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Abstract

In epidemiology, a risk assessment measures the association between exposures and

a health outcome. Risk characterization has traditionally been performed using

statistical methods such as logistic regression, but such methods are not effective

when working with highly correlated variables and when trying to assess synergic

actions between exposures.

These limitations become evident in studies related to asthma, a common chronic

that affects 25 million people in the US. The prevalence of asthma is growing and

research is struggling to find the reason. Many factors have been associated with

causing and triggering asthma, but their interactions, as well as which one is the most

responsible for the spreading of asthma, are still unclear. Outdoor air pollution is

on the list of possible causes and triggers. Characterizing the connection between

asthma and air pollution is not an easy task, because of high collinearity between

pollutant agents, possible synergic actions, and difficulty in controlling the exposure.

The research community is currently encouraging the use of multi-pollutant models

to yield better results.

In this dissertation we propose: (i) a modified Apriori association rule mining

method for identification of connections between exposures and risk variations, and

(ii) a novel genetic algorithm (GA) designed to mine risk-based quantitative asso-

ciation rules. Both methods were tested on a group of synthetic datasets, and on

real data collection about pediatric asthma cases and pollution levels in Houston.

The results on the synthetic datasets show the advantages of applying our methods

to augment traditional logistic regression, and help determining the best metrics to

include in the GA fitness function (odds ratio, length, repetition and redundancy).
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Tests on clinical data suggest the existence of a correlation between asthma and out-

door air pollutants, both alone and as a mixture. The genetic algorithm improves

the results of the Apriori-based method by recognizing what appear to be the most

dangerous levels of exposure.

Future work will help to improve aspects of the GA such as population initializa-

tion or rule selection. To date, the proposed methods represent a significant step in

the direction of risk assessment based on association rule mining in epidemiological

studies.
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Chapter 1

Introduction

1.1 Data mining

The term “data mining” entered the popular vocabulary in the ’90s, although the

idea behind it was already gaining popularity in the machine learning and computer

science community in the ’80s. The first conference on the topic was held in 1989

under the name KDD - Knowledge Discovery in Databases, coined by the organizer,

Gregory I. Piatetsky-Shapiro. Data mining is a well-established area of computer

science and it interfaces with other disciplines such as artificial intelligence, machine

learning, and statistics [16].

The following terms are used interchangeably: data mining, knowledge discovery,

data archeology, information mining and information discovery. They all refer to

the process of extracting interesting and novel information from large amounts of
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data. This information can be extracted in different ways and serve different pur-

poses, therefore it is common to find in the literature descriptions of data mining

techniques organized by tools and purposes. Although not universally accepted, a

clear classification of different techniques is proposed by [85]:

1. Class Description: the goal of class descriptions is the collection and por-

trayal of similar items in a database, with the purpose of gaining information

about the class and understanding what differentiates it from other classes.

2. Association: association refers to the extrapolation of relationships between

items in a dataset, ofter described in the form of rules.

3. Classification: during classification, a training set of labeled data is analyzed

by a learning algorithm, which produces a model to separate each class. The

model can be used to classify new unlabeled items.

4. Prediction: the goal of prediction is to assign a value to future or missing

data, based on the knowledge extracted from a related database.

5. Clustering: by clustering it is possible to group together items with similar

characteristics. It is a popular form of unsupervised learning, which means

previous knowledge of labeled samples is not necessary.

6. Time-Series Analysis: analysis of large datasets organized in the form of a

temporal sequence, in order to extrapolate sequential patterns, deviation and

future trends.
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In this dissertation, we will focus on the task known as association. This task is

also often referred to as association rule mining or itemset mining.

1.1.1 Association Rule Mining

Association Rule Mining (ARM) was introduced in 1993 by Agrawal et al. [5]. In

this paper, the authors sought interesting relationships between the items sold in

a store, given a large database of customer transactions. The algorithm would

present the result in the form of rules. For example, a possible rule could be

{fries, hamburgers} → {beer}, which indicates that when customers presented at

checkout with fries and hamburgers, they were very likely to also purchase beer.

For this particular application, the rules output by the algorithm would help the

manager in organizing the items in the store, by putting products frequently sold

together close to each other.

The algorithm showed strong potential and it was quickly expanded to other

areas of research. Today it is possible to find a description of basic association rule

mining algorithms in every introductory data mining book. The original paper from

Agrawal et al. currently counts more than 15,000 downloads and 2,700 citations on

Google Scholar.

How is a rule of interest defined? The following criteria are often used to identify

interesting associations between a multitude of available item sets:

• Support: the support of the rule (X → Y ) is a ratio between how many

times the item set {X, Y } appears in the database and the total number of
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transactions. Normally, a set is required to have a minimum support before it

can be considered a rule.

• Confidence: the confidence of the rule (X → Y ) indicates the probability of

item Y knowing that item X is present. In traditional theory of probability, it

would be noted as p(Y |X).

• Lift: also referred to as interest. For the rule (X → Y ), it is the ratio of the

support of {X, Y } and the product of the supports of {X} and {Y } separately.

If the ratio is close to 1, it indicates that the items X, Y are appearing together

by mere accident and do not constitute an interesting rule.

Other criteria have been proposed in the literature. More details about rule

selection and itemset mining algorithms will be discussed in the Background section

of this dissertation (2.1).

1.2 Asthma

1.2.1 Symptoms and causes

Asthma is a largely diffused chronic respiratory disease. It is a result of a chronic

inflammation of the smooth muscles surrounding the airways. The contractibility of

those muscles is increased and this results in occasional narrowing of the airways.

During these episodes, called acute asthma exacerbations or, more commonly, asthma

attacks, patients experience symptoms such as wheezing, coughing, chest tightness
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and shortness of breath.

The causes of asthma’s emergence are not completely understood, but there is

a broad agreement on the importance of some genetic and environmental factors,

possibly in combination [55, 50]. Environmental factors believed to have a role in

asthma development and exacerbation are allergens (i.e., pollen, animal hair), indoor

air pollution (i.e., mold, dust), outdoor air pollution (i.e., ozone, traffic smog), and

unhealthy working conditions [35, 82]. Patients can experience their first asthma

attack at any age.

1.2.2 Epidemiology of Asthma

Although there is variability in how asthma is diagnosed and reported in different

countries, asthma affects anywhere from 1% to 18% of the population (depending on

the country) with differing levels of symptom intensity and frequency [24]. Recent

estimates of the number of affected people worldwide are around 300 million. 250,000

people die every year as a consequence of an acute asthma event [82]. Developed

countries are more affected than developing countries [24]. In 2007, the Center for

Disease Control (CDC) published an issue of Vital Signs describing the impact of

asthma in the United States [14]. Here we summarize some of its findings for the

U.S. as a whole:

• asthma prevalence is rising. In 2001, 1 out of 14 people (about 20 million, or

7% of the population) had asthma in 2001. In 2009, the ratio went up to 1 in

12 (25 million, or 8%)
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Figure 1.1: Asthma health care encounters per 100 persons with asthma: United
States, 2001-2009. Source: CDC/NCHS, National Ambulatory Medical Care Survey,
National Hospital Ambulatory Medical Care Survey, National Hospital Discharge
Survey, and National Health Interview Survey

• 185 children and 3,262 adults died in 2007 as a consequence of an acute asthma

event

• prevalence of asthma in children is higher than in adults (10% versus 8%) and

they experience more acute events (57% of children with asthma had an attack

in 2008 versus 51% of the total adult population)

• 50.1 billion dollars were spent in 2007 to cover the cost of medical expenses

related to asthma events, with an increase of 1.5 billion compared to 2002

Although there is no cure for asthma, its symptoms can be contained with better

management of the condition. Hospitals across the country focus their efforts on

providing adequate care and knowledge to patients. Particular attention is given

to avoiding common known triggers. Among the known triggers cited above, this
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dissertation will focus on acute asthma events caused by exposure to outdoor air

pollution. Many research groups across the globe are investigating the possible con-

nection between outdoor pollution and asthma prevalence [66, 88]. In the Background

section of this dissertation (2.3), we will illustrate in greater detail how pollution can

affect patients with asthma, what studies validate this hypothesis, and the current

difficulties encountered in extracting and using this information.

1.2.3 Effects of air quality on health

The simple act of breathing exposes people to contact with different chemicals. Some

of them are known to be harmful (such as carbon monoxide) others are thought

to be harmless, and others have not yet been assessed. Evaluating the effects of

chemicals present in the atmosphere is a challenging work in progress. In 1996, the

Environmental Protection Agency (EPA) launched a project called National-Scale

Air Toxic Assessment (NATA). The goal of the project is to characterize the effects

of all the 187 chemicals listed in the Clean Air Act. To date, 134 of the 177 analyzed

chemicals have shown a cancer and/or non-cancer dose-response value. For more

information, refer to [3].

A famous example of known air pollution hazard is its proven correlation with

cardiovascular diseases, such as heart attack and stroke. In 2004, the American

Hearth Association (AHA) released a statement about the effects of exposure to fine

particular matter (diameter smaller than 2.5 µm, or PM2.5) [12]. They declared that

short-term exposure to the pollutant (a few hours to a few weeks) was linked to an
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increased risk of triggering cardiovascular disease-related events, fatal and nonfatal.

Long term exposure (a few years) produced an even higher risk and resulted in a

shorter life expectancy. A few years of reduced exposure to PM2.5 would result in a

decreased risk for cardiovascular mortality. It was possible to reach these conclusions

only after several studies had been conducted across the globe for many years before

the AHA publication. Afterwards, researchers started focusing on other pollutants

with similar suspected behaviors, such as ozone.

The assessment of potential harmfulness of chemicals is not an easy task. First of

all, it would be unethical to conduct studies in which people are exposed to substances

suspected to be harmful. Therefore, only observational studies are eligible for this

task. The control of the exposure during the study poses another problem. To make

a valid comparison, detailed information between subject exposures during the study

are needed, but not always easy to obtain because of subject mobility and the scarcity

of pollution sensors. And lastly, pollutants are always present in the atmosphere as

mixtures, which makes it difficult to evaluate the effects of each pollutant separately.

The possibility for some pollutants to have a synergic action (harmful in combination

but not separately) should also be accounted for.

As we mentioned in section 1.2.1, it is reasonable to suspect a correlation between

asthma prevalence and exacerbation and the presence of certain pollutants in the air

we breathe. More details about previous studies on asthma and air pollution will be

discussed in the Background section of this dissertation (2.3).
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1.3 Association rule mining for risk assessment

So far, we have introduced the concept of data mining with particular attention to

mining for association rules, and we have discussed the impact of asthma and air

pollution on our society. These two apparently unrelated topics come together to

form the core of this dissertation: association rule mining for risk assessment.

In this document, we present an improved method for association rule mining

dedicated to the assessment of risk in clinical trials, and a novel implementation of

a Genetic Algorithm (GA) for risk assessment. Association rule mining has several

characteristics that make it an interesting choice for the study of risk in clinical trials:

• as with every data mining algorithm, ARM does not rely on the hypothesis

formulation and testing as it happens in traditional statistic methods; the

knowledge is extracted directly from the data

• rules are readily understandable even for people outside the data mining do-

main

• there is a vast literature on the topic which creates a solid foundation (more

details in Section 2.1 and 2.4)

The novel implementation of the association rule mining method could help in

understanding the effects of air pollutants on asthma incidence. The concept could

be extended to assess risk variation in other clinical studies. The Genetic Algorithm

for risk assessment is a further improvement upon this method, because it allows the
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researcher to handle features with continuous values and it automatically assesses

the threshold of exposure associated with the most significant risk change.

This dissertation is organized as follows: in the next chapter (Background) we

will expand upon the different implementation of rule mining algorithms, their limi-

tations and current research trends (2.1). Then we will discuss introductory concepts

in public health and clinical studies (2.2) and review previous studies on the effects

of pollution on asthma (2.3). The Background section concludes with an overview of

previous application of ARM mining in the clinical domain. The following chapter

(Algorithms) describes the implementation of the proposed methods for risk assess-

ment using association rule mining techniques. In the Method section we explain the

data and the experiments used to validate the proposed methods. Results and dis-

cussions of these experiments are reported in the following chapter, Results. Finally,

in the last chapter, we propose a summary of the contributions of this work and the

plans for future improvements.
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Chapter 2

Background

2.1 Association Rule Mining - State of the art

In Section 1.1 we introduced the meaning of data mining and its purposes, with

particular emphasis on Association Rule Mining (ARM). In this section, we will

discuss in greater detail the implementation, strengths and current limitations of

ARM.

2.1.1 Definitions

Let I = {i1, i2, ..., im} be a generic set of items. A subset of items X ⊆ I is called

an itemset. An itemset is normally associated with its cardinality, or size, k. Let

T = {t1, t2, ..., tn} be the set of transaction identifiers or tids. Then, it is possible to

define tuples of the form 〈t,X〉 called transactions. Often, the transaction 〈t,X〉 is
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referred to using its identifier t.

In order to mine information from a database, transactions are represented through

a binary matrix D ⊆ T × I. The columns of D represent the set T of all possible

items. The rows of D represent all the transaction identifiers available, normally

sorted in lexicographical order. For example, if D is the database representing the

sales of a grocery store, the columns of D would represent all the items available for

sale (bread, milk, eggs...), and its rows would represent the different customers. Di,j

is true (1) if the customer i purchased the item j, and false (0) otherwise.

Association Rule Mining is the process through which meaningful associations

between items are extracted from D. For example, in the grocery store scenario, it

would be interesting to know that a customer who purchases bread will oftentimes

buy milk as well. Rules are expressed through the notation

X → Y (2.1)

where X and Y are itemsets of I of cardinality 1 ≤ k ≤ m and X ∩ Y = Ø.

As we mentioned in Section 1.1.1, not every possible combination of itemsets

(X, Y ) forms an interesting rule. Different criteria have been defined to differen-

tiate meaningful rules from the rest. The most common, introduced by Agrawal

in his first ARM formulation [5], form the support-confidence framework. The

support-confidence framework requires that selected rules satisfy at least two criteria:

minimum support and minimum confidence.

The support of an itemset X represents how often the itemset appears in the
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database, or how many transactions in D contain X:

supp(X) = |{t | 〈t, i(t)〉 ∈ D and X ⊆ i(t)}| (2.2)

An ARM algorithm looks first for frequent itemsets to form rules of interest. A

rule X → Y is a good candidate if supp(X ∪ Y ) = supp(XY ) ≥ minsup, where

minsup is a user defined threshold.

After determining whether a rule has sufficient support, the algorithm calculates

its confidence. The confidence of a rule X → Y measures the chance of finding

the itemset Y in a transaction, knowing that the itemset X is in the transaction.

Therefore, the confidence is nothing but a conditional probability:

conf(X → Y ) = P (Y |X) =
P (X ∧ Y )

P (X)
=
supp(XY )

supp(X)
(2.3)

If a rule has sufficient support (minsupp) and sufficient confidence (minconf ), it

is an interesting rule in the support-confidence framework.

In 1991, G. Piatetsky-Shapiro [63] argued that minimum support and confidence

are not enough to ensure that a rule is meaningful. According to probability the-

ory, two independent events X and Y can happen simultaneously with a chance

p(X)p(Y ). Therefore, if

p(X ∧ Y ) ≈ p(X)p(Y ) (2.4)

then

supp(X → Y ) ≈ supp(X)× supp(Y ) (2.5)
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If Equation 2.5 is verified, then it is not true that X implies Y, but rather that

the two itemsets are happening together by chance. A new metric is needed to filter

and remove this kind of rules from the set of meaningful rules. The concept of lift

(also called interest) provides a possible solution:

lift(X, Y ) =
supp(X ∪ Y )

supp(X)supp(Y )
(2.6)

If the ratio computed through Equation 2.6 is too close to 1, the rule is not

interesting. A threshold minlif can be introduced to ensure that the interest of the

rule is sufficiently distant from 1:

∣∣∣ supp(X ∪ Y )

supp(X)supp(Y )
− 1
∣∣∣ ≥ minlift (2.7)

Other metrics have been introduced to measure the importance of rules in a

database, but they are not within the scope of this dissertation.

2.1.2 The Apriori algorithm

Knowing what kind of rules should be extracted from the binary database of trans-

actions, it is possible to formulate an algorithm to search for them automatically.

One obvious solution would be to consider every possible itemset in I and individu-

ally compute their support and confidence. Because it needs to evaluate all the 2|I|

itemsets in I, this algorithm (called brute-force) is effective but highly inefficient.

The support metric has an interesting property that allows for the exclusion of

some of the itemsets from the rule search without having to test their support. In
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Figure 2.1: Graphical representation of the Apriori algorithm searching for rules
of interest in the database D, composed of 5 transactions over the set of items
I = {A,B,C,D,E}. In this example, minsupp = 2. If the support of a node
is less than minsupp, no further items are added to that itemset, which be-
comes a terminal node. In this figure, nodes with insufficient support are shaded
and marked with a dashed border. The only valid frequent itemsets in D are
{A,B,C,E,AC,AE,BE,CE,ACE}.

fact, if X, Y ⊆ I and X ⊆ Y , then the support of Y can not be greater than

the support of X (supp(X) ≥ supp(Y )). This means that if an itemset X is not

frequent, than every superset of X can not be frequent and can be excluded from

the rule search. We say that the support has a down-closure property. Notice

that the same property is not true for confidence. If X → Y and W → Y are rules

of D and X ⊂ W , the confidence of W → Y could be greater than that of X → Y .

The support down-closure property is the foundation of a popular algorithm for

association rule mining, known as the Apriori algorithm. The Apriori algorithm was

proposed in 1993 by Agrawal et al. [5]. The algorithm performs a tree-like search
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starting from the base leaf (empty itemset) and progressively adding new items to

create new nodes. For each node, the support of the itemset is computed. If it is

greater than minsup, the search can continue and new items are added to create

the next nodes. If the support of a node is too small, supersets on that branch

are not evaluated and the search moves to other branches. This process is easier to

understand by looking at a graphic representation (Figure 2.1).

Many other algorithms for ARM of binary databases are available in the litera-

ture, but they will not be discussed in this dissertation.

2.1.3 Quantitative ARM

Association rule mining techniques have a relatively short history and are currently

under development. Some of the most interesting features under study include:

• Beyond the support-confidence framework. In some fields, researchers

might be interested in rules that do not appear often in the database. Think,

for example, about a medical study on association between certain symptoms

and a rare disease. The combination of symptoms of interest will likely be

infrequent across the entire patient database, making it at greater risk of being

overlooked when searching itemsets with a high support. The data mining

community is working on algorithms that are not bounded by high frequency,

but are still computationally efficient. This is particularly challenging because

metrics with down-closure property are hard to find. An example of mining

for weak patterns was proposed by Liu et al., who called these rules “reliable
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exceptions” [47].

• Negative association rules. Negative associations can also provide valuable

insights. For example, searching the grocery store database, one could find that

people who buy milk almost never buy beer. The frequency and the confidence

of this pattern make it interesting, but basic ARM algorithms, such as Apriori,

do not look through the negated form of the database. Methodologies for

negative association rule mining have been proposed in [47, 69, 85].

• From correlation to causality. Associations discovered through rule mining

are useful to understand correlations, but not causality. For example, the rule

X → Y indicates that Y has a high probability to happen when X is present,

but this does not mean that X is the cause of Y . Further information is needed

to make this claim. The topic of causality in ARM is extensively discussed by

Zhang and Zhang in the fourth and fifth chapter of their book, “Association

Rule Mining” [85].

• Quantitative ARM (QARM). A major limitation of basic algorithms for

rule mining such as Apriori is the inability to handle non-boolean features. If

the user is interested in mining frequent rules from continuous data, she will

have to group them in intervals before running the algorithm. For example, a

feature such as the income of a person will have to be divided in appropriate

bins (i.e., low, average and high income) to be able to mine rules. This problem

often results in errors and loss of information. Researchers have tried to over-

come this difficulty by developing algorithms for quantitative association rule
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mining - algorithms and methods capable of handling continuous variables. A

good overview of the issue and of different proposed solutions was given by

Adhikary and Roy in [21].

The genetic algorithm for risk assessment proposed later in this dissertation was

developed to allow for the inclusion of numerical features in the analysis. But why is

this capability so important? Why not let the user decide on the appropriate binning

to use?

Some scenarios allow for a degree of user discretion when selecting thresholds

for the grouping of numerical features. This can be appropriate when a threshold

has been established and accepted, such as the level that indicates high cholesterol

or blood pressure. In different situations, arbitrarily deciding upon a threshold can

result in information loss. Important associations risk appearing weaker or not at all

as a result of features not being grouped correctly.

Different binning strategies have been proposed to avoid this issue. Srikant and

Agrawal [73] originally proposed a partitioning approach, where the quantitative vari-

able is first divided in intervals, then a boolean variable is used to map each sample

to the appropriate interval. This method resembles the use of dummy variables in

logistic regression. The authors were aware that this strategy creates a dilemma

known as the min-support problem, which can be summarized as follows: if many

intervals are used, the support of single intervals may be so low that not enough

frequent rules are generated. If few intervals are used, they may lack granularity and

result in significant information loss. Furthermore, different partition strategies can
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Figure 2.2: Bipartition of two numerical features (Age and Income) from a sample
database, using the two more common strategies (equal-width and equal-depth).

be used, with different results and problematics. The most common are equal-width,

in which the intervals span over ranges of the same size, and equal-depth, in which

the intervals contain the same number of samples. Using an equal-depth partition

strategy ensures that all intervals include the same number of samples, but this may

result in less meaningful bins. For an example, observe Figure 2.2: the division of

income into intervals based on width resulted in the value 65k being included in the

first group, despite being more similar to the higher values in the second group. On

the other hand, if an equal width strategy is used, we may end up with empty or

almost empty intervals, which will be less likely to produce frequent rules.

In later years, a clustering approach was proposed to produce meaningful intervals

from the data at hand. The clustering approach uses a density-based strategy that is

somewhat similar to the equal-depth partitioning, but with the capability of scaling

to higher dimensions thus producing intervals of interest based on more than one
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feature. A partition based on density increases the likelihood of finding frequent

and applicable rules, while filtering out infrequent scenarios. Problematics of this

approach include the necessity of having a user defined number of clusters, and the

difficulty of clustering skewed data. QARM techniques that implement a clustering

approach can be found in [19, 45, 54, 78, 84].

Other QARM techniques utilize information extracted from the data distribution

in an attempt to generate the best possible intervals, relying on traditional statistical

measures such as mean or standard deviation. The weaknesses of this approach

seem to outweigh its strengths: the partition is often limited to single features or

bipartition. Furthermore, the computational cost of these methods can be significant,

and they may produce uninteresting rules if a measure of deviation from the mean

is not used. Implementations of this techniques are described in [8, 34].

Occasionally, it may not be convenient or even necessary to define precise binning

thresholds. Qualitative terms such as high blood pressure or new customer may be

more appropriate depending on the analysis or discipline. For this reason, a “fuzzy”

approach to QARM was introduced [86]. In fuzzy QARM, it is no longer necessary to

bin continuous values using sharp thresholds. In particular, [87] proposes a method

to automatically optimize the fuzzy sets and their partition points based on the

original quantitative data. Downsides of this method include high computational

costs and, on occasion, difficulty in defining appropriate fuzzy intervals.

Another major technique for quantitative association rule mining employs an

evolutionary approach, particularly with the use of genetic algorithms. Genetic Al-

gorithms (GA) are a family of biologically-inspired methods dedicated to solving
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problems of various natures through search and optimization. Using GA to solve

the rule mining task brings several advantages: first, a population of rules is gener-

ated and progressively optimized instead of being searched for through a sequence

of database scans, thus being computationally more advantageous. Second, it is no

longer necessary to define parameters such as support and confidence (although the

specification of other parameters to guide the genetic search may be necessary). Fur-

thermore, because GA allow for multi-objective optimization, rule selection can be

based on several different criteria at once, making it possible and convenient to define

appropriate selection criteria for the problem under analysis. For these reasons, we

believe Genetic Algorithms to be the most promising approach to solve our problem

rule mining for risk assessment.

The following section offers a more detailed explanation of Genetic Algorithms

and their use in QARM. More information about itemset mining in clinical applica-

tion can be found toward the end of this chapter (Section 2.4).

2.1.4 A genetic approach to QARM

Genetic algorithms are biology-inspired heuristic methods designed for search and

optimization purposes. They were first proposed in 1975 by John H. Holland [31].

This first implementation, called Simple Genetic Algorithm (SGA), begins with the

generation of a population of binary strings (chromosomes) that encode possible so-

lutions to the problem under study. The population is evaluated through a fitness

function - the function to be optimized. In the next step, the population is used to
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generate new strings. Each new string is generated as follows: first, two strings from

the original population are selected. The selection is random but proportional to the

fitness of the string, so that better strings generate more offspring. The selected chro-

mosomes are subjected to single-point crossover, where portions of the two strings

before a selected cut point are swapped, creating two new chromosomes. Finally, the

two new chromosomes go through a process of mutation, where random bits (genes)

of each string are changed from 0 to 1 or vice versa. The probability of mutation

is normally low, but it helps to preserve variety in the population and avoid local

minima. When enough new strings have been generated, they join the population of

chromosomes. The entire population, comprised of parents and children, is evaluated

using the fitness function. Only the best half is preserved and survives to the next

iteration, where it is used to generate new offspring. The process is repeated until

the population converges toward a solution or the maximum number of generations

is reached. An excellent introduction to genetic algorithms is offered by Srinivas and

Patnaik in [74]. A scheme of the Simple Genetic Algorithm, also from [74], is visible

in the box Algorithm 1.

Simple Genetic Algorithm ();

initialize population;
evaluate population;
while termination condition = false do

select solutions for next population;
perform crossover and mutation;
evaluate population;

end

Algorithm 1: Simple Genetic Algorithm structure, as illustrated in [74]

After this first implementation was proposed, many improvements to GA were
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Figure 2.3: Chromosome structure used to represent quantitative rules in the original
implementation proposed by Mata et al. [52] (a), and later on by Alataş and Akin
[6], who added to the encoding a new bit to allow for the search of negated rules (b).

researched and published, including better population initialization, better crossover

methods, different selection strategies, and creation of new fitness functions to find

solutions to a vast range of problems. Covering this literature is beyond the scope

of this dissertation. We will instead focus on how GA integrate with quantitative

ARM.

To our knowledge, the first evolutionary approach to QARM was proposed in two

consecutive papers by Mata et al. [51, 52]. The authors first introduced the idea

of encoding itemsets in the form of chromosomes that could be manipulated by an

evolutionary algorithm. The structure of each chromosome is visible in Figure 2.3

(a). In this representation, Ak is the index of one of the n attributes of the database

under analysis. The itemset size can span from 2 to n (the itemset including all

attributes). Lk and Uk are the upper and lower bounds of the interval covered in

this itemset (naturally, they must be within the range of Ak).

The fitness function used to evaluate the quality of an itemset was the following:

f(i) = covered− (marked ∗ ω)− (amplitude ∗ ψ) + (nAtr ∗ µ) (2.8)
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Covered is equivalent to the support of the itemset. But this measure alone is not

sufficient to identify frequent itemsets when quantitative variables are involved. If

no other measure is used to control the intervals, the algorithm would set the lower

and upper bounds of the numerical variables to cover their whole range: this would

produce the highest values for support, because all instances can now be included in

the set. Other metrics are needed to ensure that the chosen intervals are meaningful

- for instance, the authors decided to use amplitude to penalize large intervals. The

fitness function also includes nAtr, which promotes itemsets with a larger number

of attributes, and marked, which penalizes records already covered by other itemsets

in the population (without it, the whole population would converge toward the best

overall itemset, ignoring other relevant discoveries). ω, ψ and µ are weights that the

user can use to regulate the impact of the different metrics.

After this first implementation, many steps were taken to improve the quality

of itemsets and rules mined using genetic algorithms. We list some noteworthy

examples: Yan et al. [83], who used GA to eliminate the need of a user specified

minimum support; Qodmanan et al. [64], who also eliminated minimum confidence;

[6] and [49] introduced the possibility to mine for rules with negated attributes.

Other papers have validated the effectiveness of these methods [7].

Building on the foundations provided by this vast literature, we are now able to

propose a Genetic Algorithm for QARM designed to find those rules that result in

the largest changes in risk. This method employs some of the existing features for

rules generation and selection while offering a newly formulated fitness function that

rewards desirable rules characteristics, such as being associated with relevant risk
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variations. The details of this algorithm are explained in Chapter 3.

2.2 Epidemiology and clinical studies

Epidemiology is the founding science of public health. Epidemiological studies an-

alyze the distribution of a health outcome in a population (as opposed to medicine

and biology, which target individuals) in relation to different risk factors.

Before epidemiology was born, people did not have a scientific explanation for

sickness and the outburst of epidemics. Large parts of the population believed that

diseases were the result of miasmas, “bad air” or witchcraft, although various literates

and scientists through history have been seeking a more logical explanation [38]. John

Snow, an English physician of the 19th century, is considered the father of modern

epidemiology [80]. Snow is known for identifying the source of a cholera outbreak

that struck the London neighborhood of Soho in August 1854. Although Snow could

not have known what was causing the cholera (it would be another 7 years before

Louis Pasteur’s discovery of germ theory), through his investigation he was able to

connect the infected patients to a water pump on Broad Street. During his study,

he produced a detailed map of cholera cases in the area and showed how the pump

was at the center of the affected territory (Figure 2.4). The pump was shut down,

contributing to the end of the epidemic [33].

What is most remarkable about this story is how Snow was able to come to his

(correct) conclusion through extended investigation and use of statistics, even though

he could not physically prove the danger of the water through chemical analysis.
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Figure 2.4: Original map of Soho drawn by John Snow. The black areas indicate
presence of cholera. Drawn and lithographed by Charles Cheffins.
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Progress in science has since given us new tools for the study of public health.

Today, epidemiology examines on a macro scale the relationships between people’s

health and their environment, diet, lifestyle, and genetic makeup/constitution.

2.2.1 Measures of health outcome

In this section we define the parameters most frequently used in epidemiology to

measure health outcomes and associations with risk factors.

Here, a list of the parameters used to quantify health outcomes is presented:

• Prevalence: proportion of people presenting the outcome of interest. For

example, the prevalence of asthma in the United States is 8% of the total

country population (25 million out of around 300 million). When talking about

prevalence, it is important that the denominator (total population) is clearly

defined.

• Risk: ratio between number of people presenting the outcome and number of

total people at risk. For example, consider a hypothetical case of food poisoning

at a restaurant. Through investigation it is found that, out of 100 people who

ate at the restaurant, 50 had chicken (population at risk) and 40 experienced

food poisoning (population with outcome). The risk of having food poisoning

when eating chicken at this restaurant is 40/50, or 80%. Notice that risk always

applies at the population level, and not at the level of the individual.

• Rate: outcomes of interest per person-time. For example, consider a study
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on migraines in which 200 subjects are followed for 3 years. During the study

period, 450 episodes of migraines are reported. Therefore, the rate for migraines

in this study is 450/(200*3) = 0.75 migraine episodes per person per year. Rate,

as opposed to risk, is not a proportion. It is useful as it adds the temporal

information.

• Odds: ratio of the chances of two mutually exclusive outcomes. If p is the

probability of having a certain outcome, then

odds =
p

(1− p)
(2.9)

For example, if the probability of having a male child is 0.51, or 51%, the odds

of expecting a boy are 1.04.

It is also important to differentiate incident from prevalent cases. Incident cases

are new cases. The status of these individuals changed from without outcome to

with outcome over the defined period of time. For example, saying “50,000 people

contract HIV every year in the US” is a measure of incidence. Prevalent cases are

the total number of affected individuals in the defined population. The point in time

when the outcome occurred is not considered. “1,144,500 people in the US have been

diagnosed with HIV by the end of 2010” is an estimate of prevalence [15].

Often it is interesting to compare these measures among different populations,

particularly when the two populations differ for some exposure. To do so, the pa-

rameters are combined in ratios. The most frequently used are the risk ratio (RR)

(also called relative risk) and the odds ratio (OR). In the fictional food poisoning

study above, we estimated that the risk of food poisoning after eating chicken was

28



0.8. Assume that out of the 50 people who did not eat chicken, 5 had food poisoning.

The risk in this case is 0.1. The risk ratio between the two populations is 0.8/0.1 =

8. In other words, people who ate chicken were 8 times more likely to feel sick than

people who did not eat chicken.

The odds ratio is computed in a similar way, although the meaning is slightly

different. It measures the association between an exposure and an outcome by com-

paring the odds of having the outcome with and without the exposure. But an odds

ratio of 8 does not necessarily mean that an exposed individual is 8 times more

likely to have the outcome. The concept of odds ratio is harder to grasp for non-

statisticians, and it is often the cause of confusion in the medical community. Odds

ratios are normally greater than risk ratios, which may lead researchers into publish-

ing the most impressive figure without understanding its meaning. In 2001, a study

conducted over 151 papers estimated that 26% of them misinterpreted odds ratio as

risk ratio [30].

The value of odds ratios and risk ratios can be interpreted in the following way:

• greater than 1: there is a positive correlation between the exposure and the

outcome of interest

• equal to 1: exposure and outcome are not correlated

• less than 1: there is a negative correlation between the exposure and the out-

come of interest
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In clinical papers, measures of association are often presented with their confi-

dence interval, a range that serves as the lower and upper bound for the parameter.

The confidence interval is affected by certain aspects of the study methodology, such

as sample size and population variability. Confidence intervals can change in level

of confidence, the most frequently used being the 95% confidence level. In this case,

if the parameter were calculated multiple times using different samples, 95% of the

interval estimates would be expected to include the population parameter. Different

applications may call for larger or smaller confidence levels (i.e., 50% or 99%).

The confidence interval helps determine whether the result of the study is statis-

tically significant. We said before that we talk about increased risk if the risk ratio

is greater than 1. What happens if the confidence interval encompasses 1?

In this scenario, no definitive claims can be made about the effect of the exposure

on the outcome of interest. The result is not statistically significant. The same goes

for the odds ratio. Odds ratios and risk ratios are statistically significant only when

their confidence interval does not include 1. If the study has a non statistically

significant result, researchers can try to change part of the setup to improve upon

it (i.e., select a larger population sample). Note that in the field of epidemiology

results that are not statistically significant can still have some clinical importance.
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2.2.2 Clinical studies

Different studies have been designed by epidemiologists to understand and quantify

the connection between particular factors and a physiological outcome. In this sec-

tion, we will offer an overview of some basic concepts and of the most frequently

used study designs.

The first distinction that can be made between studies is whether they are experi-

mental or observational. Experimental studies imply that researchers have discretion

over which group of subjects will be exposed to a particular variable. One of the

more common experimental study methods - the randomized control trial - is

often used to study the effects of new drugs. Here, a sample of subjects with a

particular condition is selected before being divided into two groups: one of them

treated with the drug under study, and the other treated with either another drug

or a placebo. This allows for the assessment of differences between the treatments.

There are many additional precautions that must be taken in experimental stud-

ies to remove bias. In a blind study, patients are left in the dark as to what drug

they are receiving to prevent any bias in their responses. In a double-blind study,

the researchers are also unaware of which patients received which drugs to further

remove the possibility of bias in treatment. Researchers must also try to account for

and remove any confounders, which are extraneous variables that might correlate

with both the dependent and independent variables. An example of a confounder

within an experiment would be if the control group and experimental group were not

properly randomized (along gender, age, or any number of other variables) to make

sure that the only significant difference between them is the treatment being tested.
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Yet another strategy, known as a clinical crossover trial, involves the switching of

treatment assigned to the groups, to further validate the effects of the exposure.

Experimental studies can be conducted only under the principle of equipoise,

which is the genuine uncertainty about the benefits or harms of the exposure. It

would be unethical to expose subjects to a substance suspected to be toxic, or to

treat patients with a drug that appears to be less effective than another. When

the principle of equipoise does not hold, one must opt for an observational control

study, in which the exposure is not imposed by the researcher, but is a pre-existing

condition of the subject (i.e., smokers versus non-smokers, or people living in a

metropolis versus the countryside).

One of the most commonly used observational studies is called cohort study.

In a cohort study, researchers select two groups of subjects based on the exposure.

Then the two groups are followed for a certain period of time, during which the

occurrence of the outcome of interest is observed. Consider for example a cohort

study to evaluate the correlation between lung cancer and smoking. First, eligible

subjects would be divided into two groups based on whether they smoke or not.

Then the subjects would be observed for a follow-up period and the occurrence of

lung cancer cases in the two groups would be recorded. At the end of the follow-

up period, researchers can determine if there is a statistically significant difference

between the number of lung cancer cases in the two groups and make claims on the

effect of the exposure on the outcome, such as “smoking increases the risk of lung

cancer by a factor x”.
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In this example, the subjects have been involved in the research before the occur-

rence of the outcome. This format is called perspective cohort study. Alternatively,

researchers can opt for a retrospective cohort study, which traces back in time events

that have already taken place. In the lung cancer example, we could select subjects

that have been smoking for a certain number of years and people who did not smoke

in the same period, and then evaluate the presence of lung cancer in the two groups.

Retrospective cohort studies are normally quicker and less costly than prospective

cohort studies, but it can be more difficult to control for confounders. Also, there is

more uncertainty on the real exposure in the two groups, because it is based on the

memory and accuracy of the subjects.

Generally, cohort studies are a great choice to estimate risk variation due to

some exposure. The possible disadvantages are cost, difficulty in following up with

the subjects for the necessary time, and increased difficulty in avoiding confounders.

Another popular observational study is the case-control study design. In a

case-control study, the researcher identifies a group of individuals who manifest the

outcome of interest (cases) and another group in whom the event did not occur

(controls). Then, he or she will study the history of exposure in the two groups and

look for significant differences. Since the selection of the subjects is done after the

outcome of interest occurred, case-control studies are always retrospective [37]. The

case-control study design offers several advantages: it fits the study of rare condi-

tions, it allows for the simultaneous study of numerous potential causes, and because

the outcome has already occurred it is relatively fast to conduct. Once the condition

to study has been defined, the selection of cases is straight-forward. Controls are
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selected to match some of the cases characteristics (i.e. age, sex, occupation...) and

therefore are at similar risk to developing the condition. Case-control studies can be

matched, if the ratio cases-controls is 1:1, or unmatched. A researcher interested in

studying the connection between smoke and lung cancer through a case-control study

would select a group of individuals with lung cancer (cases), a group of healthy sub-

jects with similar characteristics and then evaluate the incidence of smoking among

the two groups.

After the data has been collected, it is possible to summarize them in a contin-

gency table, as seen below:

Exposed Not Exposed

Cases a b

Controls c d

Where:

• a is the number of subjects who present the outcome and have been exposed

to the cause under study (i.e., smokers with lung cancer)

• b is the number of subjects who present the outcome but have not been exposed

(i.e., non-smokers with lung cancer)

• c is the number of subjects who do not present the outcome of interest but

have been exposed (i.e., healthy smokers)

• d is the number of subjects who do not present the outcome of interest and

have not been exposed (i.e., healthy non-smokers)
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From the contingency table it is possible to compute the odds ratio between the

exposed and unexposed group through the formula:

OR =
ad

bc
(2.10)

Note that it is not possible to compute a risk ratio in a case-control study, because

the sample of subjects is not selected to be representative of the real distribution

of the disease in the population. Although under certain conditions the odds ratio

value is very close to the risk ratio value for the whole population [67].

Another variant for observational studies is the cross-sectional study design.

It is often the least expensive and time-consuming option available for researchers

interested in epidemiological studies. In this type of study, all the data are collected

at a defined time. Often, it is not the researcher interested in the disease assessment

to perform the collection, but they use data collected for other purposes or during

routine operations (i.e., data collected from patients visits to the emergency room).

The use of routine data allows to reach large portions of the population at minimal

cost. This makes for another advantage in comparison with case-control studied:

cross-sectional studies allow to estimate the risk ratio. On the downside, using

routine data means that the information was not collected to answer the specific

question. This can leave out important material, needed for example to better handle

confounders. Another issue with cross-sectional studies is known as ecological fallacy.

This happens when the data is not available at individual level, which is very common

in censuses provided by large institutions. Working with information related to

groups instead of individuals can lead to error and imprecisions in the results, such
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as incorrect mean estimates, or masking of significant correlations.

The last kind of observational study we are covering in this dissertation is the

case-crossover study design [48]. This design is suited for assessing the effects of

transient exposures. The study is self-matched, which means that each subject acts

as his/her own control. Differences in the outcome of interest are estimated between

periods when the subject was exposed versus periods when he/she was not. An

example will help understanding this design: consider a study on the risk of cellphone

use while driving. The study compares the outcome (accident) across periods when

the subject was driving while using the phone versus other time windows where he

or she was driving without using the phone. The study is conducted on different

subjects, and then a global conclusion is proposed. The case-crossover study design

is particularly effective in eliminating confounders. On the downside, it is highly

dependent on how the control and exposure windows are defined.

2.3 Previous studies on asthma mechanisms and

the influence of pollution

In Section 1.2.1 we introduced basic concepts of asthma pathophysiology and talked

about the impact of the disease on the population. In this section, we will provide

more details on current asthma studies and related problematics. Then we will focus

our attention on studies related to the effects of pollution on asthma. We will start

from studies conducted using statistical methods largely used and accepted by the
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epidemiology community (i.e., logistic regression). Then we will present more recent

approaches based on data mining and machine learning techniques.

Different studies on asthma epidemiology can focus on different aspects of the dis-

ease’s impact on the population. To understand this literature overview, the reader

should know the difference between an acute asthma event and chronic asthma, and

be familiar with the concepts of incidence and prevalence. For more information on

these definitions, refer to Section 1.2.1 for asthma symptoms and Section 2.2.1 for

health outcome measures.

Because of its impact and increasing prevalence, asthma is the target of numerous

research studies worldwide. Questions range from drugs effectiveness and possible

improvements, leading causes, to future trends in the disease prevalence. The large

number of studies produced all over the globe may have contributed to one of the

key problematics of asthma assessment: the inconsistent definition and diagnosis of

the disease.

In 2014, a study by Sá-Sousa et al. [68] showed that the different definition of

asthma used by various studies can significantly change the prevalence estimates.

Regarding U.S. studies, the paper identified 7 different definitions of the disease,

resulting in prevalence estimates ranging from 1.1% to 17.2%. This inconsistency

can generate some confusion while studying the literature, and even be an obsta-

cle in the improvement of care provided by physicians. In the Houston area, the

Texas Emergency Department Asthma Surveillance (TEDAS) is an example of how

the medical community is trying to respond to the problem. This network was es-

tablished to collect data related to emergency department (ED) visits for pediatric
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asthma. It is based at the Texas Children’s Hospital, with the collaboration of three

partners (Lyndon B. Johnson General Hospital, Ben Taub General Hospital and the

University of Texas Medical Branch in Galveston). The primary goal of TEDAS is

to collect better information on patients visiting ED, in order to improve strategies

for chronic asthma management. The TEDAS database includes information related

to more than 20,000 ED visits from 01/01/02, reaching roughly 11,000 children in

the Houston-Galveston area. The network managers declared that, by using the col-

lected data to improve physicians’ training, they improved the consistency between

diagnosis and even reduced the number of emergency room visits [4]. The content of

this database has been used in the study on asthma and pollution discussed in this

dissertation.

The first step in understanding what causes asthma is possibly determining when

most of the acute asthma events happen. Studies conducted in different areas of the

globe (i.e., Finland [29], New Zeland [36], Singapore [18]) looked for peaks in annual

asthma incidence trends. Studies conducted in Finland and New Zealand reported a

peak for hospitalization among younger age groups (less than 15 years) in the early

winter months, coincident with the return to school. The Finnish group also reports a

peak in May for very young patients (0-4 years), coincident with the allergy season.

On the other end, Chew et al. could not find statistically significant correlation

between asthma incidence and season. Another study by Han et al. [28] employed a

cross-sectional design to find correlations between pediatric asthma and season and

determine the probable cause. Of the 1725 Taiwanese children with asthma involved

in the study, 187 were found to have perennial asthma, 590 had more attacks in
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winter, 629 in spring, and 255 in summer-fall. The author suggests some possible

triggers for the different seasons, for example cockroaches in summer-fall and mold in

winter and spring. Year-round contributing factors included younger age, parental

smoking during pregnancy, air pollution. The findings of this paper suggest that

different subjects are triggered by different exposures. This kind of study offers clues

to identify suspected asthma triggers, but they have not been conclusive. Differences

such as climate, floral population, and pollution sources make asthma incidence a

highly local issue.

The next papers that will be described focus on the impact of one particular

trigger: ambient air pollution. We have already talked about known negative effects

of ambient air pollution, particularly PM2.5, on cardiovascular diseases [12]. In 2013,

Sram et al. dedicated a study on impact of air pollution on children. They found

positive correlations between exposure to pollutants (PM10 and c-PAHs, an aromatic

hydrocarbon) during gestation and in early childhood and negative health outcomes,

particularly bronchitis and asthma [72].

An excellent overview on the asthma and outdoor pollution problematic is offered

by Guarnieri and Balmes in [25]. A summary of the most important contributions

of this paper is the following:

• Specific pollutants have been proved to cause airway inflammation and hyper-

responsiveness, and oxidative stress, which are characteristic of asthma. The

list of suspects comprises ozone, nitrogen dioxide and particulate matter of

various size.
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• Short-term exposure to these pollutants is likely to increase the risk of asthma

exacerbation.

• Asthma exacerbation could be reduced by implementing local pollution warning

systems.

• Since pollutants are always present in the atmosphere as a mixture, the risk

contribution of single pollutants is unknown.

• Results of epidemiological studies are affected by imprecise assessment of the

exposure and of the diagnosis of asthma itself.

• Gene-environment interaction seems to have a primarily important role in the

onset of new asthma cases, but its mechanisms are unclear.

• Risk modifiers to consider when studying asthma epidemiology include gender,

diet, ethnicity and socio-economical status.

Another study from Patel et al., conducted on Dominican and African American

children of 0-5 years of age, found an increased odds ratio for asthma and wheezing

symptoms when the subjects were living near stationary sources of air pollution,

such as highways [62]. In Texas, notable associations between asthma onset and the

pollutants listed above was found in the El Paso area [88], in the Harris County [81],

and more specifically in the Houston area [66].

Although pointing in the right direction and validating air pollution as probable

cause of asthma increasing prevalence and exacerbation, the studies presented so far

have limitations, especially when it comes to modeling and explaining the effects of
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pollutants as a mixture. In Europe, the Scientific Committee on Health and Envi-

ronmental Risks is already encouraging the introduction of multi-pollutant models

to improve the study of indoor air pollution effects [70] and the idea is spreading

to other areas of research on air quality. Exhaustive reviews on recent progresses in

the area of multi-pollutant modeling are already available [11, 32, 75]. The paper by

Billionnet et al. is particularly effective in delineating the limitation of traditional

statistical methods, such as the impossibility to consider synergic effects of pollu-

tants. We talk about synergic action when two or more exposures have a greater

combined effect than the sum of each effect individually. Furthermore, pollutants

often present high collinearity (high variables dependency), which affects the results

of logistic regression models. When the variables included in a logistic regression

model are largely collinear, it is impossible to estimate each individual regression co-

efficient with confidence, and therefore it is impossible to determine the real impact

of the individual predictors.

The methods cited by Billionnet et al. include Bayesian approaches, CART (Clas-

sification and Regression Trees), K-means, PCA (Principal Component Analysis),

Logic Regression, and more. A good example of CART for exposure characteriza-

tion is offered by Gass et al. [23]. This paper proposes a modified regression tree

to evaluate the effects of four pollutants (CO, NO2, O3 and PM2.5) on the number

of emergency department visits related to asthma in children in Atlanta, Georgia.

The method incorporates a division of pollutants in quartiles, for simplification and

easier understanding. The lowest quartile is held as reference for the computation

of the risk ratio. The conclusions presented suggest that not a single pollutant is
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the cause for increase asthma onset, but it is the result of generally higher levels

of pollution. Although the recursive partitioning implemented by CART is valid in

assessing hierarchy and non-linearity in the pollutant effects, it may fail in detecting

synergic actions.

[60] presents a Bayesian approach for the assessment of multiple-source health

effects. The method is tested on a database of PM2.5 levels in Phoenix, Arizona, and

cardiovascular mortality (but not asthma). The authors declare that their results are

validated by previous studies. Bayesian approaches are a good choice when dealing

with measurement error and collinearity, but they normally rely on some a priori

knowledge which is not always available.

The knowledge acquired through machine learning and data mining techniques

is not only useful in understanding exposures effects, but it can also be used in the

context of a warning system to predict the insurgence of unfavorable air conditions

and avoid patients exposure to triggers. Lee et al. made an attempt in this direction,

presenting two data mining methods, one based on decision trees, one on association

rules, aimed at predicting asthma attacks [40]. Predictors include bio-signals from

patients and environmental data. Results are promising, although the need to include

biological data in the feature set poses an obstacle to the method implementation.

2.4 Association Rule Mining in Clinical Studies

Data mining in general, and association rule mining in particular, have been at-

tracting the interest of the medical domain in the recent years. Every year, medical
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applications of machine learning and data mining are presented at major conferences

such as KDD or ICDM. Even dedicated journals made their appearance (i.e., Arti-

ficial Intelligence in Medicine). In 1999, N. Lavrač published an overview on data

mining in medicine [39], founded on the argument that the exponential growth of

medical data was making impossible the manual analysis done so far. Since new

tools for medical data collection and storage were available, new tools for their anal-

ysis should be used as well. The author groups data mining techniques in three

categories: pattern-recognition methods (i.e., k-nearest neighbor), artificial neural

networks, and inductive learning of rules, which encompasses association rule mining

(although ARM is not directly mentioned in the paper, in favor of older algorithms

for decision rules production such as CN2 [20] and ID3 [65]). In 2008, Bellazzi et

al. proposed their guidelines for data mining in clinical medicine [9]. Again, ARM

is not cited explicitly, but a large portion of the paper is dedicated to decision trees

and decision rules.

Association rule mining for clinical application has a relatively short but rich his-

tory. The first application we know of was the study of Brossette et al. on association

between hospital infections and public health surveillance [13]. Other publications

include studies on chronic hepatitis, septic shock, heart disease, association deficit

disorder, cancer prevention, response to drugs and general lifestyle risk behaviors

[57, 59, 58, 41, 76, 56, 17, 61].

Using association rule mining to find patterns in medical data has obvious advan-

tages, the most prominent being the readily interpretability of the resulting rules,
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even from people outside the data mining domain, However, traditional ARM al-

gorithms face different issues when applied to clinical databases. First of all, the

support-confidence framework poses a serious limitation: often, interesting patterns

related to diseases are not frequent, and they would not be selected as interest-

ing rules. Reducing (or eliminating) the minimum support brings two additional

challenges: increase of computational cost, and selection of most interesting rules.

Lowering the minimum support and confidence means to inevitably output a higher

number of rules, sometimes too many to screen them manually. A solution is required

to select the most relevant rules. Some algorithms have been proposed to avoid min-

ing redundant rules and mining a limited number of rules. However, this solutions

are still not optimal. Mostly, they are affected by a data-coverage problem, resulting

in all the selected rules being related to a particular portion of the database, while

the remaining portions are ignored.

In this dissertation, we propose: (i) a new method that uses a combination of

Apriori and rule post-processing to mine interesting risk-based rules from clinical

databases; and (ii), a new genetic algorithm for mining of risk-based quantitative

rules. The first method has the advantage of having an acceptable computational

cost and being able to sort the output rules by a parameter that is relevant to

medical practitioner. Previous attempts in this direction have been done by Li et

al. [43]. This group has the merit of proving that risk patterns have a down-closing

property that can be used to guide the rule-searching process. The second method

improves upon the first by eliminating the support-confidence framework and the

need to discretize quantitative variables. We believe that this algorithm could be
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particularly helpful in the legislative process, because its capability of automatically

determining the most dangerous exposure thresholds.

In the following chapters we will present the details of both of the risk-based as-

sociation rule mining algorithms, how they can be applied to improve our knowledge

on air pollution-asthma relationship, and what are the advantages of these methods

in comparison with traditional Statistics.
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Chapter 3

Algorithms

3.1 Method I: Apriori-OR

In this chapter we will provide the details of two methods that use association rule

mining techniques for risk assessment in epidemiological studies. Both our methods

are designed to estimate odds ratio from data collected in case-control studies.

Our first design brings together the Apriori implementation of ARM and a group

of post-processing criteria to filter valid and interesting rules. To be suitable for

rule mining, a dataset must include a column indicating wether the subject is a

case or a control, and a series of columns, one for each exposure suspected of being

related to the health outcome (Figure 3.1). All columns must be in logical form,

indicating the presence or absence of the exposure or health outcome. Let us call

E = {exp1, ..., expn} the set of all exposures in the dataset, and C the particular set
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of size 1 including only the item case. Given X ⊆ E, we can easily compute OR

and 95% CI of the rule X → C. The odds of developing the health outcome for the

exposed population are:

odds(X → C) =
p(C,X)

p(¬C,X)
=

supp(CX)

supp(¬CX)
(3.1)

Where ¬C and ¬X represent the group of controls (not cases) and not exposed

subjects, respectively. When the impact of multiple exposures at the same time is

evaluated (|X| > 1), only subjects who have not been exposed to any feature in

X are included in the non-exposed population (See figure 3.1). This strategy was

chosen because it offers a more clear definition of exposed and non-exposed group.

A paper by Toti et al. provides more information on the effects of using different

definitions of non-exposed populations in ARM [79].

The odds ratio can then be written as:

OR(X → C) =
odds(X → C)

odds(¬X → C)
=

supp(CX)/supp(¬CX)

supp(C¬X)/supp(¬C¬X)
=
supp(CX)supp(¬C¬X)

supp(C¬X)supp(¬CX)

(3.2)

Finally, we can compute standard error (SE) and 95% confidence interval:

ln(SE) =

√
1

supp(CX)
+

1

supp(C¬X)
+

1

supp(¬CX)
+

1

supp(¬C¬X)
(3.3)

ln(CI95%) = [ln(OR)− 1.96 ln(SE), ln(OR) + 1.96 ln(SE)] (3.4)

CI95% = eln(CI95%) (3.5)

Using ARM for an epidemiological study is equivalent to evaluating a total of

2m contingency tables such as the one visible in Figure 3.1, where m is the number
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Figure 3.1: Example of database suitable for mining using our proposed ARM
method for risk assessment. All columns must be logical, indicating the presence
of the exposure or health outcome. When combination of exposures are evaluated,
subjects partially exposed, are not included in the computation.

of exposures under analysis. This is the first advantage in using ARM for studies

of this type: the algorithm produces a complete analysis of all possible associations

in the available database. Naturally, the number of contingency tables increases

exponentially with the number of risk factors. Even a small number of exposures

(e.g., 20), can produce an incredibly high number of contingency tables (1,048,576, in

our example). Obviously, it would be impossible to evaluate by hand the significance

of every contingency table, so the evaluation needs to be automated.

Associations are first mined using relatively low values for minimum support

(slightly above 0%), because for this kind of study it is not of primary importance

for an association to appear in the database a high number of times, but rather we

are interested in associations that produce significant changes in the odds of having
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the health outcome under investigation. A minimum confidence is not required.

Because mining with very low support normally results in a very high number of

associations, further steps are necessary to filter the unimportant ones. The post-

processing criteria included in this method are:

• A rule is pruned if its 95% CI for the OR crosses the value of 1 (with some

tolerance, if desired), because in this case the effect of the exposure(s) on the

health outcome is either irrelevant or ambiguous.

• A rule is pruned if it is redundant, that is, another simpler rule exists that

carries analogous information. In our case, we require no overlapping of the

95% CI of the rule with all of its parents, as proposed by [44]. A representation

of how the criterion categorizes redundant rules is visible in Figure 3.2.

• If the p-value of the rule is ≥ 5% the rule is considered non-statistically signif-

icant and pruned.

• We also control each rule for lift. This parameter helps identify casual associ-

ations. If the lift of a rule is close to 1, the association is happening with the

same incidence as a random choice model and should not be interpreted as a

true interaction. We imposed for all rules lift ≤ 0.95 or lift ≥ 1.05.

The procedure has been implemented using RStudio (R version 3.1.2 “Pumpkin

Helmet”). The database is first mined using the Apriori function from the package

arules, available on the CRAN website [27, 26]. Ad-hoc functions have been designed

to compute odds ratio [77], non-redundancy based on [44], and chi-squared statistics
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Figure 3.2: Schematic representation of OR confidence interval of different rules.
Rule X → Y is the parent. By adding other exposures to the parent rule, we
obtaine the new rules Xz → Y and Xw → Y . Because only the confidence interval
of Xw → Y does not overlap with the parent rule, only this new association is
statistically different. Xw → Y brings new relevant information, while Xz → Y
should be pruned.

[46]. Table 3.1 presents a summary of the equations associated with each criterion

used for mining and post-pruning.

3.2 Method II: GA-OR

The method described in the previous section is a first step in the direction of ex-

traction of OR-based rules from epidemiological data, but it is afflicted by one major

inconvenience: all the columns in the database to be mined must be logical. In Sec-

tion 2.1.3 we have extensively discussed why this can result in poor approximation

and information loss. Often, exposures included in the kind of study we are targeting

are numerical (i.e., age, blood pressure, quantity of chemicals/drugs) and their dis-

cretization is far from obvious. Actually, finding that critical threshold could be the
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Table 3.1: Summary of the parameters used for mining and post-pruning rules in the
modified ARM algorithm, for rules of the form X → Y .

Parameter Equation

Support (supp) P (X ∧ C) = supp(X ∧ C)

Confidence (conf) P (X|C) = supp(X∧C)
supp(X)

Lift (lift) supp(X∧C)
supp(X)·supp(C)

Odds Ratio (OR) supp(CX)supp(¬C¬X)
supp(C¬X)supp(¬CX)

Chi-squared measure (χ2)
∑

event
(supp(event)−E(supp(event)))2

E(supp(event))

where event = X → C,¬X → ¬C,¬X → C,X → ¬C

Redundancy 95% CIX→C ∩ 95% CIX∧x→C = ∅
where x ∈ E and x ∩X = ∅

goal of the study: at what age do we become more susceptible to developing a par-

ticular condition? In what quantity does a certain chemical start showing significant

impact on the human body?

The literature on quantitative association rule mining (QARM, Section 2.1.3)

is extensive, but no algorithm has been designed, to our knowledge, to tackle the

problem of mining epidemiological databases to provide an overview of risk changes

associated with various exposure, while automatically estimating the most critical

exposure threshold for continuous variables. The genetic approach to QARM, how-

ever, offers a possible starting point. GA are extremely flexible and able to optimize

multiple metrics simultaneously. Such a powerful optimization tool will be able to

perform the required task, as long as it is correctly formulated as an optimization

problem. In this case, the optimal solution is the set of rules associated with the
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Figure 3.3: Flowchart illustrating every passage of the proposed genetic algorithm
for mining of risk-related quantitative rules.

most relevant changes in odds of manifesting a health outcome.

Genetic algorithms include multiple operations and functions (crossover, selec-

tion, mutation...), but the core of the method is the fitness function. One could

think of the fitness function as the question that the GA is trying to answer through

heuristic search. Naturally, if the question is poorly formulated, no acceptable answer

can be found.
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Figure 3.3 illustrates all the steps included in the proposed algorithm. It begins

with the random initialization of a population of chromosomes. These chromosomes

encode different rules of the form X → case, where X is a set of one or more

exposures. To be manipulated by the GA, the rules where organized in the following

string structure:

E1 T2 E2 T1 ... ... EN TN

Each tuple {E,T} represents an exposure and the threshold above which subjects

should be considered exposed. Logical features can still be used, and their threshold

is set to true by default. Every Ek is a logical variable and if Ek = true the exposure

is included in the rule. Tk is a continuous variable that can assume any value in

within the range of Ek. For example, given a dataset including 4 exposures, to

encode the rule {E1,E2,E4} → case, with 5.0, 2.5 and 6.5 as threshold above which

a subject should be considered exposed, we would use the array:

E1 T1 E2 T2 E3 T3 E4 T4

1 5.0 1 2.5 0 7.8 1 6.5

The user can exert some control on the initial population by specifying desired

population size (normally between 30 and 100) and the probability of each exposure

to be included in a rule (Pin). For example, if the database includes 10 exposures and

Pin = 0.5, we can expect the average rule length of the initial population to be around

5. Pin should be used to control the initial rule length, because too-large exposure

combinations are probably irrelevant and very infrequent, but very short rules could
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also be not relevant and reduce the population variety, making the discovery of more

interesting rules more difficult. Initial threshold are selected uniformly at random

within each exposure range, with the exception of logical exposure, that if included

are always set to true. After this first population is created, the algorithm assesses

the fitness of each rule. Because of its importance, the details of the fitness function

will be discussed extensively in the following section.

The algorithm then proceeds to estimate the uniformity of the population, using

the following equation:

Unif =
|
∑N

k=1[(2
∑pop size

i=1 Ei,k)− pop size]|
pop size

(3.6)

Where N is the number of exposures and pop size is the number of rules in the

population. This equation returns a value between 0 and 1, where 0 indicates total

dissimilarity, and 1 indicates that the population includes only one rule repeated

pop size times. The uniformity of the population is used to adjust the probability

of selection (Pt) and mutation (Pm), within the range specified by the user. If the

population is becoming more uniform, Pt and Pm increase. As a consequence, less fit

rules will have a higher probability to be selected for reproduction and more genes

in the children population will mutate, re-introducing some variability in the gene

pool and preventing GA from getting stuck around non-optimal solutions. Pt and

Pm are adjusted within user specified ranges using a linear equation:

P = PLOW − (PHIGH − PLOW ) · Unif (3.7)

Suggested ranges are [0.9, 0.6] for Pt and [0.001, 0.01] for Pm.
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The generation of the new population can now begin. It is an iterative process

repeated pop size times, because, in this implementation, the children population size

should match the one of their parents. At each iteration, two parents are randomly

selected using a tournament selection strategy. In a k -ary tournament selection, k

strings are selected uniformly at random from the population to compete against each

other. The string with the highest fitness has higher chances to win, although less fit

strings can also emerge as winners. Allowing weaker strings to be selected preserves

genetic variety and helps avoiding local minima. The best rule has a probability Pt

to win the tournament. The second best has a probability to win equal to Pt(1−Pt).

The third can win with a probability of Pt(1− Pt)
2, and so on. The user can decide

how many strings participate in the tournament. The two parents are selected in

two separate tournaments.

Once the two parents are selected, they can mix their genes through crossover

operation with a probability Pc. We have mentioned how the idea of a single-point

crossover operator was already introduced in Holland’s original paper [31]. Many

improvements have been proposed since then. For our algorithm, we chose to use

a uniform crossover operator. When a uniform crossover operator is used, each

gene is swapped between the parents with a probability Pcu. The advantage of this

strategy over swapping segments of genes is that each gene can be exchanged with

the same probability, while single-point crossover is biased by the gene’s position.

The differences between single-point and uniform crossover are illustrated in Figure

3.4. There is also a probability 1−Pc that the two parents do not mix their genes, in

which case the two children are copies of their parents. Note that, in the proposed

55



Figure 3.4: Illustration of single point crossover and uniform crossover operators.
When the single point crossover is used, a crossover point is selected at random
along the string and the segments before and after the point are swapped between
the parents to create two new children. In the case of uniform crossover, each bit
has a chance Pcu to come from one parent or the other.

implementation, the crossover operator acts only on the binary genes Ek, which

define the presence or absence of an exposure in a rule. When two genes Ek,p1 and

Ek,p2 are swapped, their associated thresholds also change to become the arithmetic

average of the two parents (Tk,c1 = Tk,c2 = (Tk,p1 + Tk,p2)/2).

The chromosomes generated through crossover will then undergo under a process

of mutation, during which anyone of their binary genes Ek can be swapped from 1

to 0 or vice versa with a probability Pm. The mutation rate is normally low, but it

helps exploring more solutions and avoiding getting stuck in local minima. Imagine,

for example, that all solutions in the population are converging toward strings where

the first gene is 1. By using crossover only, we lose the chance to explore strings
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having 0 as first gene. The mutation operator preserves this possibility. If a gene is

swapped, its associated threshold also mutates, using the equation:

Tk,new = Tk ± 10 · Pm · T1/2 (3.8)

Where T1/2 is the median value of the distribution of the exposure Ek. Whether

the threshold is reduced or increased (±) is decided randomly by the mutation op-

erator.

After mutation, the two children are added to the new population (and kept

separate from the parent pool). The operation is repeated until the size of the

new population is equal to pop size. The fitness of each children is then computed

and the two populations are merged to form an overall rank. The pop size best

chromosomes are selected and survive to become parents in the next iteration. The

process is repeated until the number of generations reaches the limit set by the user.

The pop size chromosomes surviving the last iteration are presented as resulting

mined rules.

3.2.1 GA fitness function

The fitness function proposed in this dissertation is what allows the algorithm to

find rules with the required characteristics, such as relevant odds ratio and sufficient

frequency. In order to design the optimal fitness function, we started by thinking

about what qualities a rule should have to be rewarded, and what characteristics

should instead be penalized. Each of these objective functions is a possible candidate

to be included in the final fitness function. By formulating this as a multi-objective
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optimization problem, we prevent the algorithm from focusing only on one desirable

characteristic (i.e. significant OR), and we encourage it to find balanced solutions

among multiple criteria. We imposed for each objective function to be limited to the

range [0,1], so that the weight of each metric would be comparable to the others.

The final list of candidates includes:

• Odds ratio fitness: this metric is of course the first on the list, because the

algorithm is designed to look for rules that produce interesting changes in odds

ratio between exposed and unexposed population. The contribution to this

metric to the fitness function is

ORfitness =



0, if 1 ⊆ 95% CI

OR− 1, if OR < 1

2
[

1
1+e1−OR − 1/2

]
, otherwise

This formulation assigns 0 fitness points if the 95% CI of the rule includes

1, because this class of rules is ultimately empty of interesting associations

between exposures and outcome. If 1 is not included in the confidence interval,

the rule gains a higher fitness score the further the OR is from 1. The proposed

formulation used to compute the score when OR > 1 limits the maximum

possible score to 1, for a fair comparison of positive and negative associations.

• Support: the support of the rule is added and contributes to its fitness score,

because we wish to reward frequent over unfrequent associations.
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• Confidence: the traditional formulation of confidence of a rule is also added

to the global fitness score, to reward stronger associations.

• Length: for better understandability, we favor shorter rules over longer ones.

Each rule receives therefore a penalty depending on its length. The penalty is

normalized by the largest possible rule size (lengthpenalty = length/N , where

N is the total number of exposures).

• Extremity: this metric is meant to prevent the threshold of a continuous

exposure to get too far from the median value. It was designed in response

to other metrics that have a tendency to bring the threshold toward the lower

bound (support) or the upper bound (OR, in some cases). It is computed as

Extremity =

∑N
k=1 |Tk − T1/2|

max(T1/2 − TLOW , THIGH − T1/2)

/
N (3.9)

We have also considered the necessity to avoid repeated and redundant rules in the

population. The following two metrics have been proposed to penalize repetition and

redundancy. They have not been included in the list of fitness function candidates

because, unlike the others, these metrics can not be computed on the basis of the

rule alone, but they depend on a comparison between the rule under evaluation

and the other rules in the population. For this reason, they are proposed as fitness

adjustments and are computed after all the rules have been scored and sorted based

on the other metrics.

• Repetition: rules that are identical to other rules in the population receive a

penalty based on the ranking of the rule they are replicating. Being identical
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Figure 3.5: Rules are penalized if they replicate rules with a higher rank. The penalty
scores decrease linearly from 1 (highest ranked rule) to 0 (lowest ranked rule). In
this example, Rule #3 receives a penalty of -1 for replicating the highest ranked rule.
Rule #5 receives a penalty of −1 + (−0.5) = −1.5, because it is identical to Rule
#1 and #3.

to the highest ranked rule brings a penalty of -1 to the fitness. The penalty

scores reduce linearly with the rank until the last ranked rule, which carries

no penalty. Two rules are identical if they include the same exposures (X1 =

X2), independently of the thresholds used. If a rule is identical to two higher

ranked rules, it receives both penalties, therefore the total penalty score can

be higher than 1. This penalty enforces variety in the gene pool and prevents

the whole population from converging toward one solution. For an example of

how penalties are calculated and assigned, see Figure 3.5.

• Redundancy: rules also receive a penalty if their 95% CI overlaps with that of

an existing parent in the population. Given a rule X → case, a rule Y → case

is said to be a parent if Y ⊂ X. If Y = X the two rules are actually identical

and are not penalized at this stage, since they will be receiving a penalty for

repetition (previous point). The penalty received depends on if and how the

confidence interval of the child rule (CIc) overlaps with that of the parent rule
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Figure 3.6: This flowcharts explains the steps to follow to compute and adjust the
fitness scores of a population of rules.

(CIp).

Redundancy =



0, if CIc 6⊂ CIp(no overlap)

1, if CIc ⊆ CIp(complete overlap)∑P
k=1 CIc ∩ CIp/P, otherwise (partial overlap)

Where P is the number of parents of the rule that is being scored.

All the proposed metrics can potentially contribute to find in a large database

the rules associated with the most relevant changes in odds ratio. However, it is

possible that not all of the proposed metrics are necessary for the operation to be

successful. In the following chapters, we will discuss how we tested combinations of

the proposed objective functions on a series of datasets in order to find the most

effective multi-objective optimization. The final fitness function is actually:

fitness = ORfitness − lengthpenalty (3.10)

Followed by the two adjustments, for repetition and for redundancy (Figure 3.6).
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Chapter 4

Methods

4.1 Data

4.1.1 Synthetic datasets

Before testing the algorithms described in Chapter 3 on real data, we decided to test

them on a group of synthetic databases with controlled effect of the exposures on

the outcome. The databases were designed for two purposes: (i) to provide a bench

mark for the fine tuning of the genetic algorithm fitness function, and (ii) to verify

that the ARM algorithms for risk assessment are able to capture the real impact of

each exposure on the health outcome.

The guideline to create a dataset with one or more embedded rules are the fol-

lowing:
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1. First, we create the features, organized in columns. Each feature can be numer-

ical, integer or logical, and with a different distribution (i.e. uniform, Bernoulli,

normal).

2. Features of choice are selected to form the group of exposures. Exposures cause

an increase in the chances of presenting the health outcome. The impact of

the exposures varies (i.e. linear or step function). Furthermore, they can act

alone or have synergic effects with others.

3. For each row, we determine the probability of the subject to manifest the

simulated health outcome, depending on its history of exposure. Multiple

exposures add up: for example, if E1 causes a 20% risk and E2 a 30% risk, the

chances of having the health outcome will be 50%. If a subject is not exposed,

it can still manifest the health outcome with a certain baseline probability.

The first 4 out of the 5 datasets have been implemented using RStudio (R version

3.1.2 “Pumpkin Helmet”), while the last one has been designed in Matlab R2014a.

• Dataset 1: This dataset includes 10 continuous variables of uniform distribu-

tion between 0 and 10. The only active exposure is E1, which causes a chance

of health outcome of 50% if above the threshold of 6.0. The baseline chance is

10%. 259 are cases, the remaining 741 subjects are controls.

• Dataset 2: This dataset includes 5 continuous variables (E1 − E5), 2 integer

(E6 − E7) and 3 logical (E8 − E10). The continuous variables have uniform

distribution between 0 and 10. The integer variables are uniform between 0
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and 20. The logical variables have a Bernoulli distribution with p = 0.4. The

baseline chance is 10%. It increases to 50% if a subject is exposed to E1 > 6.0

and E10 = true. 154 out of 1000 subjects are cases.

• Dataset 3: The feature columns of this dataset are identical to Dataset 2,

with the exception of the logical variables, which have a Bernoulli distribution

with a higher p (0.7). The baseline chance is 10%. It increases to 60% if a

subject is exposed to E3 > 4.0, E6 > 10 and E9 = true. 222 out of 1000

subjects are cases.

• Dataset 4: The feature columns of this dataset are identical to GA dataset

3. Two rules are embedded in this dataset: a subject has 40% chances of

presenting the health outcome if exposed to E8 and E10 (versus a 10% baseline).

The chances are also worsen by E4, which has a linear impact, from 0 to +20%.

The resulting dataset includes 333 cases out of 1000.

• Dataset 5: the most complex of the 5 datasets, it embeds 5 rules of interest.

The features have been given names for ease of understanding and memoriza-

tion, however they are completely artificial and are not to be interpreted as

representative of a real clinical study:

– Age: continuous, uniform distribution from 20 to 80 years.

– Gender: binary (male = true), p(male)=0.5.

– Smoker: continuous, from 0 to 30 cigarettes per day; p(0 = non smoker)

= 0.6; remaining 40% is uniformly distributed.
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– Systolic blood pressure (SBP): continuous, normal (mu = 130, sigma

= 25).

– Diabetes: binary (diabetes = true), p(diabetes) = 0.2.

– Daily exercise: categorical (none = 0, light = 1, intense = 2), uniformly

distributed.

The database has a total of 7 columns (cases/controls + 6 exposures). The

different features have different effects on the simulated health outcome:

– Baseline probability = 0.05.

– Age: the probability increases by 0.0025 by year of age, starting at 0 for

age = 20 and ending at +0.15 for age = 80.

– Gender: no effect.

– Smoker: the impact of cigarettes has been designed as a step function.

No impact up to 20 cigarettes per day, then the probability of having the

health outcome goes up by 0.4 (+40%).

– Systolic blood pressure and diabetes: these two features have no impact

unless they happen together (diabetes = true and pressure ≥ 150). If this

condition is verified, the probability of having the health outcome goes up

by 0.2 (+20%).

– Exercise reduces the risk of cases by 0.2 if light and 0.4 if intense. However,

exercise has no effect in case of high blood pressure.

This database comprises 20,000 subjects. 3220 have been included in the group

of cases, and the remaining 16780 in the controls.
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Table 4.1: Summary of every rule embedded in each different dataset. The tuples
(Ek, Tk) indicate the exposures and the thresholds necessary to cause an impact on
the odds of experiencing the health outcome. Exposures with linear impact have no
definite thresholds and are marked as (Ek,−).

Datasets and embedded rules

Dataset 1 {(E1, 6.0)} → case

Dataset 2 {(E1, 6.0), (E10, true)} → case

Dataset 3 {(E3, 4.0), (E6, 10), (E9, true)} → case

Dataset 4
{(E8, true), (E10, true)} → case

{(E4,−)} → case

Dataset 5

{(Smoker, 20)} → case

{(SBP, 150), (Diabetes, true)} → case

{(Age,−)} → case

{(Exercise, 1)} → case

{(Exercise, 1), (SBP, 150)} → case

Table 4.1 summarizes the rules embedded in each dataset. In a later section of

this chapter (4.2), we will illustrate how these data have been used to fine tune the

fitness function of the genetic algorithm and to test the two proposed methods.

4.1.2 TEDAS-TCEQ data

The clinical data used in this study come from the Texas Emergency Department

Asthma Surveillance (TEDAS), which we already mention in Section 2.2.2. The net-

work shared the data related to 20,959 pediatric ED visits from 01/01/02 to 31/12/12
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Figure 4.1: Representation of dataset expansion following case-crossover study de-
sign. The assumption made is that a subject who visits the emergency department
on a given day did not visit again 1 or 2 weeks before and after the event. A similar
approach has been used by Raun et al. [66]

(an estimate of 11,000 patients under the age of 18 in the Houston-Galveston area).

Only excluded patients were those diagnosed with cardiovascular or pulmonary dis-

ease. The features of the database include demographics, insurance status, primary

care provider, diagnosis and severity assessment performed by the physician, and

other information.

The database has been expanded following the design of a case-crossover study to

include controls (days when patients did not experience an asthma attack and/or did

not visit the ED). We made the assumption that every subject did not experienced

severe asthma 1 and 2 weeks before, and 1 and 2 weeks after the date of the ED visit

(Figure 4.1). Therefore for every subject we have four control days. The database

size after expansions includes 104,795 events.

The environmental data used in this study have been collected and shared by

the Texas Commission on Environmental Quality (TCEQ). Over the Houston area

(TCEQ Region 12, Figure 4.3), a total of 103 monitors are available, including 6 for

CO, 7 for SO2, 21 for NO and NO2, 42 for O3, and 6 for PM2.5 (particulate matter

of diameter of 2.5 µm or smaller). Each sensor records the level of pollutant(s)

at 5 minute intervals. These raw data have been grouped according to date and
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hour and averaged into a single hourly value, in order to reduce noise. In the next

step, for every sensor and every pollutant, the maximum value recorded for each

day has been annotated. The result of this operation was a complete database

tracing the maximum level reached by every pollutant every day and at any available

location during the desired period of time (01/01/02 to 31/12/12). A summary of

the distribution of the six pollutants of interest over the Houston area from January

1st 2002 to December 31st 2012 is presented in Table 4.2. Figure 4.2 shows instead

the correlation between the pollutant distributions.

Table 4.2: Summary of the distribution of the six pollutants under analysis over the
Houston area from January 1st 2002 to December 31st 2012. All measures are in ppb
(parts per billion), with the exception of PM2.5.

CO SO2 NO NO2 O3 PM2.5 (µg/m3)
1st quart. 297.61 1.36 2.11 9.21 33.70 14.07
Median 473.17 3.45 6.57 16.84 43.98 19.04
Mean 612.15 6.67 21.59 19.69 47.78 21.20
3rd quart. 760.12 7.95 21.33 27.70 58.53 25.79
St. Dev. 522.23 9.60 42.11 13.33 20.12 12.09

In order to understand the relationship between ED visits due to asthma attacks

and air quality, each subject of the expanded patients dataset has been associated

to pollutant levels recorded on the date of the visit (or control dates, for non-asthma

events). The TEDAS database reports the location of the patient domicile (as zip

code), so it is possible to associate the patient to the closest sensors. We do not

know where the patient was at the moment of the event, but since the database

is related to young subjects, we assumed a close distance to their domicile. We

imposed a limit of 20 km between sensor and subject zip code centroid, and picked
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Figure 4.2: Colormap of correlation between daily pollutant distributions. Darker
values indicate high correlation, while light values indicate no correlation (indepen-
dence).

the closest sensor when more than one was available within that radius. This is a

reasonable approximation and it is more reliable than trying to interpolate between

sensors locations, because movements of chemicals in the atmosphere are influenced

by a very high number of factors, such as wind and precipitation. This way we have

an approximate knowledge of the air quality surrounding the patient location at the

moment of the event. If a sensor is not available within the limit radius, the field for

that pollutant is left blank. The total number of subjects whose zip code is within

the Houston city limits and with no missing pollutant data is 14704, including 2973

cases and 11731 controls. Because some sensors were activated later in time, no event
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Figure 4.3: Representation of distribution of sensors of the TCEQ network over the
Houston area. Some sensors are located beyond the map boundaries, and they are
too far from any registered patient to be of interest, therefore were not included in
this map.

antecedent to 27/02/06 had complete pollution records.

In the literature delayed actions of chemicals on the human body have been

observed. For this reason not only the pollutant levels recorded on the same day of

the event have been included in the subject data, but also the levels recorded from

1 to 4 days before, for a total of 30 possible exposures per subject.

The database described in this section has been used to test the proposed method

for OR assessment and to gain a better understanding of interaction between asthma
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exacerbation and exposure to air pollution.

4.2 Experiments

4.2.1 Apriori-OR assessment of Dataset 5

Initially, we tested our Apriori-based method for risk assessment (Method I) on the

synthetic Dataset 5 described in Section 4.1.1. The goal of this experiment was two-

fold: first, we wanted to verify that the method was able to capture the effect of

the different exposures on the health outcome. Second, we wanted to show that the

characterization provided by the ARM algorithm was more effective than traditional

logistic regression.

The ARM algorithm was compared with logistic regression as implemented in

the R environment (version 3.1.2). The dataset was loaded into the R console and

analyzed using the glm command (generalized linear model). The coefficient obtained

through logistic regression are interpreted and compared with the rules obtained by

the ARM algorithm in Section 5.1. Categorical and numerical features had to be

converted to binary form to have a valid input for the item set mining method. We

chose to consider values in the highest quartile as exposed, while the first 3 quartiles

represent a non-exposed subject. The fourth quartile thresholds for the numerical

features are: cigarettes > 18; SBP > 147; age > 65. For the categorical feature

exercise, only intense exercise is considered as exposure. The binarized dataset was

inputed into the ARM algorithm.
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4.2.2 Apriori-OR assessment of TEDAS-TCEQ dataset

Once we were convinced that Method I was able to capture the effects of exposures

on the subjects, thanks to the experiment on the synthetic dataset, we moved to

mining the real data collected for the study of asthma and pollution. Because the

pollutant levels are continuous numerical features, they had to be converted to binary

before being used as input for our method. We used the same quartile techniques

used for the artificial dataset and defined an exposure in relation to monitor readings

in the top quartile of the distribution of each pollutant. The threshold values used

to bin each pollutant are reported in Table 4.3. This decision mirrors the approach

currently used by the EPA, which uses single pollutant levels to issues air quality

warnings. However, we decided not to use the threshold values indicated by the EPA

because they were established to account for a range of health effects (particularly

mortality rates), and less influenced by the more recent literature on asthma attacks.

Note that, because not all pollutant data were included in the rule mining database,

the top quartile is different from the one listed in Table 4.2.

With the sole exception of CO, all the top quartile thresholds are well within the

range of suspected health effects on the human body around which the monitoring

regime was designed. CO pollution has decreased dramatically because of the cat-

alytic converter and the reported threshold of 696 ppb is significantly lower than EPA

air quality standards. We are not confident in the precision of CO measurements at

this level, given that the monitors were designed to give meaningful results around

much higher concentrations [42]. Because we could not guarantee the necessary pre-

cision of CO, or its plausible pathway to health effects, those measurements have not
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Table 4.3: Thresholds above which a subject is considered to have been exposed to a
particular pollutant, compared with most recent EPA standards for 1-hour average
value regulation (with the exception of PM2.5 , for which only a 24-hour average limit
has been established). NO is not currently regulated [1].

Pollutant 4th Quartile threshold EPA standard
CO 696 ppb 35,000 ppb
SO2 7 ppb 75 ppb
NO 37 ppb -
NO2 34 ppb 100 ppb
O3 55 ppb 120 ppb

PM2.5 24 µg/m3 35 µg/m3 (24-hour avg)

been included in further analysis.

We evaluated the chance of overfitting the information carried by the entire

database of 14704 entries. We wanted to avoid extracting from this database er-

roneous information produced by factors such as noise and statistical variance. To

protect us from this possibility, we relied on a training/testing strategy. The database

was randomly split into training and testing sets (5000 and 9704 entries, respectively).

The training set was used to compute the binning thresholds and to produce sub-

training sets of different sizes. Particularly, we randomly sampled 10 sets for each

size considered: 10, 20, 50, 100, 200, 500, 1000, 2000 and 5000 entries. In total, 90

different sets were generated from the original training set of 5000 entries, using a

sampling with replacement strategy. Rules were mined in each of the training sets.

The output was then validated on the 9704 entries forming the testing set. If all the

criteria listed above were respected also in the testing phase, the rule was approved

and included in the final results, which will be discussed in the Section 5.2.
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4.2.3 Fine tuning of GA fitness function

In Section 3.2 we described the details of the genetic algorithm design. As we saw,

different metrics were implemented and were possible candidates to include in the

final fitness function. As part of a multi-objective optimization problem, all of these

metrics have the potential of carrying important bits of information. However, it is

not sure that all of these metrics are useful or necessary. We conducted a series of

tests to determine which one of the proposed objective functions and adjustments

should be included in the final GA implementation.

The fitness function was designed using an iterative process. During the first

iteration, the fitness function includes only one of the five objective functions (sup-

port, confidence, OR fitness, length or extremity). This minimal fitness function

is included in the GA, which is then used to mine the five synthetic datasets. By

observing the rules mined using the different fitness functions, we can assign to each

metric a score that reflects how effectively the algorithm was able to find the tar-

get rules. The scores, together with other qualitative observations on the results, are

used to select the winner metric, which is definitively included in the fitness function.

During the next iteration, the remaining metrics are added, in turns, to the winner

of the previous round to create a new set of fitness functions, which are then tested

on the five datasets. The winner of this round is added to the final formulation of

the fitness function. The process is repeated until adding new metrics to the fitness

function does not produce a visible improvement in the results. Note that the two

fitness adjustments (redundancy and repetition) can only be tested from the second

iteration.
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To score the results of each fitness function, we start by selecting the best candi-

dates from the final population, that is, those more similar to the target rules listed

in Table 4.1. We can then assign the following penalties:

• +10 for a missed rule, in case no one of the final presented rules resembles the

target rule.

• +1 for added/missed feature, in case a resembling candidate exists but it in-

cludes a non-necessary feature or omits a required one.

• +(t − t0)/range for threshold values, where t is the threshold proposed by

the GA, while t0 is the target threshold. When a threshold is not specified

(exposures with linear impact) this penalty is not assigned.

A candidate can be matched with one rule and one rule only. If the GA is tested

over a dataset including two embedded and the final population is composed by 30

identical rules, it is clearly a miss, and it should receive a 10 points penalty. The

winning fitness function is the one with the lowest score, unless other qualitative

considerations on the results suggest that a different winner should be selected.

Other parameters of the GA were kept constant during this testing phase. In

particular, we imposed 200 generations with a population size of 30. The initial

population was created using a Pin of 0.25. The probability of crossover was set to

0.6, with a Pcu of 0.5, implicating that the two children should receive about 50%

of their genes from each parent. The probability of mutation (Pm) ranges between

0.001 and 0.01, while the Pt (probability of tournament selection) ranged between
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0.6 and 0.9. The size of the tournament was 4. No weights were applied to the

objective metrics of the fitness function or the adjustments. For more information

about the parameters of the GA, refer to Section 3.2.

4.2.4 GA-OR assessment of TEDAS-TCEQ dataset

Once the fitness function to use in the genetic algorithm was finalized, the algorithm

was used to mine quantitative association rules from the TEDAS-TCEQ database, in

order to find evidence of correlation between exposure to air pollutants and asthma

exacerbation.

We set the GA using the same parameters specified during the tuning of the

fitness function (200 generations, Pin = 0.25, Pc = 0.6, Pcu = 0.5, Pm ∈ [0.001, 0.01],

Pt ∈ [0.6, 0.9]. The only difference was the size of the population, which was set to

50. We chose this value because it is large enough to start seeing repeated rules in

the final population, which suggests that most of the significant rules have already

been found, and further increasing the population size would not help retrieving

additional information.

Because this is a stochastic method, it was executed 5 times, each time changing

the seed for the initial population generation. Not all of the 50 rules in the final

population are necessarily suitable candidates. Some times the same candidate is

repeated more than once. Other times the confidence interval of reported rules

includes the value 1. This is still a possibility even though the ORfitness of these

rules is 0. Because these associations are not significant in terms of change of risk,
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they should be discharged. After the 5 algorithm executions, we preserve as valid

rules those that had a large enough support (> 0.001, or at least 15 exposed cases)

and that have been reported in the final population by at least two executions. The

results of this experiment are described in Section 5.4.
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Chapter 5

Results

5.1 Apriori-OR: results on Dataset 5

In this section, we will discuss the risk assessment obtained by the proposed ARM

method in comparison with traditional logistic regression as implemented in the R

environment.

After importing Dataset 5 in the R console, we used the command summary to

visualize important descriptive of the dataset and verify that they were in line with

the design we wished to implement. The results are visible in Figure 5.1. They are in

line with the synthetic database design. This summary also shows that some values

are not realistic (i.e. systolic blood pressure values below 40 mmHg), but they are

acceptable for this test goals.

Performing basic logistic regression in R is quite simple. We used the function
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Figure 5.1: Descriptive statistics of the synthetic dataset, calculated by R using
the command summary. This brief reports includes minimum and maximum value,
median and mean, and first and third quartile for each column of the dataset.

glm for generalized linear model with the following parameters:

• formula = Case ∼ Age + Gender + N cigarettes + SBP + Diabetes + Exercise

• family = ‘‘binomial’’

• data = Dataset 5

The parameter formula indicates what function should be fitted. In this case, the

log odds of the health outcome given all 6 available exposures. The second parameter

specifies that the model produced is a logistic regression. And data simply indicates

the table to use for the regression. Figure 5.2 reports the regression coefficients

resulting from executing the command.

Significant association is found between the health outcome and every feature

available, except gender, which was designed to have no impact. Overall, the signs
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Figure 5.2: Estimates of the coefficients obtained using the glm function on the syn-
thetic case-control study, together with their respective standard error, z value and
associated p value. Every variable except gender is marked with the symbol “***”,
indicating strong correlation between the variable and the outcome. Notice that the
feature exercise, being categorical, had to be handled as two separate variables.

of the coefficients are correct, which means that they capture correctly the quality

of the interaction. R is also able to estimate the Odds Ratio associated with each

variable, as reported in Figure 5.3. Note that the OR for the intercept is computed

but not usually interpreted.

Despite the regression coefficients and the OR values indicating that the nature

of the interaction between exposures and outcome has been captured correctly, this

model can not be trusted for quantitative estimate of risk. This becomes very clear

through an example, in which the coefficients are used to calculate the odds of having

the health outcome in a particular group of subjects. The subjects in this scenario

are 20 year-old female patients, with median blood pressure, no diabetes and not

exercising. The following equation can be used to estimate the log odds for this
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Figure 5.3: OR of the different exposures as calculated using logistic regression, with
associated 95% confidence interval.

group of people:

ln
( p

1− p

)
= −5.217 + (0.017× 20) + 0.093xcig + (0.014× 130) = −3.057 + 0.093xcig

(5.1)

where xcig is the number of cigarettes smoked by the different subjects in this group.

The equation can be used to estimate the OR distribution in this group by inputing

different values for xcig. The results of this estimate are reported in Table 5.1

Cigarettes per day Odds OR (to 0 cig.)
0 0.047 -
5 0.075 1.596
10 0.119 2.532
15 0.190 4.043
20 0.302 6.426
25 0.481 10.234

Table 5.1: odds and OR for 20 year-old female patients, with median blood pressure,
no diabetes and not exercising, smoking a different number of cigarettes per day,
computed using equation 5.1. The OR is calculated using 0 cigarettes as reference.

According to these values, a person smoking 10 cigarettes has 2.532 times the

odds of presenting the health outcome than a person who does not smoke, which
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contradicts the design of the synthetic dataset (they should have the same odds).

A simple logistic regression such as the one used to fit this model is not capable

of capturing the step function representing the effect of cigarettes in this fictional

scenario. Additionally, the synergic action of high blood pressure and diabetes, and

of diabetes and exercise, are not visible at all.

This simple example shows that basic logistic regression can not be assumed to

represent the real impact of each exposure on the health outcome. Clinical studies

through traditional regression models are usually long trial-and-error processes. If the

model does not fit the data in a satisfactory manner, the researcher can try changing

some of the parameters, or increasing the complexity of the model, for example by

adding splines or interaction terms. This operation is not only time consuming, but

it can result in a model too complicated to be interpreted and therefore useless.

The ARM method described in Section 3.1 was used to perform risk assessment

on the synthetic dataset. It reported a total of 16 rules, listed in Table 5.2, including

the 5 target rules listed in Table 4.1. We can see how the method identifies the

smokers in the higher quartiles as the most at risk (Rule 4). Also, the joint effect

of SBP and Diabetes is correctly identified, with an odds increase of 5.87 (Rule 7).

Exercise is proven to have a protective effect (Rule 5), but not when the subject also

has diabetes (Rule 9): the confidence interval of this rule includes 1, and the odds of

people who have diabetes and exercise are comparable with those of people who do

not. Besides the 5 embedded rules, we can observe other combinations of exposures

that result in different odds of experiencing the health outcome. These rules do not

represent real interactions, but rather combinatory effects of features with different
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effects on the odds. For example, age and smoking do not interact, but being old

and smoking cause a worsening of the odds significant enough to be reported as a

rule. These combinatory effects can be of interest, but in the future it would be ideal

to differentiate them from actual interactions. The combination at highest risk is

brought by smoking, high blood pressure and diabetes: this group has more than 40

times the odds of presenting the health outcome.

# Exp. 1 Exp. 2 Exp. 3 Supp. Conf. OR low CI high CI

1 Diabetes 0.04 0.20 1.45 1.33 1.58
2 Age 0.05 0.20 1.46 1.35 1.59
3 SBP 0.06 0.26 2.27 2.098 2.46
4 Smoker 0.10 0.41 7.92 7.30 8.60
5 Exercise 0.04 0.11 0.55 0.50 0.60
6 Age Diabetes 0.01 0.23 1.88 1.60 2.20
7 SBP Diabetes 0.02 0.47 5.87 5.10 6.74
8 Smoker Diabetes 0.02 0.44 10.46 9.04 12.10
9 Diabetes Exercise 0.01 0.16 0.87 0.75 1.02
10 Age SBP 0.02 0.31 3.30 2.88 3.78
11 Age Smoker 0.03 0.46 11.66 10.18 13.36
12 Age Exercise 0.01 0.13 0.76 0.65 0.88
13 Smoker SBP 0.03 0.53 20.14 17.47 23.21
14 SBP Exercise 0.02 0.25 1.68 1.49 1.90
15 Smoker Exercise 0.03 0.34 4.50 3.98 5.08
16 Smoker SBP Diabetes 0.01 0.72 45.41 33.55 61.45

Table 5.2: 16 rules generated by the ARM algorithm for risk assessment when used
to mine Dataset 5.

It is worth mentioning that the algorithm identified rules of interest of up to 3

exposures combined, despite being set to look for up to 6 interactions. This proves

that the method was able to classify rules having four exposures combined as not

significantly different from their three-exposures parents. Although division into

quartiles means that we cannot identify the exact exposure thresholds, the algorithm

clearly identifies the non-linear and synergic effects, which went unnoticed in the
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logistic regression.

5.2 Apriori-OR: results on TEDAS-TCEQ dataset

After validation, the algorithm reported 27 rules that fit the criteria of minimum

support, statistical significance, significant OR interval, non-redundancy and valid

lift. Using the False Discovery Rate (FDR) controlling procedure proposed by Ben-

jamini and Hochberg [10] we verified that the total FDR was less than 13%. Table 5.3

reports the 10 rules found more often across different training sets, while Table 5.4

reports those with the highest support. The tag “day ” before a pollutant indicates

how many days before the ED visit the value was recorded.

Rule Exposures OR Frequency
1 day1 O3 1.14 (1.02 - 1.27) 8
2 day0 O3, day0 PM 1.20 (1.02 - 1.41) 5
3 day3 NO, day0 NO2, day2 NO2 1.34 (1.05 - 1.70) 3
4 day0 O3, day4 O3 1.21 (1.03 - 1.73) 3
5 day0 NO2, day2 O3, day0 PM 1.33 (1.00 - 1.65) 3
6 day1 NO2, day2 O3, day0 PM 1.29 (1.03 - 1.61) 3
7 day0 SO2, day0 O3 1.23 (1.03 - 1.46) 2
8 day0 O3, day1 PM 1.22 (1.21 - 2.18) 2
9 day3 NO, day4 NO, day1 NO2 1.34 (1.02 - 1.75) 2
10 day1 SO2, day3 NO2, day2 O3 1.36 (1.01 - 1.81) 2

Table 5.3: Set of 10 rules with highest frequency across training sets.

The support of the 27 rules varies from 0.54% to 5.82%, which means that every

rule was validated on a 2x2 table including at least 52 and at most 564 exposed

cases. The rule with the highest support is {day1 O3} → {case}, which is also the
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Rule Exposures OR Supp
1 day1 O3 1.14 (1.02 - 1.27) 0.06
2 day0 O3, day4 O3 1.21 (1.03 - 1.42) 0.02
3 day0 O3, day0 PM 1.20 (1.02 - 1.41) 0.02
4 day0 O3, day1 PM 1.22 (1.03 - 1.44) 0.02
5 day0 SO2, day0 O3 1.23 (1.03 - 1.46) 0.02
6 day3 NO2, day1 PM 1.30 (1.08 - 1.57) 0.02
7 day1 NO, day4 O3 1.25 (1.02 - 1.54) 0.01
8 day4 SO2, day0 PM 1.26 (1.02 - 1.55) 0.01
9 day3 NO, day4 NO, day2 NO2 1.28 (1.03 - 1.59) 0.01
10 day2 O3, day0 PM, day2 PM 1.27 (1.02 - 1.58) 0.01

Table 5.4: Set of 10 rules with highest support across training sets.

only rule including only one pollutant exposure. The one with the lowest support

is {day0 NO, day1 NO, day1 NO2, day0 PM, day1 PM} → {case}. Naturally, rules

including more exposures tend to have smaller support. The rule length varies from

1 to 5 risk factors in combination, with an average length of 2.81. The highest OR

(1.54, 95% CI 1.14 - 2.08) is associated with the rule {day0 SO2, day0 NO, day0 NO2,

day1 PM} → {case}. Some exposures tend to appear across rules more often than

others, as visible in Figure 5.4.

Finally, we checked for correlation of pollutants within the 27 rules. Some results

were expected, because of the correlation between pollutants previously shown in

Figure 4.2. For example, we found that NO and NO2 appear together in many

rules. Other occurrences are more surprising. For example, we found that every rule

including day0 NO always includes also day1 PM (100%), and many rules including

day0 NO2 also include day0 PM (75%).

The rules produced by this study indicate that significant correlation between
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Figure 5.4: Frequency with which different pollutants at different day lags appear in
the final group of 27 rules.

pediatric asthma and outdoor air pollution exists, when exposure is defined as prox-

imity to chemical levels in the top quartile of their distribution. The rule {day1 O3}

→ {case} supports previous results in the literature [22, 53, 66], thus reinforcing the

hypothesis of dangerousness associated with exposure to high levels of ozone. Ozone

levels higher than 54.72 ppb have been associated with increased risk of asthma ex-

acerbation in children. The threshold used to identify high ozone levels is below the

threshold currently employed by the EPA (120 ppb for the 1-hour average exposure,

although their primary metric for compliance is 70 ppb for an 8-our average [2]).

The algorithm did not find a significant correlation between exposure to NO2

alone and odds of asthma exacerbation, which differs from some previous findings

[22, 53, 66, 71]. However, NO2 appears to cause an increase in risk when associated

with other pollutants. Analogous behavior was found for NO and PM.

86



The rules point to hidden correlations in the data and can be ground for further

analysis. The method proposed requires minimal data preprocessing and no human

intervention in selecting the combination of exposures to be tested. It is particularly

suitable when multiple interactions between risk factors are suspected and need to

be investigated. The combinatory rules produced by the ARM method represent

possible chemical interactions and it would have been challenging to identify them

using interaction terms in a logistic model, particularly when more than 2 expo-

sures are involved. The interactions found using the modified ARM can be further

investigated using other methods, but initial identification is much simpler.

The constraints added to the basic Apriori rule search are effective in limiting

the number of associations outputted by the algorithm. In Figure 5.5 it is possible

to see how the number of rules found in the training sets is reduced at each step of

the algorithm, thanks to the different filters implemented.

On the methodological side, we should also report that the training/testing strat-

egy involving training sets of multiple sizes was necessary to find all the final 27 rules.

By using the training set at the fixed size of 5000 entries, only a subset of the final 27

rules would be found. Significant rules have been found using sets of different sizes,

from 5000 to 20 entries. The only sets that did not produce significant results were

the smallest ones, containing only 10 subjects. We believe this strategy to be an

acceptable compromise between an inclusive analysis of the possible rules included

in the training set and the risk of overfitting.
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Figure 5.5: Average number of rules found at each iteration using training sets
of different size. When basic Apriori search is used, thousands of associations are
reported. The other lines of the chart represent the effect of adding additional filters
(in sequence). When all filters are used, less than 100 rules need to be validated.

5.3 Fine tuning of GA fitness function: results

In this section, we present the results of the iterative process described in Section

4.2.3, which allowed us to select the necessary and most effective metrics among the

seven originally designed and described in Section 3.2.1.

Table 5.5 summarizes the scores obtained by the different metrics at each itera-

tion. The winner of the iteration is marked in bold characters. The best objective

metric of each iteration is maintained in the fitness function. Repetition and redun-

dancy have not been tested in the first iteration, because they are fitness adjustments

and they should be applied to an existing fitness score.

The metric that received less penalties was not always selected as winner. In the
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first iteration, length received the lowest score, but was not selected because, observ-

ing the resulting rules, it was clear that they were the result of a random selection

based solely on obtaining rules of length = 1, in order to minimize the penalty. This

random selection produced better results than other metrics in this early stage of

testing. However, this is an effect of chance and increased variability in the final

population. Because of lack of other criteria to measure fitness, significant rules are

also hard to distinguish from the other randomly selected chromosomes in the popu-

lation. For these reasons, we decided to opt for a different winner (ORfitness), whose

resulting rules were meaningful and not outputted as result of an entirely random

process. A similar situation occurred during Iteration 2 with repetition. During the

first iteration, we also decided to favor ORfitness over confidence, because the result-

ing scores are not significantly different, and rules associated with changes in odds

ratio are the real target of this genetic algorithm.

As visible in Table 5.5, the selected metrics were ORfitness, then redundancy,

then repetition, and finally length. After the fourth iteration, the addition of other

metrics to the fitness function actually resulted in a worsening of the performance

over the 5 synthetic datasets, therefore we decided to limit the fitness function and

the following adjustments to the aforementioned four.

The exclusion of the metrics confidence and extremity from the final fitness func-

tion is not entirely surprising. The strength of an association is reflected well enough

in ORfitness, which is also of higher interest given the goal of our genetic algorithm.

Extremity is a newly designed metric that was meant to prevent distortion of se-

lected thresholds toward the range boundaries, but it was proven unnecessary, and

89



Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5
OR fitness 61.22 - - - -

Support 81.95 51.34 53.17 1.52 2.39
Confidence 59.66† 68.76 52.43 2.43 1.46

Length 26.40† 53.39 53.09 1.12 -
Extremity 66.00 66.14 53.89 1.71 1.81
Repetition NA 20.33† 2.10 - -

Redundancy NA 51.17 - - -

Table 5.5: Scores obtained by the different objective metrics during the iterative
process used to determine which of them should be included in the fitness function.
The scores represent penalties assigned when the algorithm was not able to find the
rules embedded in the dataset, therefore lowest scores indicate better performance.
Occasionally, the lowest score in an iteration was not selected as winner, and they are
marked by †. The reasons of these choices are explained in the paragraph. Once a
metric is selected, it is finalized as part of the fitness function and it does not need to
receive further scores. Because the metrics repetition and redundancy are adjustment
to the fitness score, they have not been tested singularly in the first iteration.

occasionally harmful, especially when dealing with exposures with heavily skewed

distributions. The fact that support was not selected was more unexpected. A mea-

sure of support is indirectly reflected in length, because shorter rules tend to have

higher support, and in ORfitness, because higher support helps narrowing the asso-

ciated confidence interval. However, how we will see in the next section, it is still

possible to find in the final population rules with very low support. In this case, the

user may decide to discard those rules as not interesting. In the future, we may look

into better solutions to incorporate the support of a rule in the implementation of

the GA, but we are confident that this metric should not be included in the proposed

fitness function. The presence of support in the fitness function resulted in negative

effects such as lower performance and difficulty in determining the correct threshold,
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since this metric heavily favors thresholds of lower values.

5.4 GA-OR: results on TEDAS-TCEQ dataset

In Section 4.2.4, we explained how we planned to use the proposed implementation of

genetic algorithm to mine significant rules from our data on asthma exacerbation and

outdoor air pollution. We run the algorithm five times on the entire dataset of 14704

subjects, changing the initial randomly generated population. Thanks to the novel

algorithm, it was no longer necessary to pre-bin the pollutant values included in the

dataset. Each of the five executions produced between 17 and 24 valid candidates

(non-repeated rules with a OR 95% confidence interval above or below 1). We then

compared the resulting list of candidates and decided to preserve rules that appeared

in at least two final population, to minimize the risk of capturing associations due to

noise. We also decided to impose a minimum support of 0.001% (15 or more exposed

cases). Eleven rules satisfied all the required conditions, and are listed in Table 5.6.

Even if a rule is reported by different execution of the GA, it is unlikely that the

exposure threshold will converge toward the exact same number. This is why in Table

5.6 thresholds are reported in terms of mean and standard deviations. A smaller

standard deviation is preferable, as it indicates high agreement between different

GA executions on that particular value. Large standard deviations suggest that

it may not be possible to identify a more dangerous exposure threshold, and the

chemical is likely to have a linear impact on increasing the odds of an asthma attack.

Summarizing the results of different GA executions using mean and standard
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Rule Exposure Threshold Support OR Frequency
1 day0 NO2 37.61 ± 12.97 0.054 1.16 (1.03 - 1.30) 5
2 day0 O3 62.95 ± 32.54 0.062 1.30 (1.04 - 1.67) 4
3 day1 O3 55.38 ± 0.23 0.050 1.13 (1.03 - 1.25) 2
4 day1 PM 28.25 ± 14.47 0.060 1.20 (1.03 - 1.39) 2
5 day2 NO 235.96 ± 98.94 0.006 1.57 (1.11 - 2.28) 5
6 day2 NO2 45.59 ± 4.80 0.020 1.19 (1.04 - 1.38) 5
7 day3 NO2 52.00 ± 0.41 0.010 1.24 (1.03 - 1.50) 3
8 day3 O3 79.21 ± 0.81 0.01 1.21 (1.03 - 1.43) 4
9 day4 NO 268.04 ± 37.35 0.002 1.77 (1.23 - 2.55) 5
10 day4 NO2 26.86 ± 9.82 0.088 1.12 (1.02 - 1.22) 5
11 day4 O3 39.12 ± 6.92 0.116 1.13 (1.04 - 1.23) 5

Table 5.6: Set of 11 rules selected by the proposed genetic algorithm and satisfying
the conditions of significant OR, supp ≥ 0.001 and occurring in at least two final
populations.

deviation may not be the optimal way to preserve all the information. Consider for

example the rule {day1 PM} → case. This rule appeared in the final population

of two different runs, once with the threshold of 18.02 and once of 38.48. Observe

Table 5.7 to see the values of OR and 95% CI associated with the two different rules

and the statistics we would actually obtain if we were to compute OR and 95% CI

after binning day1 PM with the average threshold of 28.25. The rule produced using

the average threshold no longer shows an increased risk of adverse health effect. The

method appears to be sensitive to small variation. In the future, this issue will need

to be addressed, to guarantee both robustness and interpretability of the results.

If we compare the results obtained by Apriori-OR (5.2) with those of the genetic

algorithm, we notice that the only common rule is {day1 O3} → case. Curiously,

92



day1 PM threshold OR p-value
38.48 ppb 1.26 (1.02 - 1.55) 0.029
18.02 ppb 1.14 (1.05 - 1.23) 0.002
28.25 ppb 1.01 (0.90 - 1.13) 0.897

Table 5.7: OR, 95% CI and p-value associated with the rule {day1 PM} → case
when different binning thresholds are used. The first two rows appeared in the final
population produced by the genetic algorithm and show a significant risk in the odds
of having an asthma attack. The last rule was obtained by binning the dataset using
the resulting average threshold, and then computing the required statistics. The rule
with the average threshold is no longer significant.

the GA also agrees on the binning threshold and places it at 55 ppb. This is en-

tirely coincidental, as the GA was designed to look for the threshold associated with

the highest risk in OR, while the binning threshold used in Apriori-OR was chosen

without knowledge of its relationship with the outcome. None of the 11 final rules

found using the GA includes more than one exposures. Rules including multiple

exposures appeared in the final population of different runs, but their support was

always very low (< 0.001), so they have not been deemed valid and included in the

final report. Their support is lower than those of rules presented by Apriori-OR

because they were normally associated with higher thresholds. Again an indication

that support should be somehow incorporated in the genetic search in order to in-

crease the chance to find this kind of information. We also also think it is harder to

find significant rules including multiple exposures when the traditional definition of

non-exposed population is used (exposed to not all the listed chemicals), as it is in

the implementation of the GA. A rule with multiple exposures would need to prove

to be very different from their single parents to avoid being marked as redundant.
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The GA generates many more rules including one exposures only, a fact that is

justified by three main differences:

• Most of the rules proposed by the GA have been assigned different thresholds

than those used to mine with Apriori-OR, and we have already mentioned how

small changes in the binning thresholds can have large impact on the resulting

statistics.

• Validating the rules on a larger dataset (14704 versus 9704 subjects) can help

producing more narrow confidence intervals for the odds ratio.

• Apriori-OR uses the alternative definition of non-exposed population when

multiple exposures are involved (not exposed to any of the listed chemicals),

so differences between the two algorithms are to be expected. We can assume

the GA to be, in this sense, more strict against multi-exposure rules.

From an air chemistry point of view, the proposed rules confirm the suspicions

against the dangers of exposure to ozone. O3 is associated with higher risk of asthma

exacerbation, even in presence of a large lag (4 days). NO2 seems to be similarly

dangerous. In both cases, the thresholds proposed by the GA are almost always

higher than those used to bin the dataset before mining with Apriori-OR. Exposure

to fine particulate matter appears to bring a short term risk increase (1 day lag). NO

is the only other chemical to appear in the final list. The thresholds associated with

this exposures are very high, much higher than the 75th percentile. It is possible that

NO has negative effects on risk of asthma only at very high concentration levels. SO2
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and CO do not appear in the final list and should probably be considered unrelated

to the risk of asthma exacerbation.
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Chapter 6

Conclusion

6.1 Summary of Contributions

In this dissertation, we addressed some of the difficulties associated with risk as-

sessment in epidemiological studies. In particular, we illustrated the limitations of

traditional statical tools, such as logistic regression analysis, when the data to model

presents high correlation and interaction between the different exposures under con-

sideration. These issues became evident in the recent studies on correlation between

asthma exacerbation and outdoor air pollution. Interdependency and interaction

between chemicals in the atmosphere, together with the impossibility of controlling

subjects’ exposure, make the identification of the pollutants responsible for higher

risk of asthma (if they exist) very challenging. A variety of studies on the sub-

ject have been published (2.3), but the results are occasionally contradictory and

no common agreement has been reached. Members of the epidemiology community
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invoke the need for new multi-pollutant methods [11, 32, 75], able to overcome the

limitations of traditional statistical analysis.

In response to this open problem, we developed two novel methods for risk as-

sessment in epidemiology based on association rule mining. Both methods have been

designed to find combinations of exposures associated with higher or lower odds of

presenting the health outcome of interest from data collected in case-control studies.

The first proposed method is based on a combination of the Apriori algorithm for

frequent rule mining and a set of post-processing criteria that help preserving and

highlighting the information of interest. The Apriori algorithm helps identifying as-

sociations of the form {exp1, ..., expn} → {case}, where {exp1, ..., expn} ∈ E, the set

of all exposures under analysis. Because some associations of interest can be unfre-

quent, the minimum support required for Apriori to function should be set to low

values, resulting in a very high number of reported rules. Post-processing criteria

are then used to find, in this long list, rules associated with a significant change in

odds ratio, non-redundant and statistically significant.

This first method (Apriori-OR) has been validated on a synthetic dataset and then

used to mine a collection of real data related to asthma attack events in pediatric

patients and outdoor air pollution in the Houston area. The method reported 27 rules

associated with significant changes in the odds of experiencing an asthma attack.

In particular, it confirmed existing suspects of the danger of exposure to ozone.

Rules including combinations of pollutants have also been reported and should be

further investigated to understand if they represent interactions between pollutants

or additive effects caused by the simultaneous presence of multiple chemicals.
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The merits of Apriori-OR lay in the limited data preprocessing necessary, and in

the fact that all possible combinations of exposures are tested automatically, with no

need of human intervention. To find the same combinations using logistic regression,

the user would have to create and test ad-hoc interaction terms, a challenging and

time-consuming operation, especially when 3 or more exposures need to be tested.

The inclusion of the post-processing criteria is also very effective in reducing the

initial number of rules reported by Apriori alone, limiting the output to a manageable

number of associations of interest.

The second method (GA-OR) was designed to accomplish the same task, but

with a major improvement: avoiding the binning necessary to transform continuous

variables into binary. We achieved this goal by implementing a novel genetic algo-

rithm for quantitative association rule mining, specialized on finding rules associated

with significant changes in the odds of presenting a given health outcome. GA-OR

can handle continuous variables and assess automatically the most critical threshold

of a given exposure.

The core of the method is the fitness function. A correctly designed fitness func-

tion is key to find appropriate solutions to the problem at hand. In order to produce

the function that would more effectively output rules of interest, we started by con-

sidering desirable qualities in the final rules. The list included traditional metrics

such as support, confidence and, of course, odds ratio. We also designed penalties

for long, redundant, and repeated rules. Finally, we considered adding a penalty for

rules with exposure threshold too far from the median value of the distribution, with

the goal of preventing other metrics (OR and support) from skewing the threshold
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toward extreme values. All the objective metrics have been designed to have values

limited in the range [0,1]. After tuning the GA on five synthetic datasets, we deter-

mined that the fitness function more effective at reporting all of the embedded rules

was

fitness = ORfitness − lengthpenalty (6.1)

Followed by the two adjustments for repetition and for redundancy (Figure 3.6).

Repetition and redundancy penalties differ from the other metrics in that they need

to be evaluated comparing the rule to the rest of the population. For this reason,

they have not been included in the fitness function, but they are considered as a

posteriori adjustments.

The finalized algorithm has then be used to mine the same data on asthma and

pollution previously analyzed with Apriori-OR. The results were rather different:

all of the final 11 rules produced by GA-OR are limited to a single exposure. We

believe this to be a direct consequence of the ability of GA-OR to set the exposure

threshold independently, which brings the algorithm to favor shorter rules and adjust

the exposure threshold to the most critical value. Longer rules are rejected because

they are redundant or have very low support. The only rule that appears identical

in the results of the two methods is {day1 O3} → {case}, with a threshold of 55

ppb. Other differences between the results of the two methods are attributable to

the different size of the testing set and to the different definition of non-exposed

population used to compute the odds ratio.
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6.2 Future Work

Future research should focus on further development of the GA-OR method. In par-

ticular, it is evident that rule support should be incorporated in the genetic search

to avoid the generation of very unfrequent rules. Adding rule support directly to

the fitness function produced negative effects, such as a tendency to set the expo-

sure threshold to values lower than the embedded ones. Therefore, an alternative

approach will be required.

The method also appears to be sensitive to small variations in the threshold

value. As illustrated in Section 5.4, we found cases of rules reported as interesting

associated with different threshold values. However, when the resulting average value

was used to bin the dataset, the rule no longer produced significant changes in OR.

To address this issue, we will investigate a new strategy where a window around

the proposed threshold values is also tested for significance, or otherwise accounted

for when determining the most significant exposure levels. This should also improve

the interpretability of the reported rules, as we have shown that reporting threshold

values in terms of mean and standard deviation is an imperfect solution.

Regarding the particular study of association between asthma and outdoor air

pollution, further steps should be taken to gain better information about the actual

exposure of each subject, and about their health status at different times. At the

moment, we have very approximate knowledge of the air quality around the alleged

subject location, because the readings come from sensors placed above ground level

and at a maximum distance of 20 km. We also had to estimate days during which
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a subject was probably not experiencing an asthma attack. Although these are

reasonable assumptions, a much larger amount of noise could be eliminated from the

data if subjects were equipped with portable chemical sensors and followed closely to

record their health conditions, possibly including other informations regarding their

demographic and lifestyle.
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[49] D. Mart́ın, A. Rosete, J. Alcalá-Fdez, and F. Herrera. A new multiobjective evo-
lutionary algorithm for mining a reduced set of interesting positive and negative
quantitative association rules. IEEE Transactions on Evolutionary Computa-
tion, 18(1):54–69, 2014.

[50] F. D. Martinez. Genes, environments, development and asthma: a reappraisal.
European Respiratory Journal, 29(1):179–184, January 2007.

[51] J. Mata, J. L. Alvarez, and J. C. Riquelme. Artificial Neural Nets and Ge-
netic Algorithms: Proceedings of the International Conference in Prague, Czech
Republic, 2001, chapter Mining Numeric Association Rules with Genetic Algo-
rithms, pages 264–267. Springer Vienna, 2001.

[52] J. Mata, J.-L. Alvarez, and J.-C. Riquelme. Discovering numeric association
rules via evolutionary algorithm. In Advances in knowledge discovery and data
mining, pages 40–51. Springer, 2002.

[53] R. McConnell, K. Berhane, F. Gilliland, S. J. London, T. Islam, W. J. Gauder-
man, E. Avol, H. G. Margolis, and J. M. Peters. Asthma in exercising children
exposed to ozone: a cohort study. The Lancet, 359(9304):386–391, 2002.

106



[54] R. J. Miller and Y. Yang. Association rules over interval data. SIGMOD Rec.,
26(2):452–461, June 1997.

[55] R. L. Miller and S.-m. Ho. Environmental epigenetics and asthma. American
Journal of Respiratory and Critical Care Medicine, 177(6):567–573, 2015/04/07
2008.

[56] J. Nahar, K. Tickle, A. Ali, and Y.-P. Chen. Significant cancer prevention factor
extraction: An association rule discovery approach. Journal of Medical Systems,
35(3):353–367, 2011.

[57] M. Ohsaki, Y. Sato, H. Yokoi, and T. Yamaguchi. A rule discovery support sys-
tem for sequential medical data in the case study of a chronic hepatitis dataset.
In Proceedings of the ECML/PKDD-2003 discovery challenge workshop, pages
154–165, 2002.

[58] C. Ordonez, N. Ezquerra, and C. Santana. Constraining and summarizing as-
sociation rules in medical data. Knowledge and Information Systems, 9(3):1–2,
2006.

[59] J. Paetz and R. Brause. A frequent patterns tree approach for rule generation
with categorical septic shock patient data. In J. Crespo, V. Maojo, and F. Mar-
tin, editors, Medical Data Analysis, volume 2199 of Lecture Notes in Computer
Science, pages 207–213. Springer Berlin Heidelberg, 2001.

[60] E. Park, P. Hopke, M. Oh, E. Symanski, D. Han, and C. Spiegelman. Assessment
of source-specific health effects associated with an unknown number of major
sources of multiple air pollutants: a unified bayesian approach. Biostatistics,
15(3):484–97, July 2014.

[61] S. Park, S. Jang, H. Kim, and S. Lee. An association rule mining-based frame-
work for understanding lifestyle risk behaviors. PLoS One, 9(2), February 2014.

[62] M. Patel, J. Quinn, K. Jung, L. Hoepner, D. Diaz, M. Perzanowski, A. Rundle,
P. Kinney, F. Perera, and R. Miller. Traffic density and stationary sources
of air pollution associated with wheeze, asthma, and immunoglobulin e from
birth to age 5 years among new york city children. Environmental Research,
111(8):1222–1229, November 2011.

[63] G. Piatetsky-Shapiro. Discovery, analysis and presentation of strong rules. In
Knowledge Discovery in Databases, volume 229-238, 1991.

107



[64] H. R. Qodmanan, M. Nasiri, and B. Minaei-Bidgoli. Multi objective association
rule mining with genetic algorithm without specifying minimum support and
minimum confidence. Expert Systems with applications, 38(1):288–298, 2011.

[65] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

[66] L. H. Raun, K. B. Ensor, and D. Persse. Using community level strategies
to reduce asthma attacks triggered by outdoor air pollution: a case crossover
analysis. Environmental Health, 13(58), July 2014.

[67] L. Rodrigues and B. Kirkwood. Case-control designs in the study of common
diseases: updates on the demise of the rare disease assumption and the choice of
sampling scheme for controls. International Journal of Epidemiology, 19(1):205–
13, March 1990.
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