(6.4.18)
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where ta is the applied dimensionless traction which is work conjugate of the dimensionless

displacement u and

σMW = σ′MW − 1
2
(
P̃ · AnP̃

)
I. (6.4.19)

The equilibrium state of the system is an admissible state which minimizes the free energy

(6.4.18), satisfies boundary conditions and the Maxwell equation. The linear dimensionless

Maxwell equation is given as

∇·
[
−JC−1∇ξ + F−1P̃

]
= ∇·

[
− ((1 + TrE) I − 2E) ∇ξ + (I − ∇u)P̃ + o(ε)

]
= 0. (6.4.20)

Using standard calculus of variation, the weak form of the equations can be obtained as

d
dδFT [u + δu1,n + δn1, P̃ + δP̃1]

∣∣∣∣
δ=0

=
∫

VR

{

P̃1 ·
[ (

I − (∇u)T
)

∇ξ + (1 − ∇ · u)AnP̃ + pflexo + pflexo
1

]
+

∇u1 :
[
2(Ed − E∗(n)) + κTr(E)I + 2µβ(Ed − E∗(Na)) + σEL + σflexo + σMW

]
+

n1 ·
[

− 6γ(Ed − E∗(n))n + nflexo
1 + nflexo

2 +A1(1 − ∇ · u)(P̃ · n)P̃ − 2λnn
]
+

∇n1 :
[
KF (1 + Tr(E))∇n − 2KF (∇n)E + mflexo

1 + mflexo
2

]}
−
∫

SN

ta · u1 = 0,

(6.4.21)

where

pflexo
1 = fs

(
(∇n)T : ∇u

)
n − fb(∇u)T (∇n)T n + fb(∇u)(∇n)n, (6.4.22)

nflexo
1 = −fs(∇ · n)P̃ + fb(∇n)P̃ − fb(∇n)T P̃, (6.4.23)

nflexo
2 = fs

(
∇n : (∇u)T

)
P̃ − fb∇n(∇u)P̃ + fb(∇u)T (∇n)T P̃, (6.4.24)

mflexo
1 = −fs(n · P̃)I + fbn ⊗ P̃ − fbP̃ ⊗ n, (6.4.25)

and mflexo
2 = fs(P̃ · n)(∇u)T − fbn ⊗ (∇u)P̃ + fb(P̃) ⊗ (∇u)n. (6.4.26)

Here, we have avoided presenting the details of the variational procedure. Reader is referred

to earlier sections and the reference [97] for more details. The equilibrium equations of the
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system is obtained as

∇ ·
[
− ((1 + TrE) I − 2E) ∇ξ + (I − ∇u)P̃

]
= 0, (6.4.27)(

I − (∇u)T
)

∇ξ + (1 − ∇ · u)AnP̃ + pflexo + pflexo
1 = 0, (6.4.28)

∇ ·
[
2(Ed − E∗(n))n + κTr(E)I + 2µβ(Ed − E∗(Na)) + σEL + σflexo + σMW

]
= 0,

(6.4.29)

∇ ·
[
KF (1 + Tr(E))∇n − 2KF (∇n)E + mflexo

1 + mflexo
2

]
(6.4.30)

and −
[

− 6γ(Ed − E∗(n))n + nflexo
1 + nflexo

2 +A1(1 − ∇ · u)(P̃ · n)P̃ − 2λnn
]

= 0,

and the boundary conditions are given as

u = ub on SD,

(6.4.31)

νR ·
[
2(Ed − E∗(n)) + κTr(E)I + 2µβ(Ed − E∗(Na))

+ σEL + σflexo + σMW
]

= ta on SN ,

(6.4.32)

νR ·
[
− ((1 + TrE) I − 2E) ∇ξ + (I − ∇u)P̃

]
= 0 on ΓN ,

(6.4.33)

ξ = ξb on ΓD

(6.4.34)

and νR ·
[
KF (1 + Tr(E))∇n − 2KF (∇n)E + mflexo

1 + mflexo
2

]
= 0 on ∂VR.

(6.4.35)
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6.5 Liquid Crystal Elastomers with Viscous Dissipation -

Non-equilibrium processes

Here in this section, we construct a model to describe behavior of LCEs undergoing

dissipative processes. We ignore photo-mechanical coupling (Fopt = 0). It has been

shown that viscoelastic properties of the LCEs may impact their behavior [277]. Thus,

it is important to model LCE as a dissipative solid. Recently, Xu and Huo [287] used the

continuum model given by Zhang et al. [290], which was originally based on dissipation

principle for viscoelastic solids with micro order, and extended it to dielectric LCEs to study

Fréedericksz transition. Here, we extend Ericksen-Leslie liquid crystal dynamic theory to

dielectric LCEs. There are alternative versions of this theory available in the literature

[260, 343, 261, 344, 345]. We have mostly relied on the versions of the theory available in

the references [344] and [346].

As it will be shown later, it will be instructive to present formulation in the current

configuration instead of reference undeformed configuration. We assume dead load t̃ :

∂V → R3 has been applied on the surface of the LCE ∂V . In addition, we identify power

conjugate of time derivative of nematic director (dn
dt ) as s : ∂V → R3 and refer it as director

stress vector. In the case of liquid crystals, the director field and local optical property of

liquid crystals can quickly respond to and be controlled by the external electrical circuit

which is the fundamental basis of the LCD technology. We are therefore motivated to

consider the dynamical response of the director field under the application of a transient

voltage ξb = ξb(x, t). For a thermodynamically consistent model, we identify the rate of

work done by the external stimuli as

Ẇ =
∫

∂V

(
ẏ · t̃ + ṅ · s

)
−
∫

∂VR

ξb
˙̃D · νR, (6.5.1)

where νR (resp. ν) is the unit normal to the surface in the reference (resp. current)

configuration. It should be mentioned that throughout these notes superposed dot denote

total differentiation with respect to time. We identify energy potential ψ(y,n,p) such that
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total internal energy of the system U is expressed as

U =
∫

V
ψ(∇y,n,∇yn,p) + Eelect, (6.5.2)

where Eelect is given as.

Eelect =
∫

V

1
2ϵ0|∇yξ|2. (6.5.3)

Therefore, rate of energy dissipation is expressed as

Ḋ = Ẇ − U̇ − d
dt

∫
V

1
2ρ0|ẏ|2

=
∫

∂V

(
ẏ · t̃ + ṅ · s

)
−
∫

∂VR

ξb
˙̃D · νR − U̇ +

∫
V

ẏ · ι,

(6.5.4)

where ρ0 is the denity of the material and ι = −ρ0v̇ is the inertial force and v is the velocity.

It is important to note that the LCE material is assumed to be incompressible and as a

result density remains constant.

6.5.1 Balance laws for linear and angular momentum

We establish balance laws for linear and angular momentum by appealing to the frame-

indifference priniple which states that physical laws are independent of the frame of ref-

erence. Suppose all the points y in the ambient space in which body V is evolving is

represented using frame O. Upon a change in the frame O → O∗ the spatial points y are

maped to the spacial points y∗ such that

y∗ = Q(t)y + c(t), (6.5.5)

where Q(t) is a rotation and c(t) is a spatial point at each fixed time t. Superposed ∗ is

used to denote transformation due to change in the frame of reference. It is easily seen that

velocity ẏ is transformed to

ẏ∗ = Qẏ + Q̇y + ċ. (6.5.6)
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We further assume traction t̃, nematic director n, polarization p, director stress vector s

and inertial force ι are frame-indifference [347]

t̃∗ = Qt̃, n∗ = Qn, p∗ = Qp, s∗ = Qs, ι∗ = Qι. (6.5.7)

We assume rate of energy dissipation, rate of change of internal energy and the energy

balance relation given in the Eq.(6.5.4) are frame-indifferent

Ḋ =
∫

∂V

(
ẏ∗ · t̃∗ + ṅ∗ · s∗

)
−
∫

∂VR

ξb
˙̃D · νR − U̇ +

∫
V

ẏ∗ · ι∗. (6.5.8)

Substituting (6.5.6) and (6.5.7) into Eq.(6.5.8) we have

Ḋ =
∫

∂V

(
(ẏ + QT Q̇y + QT ċ) · t̃ + (ṅ + QT Q̇n) · s

)
+
∫

∂VR

ξb
˙̃D · νR − U̇

+
∫

V
((ẏ + QT Q̇y + QT ċ)) · ι,

(6.5.9)

where QT Q̇ is skew and as a result there exist a vector of angular velocity ζ such that

QT Q̇ = ζ×. Since relation c(t) is arbitrary, we can replace QT ċ with ċ and rewrite the

equation above as

Ḋ =
∫

∂V

(
ẏ · t̃ + ċ · t̃ + n · s + ζ · (y × t̃) + ζ · (n × s)

)
−
∫

∂VR

ξb
˙̃D · νR − U̇ +

∫
V

(−ẏ · ρ0v̇ − ċ · ρ0v̇ − ζ · (y × ρ0v̇)) .
(6.5.10)

As it was mentioned earlier the rate of energy dissipation should not change by changeing

frame of reference and the equation (6.5.10) must hold for any arbitrary ζ and c(t). There-

fore, we can obtain the balannce laws for linear and angular momentum by subtracting

Eq.(6.5.10) from (6.5.4). ∫
V
ρ0v̇ =

∫
∂V

t̃ (6.5.11)

and
∫

V
y × ρ0v̇ =

∫
∂V

(
y × t̃ + n × s

)
. (6.5.12)
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Using tetrahedron arguments [348, 346, 347], we can define tensor fields σ and S such that

t̃ = σν and s = Sν. (6.5.13)

The differential form of balance laws are obtained by substituting Eq.(6.5.13) in Eqs.(6.5.12)

and (6.5.11) and using divergence theorem:

∇y · σ = ρ0v̇, or σij,j = ρ0v̇i, (6.5.14)

E :
(
σT + ∇y · (n ⊗ S)

)
= 0, or Eijkσkj + (EijknjSkl),l = 0, (6.5.15)

where E is the Levi-Civita tensor.

6.5.2 Constitutive relations

We use second law of thermodynamics and frame-indifference principle in order to obtain

constitutive relations required to describe dissipative motion of LCEs. The constitutive

relations should postulated in a way that satisfies following relation

Ḋ = Ẇ − U̇ ≥ 0. (6.5.16)

Assuming material is incompressible and using Eq.(6.5.2), reate of change of internal energy

is expressed as

U̇ =
∫

V
ψ̇(∇y,n,∇yn,p) + Ėelect. (6.5.17)

Note that the energy density functional ψ(∇y,n,∇yn,p) has been defined in the current

configuration. The rate of change of energy density functional is given as

ψ̇(∇y,n,∇yn,p) = ∂ψ

∂F : Ḟ + ∂ψ

∂n · ṅ + ∂ψ

∂∇yn : ˙∇yn + ∂ψ

∂p · ṗ, (6.5.18)

where Ḟ = LF and L = ∇yv is th velocity gradient tensor. Also, it is strightforward to

show that
˙∇yn = ∇yṅ − (∇yn)L. (6.5.19)
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Substituting Eq.(6.5.19) into Eq.(6.5.20), we have

ψ̇(∇y,n,∇yn,p) =
[
∂ψ

∂FFT − ∂ψ

∂∇yn(∇yn)T

]
: L+ ∂ψ

∂n ·ṅ+ ∂ψ

∂∇yn : ∇yṅ+ ∂ψ

∂p ·ṗ. (6.5.20)

In addition, the rate of change of the electric energy is expresse as (see Appendix)

Ėelect =
∫

V

(
σMW : L + ∇yξ · ṗ

)
−
∫

∂VR

ξ
˙̃D · νR, (6.5.21)

where

σMW = (−∇yξ) ⊗ (−ϵ0∇yξ + p) − (ϵ02 |∇yξ|2 − ∇yξ · p)I. (6.5.22)

Moreover, by substituting Eq.(6.5.13) into (6.5.1) we have

Ẇ =
∫

V
[σ : L + ẏ · (∇y · σ) + S : ∇yṅ + (∇y · S) · ṅ] −

∫
∂VR

ξb
˙̃D · νR

=
∫

V
[σ : L − ẏ · ι + S : ∇yṅ + (∇y · S) · ṅ] −

∫
∂VR

ξb
˙̃D · νR.

(6.5.23)

Using Eqs.(6.5.4), (6.5.20), (6.5.21) (6.5.23), We can express rate of energy dissipation as

Ḋ =
∫

V

(
σ − σMW − ∂ψ

∂FFT + ∂ψ

∂∇yn

)
: L

+
(

S − ∂ψ

∂∇yn

)
: ∇yṅ +

(
(∇y · S) − ∂ψ

∂n

)
· ṅ

+
(

−∂ψ

∂p − ∇yξ

)
· ṗ ≥ 0

(6.5.24)

We introduce potential Φvisc such that

Ḋ =
∫

V
Φvisc(L,n, ṅ), (6.5.25)

where Φvisc ≥ 0 for any (L,n, ṅ) ∈ R3×3 × S2 × R3. We have assumed that Φvisc is

independent of gradient of director angular velocity. Also, Φvisc(0,n,0) = 0 for any n ∈ S2.

Therefore, we assume following form for potential Φvisc

Φvisc(L,n, ṅ) = τ : L + ŝ · ṅ, (6.5.26)
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where τ and ŝ are referred as viscous stress tesor and viscous couple stress vector, respec-

tively. Therefore, the sufficient condition to satisfy Eq.(6.5.24) is to have

σ = σMW + ∂ψ

∂F
FT − ∂ψ

∂∇yn
− λpI + τ , (6.5.27)

S = ∂ψ

∂∇yn , (6.5.28)

(∇y · S) − ∂ψ

∂n − λnn = 0 (6.5.29)

and ∂ψ

∂p + ∇yξ = 0. (6.5.30)

In order to complete the theory, we need to provide constitutive relations for τ and ŝ .

It is physically reasonable to assume τ and ŝ are frame in-different

τ ∗ = QτQT and ŝ∗ = Qŝ. (6.5.31)

In addition, dissipation potential Φvisc is independent of frame of reference. Thus,

Φvisc(L∗,n∗, ṅ∗) = Φvisc(L,n, ṅ) (6.5.32)

and τ ∗ : L∗ + ŝ∗ · ṅ∗ = τ : L + ŝ · ṅ. (6.5.33)

From (6.5.5) and , we have L∗ = QLQT + Q̇QT and ṅ∗ = Qṅ + Q̇n. Therefore, we can

rewrite Eq.(6.5.33) as

τ : Ω + ŝ · Ωn = 0, (6.5.34)

where Ω = Q̇QT is an arbitrary skew tensor. Since ṅ · n = 0, we can determine viscous

couple stress vector in terms of viscous stress tensor:

E : τ T = ŝ × n, or Eijkτkj = Eijkŝjnk. (6.5.35)

Let D = 1
2(L+LT ) and W = 1

2(L−LT ) be symmetric and skew part of velocity gradient

tensor. We identify co-rotational rate of change of nematic director n̊ as

n̊ = ṅ − Wn. (6.5.36)
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In contrast to rate of change of nematic director ṅ, co-rotational rate of change of nematic

director is frame in-different (n̊∗ = Qn̊). Substituting Eq.(6.5.36) into Eq.(6.5.26) and using

Eq.(6.5.34), we have

Φvisc(L,n, ṅ) = τ : D + ŝ · n̊. (6.5.37)

In order to proceed further with the theory, we need to make constitutive assumption for

the viscous stress τ . From Eq.(6.5.26), we can conclude τ = τ (L,n, ṅ). Moreover, since

rigid body rotation does not contribute to viscous stress and energy dissipatopn, we can

conclude that

τ = τ (D,n, n̊). (6.5.38)

In addition, viscous stress should necessarily satisfy objectivity principle

τ (QDQT ,Qn,Qn̊) = Qτ (D,n, n̊)QT . (6.5.39)

Also, transverse symmetry of nematic liquid crystal elastomers requires constitutive re-

alation of viscous stress to be invariant under reflactions within plane containing nematic

director n. Consistent with experimental observations for liquid crystals [346], we assume

following form for the viscous stress

τ = An + Bn · n̊ + Cn : D, or τij = (An)ij + (Bn)ijkn̊k + (Cn)ijklDkl. (6.5.40)

As it has been noted by Stewart [346], tensors An, Bn and Cn which satisfy transversely

isotropic symmetry and also objectivity condition (6.5.39) can be expressed in terms of

linear combination of products of n and I − n ⊗ n:

(An)ij = µ1δij + µ2ninj , (6.5.41)

(Bn)ijk = µ3δijnk + µ4δjkni + µ5δkinj (6.5.42)

and (Cn)ijkl = µ6δijδkl + µ7δikδjl + µ8δilδjk + µ9δijnknp (6.5.43)

+ µ10δjkninl + µ11δiknjnl + µ12δilnjnk

+ µ13δjpnink + µ14δkpninj + µ15ninjnknl.
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We can simplify expressions above using the fact that D = DT , Tr(D) = 0 and n · n̊ = 0.

Thus, we have

τij = (µ1 + µ9nkDklnl)δij + (µ2 + α1nkDklnl)ninj

+ α2n̊inj + α3n̊jni + α4Dij + α5njAiknk + α6niAjknk,

(6.5.44)

ŝi = γ1n̊i + γ2Dijnj , (6.5.45)

Ḋ =µ2niDijnj + α1(niDijnj)2 + (α2 + α3 + γ2)̊niDijnj

α4DijDij + (α5 + α6)niDijDjknk + γ1n̊in̊i ≥ 0,
(6.5.46)

α1 = µ15, α2 = µ5, α3 = µ4, α4 = µ7 + µ8, α5 = µ11 + µ12, α6 = µ10 + µ13,

γ1 = α3 − α2, γ2 = α6 − α5 and µ2 = 0.
(6.5.47)

6.6 Finite Element Implementation

In this section, we develop finite element solution for coupled problem presented earlier.

We aim to present a straightforward approach which will enable us to solve aforementioned

system of equations without using any commercial packages. As the Eq. 6.2.46 is linear with

respect to polarization and it is easier to express boundary condition in terms of electric

potential, we determine polarization in terms of electric potential and will consider electric

potential as our unknown field instead of polarization. The weak form of the equations are
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given as

∫
VR

∇w1 · D̃ = 0, (6.6.1)∫
VR

∇w2 :
[
Σ + Σanis + ΣEL + ΣMW + Σflexo − λpJF−T

]
=
∫

SN

t̃a · w2, (6.6.2)∫
VR

∇w3 :
[
KFJ∇nF−1F−T + mflexo

]
+
∫

VR

w3 ·
[
a2FFT n +A1(n · P̃)P̃

J
+ nflexo + ∂W opt

∂n − 2λnn
]

= 0, (6.6.3)
∫

VR

w4(∂(W opt +W elast +W anis)
∂Q

) = 0, (6.6.4)∫
VR

w5(n · n − 1) = 0, (6.6.5)

and
∫

VR

w6(detF − 1) = 0. (6.6.6)

where (w1, w2, w3, w4, w5, w6) ∈ W and

W :=
{
(w1,w2,w3, w4, w5) ∈ H1(VR;R) ×H1(VR;R3) ×H1(VR;R3)

× L2(VR;R) × L2(VR;R) × L2(VR;R)
∣∣w1 = 0 on ΓD, w2 = 0 on SD

}
.

(6.6.7)

We use open source FEA package FeniCS to solve above system of equations. We use

Taylor-Hood element for this coupled nonlinear problem where we use we use quadratic

interpolation for displacement, and linear interpolation for electric potential, nematic di-

rector, order parameter and Lagrange multipliers. A similar setting has been successfully

used by Luo and Calderer [26] to study behavior of LCE materials. We will compare and

validate results of our model with the results presented by Luo and Calderer [26].

6.7 Asymptotic theories for homogeneous LCE

Though the Euler-Lagrange equations obtained at the end of Section 6.4 presumably

form a well-posed system for (n,y,p), these general nonlinear differential systems are not

amenable to explicit solution, hindering the predictive capability of the model. In practice,

the loading conditions (i.e., the prescribed boundary conditions) and material constants

are such that the responses of the LCE body is in a particular regime that can be well
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approximated by a simplified asymptotic theory. We therefore consider some particular

regimes delineated by relevant dimensionless parameters and the associated asymptotic

theories. Strictly speaking, different asymptotic regimes should be precisely described by

some relevant dimensionless parameters of material constants and loading conditions. How-

ever, nontrivial asymptotic theories can be more conveniently derived by directly assuming

the relative scales of the state variables. Therefore, we present linear theory for NLCEs

presented in the section 6.4 and establish asymptotic theories for these materials.

6.7.1 Asymptotic scalings

Similar to previous section, we use dimensionless form of the equations. Let εi (i =

1, 2, 3) be the orders of magnitude of (∇n,∇u,P):

|∇n| ∝ ε1, |∇u| ∝ ε2 and |p| ∝ ε3,

and for an integer index α = (α1, α2, α3) ∈ Z3, denote by εα = εα1
1 εα2

2 εα3
3 . Formally, we

expand the dimensionless total free energy as

FT =
∑

α

F (α)[u,n,P], (6.7.1)
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where F (α)[u,n,P] are the leading order terms of free energy and obtained by direct calcu-

lation as

F (2,0,0)[n] =
∫

VR

1
2KF |∇n|2, (6.7.2)

F (2,1,0)[n,u] =
∫

VR

σEL : ∇u, (6.7.3)

F (0,2,0)[n,u] =
∫

VR

1
2 (∇u − E∗(n)) : C (∇u − E∗(n)) + µβ|Ed − E∗(Na)|2, (6.7.4)

F (0,0,2)[n,P] =
∫

VR

−1
2 |∇ξ|2 + 1

2P · AnP − 1
2 |∇ξ|2 + ∇ξ · P, (6.7.5)

F (0,1,2)[n,u,P] =
∫

VR

∇u : σMW, (6.7.6)

F (1,0,1)[n,P] =
∫

VR

P · pflexo (6.7.7)

and F (1,1,1)[n,u,P] =
∫

VR

∇u : σflexo. (6.7.8)

For brevity, we use P instead of P̃ in this section. Also, C is the dimensionless stiffness

tensor of the material which is defined as dimensional elastic stiffness divided by shear

modulus of the material. Depending on the relationship of the actual materials properties

and loading conditions, the system in certain asymptotic regimes could be well approximated

by simplified theories. Below we discuss separately about the possible nontrivial asymptotic

regimes and associated theories for LCEs.

Liquid crystals (C ∼ 0, µβ ∼ 0)

In this regime, it is clear that the LCE behaves more similar to “liquid” crystal instead

of behaving like a solid. Therefore, it is much more convenient to use Eulerian description.

It is worth noting that we do not assume deformation is small in this regime but we neglect

the regular elasticity energy terms from the free energy. The free energy in this regime is

expressed as

F [p,n] =
∫

V

1
2KF |∇yn|2 + 1

2p · Anp − 1
2 |∇yξ|2 + ∇yξ · p + p · p̃flexo, (6.7.9)
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where

p̃flexo = −fs(∇y · n)n + fb(∇yn)T n − fb(∇yn)n. (6.7.10)

It should be mentioned that flexoelectric coefficients and Frank elasticity coefficient are

size dependent coefficients. The flexoelectric coefficient is linearly proportional to inverse

of the characteristic length of the material but the Frank elasticity depends linearly on the

square of inverse of size scale (see Eq.(6.2.28)). Depending on the value of flexoelectric

coefficients, we can divide this regime into two different categories by either including or

excluding flexoelectric terms in the theory:

1. Let fb and fs → 0. As a result, we neglect the flexoelectric term in the energy

functional (6.7.9). The Euler-Lagrange equation for energy functional (6.7.9) along

with the Maxwell equation forms a system of equations which gives equilibrium state

of the system

∇y · (−KF ∇yn) − (∆ϵ∇yξ ⊗ ∇yξ + λnI) n = 0 in V, (6.7.11)

∇y · (−Dn∇yξ) = 0 in V, (6.7.12)

p = −A−1
n ∇yξ in V, (6.7.13)

−KF ∇yn · ν = 0 on ∂V, (6.7.14)

− Dn∇yξ · ν = 0 on ΓN (6.7.15)

and ξ = ξb on ΓD, (6.7.16)

where ∆ϵ = ϵc − ϵa.

Remark #1 :Qualitatively, the effect of electric field on the director field can be

more conveniently seen by inserting Eq.(6.7.13) into (6.7.9) and rewriting the total

free energy as

F [p,n] =
∫

V

1
2KF |∇yn|2 − 1

2Dn∇yξ · ∇yξ

=
∫

V

1
2KF |∇yn|2 − ϵa|∇yξ|2 − ∆ϵ(n · ∇yξ)2.

(6.7.17)

Therefore, if ∆ϵ > 0 (resp. ∆ϵ < 0), i.e. ϵc > ϵa (resp. ϵc < ϵa), the director field
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tends to align with (resp. prependicular to) the electric field −∇yξ.

Remark #2 : If ∆ϵ → 0 or KF ≫ A1 then the Frank elasticity tem in the en-

ergy functional (6.7.9) has the major impact and all other terms can be neglected.

Therefore, nematic director can be determined solving following equation

∇y · (−KF ∇yn) − λnn = 0 in V (6.7.18)

and −KF ∇yn · ν = 0 on ∂V. (6.7.19)

If we denote the solution of above equation with n∗, the electric field in this case can

be detirmined solving

∇y · (−Dn∗∇yξ) = 0 in V. (6.7.20)

2. Let fb ̸= 0 or fs ̸= 0. In this case, we need to take into account all the terms in the

Eq.(6.7.9). Using standard calculus of variation and minimizing energy with respect
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to polarization and nematic director we have

∇y · (−KF ∇yn − m̃flexo
1 ) + ñflexo

1

+
[
−∆ϵ

(
∇yξ + p̃flexo

)
⊗
(
∇yξ + p̃flexo

)
+ λnI

]
n = 0 in V,

(6.7.21)

∇y ·
(
−Dn∇yξ − A−1

n p̃flexo
)

= 0 in V,

(6.7.22)

p = −A−1
n ∇yξ − A−1

n p̃flexo in V,

(6.7.23)

(−KF ∇yn − m̃flexo
1 ) · ν = 0 on ∂V,

(6.7.24)(
−Dn∇yξ − A−1

n p̃flexo
)

· ν = 0 on ΓN

(6.7.25)

and ξ = ξb on ΓD,

(6.7.26)

where

ñflexo
1 = −fs(∇y · n)p + fb∇ynp − fb(∇yn)T p (6.7.27)

and m̃flexo
1 = −fs(n · p̄)I + fbn ⊗ p − fbp ⊗ n. (6.7.28)

Remark #3 : If KF ≫ A1 ( or ∆ϵ → 0 ), KF ≫ |fb| and Kf ≫ |fb|, then nematic

director can be determined independent of polarization solving following system of

equations

∇y · (−KF ∇yn) − λn = 0 in V (6.7.29)

and −KF ∇yn · ν = 0 on ∂V. (6.7.30)

Let n∗ be the solution of equation above then the electric field in this case can be
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detirmined solving

∇y ·
(
−Dn∗∇yξ − A−1

n∗ p̃∗flexo
)

= 0 in V, (6.7.31)

where p̃∗flexo is the p̃flexo for n = n∗.

Negligible Frank elasticity and flexoelectricity (KF ∼ 0, fb ∼ 0 and fs ∼ 0)

In this regime, the LCE behaves as a complex multi-variant solid. Depending on the

strength of electrical coupling, there are different separate regimes. It is worth mention-

ing that the thermodynamic stability condition discussed earlier will require flexoelectric

coefficients to be zero if the Frank elasticity coefficient is zero.

1. Let ε3 ≪ ε2. In this regime, the energy due to electrical interaction is negligible

compared with the regular and Frank elasticity. Therefore, the electric field would

not influence the director field or elastic fields. However, the director field does depend

on elastic fields and hence the electrical properties, particular, the optical refraction

index, can be actively controlled by mechanical loadings. The equlibrium state in

this case can be determined minimizing energy functional while ignoring the electrical

contributions

F [F,n] =
∫

VR

1
2J

−2/3(FFT ) : (FnFT
n)−1+ 1

2κ(J−1)2+µβ

2 J−2/3(FT F) : (FT
Na

FNa)−1.

(6.7.32)

Having the equilibrium state of deformation and nematic director, the equilibrium

electric field and polarization can be determined minimizing energy functional with

respect to polarization and using the Maxwell equation.

min
P

[ ∫
VR

1
2JP · AnP − 1

2 |F−T ∇ξ|2 + F−T ∇ξ · P
]
. (6.7.33)

Using standard calculus of variation, the equilibrium for the electric field and polar-
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ization is obtained as

∇ ·
(
−JF−1DnF−T ∇ξ

)
= 0 in VR, (6.7.34)

P = −JA−1
n F−T ∇ξ in VR, (6.7.35)(

−JF−1DnF−T ∇ξ
)

· νR = 0 on Γc
N (6.7.36)

and ξ = ξb on Γc
D. (6.7.37)

Remark #4 : For the case of small deformations (ε3 ≪ ε2 ≪ 1), the linearized

forms of energy functionals and the Maxwell equations can be used to determine the

equilibrium state of the system. The linearized form of energy functional (6.7.32) is

expressed as

F [∇u,n] = F (0,2,0)[n,u] =
∫

VR

1
2 (∇u − E∗(n)) : C (∇u − E∗(n))+µβ|Ed−E∗(Na)|2.

(6.7.38)

Also, polarization and electric field can be obtained by

min
P

[ ∫
VR

1
2P · AnP − 1

2 |∇ξ|2 + ∇ξ · P + σMW : ∇u
]
. (6.7.39)

(
I − (∇u)T

)
∇ξ + (1 − ∇ · u)AnP = 0 in VR, (6.7.40)

∇ · [− ((1 + TrE) I − 2E) ∇ξ + (I − ∇u)P] = 0 in VR, (6.7.41)

[− ((1 + TrE) I − 2E) ∇ξ + (I − ∇u)P] · νR = 0 on ΓN (6.7.42)

and ξ = ξb on ΓD. (6.7.43)

It should be mentioned that we have not ignored terms containing gradient of defor-

mation to include coupling between deformation and electric field.

Remark #5 : If ε3 ≪ ε2 and the Frank elasticity and flexoelectric coefficients are

negligible but non-zero and if major contribution of electric terms come from the

flexoelectric effect one could update Eq.(6.7.34) to include contribution of flexoelectric
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effect

∇ ·
(
−JF−1DnF−T ∇ξ − F−1A−1

n P̃flexo
)

= 0 in VR. (6.7.44)

2. Let ε2 ∼ δ, ε3 ∼ δ1/2 and δ ≪ 1. In this regime, the electrical energy dominates

the elastic contribution. Therefore, the director field is completely determined by

the electric field. One way coupling, two sequential minimization to determine the

equilibrium state. The leading order term in the energy functional is F (0,0,2) which

should be minimized with respect to polarization and nematic director

min
P,n

F (0,0,2). (6.7.45)

The Euler-Lagrange equations are given as

(P ⊗ P)n = λnn in VR (6.7.46)

and ∇ξ + AnP = 0 in VR. (6.7.47)

From (6.7.46) we can coclude that λn = |P|2 and

n ∥ P or n⊥P. (6.7.48)

As a result, the local electric field is determined using the linearized Maxwell equation:


∇ · (−ϵc∇ξ) = 0 if n ∥ P

and ∇ · (−ϵa∇ξ) = 0 if n⊥P.
(6.7.49)

By solving the Maxwell equation and director fields and electric field are obtained.

The solution for director field is denoted by n∗. Then, we can proceed solution and

determine the displacement at the equilibrium state of the system by minimizing
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(F (0,2,0)[n∗,u] + F (0,1,2)[n∗,u]). The assocoated Euler-Lagrange equation is given by

∇ ·
[
C∇u − 2E∗(n) + 2µβ (Ed − E∗(Na)) + σMW

]
= 0. (6.7.50)

3. Let ε2 ∼ ε3 ∼ δ and δ ≪ 1. We can solve the coupled minimization problem for (u,

n,P) subject to the linearized Maxwell equation

min
u,n,P

{F (0,2,0)[n,u] + F (0,0,2)[n,P]}. (6.7.51)

The variations with respect to u and n simply gives following the Euler-Lagrange

equations

∇ · [C∇u − 2E∗(n) + 2µβ (Ed − E∗(Na))] = 0 in VR, (6.7.52)

−6γ(Ed − E∗(n))n − ∆ϵ(n · ∇ξ)∇ξ + λnn = 0 in VR, (6.7.53)

∇ξ + AnP = 0 in VR, (6.7.54)

∇ · (−Dnξ) = 0 in VR, (6.7.55)

[C∇u − 2E∗(n) + 2µβ (Ed − E∗(Na))] · νR = 0 on ∂SN (6.7.56)

and (−Dnξ) · νR = 0 on ΓN . (6.7.57)

Competition between Frank elasticity and regular elasticity (KF ∼ C ∼ 1)

Competition between Frank elasticity of LC, elastic forces and electric field. There are

multiple distinct asymptotic regimes

1. Let ε2 ∼ δ, ε1 ∼ ε3 ∼ δ1/2 and δ ≪ 1. The leading energy terms in (6.7.1) arise

from electric energy and Frank elasticity (instead of regular elasticity). Physically,

it corresponds to the energy associated with the applied electric field (or voltage) is

significantly larger than that of deformations. The corresponding governing equations

can be obtained from the variational principles subject to the constraint arise from
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the Maxwell equation

min
P,n

{F (2,0,0) + F (0,0,2) + F (1,0,1)}. (6.7.58)

The governing equations for nematic directors and polarization is obtained using stan-

dard calculus of variation

∇ ·
(
−KF ∇n − mflexo

1

)
+ nflexo

1

−
[
∆ϵ
(
∇ξ + pflexo

)
⊗
(
∇ξ + Pflexo

)
+ λnI

]
n = 0 in VR, (6.7.59)

AnP + ∇ξ + pflexo = 0 in VR, (6.7.60)

∇ ·
(
−Dn∇ξ − A−1

n pflexo
)

= 0 in VR, (6.7.61)(
−KF ∇n − mflexo

1

)
· νR = 0 on ∂VR, (6.7.62)(

−Dn∇ξ − A−1
n pflexo

)
νR = 0 on ΓN (6.7.63)

and ξ = ξb on ΓD. (6.7.64)

System of equation above is a closed system for the nematic director and electric

potential and polarization. Having the solution for n, P and ξ, we can minimize the

remaining energy terms in the (6.7.1) (F (0,2,0) ∼ F (2,1,0) ∼ F (0,1,2) ∼ F (1,1,1) ∼ δ2)

to determine the displacement. The corresponding Euler-Lagrange equation for this

minimization is given as

∇ ·
(
C∇u − 2E∗(n) + 2µβ (Ed − E∗(Na)) + σEL + σMW + σflexo

)
= 0 in VR

(6.7.65)

and

νR ·
(
C∇u − 2E∗(n) + 2µβ (Ed − E∗(Na)) + σEL + σMW + σflexo

)
= 0 on SN .

(6.7.66)

Remark #5 : It is obvious that flexoelectric terms can be ignored if flexoelectric

coefficients are small compare to other material properties.
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2. Let ε2 ∼ ε3 ∼ δ, ε1 ∼ δ1/2 and assume flexoelectricity is negligible. The leading energy

terms arise from Frank elasticity. Physically, it corresponds to the energy associated

with the applied electric field (or voltage)is significantly larger than energies associated

with deformations and Frank elasticity.The corresponding governing equations can be

obtained from the variational principles:

min
n

[
F (2,0,0)[n]

]
. (6.7.67)

Immediately, we find that the director field necessarily satisfies

KF ∆n + λnn = 0 in V. (6.7.68)

The remaining energy terms in (6.7.1) are led by F (0,2,0)[n,u] ∼ F (2,1,0)[n,u] ∼

F (0,0,2)[n,P] ∼ δ2. Upon minimizing again over admissible set of displacements and

polarizations and using the Maxwell equation, we obtain the governing equations for

u and P.

∇ξ + AnP = 0 in VR,

(6.7.69)

∇ · (−Dnξ) = 0 in VR

(6.7.70)

and ∇ · (C∇u − 2µE∗(n) + 2µβ (Ed − E∗(Na)) + σEL) = 0 in VR.

(6.7.71)

3. Let ε3 ≪ ε1 ∼ ε2 ∼ δ ≪ 1 and assume flexoelectricity is negligible. The energy

functional (6.7.1) is led by F (2,0,0)[n] ∼ F (0,2,0)[n,u] ∼ δ2. Therefore, nematic director

and deformation can be obtained by the minimization of these two energy terms

min
n,u

{F (2,0,0)[n] + F (0,2,0)[n,u]}. (6.7.72)
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The corresponding Euler-Lagrange equations is expressed as

∇ · (C∇u − 2E∗(n) + 2µβ (Ed − E∗(Na))) = 0 in VR, (6.7.73)

∇ · (−KF ∇n) − 6γE∗(n) + λn = 0 in VR, (6.7.74)

νR · (C∇u − 2E∗(n) + 2µβ (Ed − E∗(Na))) = 0 in SN (6.7.75)

and νR · (−KF ∇n) = 0 in ∂VR. (6.7.76)

The Euler-Lagrange equations above form a closed system in order to determine ne-

matic director and deformation. Then, the polarzation and electric field can be deter-

mined minimizing the leading order terms of the remaining of the energy functional

and by using the Maxwell equation. The corresponding equations are given as

AnP + ∇ξ = 0 in VR (6.7.77)

and ∇(−Dn∇ξ) = 0 in VR. (6.7.78)

6.8 Results and Discussion

6.8.1 Analytical results for bending induced flexoelectric effect in

NLCEs

It was discussed that director reorientation can lead to a flexoelectric effect. As flex-

oelectric effect depends on the gradient of nematic field and strain gradient may induce a

non-uniform arrangement of nematic director, strain gradient may lead to a flexoelectric

effect in LCEs. The simplest way to induce strain gradient inside a material is by apply-

ing bending deformation to the material. Thus, in this section, we study bending induced

flexoelectric effect using an analytical approach. The theoretical studies on the bending de-

formation of LCEs exists in the literature [349, 350, 331, 351, 328, 333, 352]. However, these

studies mostly focus on the actuation induced in response to external stimuli [328] or overall

response of the LCE [352]. There have been little attention on the director reorientation

in bending deformation of LCEs [353, 354] and there is no study on the bending induced
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flexoelectric response of the material. Recently, Liu et al. [355] studied pure bending defor-

mation of LCEs using four different constitutive laws and showed that, depending on the

constitutive equation used, there may be two different solutions for any given bending angle

and there is a critical bending angle on which a π/2 rotation of nematic director is reported

from one solution to another. Here, in this section, we use the formulation presented earlier

to study pure bending deformation of LCEs and possible director reorientation predicted

using constitutive relations given in Eqs.(6.2.15) and (6.2.16). We also use the asymptotic

theories presented earlier to present analytical solution for bending induced flexoelectric

behavior of the LCE.

We have presented the solution for the bending deformation of dielectric elastomers

and electret materials in our earlier work [178]. Here, we extend our earlier work to study

bending problem of LCEs. We use the same notation as the one given in [178] and avoid

presenting all the details. Reader is referred to this reference for more detailed derivation.

Figure 6.4a shows the LCE with thickness 2H and the length 2L in the undeformed con-

figuration. Similar to what was mentioned earlier, we continue using dimensionless quanti-

ties. We have used thickness as the characteristic length and we have dropped over bar from

all dimensionless quantities for brevity. We use Cartesian coordinate system {eX ,eY ,eZ}

to denote material points in the reference configuration and a cylindrical coordinate system

{er,eθ,ez} is used to denote spatial points. In response to applied bending moment M ,

the LCE undergoes a pure plane strain bending deformation (Figures 6.4b and 6.4c) such

that any points initially located in the plane with normal eX (resp. eY ) is mapped to a

point located in a plane with normal er (resp. eθ). Also, we set Na = eX . Assuming the

material is incompressible (detF = 1), the deformation and the deformation gradient tensor

is obtained as [103]

r =
√

2AX +B, θ = Y

A
(6.8.1)

and F = A

r
er ⊗ eX + r

A
eθ ⊗ eY + ez ⊗ eZ , (6.8.2)

where A and B are unknown constants. We identify r1 = r(X = −H), r2 = r(X = H)

and α = θ(Y = L) (see Fig. 6.4). We assume the effect the Frank elasticity coeffieient and
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flexoelectric coefficients are small and their effect on the deformation is negligible. Thus,

we use the scaling given in the section 6.7.1. Minimizing energy functional (6.7.32) with

respect to n yields

FFT n = λnn. (6.8.3)

Substituting Eq.(6.8.2) into Eq.(6.8.3), we obtain two solutions for nematic director


n = eθ Case 1,

n = er Case 2.
(6.8.4)

Throughout this paper, we refer to first solution as case 1 and the second solution case

2. Note that Na = eX and the anisotropy behavior of the material tends to keep nematic

directors align with the thickness direction. The bending deformation creates strain a

long the axis of the material (beam) and it may be energetically favorable for the nematic

directors to reorient toward axis of the beam. The case 1 (shown in Fig. 6.4b) represents

the situation in which nematic directors have rotated toward the axis of the beam while no

reorientation is reported according to case 2 (shown in Fig. 6.4c). It is important to note

that both solutions represent a uniform arrangement of nematic directors throughout the

material. Liu et al. [355] also obtained similar uniform solutions using different constitutive

relations. The reason for this behavior is that non-uniform arrangment of the nematic

director induces shear deformation in the material. However, shear deformation is not

allowed based on the kinematic constraint used in this work and work done by Liu [355]

(see Eq.(6.8.1)). Therefore, the solution obtained using these models might not match

experimental results. We will use FEA model in the next sections in order to obtain more

realistic results.

From (6.8.4), we have 
∇n = − 1

Aer ⊗ eY Case 1,

∇n = 1
Aeθ ⊗ eY Case 2.

(6.8.5)

Substituting Eqs.(6.8.4), (6.8.5) and (6.8.2) into (6.2.37), the flexoelectric polarization is
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Figure 6.4: Schematic of the LCE under bending deformation. The gold arrows show the
direction of nematic directors. (a) Undeformed isotropic configuration. (b)
Deformed configuration with n = eθ (case 1). (c) Deformed configuration with
n = er (case 2).

obtained as 
P̃flexo = −fbr

A2 er Case 1,

P̃flexo = −fs

r er Case 2.

(6.8.6)

The Eq. 6.8.6 illustrates that the flexoelectric effect predicted in the case 1 is based on

fb effects which is due to bending reorientation of the nematic directors. On the contrary,

the flexoelectric effect predicted in the case 2 is based on fs effects which is due to splay

reorientation of the nematic directors. We impose open circuit electric boundary condition

for all the surfaces (D̃ · νR = 0) for all the surfaces and determine the flexoelectric effect

generated electric field inside the material by substituting Eq.(6.8.6) into Eq.(6.7.44) and


−∇ξ = −fb(ϵa−1)

Aϵa
eX Case 1,

−∇ξ = −Afs(ϵc−1)
r2ϵc

eX Case 2.

(6.8.7)

Now, we need to determine which solutions between case 1 and case 2 are energetically

favorable. Therefore, we need to fully solve the problem for unknowns A and B and then
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determine the free energy for each case. We introduce ΣT as

ΣT = Σ + Σanis = ΣT
rXer ⊗ eX + ΣT

θY eθ ⊗ eY + ΣT
zZez ⊗ eZ , (6.8.8)

where ΣT
rX , ΣT

θY and ΣT
zZ can be obtained substituting Eq.(6.8.2) into Eqs.(6.2.40) and

(6.2.41). Minimization of the energy functional Eq.(6.7.32) with respect to the deformation

gives
d

dX

(
ΣT

rX − λp
r

A

)
− 1
A

(
ΣT

θY − λp
A

r

)
= 0. (6.8.9)

Solving the Eq.(6.8.9) for the Lagrange multiplier λp, we have


λp = a1/3 A2

2r2 (1 + µβ

a ) − a−2/3 r2

2A2 (1 + aµβ) + C1 Case 1,

λp = a−2/3 A2

2r2 (1 + µβ) − a1/3 r2

2A2 (1 + µβ) + C1 Case 2,

(6.8.10)

where C1 is the integration constant and can simply be determined from free traction

boundary condition on the surface X = −H,

ΣT
rX − λp

r

A

∣∣∣∣
X=−H

= 0. (6.8.11)

We identify two unknown constants λb and κb as

λb = r2 − r1
2H and κb = r2 − r1

r1
. (6.8.12)

It is clear that λb is a measure for change of the thickness during bending deformation and

κb is a dimensionless measure for the curvature. The unknowns A and B can be expressed

in terms of λb and κb as

A = Hλ2
b(2 + κb)
κb

and B = 2H2λ2
b (2 + κb(2 + κb))

κ2
b

. (6.8.13)

The only two unknowns at this point are λb and κb. The free traction boundary condition
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on the surface X = H is used to determine λb in terms of κb:


λ4

b = 16(1+aµβ)(1+κb)2

(2+κb)4(a+µβ) Case 1,

λ4
b = 16a(1+κb)2

(2+κb)4 Case 2.

(6.8.14)

(a) (b) (c)

Figure 6.5: The difference of free energy obtained using case 1 and case 2 versus bending
angle for different (a) aspect ratios L/H, (b) the material property µβ and (c)
the material property a.

At this point, the only unknown is the dimensionless curvature κb. The relationship

between the applied bending moment M and the curvature κb can be simply established

using traction boundary condition on the surface Y = ±L. We can also determine the

relationship between bending angle α and curvature κb from the relation A = L
α and the

first of (6.8.13). Therefore, all quantities can be written in terms of the bending angle α.

In order to determine which one of two cases are more energetically favorable, we cal-

culate free energy using the relation (6.7.32). The difference between the value of the free

energy of obtained based on solution given in the case 1 and the value of the free energy

obtained based on solution given in the case 2 (∆F = Fcase 1 − Fcase 2) has been plotted in

the Fig. 6.5. The negative values of the free energy difference ∆F means that the case 1

has lower energy and therefore energetically favorable. It is seen that always case 1 has the

lower energy disregarding the material or geometrical parameters used. Therefore, accord-

ing to this energy functional and setting used, bending deformation of the LCE always will

lead to a π/2 director reorientation. Also, we conclude that the electric field generated in

the material is determined from case 1 which is given as −∇ξ = −fb(ϵa − 1)/(Aϵa)eX .
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It is important to note again that these theoretical results is based on the assumption

that no shear deformation will be observed in the LCE under bending deformation. There-

fore, this model and models like this [355] can not accurately predict the behavior of LCEs

under bending deformation.

6.8.2 Analytical results for opto-flexoelectric behavior of the LCE.

𝛼 𝜃

𝐞!

𝐄"

𝐄#

𝐄$ 𝐞%

𝐞&

Figure 6.6: Schematic of the deformation of the body subject to the light.

In this section we probe the possibility of simplified analytical results for the coupled

opto-flexoelectric boundary value problem. The energy of the system is given in Eq.(6.2.7).

We assume polarized light irradiated from top of the material (Fig. 6.6). The body deforms

as the nematic directors rotate as shown in Figure 6.6. Assuming a form of deformation as

x̄ = r(Z̄)er(θ) + Y ey in which



θ = θ(X̄) = αX̄ + β,

y = Ȳ ,

r = r(Z̄)

(6.8.15)

and α, β and r(Z̄) are to be obtained. The deformation gradient is given as

F = αr(Z̄)eθ ⊗ e1 + ey ⊗ e2 + r′(Z̄)er ⊗ e3. (6.8.16)
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Let the profile of nematic directors in reference and current configurations be

n0 = e3, n(θ) = eθ. (6.8.17)

We are interested in a scaling in which the Frank elasticity and the optical energy are

dominant. Therefore, the problem becomes

min
n(θ)

[∫
VR

WFrank[∇n,y] +W opt[Q,n]
]
. (6.8.18)

After linearization, minimizing the above mentioned equation with respect to the ne-

matic directiors gives α as follows

α =
√

10
3 + 5K̄Fµ(I0(Q− 1) − 3)3

9fI0Qµn (Q2Jn((f − 1)I0(Q− 1) + 3) +G[Q](I0(Q− 1) − 3)) ,
(6.8.19)

where G[Q] = g−1(Q) −Q log[Z(Q)]. Upon linearization of (6.3(c)) (first EL) which is

∂

∂Q

(
W elast[Q,n,y] +W opt[Q,n]

)
, (6.8.20)

we can have a good approximation of the state variable Q as Q ≃ 0.6.

After we implement the effect of the light on the deformation of the system, for sim-

plicity, we eliminate the energy associated with the light in the subsequent system and just

implement the effect of it in the profile of the nematic directors. Assuming ϵ1 ∼ ϵ2 ≫ ϵ3 we

can ignore the higher order effects and the problem reduces to



∇ ·
(
Σ + Σanis + Σelast − λpJF−T

)
= 0,

n · n = 1,

and detF = 1

(6.8.21)
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subject to

θ(X)
∣∣
X=0 = 0

and
(
Σ + Σanis + Σelast − λpJF−T

)
· e3

∣∣∣∣
Z=0,1

= 0,
(6.8.22)

where

Σ = a1(Q)
(
αr(Z)eθ ⊗ e1 + ey ⊗ e2 + r′(Z)er ⊗ e3

)
+ a2(Q)αr(Z)eθ ⊗ e1,

Σanis =

µanis [a1(Q)
(
αr(Z)eθ ⊗ e1 + ey ⊗ e2 + r′(Z)er ⊗ e3

)
+ a2(Q)αr(Z)eθ ⊗ e1

]
and Σelast = KF

2

(
− 1
α(r(Z))3 eθ ⊗ e1 + 1

(r(Z))2 ey ⊗ e2 + 1
r′(Z)(r(Z))2 er ⊗ e3

)
.

From (6.8.22)1 we infer β = 0 and the normalization constraint on (6.8.21)2 is already

satisfied due to the nature of the suggested solution in (6.8.17). Substituting (6.8.16) in

(6.8.21)3 we reach to

αr(Z)r′(Z) = 1 → r(Z) =
√

2Z
α

+ ζ, (6.8.23)

where ζ is to be obtained. Substituting (6.8.16),(6.8.17), (6.8.23) and (6.8.23), into (6.8.21)1

we obtain a differential equation involving λp which results in

λp(Z) = − 1
α

(µanis + 1)
(
α2 (a1(Q) + a2(Q))Z − a1(Q)

2αζ + 4Z

)
c1. (6.8.24)

The remaining unknowns c1 and ζ can be obtained by imposing (6.8.22)2 in the bound-

aries.

The next step is to obtain the electric potential and polarization profile. The boundary

value problem is reduced to:


F−T ∇ξ + 1

J AnP̃ + ˜̄Pflexo = 0,

and ∇ ·
(
−JC−1∇ξ + F−1P̃

)
= 0,

(6.8.25)
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subject to the boundary condition

D̃ · ν = 0, (6.8.26)

where ν is the unit vector normal to the boundaries in the reference configuration and

P̃flexo = fb

r(Z)er. (6.8.27)

Let the electric potential varies only in r direction, i.e. ξ = ξ(r). Substituting (6.8.27)

into (6.8.25)1 and (6.8.25)2, eliminating P̃ and solving for ξ(r) we obtain:

ξ = γ1 log[r] + γ2, (6.8.28)

where γi(i = 1, 2) are to be obtained. Then the polarization is obtained as

P̃ = − 1
A2r(Z) (γ1 + fb) er. (6.8.29)

γ1 is obtained by imposing (6.8.26) as γ1 = − fb
1+A2

. Also, γ2 is a constant of no

consequence therefore we set γ2 = 0.

Figure 6.7 shows the profile of the normalized electric potential for different size scaling.

𝐻 = 10!" 𝐻 = 10!# 𝐻 = 10!$

̅𝜉

Figure 6.7: The electric potential distribution for different scaling factors.

6.8.3 FEA results for LCE film under stretch

The stretch deformation of a nematic LCE sheet is a well known problem which have

been widely investigated experimentally [356, 357, 358] and theoretically [359, 360, 361, 362].
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Experimental observation of stress-strain relationship for a clamped nematic LCE sheet

under stretch reveals a semi-soft behavior. The semi-soft behavior means that stress-strain

diagram is composed of three different parts [357, 358, 361]. Initially, the material shows

a hard response under small strains in which nematic directors do not rotate. As strain

increases a soft response is observed accompanied by the reorientation nematic directors.

Finally, once nematic directors are all aligned along the direction of maximum stretch,

a hard response is observed. The theoretical prediction based on the model presented by

Bladon, Terentjev, and Warner(BTW) [347] were able to predict formation of stripe domain

instability but they were unable to capture initial hard response and showed an ideally soft

response. However, Conti and coworkers [361] used the free energy presented by Verwey,

Warner, and Terentjev (VWT) and successfully captured formation of stripe domains and

semi-soft behavior of LCEs. Luo and Calderer [26] added Oseen-Frank energy expression

to BTW energy and predicted a semi-soft behavior for LCE using Finite Element Analysis.

Their results did not show formation of stripe domains as they used relatively large Frank

elasticity coefficient. Also, the mesh size they used were too coarse to capture formation of

stripe domains. Here, in this section, we have used the free energy proposed by DeSimone

[263] along with FEA framework explained earlier to study flexoelectric behavior of NLCEs

under stretch deformation. We also have included effects of Frank elasticity because the

focus of our work is flexoelectric behavior in nematic LCEs and the flexoelectric effect is

considerable at small scales where the Frank elasticity effect is also considerable. We do

not perform stability analysis and we do not report formation of stripe domain instabilities.

We believe at small scales Frank elasticity terms penalizes rotation of nematic directors

and avoids creation of stripe domains. Also, even if stripe domains form, we do not believe

it will impact our general conclusions about flexoelectric behavior of nematic elastomers.

Comprehensive stability analysis of nematic LCEs under electro-mechanical loading is the

subject of our future research.

Figure 6.8 shows schematics of the two dimensional sample simulated. In the reference

state, the sample is in the isotropic state where the deformation is zero all over the sample.

After energy minimization in the initial state and in absence of any external loading, the

sample is transformed into nematic state where all nematic directors are aligned along
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Figure 6.8: Schematics of simulated specimen in clamp pulling numerical experiment. The
system is relaxed to nematic state and then the boundary conditions are applied.

one random direction. We have chosen Y-direction as this random direction(Fig. 6.8).

In the next step and in order to simulate clamp pulling experiment, we have constrained

the deformation along Y-direction and the direction of nematic director on both vertical

surfaces of the specimen to stay the same as the values observed in the nematic state and in

absence of any external loading on both vertical surfaces of the specimen. Then, we begin

to pull the specimen from both left and right end by applying uniform deformation ∆L

along X-direction.

Validation of FEA code

In the first stage of our analysis and in order to validate our FEA code, we set electrical

terms to zero and assume a1 = 1 and a2 = −0.4 in Eq.(6.2.18). Also, we set µ̄β = 0, µ̄ = 2,

K̄F = 0.03. The simulated specimen has the dimensions of LX = 1/
√

0.5 and LY = 1 (see

Fig. 6.8). By doing so, our model reduces to one presented in [26]. Due to symmetry we

will simulate upper right quarter of the figure and we will impose exact boundary conditions

imposed in [26]. Figure 6.9 shows our results and results presented in [26] for the deformed

configurations of LCE under different strain along with direction of nematic directors and

contours of BTW energy. It is seen that our results exactly match to the ones presented by

Luo and Calderer [26].
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Figure 6.9: Comparison of BTW energy contours, deformation and direction of nematic
director between current study and the FEA results presented by [26]

Size effect on the semi-soft response of the material

Figure 6.10: The effect of the Frank elasticity coefficient on the semi-soft behavior of the
LCE under clamp-puling deformation.

In addition to validation of our results, we investigate effects of the Frank elasticity on

the stress-strain behavior of NLCE. The stress-strain diagram for different values of K̄F has

been plotted in Fig. 6.10 where stress values plotted is the average normal stress along X
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direction and we have set µ̄β = 0.5. It is seen that we are able to capture semi-soft behavior

of the material. As it is expected, increase in the K̄F penalizes rotation of nematic director

and delays soft behavior of the material. It should be mentioned that although the Frank

elasticity coefficient KF itself is a material property and it is constant but the effect it has

is size dependent and as size changes K̄F also changes. This graph shows that stress strain

response of LCE does depend on the sample size.

Flexoelectric response of LCE sheet under uni-axial stretch
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Figure 6.11: Contours of dimensionless electric potential shown in the deformed configu-
ration under different stretch values. The black arrows show the direction of
nematic directors.

As it was shown earlier, the rotation of nematic director is observed in clamp-puling

experiment. As flexoelectric behavior of LCEs depends on the rotation of director, then

one could expect observation of a flexoelectric effect under clamp-puling experiment of LCE

at small size scale. Therefore, we will include effects of electrical terms by setting ϵ̄a = 2.26,

ϵ̄a = 4.52, f̄b = 0.001 and f̄s = 0.002. We will comment further on the values of flexoelectric

coefficient later but the magnitude of these values will not impact our qualitative conclusion

in this section. The film is under open circuit condition (D̃ · N = 0) on all surfaces.

Without loss of generality, we set electric potential on the point (LX/2, 0) to zero in order

to ease numerical convergence. Figure 6.11 shows contours of dimensionless electric potential
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plotted in the deformed configuration for different values of applied deformation. Also, the

direction of nematic directors have been plotted with black arrows. It is seen that in the

earlier stages of deformation, the rotation of nematic directors is negligible and generated

electric potential due to flexoelectric effect is also negligible. As strain increases, the gradient

of nematic director field becomes larger and an electric potential difference becomes obvious

along the specimen. However, the electric potential difference is symmetric in all steps of

loading. Our calculation showed the volume average of dimensionless electric field in both

X and Y directions remains zero in all steps of loading. From this, we can conclude that

the flexoelectric effect may be present in the clamp-puling experiment if conducted in small

scale. However, it will not be measurable as the average electric field will be zero. Here, we

did not report formation of strip domains but we still believe the conclusion made in this

section can be extended to the case in which strip domains is formed. As strip domains are

symmetric, the generated electric potential difference also will be symmetric and the overall

electric field will be zero.

6.8.4 FEA results for flexoelectric effect in bending deformation of LCE

Figure 6.12: The schematic of the sample simulated. We apply boundary conditions in the
nematic state.

As flexoelectric effect in LCEs is result existence of non-zero gradient of nematic director

fields and bending is one way to create non-uniform deformation and consequently non-zero

gradient of nematic director field, we investigate bending deformation of NLCEs in this

section. Photo induced bending deformation of NLCEs have been widely studied. However,

almost all these studies do not include director field reorientation in bending deformation.

In addition, plate theories have been developed for NLCEs [353, 363, 364] that can be used

to study bending deformation of LCEs. However, as these models average out variations
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along the thickness directions they are not suitable for studying flexoelectric effect under

bending deformation. Here, we will use the formulation developed earlier along with FEA

in order to study flexoelectric effect in bending deformation on of LCEs. We have used the

free energy proposed by DeSimone [263] by setting a1 = a1/3 and a2 = −a1/3 a−1
a . Unless

other wise stated we have assumed a = 1.05, µ = 30 KPa, KF = 10−11 J/m, ϵa = 2.26,

ϵc = 4.52 and µβ = 0.1µ. The size scale is set to be H = 10−6 m. As discussed in the paper,

the maximum value of the flexoelectric coefficient depends on the value of Frank elasticity

term. The order of flexoelectric coefficient for LCEs is expected to be in the order of 1/ϵ0

pC/m [306]. Therefore, we have set fbϵ0 = fsϵ0 = 1 pC/N. We also identify volume average

sign as < · >= 1
V

∫
V · which will be used in this section to plot average electric field and

average polarization generated in the material in response to bending.

The schematics of simulated samples is shown in Fig. 6.12. Similar to what mentioned

earlier for stretch simulation, we apply boundary conditions on the material in nematic

state. We assume Na = eY and let the system relax from isotropic state to nematic state

and then we constrain deformation and nematic director direction on the left end side of the

material(see Fig. 6.12). In order to create bending deformation, a dimensionless traction

t̄a = −t̄aeY is applied on the top surface of the material. We will use this setting in our

FEA code and investigate bending induced flexoelectric effect in this section.

Bending and splay flexoelectric effect

Based on the formulation presented in this paper, rotation of nematic director will lead

to flexoelectric effect in LCEs. Two types of rotation has been considered in the flexoelectric

formulation: bending rotation characterized by fb and splay rotation characterized by fs.

We should note the difference between bending rotation of nematic director and bending

deformation of material itself. Here, we have used same sign for both effects and we have

used same positive values for the both in order to ease the interpretation of the underlying

physics behind the flexoelectric effect in LCEs. Our results show that both bending and

splay rotations may occur under bending deformation.

Figure 6.13 shows average dimensionless electric field versus applied traction in presence

and absence of each one of bending or splay flexoelectric effects. It is shown that the average
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(a) (b)

Figure 6.13: Average dimensionless electric field along X (a) and Y (b) directions versus
applied traction in presence and absence of bending and splay flexoelectric
effects.

electric field along X direction is not negligible compare to average electric field generated

along Y direction specially under small loading (t̄a < 0.1) where the major flexoelectric

effect observed is an electric field generated along axis direction (X direction). This electric

field is the result of bending rotation of nematic directors (fb flexoelectric effect). Figure

6.13a shows that fb flexoelectric effect will lead to generation of average electric field with

positive value along the axis direction of the material (X direction) for all stages of loading

while fs flexoelectric effect generates negative electric field along the X direction. Therefore,

there is a competition between two effects. The fb flexoelectric effect is leading under small

deformation and the fs flexoelectric effect will take over under large deformations. Therefor,

Fig. 6.13a shows that, in presence of both fb and fs effects, as loading increases the average

electric field in X direction increases and peaks at a positive value and then it begins to

decrease toward negative values and finally becomes increasingly negative. However, Fig.

6.13b shows both fb and fs effect will lead to a positive electric field along the thickness

direction and these two effects intensify each other and electric field in Y direction always

increases as loading increases. It is important to note that we have assumed positive values

for both fb and fs. If these two coefficients had opposite signs, we would see competition

along Y direction instead of X direction.
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The effect of material parameter a in flexoelectric effect

Figure 6.14 also shows the effect of material parameter a in the bending induced flexo-

electric behavior of the material. The magnitude of the material parameter a determines the

magnitude of strain induced in the material as a result of alignment or rotation of nematic

directors. For prolate nematic elastomers a is always greater than one. Under small strain

assumption, the magnitude of a is close to 1 while it could be larger for large deformations.

DeSimone and coworkers used value of 1.05 in the reference [365] and value of 1.88 in the

reference [366].
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Figure 6.14: Electric potential and average electric field generated in the material under
bending deformation. (a) Average electric field in Y direction versus applied
traction for different values of material parameter a. (b) Average electric field
in X direction versus applied traction for different values of material parameter
a. (c) Contours of dimensionless electric potential for two different materials
one with a = 1.05 shown on the left side and one with a = 1.6 shown on
the right side (t̄a = 1.5 × 10−3 for both). Black arrows show the direction of
nematic directors.

Here, we have plotted average electric field along X and Y directions in Figures 6.14a
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and 6.14b for values of a from 1.05 to 1.6. It is seen that as this material parameter increases,

the flexoelectric effect becomes weaker. The reason for this behavior can be investigated in

the Fig. 6.14c where contours of dimensionless electric potential and direction of nematic

directors has been plotted on the deformed configuration of two materials one with a = 1.05

(left) and one with a = 1.6 (right), both under the same bending load. In order to interpret

these figures we should note that the nematic director tend to rotate toward principle

stretch direction in order to reduce elastic part of free energy W elast. However, there are

two factors which tend to avoid rotation of nematic director. The first factor is related

to bending deformation of the material. Under bending deformation, the principle stretch

direction is perpendicular to thickness direction both above and below the neutral axis.

The rotation of nematic director toward principle stretch direction creates tension while

external load tend to compress material points below the neutral axis. Therefore, external

load opposes rotation of nematic director in the areas below neutral axis which is under

compression. This explains the reason that, for the point located near surface Y = 0 in

the on deformed configuration, nematic directors have remained more or less parallel to

the thickness in Fig. 6.14c. The second factor is the anisotropic part of energy W anisotropy

which is minimized if nematic directors are parallel to the thickness direction of the material.

The W elast energy reduction induced due to rotation of nematic directors should overcome

energy increase in W anisotropy in order to observe rotation of nematic directors with respect

to material points. This energy barrier against rotation is larger if the material parameter

a is larger. Therefore, the flexoelectric effect is weaker in the materials with larger a. It

is worthwhile to note that W anisotropy will not restrict rotation of material points itself.

Therefore, it does not restrict nematic director gradient induced as a result of rotation of

material points. It means that it does not restrict fb flexoelectric effect while restricting fs

flexoelectric effect. This is consistent with the behavior observed in the 6.14b where it is

seen that for the material with small values of a the average electric field in X direction is

negative while the opposite is true for the material with large a. This shows that increase

in the value of the material parameter a may change flexoelectric mechanism from splay

induced flexoelectric effect to bending induced flexoelectric effect in LCEs.
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Size effect in bending

(b)(a)

Figure 6.15: Size effect in bending deformation induced flexoelectric effect. (a) Average
polarization field along X direction versus characteristic length for materials
under different magnitude of loading. (b) Average polarization field along Y
direction versus characteristic length for materials under different magnitude
of loading.

It is well known that the flexoelectric effect is a size dependent effect. The flexoelectricity

of solids is often considerable at small nanosize scales while this effect is negligible at larger

size scales [80]. Therefore, it is important to study the effect of size scale on flexoelectricity

in LCEs. The average polarization along X and Y directions versus characteristic length

of the material has been plotted in Fig. 6.15a and Fig. 6.15b, respectively. Both figures

show similar trend where the flexoelectric effect is negligible in large size scales. As the

characteristic length becomes smaller the polarization becomes larger and the flexoelectric

effect reaches a maximum at around characteristic length H ≈ 10−6. As the characteristic

length further decrease the flexoelectric effect becomes smaller. The exact characteristic

length in which bending deformation induced polarization reaches its maximum depends on

the value of applied traction (Fig. 6.15).

The reduction of flexoelectric effect with decrease of size scale is against common notion

of flexoelectricity in solids. This is because different mechanism of flexoelectricity in LCEs

compare to conventional solids.The flexoelectricity in nematic LCEs is due to existence of

gradient in the nematic director field while in conventional solids strain gradient induces

flexoelectricity. For a given strain in a solid, as size scale of the solid decreases its strain

gradient increases linearly and the flexoelectric effect increases as a result. The same is true
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Figure 6.16: Contours dimensionless electric field and direction of nematic director for three
materials in three different size scale.

for a given nematic director field. However, the difference between the two is because of

the effect of Frank elasticity. Formulation earlier showed that flexoelectric effect is linearly

proportional to the inverse of characteristic length and the effect of Frank elasticity is

quadratically proportional to the inverse of characteristic length. At very small size scale,

Frank elasticity term becomes a major constraint which tends to keep nematic directors

uniform and avoids exhibition of the flexoelectric effect. To better show this effect consider

Fig. 6.16 where contours of dimensionless electric field and direction of nematic directors

has been plotted in the deformed configuration of three materials at three different size

scales. The applied dimensionless loading is the same between these three materials. For

H = 10−3m, the gradient of nematic field has not led to any flexoelectric effect and electric

potential iz zero everywhere. Both flexoelectric effect and the Frank elasticity effect are

negligible at this large size scale. As size scale gets smaller to H = 10−6m, an electric

potential difference is observed across the material which shows flexoelectricity is important

at this size scale. For size scale H = 10−6, no gradient in the nematic field is reported. This

is because the Frank elasticity effect is so large that penalizes any gradient in the nematic

director field. Therefore, no flexoelectric effect is reported at this size scale disregarding

how large flexoelectric coefficients may be.
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6.8.5 FEA results for opto-flexoelectric effect in NLCEs

It is well known that nematic LCEs containing azobenzene molecules can exhibit a

large reversible photo induced strain [242]. Disregarding the photothermal effect which

are not subject of current work and the discussion on this topic can be found elsewhere

(see reviews [317, 318, 319]), light illumination to a photo responsive LCE can lead to two

kind of deformation, the first is the photo-induced phase transition and the second is the

photo-induced reorientation of nematic directors [316]. Photo-induced phase transition is

due absorption of photon by azobenzene which lead to trans–cis photoisomerization, the

disturbance of the orientational order and transformation of the material from nematic to

isotropic state [237]. The light induced reorientation effect, also known as the Weigert

Effect [322], is a result of repeated trans–cis–trans isomerization cycles in response to po-

larized light irradiation [323]. Although experimental studies have studied photo-induced

reorientation in nematic liquid crystal polymers [324, 325, 326], most theoretical studies

have not considered light polarization direction dependent light induced reorientation ef-

fects [327, 328, 329, 330, 331, 332, 333]. Recently, Bai and Bhattacharya [336] used free

energy developed by [337] studied photomechanical coupling in a photoactive LCE under

both light illumination and mechanical stress. They studied effect of light polarization di-

rection on the reorientation of nematic directors. Here, we have used the same free energy

and coupled it with electricity to study light induced flexoelectric effect.

Here, we use formulation presented earlier and FEA model described in order to inves-

tigate opto-electric effect in LCEs. Unless other wise stated we have assumed a = 1.05,

µ = 30 KPa, KF = 10−11 J/m, ϵa = 2.26, ϵc = 4.52, fbϵ0 = fsϵ0 = 1 pC/N and µβ = µ. The

size scale is set to be H = 10−6 m. We further assume J̄n = 5, f = 1
6 and µn = 20µ. For sim-

plicity, we assume light intensity in the material is obtained using so-called Beer-Lambert

law as follows

I = I0exp
(
X2 −H

dp

)
. (6.8.30)

In order to ease interpretation of results, we assume dp = 0.1H. We also set I0 = 0.5. It

should be mentioned that the exact profile of the light and light intensity in each position

in the material depends on the texture of the material. The polarization direction of light
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beam can be modified using polarizer. Also, penetration depth of the material can be

modified by addition of scattering particles such as microspheres [367] or intralipid fat

[368], or absorbing particles such as black ink to the solution of the material. Detailed

description of manufacturing process of the material is out of scope of current work.

Similar to what mentioned earlier for the stretch and bending simulations, we set bound-

ary conditions on the nematic state. Assuming Na = eY , we relax the system and then

constrain the deformation and nematic directors on the bottom surface (Fig. 6.17).

Figure 6.17: Schematic of the specimen simulated for opto-flexoelectric analysis. The
boundary conditions are applied in the nematic state.

Effect of polarization direction of light on opto-flexoelectric effect

The contours of dimensionless electric potential along with direction of nematic director

is plotted in the Fig. 6.18 for material under light with different polarization directions.

We identify polarization direction of the material with θ. Initially, we have set θ = 0. As

nematic director tend to remain perpendicular to polarization direction, no deformation

and flexoelectric effect is observed in this case. In the next step in our FEA analysis, we

start increasing θ with step size of one degree where we observe a reorientation of nematic

directors takes place. Fig. 6.18 shows as θ increases the reorientation of nematic directors

increases and as a result the flexoelectric effect becomes stronger and deformation becomes

larger. The maximum director reorientation is reported on the region of the material which

is close to top surface and has higher light intensity.
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Figure 6.18: Contours of dimensionless electric potential for material under polarized light
irradiation with different polarization direction. The black arrows show the
direction of nematic directors.

Figure 6.19: Average dimensionless polarization and electric field induced in the material
as result of polarized light irradiation with different polarization directions.

Average dimensionless polarization and dimensionless electric field versus light polariza-

tion direction in both X and Y directions have been plotted in the Fig. 6.19. Fig. 6.19 also

shows that flexoelectric effect becomes stronger as θ increases. Also, this figure shows that

light induced electric field and polarization is not negligible in X or Y directions.
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Figure 6.20: Contours of order parameter Q for material with different aspect ratio (AR)
under polarized light with θ = π/4.

Effect of the material aspect ratio

The effect of materials aspect ratio on the light induced deformation along with dis-

tribution of order parameter Q is shown in the Fig. 6.20 where aspect ratio is defined as

 Lx/Ly (see Fig. 6.17). Figure 6.20 shows that the light induced deformation in materials

with smaller AR looks more like shear deformation and in the materials with larger AR

looks more like bending. Also, contours of order parameter shows that the variation of order

parameter in the material is small and material is far from transformation to isotropic phase

in which Q = 0. This is because light intensity used in this section has been deliberately

chose to be small to avoid phase transition.

Size effect in opto-flexoelectric behavior of the material

The size effect in light induced flexoelectric effect in LCEs is studied in Figs. 6.21 and

6.22. Figure 6.21 shows at larger size scales opto-flexoelectric effect is negligible. As size
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Figure 6.21: Average dimensionless polarization along X direction versus characteristic
length of the material for photoactive LCE under light irradiation with dif-
ferent polarization directions.
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Figure 6.22: Contours of dimensionless electric potential for materials with different char-
acteristic length under polarized light with θ = π/4.

scale decreases, the light induced polarization increases until it peaks at size scale close to

5 × 10−8 and then again it decreases with further reduction in the value of size scale. This

trend is similar to what mentioned earlier for bending induced flexoelectric effect. Figure

6.21 shows that for size scale H = 10−3 light induced rotation of nematic directors has not

led to any flexoelectric effect because nematic director gradient is not small enough at this
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size scale. Also, figure 6.21 shows that for smaller size scales of H = 10−6 and H = 5×10−6

the distribution of nematic director is similar to distribution observed in the size scale

H = 10−3 but flexoelectric effect is larger because gradient of nematic director is larger

at this size scale. However, figure 6.21 shows that there is no nematic director gradient

and flexoelectric effect for the H = 10−9 because the Frank elasticity effect becomes so

large that it avoids observance of any gradient in the nematic director field. In general,

the reason for behavior observed in these two graph is that flexoelectric effect is linearly

proportional to inverse of characteristic length of the material and the Frank elasticity effect

is quadratically proportional to inverse of characteristic length of the material.

6.9 Concluding Remarks

A nonlinear coupled energy formulation for Nematic Liquid Crystal Elastomers (NL-

CEs) was presented considering effects of photomechanical coupling and flexoelectricity. In

addition, we used scaling regimes to present simplified linear theories which can be used to

investigate behavior of LCEs.We employed finite element analysis to investigate flexoelectric

effect and photoflexoelectric effect in NLCEs. We investigated size effects and showed there

is an optimum size scale in which flexoelectric effect and photoflexoelectric is optimum.

Moreover, we showed that both bending and splay reorientation of nematic director can

lead to emergence of flexoelectric effect and these two contribution may intensity or weaken

each other depending on the loading and material properties. Moreover, we showed that a

simple stretch of nematic sheet may lead to polarization of material but as the deformation

is symmetric the average polarization is negligible.

6.10 Appendix

6.10.1 Derivation for the rate of change of electric energy

Here in this section we present a derivation for the rate of change of electric energy

considering polarization and deformation as two independent variables. We relax constraint

of incompressibility in order to obtain the general form of the Maxwell stress. In order to

222



proceed this derivation we need following relation which is obtained by multiplying the

Maxwell equation (6.2.2) by ξ and using divergence theorem:

∫
V
ϵ0∇yξ · ∇yξ =

∫
V

∇yξ · p −
∫

∂V
ξd · ν. (6.10.1)

Similarly, multiplying the Maxwell equation with ξ̇ and using divergence theorem, we obtain

following relation which later will be needed in order to determine rate of change of electric

energy: ∫
V
ϵ0∇y ξ̇ · ∇yξ =

∫
V

∇y ξ̇ · p −
∫

∂V
ξ̇d · ν. (6.10.2)

Using Eq.(6.10.1), the rate of change of electric energy can be written as

Ėelect = d
dt

∫
V

1
2ϵ0|∇yξ|2 = d

dt

∫
V

1
2∇yξ · p − d

dt

∫
∂V

1
2ξd · ν. (6.10.3)

Using Raynolds Transport theorem, we can rewrite equation (6.10.3) as

Ėelect = 1
2

∫
V

[ ˙∇yξ · p + ∇yξ · ṗ + ∇yξ · p(∇y · v)
]

− d
dt

∫
∂V

1
2ξd · ν. (6.10.4)

The rate of change of electric field can be expanded as

˙∇yξ = ∇y ξ̇ − LT ∇yξ. (6.10.5)

Thus, Eq.(6.10.4) is wtirren as

Ėelect = 1
2

∫
V

[
∇y ξ̇ · p − LT ∇yξ · p + ∇yξ · ṗ + ∇yξ · p(∇y · v)

]
− d

dt

∫
∂V

1
2ξd · ν. (6.10.6)

Since our independent variable is polization, we need to determin the first term on the

right hand side of Eq.(6.10.6) in terms of ṗ. Thus, using Raynolds Transport theorem and
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(6.10.5) we have

Ėelect = d
dt

∫
V

1
2ϵ0|∇yξ|2

=
∫

V

[
ϵ0
(
∇y ξ̇ − LT ∇yξ

)
· ∇yξ + ϵ0

2 |∇yξ|2(∇y · v)
]

=
∫

V

[
∇y ξ̇ · p − ϵ0LT ∇yξ · ∇yξ + ϵ0

2 |∇yξ|2(∇y · v)
]

−
∫

∂V
ξ̇d · ν,

(6.10.7)

where we have used Eq.(6.10.2) to derive last equality. Now, by subtracting Eq.(6.10.7)

from (6.10.6) we have

1
2

∫
V

∇y ξ̇ · p =∫
V

[
−1

2LT ∇yξ · p + 1
2∇yξ · ṗ + 1

2∇yξ · p(∇y · v) + ϵ0LT ∇yξ · ∇yξ − ϵ0
2 |∇yξ|2(∇y · v)

]
+
∫

∂V
ξ̇d · ν − d

dt

∫
∂V

1
2ξd · ν.

(6.10.8)

By substituting Eq.(6.10.8) into Eq.(6.10.6), the rate of change of internal energy is obtained

as

Ėelect =
∫

V

(
σMW : L + ∇yξ · ṗ

)
−
∫

∂VR

ξ
˙̃D · νR, (6.10.9)

where

σMW = (−∇yξ) ⊗ (−ϵ0∇yξ + p) − (ϵ02 |∇yξ|2 − ∇yξ · p)I (6.10.10)
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