Simulation of Condensation on
Vertical Fluted Tubes

A Thesis
Presented to
The Faculty of the
Chemical Engineering Department
University of Houston
Houston, Texas

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in Chemical Engineering

_ By
Gregory Y. Weeter
December, 1973



Acknowledgments

I would like to thank Dr. A, E. Dukler for
his advice and direction throughout this project.
I also appreciate the help and consideration of
the Engineering System Simulation Laboratory.
Thanks also to my mother, Earlene Y. Weeter,

for typing the manuscript.



Simulation of Condensation on
Vertical Fluted Tubes

An Abstract of a Thesis
Presented to
The Faculty of the
Chemical Engineering Department
University of Houston
Houston, Texas

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in Chemical Engineering

By
Gregory Y. Weeter
December, 1973



ABSTRACT

Heat transfer coefficients on the condensing side of a heat exchanger
can be markedly increased by designing the condensing surface to take
advantage of surface tension. This is accomplished by using a waved or
"fluted" surface. A mathematical model for the prediction of heat transfer
coefficients on these surfaces was developed earlier, but the method of
solution is poorly understood. In addition, the original model made some
approximations which are either not necessary or else not accurate over
the entire surface. These problems are alleviated in the modified model.

For the most part, the original and modified models predict heat
transfer coefficients which are quite similar, but for distances far down
the condenser, where the flutes are fairly full, the difference begins to
become evident. The shape of the condensate profile is predicted by the
two methods varies to some extent between the two methods as the flute
fills.

The variation of heat transfer coefficient with the temperature
driving force across the film was detérmined; and it was found that
increasing'the driving force caused a decrease in heat transfer coeffi-

cient, since the steam condensed faster than it could run off, Despite
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the fact that increasing the temperature lowers the surface tension, it
also increases the heat transfer coefficient. This occurs because the
increase in temperature also decreases the viscosity, and thus there
is less resistance to flow.

Comparison of the predictions of the new model with experimen-
tal data shows that, considering the spread of the data, the predic-
tions are fairly good.

The effect of varying the dimensions of a sinusoidal flute on
the heat transfer coefficient was determined. It was found that flutes
with high, closely spaced peaks would g;*eatly enhance the heat trans-
fer; but the validity of the assumption of uniform temperature in the
metal surface was questioned.

A comparison of the sinusoidal condenser profile with the GE
Profile-9 surface indicated that the GE Profile-9 surface is less effec-
tive than a sinusoidal surface.

A new surface profile was developed which would allow a much
larger amount of liquid to flow downward in the trough than the sinu-
soidal profile, This surface showed somewhat better heat transfer

than the sinusoidal surface.
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Chapter I

INTRODUCTION

When heat is exchanged between two streams, the transferred
heat is g = UA(-AT). In order to increase the rate of heat transfer, it
is thus necessary to increase the heat transfer coefficient, the area
for heat transfesr, or the tempzrature driving force. Of these three,
the latter two are most generally used, although new ways of changing
the heat transfer coefficient have been developed.

When one of the streams has a much higher resistance to heat
transfer than the other, as in an air~cooled heat exchanger, it is often
helpful to increase the surface area by adding fins along the side of
the exchanger in contact with the high resistance stream.

The heat transfer coefficient may be increased in several ways.
Since the total resistance to heat transfer is méde up of several resis-~
tances, the reduction of any of these is bound to improve the perform-
ance of the equipment; but it is most helpful to adjust the largest
contributors to the resistance. Since the wall is usually made of
material with high thermal conductivity, its resistance is generally
quite small compared to the other resistances. Naturally, fouling

should be avoided; but in practice it is uneconomical to try to completely



eliminate it, since this involves frequent shut-downs to clean the
exchanger. Thus the main areas where improvement can be made and
have a significant effect are in the regions surrounding the wall where
the bulk of the temperature gradient lies. One means of improving the
heat transfer is to decrease the thickness‘ of these regions. When the
fluid inside the tube has a high resistance to heat transfer, it has been
found advantageous to use a helically twisted ribbon inside the tube to
establish vortex shear-flow (1), (2). This obstruction in the tube
increas.es the turbulance and thus produces more effective mixing and
therefore decreases the effective thickness of the region where the
-temperature gradient exists. In addition, in two-phase flow such as
evaporating sea water inside a tube, it has been found that the ribbon
causes, by means of centrifugal force, the denser liquid to move to the
outside, along the wall, while keeping the vapor in the center of the
tube. Thus, besides causing additional turbulence, the system keeps
the liquid near the surface. Since the liquid will transfer heat more
readily than the vapor, this results in further enhancement of heat
transfer.

For condensing-evaporating systems, one of the large resistances
to heat transfer may be that of the liquid condensate film: There are, at
present, three means of decreasing this resistance: spinning a horizontal

condensing surface, promoting dropwise condensation, and fluting the



tubes. The first of these produces a centrifugal force greater than the
force of gravity, thereby speeding up the rate at which the condensate

is removed, and thus decreasing the film thickness. The disadvantage
of this scheme is that it is relatively expensive, both in capital and
operating costs. Drojowise condensation, which is often many times
more efficient than filmwise condensation, can be promoted by coating
the condensing surface with a hydrophobic film. However, it is difficult
to maintain dropwise condensation over long periods of time.

The most promising means of changing the thickness of the con~
densate film is by the use of vertically fluted surfaces, as seen in
Figures 1 and 2. For a fluid system whose surface is curved, there is
a pressure resulting from the surface tension which is inversely propor-
tional to the radius of curvature of the surface. As predicted by Gregorig
(3), surface tension causes a pressure gradient in the condensate film
because the radius of curvature of the free surface is changing, so that
there is flow away from the peak, where the high pressure exists, into
the valley. This results in a thin film near the peak at the expense of
increasad thickness in the valley. Thus, although the surface appears
somewhat similar to longitudinally finned tubes, the effect is quite differ-
ent. In fact, the gain in heat transfer rate is greater than the gain in
surface area. Even though the resistance to heat transfer is large in the

valley (because of the thick film), the increased heat transfer in the peak



Figure 1
Drawing of Fluted Surface
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Figure 2
Photograph of Fluted Surface



section is great enough to result in a considerable net improvement over

smooth tubes.



Chapter II

REVIEW OF EARLIER WORK

The first experimental work utilizing the surface tension to
increase heat transfer were performed by Gregorig (3). He established
that the condensing heat transfer coefficient was, indeed, improved by
using fluted surfaces. He further demonstrated that the numerical
meathod he worked out gave verifiable predictions of the heat transfer
coefficient. Lustenader, Richter, and Neugebauer (4) performed experi-
ments which showed that the heat transfer coefficient was a weak func-
tion of the tube length, as predicted by Gregorig, but that at a suffi-
cient length the heat transfer dropped off sharply. This was attributed
to the fact that the valley became so full that there was no longer a
significant curvature of the free surface, and hence no pressure gradient
to act as the horizontal driving force for flow. Thus, material condensed
at the peak tended to stay at the peak, which increased the film thickness
in the important condensing region, This, too, was predicted by Greg-
orig's model. An "optimized" surface configuration was used for these
experiments, but no method was suggested for this optimization. In the
discussion of this paper, Trefethen (5) noted that the pressure gradient

would act on the vapor near the free surface, as well as on the liquid film,



thus forcing any non-condensible vapor toward the valley, where its
effect would be minimized. In a later paper, Lustenader and Staub

(2) presented data over a considerable AT temperature driving force
range. Experimental data was presented by Carnivos (6) and Christ

(7), which further demonstratéd the great improvement in heat transfer
coefficient that could be obtained by fluting the condensing surface.
Christ's experiments were of special interest because they were essen-
tially extensions of Gregorig's work, using the same surface configu-
ration as Gregorig used. Carnivos (8) conducted experiments using
doubly fluted tubes (that is, both the condensing and evaporating sides
were fluted), and, while he did not measure the individual contributors
(condensing and evaporating coefficients), determined that whether the
flutes were in prhase or out of phase with each other had little effact on
the overall heat transfer coefficient.

Other work, by Thomas (9), (10), employed loosely attached wires
and rectangular fins on the surface of smooth tubess to increase the heat
transfer. The basis for this wdrk was, like Gregorig's, the fact that
surface tension would cause an increase in thickness of the condensate
film in one place while decreasing it at another location. In this case,
the thick region was at the base of the fins or wires, while the film
between thza extensions was relatively thin. This surface was not an

extended surface in the sense that regular finned tubes are, since the



wires and fins were loosely attached, thus allowing only negligible heat
transfer from the fin to the tube. Most of the condensate was drawn into
rivulets next to the fins, while the bulk of the condensation took place
between the fins. Thomas found experimentally that the rectangular fins
caused a greater increase in heat transfer coefficient than the wires, but
concluded that this was due, not to the surface tension effects, but to
hydrodynamic considerations for the downward flow.

A recent work (11) used "dimplad" tubes, somewhat similar to the '
dimples on a golf ball, to enhance heat transfer (see Figure 3). This
appeared to utilize surface tension to promote a semblance of dropwise
condensation, in which the condensate was collected in the indentations.
Apparently, however, the main influence on the heat transfer coefficient
for this type of surface was on the evaporating side of the tube. (The tube
was of uniform thickness, so that indentations on the condensing side
corresponded to mounds on the evaporating side.) The dimples increased
turbulence in the falling evaporating film; and, moreover, the film thick-
ness along the mounds on the evaporating side was kept small by surface

tension but was continually renewed by the falling film.

Theoretical Work
The original mathematical description of the effect of fluted surfaces

on condensing heat transfer coefficients in vertical tubes was done by
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Gregorig (3). Hez broke the problem down into two parts. First was the
prokblem of horizontal flow, which included condensation of vapor and
movement of the condensate, through the influence of surface tension,
into the valley of the flute. This determined the shape and thickness of
the condensate profile along the flute. The horizontal flow problem was
simulated by a one-dimensional flow equation, making use of steady-
state and creeping flow assumptions. The boundary conditions, besides
no slip at the wall and no shear at the free surface, were that symmetry
in the condensatzs profile must be preserved at both the peak and the
valley. The method for determining the profile was to begin at the peak
and intsgrate the equation to the valley. Because one of the boundary
conditicns (symmetry) was at the center of the valley, the solution was,
of necessity, itrial and error and very laborious. Once the profile was '
found, the downward flow rate through the profile could be easily found
by solving a two-dimensional Poisson equation numerically. Knowing the
rate of condensation and downward flow rate for a pair of profiles, the
vertical separation distanée between them could be found by means of a
mass balance. The experiments by Christ (7) showed that the Gregorig
modzl resultad in good predictions, particularly when the trough was not
filled. Howevzr, the method became less accurate as the trough filled.
As a suggested improvement, in order to eliminate the trial and

error process involved in determining the profile, Markowitz, Mikic, and
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Bergles (12) proposed a simpler method for determining the film thickness

at the peak of the flute. The method broke the problem down into two
areas: one where the film thickness was small compared to the radius of
curvature of the metal surface (near the peak), and one where it was
significant in comparison to the radius of curvature (in the valley). The
assumption was made that the film thickness was practically constant in
the trough. This assumption is not bad near the top of the tube, but as

the trough fills it becomes progressively worse. An expression similar

to the Nusselt (13) equation for determining the condensate thickness was
developed to determine the thickness at the crest of the flute, using the
surface tension-induced pressure gradient rather than gravity as the

driving force. This method showed moderately good agreement with the
single published point determined by Gregorig; but the predicted heat trans-
fer was, in general, substantially different from experimental results deter-
mined by Markowitz, et al (12). It was suggested in the paper that the
experimental results might be in error to some extent because of the pres-
ence of non-condansible gas in the feed steam; but, as has been mentioned
earlier (5), this problem should be minimized by the fluted surface. This
meathod, while clearly faster and easier than the oriéinal Gregorig method,
seems to hold little promise, since the original method yielded much better
agreement with experimental data. The fact that the predicted film was even

fairly close to the Gregorig prediction appears to be coincidental, since the
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peak film thickness predicted by Gregorig did not vary monotonically

with pipe length, while this method predicted that it would.



Chapter III

DETAIL OF GREGORIG METHOD

Gregorig worked with a vertical condensing tube with a fluted
surface similar to that shown in Figure 1. In deriving the original
numerical method for determining the condensate film profile on fluted
tubes, Gregorig first assumad that, as far as the horizontal (peak to
valley of the flute) flow was concerned, the metal surface from the
crest to the trough of the rill was flat (see Figure 4). This assumption
enabled him to use a s'ingle equation of motion to represent the horizontal
flow, rather than having to use a pair of coupled equations.

The starting point of the analysis is the x-component of the Navier-

Stokes esquation of motion:

o 2l o Uy ) 2P Sl L 3Ux , U
f,’(?’f* UTsx 1ty 5y T4 aZ) - T 3% ’i’/% 5ot 3),’; + -5-;)1‘-/%%’— (1)

Assuming that the flow is steady and slow, the acceleration terms (the
left-hand side of equation 1) are negligible. Since gravity is in the
z~direction, Iy is zero. The film thickness varies slowly with the tube
length, so the viscous term involving %—‘—;‘_‘E is small. In addition, since

the film thickness is small, it is likely that UX will vary much faster with

y than with x. Thus equation 1 can be reduced to

2P . M Yu
24 N @

13
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The boundary conditions for the solution of this problem are: (1) no slip
at the wall (implies that the velocity is zero at the wall) and (2) no shear
at the free surface (implying that the velocity reaches a maximum here).

Integrating equation (2) and applying the boundary conditions,

c 2P /y?
Ue= 3 35 -hy). (3)
Averaging Ux over the film thickness from y=0 to y = h and rearranging,
3P _ 3 LT% o
- W - q: hg i (4)

The pressure resulting from surface tension is determined by the

radius of curvature of the free surface:

P = "y 5)

The convective diffusion in two dimensions is

5T 2T . k2T T
I+Uy”a’>7 Y AETS ay?]' (6)

2T

Assuming that 5y is negligible and Uy is small, equation (6) is reduced to

T
‘%‘;_1""5?1‘0. ('7)

However, the tzmpsarature varies much more rapidly in the y~direction

than in the x-diraction, so equation (7) may be simplified to

..
5y =0 (8)

Integrating this once, the result is

T -
—%-\; - constant . )

However, the heat flux is defined in terms of the temperature gradient at

the boundary (y = 0):

,(-L)

g -

kA - (10)

-

1l

~

3]
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Since, according to equation (9),%~)', is constant, the right-hand
side of equation (10) must also be constant, thus equation (10) may be

integrated to yield

q = KA (-T) - (11)
Or, defining Q = %:’
Q =4 (-a7) . (12)

It should be noted that in obtaining equation (8), it was assumed
that, for the purpose of heat transfer, the condensing surface was flat,
rather than fluted, as was assumed for the flow equation in equation (2).
However, it is not strictly true that the area for heat transfer is inde-
pendent of the y-position, but it is instead wedge—-shaped. The heat
flow is essentially one-dimensional, but the direction of heat flow is
not parallel at various x-positions. Equation (10) should allow A to be
a function of y, rather than being constant.

Utilizing a heat balance and allowing m, to represent the rate of
mass cond-ensed per unit length per unit time between the peak of the
flute and the position xp, distance along the flute (see Figure 5),

=25 (13)

Setting equations (12) and (13) equal and integrating, assuming

that h is constant,

kK (-AT)aX
Ay = Mpy=ma = T (24)

The relation between my and UXn is found by assuming that all



Figure 5
Condensate Profile on a Fluted Surface
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flow is horizontal. Then one obtains

m, = /o h,\ ﬁxn . (15)
Substituting equation (15) into (4), it may be seen that
2P - -3 .
2X IZ%:[}" Matt (16)

At this point it is important to introduce the fact that the surface is
not flat, but is instead curved in order to have a pressure gradient in
the x-direction. To aid in notation, the symbol s is used to represent
distance along the curved surface, where x was the distance along the

flat surface. Thus equations (14) and (16) become

Ama = Wk,{'%ﬂ as (17)
and 2P - =3 Moy * 18
235 /ohi (y_ " ( )

Assuming that h is constant over the interval, an assumption that
is valid for small steps, equation (18) is integrated and equation (5) is

substituted in:
|

Rati = Ry T Bh(,\;noc as - (19)
From Figure 5 it is clear that
Ag = AS/R, (20)
and AY = AS/R, (21)

Equation (20) is used to find A, the change in angle of the metal
surface. However, this is not really necessary, since the shape of the
metal surface is known. Thus theangle Ag can be found directly from the

equation of the surface.
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In order to use equation (21), it is necessary to assume that the
radius of curvature is constant over the interval As at the value Rp.
However, as seen in Figure 5, it is clear that, since the two radiiof curv-

ture R, and R,+] do not intersect at the pivot point of Ry, but intersect
close to the pivot point of Ry+], it would be better to use R, rather
than R, in equation (21). The use of R, does not introduce a large error
as long as the radius of curvature is fairly constant, but at some point
along ths surface the radius of curvature must go to infinity, reverse
sign, and decrease rapidly, as the free surface goes from convex to con-
cavz. In this region, the use of R, in equation (21) is not a good approx-
imation.

As shown in Appendix 1,

§=g-wi b4, (22)
Then the change in h is given by
Ah=[(g-P)+ X (ad-a¥)]as 23)

Equation (23) (together with the relation hn+l= h, +Ah) gives a film
thicknass which is likely to be greater than the actual thickness. The
process used in finding a position on the free surface is to take equal~
sized steps along both the free and solid surfaces, so that a position on
the solid surface which is a distance s from the peak corresponds to a
position on the free surface which is likewise a distance s from the peak,

when measured along the free surface. The actual film thickness should
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be the shortest distance from a point on the free surface to the solid
surface. Thus the thickness calculated by equation (23) will always
be at least as large as the true thickness, and in the case where the
trough is nearly full may be significantly larger than the true thickness.
The actual numerical procedure used in the original Gregorig
method is:
1) Choose hy (film thickness at peak), Ry fradius of
curvature of free surface at peak), and As.
2) Determine A@ from equation (20).
3) Determine Am from equation (17) and set
Mp+1 = My * Amn
4) Determine AY from equation (21).
5) Find hog (= h + Ah) from equation (23).
6) Find R, from equation (19).
7) Make another As step and go to step 2. Continus
to step off along the metal surface, calculating the
film thickness'at each point, until h goes negative
(which is physically unrealizable) or ¥ goes negative
(implying that the line of symmetry of the metal sur-
face does not correspond to the line of symmetry of
the free surface), or the line of symmetry in the

valley is reached. If convergence has not been

reached (ie, Y#0 at the line of symmetry), choose
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another value of hy and try again. The last two
possibilities represent the satisfaction of the
boundary condition that symmetry must be pre-
served (that is, the slope of the free surface must
be zero) at the center of the valley (the line of
symmetry of the meatal surface).

At this point Gregorig has determined the profile of the condensate
film, but not the vertical position of that profile. At this point he states
that relaexation is used to determine the downward flow rate, but does not
go into any further detail as to method. The method used here is to begin
with the equation of motion in the z—direction to determine the downward

flow rate (s=e Figure 6):

£(%e 4 ule py e gy W) s 30 1A (Tl T 4 2y

g\ 3% T Iy az’)+/o7?f‘ (24)

Neglecting the acceleration terms and assuming negligible pressure

drop, equation (24) reduces to the three-dimensional Poisson equation

2

L 2
2 + T —/%Z- 3z - 25)

Howsaver, Uz varies much more slowly in the z-direction than in

the x- and y-directions, so equation (25) becomes

>tu u
-g—x—;+?1—-/‘—’ . (26)

By using a Tavylor series to represent UZ the finite difference approx-

. 5 2
. _ u
imations of the derivatives %%g— and ayz* may be found (14) as (see
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Figure 7):
DUz o oy ~2U i+ Uiy
2 Xx* (AX)* (27)
DUy o U — 22U HU -
Sy: - TGy (28)

If the grid is uniform in both directions, AX and Ay are equal. Substitu-
ting equations (27) and (28) into equation (26) and solving for Uij' the
result is:

3
U= F(Usp g + Uity F U F Ui + 5592 (007) 29)

2,

Using the successive over-relaxation technique for solution, in order to

obtain ranpid conversion,

: » g, (0
U-O.‘ D = U<'- + w[lﬂ(g}< /‘0 + u(‘-l)‘j t Uy

4 &)

SRCIRLSNPENT At WY
The factor «w is an acceleration parameter which varies from 1.0 to 2.0.
A value of 1.0 for w reduces eguation (30) to equation (29) and results
in slow convergence, while higher values bring about faster conver-
gence, up to a limiting value of w, which varies with the system of
equations and the boundaries. If a value of w is chosen that is too
high, the system of equations will not converge. It was found that a
relaxation parameter (w) of 1.9 enabled convergence to be obtained in
about 1/4 the number of iterations required for e = 1.0. However, the
system did not always converge for w = 1.9, particularly when the film
was very thin in the valley. This is probably due to the coarseness of

the grid (Ax = 0,0004). In these cases, @ = 1.0 was used to obtain

convergence.
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Once the velocity at each of the grid points was determined, the
flow rate was found by integrating the velocity over the flow area.

In this way the downward flow rate for a known profile was deter-
mined. Let the subscripts p and p + 1 represent the downward flow rate
and rate of condensation (as determined above) for a given pair of pro-
files. Further, let m represent the total rate of condensation over the
entire flute. This is the same as the m used in equation (13), which
deals with intermediate values of the rate of condensation at points
along the flute. Then the vertical separation distance between the two

profilas can bs determined by the use of a mass balance:

_ Wen—We .
AT = Tmprmp /2 (31)

In the case wheare the profile in question is the closest one to the top

of the condenser tube, p = 0; and the value of my is not known, while

Wp = 0., However, the highest profile can be found thin enough that

it should cause a nzgligible error if the position of this point is found by
Z= W/m, (32)

Actually, the true value of z will be somewhat smaller than that found

by equation (32), since the rate of condensation at the very top of the

tuba [mp in equation (31)] is larger than my, but the distance found

using equation is so small that the error is quite negligible.



Chapter IV

DEVELOPMENT OF MCDIFIED MODEL

It is very simple to improve equation (20) in the original Gregorig
method, since the metal surface's shape is known. Thus A¢ can be
calculated directly, rather than calculating R, and using the geometric
approximation of equation (20) to determine it. The value of AP can be
found by using Figure 8. Let Dj represent the slope of the surface at

point 1 and Dy represent the slope at point 2.

Then 4, = —tan” UD) (33)
¢a = —tan .(I/Dl) (34)
thus A = B, -8, = —tan (1/D) + tan” (ID,). (35)

Equation (10),when integrated over x, yields
%()(vaxmx) Y SK kA JT) dx. (36)

Since the film thickness and thus the derivative (g—;)o is a function

of x, it becomes necessary to determine an average value of (i;) in
(7]

order to invoke the mean value theorem to integrate equation (36). Thus

the integral may be changed to

KA (-AT)
hav

Now, provided that h is not changing very rapidly, it should be

‘Z(X" X+AX) = (37)

possible to use the value of h at x in equation (37) instead of an average

25
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Figure 8

Profile of Metal Surface Showing
Determination of A@

Figure 9
Deviation of Film Thickness as Determined
by Gregorig from True Thickness

a actual length for heat transfer
b length used by Gregorig for
heat transfer
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h. However, the value of h used in equations (4) and (12) in Gregorig's

dT

method is not determined rigorously. Clearly, if one represents dy by
%I, h must be normal to the condensing surface. However, in Gregorig's
method, while the h calculated in equation {23) is approximately perpen-
dicular to the surface for thin films (while the two liquid surfaces are
nearly parallel), as the trough fills this value becomes less and less
accurate. In addition, when the trough fills appreciably, the distance
ft;om the peak to the valley-along the free surface is much shorter than

the distance along the metal surface: so the integration step along the
free surface is not associated with the proper portion of the metal surface,
as shown in Figure 9. Since the film thickness for the horizontal flow
should also be measured perpendicular to the surface, any improvement

in the height for heat transfer should, likewise, result in an improvement
in calculating the horizontal flow rate.

Since the area for heat transfer between the two lines representing
the boundaries of the integration increment is not constant, but decreases
as one proceeds from the free surface through the film, it is necessary to
change equation (12). The volume under consideration is wedge-shaped,
as shown in Figure 10.

The rate of heat transfer is

q = -k dA S%: ) (38)

where dA = (@h +Db) dz.
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Figure 10
Actual Area for Heat Transfer

Figure 11

Distance along Free Surface Associated
with As on Metal Surface
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Then, making the substitution,

T

dq =~k dzloh+b) &% - (39)

Assuming that the temperature driving force is uniform and integrating,
_ _8kdz (-sT)

49 = TaGh+B)- ln(b). (40)

Since there is no subcooling,

dg= 2Am, dz (41)

_ ak(-ATYA 42

or Amn"’,‘f(é'bETT)—“) (42)
where a= AQ
b: AS.

As shown in Appendix 2, the change in film thickness Ah may be

calculated, as a first approximation, as

ah = As,, sinl@-y+2(ad-ay) .
sin[¥-¢g-Ag+4 (Tr+aY)]

Equation (43) results in the calculation of the profile if the distance

(43)

along the free surface increment is not affected by the change in film
thickness. However, a change does occur, so it is necessary to make a

further calculation (see Figure 11). From the cosine law,

85, = VIR + (8S,,) —2AhAS,, cos(TH9) - (44)
A better approximation of Ah than equation (43) can now be found,

using A sp as found in equation (44) and the law of sines:

AS, sin[@-¥1E(AB-AY)] (45)

Sihfﬁ‘;éipl

It has been found that when the radius of curvature of the free sur-

Al =

face is changing rapidly, equation (20) does not yield an accurate estimate
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of AY , which is very important, since ¥ is used to determine whether
convergence has been obtained. Instead, it has been found that AY

can be better represented by

b= T iaTva (sign of Ran)- (46)

Rather than using A s in equation (19), it is now necessary to
use the free surfacs increment A sp, since the integration is performed

along the free surface:

{
.Q 44 = i/ — 3umati ‘ (47)
n /Rn 'ﬁ:ﬁ:‘— ASR
4
Tha numerical procedure for the new model is:

1) Chose hg, Ry, and As.
2) Determine Ag from equation (35).
3) Find Am, from equation (42) and set
Map = Mut Amp
4) Solve equation (19) for Ry 41, using Asp, = bs + ha @
in placs of As. |
5) Obtain AY from equation (46).
6) Determine Ah from equation (43).
7) Get Aspg from equation (44).
8) Solve eguation (47) for Ro+1+
9) Determine AY from equation (46).

10) Determire Ah from equation (45).
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11) Continue to move along the surface until h goes
negative, Y goes negative, or the center of the
trough is reached. If convergence has not been
reached, choose a different value of h and go
back to step 2.
The method of determining the downward flow rate and vertical
position of a given profile for the modified model is the same as that

of the original Gregorig model.



Chapter V

NOTES ON THE TWO MODELS

The results of the predictions of the two models are, in general,
of the same form. An important point of interest in the results is that
the values of ho associated with a given R, are not necessarily unique.
A plot of the relation between the two in a typical example is shown in
Figurse 12. This results in a variation in peak height as one proceeds
down the tube that is not monatonically increasing, as one would
expect, but oscillates, as in Figures 13-16. This unexpected behavior
is probably fictional, a result of the computational scheme, although
it is not clear what the source of the anomaly is. However, before dis-
carding the method, it would be beneficial to determine the actual profile
of condensate aexperimentally to make certain that the fluctuations do not
actually occur in practice. As one closes in on the canter of the spiral
in Figurs 12, which corresponds to the top of the condenser, the solu-
tion bacomes very sgnsitive to the value of h, that is chosen. However,
aftar distances several fezt down the tube, the solution may be largely
insensitive to ho.

It may bz notad that the film thickness is generally not @ minimum
at the peak of the flute, but that the minimum occurs at a point along the

side of the flute. This occurs because the radius of curvature of the
32
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Peak Values of Radius of Curvature and Film Thickness
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metal surface increases faster than the radius of curvature of the free
surface. Since, in some cases, the radius of curvature of the free
surface is tighter than the radius of curvature of the metal surface, it
is unavoidable that the film thickness will decrease.

As with any finite integration scheme, the method is somewhat
sensitive to the size of the steps used in integration along the flute.
However, this dependence is not very strong as long as the steps are

about 1% or less of the period of the flute.



Chapter VI

COMPARISON OF THE MODELS

The two models were compared for predicting the heat transfer in

the condensate film on a metal profile (see Figure 17) of:
yz 0012 cos S )t ooiz, 48)

Local heat transfer coefficients as functions of the vertical posi-
tion in the tube for temperature driving forces of 2, 6, 9, and 18 degrees
F are shown for the original and modified Gregorig methods in Figures
18-21, and compared to those predicted by the Nusselt (13) equation.
It may be noted that both methods predict that the heat transfer coeffi-
cient decreases very slowly over most of the tube length, as opposed
to the Nusselt prediction. This is a direct result of the effect of surface
tension, which maintains a film thickness in the peak region which does
not change substantially until flooding occurs. It is apparent that the
coriginal method predicts local heat transfer coefficients that are very
close to those predicted by the new method near the top of the condenser;
but, as the film thickness increases, the heat transfer coefficient deter-
mined by the original method falls off much more rapidly. In addition,
the sharp decrease in heat transfer coefficient, indicative of flooding
the grooves, occurs appreciably earlier in the original method. The pri-

mary difference between the two methods, the different means of measuring
39
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Figure 17
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the film thickness for heat transfer, would account for the difference
between the two methods in the lower regions of the condenser, since
the original method tends to predict more resistance to heat transfer than
the new method. This is because the new method uses the shortest path
through the film from a point on the free surface as the length for resist-
ance to heat flow, while the original method uses a somewhat longer
value for heat transfer. This discrepancy shows up most markedly as the
trough fills. The two methods predict fairly close heat transfer coeffi-
cients over most of the range of tube lengths because the effects of the
different ways of measuring film thickness are muted by the fact that the
difference shows up most markedly in the trough when it is fairly full. At
this point, the loca-l heat transfer contributes very little to the horizontally-
averaged value, it being about two orders of magnitude smaller than the
peak rate of heat transfer.

A comparison of the profiles predicted by the two models at a
vertical position of about 0.2 feet from th-e top of the condenser may be
found using Figure 22. It may be noted that there is very little difference
between the two -- the fact that the profile obtained using the original
Gregorig method is slightly thicker than the modified result is accounted
for by the fact that it is slightly farther down the condenser (0.024 feet),
and thus the flow downward tﬁrough it is greater. The most pronounced

difference between the two methods, as noted in the discussion of the
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heat transfer coefficients, occurs in the region where flooding occurs.
As seen in Figure 23, at a distance of 4.5 feet frém the top of the
condenser, there is a definite difference in the profiles. The modified
method predicts a thinner film at the peak, with the free surface more
nearly paralleling the condenser surface near the crest of the flute than
does the original method. The film thickness near the center of the
trough, then, must be thicker for the modified method in order to allow
the condensate to run off. Since the whole concept of using surface
tension to increase heat transfer is to reduce the film thickness at one
point while increasing it at another the result is that the modified model -
predicts that the heat transfer coefficient will be higher than does the
original method. While this in itself does not appear significant, it
would be possible to choose between the methods if the actual free sur-

face were determined experimentally because of this difference in shapes.



Chapter VII

MODIFIED MODEL

The effect of changing the temperature driving force is shown in
Figure 24 for the new model. Two facts are readily apparent; increasing
the temperature driving force causes a decrease in the heat transfer coef-
ficient, and increasing the driving force also causes flooding higher in
the condenser. The first effect, that of lower heat transfer coefficient,
is caused by the fact that the steam condenses at a higher rate than it
can run off; and thus the film thickens as the driving force increases.
Figure 25 shows the film thickness along the surface as a function of
the driving force for a sample downward flow rate. It may be noted that
the film at the peak is thinnest for the lowest AT and increases with AT,
while the thickness in the valley is greatest for the low driving force and
decreases for larger AT. The earlier onset of flooding with increased
AT is also expected, since the higher the driving force, the more mass
will be condensed, while the rate of vertical run-off is independant of
A T except for the effect that changing the driving force has on the profile
itself. Thus the liquid level should build up faster for a higher tempera~

ture driving force.
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Comparison of Film Thicknesses for Same
Downward Flow (0.0000350 lb/sec) at AT = 2 and 18°F
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Varying the operating temperature has the effect shown in Figures
26 and 27. Increasing the temperature lowers the surface tension, but
it also decreases the viscosity. It may be noted that the heat transfer
coefficient increases with the operating temperature. This occurs because
the viscosity, which influences both horizontal and vertical flows, allows
for faster horizontal flow, since it offers less resistance, even though
the pressure driving force (resulting from surface tension) is lower. In
addition, the flute can drain faster because there is less viscous resis-
tance. This enables depression of the flood_ing point to lower positions
in the condenser by increasing the operating temperature. Thus increas-
ing the operating tempsrature results in higher heat transfer coefficients
and less danger of flooding the flutes. Increasing the opefating temper-
ature from 212°F to 3OOOF causes a depression of the flooding point to
a po.sition further down the condenser, and even in the region where the
trough is only slightly filled, the heat transfer coefficient increases by
about 15%. Decrsasing the operating temperature to 100°F brings about
just the opposite: flooding occurs earlier and the heat transfer coeffi-
cient well above the flooding point is decreased by about 30%. It
appears that the kinematic viscosity, which is used in determining the
downward flow rate, is very sensitive to the operating temperature. The
limiting factor in the heat transfer process for condensing steam appears

to be the rate at which the condensate can run off, just as it is for
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condensation on a smooth surface, but the difference is that the heat
transfer coefficient has been increased dramatically by fluting the sur-
face. The fact that the downward flow rate is the limiting factor for
heat transfer is borne out by a comparison of the sizes of the horizon-
tal and vertical velocities averaged over the film thickness, as shown
in Figure 28. It may be noted that, except near the peak, the horizontal
velocity is several orders of magnitude smaller than the downward flow
rate. Plots of the variation of horizontal flow rate with position along
the flute are shown in Figures 28-32 for various vertical positions.
Aside from the expected maximum in the middle of the flute and zero
velocity at the peak and valley, the most notable phenomenon on the
curves is the fact that there is a "plateau” on the curve for z = 0.034
feet (Figure 28). This is a result of the fact that the radius of curva-
ture of the free surface varies at a fairly constant rate in this region.
In the other curves, the radius of curvature varies much faster, thus
there is no.flat region in these curves.

Plots of the local heat transfer coefficient as a function of the
‘horizontal position are shown in Figures 33-37. Clearly, the heat trans-
fer coefficient starts high at the crest, decreases slowly, then increases
sharply before dropping off quickly. This increase in coefficient is a

result of the film's being thinner along the side of the flute than at the
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crest. It would definitely be helpful to have an experimental determina-
tion of the film thickness to find out whether or not this decrease in film
thickness actually does occur or whether it is merely an artificiality of
the computational procedure. As one proceeds farther down the conden-
ser, the increase in local heat transfer coefficient becomes larger and
larger, and approaches the crest more and more closely.

The average heat transfer coefficient as a function of length for
various temperature driving forces is shown in Figure 38. The curves are
fairly similar to those for the local heat transfer coefficient, but are
somewhat flatter; and the sudden drop resulting from flooding is less
pronounced.

Figures 13-16 show the variation of the peak film thickness ho with
vertical position, and indicate that this thickness does not increase
steadily, as one would expect, but seems to oscillate. This oscillation
is due to the spiral relationship between the peak film thickness and the
radius of curvature at the peak, as shown in Figure 12. This oscillation
does not seem to be physically reasonable, and is almost certainly a
result of the approximations made in developing the computational proce-
dure. Because the horizontal velocity varies considerably from the peak
to the valley, as shown in Figures 28-32, it is likely that the
viscous term, which was neglected in going from equation (1) to equation
(2), is, in fact, not negligible. This may be one reason why the pre-

dicted film thickness varies unreasonably.
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Average heat transfer coefficient versus the temperature driving
force as predicted by the modified method is compared to experimental
data found by Christ (7) on 6 foot and 13 foot condensing tubes in Fig-
ures 39 and 40. Considering the wide scattering of data, the calculated
valued agree reasonably well with the experimental values, particu-
larly for Figure 40 (13 foot tube), which includes more experimental
data points.

The film profiles at various vertical positions are shown in Figure
41, It may be noted that the film thickness is practically the same for
all the vertical positions in the region near the peak, and that the
primary difference between any two profiles is the point where the free

surface begins to deviate seriously from a parallel to the metal surface.



)

Btu
hrft2OF

3(

Hx10

16

14

10

69

AT ©CP

L v T I T T L4

Comparison of Average Heat Transfer
Coefficient as Determined by Modified
Method to Christ's Experimental Data
on a 6-Foot Tube

© Experimental Data

owor

12 16

Figure 39

[\»)




70

Comparison of Average Heat Transfer
Coefficient as Determined by Modified
Method to Christ's Experimental Data
on 13-~Foot Tubse

® Experimental Data

oF

BRtu
hrf’cz

(

,3

Hx 10

12

10

)

@ Co \
Q -
AT {©F)
1 1 i 1 1 {
4 8 12 16

Figurs 40

18



Condensate Profiles Determined by Modified Method for AT = 6°F

.025 T T 1 T T 1 T 1

.020

L0185

y (in)

.010

.005

T

T

.01 x (in) .02
Figure 41

.04

12



Chapter VIII

EFFECT OF FLUTE GEOMETRY

In order to determine the effect of changing the separation and
depth of fluting, simulations were run using sinusoidal profiles with
wavelengths of 0.02, 0.04, and 0.08 inches and amplitudes of 0.006,
0.012, and 0.024 inches (see Figure 42). The results of these experi-
ments are shown in Figures 43~48. Clearly, increasing the amplitude
results in a higher heat transfer coefficient and a depression of the
flooding point. This occurs because, when the amplitude increases,
the valley deepens; so it is possible for more qondensate to flow down
in the trough. This leaves more of the surface covered by a thin film,
which is conducive to improved heat transfer. As the amplitude in-
creases, this assumption becomes less tenable. On the other hand,
increasing the wavelength makes the surface much flatter; and there is
less chance for surface tension to have an effect. Thus the heat transfer
coefficient is decreased substantially, but there is little danger of flood-
ing. In contrast, decreasing the wavelength causes a very great increase
in heat transfer, but the flooding pbint occurs at substantially smaller
values of z. It would appear that the limit on the shortness of the wave-

length would bz the same as was the limit on the size of the amplitude -~
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can such a tube be manufactured? The most promising combination of
these two modifications is increasing the amplitude and decreasing the
wavelength, for even though flooding occurs fairly early, the heat trans-
fer coefficient obtained for a surface whose amplitude is 0.024 and -
wavelength is 0.02 inches is about three times as high as that obtained
for a surface whose amplitude is 0.012 and wavelength is 0.04 inches.
However, the difficulty of manufacture of fine, deep flutes will, along
with the earlier onset of flooding, limit the extent of this modification.
Experiments were made with a metal surface that approximated the
General Electric Company's Profile-9 flut-ed tube, but scaled so as to
have a wavelength of 0.04 and an amplitude of 0.012 inches (see Fig-
ure 49). The results are somewhat unusual (Figure 50), in that near the
top of the tube the film thickness at the peak is large, then decreases to
a small value before flooding occurs. Because the radius of curvature
of the metal surface (and thus that of the free surface for the film near
the top of the condenser) at point A is large and positive, there is a pres-
sure gradient from that point toward both the crest and the trough of the
flute. This results in a thickening of the film at the creét, and the thin
region of the film is from point A to point B (somewhere along the flute
between A and the trough). As one proceeds down the condenser he finds
that the film thickness at point A is nearly constant, but that the crest

thickness decreases. The result is that when flooding is approached



81

[T 7777

/ r=20.01 in

Figure 49
General Electric Profile-9



y (in)

.030

.025 F

.020

.015

.010

. 005

Condensate Profiles for General Electric Profile-9 Surface

T ¥ T T

-

77 77777 777777777777

T

T T

;] [}

.01

x (in)

.02
Figure 50

.03

.04

z8



83

(that is, when the trough is full), the crest has a very thin film. Thus,
improved local heat transfer is observed over a somewhat longer condens-
er length than when the sinusoidal profile is used. However, the heat
transfer coefficient associated with Profile-9 is significantly lower than
that associated with the sinusoidal surface for most condenser lengths,
as shown in Figure 51. From this experiment, it was found that rounding
the peak was very advantageous, since that would greatly increase the
size of the region of thin film and thus high heat flux.

Because the greatest impedance to good heat transfer is the rate
at which the material can flow downward (keeping in mind the relative
sizés of the horizontal and vertical velocities, as shown in Figure 28),
it was felt that an improved condensing surface would, of nécessity,
allow for greater run-off. In keeping with the note made in discussion
of the Profile-9 results, it was thought necessary to use a curved sur-
face at the peak, one whose radius of curvature was steadily increasing.
Thus the profile shown in Figure 52 was designed. The film profiles
obtained from this surface are shown in Figure 53. It may be nc.)ted that
the thickest part of the condensate film at high positions in the condenser
is at the point where the slope of the solid is discontinuous, and thus the
heat transfer occurs over both the peak and most of the valley for this con-
figuration at these high vertical positions. The heat transfer coefficients

found using this profile are compared to those using the sinusodial
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Figure 52
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profile in Figure 54, and show that the new profile is slightly more

efficient than the sinusoid.
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‘Chapter IX

'CONCLUSIONS

The new model appesars to be slightly better than Gregorig's model,
in that it agrees somewhat better with experimental results. However,
the same problem that is encountered in Gregorig's method is also
encountered in the new method - - the fact that hg. the film thickness
at the peak of the flute, is not a unique function of R,, the radius of
curvature of the free surface at the peak.

Optimization work shows that increasing the amplitude and decreas-
ing the spacing between flutes causes the greatest sustained increase in
heat transfer. It is found that the widely-used GE Profile-9 surface does
not vield heat transfer coefficients as high as does the sinusoidal profile,
primarily because the film thickness is large at the peak of the profile.
The profile developed as an improvement on the sinusoidal and GE
Profile-9 surfaces, which has a curved peak and a large area for down-
ward flow, broduces heat transfer coefficients which are somewhat better

than the other profiles, with little danger of flooding the grooves.
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Chapter X

RECOMMENDATIONS

The next stage in the development of a mathematical model for

steam condensing on fluted surfaces should be the solution of the more
Ju

complete equations of motion, including at least the ‘ggi viscous term.

It would be helpful, in view of the fact that deep, closely-spaced
flutes are predicted to be best, to eliminate the assumption of uniform
temperature driving force.

Experimental determination of the film thickness along the flute

would be beneficial, since it might point the way toward further improve-

ments in the modesl.
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Appendix 1

Derivation of Equation 22
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Appendix 2

Derivation of Equation 43
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Appendix 3

Computer Program for

Original Gregorig Method
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PACE 1
1: ¢ VATNT 1€
2: ¢ PRCGAIAM FCR DETERMINATICN CF PRCFILE COF CONCENSATE ON FLUTED TURE,YAIN 20
o 3: C AS WELL AS MNEAT TRANSFFR COEFFICIENT ANC COGWNWARE FLOW RATE. MAIN 39
Ly ¢ SUBROUTI[E GREGOR CETERMINES THE PRCUFILE ANC HEAT TRANSFCR COEFF~ MAIN 40
: C ICICHT,BASED CN THE GREGCRIG METHCOD MAIN 30
_ & € FUNCTIG'W FUNC_IS THE EGQUATICN GF THE SGLID SURFACE o __MAIN_ 6D
: C FULCTICN CERIV IS THE SLCPE OF THE SOLEID SUKFACE MAINT 79
: ¢ SLORCUTINE RELAX DETERNMINES THE OCWNwWARC FLCW RATE, BASEC O THE NMAIN  8C
)1 C TwO-DINENSIONAL POISSON EGUATIUN MAIN %0
10: C DELTA THE SIZ2F GF THE (SQUARE) DIFFERENTIAL CISTANCE ELEMENTMAIN 1CD -
1: ¢ FOR CALCULATION OF THE OOWNWARD FLOW RATE. (INCHES) PMAIN 110
12: € DELT THE TEMPERATURE DRIVING FCRCE BETWEEN THE STEAM AND  MAIN 129
13: C THE MCTAL SURFACE  (DEGREES F) MAIN 130
14t C RHO THE DENSITY CF THE CONDENSATE (G/CC) MAIN 140
_ 15: ¢ My THE VISCUSETY OF THE CUNDENSATE  (CERTIPCISE} MALN 150
16: ¢ RO RACIUS OF CURVATURE AT PcAK  (INCHES) FAIN 1€0
17: ¢ HMIN INITIAL ESTIMATE OF THE LIQUID HEIGHT AT THE PEAK [INIFAIN 170
e 18: € NEXP 0.1 IS RAISEC TH THIS POWER_TO DETERMINE THE STEP SIZEMAIN 189
195 ¢ FOR ESTIMATES UF THE HEIGHT MAINT 199
25: ¢ KEY DETERMINES THE TYPE OF RCOT SOUGHT-- VAN 2C0
e 21z ¢ ¢ LOWER ROGT ____ _ - _MAIN 210
22: € 1 UPPER RGOT MAIN 220
23: ¢ 2 NO CONVERGENCE SOUGHT MAIN 230
242 CIMENSICN_AH{LL) L o MALN_ 24
253 CC¥MLI/BLOCKH/Z AR VAL zso‘
26 COMYUA/BLCCKGZYX L), VOS{LI1},VOPPI(LL),VPRILLL),YDRLLL), MAIN 262
N e 2T o LlveNtr1y,vERPSI(RLd,YPSILLLY e o MAIN27Y
28 REAL NUMBY MAIN 240 T
29: COMML*I/BLOCKY/NUMBY({121) MAEN 290
303 LCMMC/BLCCKU/ULL05,68) e __MAIN 3CC
312 CCUBLE PPECTSION OH TVMAINTILO -
322 EXTERNAL FUNG,DERIYV MAIN 32C
33:_ _REAL_MU M, K, LAKDA - ZFAIN 333
3642 WRITE (6,751) MALN 340 ’ -
353 751 FURAMAT (2%, "ORIGINAL GREGGRIG METHCD USEC') MAIN 3590
363 _WKEY=0Q _ __ BAIN 3¢&C
37: REAG {5,14) AMP,PERLUD TTRATN T30 T T
38: 14 FORMAT (z;xo 0) MAIN 324G
39: _REAL {5,3)_DELTA _ ___ e EAIN 399 S
4G 3 FCRMAT (F10.0) MAIN &8
413 READ (5,9) DELT ¥AIN 419
542 9 FCAR¥AT (F4.0) e _MAIN 426
433 REAC (5,15) LAMDA,K,SIGMA MATH 430
44 15 FOR¥AT (3F10.0) MAIN 44G
e 653 S1CMA=SIG®A%Q,3001837 e e MAIN 45O
46t K=X/3600, MAIN 466
473 REAG (5,1) RHOD, ~u no HMININEXPyKEY VAIN 479
48: 1 FCRYAT_(F1C.0,F5.0,F10.0, U F10,C,12082) . _MAIN 4EC
49: PU=NL¢9 3C0611)69 FAIN 490 ”‘
5C: RNUC=RIC262.4262] FAIN 5CC
e 51¢ 12_ CF 1D.0%3 (=NEXP) __FAIN 510
523 CALL GREGLCR (RCIRHOIMU, My hoHMIN,DH,UELTA, CELT,KEY, ,MKEY,PERTOL,  PAINTS2CT
53: BLAMGCA,K,SIGMA) MAIN 530
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PAGE 2

R 543 WRITE (&,750) NUMBY i MAIN 549
T55F° TTU750 FCRMAT {1X,20F6.0Y T T T T T T TTTTMAIN 550 T T

56: IF (PKEY.EC.1) GO TO 11 MAIN 5€C

m_ _57: ______ WRITE {6,10) DELY L . __ . MAINSTO

582 IC FURMAT (2X,'TEMPERATURE CRIVING FCRCE IS *,F5.G, " [LEGREES F') MALY 580

59: WRITE (6,2) RO,M MAIN 590

60: 2 FORMAT (2X,'THE TCTAL MASS CONODENSED FCR A PEAX RADIUS OF °, MAIN 6CO
6117 T IYCURVATURE OF Y, 2X,F8.6,2X,YISY7C11.4,2X, 'POUNDS PER SECOND™PER !, VAN TGYE ™ —— —

£2: 2'ECQT /) MALY 620

633 RHO1=RHD/144.0 _ VAL 630

4t GX=32.174 - VAN &40

65: CO 6 I=1,11 MAEIN 650

£62 6 WRITE (6+5) VX{I), VOS{I),VEPHI(I),VPHILI), AH{T),VENLT), MAIN 660

67t TTIVRNUL T, VPRSI, VPSTOTY T T . VAINT6TO

681 5 FORMAT {2X,9E11.4) MAIN 680

691 CALL RELAX(MU,RHOL,GX) FLOW,CELTA,AMP) MATN 690

702 RATE =FLCw*RHO1*144.0 MAIN 7CT

71: WRITE (6,7) FLOW,RATE PAIN 710

72¢ 7 FOIMAT (2X%,"VOLUMETRIC FLCW RATE=?,Fl1.7,'FT*%3/SEC*/2X, '"WEIGHT*, MAIN 720

T3¢ T 20 RATE OF ELOW=, FLL. 7, '0B/SECYYT T T T - TAONTTIT

743 HTIC= M#97C,0%36060.0%12.0/PERICC/DELT MATN 740

e 152 __WRITZ (K48) HTC o o o MAIN 750
R LE T FORWVAT 12K, VTHE HEAT TRANSFER CCEFFICIENT ISV, FL0.C, " T ¥aAIN T&ES B

77: $'  BTU/HR/FT/FY) MALN TTG

782 IF (KEY.EC.Q) GO TO 13 MALN 78C

- 797 TIF UIKEYLVECS2Y CALL ExIT - - - TTTVAINT T

80 KEY=0 KAIM BCO

. 8l: Ge_T0 12 _ L L o _ MAIN 810

82: 13 KEY=1 VALST8IC

81: GO TO 12 MAIN 830

84¢ 11 KEY=0 VAIN B4Z
T85T T T TTRREY=0 . VAN BB T T

ETY GO TO 12 MATH RED

87z END ) . MAIN 870




PACE 1
1: ¢ GREG™ 19
2: SUBROUTINE GREGORIROSRHC MU M, W HC,CHyCELTA,CELT,KEE,MKEY, GREG 20
o 3: __$PERIUD,LAMCA,K,SIGMA) o ___ _CREG_ 3D
4: C CELM = CHANGE 1IN LB/USEC FT) GREG 40
5: C DELS = CHANGE IN § INCHES GREG 50
6: C DELTSTEMPERATURE GRACIENT ~ DEGREES F _ GREG__ 60
7€ H = HEIGHT GF LIQUID ~~ TACHES GREG 70 -
8: C K = THERMAL CONCUCTIVITY BTU/{SEC FT#%2 FI/FT GREG 30
9: C RHO_= DENSITY_ _LB/FT*%3 GREG__ S0
1¢c: C U = VISCOSITY LB/(FT SEC] GREG 1CO
11: C LAMDA=HEAT CF VAPCRIZATICA BTU/LB GREG 11C
12: ¢ F=RATE OF CGHOENSATINN LA/{SEC_FT) GREG 1290
13: C PST = ANGLE ~ RADTANS GREG 13¢ ““
14: C RA= RACIUS OF CURVATURE OF MZTAL SURFACE INCHES GREG 140
15: _C RN = RAQILS CF CURVATURE CF CUNDENSATE _ INCHES GREG 150
16: C S=DISTALCE ALONG SURFACE TCHES GREG 160
17: C SIGMA = SURFACE TENSICN  DYNES/CM GREG 170
18: € THETA= ANGLE _ RADIANS GREG 130
19: € x= GISTANCE ALCMNG PIPE CIRCUMFERENCE INCFES GREG 150
20: C ITER = [TERATION COUMTER FOR ENTIRE SUBRCUTINE LIMITED TO 40 GREG 2060
- 21: ¢ DIFF = DISTANCE FROM CEANTER-LINE TO_THE PCINT ON THE FREE_SURFACE GREG 213
22: € GREG 220
23: REAL LAMDA,MU,K,M GREG 213G
242 CoOM¥ON/ALOCKG/VXILLY, ~  VOS({11),VvOPri(11),VvPHI(11),VDH(11), GREG 24T
25¢ LVRN( L), VOPST (L), VPST(1I1) GREG 25C
262 CIMENSION AR{LL) GREG 260
273 COYMCN/BLECKH/AR L . __GREG 272
283 REAL NuUMBY GREG 283 )
29: COMMON/BLCCKY/ZNUMBY(121) GREG 259
_ 303 _CCUBLE PRECISICN_DH,DHO L GREG_3C)
31 [TER=0 GREG 31D
32: P1=3.14159265 GREG 320
_ 33: DHO=HC o ~ GREG_330___
34 Cx=0.0001 GREG 342
353 73 DHG=DHO+DH GREG 359
- 362 HG=CHO - — GREG 3¢€0 —
37: X1=0.0 GREG 370 -
38: Y1=HO GREG 38C
39: 1y=2 o GREG_1390
40 NUMBY (11=HC/DELTA 40.5 GREG 4CA
41: XC=CELTA CREG 410
R 423 ChRITE (64815) X, THETA,H,M,PST,0[FF,0PST, D - GREG 420 -
43 815 FORMAT (2%,8€14.7) GREG 439 T
442 I1TER=ITER+] GREG 44C
453 . IF_{LTER.GILAG)_CALL EXITY . . . _GREG_ 452
463 C GREG 4&C
47: C INITIALIZING THE VECTORS TO BE SAVED GREG 470
48: _C e . e o . GREG 48T
491 00 103 1=1,11 CREG 450
503 VX([)=0.0 GREG 5CC
e 51 _ vOSt1)=0,8 e e . CREG 510
521 VOPHI(1)=0.0 GREG 520
532 VPHI([)=0.C GREG 530
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e 5%&3 __ NDM{I})=0.0 L o ) GREG S4C
553 VRN{1)=0.0 o - o TTTTTT T GREG 550 -
562 vOPSI(1)=0.0 GREG 560
e 857:_____¥PSI{I)=U.C o .. GREG 57¢C
583 103 AF(1)=0.0 TTGREG TS8C -
59: ¢ GREG 530
e £0: C SETTING THE INITIAL VALUES CF PARAMETERS GREG 6C%
617 C T T T T T T e e T T e T T T GREG T 610
€213 RN=RO GREG 620
632 W=0,0 e GREG 630
643 EX=0.0 GREG 648
65: THETA=0.0 GREG 650
663 PS1=0.0 GREG €£0
67: F=H0 TTGREGTETT
681 AH(1)=HO GREG 680
e E __8=0.0 } L . GREG 590
70: ¥=0.0 GREG 7(C
713 J=0 GREG 71C
R 723 X=0.0 GREG 729
73: =2 GREG 730
74: C FINDING DELS GREG 740
1532  Bx=X ﬂ_ GREG 750
163 J=J+1 GREG T&Y
77: P1=FUNCI(X) . GREG 710
_ 783 P2=FUNC(X+CX) L GREG 783
793 CEUS=SCRTI (P 2Z-P T ¥5240X%DX) GREG 19— —
8G: € GREG 8CC
o . _81: ¢ FINOING THE ANGLE UN_THE METAL SURFACE SWEPT BY CELS (CTHET) ~ GREG 810
82: ¢ TTGREG 826 T
832 C1=CERIV(X) GREG 839
843 D2=7.5%P[¥#2%CCS(X*P[/0.C4) GEG €49
85¢ IF(C2.6Q.C.C) 02=0,00C0C1 T eREG TS T T
£6¢ RA=(1.0+01#2) %21 ,5/ABS(C2) GREG 8&C
. 87: IF {X.LE.C.02) GU TO _10¢C ) GREG 870
eg: 05=DERIVIX+0X]} TCREG 88CT
89: IFf (C5.EG.C.0) 05=0.0000C1 GREG 890
. 992 D4=7.3%PI#22%CCS{(X+CX)%P[/0.04) GREG 9CGC
513 RAZ-T L. G+L5*22) %% {,5/7A8S(04) GREGTILT
92: 1CC DTHET=DELS/RA GREG 920
93: CPST=DELS/RN . . _ GREG 93¢
4 DELM=K*DELT*CELS/LAMCA/H GREG %40
95: M=M+DELM GREG 950
963 RAN=1.0/’N=3 . CEMUXMECELS/ {HE#3%RHO*SIGMA) GREG 5&0
- g7 IF {RANLECLOL0T RAN=C.COCO0!L GREG 973 — — T~
98: RN=1.0/RAN GREG Sa¢
_99: b=t ((THETA-PSI)+0.5*(DTHET-DPSITI*DELS e — GREG_ 930
1¢0: C GREGICES
101: € IS H NEGATIVE--1MPOSSIBLE GREGIC10
162: € GREG1L2C
1¢3: IF (F,LT,.9.0) GO TO 73 GREGLUI0
1C4: X2=X+HxSIN{ TRETA+NDTHET) GREGLC 4D
o 105: 334 [F (X2.LT.XC) GU YO 303 _GREGLCSD
1C6: Y2=FULNC{X)+H*COS{THETA+CTHET Y -FUNC(X2) GREGICEU -
1¢7: € GREGLUT0
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PAGE 3
FINDING THE LECUS OF THE FREF SURFACE IN THE GRIC USEC FCR  CREGLCAO
ILTEGRATICN OF UOUNWARD FLOW e TGREGLNGO -
GREG11CA
O XG={Y2-Y1IR(XO=X1}/(X2=X1D+YL . _ ___GREG1110
NUMBY(IY)=YO/DELTA+0.5 "GREGI12C
IY=1Y+1 GREG1130
_X0=X0+DELTA e GREG114C
TY1=Y2 GREG115I
GO TQ 304 GREG11&0
117: 303 CIFF=PEKRIOO-X-H*SIN(THETA+DTHET) GREG1170
118: IF (J.NE.1) GO 7O 390 GREG11ED
119: ¢ GREG1190
. 120: € LOADING VECTGRS _GREG12CY
121: € GREG1219
122 VX(1) =X GREG1220
1233 VDS11)=DELS ____ GREG1230
1243 VDPHI(1)=CTHET GREG1240
125: VPHI(L)=THETA GREG1250
1262 VDM({1)=RELNM GREGI260_
127: “vRNT1)=RN ‘GREG1ZTO
128: voPSI(1)=CPSI GREG1280C
— 129: VPSI(1)=PSI I I __ ____GREG1290 —
130: C GREG13LO
131: C FAS THE CENTER-LINE BEEN REACHED GREG1310
I 132: € e e e - - GREG1322
133: 300 CIFF=PERICC-X-H*SIN{THETA) GREG1I330 ‘"
1343 IF (DIFF,LE.C.0) GG TO 74 GREG1340
1352 EYE=[-~] _ o ___GRE5$1350
1362 PX=EYE*PERICD/1C.0 GREG1360
137: CSX=ARS{PX~X) GREG1370
1383 IF(D0SX.6T.0X/2.0) GO TC 93 . GREG1380
139: ¢ GREG13S3™
149: ¢ LCADING VECTCRS GREG14GCS
R 141: C . o e s ____GREGL4EO
1423 vx{1)=X GREG142C o
143: VOS(1)=CELS GREGL1430
lad: NOPHI(1)=CTHET o .. GREG1440
145¢ VPHI({)=THETA GREGI4SY
146 vOM([)=DELM GREG14£0
14T ___VRNII)=RN _ o L GREG1470
1483 VOPSI{1)=DPST GREG14E0
149 VPSILIY=PSI GREG1490
__150: AH{I) =H _ _GREG15CG
151: 1=1+} TGPEGLISTO
152: C GREG1520
1533 € RESETTING PARAMEVERS o .__LREG153) o
154: C CREGIS549
155¢ 99 THETA=THETA+CTHET GREGL550
e 156 __ PSI=psi+0PSI L e GREGILSES
157: S=S+DELS GREG1579D
158: X=X+0X GREG1580
o 1592 C o o e e L GREG1597
160: € WAS MINIMULM GN FREE SURFACE REACHED TCO SCGN GREG16LD "
161 ¢ : GREG161D
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162: IF (PS1.LT.-0.0001) GO TO 75 GREG1629
163 TTeox=x-peRICoeDX 0 T T T T TTTTTUUGREGISRYT T T T
1642 IF (DDX.LT.DX/2.0) GO TC 2 GREG1640
165t 6O TU 223 ___ GREG16350
1662 72 1F (XEE.EQ.2) GO 70 73 GREG16&9
167t C ’ GREG1670
168: C HALVING THE INTERVAL BETWEEN SUCCESSIVE APPRGXIMATICAS OF ThE GREGL68D
1697 ¢ T RPEAK FILNM THICKNESS ™ 777 7 T T T T T e T T GREGLA/Y
GREG17CO
_ CHO=DHO-DH GREG1710
DH=DH/2.0 TTGREGLT20
GO 10 73 GREG1730
174 C GREG1740
175 C WAS NINTVMUR ON FREE SURFACE REACHED TGO SCON GREGT?50
1762 C GREG17¢&0
177: 74 IF (PSI.LT.-C.0001) GO TO 75 GREG1770
178: C GREGL780
179: C WAS MINIMUM OM FREE SURFACE REACHED TOO LATE GREGL7G0
180: C GREG18CH
1813 IF (PST.CT.CG.0001) GO TO 76 CREGLETIO T
182: GO TO 1G GREGLE20
133: € o e GREG1839
1847 C WAS FPINIMUM ON FREE SURFACE REACHEG TCO LATE GREGLB40
185: C GREG1850
1663 223 IF (PST.GE.C.GCGL) GC TG 76 GREG18¢&0
187: TFEABSPSIVLT.0.00601) GO0 10 10 — GREGIBTO
1882 GO 1O 73 GREGLBEO
e 189:_ 15 IF (XEE.EC.0) GO TO 73 GREGL89D
150: GO T0 72 TGREGI9IO T —
191: 76 1F {KEE.EC.0) GO TO 72 GREGL1919
192: GO TQ 73 CREG1920
- 193: 10 WRITE 14,361 RHU - GREGTGID
194 36 FGRFMAT (2X,£15.8/7) GREGLG40
1953 _ RETURN . o GREG1950
1563 8C MKEY=1 GREGIGEY ™ —
197: IF (KEE.EC.2) GO TO 73 GREG197D
198: RETLRN GREG19E0
199: £ND GREGIG90 ™~ T
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: SURRCUTINE RELAXTMU, RHO, GX, FLOW, DELTA, AMPY T T T T TTTRELA TS
: C RFLA 20
32 € USES SUCCESSTVE-OVER-RELAXATIUN TC DETERMINE THE COWN4ARC_ FLCW __ RELA 30
4: ¢ RATE RELA 40
5: ¢ OMEGA IS THE ACCELERATION PARAMETER RELA 50
6 C JvItt 1S TRE POINT IN THE FLOW REGION NEAREST THE PETAL_SLRFACE  RELA  6)
7:°¢C J¥AX 1S THE FREE SURFACE RELA 713
: C ERRCX 1S THE FRACTICNAL CHANGE OF THE VELOCITY FROM ONE ITERATION RELA 89
9:_C TO_ANCTHER e RELA 99
10:° ¢ FLCw IS THE INTEGRAL OF ThZ COWNWARD FLOW RATE RELATTI5¢C
11: ¢ RELA 110
123 REAL MUP3Y, MY RELA 124
13t CoMPIN/SLGCKYZaUMBY(121) RELAT13)
143 CO¥MGN/BLOCKU/UL105,78) RELA 140
15: PI=3,141552653 RELA 159
16: CMEGA=1.9 RELA 166
17: € RELA 170
L 182 _C_ INITIALIZING U'S TO ZERQ e RELA 180G
197 ¢ RECATTSO
20 €0 7 1=1,1C5 RCLA 2CG
21: 007 J=1,78 . __RELA 210
22: T Ull,J}=0.0 TTRELAT230
21 KOUN=1 RELA 230
S 24 1CCYNT=1 e e RELA 240 _
25t C RELA 250 )
26t C SETTING ERRCR AND INTEGRAL GF DOWNWARD FLOW TO ZERD RELA 2£G
27: G N e RELA 272
28: S ERRCR=0.0 RELA ™ 24C
29: FLOW=G.G RELA 299
030 _ICOUNT=ICCUNT#1 e RELA 3C0Q_
3): X=0.C RELA 310 -
32 o 6 [=1,78 RELA 32C
L 33: ¢ e . RELA 330 .
34 C SETTING SYFMETRY BOUNCARY CCNDITION AT PEAK RELAT340
315: ¢ RELA 350
. 36 LI, D3=U3, 1) o RELA 3¢5
31 ¢C RELA 370
33: ¢ SETTING SYMMETRY DOUNDARY CONDITION AT VALLEY RELA 385
39: _C_ e e e e _RELA 390 .
40 6 U102,11=U(100,1) RELA 4CO
41: £0 1 1=2,101 RELA 410
421 KEY=2 o RELA 420
43: IF (I.EQ.2) GO TQ 8 RELA 430
44: € RELA 644G
) ___&45:_C______CETERMINING_FREE AND METAL SURFACE BQUNBARIES el _RELA 453
46: C . RELA 4¢&C B
47: Y1=FULLCIFLOAT(I-1) DELTA) +AXP+MUMBY(I-1) RELA 470
481 Y2=FUNCIFLCAT{[-2)¢DELTA)+AMPENUMBY(I=2) ___RELA 48C
49: ¢ RELA 499 T
501 ¢ IF THE MAGNITUDE OF THE SLOPE CF THE SURFACE 1S GREATER THAN DR RGLA 520
e Sli__E_____EGUAL TO 1/2, ThE DERIVATIVE BOUNDARY COAGCITIGN MLST IAVCLVE RELA 510
5257 € POINTS WHICH ARE NOT ON ThE SAME VERTICAL COLUMN. [F THIS LS TRUERELA 5207
53: C THEN ¥Ev=1. RELA 530
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. 54: C e ) _ RELA 540
553 SLOPE={Y2-Y1¥/DELTA ~ e 1 - - 51

561 IF {SLCPE.GE.0.5) KEY=1 RELA S5&C

o 57 8 _JMINSU{FUNC{X)+AMP)}/DELTA+1.5 o . RELA S79
581 IMAX=JVINHLFIX{NUMBY (T-11) T TRELA TSBCT T

592 IF (1.EQ.2) JMAXL=JMAX RELA 590

60: IF (J¥AX.GT.JMAKL) JKrAx=JMax]) ) RELA 6CQ

El: IMA=JUAXYY Tt T T T T RECATETIS -

&2 JMN= VYA -1 RELA 620

- €32 JMSJIMINGL RELA &30

642 1F (JP.GT.J¥N) GO TO 10 RECA 640

65: C RELA 650

663 C THIS IS THE ACTUAL RELAXATICN LOGP RELA 6¢&0

&7: C T T RELA 670

68 DO & J=J¥,JMN RELA &EC

69 LESU(1, ) $OMEGAR(GW25% (GX*CELTAX$2/MUKRHC+U(T~1,J)+U(I+1,J)+ RELA 690

70: SLITL, =1 +L 1,3+ =0T, I RELA 780

712 ERROR=AMAXL{ABS{ (UE~-L([,J))/UE},ERRGR) RELA 710

723 _IF (J.EC.Y¥) GG TO 11 RELA 720
73: TFLGh=UECELTAS %2/ 144 0¥F L On - TTUUTTRELAYIO T

74 GO TO & RELA 740

75t 11 FLOW=UES¥CELTA%%2/288.0+FLON RELA 750
76t 4 LII,d)=yE RELATTEC T

172 10 ULT,d¥¥)=LiT, IJMN) RELA 770

783 TF (KEY.EC.1) UlL,J¥MI=ULI-1,JMN) o RELA 7488

79: BERENEYSY T T T T N - TRECATTOY T

80: C RELA 820

81: € THIS STAGE CALCULATES THE VELOCITY OF THE FREE SURFACE RELA 21C

g2: C T Ty RELA 8T

83 UE=U( T, J)+CMEGAS {0 25%(CX*DELTA**2/MUSRHC+U(I-1,J)+U(1+1,d)+ RELA 832

_ ) 841 CSLIT,J-1) U, d+1))-UI1,0)) RELA 840
T §s: ERFOR=AMAXT(ABS{ (UESUTT, JT) 7UETSERREBRY — T RELA 8§55 -

863 FLOW=UE*DELTA®*2/288., O+FLUN RELA 8¢&C

o 872 UlI,3)=UE o _ o RELA 870

88: 1 X=X+CFELTA RELA 8cl

89: IF (KOUN.LT.10) 60 TO 3 RELA BSO

KLE RRITE 16,9) ICCUNT,ERRCR RELA 9CQ
91 S FURMAT (2X,15,E15.8) - REUVA™9LD T

g2: KCUKN=C RELA 32C

N 931 3 _KOUN=KOUN+ o RELA 939

943 IF (ER3CR.LT.0.001) 60 TG 5 RELA 959

95: WRITE (5,2} 1COUNT RELA 950

96 2 FCRMAT (2X,'THE NUMBER QF ITERATICNS RECUIREC FCR CCHhVERGENCE OF IRELA 96C
97: BYE LUWNWARCTFLOW TS, 15Y REVAT9TVE T T

98 RETURN RELA 98C

993 END __RELA 999
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1: FUNCTION FUNCH(Z) FUNC 1C
22 P1=3.1415926 FUNC 20
3:___ . FUNC=C.C12%COS(Z¥PL1/0a04) . FUNC_ ¢
41 RETURN FUNC 40
52 END FUNC

£0
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PI=3,1415926

CEPIV=C.3sPI%SIN(Z#PI/0.C4)

RETURN
END
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C PROGRAM FOR DETERMIMAYION OF PROFILE OF CONDENSATE ON FLUTED TUBELMAIN "l0 -~~~ "~ 77 .77
[ - AS WELL AS HEAT TRANSFER COEFFICIENT AND DCWNWARD FLOW RATE. MAIN 20
C - SUBROUT{NE GREGOR DETERMINES THE PROFILE AND HEAT TRANSFER COEFF- MAIN 30
c ICIENT,BASED ON IMPROVEMENTS OF THE GREGORIG METHOD MAINTT 40 -
C SUBROUTINE RELAX DETERMINES THE DOWNWARD FLOW RATE, BASED ON THE MAIN 50
o THO-DIMENSIONAL POISSON EQUATION MAIN 60
TC 7 FUNCTION FUNC IS THE EQUATION OF THE SOLID SURFACE™ "7 T MAIN 70" T T
c FUNCTION DERIV 1S THE SLOPE OF THE SOLID SURFACE MAIN 80
C  DELTA THE SIZE OF THE (SQUARE) DIFFERENTIAL DISTANCE ELEMENTMAIN 90
co T s FOR CALCULATION OF THE DOWNWARD FLOW RATE. (INCHES) ™ MAINTLOO ™~ 7~
c DELT THE TEMPERATURE DRIVING FORCE BETWEEN THE STEAM AND MAIN 110
C THE METAL SURFACE (DEGREES F) MAIN 120
TCTTTTTRHOT TTHE DENSITY OF THE CONDENSATE "{G/CC) ™™ 77777 "7 7" """"MAIN 1307~~~
C MU THE VISCOSITY OF THE CONDENSATE (CENTIPOISE) MAIN 140
c K THERMAL CONDUCTIVITY (BTU/Z(HR FT*%¥2 F)/FT) MAIN 150
TCTTTTLAMDAT T T HEAT OF VAPQRIZATION (BTU/LBY ~— 7777/ 777 THAINTI6OTT T T T T T
C SIGHA SURFACE TENSION (DYNES/CM) MAIN 170
c RO RADIUS OF CURVATURE AT PEAK (INCHES) MAIN 180
C 7T HMINTTTT "INITIAL ESTIMATE OF THE LIQUID HEIGHT AT THE PEAK (INIMAIN 190 — 7~ 77°
C NEXP 0.1 IS RALSED TH THIS POWER TO DETERMINE THE STEP SIZEMAIN 200
C : FOR ESTIMATES OF THE HEIGHT HAIN 210
TTCTTTTTKEY T T 7T DETERMINES THE TYPE OF ROOT SOQUGHT-="""""" T "7 TTTTTUMAINT220T T T
C 0 LOWER ROOT - : MAIN 230
C 1 UPPER ROOT MAIN 240
TUCTTT T T T TTTTTTTT2T N0 CONVERGENCE TSOUGHT TMAINTR2507T T T T
[ - - MAIN 260
DlNcNSION AH(11) MAIN 270 :
- TCOMMON/BLOCKH/AH T 77 - T T T T T TIMAIN 280 T T
COHMON/BLCCKU/U(105,78) MAIN 290
REAL NUMBY,LAMDA,K MAIN 300
T 7 COMMON/BLOCKY/NUMBY[12YY 7~ - T TUTTTMAINT3LIG T T T T
COMMON/BLOCKG/VXU1L), - VOS(11),VDPHI{11),VPHEI(11),VOM({L1), MAIN 320
C1VRN{11),VOPSI(11),VvPSI(11) - . MAIN 330
- COUBLE PRECISION OH ~ Y 7% £ i 2+
EXTERNAL FUNC,DERIV MAIN 350
REAL MU,M . MAIN 360
T T T U READT ‘5114) AMP PERIDD DELTA - e T T T T MAIN’370-————-—-—-—-—-—_~
14 FORMAT (3F10.0) MAIN 380
READ (5,415) LAMDA,K SXGMA RHO,MU MAIN 390
- 15 FORMAT (5F10.0)° T T T T T T T T T MAN 600‘___~__~___4_”m
SIGMA=SIGMA%XQ, 0001837 . MAIN 410
K=K/3690. MAIN 420
T T MU=MUS0.000671969 Y o 7: 1 £ B 1
RHO=RHO*62.42621 MAIN 440
READ {S5,1) RO,HMIN,NEXP,KEY,DELT MAIN 450
1 FORMAT (F10.0,F10.0,12,12,F4%.0) TTTTTTTTTTTITTUUTMALIN 460 T T
12 DH=10.0%%{-NEXP) ’ MAIN 470
CALL GREGOR (RO,RHO,MU,M,HMIN, DH,DELTA DELT KEY.PERIUDyLAMDAu MAIN 480
#KSIGMAY . - MAIN 49g ~ - ——
WRITE (6,750} MAIN 500
750 FORMAT (1X,'THE VERTICAL FILM THICKNESS IN UNITS OF DELTA ALONG', MAIN 510
#*' THE SURFACE IS?) MAIN 520777 77
WRITE (6,7511 NUMBY MAIN 530
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o 54 751 FORMAT (1X,20F6.0) ) MAIN 540
553 WRITE (6,10) DELY o - oo T MAIN S50 7~ 7 777 77
563 10 FORMAT (2X,!TEMPERATURE DRIVING FORCE IS *',F5.0,' DEGREES F') MAIN 560
e . 57: ~ WRITE {6,2) RO,M . MaIN 570
583 2 FORMAT (2X,°'THE TOTAL MASS CONDENSED FOR A PEAK RADIUS OF %, MAIN 5807 7T 7T T
59: 1'CURVATURE OF',2X,F8.6,2X,'15's€L1.4,2X,POUNDS PER SECOND PER *, MAIN 590
I -\ 1 21FQ0T?/) MAIN 600
61: " RHO1=RHO/144.0 ~ TTTho T T T TT e T T e s MAIN 610 —— T U
623 6X=32.174 MAIN 620
e .83  HRITE (6,3) o _ o MAIN 630
643 T3 FORMAT (6X,'%2,9%X, 0S5, 8X, TDPHI "y 8X, 'PHT ¥, 8Xy YHY, LIXPDM?,9X,  "MAIN 6407 T
653 #'Rn'.ex,-opsx',7x.-psx') MAIN 650
. -t 00 6 I=1,11 MAIN 660
67s T8 HRITE (645) VX(I), TTTTTUVDSIE Y S VDPHICE Y S VPHILT Y AR LY, VOMUT Y, T TMAIN 670 T 7T T
63 LVRN{ L), VOPSTE(T),vPSIIT) MAIN 630
69: 5 FORMAT (2X,9E1l.4) ~ o _____ MAIN 690
703 CALL RELAX{MU,RHOLl,GX»FLOW,DELTA,AMP) MAIN 700 -
Tis RATE =FLOW*RHOL*¥14%4.0 MAIN 710
e 723 WRITE (6,7) FLOW,RATE o MAIN 720
: 73: 7 FORMAT (2X,*VOLUMETRIC FLOW RATE=',Fli.7,FT#%3/SECY/2X, *WEIGHT, MAIN 730~ 7~~~ 77777
T4: 2" PATE QF,FLOW=",F11,7,°L8/SEC*} MAIN 740
e s: _ HTC= M#510.0%3600.0%12.0/PERICD/DELT o e MAIN 750
16t WRITE (6,8) HTC MAIN 7607 T
778 8 FORMAT (2X,*THE HEAT TRANSFER COEFFICIENT IS',F10.0, MAIN 770
e e YB&____ __ &% BTU/HR/FT®®R2/FM) o e MBAINTBO_
79: CALL EXIT MAIN 790 -
803 END MAIN 800
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T T TTTTTTS 1 T T SUBROUTINE GREGOR (RO, RHM,MU,M,HO,0H,DELTA,DELT,KEE, =" —" """ “"GREG '10 ~ "~~~
2: $PERIOD,LAMDA,K,SIGMA) GREG 20
e 3: ¢ . GREG 30
TT 43 TCT TTUMT T RATE OF CONDENSATION LB/(SEC EY) T TTTTTTIITTTITTIITTTTIOT GREG TAQTTTTT T T T
5: ¢ s DISTANCE ALONG SURFACE INCHES GREG 50
) 6: C DELM  CHANGE IN M LB/(SEC FT) GREG 60
TUUTTTOTTTTTTIUTTUUpr €0UTTUDELS CHANGE INS ENCHES T TTTTT T STTTTIIIm oo oo st s TS GREG QT T
8: € DELT  TEMPERATURE GRADIENT DEGREES F GREG 80
9: C H HEIGHT OF LIQUID [NCHES : GREG 90
TTTTTTTITTITTTT 4037 €7 TT K TTT THERMAL CONDUCTIVITY  BTU/Z{SECTFT#%2 FJJFT T T U GREGTIOQTTTTTT T
11: ¢ LAMDA  HEAT OF VAPDRIZATION BTU/LB GREG 110
12: ¢ RHO DENSITY LB/FT#%2 GREG 120
T TTIUTTTTTIOT 3T UMY T VISCOSITY  LB/UFT SECY TTTTT ~ GREG 1307 S
163 ¢ SIGMA  SURFACE TENSION POUNDALS/IN GREG 140
15: ¢ PSI ANGLE RADIANS GREG 159
TTUTTTITTTTTTTTT 16T C TTTRA T T RADIUS OF CURVATURE OFTMETAL SURFACETTINCHESTTT T T GREG 140 -
17: ¢ RN RADIUS OF CURVATURE OF CONDENSATE [INCHES GREG 170
18: C THETA  ANGLE RADIANS GREG 180
TTTTTSTTTRSISTT=o9:rt €T XT C DISTANCE ALGNG PTPE CIRCUMFERENCE T INCHES ™™ 7TTTTTTTTTUGREG 190 T T T T
20: C ITER ITERATION COUNTER FNR ENTIRE SUBROUTINE LIMITED TO 40 GREG 200
21 € DSRN  DISTANCE ALONG OUTSIDE SURFACE OF CONDENSATE INCHES GREG 210
TIUTTTITTTTTTUTT 2237 €777 X2 T U x—-POSITION OF FREE SURFACE CORRESPONDING TO POSITION™ T T GREG 2207 T
23: € X+DELX ON THE METAL SURFACE GREG 230
241 C X1 LAST VALUE OF X2 GREG 240
ST Tttt vt gsrt T X0 x-POSITION OF NEXT POSITION ON THE GRID USED TQ DETERMINE GREG 250~ — ==~~~
263 C THE DOWNWARD FLOW GREG 260
27: ¢ Y2 Y-POSITION OF X2 GREG 270
TUUTTTTT T T t28: €T T YL T LAST VALUE OF Y2 TS T T s otn TUTTGREG 280 T
29t ¢ Yo Y-POSITION OF X0 GREG 290
30: € DIFF DISTAMCE FROM CENTER-LINE TO THE POINT ON THE FREE SURFACEGREG 300
e § P bl 113 DISTANCE BETWEEN NEW POINT ON METAL SURFACE AND CENTER ~~~GREG 3107~~~ — 7" =~
32: C LINE INCHES GREG 320
331 ¢ GREG 330 ‘
TOTTTTTTTT T T Taas T TTTUREAL LAMDAZMU,K, N T T T T T T T e e e e e T T T GREG T340 T T T T S
35: COMMON/BLOCKG/VX (11}, VDS{L1),YDPHI{11),VPHI{11),VOM{11}, GREG 350
_ 363 LVRN(11),VDPSI{L1),vPSI(11) GREG 360
A Y £ TTDIMENSION AH(11) ~ T T TTTTITTTmmimmmemmss e mmi s ST GREG 370 T T
383 COMMOI/ BLOCKH/ AH GREG 380
_ 39: REAL NUMBY GREG 390
T 40: T 777 7T COMMDN/BLOCKY/NUMBY {121 77T TTT TS T T e T T T GREG 400
413 DOUBLE PRECISION DH,DHO GREG 410
42: ITER=0 GREG 420
TN T T 43 T PI=3.14159265 ~ W7 "TTT TTTTTTTIOTITIT T oo n T TTUGREG 43007 T
441 DHO=HO GREG 440 :
. &3 _ Dx=0.0001 _ L o GREG 450
462 73 DHO=DHO+DH T e Y L
47z HO=DHO GREG 470
481 X1=0.0 GREG 480
TTTT T 49 B 2 1 1 GREG 490~ T~
503 1Y=2 GREG 500
L . 51 NUMBY (1)=HO/DELTA 40.5 GREG 510
52: X0=DELTA | TLT T T T T s T T T T GREG 5207 T
53: WRITE 16,815) X, THETA;HsM(PSI,DIFF,DPSI,HO GREG 530
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- 542 815 FORMAT (2X,8El4.7) ) GREG 540
- 552 ITER=[TER+1 T e ) 3 T 31 ] -
563 IF (ITER.GT.40) CALL EXIT GREG 560
T £ T } ) e GREG 570
58:  C TINITIALIZING THE VECTORS TO BE SAVED ’ T 7T GREG s80T T T 7T
59: € ] GREG 590
60 pol03 1=l,12 © GREG 600
61: T Tyx(0)=0.0 - - - - T T T T T T GREG 8107 T TTTT
62¢ VDS{1)=0.0 GREG 620
e 633 U NDPHI(II=0.0 L GREG 630
643 VPHI(1)=0.0 " GREG 640 T
65¢ VOM{1)=0.0 GREG 650
66 __  NRNID)=0.O0 B o ) GREG 660
67: voPsSI{1)=0.0 TTTTGREG 6TO0 T T
682 VPSI(11=0.0 . GREG 680
.89 103 AHWID)=0.O0_ e . _._. _GREG_ 690
70: ¢ GREG 700 -
71: € SETTING THE INITIAL VALUES OF PARAMETERS GREG 710
e T2 G e e i ... GREG 720
73 RN=RO GREG 730 — T T
T4z EX=0.0 GREG 740
5% __ . THETA=0.0_ _ . . GREG 750
762 PS1=0,0 " GREG 760 T
77: H=HO GREG 770
1B _____ _AH(L)=HO _ __ o . __GREG 780
79: $=0.0 TGREG 790 T T T T T T
80: M=0.0 - GREG 8GO0
e BMr =0 . . I, GREG 810
822 X=0.0 GREG 820 T
83: 1=2 GREG 830
. .B&% C_ o R . GREG 840
85: C FINDING DELS "7 GREG 850 T T
86: C GREG 860
o . 87:  __ 2 BX=X . GREG 870
88: J=J+l GREG 880 T T 7
89¢ P1=FUNC{X) “ GREG 890
. 80: . _P2=FUNCIX+DX) ) e GREG 900
91: DELS=SQRT{{P2~P1)**2+DX*DX) TTGREG 910 T T T
92: ¢ GREG 920
93t C ___ FINDING THE ANGLE ON_THE METAL SURFACE S4EPT BY DELS (DTHET) _ _ GREG 930
94: C . GREG 940~~~ T T
952 D1=DERIV(X) GREG 950
863 _ . D5=DERIVIX+DX) e GREG 960
972 IF {D1.£0.0.0) D1=0.000001 ’ T OGREG 90T T T T T
98: IF {D5.£Q.0.0) D5=0.000001 GREG 980
e $9: 100 DIHET=ATAN(1.0/D1)-ATAN (1l.0/05) __ . __ . _____ . _ . GREG 990
100: AT=DTHET GREG1000 T
101: ¢ GREG1010
1023 ¢ _ . CHECK TO MAKE SURE THAT ARGUMENT OF LOG FUNCTION IS NON-ZERO ~~ GREGL020
103: € GREGLO30 ~~~ T T TTUT
104 IF (AT.€Q.0.0) GO TO 307 GREG1040
. . 10s: TEST=AT#H/DELS+1.0 L . . .. GREGLOSO
1063 C GREG1060 ~ ~— T T 7T
107: C CHECK TO MAKE SURE THAT ARGUMENT OF LOG FUNCTION IS NGT NEGATIVE GREGLO70
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113:
1142

‘1153

1162
117:
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1253
1262

124t

127:

128:
1293

131
132:

‘1337
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135:

1308 7T
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1367

137:
138:¢

139:

140
141:

T 1423

1432
l44:

“145:

1462
1472

1482

149:
150
151:
152:
153:
154:
155:
156:

L
¢
c

157:

1582
159:
160:
1613

301

Qoo

T 304

oo

309

_....JMPROVING THE ESTIMATE OF DSRN

T OTX2=X+H*SINITHETA+DTHET) ©

TTTCHECK TO SEE IF H

111

IF {(TEST.LE.0.0) GO TO 73
DELM=K#DELT®AT/LAMDA/ALOG{AT*H/DELS+1.0])
GO TO 308

DELM=K*DELT/LAMDA/H*DELS

HHG=H¥%*3
M=M+DELM

INITIAL ESTIMATE OF CHANGE [N DISTANCE ALONG FREE SURFACE DSRN
THIS IS DONE TO GET AN ESTIMATE OF DELH, WwHICH MUST BE USED IN

DETERMINING THE ACTUAL VALUE OF THE DISTANCE ALONG ThE FREE ™77~

SURFACE

DSRN=DELS+AT*H
RAN=1.0/RN=3 .0 MURMEDSRN/ {HHG*RHO*STGMA )}
IF {RAN.EQ.0.0) RAN=0.G00GOL

‘RQ =1.0/RAN ~ 77 7 T T
RS=RN

IF (RQ.LT.0.0.AND.RN.GT.0.0) RS=RQ
CPSI=DSRN/IRS+RQ)*2,0 ~— =~ ~ 777 "7
[F {RN.LT.0.0) OPSI=DSRN/ (RN+RQ)*2.0

DELH=DSRN*{SIN(THETA-PSI+0,5%(DTHET-DPSI 1) /SIN({PI+DPSI)/2.0~DTHETGREG1290

$+PSI-THETA))

DSRN=SQRT{DELH**2+DSRAN*¥ 22, 0*DELH*DSRN*COS({PI+DTHET)/2.0))
RAN=1.0/RM=-3 .0*MUSM¥DSRN/ {HHG*RHO*SIGMA}
RO=1.0/RAN - oo e e T
CPS[=DSRN/(RS+RQ)*2,.0

IF (RN.LT.0.0) DPSI=DSRN/(RN+RQ)#2.0
‘DELH=DSRN*SIN{THETA-PSI+0.54{CTHET~-DPST) }/SIN((PE+DTHET)/2.0)
H=H+DELH

IS H NEGATIVE--IMPOSSIBLE

IF (H.LT.0.0) GO TO 73

Y2=FUMNC{X)+H*COS{THETA+DTRET)~FUNC(X2}

IF (Y2.LE.H) GO TO 78
IF (X2.LT.X0) GO YO 303 — ~
Y2=FUNCUX)+H*COS{ THETA+DTHET) ~FUNC(X2)

FINDING THE LOCUS OF THE FREE SURFACE IN THE GRID USED FOR-
INTEGRATION OF OOWNWARD FLOW
TIF (ABS(AT).LT.E-8.AND.THETA.EQ.0,0) GO TO 309~~~ ~—7°7°
YO=(Y2-Y1)%(X0-XL)/{X2~X1)+Y}
NUMBY (I1Y)=YO/DELTA+0.5
GO0 TO 310
NUMBY (1Y )=H/DELTA+0.5

IS THE SHORTEST DISTANCE TO THE METAL SURFALE

PAGE 3
GREGLO80
GREG1090
GREGL1100
GREGL110

TGREGLI20T T T T
GREGL130
GREG1140
GREGL15Q ™ "~ 7T T T
GREG1L60
GREGL170
GREGLYLBO ™ T
GREGLI1930
GREG1200
GREG1210~ Tt T
GREG1220
GREGL230

T TTTTGREGL240 “" T

GREGL250
GREG1260
TGREGL270TTTTTTTTT T
GREG1280
GREGL3QQ ™~ T
GREG1310
GREG1320
GREGL33Q ™~ T T o
GREG1340
GREGL350
GREGLI360 ——
GREGL370
GREG1380
GREGI390 " — T o
GREG1400
GREG1410
"GREGL420™ T T T
GREG1430
GREG1440
GREGLA50 ™~ T
GREGL%460
GREG14T0
TGREGL480 T T TS
GREGL490
GREG1500
GREGIS10 ™~ T
GREG1520
GREG1530
GREG1540™ -
GREG1550
GREG1560
" GREGISTO
GREGLS580
GREG1590
GREG1600 ~
GREG1610



_192:
194:

196+
197:
198:
199:
203:

202z
2C3:

193:

_201%

1992

310

" X0=X0+DELTA

18

171

“172
174

173

1307
1308

"GO TO 174

TRQ=1.C/RAN

[y=1Y+1

GO TO 304

PAGE 4

GREGL620
GREGL1630 ~
GREGLS40
GREG1650

THIS IS WHERE YOU GO IF THE SHORTEST DISTANCE TO THE METAL SUQFACEGREGIébO

1S ALONG AN X=CONSTANT LINE
P2=FUNC{X2) o
DELS=SQRT{{P2~PL}*%2+{X2—-X)%#%2)
D5= DERIV(X2)

H=H=-DELH =~ 777
H=AMINL{H,Y2)
M=M-0ELM

TIF (DL.EQ.O.0.AND.DS5.EQ.0,0) GO TO 171

If (D5.€0.0.0.AND.DL.NE,0.0)} GO TO 172
DTHET=ATAM(1.0/01)-ATAN{1.0/05)

DTHET=0,0

GO TO 174
DTHET=-THETA ~

AT=DTHET

IF {AT.EG.0.0) GO FO 1307

TEST=AT*H/DELS#1.0

IF {TEST.LE.O.0) GO TG 173
DELM=KsDELT#AT/LAMDA/ALOGITEST)
GO 10 1308

TEST=1, 0~AT#H/DSRN
DELM=-K#DELT=AT/LAMDA/ALOGITEST)

TGREG184GT

GO TO 1378
CELM=K*DELT/LAMDA/H#DELS
HHG=H#*3 .
DSRN=DELS+AT#H

RaN=1,0/73N-3, 0%M4U*MeDSRN/ {HHG*RHO#S IGMA)

1IF (RANLEQ.D.0) RAN=0,000001

RS=RHM

IF (RC.LT.0.0.AND.RN.GT.0.0) RS=RQ
TOPSI=DSRN/IRSHRQIX2.0

[F (R%.LT.u.0) DPSI=DSRN/{RN+RQ)I*2.D
" OclHs=
$+PSI-THETA)}
DSAN=SLRT(DILH%=#2 +DSRN=%2-2

RQ=1.0/RAHN
DPSI=0SRI/(ASHRQI*2.0
IF {XRN.LT+0.0) DPSI=DSRN/ (RN+RQ)*2,0

UELH=DSRNESTN{ THETA~PSI+0.5%{DTHET-DPSI) }/SINUI{PI+DTHETIZ2.0)

H=H+DELH

X=X2

GO TO 3J4

DIFF=PERIOD-X-H*SIN{ THETA+DTHET)
RN=RQ

Yi=Y2

X1=X2

DS (SINITHETA-PSTI+0.5% (DTHET-DPST ) /SIN((PI+DP51)/2.0

«O*DELH¥DSRN*COS{{PI+DTHET)/2.G))
RAN=1.2/PAN-3.5#MU%M*DSRN/ (HHG*RHO*SIGMAY

GREGL17507

‘GREGLIBTO

‘GREGLY93)

GREG2uSD

T GREGZL8) T

 GREG213D

GREG1670
GREG1 680
GREG1690
GREGL 700
GREGL710
GREG1720
GREGY T30
GREG1740

GREG1760
GREG1770
GREGL780
GREG1790
GREG1800
GRZIG1B10™
GREGL82V
GREG1830

GREGL 850
GREG1360

GREGLBEG
GREGLBSD
GREGL9H0
GREGIY 10
GREG1920
GREG1940

GREGLYSD

GREGLIEI

GREGLITV

GREG198)

GQEGZLUD

»=-DTHc TGREG2519D

GREGZL 20
GREG2G3D
GREG2L 40

GREG2. 6
GREG24 70 L

GREG2C9D
GREG2130
GREG2112
GREG2122

GREGZ140
GREG2150
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PAGE 5
c GREG2160
C ~ T LOADING VECTORS - . oo T GREG2170
c GREG2180
IF {J.NE.1} GO TO 300 GREG2190
vX{11=Xx o e 1 7 Vs A —
VDS (1}=DELS GREG2210
VOPHI(1)=DTHET GREG2220
T UPHICL)=THETA oo T T TS St GREG22307TTTTT T
VOM{1)=DELM GREG2240
VRN{L)=RN GREG2259
T T NDPSIA L) =DP ST T T T T S T e e T T GREGR 2GS T
VPSI(L)=PSI GREG2270
c GREG2280
€T 77T HAS THE CENTER LINE BEEN REACHED ST TTTGREGR290TT T
c GREG23uD
300 1F (DIFF.LE.0.O0} GO TO 7% GREG2310
TUUUEYEsL-Y T T T T - ; T T T GREGRB2Y T T T
PX=EYE#*PERIOD/ 1040 GREG233D
DSX=ABS(PX-X) GREG2342
e Y o 1-{T 7 11 R
c LOADING VECTORS GREG2360
¢ GREG23 70
T TTTTTIR(DSXLG6T.DX/2.0) 60°TT 99 T ; TSI T GREGR2380 R
VX 112X GREG2390
VDS{ 11=DELS CREG2490
TTUUWOPHIT)=DTHET 7T T I T I s s s T T T GREGRA 10T T T T
VPHI( [)=THETA GREG2420
VOM[1)=DELM GREG2430
TUYRN{II=RN T T TTT oo - T - GREG2440™ T
VOPSI{1)=0PSI GREG2450
vPSI(1)=pPSI GREG2460
B 1 T e 1.1 229 £ B
I=1+1 GREG2480
c GREG2490
€ T RESETTING PARAMETERS 7~ o T T T T T T GREGRS00TTT T T
c GREG2510
99 THETA=THE TA+DTHET GREG2520
T T PSE=PSLeDPSE T T - - TTTTTT T T GREGR2533 T T T
S=S+DELS GREG2540
X=X +DX GREG2550
T T T T S e T T GREGR56) T T T
c WAS MINIMUM ON FREE SURFACE REACHED TOO SOON GREG2570
c GREG2580
T T TR (PSTLLT.=-0,0001) 60 TQTYSTT T T TTIITIIIT qmm T e e GREGRS90 T T T T
DOX=X~PER GO +DX GREG2600
__IF {0DX.LT.DX/2.0) GO TO 2 GREG2610
60 TO 223 ' [ T GREG26207TT T T
72 IF (KEE.EQ.2) GO TO 73 GREG2630
c GREG2640
'C T HALVING THE INTERVAL BETWEEN SUCCESSIVE APPROXIMATIONS OF THE ™7  GREG2650 ~~7~ "~~~
c PEAK FILM THICKNESS GREG2660
GREG2670
DHO=DHO-0H T T oo T e TTTT T T GREG2680° T TITTTTITT
DH=DH/2.0 GREG2690
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GO TO 73 _ GREG2700

T ” U ’ T T GREG2710 ~—~ -
WAS MINIMUM ON FREE SURFACE REACHED TOUO SOON GREG2720
o L . _GREG2730
IF (PSI.LT.~0.0001) GO TO 75 GREG2T740 T T
GREG2750
_ WAS MINIMUM ON FREE SURFACE REACHED TOO LATE ' GREG2760

GREG2T70
IF (PSI.GT.0.00061) GO TO 76 GREG2720
_6o 10 10 e . . e GREG2790
T T TTITT T T GREG2890
WAS MINIMUM ON FREE SURFACE REACHED TOO LATE GREG2810
o L . GREG2B20
IF (PSI.CE.0.0001) GO TO 76 T GREG2830 — T T 7
IF (ABS(PSI).LT.0.90C01) GO 7O 10 GREG2840
GO T T3 i GREG285O
If (KEE.EQ.0) GO TGO 73 GREG2860
GO T0 72 GREG2870
IF (KEE.EQ.0) GO TO 72 I . _  GREG2B8O
GO TO 73 GREG2890 T 77T T 77
WRITE {6536) HO. GREG2900
FORMAT (2X,E)5.8//7) . e .. GREG2910

RETURN . ] TGREG2920°
END GREG2930




T FLOW IS THE INTEGRAL OF THE DOWNWARD FLOW RAT

[aNs¥eNeNaNeRuNeNeRel

7 COMMON/BLOCKY/NUMSBY(121)

TTCMEGA=1.9

TTT ut1,41=0.0 7

"'5 ERROR=0.0
T X=0.0

T T SETTING SYMMETRY BOUNDARY

Ut n=uts, Iy

oo con
{

e utloz,1)=ulloo,1) T

TTIF (1.EQ.2) GO TO 8

__ DETERMINING FREE AND METAL SURFACE BOUNDARIES

[aNeXg]

(sl eNaNaNal

g 115

SUBROUTINE RELAX(MU,RHO,GX,FLOW,DELTA, AMP)Y ™7

USES SUCCESSIVE-OVER-RELAXATIUN 7O DETERMINE THE OOWNJARD FLOW

T RATE
OMEGA IS THE ACCELERATION PARAMETER

JMIN IS THE POINT IMN THE FLUW REGION NEAREST THE METAL SURFACE

JMAX IS THE FREE SURFACE

ERROR IS THE FRACTIONAL CHANGE OF THE VELOCITY FROM ONE ITERATION RELA

TO ANOTHER

g s e

REAL NUMBY,MU

COMMON/BLOCKU/UI105,78)
P1=3.141592653

. INITIALIZING U'S TO ZERO

00 7 I=1,105
DO 7 J=1,178

KOUN=1
_ICOUNT=1

SETTIMNG ERROR AND INTEGRAL OF OOWNWARD FLOW TO ZERD

FLOW=0.0
ICOUNT=ICCUNT#1

o0 6 1=1,78

‘CONDITION AT PEAK

SETTING SYMMETRY BOUNDARY CONDITION AT VALLEY

Co 1 1=2,101
KEY=2

Y1=FUNGC{FLOAT{[-1)#DELTA) +AHP+NUMBY (I-1)
 Y2=FUNC(FLOAT(I-2)#DELTA) +AMPNUMBY(I-2)
MAGNITUDE GF THE SLOPE DF THL SURFACE IS GREATER THAN OR
THE DERIVATIVE BUUNDARY CONDITION MUST INVOLVE

1F THE
EQUAL TO 1/2,

THEN KEY=1.

PAGE 1

TRELA
RELA
RELA
RELA
RELA
RELA

" RELA

10 o

20

30
40~

50

60
g e e

80

RELA 90
TRELATICO T T T T

RELA 110

RELA 120

TTUTTTT UUURELA 130 T T

RELA 140
RELA 150
"TRELAT1I60
RELA 170
RELA 180
T RELA1IGO TTTTTTTICTIOTOT
RELA 200
RELA 210
RELA 2207 77777
RELA 230
RELA 240
T'RELA 2507 7 7 T
RELA 260
RELA 270
TRELA 280 7T T
RELA 290
RELA 300

TTRELA IO T T

RELA 320

RELA 330
TRELAT340 T T T

RELA 350

RELA 350

RELA 37077 777

RELA 380

RELA 390
TTRELA 400 77

RELA 410

RELA 420

o RELA 430 "~

RELA 440
RELA 450
RELA 7460
RELA 470
RELA 280
"RELA 490 7T T
RELA 500

RELA 510

RELA 530

POINTS wrilCH ARE NOT ON THE SAME VERTICAL COLUMN. " IF THIS IS TRUERELA 520 =7~ 777"



PAGE 2
542 C RELA 540
- 5532 T SLOPE=({Y2-Y1)/DELTA ) RELA 550 —~
561 IfF {SLOPE.GE.0.5) KEY=1 RELA 560
_ ) _ 57: 8 JIMIN=(FUNC(X)+AMP)/UELTA+1.5 RELA 570
58: JHAX=JMIN+IF X INUMBY (1-1)) RELA 580 7T~
591 IF ([.EQ.2) JMAXL=JMAX RELA 590
80z IFf (JMAX.GT.JMAXL) JMAX=JMAXL RELA 600
s1: JMM=JHAX+Y T T T T T T RELA 610~ ~ — 77777
623 IMN=JMAX-1 RELA 620
83T JM=JMINsL S e RELA 63D
64t IF (JM.GTJMN) GO TO 10 T ORELA B4Q T T T T
65: C RELA 650
. 66: C_ CTHIS IS THE ACTUAL RELAXATION tgoOP RELA 660
67t C . - TTRELA 6T T T T T
68 DO & J=JM,JIMN RELA 680
Y > 1 C UESUL |, J)+OMEGAR({ 0. 25% (GX *DELTA®®2/MUXRHC+UII~1,J)+UlI+1,J)¢ RELA 690
70: SULTJd-11+UL1,3+10))-UlI,3)) RELA 700 T T
713 ERROUR=AMAX1(ABS{{UE~U{I53))/UZ),ERROR) RELA 710
T2 CIF (J.EQ.IM) GO TO LY . RELA T20
733 FLOWSUE*DELTA®%2/144.0+FL 0N RELA 730~ 7T
742 G0 TO 4 RELA 740
o _75% . _ 11 FLOWRUE*DELTA¥%2/28B.0+FLOW e _RELA 1?50
76: & Ull,J)=UE RELAT7607 T
77:. 10 ULL,3M4M)=U{1,JiN) RELA 770
e 783 IF (KEY.EQal) UCI,IMMI=UlI=1,JMN} _ RELA 780
79 J=JMAX RELAT790 T oo
80: C RELA 800
81t C___ THIS STAGE CALCULATES_THE VELOCITY OF THE FREE SURFACE ___ _ __ RELA 810 __
82: € RELA 820 T
83: UE=U{ 14 J)+CGMEGAR{ 0. 25*{GX*DELTA®¥ 2/ UPRHO+U{I-1 S +U{I+L,J)+ RELA 830
e 841 R VIS FREA N EAUI S SIS R R ENTE D PN D B S o RELA 840
85: ERRCR=AMALL(ABS{(UE-U{1,J1)/UE),ERROR) T RELATSSQ0TT T T
86 FLOW=UE*DELTA%%2/288,0+FLOW RELA 260
R - £ U N RUE _ RELA 870
883 1 X=X+DELTA RELA 880~~~ T U
893 IF (KOUN.LT.10) GO TO 3 RELA 890
e 90: . WRITE (6,9) ICOGUNT,ERROR_ e RELA 500
91 9 FURMAT (2X,15,E15.8) TTRELATQIOTT T T T T
92: KQUN=0 RELA 9290
e 93: _ 3 KUUN=KOUN+1 o e __RELA 930
943 If (ERRQOR.GT.0.001) GO TO 5 RELA 940 T
a5 HWRITE (6,2) ICOUNT RELA 959
TS 2 FCRMAT (2X,'THE NUMBER OF ITERATIANS REQUIRED FOR CONVERGENCE OF TRELA 960
- 97: #HE DOWNWARD FLOW IS',I5) ) TORELATS0TT 7T T
983 RETURN RELA 980
99: _END __ RELA 990

116
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PAGE 1

S & FUNCTION FUNC(Z) T oo I TTTTT 7 FUNC 10 T 77
H P1=3.1415926 FUNC 20
H FUMNC=0.012%C0OS(2%P1/0.04) FUNC 30
T o TTTT T4 7 ) RETURN o e 4 V1 T
: END FUNC S0
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PAGE
; : FUNCTION DERIVIZ) T - DERI™ 10 ~~ 7~ -
: PI=3.1415926 DERI 20
. 33 _ DERIV=0.3%PI*SIN(Z#P1/0.04) . DERI 30
: RETURN DERI ™ 40~ T T
: END DERI 50
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NOMENCILATURE

Area for heat transfer

Angle shown in Figure 8
Acceleration due to gravity
Conversion factor

Film thickness

Local heat transfer coefficient
Average heat transfer coefficient
Thermal conductivity

Rate of condensation

Pressure

Heat flow

Heat flow per unit area

s d

%

Radius of curvature of free surface
Radius of curvature of solid surface
Distance measured along solid surface
Time

Temperature

Velocity

Mass flow rate

Coordinate

Coordinate

Coordinate
121



greeck letters

é Angle in Figure 5

ASR Distance in Figure 11

AS;, Distance in Figure 10

AT Temperature driving force

AKX Change in distance along surface

A Latent heat of vaporization

/x Viscosity

P Density

< Surface Tension

_@' Angle see Figure 5

y/ Angle see Figure 5

o Acceleration parameter for relaxation
subscripts

n Represents horizontal position

jo) Represents vertical position

bq Coordinate direction

Yy Coordinate direction

z Coordinate direction

superscripts

n Result of nth iteration in relaxation
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