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ABSTRACT

Heat transfer coefficients on the condensing side of a heat exchanger 

can be markedly increased by designing the condensing surface to take 

advantage of surface tension. This is accomplished by using a waved or 

"fluted" surface. A mathematical model for the prediction of heat transfer 

coefficients on these surfaces was developed earlier, but the method of 

solution is poorly understood. In addition, the original model made some 

approximations which are either not necessary or else not accurate over 

the entire surface. These problems are alleviated in the modified model.

For the most part, the original and modified models predict heat 

transfer coefficients which are quite similar, but for distances far down 

the condenser, where the flutes are fairly full, the difference begins to 

become evident. The shape of the condensate profile is predicted by the 

two methods varies to some extent between the two methods as the flute 

fills.

The variation of heat transfer coefficient with the temperature 

driving force across the film was determined; and it was found that 

increasing the driving force caused a decrease in heat transfer coeffi

cient, since the steam condensed faster than it could run off. Despite 
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the fact that increasing the temperature lowers the surface tension, it 

also increases the heat transfer coefficient. This occurs because the 

increase in temperature also decreases the viscosity, and thus there 

is less resistance to flow.

Comparison of the predictions of the new model with experimen

tal data shows that, considering the spread of the data, the predic

tions are fairly good.

The effect of varying the dimensions of a sinusoidal flute on 

the heat transfer coefficient was determined. It was found that flutes 

with high, closely spaced peaks would greatly enhance the heat trans

fer; but the validity of the assumption of uniform temperature in the 

metal surface was questioned.

A comparison of the sinusoidal condenser profile with the GE 

Profile-9 surface indicated that the GE Profile-9 surface is less effec

tive than a sinusoidal surface.

A new surface profile was developed which would allow a much 

larger amount of liquid to flow downward in the trough than the sinu

soidal profile. This surface showed somewhat better heat transfer

than the sinusoidal surface.
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Chapter I

INTRODUCTION

When heat is exchanged between two streams, the transferred 

heat is q = UA(-AT). In order to increase the rate of heat transfer, it 

is thus necessary to increase the heat transfer coefficient, the area 

for heat transfer, or the temperature driving force. Of these three, 

the latter two are most generally used, although new ways of changing 

the heat transfer coefficient have been developed.

When one of the streams has a much higher resistance to heat 

transfer than the other, as in an air-cooled heat exchanger, it is often 

helpful to increase the surface area by adding fins along the side of 

the exchanger in contact with the high resistance stream.

The heat transfer coefficient may be increased in several ways.

Since the total resistance to heat transfer is made up of several resis

tances, the reduction of any of these is bound to improve the perform

ance of the equipment; but it is most helpful to adjust the largest 

contributors to the resistance. Since the wall is usually made of 

material with high thermal conductivity, its resistance is generally 

quite small compared to the other resistances. Naturally, fouling 

should be avoided; but in practice it is uneconomical to try to completely
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eliminate it, since this involves frequent shut-downs to clean the 

exchanger. Thus the main areas where improvement can be made and 

have a significant effect are in the regions surrounding the wall where 

the bulk of the temperature gradient lies. One means of improving the 

heat transfer is to decrease the thickness of these regions . When the 

fluid inside the tube has a high resistance to heat transfer, it has been 

found advantageous to use a helically twisted ribbon inside the tube to 

establish vortex shear-flow (1), (2). This obstruction in the tube 

increases the turbulence and thus produces more effective mixing and 

therefore decreases the effective thickness of the region where the 

temperature gradient exists. In addition, in two-phase flow such as 

evaporating sea water inside a tube, it has been found that the ribbon 

causes, by means of centrifugal force, the denser liquid to move to the 

outside, along the wall, while keeping the vapor in the center of the 

tube. Thus, besides causing additional turbulence, the system keeps 

the liquid near the surface. Since the liquid will transfer heat more 

readily than the vapor, this results in further enhancement of heat 

transfer.

For condensing-evaporating systems, one of the large resistances 

to heat transfer may be that of the liquid condensate film; There are, at 

present, three means of decreasing this resistance: spinning a horizontal 

condensing surface, promoting dropwise condensation, and fluting the 
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tubes . The first of these produces a centrifugal force greater than the 

force of gravity, thereby speeding up the rate at which the condensate 

is removed, and thus decreasing the film thickness. The disadvantage 

of this scheme is that it is relatively expensive, both in capital and 

operating costs. Dropwise condensation, which is often many times 

more efficient than filmwise condensation, can be promoted by coating 

the condensing surface with a hydrophobic film. However, it is difficult 

to maintain dropwise condensation over long periods of time.

The most promising means of changing the thickness of the con

densate film is by the use of vertically fluted surfaces, as seen in 

Figures 1 and 2. For a fluid system whose surface is curved, there is 

a pressure resulting from the surface tension which is inversely propor

tional to the radius of curvature of the surface. As predicted by Gregorig 

(3), surface tension causes a pressure gradient in the condensate film 

because the radius of curvature of the free surface is changing, so that 

there is flow away from the peak, where the high pressure exists, into 

the valley. This results in a thin film near the peak at the expense of 

increased thickness in the valley. Thus, although the surface appears 

somewhat similar to longitudinally finned tubes, the effect is quite differ

ent. In fact, the gain in heat transfer rate is greater than the gain in 

surface area. Even though the resistance to heat transfer is large in the 

valley (because of the thick film), the increased heat transfer in the peak
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section is great enough to result in a considerable net improvement over 

smooth tubes .



Chapter II

REVIEW OF EARLIER WORK

The first experimental work utilizing the surface tension to 

increase heat transfer were performed by Gregorig (3). He established 

that the condensing heat transfer coefficient was, indeed, improved by 

using fluted surfaces. He further demonstrated that the numerical 

method he worked out gave verifiable predictions of the heat transfer 

coefficient. Lustenader, Richter, and Neugebauer (4) performed experi

ments which showed that the heat transfer coefficient was a weak func

tion of the tube length, as predicted by Gregorig, but that at a suffi

cient length the heat transfer dropped off sharply. This was attributed 

to the fact that the valley became so full that there was no longer a 

significant curvature of the free surface, and hence no pressure gradient 

to act as the horizontal driving force for flow. Thus, material condensed 

at the peak tended to stay at the peak, which increased the film thickness 

in the important condensing region. This, too, was predicted by Greg- 

orig's model. An "optimized" surface configuration was used for these 

experiments, but no method was suggested for this optimization. In the 

discussion of this paper, Trefethen (5) noted that the pressure gradient 

would act on the vapor near the free surface, as well as on the liquid film

6
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thus forcing any non-condensible vapor toward the valley, where its 

effect would be minimized. In a later paper, Lustenader and Staub 

(2) presented data over a considerable AT temperature driving force 

range. Experimental data was presented by Carnivos (6) and Christ 

(7), which further demonstrated the great improvement in heat transfer 

coefficient that could be obtained by fluting the condensing surface. 

Christ's experiments were of special interest because they were essen

tially extensions of Gregorig's work, using the same surface configu

ration as Gregorig used. Carnivos (8) conducted experiments using 

doubly fluted tubes (that is, both the condensing and evaporating sides 

were fluted), and, while he did not measure the individual contributors 

(condensing and evaporating coefficients), determined that whether the 

flutes were in phase or out of phase with each other had little effect on 

the overall heat transfer coefficient.

Other work, by Thomas (9), (10), employed loosely attached wires 

and rectangular fins on the surface of smooth tubes to Increase the heat 

transfer. The basis for this work was, like Gregorig's, the fact that 

surface tension would cause an increase in thickness of the condensate 

film in one place while decreasing it at another location. In this case, 

the thick region was at the base of the fins or wires, while the film 

between the extensions was relatively thin. This surface was not an 

extended surface in the sense that regular finned tubes are, since the 
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wires and fins were loosely attached, thus allowing only negligible heat 

transfer from the fin to the tube. Most of the condensate was drawn into 

rivulets next to the fins, while the bulk of the condensation took place 

between the fins. Thomas found experimentally that the rectangular fins 

caused a greater increase in heat transfer coefficient than the wires, but 

concluded that this was due, not to the surface tension effects, but to 

hydrodynamic considerations for the downward flow.

recent work (11) used "dimpled" tubes, somewhat similar to the 

dimples on a golf ball, to enhance heat transfer (see Figure 3). This 

appeared to utilize surface tension to promote a semblance of dropwise 

condensation, in which the condensate was collected in the indentations. 

Apparently, however, the main influence on the heat transfer coefficient 

for this type of surface was on the evaporating side of the tube. (The tube 

was of uniform thickness, so that indentations on the condensing side 

corresponded to mounds on the evaporating side.) The dimples increased 

turbulence in the falling evaporating film; and, moreover, the film thick

ness along the mounds on the evaporating side was kept small by surface 

tension but was continually renewed by the falling film.

Theoretical Work

The original mathematical description of the effect of fluted surfaces 

on condensing heat transfer coefficients in vertical tubes was done by
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Gregorig (3). He broke the problem down into two parts. First was the 

problem of horizontal flow, which included condensation of vapor and 

movement of the condensate, through the influence of surface tension, 

into the valley of the flute. This determined the shape and thickness of 

the condensate profile along the flute. The horizontal flow problem was 

simulated by a one-dimensional flow equation, making use of steady

state and creeping flow assumptions. The boundary conditions, besides 

no slip at the wall and no shear at the free surface, were that symmetry 

in the condensate profile must be preserved at both the peak and the 

valley. The method for determining the profile was to begin at the peak 

and integrate the equation to the valley. Because one of the boundary 

conditions (symmetry) was at the center of the valley, the solution was, 

of necessity, trial and error and very laborious. Once the profile was 

found, the downward flow rate through the profile could be easily found 

by solving a two-dimensional Poisson equation numerically. Knowing the 

rate of condensation and downward flow rate for a pair of profiles, the 

vertical separation distance between them could be found by means of a 

mass balance. The experiments by Christ (7) showed that the Gregorig 

model resulted in good predictions, particularly when the trough was not 

filled. However, the method became less accurate as the trough filled.

As a suggested improvement, in order to eliminate the trial and 

error process involved in determining the profile, Markowitz, Mikic, and 
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Bergles (12) proposed a simpler method for determining the film thickness 

at the peak of the flute. The method broke the problem down into two 

areas: one where the film thickness was small compared to the radius of 

curvature of the metal surface (near the peak), and one where it was 

significant in comparison to the radius of curvature (in the valley). The 

assumption was made that the film thickness was practically constant in 

the trough. This assumption is not bad near the top of the tube, but as 

the trough fills it becomes progressively worse. An expression similar 

to the Nusselt (13) equation for determining the condensate thickness was 

developed to determine the thickness at the crest of the flute, using the 

surface tension-induced pressure gradient rather than gravity as the 

driving force. This method showed moderately good agreement with the 

single published point determined by Gregorig; but the predicted heat trans

fer was, in general, substantially different from experimental results deter

mined by Markowitz, et al (12). It was suggested in the paper that the 

experimental results might be in error to some extent because of the pres

ence of non-condensible gas in the feed steam; but, as has been mentioned 

earlier (5), this problem should be minimized by the fluted surface. This 

method, while clearly faster and easier than the original Gregorig method, 

seems to hold little promise, since the original method yielded much better 

agreement with experimental data. The fact that the predicted film was even 

fairly close to the Gregorig prediction appears to be coincidental, since the 
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peak film thickness predicted by Gregorig did not vary monotonically 

with pipe length, while this method predicted that it would.



Chapter III

DETAIL OF GREGORIG METHOD

Gregorig worked with a vertical condensing tube with a fluted 

surface similar to that shown in Figure 1. In deriving the original 

numerical method for determining the condensate film profile on fluted 

tubes, Gregorig first assumed that, as far as the horizontal (peak to 

valley of the flute) flow was concerned, the metal surface from the 

crest to the trough of the rill was flat (see Figure 4). This assumption 

enabled him to use a single equation of motion to represent the horizontal 

flow, rather than having to use a pair of coupled equations.

The starting point of the analysis is the x-component of the Navier- 

Stokes equation of motion:

,)y TUt T/^(^ (1)

Assuming that the flow is steady and slow, the acceleration terms (the 

left-hand side of equation 1) are negligible. Since gravity is in the 

z-direction, gx is zero. The film thickness varies slowly with the tube 

length, so the viscous term involving is small. In addition, since 

the film thickness is small, it is likely that will vary much faster with 

y than with x. Thus equation 1 can be reduced to

3 P _ AL 5 U-x (7\
ax ~ gc ay* 1 }

13
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Figure 4
Transformation of Curved Metal Surface 

to a Flat Surface
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The boundary conditions for the solution of this problem are: (1) no slip 

at the wall (implies that the velocity is zero at the wall) and (2) no shear 

at the free surface (implying that the velocity reaches a maximum here).

Integrating equation (2) and applying the boundary conditions.

(3)

Averaging Ux over the film thickness from y= 0 to y = h and rearranging.

3 P  3 Uz . (4)

The pressure resulting from surface tension is determined by the 

radius of curvature of the free surface:

p = pf; • (s)

The convective diffusion in two dimensions is
/; ST + >. dT _ _L_ r^T . 1
Ux ax ay "" cpyo L ' dy’J ‘ (6)

Assuming that -jy is negligible and Uy is small, equation (6) is reduced to

- 0 ■ (7)

However, the temperature varies much more rapidly in the y-direction 

than in the x-direction, so equation (7) maybe simplified to

d_L - 7) d y3- u " (8)

Integrating this once, the result is

(9)

However, the heat flux is defined in terms of the temperature gradient at 

the boundary (y = 0):
—

V kA (10)
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Since, according to equation (9),-|y is constant, the right-hand 

side of equation (10) must also be constant, thus equation (10) may be 

integrated to yield

(ii)

Or, defining Q =

• (12)

It should be noted that in obtaining equation (8), it was assumed 

that, for the purpose of heat transfer, the condensing surface was flat, 

rather than fluted, as was assumed for the flow equation in equation (2). 

However, it is not strictly true that the area for heat transfer is inde

pendent of the y-position, but it is instead wedge-shaped. The heat 

flow is essentially one-dimensional, but the direction of heat flow is 

not parallel at various x-positions . Equation (10) should allow A to be 

a function of y, rather than being constant.

Utilizing a heat balance and allowing mn to represent the rate of 

mass condensed per unit length per unit time between the peak of the 

flute and the position xn distance along the flute (see Figure 5),

Q - 7. ■ (13)

Setting equations (12) and (13) equal and integrating, assuming

that h is constant.

k (-AT) AX 
A (14)

The relation between m„ and UY is found by assuming that all Il
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flow is horizontal. Then one obtains

~ wxn •

Substituting equation (15) into (4), it may be seen that

At this point it is important to introduce the fact that the surface is 

not flat, but is instead curved in order to have a pressure gradient in 

the x-direction. To aid in notation, the symbol s is used to represent 

distance along the curved surface, where x was the distance along the 

flat surface. Thus equations (14) and (16) become

(17)

and 4? - • (18)

Assuming that h is constant over the interval, an assumption that

is valid for small steps, equation (18) is integrated and equation (5) is 

substituted in:
I _

T ‘a7-7^5^ll"zxs ' (19)
From Figure 5 it is clear that

(20)

and Ay - AS/r^ (21)

Equation (20) is used to find A0, the change in angle of the metal 

surface. However, this is not really necessary, since the shape of the 

metal surface is known. Thus the angle A0 can be found directly from the 

equation of the surface.
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In order to use equation (21), it is necessary to assume that the 

radius of curvature is constant over the interval As at the value Rn. 

However, as seen in Figure 5, it is clear that, since the two radiiof curv

ature and Rn+i do not intersect at the pivot point of Rn, but intersect 

close to the pivot point of Rn+i, it would be better to use Rn+p rather 

than Rn in equation (21). The use of Rn does not introduce a large error 

as long as the radius of curvature is fairly constant, but at some point 

along the surface the radius of curvature must go to infinity, reverse 

sign, and decrease rapidly, as the free surface goes from convex to con

cave. In this region, the use of Rn in equation (21) is not a good approx

imation.

As shown in Appendix 1,

' (22)

Then the change in h is given by

Ah -zM-A^Jas (23)

Equation (23) (together with the relation hn+^= hn +Ah) gives a film 

thickness which is likely to be greater than the actual thickness. The 

process used in finding a position on the free surface is to take equal

sized steps along both the free and solid surfaces, so that a position on 

the solid surface which is a distance s from the peak corresponds to a 

position on-the free surface which is likewise a distance s from the peak, 

when measured along the free surface. The actual film thickness should 
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be the shortest distance from a point on the free surface to the solid 

surface. Thus the thickness calculated by equation (23) will always 

be at least as large as the true thickness, and in the case where the 

trough is nearly full may be significantly larger than the true thickness.

The actual numerical procedure used in the original Gregorig 

method is:

1) Choose ho (film thickness at peak), Ro (radius of 

curvature of free surface at peak), and As.

2) Determine 40 from equation (20).

3) Determine 4m from equation (17) and set

m ,. = m + 4m n+1 n n

4) Determine from equation (21).

5) Find hn+1 (- hn + Ah) from equation (23).

6) Find Rn+i from equation (19).

7) Make another As step and go to step 2 . Continue 

to step off along the metal surface, calculating the 

film thickness at each point, until h goes negative 

(which is physically unrealizable) or Y goes negative 

(implying that the line of symmetry of the metal sur

face does not correspond to the line of symmetry of 

the free surface), or the line of symmetry in the 

valley is reached. If convergence has not been 

reached (ie, 'V+O at the line of symmetry), choose
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another value of ho and try again. The last two 

possibilities represent the satisfaction of the 

boundary condition that symmetry must be pre

served (that is, the slope of the free surface must 

be zero) at the center of the valley (the line of 

symmetry of the metal surface).

At this point Gregorig has determined the profile of the condensate 

film, but not the vertical position of that profile. At this point he states 

that relaxation is used to determine the downward flow rate, but does not 

go into any further detail as to method. The method used here is to begin 

with the equation of motion in the z-direction to determine the downward 

flow rate (see Figure 6):

4 (j _L I 1 S Uz. (24)

Neglecting the acceleration terms and assuming negligible pressure 

drop, equation (24) reduces to the three-dimensional Poisson equation 

e u I

However, Uz varies much more slowly in the z-direction than in

the x- and y-directions, so equation (25) becomes

"a"1" u-l _ _ /? foc\+ -Oy"x - • (26)

By using a Taylor series to represent Uz the finite difference approx

imations of the derivatives and may be found (14) as (see dx
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Figure 6
Fluted Surface Showing Coordinates for 

Downward Flow

v.) '‘"a

'‘-r1 

y .... .

-------- >x’
Figure 7

Grid System for Finite Differences
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Figure 7):

(AX)1 (2 7)

If the grid is uniform in both directions, AX and Ay are equal. Substitu

ting equations (2 7) and (28) into equation (26) and solving for U^, the 

result is:

Uy- t(U£<i/i + t/,-,,; + 4 U^., + ^<3. (mTI (29)

Using the successive over-relaxation technique for solution, in order to 

obtain rapid conversion.

The factor w is an acceleration parameter which varies from 1.0 to 2.0. 

A value of 1.0 for tu reduces equation (30) to equation (2 9) and results 

in slow convergence, while higher values bring about faster conver

gence, up to a limiting value of w, which varies with the system of 

equations and the boundaries. If a value of co is chosen that is too 

high, the system of equations will not converge. It was found that a 

relaxation parameter (uj) of 1.9 enabled convergence to be obtained in 

about 1/4 the number of iterations required for co =1.0. However, the 

system did not always converge for <o = 1.9, particularly when the film 

was very thin in the valley. This is probably due to the coarseness of

the grid (Ax = 0.0004). In these cases, co = 1.0 was used to obtain 

convergence.
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Once the velocity at each of the grid points was determined, the 

flow rate was found by integrating the velocity over the flow area.

In this way the downward flow rate for a known profile was deter

mined. Let the subscripts p and p + 1 represent the downward flow rate 

and rate of condensation (as determined above) for a given pair of pro

files. Further, let m represent the total rate of condensation over the 

entire flute. This is the same as the m used in equation (13), which 

deals with intermediate values of the rate of condensation at points 

along the flute. Then the vertical separation distance between the two 

profiles can be determined by the use of a mass balance:

(mp+mpdVA

In the case where the profile in question is the closest one to the top 

of the condenser tube, p = 0; and the value of mo is not known, while 

Wp = 0. However, the highest profile can be found thin enough that 

it should cause a negligible error if the position of this point is found by

Z = Wi/rA, (32)

Actually, the true value of z will be somewhat smaller than that found 

by equation (32), since the rate of condensation at the very top of the 

tube [m in equation (31)] is larger than m-^, but the distance found 

using equation is so small that the error is quite negligible.



Chapter IV

DEVELOPMENT OF MODIFIED MODEL

It is very simple to improve equation (20) in the original Gregorig 

method, since the metal surface's shape is known. Thus can be 

calculated directly, rather than calculating Rq and using the geometric 

approximation of equation (20) to determine it. The value of can be 

found by using Figure 8. Let Dj represent the slope of the surface at 

point 1 and D2 represent the slope at point 2.

Then - -taA-'U/D) (33)

= -tan'Cl/Da) (34)

thus ^0 - - tanVl/D^ + taA-X (lA). (35)

Equation (10),when integrated overx, yields

^fx-^XFzlx) - 77 J  k dx . (36)

Since the film thickness and thus the derivative is a function

/rlT\ of x, it becomes necessary to determine an average value of (-jy) in 

order to invoke the mean value theorem to integrate equation (36). Thus 

the integral may be changed to

^X->X+AX)= ' (37)

Now, provided that h is not changing very rapidly, it should be 

possible to use the value of h at x in equation (3 7) instead of an average

25
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Figure 8
Profile of Metal Surface Showing 

Determination of A0

Figure 9 
Deviation of Film Thickness as Determined 

by Gregorig from True Thickness
a actual length for heat transfer
b length used by Gregorig for

heat transfer
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h. However, the value of h used in equations (4) and (12) in Gregorig's

method is not determined rigorously. Clearly, if one represents d I 
ay by

^1, h must be normal to the condensing surface. However, in Gregorig's 
h

method, while the h calculated in equation (23) is approximately perpen

dicular to the surface for thin films (while the two liquid surfaces are 

nearly parallel), as the trough fills this value becomes less and less 

accurate. In addition, when the trough fills appreciably, the distance 

from the peak to the valley along the free surface is much shorter than 

the distance along the metal surface; so the integration step along the 

free surface is not associated with the proper portion of the metal surface, 

as shown in Figure 9. Since the film thickness for the horizontal flow 

should also be measured perpendicular to the surface, any improvement 

in the height for heat transfer should, likewise, result in an improvement 

in calculating the horizontal flow rate.

Since the area for heat transfer between the two lines representing 

the boundaries of the integration increment is not constant, but decreases 

as one proceeds from the free surface through the film, it is necessary to 

change equation (12). The volume under consideration is wedge-shaped, 

as shown in Figure 10.

The rate of heat transfer is

% ' ~ k S ’

where dA = (ah + b) dz.

(38)
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Figure 10
Actual Area for Heat Transfer

Figure 11
Distance along Free Surface Associated 

with A s on Metal Surface
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Then, making the substitution,

d - - k d Z (dk + b) d'h " (39)

Assuming that the temperature driving force is uniform and integrating, 
akdz (-AT) _ ,

' M(ah + b)-U(b). (40)

Since there is no subcooling,

b = AS .

d - 7 A mn d 7. (41)

or , _ a k (-at)/i
1, ph+ i“’ (42)

where a =

As shown in Appendix 2, the change in film thickness Ah may be 

calculated, as a first approximation, as

Ah - ,  
sin[^-(2f-A|Zf^(ir-l-Atf)] (43)

Equation (43) results in the calculation of the profile if the distance 

along the free surface increment is not affected by the change in film 

thickness. However, a change does occur, so it is necessary to make a 

further calculation (see Figure 11). From the cosine law,

ASr -- 7^-1 -2 Ah Asftn C05(2^^ ' (44)

A better approximation of Ah than equation (43) can now be found, 

using A sR as found in equation (44) and the law of sines:

Ak - H(A^-A^)J (45)

It has been found that when the radius of curvature of the free sur

face is changing rapidly, equation (2 0) does not yield an accurate estimate 
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of /X V , which is very important, since H7 is used to determine whether 

convergence has been obtained. Instead, it has been found that b 

can be better represented by

<s'9n cf ,46)

Rather than using A s in equation (19), it is now necessary to

use the free surface increment Asr, since the integration is performed 

along the free surface:

^114/ " i/a - 3/< rry.-H , r (47)

The numerical procedure for the new model is:

1) Chose ho, Rq, and A s .

2) Determine from equation (35).

3) Find Amn from equation (42) and set

Amn

4) Solve equation (19) for Rn+p using As^ = As +hA$ 

in place of As.

5) Obtain A'f' from equation (46).

6) Determine Ah from equation (43).

7) Get A Sj^ from equation (44).

8) Solve equation (47) for Rn+i-

9) Determine bXZ from equation (46).

10) Determine A h from equation (45).
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11) Continue to move along the surface until h goes 

negative, goes negative, or the center of the 

trough is reached. If convergence has not been 

reached, choose a different value of h and go 

back to step 2.

The method of determining the downward flow rate and vertical 

position of a given profile for the modified model is the same as that 

of the original Gregorig model.



Chapter V

NOTES ON THE TWO MODELS

The results of the predictions of the two models are, in general, 

of the same form. An important point of interest in the results is that 

the values of hQ associated with a given Rq are not necessarily unique. 

A plot of the relation between the two in a typical example is shown in 

Figure 12. This results in a variation in peak height as one proceeds 

down the tube that is not monatonically increasing, as one would 

expect, but oscillates, as in Figures 13-16. This unexpected behavior 

is probably fictional, a result of the computational scheme, although 

it is not clear what the source of the anomaly is. However, before dis

carding the method, it would be beneficial to determine the actual profile 

of condensate experimentally to make certain that the fluctuations do not 

actually occur in practice. As one closes in on the center of the spiral 

in Figure 12, which corresponds to the top of the condenser, the solu

tion becomes very sensitive to the value of ho that is chosen. However, 

after distances several feet down the tube, the solution may be largely 

insensitive to h .

It may be noted that the film thickness is generally not a minimum 

at the peak of the flute, but that the minimum occurs at a point along the 

side of the flute. This occurs because the radius of curvature of the 
32
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Peak Values of Radius of Curvature and Film Thickness

.012 .013 .014 .015
Ro (in)

Figure 12
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ho x 10^ (in)

Figure 13
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ho x 1()5 (in)

Figure 14
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ho x 105 (in)

Figure 16
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metal surface increases faster than the radius of curvature of the free 

surface. Since, in some cases, the radius of curvature of the free 

surface is tighter than the radius of curvature of the metal surface, it 

is unavoidable that the film thickness will decrease.

As with any finite integration scheme, the method is somewhat 

sensitive to the size of the steps used in integration along the flute. 

However, this dependence is not very strong as long as the steps are 

about 1% or less of the period of the flute.



Chapter VI

COMPARISON OF THE MODELS

The two models were compared for predicting the heat transfer in 

the condensate film on a metal profile (see Figure 17) of:

yr <9.012 + 0.01^ . (48)

Local heat transfer coefficients as functions of the vertical posi

tion in the tube for temperature driving forces of 2, 6, 9, and 18 degrees 

F are shown for the original and modified Gregorig methods in Figures 

18-21, and compared to those predicted by the Nusselt (13) equation. 

It may be noted that both methods predict that the heat transfer coeffi

cient decreases very slowly over most of the tube length, as opposed 

to the Nusselt prediction. This is a direct result of the effect of surface 

tension, which maintains a film thickness in the peak region which does 

not change substantially until flooding occurs. It is apparent that the 

original method predicts local heat transfer coefficients that are very 

close to those predicted by the new method near the top of the condenser; 

but, as the film thickness increases, the heat transfer coefficient deter

mined by the original method falls off much more rapidly. In addition, 

the sharp decrease in heat transfer coefficient, indicative of flooding 

the grooves, occurs appreciably earlier in the original method. The pri

mary difference between the two methods, the different means of measuring 
39
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the film thickness for heat transfer, would account for the difference 

between the two methods in the lower regions of the condenser, since 

the original method tends to predict more resistance to heat transfer than 

the new method. This is because the new method uses the shortest path 

through the film from a point on the free surface as the length for resist

ance to heat flow, while the original method uses a somewhat longer 

value for heat transfer. This discrepancy shows up most markedly as the 

trough fills. The two methods predict fairly close heat transfer coeffi

cients over most of the range of tube lengths because the effects of the 

different ways of measuring film thickness are muted by the fact that the 

difference shows up most markedly in the trough when it is fairly full. At 

this point, the local heat transfer contributes very little to the horizontally- 

averaged value, it being about two orders of magnitude smaller than the 

peak rate of heat transfer.

A comparison of the profiles predicted by the two models at a 

vertical position of about 0.2 feet from the top of the condenser may be 

found using Figure 22. It may be noted that there is very little difference 

between the two — the fact that the profile obtained using the original 

Gregorig method is slightly thicker than the modified result is accounted 

for by the fact that it is slightly farther down the condenser (0.024 feet), 

and thus the flow downward through it is greater. The most pronounced 

difference between the two methods, as noted in the discussion of the



Comparison of Condensate Profiles Determined by Gregorig and Modified Methods 
for ZiT = 18° at a Vertical Position 0.2 Feet Down from Top on Condenser
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Comparison of Condensate Profiles Determined by Gregorig and Modified Methods 
for AT = 18° at a Vertical Position 4.5 Feet Down from Top of Condenser
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heat transfer coefficients, occurs in the region where flooding occurs.

As seen in Figure 23, at a distance of 4.5 feet from the top of the 

condenser, there is a definite difference in the profiles. The modified 

method predicts a thinner film at the peak, with the free surface more 

nearly paralleling the condenser surface near the crest of the flute than 

does the original method. The film thickness near the center of the 

trough, then, must be thicker for the modified method in order to allow 

the condensate to run off. Since the whole concept of using surface 

tension to increase heat transfer is to reduce the film thickness at one 

point while increasing it at another, the result is that the modified model 

predicts that the heat transfer coefficient will be higher than does the 

original method. While this in itself does not appear significant, it 

would be possible to choose between the methods if the actual free sur

face were determined experimentally because of this difference in shapes.



Chapter VII

MODIFIED MODEL

The effect of changing the temperature driving force is shown in 

Figure 24 for the new model. Two facts are readily apparent; increasing 

the temperature driving force causes a decrease in the heat transfer coef

ficient, and increasing the driving force also causes flooding higher in 

the condenser. The first effect, that of lower heat transfer coefficient, 

is caused by the fact that the steam condenses at a higher rate than it 

can run off; and thus the film thickens as the driving force increases. 

Figure 25 shows the film thickness along the surface as a function of 

the driving force for a sample downward flow rate. It may be noted that 

the film at the peak is thinnest for the lowest AT and increases with AT, 

while the thickness in the valley is greatest for the low driving force and 

decreases for larger AT. The earlier onset of flooding with increased 

A T is also expected, since the higher the driving force, the more mass 

will be condensed, while the rate of vertical run-off is independant of 

A T except for the effect that changing the driving force has on the profile 

itself. Thus the liquid level should build up faster for a higher tempera

ture driving force.
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Comparison of Film Thicknesses for Same

Downward Flow (0.0000350 Ib/sec) at At = 2 and 18°F
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Figure 25
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Varying the operating temperature has the effect shown in Figures 

26 and 27. Increasing the temperature lowers the surface tension, but 

it also decreases the viscosity. It may be noted that the heat transfer 

coefficient increases with the operating temperature. This occurs because 

the viscosity, which influences both horizontal and vertical flows, allows 

for faster horizontal flow, since it offers less resistance, even though 

the pressure driving force (resulting from surface tension) is lower. In 

addition, the flute can drain faster because there is less viscous resis

tance. This enables depression of the flooding point to lower positions 

in the condenser by increasing the operating temperature. Thus increas

ing the operating temperature results in higher heat transfer coefficients 

and less danger of flooding the flutes. Increasing the operating temper

ature from 212°F to 300°F causes a depression of the flooding point to 

a position further down the condenser, and even in the region where the 

trough is only slightly filled, the heat transfer coefficient increases by 

about 15%. Decreasing the operating temperature to 100°F brings about 

just the opposite: flooding occurs earlier and the heat transfer coeffi

cient well above the flooding point is decreased by about 30%. It 

appears that the kinematic viscosity, which is used in determining the 

downward flow rate, is very sensitive to the operating temperature. The 

limiting factor in the heat transfer process for condensing steam appears 

to be the rate at which the condensate can run off, just as it is for
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Local Heat Transfer Coefficient as a Function of Operating Temperature
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condensation on a smooth surface, but the difference is that the heat 

transfer coefficient has been increased dramatically by fluting the sur

face . The fact that the downward flow rate is the limiting factor for 

heat transfer is borne out by a comparison of the sizes of the horizon

tal and vertical velocities averaged over the film thickness, as shown 

in Figure 28. It may be noted that, except near the peak, the horizontal 

velocity is several orders of magnitude smaller than the downward flow 

rate. Plots of the variation of horizontal flow rate with position along 

the flute are shown in Figures 28-32 for various vertical positions. 

Aside from the expected maximum in the middle of the flute and zero 

velocity at the peak and valley, the most notable phenomenon on the 

curves is the fact that there is a "plateau" on the curve for z = 0.034 

feet (Figure 28). This is a result of the fact that the radius of curva

ture of the free surface varies at a fairly constant rate in this region. 

In the other curves, the radius of curvature varies much faster, thus 

there is no.flat region in those curves.

Plots of the local heat transfer coefficient as a function of the 

horizontal position are shown in Figures 33-37. Clearly, the heat trans

fer coefficient starts high at the crest, decreases slowly, then increases 

sharply before dropping off quickly. This increase in coefficient is a 

result of the film's being thinner along the side of the flute than at the
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Horizontal Flow Rate Averaged Over Film Thickness as a Function of Position Along the Flute at z = .192 Feet
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Horizontal Flow Rate Averaged Over Film Thickness as a Function of Position Along Flute at z - 1.036



Horizontal Flow Rate Averaged Over Film Thickness as a Function of Position Along Flute at z = 5.777 Feet
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Local Heat Transfer Coefficient as a Function of Position Along the Flute at z = 0.192 Feet
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crest. It would definitely be helpful to have an experimental determina

tion of the film thickness to find out whether or not this decrease in film 

thickness actually does occur or whether it is merely an artificiality of 

the computational procedure. As one proceeds farther down the conden

ser, the increase in local heat transfer coefficient becomes larger and 

larger, and approaches the crest more and more closely.

The average heat transfer coefficient as a function of length for 

various temperature driving forces is shown in Figure 38. The curves are 

fairly similar to those for the local heat transfer coefficient, but are 

somewhat flatter; and the sudden drop resulting from flooding is less 

pronounced.

Figures 13-16 show the variation of the peak film thickness hQ with 

vertical position, and indicate that this thickness does not increase 

steadily, as one would expect, but seems to oscillate. This oscillation 

is due to the spiral relationship between the peak film thickness and the 

radius of curvature at the peak, as shown in Figure 12. This oscillation 

does not seem to be physically reasonable, and is almost certainly a 

result of the approximations made in developing the computational proce

dure. Because the horizontal velocity varies considerably from the peak 

to the valley, as shown in Figures 28-32, it is likely that the 

viscous term, which was neglected in going from equation (1) to equation 

(2), is, in fact, not negligible. This may be one reason why the pre

dicted film thickness varies unreasonably.
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Average heat transfer coefficient versus the temperature driving 

force as predicted by the modified method is compared to experimental 

data found by Christ (7) on 6 foot and 13 foot condensing tubes in Fig

ures 39 and 40. Considering the wide scattering of data, the calculated 

valued agree reasonably well with the experimental values, particu

larly for Figure 40 (13 foot tube), which includes more experimental 

data points.

The film profiles at various vertical positions are shown in Figure 

41. It may be noted that the film thickness is practically the same for 

all the vertical positions in the region near the peak, and that the 

primary difference between any two profiles is the point where the free 

surface begins to deviate seriously from a parallel to the metal surface.
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Condensate Profiles Determined by Modified Method for AT = 6°F

Figure 41



Chapter VIII

EFFECT OF FLUTE GEOMETRY

In order to determine the effect of changing the separation and 

depth of fluting, simulations were run using sinusoidal profiles with 

wavelengths of 0.02, 0.04, and 0.08 inches and amplitudes of 0.006, 

0.012, and 0.024 inches (see Figure 42). The results of these experi

ments are shown in Figures 43-48. Clearly, increasing the amplitude 

results in a higher heat transfer coefficient and a depression of the 

flooding point. This occurs because, when the amplitude increases, 

the valley deepens; so it is possible for more condensate to flow down 

in the trough. This leaves more of the surface covered by a thin film, 

which is conducive to improved heat transfer. As the amplitude in

creases, this assumption becomes less tenable. On the other hand, 

increasing the wavelength makes the surface much flatter; and there is 

less chance for surface tension to have an effect. Thus the heat transfer 

coefficient is decreased substantially, but there is little danger of flood

ing. In contrast, decreasing the wavelength causes a very great increase 

in heat transfer, but the flooding point occurs at substantially smaller 

values of z. It would appear that the limit on the shortness of the wave

length would be the same as was the limit on the size of the amplitude —

72



73

Amplitude

Wavelength

Figure 42
Profile of Fluted Surface Showing 

Amplitude and Wavelength
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can such a tube be manufactured? The most promising combination of 

these two modifications is increasing the amplitude and decreasing the 

wavelength, for even though flooding occurs fairly early, the heat trans

fer coefficient obtained for a surface whose amplitude is 0.024 and 

wavelength is 0.02 inches is about three times as high as that obtained 

for a surface whose amplitude is 0.012 and wavelength is 0.04 inches. 

However, the difficulty of manufacture of fine, deep flutes will, along 

with the earlier onset of flooding, limit the extent of this modification.

Experiments were made with a metal surface that approximated the 

General Electric Company's Profile-9 fluted tube, but scaled so as to 

have a wavelength of 0.04 and an amplitude of 0.012 inches (see Fig

ure 49). The results are somewhat unusual (Figure 50), in that near the 

top of the tube the film thickness at the peak is large, then decreases to 

a small value before flooding occurs. Because the radius of curvature 

of the metal surface (and thus that of the free surface for the film near 

the top of the condenser) at point A is large and positive, there is a pres

sure gradient from that point toward both the crest and the trough of the 

flute. This results in a thickening of the film at the crest, and the thin 

region of the film is from point A to point B (somewhere along the flute 

between A and the trough). As one proceeds down the condenser he finds 

that the film thickness at point A is nearly constant, but that the crest 

thickness decreases. The result is that when flooding is approached
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Figure 49
General Electric Profile-9



Condensate Profiles for General Electric Profile-9 Surface
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(that is, when the trough is full), the crest has a very thin film. Thus, 

improved local heat transfer is observed over a somewhat longer condens

er length than when the sinusoidal profile is used. However, the heat 

transfer coefficient associated with Profile-9 is significantly lower than 

that associated with the sinusoidal surface for most condenser lengths, 

as shown in Figure 51. From this experiment, it was found that rounding 

the peak was very advantageous, since that would greatly increase the 

size of the region of thin film and thus high heat flux.

Because the greatest impedance to good heat transfer is the rate 

at which the material can flow downward (keeping in mind the relative 

sizes of the horizontal and vertical velocities, as shown in Figure 28), 

it was felt that an improved condensing surface would, of necessity, 

allow for greater run-off. In keeping with the note made in discussion 

of the Profile-9 results, it was thought necessary to use a curved sur

face at the peak, one whose radius of curvature was steadily increasing. 

Thus the profile shown in Figure 52 was designed. The film profiles 

obtained from this surface are shown in Figure 53. It may be noted that 

the thickest part of the condensate film at high positions in the condenser 

is at the point where the slope of the solid is discontinuous, and thus the 

heat transfer occurs over both the peak and most of the valley for this con

figuration at these high vertical positions. The heat transfer coefficients 

found using this profile are compared to those using the sinusodial
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Figure 52
Improved Profile for Enhanced Condensation
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profile in Figure 54, and show that the new profile is slightly more 

efficient than the sinusoid.
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Chapter IX

CONCLUSIONS

The new model appears to be slightly better than Gregorig's model, 

in that it agrees somewhat better with experimental results. However, 

the same problem that is encountered in Gregorig's method is also 

encountered in the new method — the fact that ho, the film thickness 

at the peak of the flute, is not a unique function of Ro, the radius of 

curvature of the free surface at the peak.

Optimization work shows that increasing the amplitude and decreas

ing the spacing between flutes causes the greatest sustained increase in 

heat transfer. It is found that the widely-used GE Profile-9 surface does 

not yield heat transfer coefficients as high as does the sinusoidal profile, 

primarily because the film thickness is large at the peak of the profile. 

The profile developed as an improvement on the sinusoidal and GE 

Profile-9 surfaces, which has a curved peak and a large area for down

ward flow, produces heat transfer coefficients which are somewhat better 

than the other profiles, with little danger of flooding the grooves.
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Chapter X

RECOMMENDATIONS

The next stage in the development of a mathematical model for 

steam condensing on fluted surfaces should be the solution of the more 

complete equations of motion, including at least the viscous term.

It would be helpful, in view of the fact that deep, closely-spaced 

flutes are predicted to be best, to eliminate the assumption of uniform 

temperature driving force.

Experimental determination of the film thickness along the flute 

would be beneficial, since it might point the way toward further improve

ments in the model.
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Appendix 1

Derivation of Equation 22
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Appendix 2

Derivation of Equation 43
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Appendix 3

Computer Program for

Original Gregorig Method
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PACE 1

1: C PAIN 1C
2: C PRGG-lA.v FCR OETERMNATICN CF PRCFILE CF CL'MCFNSATF ON FLUTED TUBE,^"A IN 20
3: C AS WELL AS HEAT TRANSFER COEFFICIENT ANC CCWNWARC FLOW RATE. MAIN 30

C SUBROUTINE GREGOR DETERMINES THE PROFILE AND HEAT TRANSFER COEFF- MAIN 40
5: C ICIENT,BASED ON THE GREGCRIG METHOD MAIN 50
6: C FUNCTIG’i FUNC IS THE EGUAIICN OF THE SOLID SURFACE PA IM 60
7 : C FUNCTION CERIV IS THE SLOPE OF THE SOLID SURFACE PAIN 70
8; C SUBROUTINE RELAX DETERMINES THE DOWNWARD FLOW RATE, BASED OM THE MAIN ec
9: C TWO-DIMENSIONAL POISSON EQUATION MAIN 90

10: C DELTA THE SIZE OF THE (SQUARE) DIFFERENTIAL DISTANCE ELEMENTMAIN ICO
11: C FOR CALCULATION OF THE DOWNWARD FLOW RATE. (INCHES) MAIN 110
12: C DELT THE TEMPERATURE DRIVING FORCE BETWEEN THE STEAM AND MAIN 120
13: C THE METAL SURFACE (DEGREES F) PA IN 1 30
14: C RhO THE DENSITY CF THE CONDENSATE (G/CC) MAIN 140
15: C MU THE VISCOSITY OF THE CONDENSATE (CENTIPOISE) PA IN 150
16: C RO RADIUS OF CURVATURE AT PEAK (INCHES) PAIN 160
17: C HMIN INITIAL ESTIMATE OF THE LIQUID HEIGHT AT THE PEAK (IN)MAIN 170
18: c NEXP 0.1 IS RAISEC TH THIS POWER TO DETERMINE THE STEP SIZEMAIN 180
19: c FOR ESTIMATES OF THE HEIGHT MAIN 190
20: c KEY DETERMINES THE TYPE OF ROOT SOUGHT— MAIN 2C0
21: c 0 LOWER ROOT PA IN 210
22: c 1 UPPER ROOT MAIN 220
23: c • 2 NO CONVERGENCE SOUGHT MAIN 230
24: DIMENSION AHI 11) MAIM 240
25: CCVMuN/BLOCKH/AH PA IN 250
26: CCHMC\/6LCCKG/VX(U), VDSI 11>,VCPHI( 11),VPF11 11),VDMI 11), MAIN 260
27: 1VRNI 11>,VDPSI(11),VPSI ( 11) PA IN 2 70
28 : REAL NUMBY MAIN 280
29: CCMMC1/BLCCKY/NUMBY(121) PA [N 290
30: CCMMC‘./BLCCKU/U (105,68) MA IN 3CC
31: DOUBLE PRECISION OH MAIN 310
32: EXTERNAL FUNC.DERIV PAIN 320
33: REAL .vU#f?.,K,LAMOA MAIN 330
34: WRITE 16,751) PAIN 340
35: 751 FORMAT <2X,'ORIGINAL GREGORIG METHOD USED') PAIN 3 50
36: yKEY=O MAIN 36C
37: REAU (5,14) AMP,PERIOD MAIN 3 70
38: 14 FORMAT (2F10.0) MAIN 380
39: READ (5,3) DELTA PAIN 390
40: 3 FORMAT (F10.0) HA IN 4CC
41: READ (5,9) DELT main 410
42: 9 FORMAT (F4.0) MAIN 4 20
43: READ (5,15) LAMOA.K,SIGMA PAIN 4 30
44: 15 FORMAT (3P10.0) MA IN 440
45: S IC-MA=S I GM A »0. TOO 18 37 MAIN 450
46: K=K/3600. MA IN 46G
47: REAU (5,1) RHO,MU,RO,HMIN,NFXP,KEY PAIN 4 70
48: 1 FCRVAT (F1C.O,F5.O,F1O.D, FID.C,12,12) MA IN 48C
49: rU=MU*9.0C067l969 MAIN 490
50: RHC=RHC*62.42621 HAIN 5CC

.. .. . 51:... 12 CF=IO.O»»(-NEXP) PAIN 510
52: CALL GREUCR (RC,RHO,MU,M,W,HMIN,DH,DELT A,CELT,KEY,MKEY,PER IOC, MAIN 52C
53: #LAMCA,K,SIGMA) PAIN 5 30
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PAGE 2

5R: WRITE (6,750) NUMBY MA IN 5AD
55: 750 FCRPAT (1X,2OF6.O) PAIN 550
56: IF IPKEY.EC.l) GO TO 11 PA IN 56C
57: WRITE (6,10) DELT PAIN 5 70
58: 10 FCRPAI (2X,1 TEPPERATURE DRIVING FCRCE IS ',F5.0,' DEGREES F' ) PA IN 580
59: WRITE (6,2) RO,M PAIN 590
60: 2 FORPAT (2X,'THE TOTAL PASS CONDENSED FOR A PEAK RADIUS OF PAIN 6C0
"61: " 1" 'CURVATURE OF • ,2X,F8.6,2X, ' I S C11.4,2X, 'POUNDS PER SECOND PER 'f , "PA 61ff
62: 2'FCOT'/) PAIN 620
63: RI101 = RHO/1A4.0 PAIN 630
65: GX=32.174 PAIN 640
65: CO 6 1=1, 11 PAIN 650
66: 6 WRITE (6,5) VX(I>, VOSt I ) ,VCPHI ( I > ,VPHH I ), AHI I ), VCM! I ), MA IN 660
67:" IVR'rm ) ,VDPSr( I f, VPSI ("1 I ' ..... ........... • ’ PAiM 670
68:
69:

5 FCRPAT <2X,9E11.4)
CALL RE LA X(NO,RHO1,GX,FLOW,DEL TA,ANP)

PAIN 
PAIN

6 80 
690

70: RATE =FLCW»RU0l*144.0 PAIN 7CC
71: WRITE (6,7) FLOW,RATE PAIN 710
72: 7 FORPAT (2X,'V0LUPETRIC FLCW RATE=•,Fl1.7,'FT»»3/SEC'/2X, 'WEIGHT', PAIN 7 20
73: 2' RATE OF FLCW= ' , Fl 1 . 7,'L8/SEC 1 PAIN 730
74: HTC= K»97C.0*3600.0*12.0/PERICD/DELT PAIN 740
75: WRITE (6,8) HTC PAIN 750
76: 8 FORPAT (2X,'THE HEAT TRANSFER COEFFICIENT IS'.FIO.C, PA IN 7c J
77: $■ BTU/HR/FT/F') PAIN 77G
78: IF (KEY.EC.0) GO TO 13 PA IM 78C
79: IF (KEY.EC.2) CALL EXIT PAIN 793
80: KEY = O PA IM 8C0
81: GO TO 12 PAIN 810
82: 13 KEY=1 PA IN 820
83: GO TO 12 PAIN 830
84: 11 KEY = O PA IN 84C
85: PKEY=O PAIN 85 J
96: GO TO 12 PA IN R60
87: END PAIN 870
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1 C GREG 10
2 SUBRCUTU.E GREGOR(RO,RHC.f'U,M,W,HC,CH,CELTA,CELT,KEE,MKEY, GREG 20
3 $PFRIuD,LA.uCA,K,S!GM) CREG 33
4 C CELH = CHANGE IN M LB/ISEC FT) GREG 40
5 C DELS = CHANGE IN S INCHES GREG 50
6 C DELT = TEHI'ERATURE GR.1DIENT DEGREES F GREG 60
7 C H = HEIGHT GF LIOUID INCHES GREG 70
8 C K = THERMAL CONDUCTIVITY BTU/ISEC FT*»2 FI/FT GREG 80
9 C RHO - DENSITY LB/FT»»3 GREG 90

10 C HU = VISCOSITY LB/IFT SEC) GREG ICO
11 C LAMDA=HEAT GF VAPORIZATION 8TU/L8 GREG UC
12 C P=RATE OF CGNOENSATION LB/ISEC FT) GREG 120
13 C PSI = ANGLE RADIANS GREG 130
14 C RA= RADIUS OF CURVATURE OF METAL SURFACE INCHES GREG 140
15 C RN = RADIOS OF CURVATURE CF CONDENSATE INCHES GREG 150
16 C s=oista:;ce ALONG SURFACE INCHES GREG 160
17 C SIGMA = SURFACE TENSION OY.NES/CM GREG 170
18 C THETA= ANGLE RADIANS GREG 180
19 C X= DISTANCE ALONG PIPE CIRCUMFERENCE INCHES GREG 190
20 C ITER = ITERATION COUNTER FOR ENTIRE SUBROUTINE LIMITED TO 40 GREG 200
21 C DIFF = DISTANCE FROM CENTER-LINE TO THE POINT GN THE FREE SURFACE GREG 210
22 C GREG 220
23 REAL LAMOA,MU,K,M GREG 23G
24 C0M>.'0N/8LCCKG/VX( 11), VOS I 11 > ,VDPHI( 111 , VPHI I 11) ,VDM( 11) , GREG 24C
25 IVRNI 11),VCPSII 11) ,VPSI111) GREG 25C
26 CIMENSION AHI 11) GREG 260
27 COMMCN/BLCCKH/AH GREG 2 7C
28 REAL S'UMQY GREG 280
29 C0MHCN/8LCCKY/NUM8YI 121) GREG 290
30 DOUBLE PRECISION OH.DHO GREG 303
31 I TFR = O GREG 310
32 PI=3.14159265 GREG 320
33 DH0=HC GREG 3 30
34 CX=0.0001 GREG 340
35 73 OH(j = OHO + DH GREG 350
36 HO=CHO GREG 360
37 X1:0.0 GREG 3 70
38 Y1:HO GREG 380
39 IY=2 GREG 390
40 NUM8YI1)=HC/DELTA >0.5 GREG
41 xc=celta GREG 4 10
42 LRITE (6,815) X,THETA,h,H,PSI,DIFF,DPSI,HO GREG 420
43 815 FORMAT (2X.8E14.7) GRFG 4 33
44 iter=iter+i GREG 440
45 IF I ITER.GT.4G) CALL EXIT GREG 453
46 C GREG 46C
47 C INITIALIZING THE VECTORS TO BE SAVED GREG 470
4 8 C GREG 4 8C
49 DO IE 3 1 = 1,11 CREG ^90
50 VX(I)=0.0 GREG 5CC
51 VDSII) = 0.C GREG 510
52 VDPHII I)=0.0 GREG 520
53 VPHII I 1 = 0.C GREG 533
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54: VDM(1>=0.0 GREG 54C
55: VRM<I)=0.0 G^EG 550
56: V0PS1(I)=0.0 GREG 560
57: VPSt < I) = G.C GREG 570
58: 103 AH(1)=0.0 GREG 580
59: C GREG 570
60: C SETTING THE INITIAL VALUES CF PARAMETERS GREG 6CC
61: C GREG 6 10
62: RN = RO GREG 620
63: W = 0.0 GREG 630
64: EX=0.0 GREG 64C
65: THETA=0.0 GREG 650
66: PSI=0.0 GREG 660
67: F = HO GREG 6/C
68: AH(1)=HO GREG 680
69: S=0.0 GREG 690
70: P=0.0 GREG 7CC
71: J = 0 GREG 710
72: X = 0.0 GREG 720
73: 1 = 2 GREG 730
74: C FINDING DELS GREG 740
75: 2 BX=X GREG 750
76: J=J+1 GREG 760
77: P1=FUNC(X>- GREG 7 70
78: P2=FUNCIX+CX) GREG 780
79: CELS=5CRT<(P2-P1)**2+OX*DX) GREG 790
80: C GREG 8CC
St: C FINDING THE ANGLE UN THE METAL SURFACE SkEPT BY CELS ICTFET) GREG 810
82: C GREG 820
83: C1=DERIVIX) GREG 8 30
84 : 02=7.5*PI*»2«C0S(X»PI/0.04) GREG 840
85: IF (C2.E0.C.C) D2=0.00C0Cl GREG 850
86: RA=(1.0t01**2)*»L.5/ABS(C2) GREG 860
87: IF (X.LE.C.02) GU TO IOC "GREG 8 70
88: 05=0ERIV(X+DX> GREG 880
89: IF (C5.EC.C.0) 05=0.000001 GREG 890
90: D4=7.5*PI**2*CCS((X+CX)«PI/0.04) GRFG 9CG
91: RA=-(l.GtC5»»2)*»1.5/ABS(D4) GREG 910
92 : ICC OTHET=DELS/RA GREG 920
93: DPSI=OELS/RN GREG 930
94 : OELM=K»CELT»CELS/LAMCA/H GREG 940
95: M=M*DELM GREG 950
<96: RAN = 1.0/RN-3.C*MU»M»DELSZ (H»*3<=RH0»S I GPA ) GRFG 960
97: IF (RAN.EC.0.0) RAN=0.000001 GREG 970
98: RN=1.0/RAN GREG 980
99: F=h+ ( I THETA-PSI ><-0.5*(OTHET-DPSI ) >»DELS GREG 990

ICO: C GREG1CC0
101: c IS H NEGATIVE—IMPOSSIBLE GREG 1010
102: c GREG1C2C
1C3: IF (H.LT.0.0) GO TO 73 GREG1C30
1C4: X2=X*H«SIMIhETA+DTHET) GREG1C40
105: 304 IF tX2.LT.XC) GO TO 303 GREG1050
1C6: Y2 = FUNC(X)+H»COSI THETA*CThET)-FUNC(X2) EG 1C 6U
107: c GREG1070
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ICR: C FINOIMG THE LOCUS OF THE FREE SURFACE IN THE GRIC USEC FCR CPEG1C80
1C9: C INTEGRATICN OF UO’.IHRARD FLOW GREG1Q90
110: C GREG11C0
11L: YG=(Y2-Y1)«(X0-X1>/(X2-X1)+Yl GREG1110
112: NUFBYlIY)=YO/DELTAtO.5 GREG 1120
113: IY=IYtl GREG1130
114: XO=XO+OELTA GRFG114C
115: Y1 = Y2 GREG1153
116: GO TO 304 GREGU60
117: 303 C IFF = PEk IOO-X-H*S I fi ( THETA tOTHET) GREG1170
118: IF (J.NE.l) GO TO 300 GREG11E0
119: C GREG1190
120: C LOADING VECTORS GREGI2C0
121: C GREG1210
122: VXI1)=X GREG 1220
123: VDSl1)=DELS GRC-G12 3O
12'.: VDPHI(1)=DTHET GREG1240
125: VPHI(1)=THETA GREG1250
126: V0M<1> =delm GREG I 260
127: VRMI1)=RU GREG1270
128: VDPSI(1)=CPSI GREG1280
129: VPSII1)=PSI GREG1290
130: C GREG13C0
131: C FAS THE CENTER-LINE BEEN REACHED GREG1310
132: C GREG1320
133 : 300 CIFF=PERICC-X-H*SIN(THETA) GREG1330
134: IF (DIFF.LE.O.O) GO TO 74 GREG1340
135: EYE=I-1 GREG1350
136: PX=EYE»PERIC0/10.0 GREG1360
137: CSX=ABS(PX-X) GREG1370
138: IFt0SX.GT.DX/2.0) GO TC 99 GREG138O
139: c GREG1390
140: c LOADING VECTORS GREG14CC
141: c GREG1410
142: VXII)=X GREG142C
143: VOS I I ) = DELS GREG1430
1AA: VDPHII I)=DTHET GREG1440
145: VPHII II^THETA GREG1450
146: VDRI I ) =OELI' GREG1460
147 : VRNII)=RN GREG1470
148: VDPSII I)=DPSI GREG1480
149: VPS I I I) = PSI GREG1490
150: AHI I)=H GREG15CC
151: I--M GPEG1510
152: c GREG1520
153: c RESETTING PARAMETERS GREG1530
154: c GREG1540
155: 99 THETA=THETAtCTHET GREG1550
156: PSnPSt+OPSI GREGL560
157: S=StDELS GREG1570
158: X=X*DX GREG1580
159: c GREG1590
160: c FAS MINIMUM ON FREE SURFACE REACHED TOO SCON GREG16L0
161: c GREG1610
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 162: IF (PSI.LT.-O.OOOl) GO TO 75    GKEG1620 

163:" COXix-PER ICO + DX ’ " - -- - - - "GREG1630
164:
 165:

IF (DOX.LT.DX/2.0) GO TO 2
GO TO 223

GREG1640
GREG1650

166: 72 IF (KEE.EQ.2) GO TO 73 GREG166J
167: C GREG1670

 168: C(HALVING THE INTERVAL BETbEFN SUCCESSIVE APPROXIMATIONS OF THE GREG1680
169: C PEAK FILM THrCKNESS ' GREG16"9J*
170: C GREG17C0

 171:CHn=DHn-DH GREG1710
172: DH=DH/2.0 GREG 1'7 20
173: GO TO 73 GREG1730

 174: C GREG1740
175: C WAS MINIMUM ON FREE SURFACE REACHED TOO SCON GREG1750
176: C GREG1760

 177: 74IF (PSI.LT.-C.0001) GO TO 75 GREG1770
178: C GREG1780
179: C WAS MINIMUM ON FREE SURFACE REACHED TOO LATE GREG1790

 180: C GREG18C0
181: IF (PSI.GT.0.0001) GO TO 76 CREGigiiT"
182: GO TO 1C GREG1820
 183: C GREG1830

184: C WAS MINIMUM ON FREE SURFACE REACHED TOO LATE GR8G1840
185: C GREG1850

 186: 223IF (PSI.GE.C.CCG1) GC TO 76 GREG1860
187: IF (ABS(PSI).LT.0.0001) GO TO 10 GREG1870
188: GO TO 7 3 GREG1880
189: 75 IF (KEE.EC.O) GO TO 73 GREG1890
190: GO TO 72 GREG19C0
191: 76 IF (KEE.EC.O) GO TO 72 GREG1910

 192:GO TO 73 CREG1920
193: 10 WRITE (6,36) HO GAEGrOTO
194: 36 FORMAT (2X,E15.8//) GREG194C

 195:RETURN GREGW50
196: 80 MKEY=1 GRL-G1960
197: IF (KEE.EC.2) GO TO 73 GREG1970
198: RETURN GREG1980
199: ENO 

 

   

■GRCG1990
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1: SUBROUTINE RELAX 1 MU,RHC,GX,FLOW,0ELTA,AMP) RELA 1C
2: C RFLA 20
3: C USES SUCCESS IVE-0VER-RELAXATI UN TC DETERMINE THE COWNWARC FLOW RELA 30

c RATE ReLA 40
5: c OMEGA IS THE ACCELERATION PARAMETER RELA 50
6: c JMIN IS THE POINT IN THE FLOW REGION NEAREST THE METAL SERFAGE RELA 6 3
7: c JMAX IS THE FREE SURFACE RELA 70
8: c ERROR IS THE FRACTIONAL CHANGE OF THE VELOCITY FROM ONE ITERATION RELA 80
9: r. TO ANOTHER RELA 90

10: c FLOW IS THE INTEGRAL OF THE COWNWARC FLOW RATE RELA 100
ll: c RELA 1 10
12: REAL NUM3Y,MU RELA 12C
13: COMMON/BLGCKY/NUMBYt121) RELA 130
1A: CGMMO‘|/HLCCKU/U( 105.78 ) RELA 140
15: PI = 3. 141592653 RELA 150
16: CMEGA=1.9 RELA 16G
17: c RELA 170
18: c INITIALIZING U'S to zero RELA 180
19: c RELA 190
20: CO 7 1=1,105 RELA 2C0
21: 00 7 J=l,78 RELA 2 10
22: 7 U(I,J > =0.0 RELA 220
23: KOUN=1 RELA 230
24 : icount=i RELA 240
25: c RELA 250
26: c SETTING ERROR ANO INTEGRAL OF DOWNWARD FLOW TO ZERO RELA 260
27: c RELA 270
28: 5 ERRCR=0.0 RELA 28C
29: FLOH=G.C RELA 29-3
30: I COUNT=ICCUNT+1 RELA 3C0
31: X = O.C RELA 310
32: CO 6 1=1,78 •RELA 32C
33: c RELA 330
34: c setting symmetry boundary condition at peak RELA 340
35: c RELA 3 50
36: L(1,I>=U(3,I) RELA 36G
37: c RELA 370
38: c SETTING SYMMETRY BOUNDARY CONDITION AT VALLEY RELA 380
39: c RELA 390
40: 6 L <102,I)=U(100,I ) RELA 4C0
41: CO I 1=2,101 RELA 4 10
42: KEY = 2 RELA 420
43: IF I I.EG.2) GO TO 8 RELA 430
44: c RELA 440
45: c CETERHINING FREE AND METAL SURFACE BOUNDARIES RELA 450
46: c RELA 46C
47: Y1 = FUNC< FLOAT! 1-1 ) *DELTA )+A.MP+NUMBYI I-1) RELA 4 70
48: Y2 = FUNC (FLCAT I 1-2 ) «DELT A )+AMP i-NUMBYl 1-2) RELA 48C
49: c RELA 490
50: c IF THE MAGNITUDE OF THE SLOPE OF THE SURFACE IS GREATER THAN OR RELA 5:0
51: c ECUAL TO 1/2, THE DERIVATIVE BOUNDARY CONCITIUN MUST INVOLVE RELA 510
52 : c POINTS WHICH ARE NOT ON THE SAME VERTICAL COLUMN. IF THIS IS TRUERELA 520
53: c THEM KEY=1. RELA 5 30
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5'.: C RELA 540
55: SLGPE=(Y2-Y1l/DELTA RELA 550
56: IF (SLCPE.Ge.0.5) KEY=l RELA 56C
57: 8 JHI.N^IFU'lCIXI+AMPJ/OELTA+l.S RELA 570
58: Jf-V.x= Jf-I IF IXl WivBY ( 1-1 ) ) RELA 580
59: IF (I.EC).2) JMAX1=JMAX RELA 590
60: IF IJ"AX.Gr.JPAX1) JFAX=JMAX1 RELA 6C0
61: JMH=JMAX+l RELA 610
62: jylx=jyAx-i RELA 620
63: JM=J,MINM RELA 6 30
64: IF IJP.GT.JHN) GO TO 10 RELA 640
65: C RELA 650
66: C THIS IS THE ACTUAL RELAXATION LOOP RELA 660
67: C RELA 6 70
68: DO 4 J = J.U,JMN RELA 6EC
69: LE=U( I, J ) *ONEGA»(C.2 5*(GX*CELTA»*2/PU*RHC4-U( I-1,J)+U(I*1,J) + RELA 690
70: SLII,J-l)+L(I,J+l1)-U<I,J>) RELA 7C0
71: ERRORSAMAX 11 AftSI IUE-UII,J)I/UE1.ERROR) RELA 710
72: IF (J.EC.JH) GO TO 11 RELA 720
73: FLC>,-UEyCELTA»«2/l4 4.0tFLOh RELA 730
7^: GO TO 4 RELA 740
75: 11 FLOh=UE»CELTA»»2/288.0«-FL0W RELA 750
76: 4 LI I,J)=UE RELA 760
77: 10 U(I,JMM)=L(I,JMN) RELA 770
78: IF (KEY.EC.1) U< I,J.U.V)=U( 1-1, JMN) RELA 78C
79: J=JMAX RELA 790
80: C RELA 8C0
61: C THIS STAGE CALCULATES THE VELOCITY OF THE FREE SURFACE RELA 8 10
82: C RELA 82C
83: LE = U( I, J )+CMEGA»(0.2 5»(GX*DELTA»»2/MU*RHC<-U( 1-1, J)+U( 1 + 1 , J)t RELA 8 33
84: $L< I , J-l) t-UI I , J + l > )-U( I, J ) ) RELA 840
85: ERROR = A.-’AX1( Aft St (UE-UI I , J ) )/UE ) .ERROR) RELA 8 50
86: FLOh=LE»CELTA*>2/288.0+FLOW RELA 860
87: U( I,J) = UE RELA 870
88: 1 X=X+CELTA RELA 8b0
89: IF (K0UN.LT.10) GO TO 3 RELA 890
<?c: kRITE (6,9) ICOUNT,ERROR RELA 9C0
91: 9 FORMAT <2X,I5.E15.8) RELA 9 10
92: KCUN=C RELA 92C
93: 3 KOUN = KOU'-I+ 1 RELA 9 30
94: IF (ERROR.bT.0.001) GO TO 5 RELA 940
95: kRITE (6,2) ICOUOT RELA 9 50
96: 2 FCR>AT (SX.’THE NUMBER OF ITERATIONS RF.CUIREC FOR CONVERGENCE OF IRELA 960
97: SEE LOhNHARC FLOW IS’,15) RELA 9 /C
98: RETURN RELA 980
99: ENO RELA 990
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1: " FUNC¥iON-FUNC<Z )
PI=3.1615926
FLNC = C.C_12»C0SJ Z»Pl/0.06 ) 
RETURN

5: EMO

FUNG' 1C 
FU\C 20 
FUNC_3C. 
FUNG 40
FUNG 50
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1":" ' ' "FUNCfICN "DERI VIZ) " " "" " ' CERf lO
2: PI = 3.1AI5<526 DERI 20
3: Ce9lV=0.3«PI»SIN(Z»PI/0.04) DERI 3C
4: RETURN ‘ ' ....... .... ’ DERI "40
5: END DERI 50
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1 C PROGRAM FOR DETERMINATION OF PROFILE OF CONDENSATE ON FLUTED TUBE,HAIN “10
2 C AS WELL AS HEAT TRANSFER COEFFICIENT AND DOWNWARD FLOW RATE. HAIN 20
3 C SUBROUTINE GREGOR DETERMINES THE PROFILE AND HEAT TRANSFER COEFF- HAIN 30
<* C ICIENT,BASED ON IMPROVEMENTS OF THE GREGORIG METHOD ... HAIfJ "40
5 C SUBROUTINE RELAX DETERMINES THE DOWNWARD FLOW RATE, BASED ON THE MAIN 50
6 C TWO-DIMENSIONAL POISSON EQUATION HAIN 60
7 C ' FUNCTION FUNC IS THE EQUATION OF THE SOLID SURFACE HAIN 70"~
8 C FUNCTION OERIV IS THE SLOPE OF THE SOLID SURFACE MAIN 80
9 C DELTA THE SIZE OF THE (SQUARE) DIFFERENTIAL DISTANCE ELEMENTHAIN 90

10 0 ......  FOR CALCULATION OF THE DOWNWARD FLOW RATE. (INCHES) ' MAIN "100
11 C BELT THE TEMPERATURE DRIVING FORCE BETWEEN THE STEAM AND HAIN 110
12 C THE HETAL SURFACE (DEGREES F) MAIN 120
13 C "RHO THE DENSITY OF THE CONDENSATE (G/CC) " "MAIN 130
14 c HU THE VISCOSITY OF THE CONDENSATE (CENTIPOISE) MAIN 140
15 c K THERMAL CONDUCTIVITY (BTU/IHR FT*»2 FJ/FT) HAIN 150
16 c LAHDA HEAI OF VAPORIZATION (BTU/LB) HAIN 160
17 c SIGMA SURFACE TENSION (DYNES/CM) MAIN 170
18 c RO RADIUS OF CURVATURE AT PEAK (INCHES) HAIN 180

"*""19 c HHIN " INITIAL ESTIMATE OF THE LIQUID HEIGHT ATTHE"PEAK IINJMAIN 190"
20 c NEXP 0.1 IS RAISED TH THIS POWER TO DETERMINE THE STEP SIZEHAIN 200
21 c FOR ESTIMATES OF THE HEIGHT HAIN 210
22 c KEY' DETERMINES THE TYPE OF ROOT SOUGHT— "MAIN 220
23 c 0 LOWER ROOT HAIN 230
24 c 1 UPPER ROOT HAIN 240
25 -C " """ 2 NO CONVERGENCE SOUGHT ...... HAIN 250
26 c HAIN 260
27 DIMENSION AH(ll) MAIN 270
28 C0MMON/8L0CKH/AH ■ HAIN 280
29 COMHON/BLCCKU/U(105,78) MAIN 290
30 REAL NUMBY.LAMDA.K MAIN 300
31 COMHON/BLOCKY/NUHBY1121) " HAIN 310
32 COMMON/BLOCKG/VXlll), VDS(11),VDPHI(11),VPHI(11),VOM<11), HAIN 320
33 1VRN(11),VOPSI(11),VPSI(11 ) MAIN 330

"■■■ 34 --- --- DOUBLE PRECISION OH . - . HATN "340
35 EXTERNAL FUNC,DERI V HAIN 350
36 REAL HU,M MAIN 360

"37 READ (5,14) AMP,PERIOD,DELIA HAIN 3 70
38 14 FORMAT (3F10.0) HAIN 380
39 READ (5,15) LAHDA,K,SIGMA,RHO,MU MAIN 390

"' 40 15 FORMAT (5F10.0) " " "" " " ' MAIN 400
41 SIGMA=SIGMA*0.0001837 ■ MAIN 410
42 K=K/3600. MAIN 4 20
43 MU=MU»0.000671969 " MAIN 430
44 RH0=RH0»62.42621 HAIM 440
45 READ (5,1) RO,HMIN,NEXP,KEY,BELT MAIN 450
46 1 FORMAT (F10.0,F10.0,12,I2,F4.0) HAIN 460
47 12 DH=10.0»»(-NEXP) MAIN 470
48 CALL GREGOR (RO,RHO,MU,H,HHIN,OH,DEL TA,DELT,KEY,PER 100,LAHDA, MAIN 480
49 XK,SIGMA) - - - —- - -...... - . MAIN 490
50 WRITE (6,750) MAIN 500
51 750 FORMAT (IX,•THE VERTICAL FILM THICKNESS IN UNITS OF DELTA ALONG', MAIN 510
52 #• THE SURFACE IS1) "" MAIN 520---
53 WRITE (6,751) NUMBY HAIN 530
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54: 751 FORMAT (1X,2OF6.O) MAIN 540
55: kRITE (6,10) OELT MA IN 550 ' '
56: 10 FORMAT (2X,'TEMPERATURE DRIVING FORCE IS '.FS.O,' DEGREES F*) HAIN 560
57: WRITE (6,2) RO,M MAIN 5 70
58: 2 FORMAT (ZX.'THE TOTAL HASS CONDENSED FOR A PEAK RADIUS OF •, MAIN 580"
59: 1'CIJRVATURE OFI,2X,F8.6,2X,' IS' , El 1.4,2X , » POUNDS PER SECOND PER HAIN 590
60: 2'FOOT'/) MAIN 600
61: RH01=RH0/144.0 HAIN 610
62: GX=32.174 MAIN 620
63: WRITE (6,3) HAIN 630
64: 3 FORMAT (6X,'X',9X,'OS',8X,'DPHI',8X,'PH I•,8X,'H',11X,•DM•,9X, MAIN 640'
65: CRN' , 8X, 'DPSI' ,7X, 'PSI' ) HAIN 650
66: CO 6 1=1,11 HAIN 660
67: 6 WRITE (6,5) VX(I), VDS ( I ) , VDPHI ( j ) ,"VPHl < I ) , AH( I) , V0M( I ) , HAIN 670
68: 1VRNII),VDPSI(I),VPSI(I) MAIN 630
69: 5 FORMAT (2X.9E11.4) MAIN 690
70: CALL RELAX(MU,RHOl,GX,FLOW,OELTA,AMP) HAIN 700
71: RATE =FL0W*RH01*144.0 MAIN 710
72: WRITE (6,7) FLOW,RATE HAIN 720
73: 7 FORMAT (2X,'VOLUMETRIC FLOW RATE= ',Fll.7,•Ft**3/SEC'/2X,•WE I CUT•, MAIN 730
74: 2' RATE pE.,FLOW=» ,F11.7,'LS/SEC ) MAIN 740
75: HTC= M«9-li.b*3600.0*12.0/PERICD/DELT MAIN 750
76: WRITE (6,8) HTC HAIN 760
77: 8 FORMAT (2X,'THE HEAT TRANSFER COEFFICIENT IS'.FIO.O, HAIN 770
78: #• BTU/HR/FT*»2/F') HAIN 780
79: CALL EXIT HAIN 790
80: ENO HAIN 800
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1: SUBROUTINE GREGOR (RO,RHO,MU,M,HO,OH,DELTA.OELT,KEE, " "" GREG io---------
2: $ PERI 00,LAMOA.K,SIGMA) GREG 20
3; C GREG 30
4: C H RATE OF CONDENSATION L8/(SEC FT) GREG 40
5: C S DISTANCE ALONG SURFACE INCHES GREG 50
6: C DELM CHANGE IN M LB/(SEC FT) GREG 60
7: C DELS CHANGE IN S INCHES ..... - - . - - GREG 70
8: c DELT TEMPERATURE GRADIENT DEGREES F GREG 80
9: c H HEIGHT OF LIQUID INCHES GREG 90

10: c K ’■ THERMAL CONDUCTIVITY BTU/ISEC FT**2 F)/FT GREG" IUO
11: c LAMOA HEAT OF VAPORIZATION BTU/L8 GREG 110
12: c RHO DENSITY LB/FT»»2 GREG 120
13: c MU VISCOSITY LB/IFT SEC) GREG 130
14: c SIGMA SURFACE TENSION POUNDALS/IN GREG 140
15: c PSI ANGLE RADIANS GREG 150
16: c " "RA " " RADIUS OF CURV ATURE 'OF"METAL SURFACE INCHES - GREG L 60
17: c RN RADIUS OF CURVATURE OF CONDENSATE INCHES GREG 170
18: c THETA ANGLE RADIANS GREG 180
19: c "' • X' DISTANCE ALONG PI PE" CIRCUMFERENC E ' INCHES "" GREG 190
20: c ITER ITERATION COUNTER FOR ENTIRE SUBROUTINE LIMITED TO 40 GREG 200
21: c DSRN DISTANCE ALONG OUTSIDE SURFACE OF CONDENSATE INCHES

X2 ’■ " X-POSITION OF FREE SURFACE CORRESPONDING TO POSITION
GREG 210

22: c GREG 220
23: c X+DELX ON THE METAL SURFACE GREG 230
24: c XI LAST VALUE OF X2 GREG 240
25: c XO X—PUS1I1UN UP NLXi PUSlTlUN UN IHb UH1U USbU IU UtlLRMlNb GREG 250
26: c THE DOWNWARD FLOW GREG 260
27: c Y2 Y-POSITION OF X2 GREG 270
28: c Y1 LAST VALUE OF Y2 GREG 280
29: c YO Y-POSITION OF XO GREG 290
30: c DIFF DISTANCE FROM CENTER-LINE TO THE POINT ON THE FREE SURFACEGREG 300
31: "C" DOX DISTANCE BETWEEN NEW POINT ON METAL SURFACE AND CENTER GREG 310-- ---------
32: c LINE INCHES GREG 320
33: c GREG 330
34: REAL LAMDA,MU,K,M GREG" "340 ' ‘
35: COMMON/BLOCKG/VXI11), VDSI11),VDPHI(11),VPH! ( 11),VDMI11), GREG 350
36: 1VRNI11>,VDPSII 11),VPSIIll) GREG 360
37: DIMENSION AHI 11) GREG 370"- '" "" ""
38: COMMOM/BLOCKH/AH GREG 380
39: REAL NUHBY GREG 390
40: COMMON/BLCCKY/NUMBYI121) GREG 400
41: DOUBLE PRECISION DH.DHO GREG 410
42: ITER=O GREG 420
43: PI=3.14159265 GREG 430
44: 0H0=H0 GREG 440
45: DX=0.0001 GREG 450
46: 73 DH0=DH0*0H GREG 460
47: HO=DHO GREG 470
48: Xl=0.0 GREG 480
49: Y1=HO GREG 490
50: IY = 2 GREG 500
51: NUMBYI1)=HO/OELTA +0.5 GREG 510
52: XO=OeLTA GREG 520
53: WRITE (6,815) X,THETA,H,M,PSI,DIFF,DPSI,HO GREG 530
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5 A: 815 FORMAT (2X,8E14.7) GREG 540
55: ITER=ITER+1 GREG 550
56: IF (ITER.GT.40) CALL EXIT GREG 560
57: C GREG 570
58: C INITIALUING THE VECTORS TO BE SAVED GREG 580
59: C GREG 590
60: DO 103 1=1,11 GREG 600
61: VX(I)=0.0 GREG 610
62: VOSII)=0.0 GREG 6 20
63: VOPHI(I)=0.0 GREG 630
64: VPHI(I 1=0.0 GREG 640
65: V0M(I 1 = 0.0 GREG 650
66: VRN(I)=0.0 GREG 660
67: VOPSU 11 = 0.0 GREG 670
68: VPSI(U=0.0 GREG 680
69: 103 AHI 11 = 0.0 GREG 690
70: C GREG 700
71: C SETTING THE INITIAL VALUES OF PARAMETERS GREG 710
72: C GREG 720
73: RN=RO GREG 730
74: EX=0.0 GREG 740
75: THETA=0.0 GREG 750
76: PSI=0.0 GREG 760
77: H=H0 GREG 770
78: AHI 11=H0 GREG 780
79: S = 0.0 GREG 790
80: M=0.0 GREG 800
81: J=0 GREG 810
82: X=0.0 GREG 820
83: 1 = 2 GREG 8 30
84: C GREG 840
85: C FINDING DELS GREG 850
86: C GREG 860
87: 2 BX = X GREG 870
88: J = J+1 GREG 880
89: P1=FUNC(X) < GREG 890
90: P2=FUNC<X+0X) GREG 900
91: DELS=SORT I<P2-P1)**2 + OX*OX) GREG 910
92: C GREG 920
93: C FINDING The ANGLE ON THE METAL SURFACE SWEPT BY DELS IDTHET) GREG 930
94: c GREG 940
95: D1=DERIV(X) GREG 9 50
96: D5 = DERI V(X + DX1 GREG 960
97: IF (Dl.EO.O.O) 01=0.000001 GREG 970
98: IF 105.EQ.0.0) 05=0.000001 GREG 980
99: 100 OIHE I = ATAN(1.0/011-ATAN (1.0/D5) GREG 990

100: AT=DTHET GREG1000
101: c GREG1010
102: c check to make sure that argument of log function is non-zero GREG1020
103: c GREG1030
104: IF (AT.EQ.0.01 GO TO 307 GREG1040
105: TEST=AT*H/0ELS+1.0 CREG1050
106: c GREG1060
107: c CHECK TO HAKE SURE THAT ARGUMENT OF LOG FUNCTION IS NOT NEGATIVE GREG1070
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IMPROVING THE ESTIMATE OF OSRN

IS H NEGATIVE—IMPOSSIBLE

IF (Y2.LE.H) GO TO 78
IF (X2.LT.XO) GO TO 303
Y2=FUNC(X)tH*COS(THETA+OTHET)-FUNCIX2)

IF (H.LT.0.0) GO TO 73
X2=X+H*S!NtTHETA+0THET) '
Y2=FUNC ( X)+H*COS( THETAf-DTHE T )-FUNC ( X2 )

"IF (ABS(AT).LT.E-8.ANO.THETA.EO.O.O) GO TO 309 ”
Y0=(Y2-Y1)«(X0-X1)/(X2-XI)+Yl
NUMBYlIY)=Y0/DELTA+0.5 
GO TO 310 

' NUHBY(IY)=H/DELTA+0.5

IF (TEST.LE.0.0) GO TO 73
OELH=K*OELT«AT/LAMOA/ALOG(AT»H/DELS+1.0)
GO TO 308
OELM=K»OELT/LAMOA/H*OELS
HHG=H*»3
M=H+OELM
INITIAL ESTIMATE OF CHANGE IN DISTANCE ALONG FREE SURFACE OSRN 
THIS IS DONE TO GET AN ESTIMATE OF DELH, WHICH MUST BE USED IN 
DETERMINING THE ACTUAL VALUE OF THE DISTANCE ALONG THE FREE 
SURFACE

FINDING THE LOCUS OF THE FREE SURFACE IN THE GRID USED FOR 
INTEGRATION OF DOWNWARD FLOW

GREG1080 
GREG1090 
GREGUOO 
GREGL110 
GREGU20 
GREG1130 
GREG11A0 
GREG1150 
GREG1160 
GREG1170 
GREG1180 
GREG1190 
GREG1200 DSRN=DELS+AT*H GREG1210""-"

RAN = L.0/RN-3•O*MU*M*OSRN/(HHG»RHO*SIGMA) GREG1220
IF (RAN.EQ.0.0) RAN=0.000001 GREG1230
RQ =1.0/RAN ---- - --- — - GREG12A0
RS=RN GREG1250
IF (RO.LT.0.0.AND.RN.GT.0.0) RS=RQ GREG1260
DPSI=0SRN/(RS+RQ)*2.0 ”  """ ” - GREG1270 "
IF (RN.LT.0.0) OPS I=DSRN/IRN + RQ)*2.0 GREG1280
OELH=OSRN*(SIN(THETA-PSI+0.5*(DTHET-DPSI ) ) ZSIN (J P I + DPSI )/2.0-DTHETGREG1290 

S + PSI-THETA))   "  GREG1300’
GREG1310 
GREG1320 

” GREG133O
DSRN=SORT(DELH**2+DSRN**2-2.0*DELH«OSRN*COS((PI+DTHET1/2.0)) GREG13A0
RAN=1.0/RN-3.0»MU»M*DSRN/IHHG».RHO»SIGMA)_ GREG135O
R0=1.0/RAN ‘  ------ - - GREG1360
CPSI^DSRN/IRS+RQl^B.O GREG1370
IF (RN.LT.0.0) DPSI=DSRN/(RN+RQ)*2.0 GREG1330
DELH=OSRN^SINITHETA-PSI+ 0.5*(DTHET-DPSTI)7SIN((PI+DTHET 172.0) GREG1390
H=H+DELH GREG1A00

GREG1A10 
GREG1420 
GREG1430 

 GREG1440 
GREG1450 
GREG1460 
GREG1470 

CHECK TO SEE IF H IS THE SHORTEST DISTANCE" TO THE METAL SURFACE GREG1480 
GREG1490 
GREG1500 
GREG1510 
GREG1520 
GREG1530 
GREG1540 
GREG1550 
GREG1560 
GREG157O 
GREG1580 
GREG1590 
GREGUOO " 
GREG1610

108: C
109:
110:
111:
112: 307
113: 308
114:
115: C"
116: C
117: C
118: C
119: C
 120:C
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131: C
132: C
133: c
134:
135:
136: "
137:
138:
139:
140: 301
141: C
142: C
143: C
144:
145:
146:

 147:C
148: C
149: C
150:
151: " 304
152:
153: C
154: c
155: c
156: c
157:
158:
159:
160:
161: 309
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310

78

C
C 
c 
c

172
174

162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173
 174 
175 
176 
1 77 
178 
179 
180

' 131 
182
183 
184 
185 
186 
167 
188

 _189 

tY=IYH 
XO=XOtDELTA 
GO TO 304

GREG162O 
GREG1630 
GREG1640
GREG1650 

THIS IS WHERE YOU GO IF THE SHORTEST DISTANCE TO THE METAL SURFACEGREG1660 '
IS ALONG AN X=CONSTANT LINE GREG1670

  GREG1680 
GREG1690 " 
GREG1700

 GREG1710  
GREG 1720’ 
GREG1730

 GREG1740 
’ GREG1750 
GREG1760

 GREG1770  GREG1780
GREG1790
 GREG1800  
GREGISIO" 
GREG1820

 GREG1830 
’ GREG 1840
GREG1850 
GREG1860 

“ GREG1870”
GREG1880

 GREGL890 ___
GREG 19 30' 
GREG1910
GREG1920  

' GREG1930’ 
GREG1940 
GREG1950 
GREG1960 
GREG197U

C.LT.0.0.AND.RN.GT.0.0) RS=RQ GREG1983
OSRN/(RS+RO)*2.0 ’ ‘ ' GR6G1990
A.LT.P.O) DPSl=DSRN/(RNtRQ)*2.3 GREG2lG0
DSR;*(S1NI TH = TA-PSH-0.5*(DTHET-DPSI ) )/SIN( ( P I i-OPS I )/2. O-OTHc TGREG2310 
ThETAI) ’ “ ................. "" GREG2020
SORT (D2LH**2tDSRN»*2-2.0*OELH*DSRM*COS< I PI+OTHE T )/2. Ci) ) GRcG2G30
. 0/RN-3.0*MU*H*DSRN/ (HIIG»RHO*SIGHA)     GREG2340_O/RAN - - - - - - - - . GREG2u50
DSRNZ( RS + RQ ) *2.0 GREG2C.60
N.LT.u.C) OPSI=DSRN/(RN+RQ)*2•0 GREG2u70  
DSRN*SIN( Tr1ETA-PSI+0.5*(DrHET-DPSI) )/SIN< I PI+D T HE I) / 2.0 ) """ ” GREG2..8J 
>£LH GREG2090

GREG2100 
GREG2110 '
GREG2120
GREG2130  
GREG2140" 
GREG215J

P2=FUNC(X2) ’
DELS=SORT((P2-P1)**2+IX2—X)**2) 
D5= DERIVIX2)   
H=H-DELH 
H=AMIN1(H,Y2) 
M=M-OELM 
IF (Ol.EO.O.d.AMD.OS.EO.O.O) GO TO 171 
IF (05.EO.0.0.ANO.DI.NE.0.0) GO TO 172 
OTHET=ATAM(1.0/01)-ATANl1.0/D5)_____ ___
GO TO 174 
DTHET=0.0 
GO TO 174  
DTHEr=-THETA 
AT=DTHET 
IF (AT.EG.0.0) GO TO 1307  
TEST = AT*H/DELStl.O"  " 
IF (TEST.LE.0.0) GO TO 173 
DELH^K*OcLT*AT/LAMDA/ALOG(TEST)  
GO TO 1308 

173 7EST=1.U-AT*H/DSRN
DELH=-K*UELT*AT/LAMDA/ALOG(TEST)  

i 1308 
K*OELT/LAHDA/H*D£LS 
**3  
OELS+AT*H ......
.0/RN-3.0*MU*M*DSRNZ(HHG*RHO*SIGMA) 
AN.EQ.0.0) RAN=O.000001   
C/RAN - ..........   '

304
PERiOD-X—H*SIN(THETAtOTHET)

190: GO TO
191: 1337 DELM = 1
192: 1308 HHG=H-
193: DSRM = I
194: RA.‘J = 1
195: IF (H
196: KQ=l.i
197: RS = RN
198: IF (Ri
199: OPS I =1
203: IF (R-
201: ■OcLH=
202: ItPSl-
203: DS«N = :
204: RAM^i
2 05: RO=l.i
206: DPSI=I
207: IF (R
2U8: OELH=I
209: H=H + 0
210: X = X2
211: GO TO
212: 333 OtFF = l
213: 102 RN=RQ
214: Y1^Y2
215: X1 = X2
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216 C GREG2160
217 C loading vectors ’ "...................... GREG2170
218 C GREG218U
219 IF (J.NE.l) GO TO 300 GREG2190
22G VX(1)=X - - - - GREG22J0
221 VDSI1>=DELS GREG2210
222 VOPHII 1>=DTHET GREG2220
223 - VPHII 1)=THETA GREG22 30"'"
22<i VDM(1)=OELH GREG2240
225 VRMI1)=RN GREG2250
2 26 VDPSU1)=DPSI GREG2260
227 VPSl(l)=PSI GREG2270
223 c GREG2280
229 c HAS THE CENTER LINE BEEN REACHED GREG2290
23G c GREG23uO
231 300 IF (DIFF.LE.O.O) GO TO 74 GREG2310
232 EYE=I-1 GREG2320
233 PX=EYE»PERIOO/LO.O GREG2330
2 34 DSX=ABS(PX-X) GREG2349
235 .. c . • - . . - • - - - - - —- -- ....... - - ---- . GREG2353' '
236 c LOADING VECTORS GREG2360
237 c GREG2370
238 IFIDSX.GT.DX/2.0) GO TO 99 GREG2380
2 39 VX(I)=X GREG2390
240 VDSIt)=DELS GREG2400

" 241 - - ------VOPHI(I)=OTHET ---- GREG2410
242 VPHII I)=THETA CREG2420
243 VON I I> = DELH GREG2430

GREG24402^ VRNIIl=RN
245 VDPSHI) = OPSI GREG2450
246 VPSII I )=PSI GREG2460
247 ------  - AH(I)=H GREG2470
248 1 = 1 + 1 GREG2480
249 c GREG2490
250 c RESETTING PARAMETERS GREG2500
251 c GREG2510
252 99 THETA=THE TAT-OTHST GREG2520
253 PSI=PSI+DPSI GREG2530
2 54 S=S+DELS GREG2540
255 X=X+OX GREG2550
256 c GREG2560
257 c WAS MINIMUM ON FREE SURFACE REACHED TOO SOON GREG257O
258 c GREG2580
"259 _ - — . IF (PSI.LT.-0.0001) GO TO 75 GREG2590
260 DDX=X-PERIODtDX GREG2600
261 IF (DOX.LT.DX/2.01 GO TO 2 GREG2610
262 GO TO 223 GREG2620
263 72 IF (KEE.EQ.2) GO TO 73 GREG2630
264 C GREG2640
265 C HALVING THE INTERVAL BETWEEN SUCCESSIVE APPROXIMATIONS OF THE-- GREG2650 """
266 C PEAK FILM THICKNESS GREG2660
267 c GREG2670
263 DH0=DH0-0H GREG2680
269 DH=0H/2.0 GREG2690
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270: GO TO 73
271: C
272: C MAS MINIMUM ON FREE SURFACE REACHED TOO SOON
273: C
279:
275: C
276: C

79 IF (PSI.LT.-0.0001) GO TO 75

HAS MINIMUM ON FREE SURFACE REACHED TOO LATE
277: C
278:
2 79:

IF (PSI.GT.0.0001) GO TO 76
GO TO 10

280: C
281: C WAS MINIMUM ON FREE SURFACE REACHED TOO LATE
282: C 
283:
289:
2 85:

223 IF (PSI.GE.0.0001) GO TO 76
IF (ABSIPSI).LT.0.0001) GO TO 10
GO TO 73

286:
287:
288:

75 IF (KEE.EO.O) GO TO 73
GO TO 72

76 IF (KEE.EO.O) GO TO 72
289:
290:
291:
292:
2 93:

GO TO 73
10 WRITE (6,36) HO ■
35 FORMAT (2X,E15.8//)___________________________ .________  

RETURN
ENO

 

 

GREG2700 
GREG2710 
GREG2720
GREG2730 
GREG2740 "
GREG2750 
GREG2760 
GREG2770 
GREG2780
GREG2790 
GREG2800 
GREG2810 
GREG2820 
GREG 28 30 
GREG289O 
GREG2850 
GREG2860 
GREG2870 
GREG2880 
GREG2890 
GREG2900
GREG2910_ 
GREG2920 
GREG2930
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1: • - SUBROUTINE RELAX(MU,RHO,GX,FLOW,DELTA,AMP I " " RELA 10
2: C RELA 20
3: C USES SUCCESSIVE-OVER-RELAXATION TO DETERMINE THE DOWNWARD FLOW RELA 30
4: C RATE RELA "40
5: C OMEGA IS THE ACCELERATION PARAMETER RELA 50
6: C JMIN IS THE POINT IN THE FLOW REGION NEAREST THE METAL SURFACE RELA 60
7: C JMAX IS THE FREE SURFACE - - . RELA 70
8: C ERROR IS THE FRACTIONAL CHANGE OF THE VELOCITY FROM ONE ITERATION RELA 80
9: C TO ANOTHER RELA 90

10: C FLOW IS THE INTEGRAL OF THE DOWNWARD FLOW RATE RELA" 100
11: C RELA 110
12: REAL NUMBY.MU RELA 120
13: COMMON/BLOCKY/NUMSYI121) RELA 130
14: COMMON/BLOCKU/U<105,78) RELA 140
15: Pl=3.141592653 RELA 150
16: GMEGA=1.9 "RELA" 160
17: C RELA 170
18: C INITIALIZING U'S TO ZERO RELA 180
19: C RELA 190 "" "
20: DO 7 1=1,105 RELA 200
21: DO 7 J=l,78 RELA 210
22: 7 UlI,J 1=0.0 RELA 220
23: KOUN=l RELA 230
24: ICOUNT=1 RELA 240
25: C"—— ...- ---—............. - .... .... ..... — — ---- — -- —------------ - RELA 2 50----
26: C SETTING ERROR ANO INTEGRAL OF DOWNWARD FLOW TO ZERO RELA 260
27: c RELA 270
28: 5 error=o.o ........................' " — ■ —— - ■ RELA 2 ao
29: FLOW=0.0 RELA 290
30: ICOUNT=ICOUNT+1 RELA 300
31: X=0.0 "RELA 310 "
32: DO 6 1=1,78 RELA 320
33: c RELA 330
34: c SETTING SYMMETRY BOUNDARY CONDITION AT PEAK RELA 340
35: c RELA 3 50
36: U(1,I)=U!3,1) RELA 360
37: c RELA 370 ""
38: c SETTING SYMMETRY BOUNDARY CONDITION AT VALLEY RELA 380
39: c RELA 390
40: 6 U(102,1)=U(100,I) RELA 400 "
41: DO 1 1=2,101 RELA 410
42: KEY=2 RELA 420
43: IF ( I.EQ.2) GO TO 8 RELA 430
44: c RELA 440
45: c DETERMINING FREE AND METAL SURFACE BOUNDARIES RELA 450
46: c RELA "460
47: Y1=FUNC(FLOAT<1-1)*DELTA 1+AHP + NUMBY(I —1» RELA 470
48: Y2=FUNC(FLOAT(1-21»DELTAItAMPtNUMBY(1-2) RELA 480
49: c RELA 490
50: c IF THE “AGNITUDE GF THE SLOPE OF THE SURFACE IS GREATER THAN OR RELA 500
51: c EQUAL TO 1/2, THE DERIVATIVE BOUNDARY CONDITION MUST INVOLVE RELA 510
52: c POINTS WHICH ARE NOT ON THE SAME VERTICAL COLUMN. IF THIS ISTRUERELA 520 """
53: c THEN KEY=1. RELA 530
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54: C RELA 540
55: SL0PE=(Y2-Y1)/DELTA RELA 550
56: IF <SLOPE.GE.0.5) KEY=1 RELA 560
57: 8 JMIN=(FUNC(X)+AMP)/UFLTA+1.5 RELA 5 70
58: JMAX=JMIN*IFIX(MUMBYI1-1)) RELA 580
59: IF (I.E0.2) JMAX1=JMAX RELA 590
60: IF < JMAX.GT. JM.AX1 ) JMAX = JMAX1 RELA 600
61: J.HM=JMAX + 1 RELA 610
62: JMM-JHAX-1 RELA 620
63: JM=JMIN+1 RELA 630
64: IF (JM.GT.JMN) GO TO 10 RELA 640
65: C RELA 650
66: C THIS IS THE ACTUAL RELAXATION LOOP RELA 660
67: C RELA 670
68: DO 4 J=JH,JHN RELA 680
69: UE=U( I, J > tOMEGA*< 0.25«(GX*0ELTA**2/HU*RHC+U( 1-1, J )+ U( 1 + 1 , J) «■ RELA 690
70: $UtI,J-l)+UtI,J + l))-U( I,J ) ) RELA 700
71: ERROR=AMAX1(ABS((UE-UII.J))/UcI.ERROR) RELA 710
72: IF (J.EQ.JH) GO TO 11 RELA 720
73: FL0W=UE*DELTA*»2/144.0+FL0H RELA 730
74: GO TO 4 RELA 740
75: 11 FLOM=UE*DELTA»»2/288.ONFLOW RELA 750
76: 4 U(I,J)=UE RELA 760
77: 10 U(I,JMM)=U(I,JHN) RELA 770
78: IF (KEY.EQ.1) U(I,JMM)=U(1-1,JMN) RELA 780
79: J=JMAX RELA 790
80: C RELA 800
81: C THIS STAGE CALCULATES THE VELOCITY OF THE FREE SURFACE RELA 810
82: C RELA 820
83: UE=U(1,J)+GNEGA«(0.25»(GX*DELTA**2/MU*RH0tU(1-1,J>+U(I+1,J)+ RELA 830
84: $U(I,J-l>+U(I,J + l)>-U(I,J) ) RELA 840
85: ERRCR = AMAX1(ASS< (UE-UII,J > )/Uc).ERROR) RELA 350
86: FL0W=UE»DELTA*»2/288.0+FL0H RELA 860
87: U((,JHUE RELA 870
88; 1 X=X+OELTA RELA 880
89: IF (KOUN.LT.IO) GO TO 3 RELA 890
90: BRITS (6,9) ICGUNT,ERROR RELA 900
9i: 9 FORMAT (2X,I5,E15.8) RELA 910
92: KOUN=0 RELA 920
93: 3 KOUN=KOUN+1 RELA 930
94: IF (ERROR.GT.0.001) GO TO 5 RELA 940
95: WRITE (6,2) ICOUNT RELA 950
96: 2 FORMAT (2X,'THE NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE OF TRELA 960
97: #HE DOWNWARD FLOW IS',15) RELA 9 70
98: RETURN RELA 980
99: END RELA 990
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1: FUMCTIOS FUNC(Z)
2: PI=3.1415926
3: FUNC=0.012»COS(Z»PI/0.04)
4: RETUR'l
5: ENO

PAGE 1

FUNC 10
FUNC 20
FUNC 30 
FUNC " 40
FUNC 50
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1: FUNCTION DERIV(Z)
2: PI=3.1415926
3: DER1V=0.3»P1*SIN<Z*PI/0.04)
4:  RETURN
5: ENO

PAGE 1

DERI 10 '
DERI 20
DERI 30
DERI 40 “
DERI 50
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NOMENCLATURE

A Area for heat transfer

D Angle shown in Figure 8

g Acceleration due to gravity

gc Conversion factor

h Film thickness

H Local heat transfer coefficient

H Average heat transfer coefficient

k Thermal conductivity

m Rate of condensation

P Pressure

q Heat flow

Q Heat flow per unit area

R Radius of curvature of free surface

Ra Radius of curvature of solid surface

s Distance measured along solid surface

t Time

T Temperature

U Velocity

W Mass flow rate

X Coordinate

y Coordinate

z Coordinate
121



greek letters

8 Angle in Figure 5

Distance in Figure 11

Distance in Figure 10

AT Temperature driving force

AX Change in distance along surface

X Latent heat of vaporization

Viscosity

P

0

Density

Surface Tension

Angle see Figure 5

Angle see Figure 5

Acceleration parameter for relaxation

subscripts

n Represents horizontal position

P Represents vertical position

X Coordinate direction

y Coordinate direction

z Coordinate direction

superscripts

n Result of n^ iteration in relaxation
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