Linear thermoacoustic instability in the time domain
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An approximate time-domain description of the development of the thermoacoustic instability in
gas-filled tubes is developed by exploiting the difference between the instability time scale and the
period of standing waves. The perturbation results compare very favorably with the exact
frequency-domain theory of Rott. The perturbation results are further simplified by introducing a
short-stack approximation which is numerically much simpler and only slightly less accurate. An
approximate expression for the critical temperature gradient accounting for viscous effects and other
design features is also derived. In addition to the fundamental mode of a tube closed at both ends,
the theory includes higher modes as well as open-end boundary conditions99&® Acoustical
Society of Americd.S0001-4968)00606-7

PACS numbers: 43.35.UdHEB]

INTRODUCTION I Py I(SU)

dT,,
- =(y=1)| ATo=T)= 5, AW .
The linear theory of thermoacoustic effects as developed 9t S X v dx
in the well-known series of papers by Rott(good reviews ©)

are provided by Wheatl@and Swiff) is based on a formu- . . . -
S . The system of equations is closed by assuming the validity
lation in the frequency domain. In the present paper we de- .
. . . : . pf the perfect gas law. Here p, T, andu are the density,
velop an approximate time-domain approach that is vali L .
ressure, temperature, and velocity fields. The spatial coor-

when the period of standing waves is much shorter than thginatex is directed along the axis of the devi&(x) is the

growth rate of the instability. Since this condition is com- ; : . .
. : ; (possibly variablg cross-sectional area, andthe ratio of
monly met in practice, we expect the present formulation to e . :
. . o ) . specific heats. The subscript zero denotes undisturbed quan-
furnish a realistic description of the time evolution of the

: e ; . o tities. The temperatur€,,(x) of the solid surfaces in contact
instability in a wide variety of situations. . . .
; . with the gas(i.e., the tube walls and the stack plateés
One of the main results of the present work is an expres- . .
. . o .rassumed to be only a function &fand is taken to be pre-
sion for the linear growth rate of the thermoacoustic instabil-_"_". . .
) . scribed in the following. It should be noted that, even when
ity or, below threshold, for the decay rate of standing waves;, . . o .
: . . this quantity evolves with time, it does so only slowom-

This latter result can also be viewed as expressing the power . . I

. . : . pared with the period of the oscillationand therefore the
requirement for the operation of a thermoacoustic refrigeraZ : .

resent method can be extended to deal with this case as well
tor. In the past these results have been approached by est
mating the so-called work flugsee, e.g., Ref.)6or Q-value as noted below. ,
T g ' ' : The drag operatoZ and the heat transfer operators

of the devic€’~® Our method may therefore be interpreted asand / are given. in the frequency domain. b
a different approach to the evaluation of these quantities. ItS" ~ ~ 9 ' q y » Y
advantage is a greater flexibility that enables us to consider- f
ably simplify their quantitative evaluation with respect to the W) =iw
exact theory of Rott while at the same time maintaining a
greater accuracy than existing approximations. .
_ A second result of 'Fhe paper is an unamb_lguous deﬂ_m- ‘}//(TW—T)= —iwpoC, K -|.,’ (5)
tion of the concept of critical temperature gradient when vis- 1-fx
cous and thermal effects are both important and an accurate

approximate expression for this quantity.

V ~
=1, u, (4)

u. (6)

1 o 1
1-o\1-f, 1—-f¢/

2(u)= PoCp

I. MATHEMATICAL MODEL HereT'=T-T,, and tildes denote frequency-domain quan-
tities. The parameterk, x depend on the ratio of the diffu-
sion lengthssy ¢ to the plate spacingand, for disturbances
}Sroportional to expwt, are given b§

In Watanabeet al° it was shown that a model of ther-
moacoustic devices that, in the frequency domain, is exactl
equivalent to Rott's, may be written in the form

dp 1 4 0 |

Lz = f=(1—i) - tanh(1+i) 5, 7
5_U+ P _ ) @) where the index can b¥ or K. The viscous and thermal

Po gt T gx — P penetration lengths, « are given by
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2 2a by To proceed with a formal development of the previous
o=\ = K=\—=—=—7, (8)  observation, we introduce the scaled times
Vo Vo s ;
i i L . t=t, 7=get, (12
with v the kinematic viscosityg the Prandtl number, and

a=vlo the thermal diffusivity. For a circular cross section and, according to the method of multiple time scales, we
with radiusr, one has instedd treatt and as independent variables. The original variable
23,(1-1)(ro/)) is recovered at the end of the calculation by ugihg) (see,
1 0 (9) €.9. Refs. 11, 12 As a consequence of these definitions we

f

~(i=1)(ro/8)3o((i—1)(ro/8))’ have, correct to orde,
again valid for bothf,, andf, . When the diffusion penetra-
. . . . J J J
tion depths are small compared with eitheor rg, f given = te—. (13)
by either(7) or (9) admits the asymptotic approximation gt at ar
0 0 We also expand the dependent variabfgsu, etc., in a
f=(1-1) 1! f=(1-1) E- (10) power series ire; for example,
More generally, for other cross section shapes, in this limit P=P1+€px+---, (14)

one may sef=2(1—i)d/dy, whered,=4S(x)/s(x) is the it 5 similar notation fou, etc. Now these expansions are

hydraulic diameter defined in terms of the cross-sectional ,,stituted inta(1) to (3) where(13) is used to express the

areaS and the “wetted” perimetes. _ time derivative. Upon separating orders, to zero ordee, in
If Egs. (1)—(3) are written in the frequency domain, after we have

reduction to a single equation by differentiation and elimina-

tion, one recovers Rott’'s equation: dpy 1 9
~ ~ —+ = — (Spouy) =0, (15
sax| TS e T, A M T Jax
du;  dp;
@2 - po—=t—=0, (16)
+ 2z [1+(y=DfJp=0. (11 gt dx
The local adiabatic speed of sounkx) equals{yRT,(x), @JF YPo I(Sw) -0 (17)

with R the universal gas constant divided by the gas molecu- 4t S X

lar mass, and is therefore also variable in general along thaend at the next order
axis of the system. ' '

dp2 19 dp1
IIl. THE STABILITY CALCULATION 7 s (Spoti) =~ o (18
Experiment(see, e.g., Refs. 5,)&hows that the initial

build-up of the thermoacoustic instability has the character Uz P2 _ U E 7

P y po—=+ = poZ(uy), (19
of a modulated standing wave the frequency of which is at X it €
essentially dictated by the resonator, while the amplitude is
slowly varying in time. This observations suggests the pos- @JF YPo d(S) _ ﬁ_( —1)
sibility of setting up a perturbation scheme based on the at S ax  or Y
smallness of the ratio of the characteristic period of oscilla-

tion to the characteristic time for the development of the N dT,,
instability. X AT+ —euy) — o).

In the framework of the previous model, the terms in the
left-hand side of Eq9(1)—(3) describe linear acoustic waves (20

in a gas column with variable cross-sectional area and tem-

perature stratification and are therefore responsible for th&. Zero order

“carri_er” frequgnc_y of the wave. The h_eart of the t_hermoa- The three equationd5) to (17) can be combined to give
coustic effect is in the terms in the right-hand sides and,

more specifically, in the right-hand side of the energy equa- 1 ¢
tion (3). The observed slowness of the modulation implies 55
that these terms are small or, sinee .7, and/ all vanish

with fy i, that thef’s are small. In order to set up a pertur- The solution of this equation may be taken in the form
bation scheme, we take therefdirg to be of ordere<1 A oA

and we will treat the ratid /e as a quantity of order 1. P1(x.t, ) =A(r)Pi)expliot) +c.c., (22
While a formal definition ofe is not necessary as the final where c.c. denotes the complex conjugate, and the eigen-
results do not explicitly depend on this parameter, accordindunction P,(x) and eigenfrequency» are determined by

to (10), one may think of it as the ratié/I. solving the eigenvalue problem

> (1)
oX ot

d 92
C25ﬂ> P
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The forcing at frequencies o in the right-hand side will
+w’P1=0, (23)  generate resonant terms proportionat texpiwt in the so-

lution for p, which lead to a breakdown of the approxima-
subject to appropriate boundary conditions. In this paper weion over times of orderdw) ~*. To avoid this resonance, as
only consider rigid or open terminations at the ends of then the standard procedut&;® we impose the solvability

1d 2SdP1
Sdx dx

tube and therefore condition that the right-hand side of the equation be orthogo-
4P nal to the solution of thdadjoin) homogeneous equation,
d—xlzo or P,=0 at x=0, x=L. (24)  namely expfiwt)Py:

L oA . dA A A
With these conditions, it can readily be shown by standardf Slexp(—iwt)Py]| 2iw — Py— — {-} |exdliot)dx
technigues that the eigenvaldeis real (see, e.g., Refs. 14,
15). The eigenfunctiorP, can therefore also be taken real =0, (30)

and, for later convenience, we normalize it so that ) . .
where, for brevity, we writd- - -} to denote the coefficient of

) ) A in (29). Multiplication by S(x) before integration is nec-
J; S(X)P1(x)dx=Vpy, (25 essary so that the-operator in the left hand side 629) be
self-adjoint with the boundary conditior(®4). In this way
whereV is the volume of the device ang, is the undis- we find
turbed static pressure. Since the total acoustic energy in the

device, to the present approximation, is given(bge, e.g., d_A+ 9 A=0 (31)
Ref. 16 section 68 dr €
here
Lo (PD) 2 a2y v
J—JOS( X) 2 dx=3 1dx=A"%o, =L{Mp+iNp+My+iNy) (32)
(26) with, after an integration by parts,
we see that normalizatiof25) is equivalent to normalizing . L f qp.\2
the energy by Mip+iNp= f s —L | =2 dx (33
PP VRt Jo —fy | dx ;
. Vpo
afo:z—. (27 _ =1 (L )
Y MHJ’_INH:I\/p—ZwJ'OdX SF?[ fK(,l) Pl
It is readily found tha, p;, andT} also satisfy Eq. 0
(21) and therefore they can also be written in the fq2g) fu—"fy dT, dP;
i ; ; ; - Cy—— | (34)
with the samew and proportionality to the same function (1—o)(1—fy) P dx dx

A(7). In particular, from(16), ] -
wherec,, is the specific heat at constant pressure.

i dPy Since thef’s are essentially the small parametgrand

(28) since these results have an accuracy of first ordes; mne
might be tempted to replace-if,, simply by 1 in the de-
nominators. While justified in principle in the limé— 0, we
have found that the numerical accuracy of these results ex-

To ordere, the drag and heat transfer operators.”Z,  tends to significantly larger values éfl if the forms given

and¢ operate on the variabteand, since the dependence on ahove are retained.

this variable is only through the exponential factor éush Clearly (34) is also applicable whefi,, depends slowly

one can use the Fourier-space representation of these ope(ge., on the time scale) on time. Integration of the ampli-

tors given in(4)—(6). Upon substitution of solutiof22) for  tude equation(31) in this case is however somewhat more

p; and similar expressions for the other first-order fields intocomplicated and therefore, as already mentioned before, we

(18—(20), we thus find limit ourselves to the simpler situation in whidh, is inde-

pendent of time. In this case the solution(81) is

l( )_wp dX

B. First order

19 ( AN
——|cS— r
S ox s A(7)=Ag exp( -Q ;) =Ao exp(— 1), (35)
={%iw d_A pl_é E J [ ity wPOSCZUl) with A, dependent on the initial conditions, and therefore
dr e[Sax|1-fy grows or decays according to the sign Mfy + My . The
+(y—1) 02f Py(X) second form of solutiori35) demonstrates explicitly the in-
dependence of the result from the definitioneofThe previ-
fv—"fk wpoU; dTy ous results imply the following approximation for the exact
(1 o)(1—fy) Y Tw dx expiwt+c.c, eigenfrequencyo in Rott's equation(11):
(29 w=w+iQ. (36)
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It is interesting to verify that35) reduces to the standard 1ll. SHORT-STACK APPROXIMATION
expressions for the viscous and thermal damping of a stand-
ing wave in a hollow isothermal cylindrical tube. If we con-
sider the case of rigid terminations at both ends, by the no
malization(25), we may write

The asymptotic results of Sec. | can be approximated by
;adopting the so-called “short-stack approximatioriSee,
e.g., Ref. . We thus assume that the stack occupies a length
much smaller than the wavelength of the standing waves so
nx that the pressure field in the stack can be considered as con-
P1=v2py cos——. 37 stant. we take, k=0 outside the stack region.

We thus write(33), approximately, as
With this expression, noting thai=nwc/L, and using ap-

proximation(10) for fy «, it is immediate to verify that, to if_v Vg c? (dPlS) 2

; i+ Mp+iNp= —— — (44
lowest order in these quantities, D D 1-f, V wp% dx
V2vw I’ o2 i T
Mp+iNp=(1+i) ' (39) Here fy, and c (or,.equwalenLIyTWl) are evaluatgd a_lt_the
I'o mean temperature in the stack,=3(Tc+Ty). It is diffi-
5 cult on the basis o# priori considerations to formulate the
aw . . . .
My +iNy=(1+i)(y—1) ’ (39) kind of averaging t_hat is most effgcpye for the present pur-
) poses. We have tried several definitions, such as averaging

computed by integration along the stack, but found insignifi-

in agreement with well-known resultsee, e.g., Ref. 17, cant differences. Furthermore,

p. 534.
In view of the proportionality of% to the A% shown by _ [*s+ants
(26), we also see thdB1) implies Vs= « L dx Sx) (45)
s—(1/2)Ls
dz is the volume of the gas in the stack region extending from

dt Xs—3Lg t0 Xg+ 3Ls. The indexS appended td®; denotes

) ) ) evaluation at the stack’s midpoirg. In a similar way, from
In the unstable casiel ;+ M <0 and this relation gives the (34),

growth rate of the disturbance energy. In the stable case
Mp+My>0 and, in order to maintain the oscillations, one
needs to supply energy externally at the rate dictated by the
right hand side 0f40). In this case the energy lost is in part

(y—1)f(Pys)?

Mot NG~ 28 <
H | HZI__
V p3

dissipated by viscosity and thermal conduction, but in part is f_K_f_V 1 @ dPys

also the work needed to transport heat from the colder to the ——————— — — Py ,
warmer regions as, in this case, the device behaves as a heat (1-0)(1-fy) »® dx dx

pump, or acoustic refrigerator. (46)

Swift® defines the work fluW, in a thermoacoustic

engine. This is equivalent to the rate of growthn decay of and, upon combining resulté4) and (46),

the total acoustic energy in the device and, in the present Vs © c? dP;g\? )
notation, is therefore given by Mp+My= EPANTS +(y=1)Z(P1s)
Wo=—(Mp+Mpy)&. (41) 142 dPy
. — _— —, 4
The connection between Swift's expression Yy and our Pw? dx 'S dx 47
result is best explained after the considerations of Subsectiqjnere we have set for brevity
I A. _
The quality factorQ is defined b f —
aually factor@ g Zy=—1m| —%|, Z,=~Im(fy),
G 1_ fV
w& (48)
Q=——, (42 1 T
W, _ v Ik
Zy= Im .
1-o ( 1-fy )

which, with (32) and(41), becomes
For small diffusion penetration depths, frof0), these

w . .
- quantities are given by
Q 2Re()’ 43 _ o o
his rel blish b h 7, -N g LN, ! il (49)
This relation establishes a connection between the present =, =, = .
y S e T a1 o) |

study and the work of Atchléy® who estimated the growth

rate of the instability using an approximate calculation“of Use of these approximations in actual numerical calculations
andW,. The present approach has the advantage of greaté& not recommended. We show them to stress the dependence
generality which, as will be seen in the following sections,of the quantitieZ; on the Prandtl number and the ratio of the
leads to very accurate results. viscous boundary layer thicknesses to the the plate spacing.
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From definitiong41) of W, and(22) of p;, and relation(26) 1)
we have P1=v2py cos (L—x), (56)
Woe — Viw 7, c? 19p_1s _1)z where cy=VyRTy and the facton?2 is suggested by the
2 YPo a? X +(y 2 form of (37). Taking the wave number as/cy rather than
— n7/L is motivated by the result shown later that the optimal
X{(p1s)?)—Z 1 dc? 0 9P1s (50)  Stack position for instability is near the hot end of the tube.
18 w2 dx \"S ox || We find that this choice indeed improves agreement with the

ct solution as expected.

where the angle brackets denote time average over one cycfg® : : . .
g g 4 With these approximations we find frod7)

In his Eq.(80) Swift® gives an expression for the work flux

W,. It can be shown that his expression is the same as ours Vg Ty o
provided thatfy x in (48) are approximated by10) and Mp+My=2+" o ZlT_HS|n2 E(L_XS)
dT,/dxis much larger thaif,,/L. Since usuallyTy—T¢ is
not very much smaller thaf,,, while Lg<L, this latter w
AT e +(y— — (L—

approximation is often satisfied. (y=1)Z; cos Cy (L=x9)

By equating(47) to zero we find a critical value of the
temperature gradient that, if exceeded, leads to instability: _ E Zs CH dT sm (L Xo) ] (57)

2 % Ty dx
dT,| 1[ @ P — dP.g/dx @ln X
ax szz_s Z; ¢, dP;s/dx Poo/dx T4 Tw TR (5D The first two terms are positive definite—and hence

_ stabilizing—and correspond to viscous and thermal dissipa-
If viscous effects are neglectefd;=0, 0=0 and this expres- tion, respectively. The only potentially destabilizing term is
sion is readily shown to coincide with the critical tempera-the last one. If, as we assumeT,, /dx=0, it is therefore
ture gradient defined in the elementary theory of thermoaevident that, for instability to be possible, the stack must be
coustic processegsee, e.g., Ref. )6 The minimum of positioned in a region where sin@(cy)(L —Xg)>0. In par-

dT,,/dx|i occurs for ticular, for the fundamental mode for whieh=1, the stack
P 177, _ w2 must be placed to the right of the tube’s midpoint. In this
ﬁ S Z_l coTw| (52)  case it is easy to see tha},>T,.
1s/0X @ | £5 With expression(54) for w, the smallest critical tem-

where it has the value perature gradients3) becomes

“20 7 (E)W (53 AU PLLACE S N (58)
®7zy ) - dx | L Z, L O

crit

dT,
dx

min
In particular, in the inviscid case, any nonzero value of theThis relation shows that, for a given mean temperature gra-
temperature gradient will give rise to an instability if the dient, only a finite number of modes can be unstable.

stack is positioned at a pressure node. Expression57) can be identically rewritten as
To obtain further explicit results, we distinguish several v —
types of boundary conditions. Mp+ My~ Vs wzz[lew ty—1
2'H
A. Closed tube
w
Use of the previous formulae requires the approximate +B COS( 2—(L=xg)+ ¢) : (59
knowledge ofw and P, in the stack region. We calculate H :
from where
2 - \2 q+ |\ 2112
nw Z.T Zscy dT,
2 1'w 3%H w
=|¢{—| yRT,, 54 = —-1- — ,
© ( L)’ : Gy B (7 ! zzTH) (zszH dx>_ (60
where T, is an effective temperature andis a factor ac- 1275 cy a1
counting for the difference between the actual and the “ef-  sin ¢= (61

fective” length of the tube(see, e.g., Ref. 18 art. 265Ne BZ; 0Ty dx
have used Rayleigh’s method to estimétéut found a neg-  Upon ignoring the small effect of the dependencewobn
ligible difference and therefore we set this quantity to 1 inxg, it is evident from(59) that the instability will be greatest

the following. We takeT, to be the average temperature of at the position where the cosine equald, from which

the system
. w
sw{ 2 a (L—Xg)

1 (L =sin ¢. (62
Te=E Jo Tu(X)dx. (55)

It is readily verified that, if the mean pressure gradient is
We approximate thath pressure eigenmod®, in the stack very small, this relation requires that the stack be positioned
region by near a pressure node, as found before. However, in typical
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AT=368K, P,=307kPa, 6,/t=0.34 AT=368K, P,=307kPa, 6,/t=0.17
20 - T T T T T

T
0
o] ==
-20
o 40 o —10f
B 3
o -60 8
~ £ -20}
3 -80 3
£ 100 £ a0l
-120
e —40F
-140} .
— _ O Il 1 1 1 1
%9z 0|.5 06 0'.7 08 09 1.0 %% 0.5 0.6 0.7 0.8 0.9 1.0
stack position x/L stack position x./L

FIG. 1. Imaginary part of the eigenfrequency dras a function of the stack  FIG. 2. Imaginary part of the eigenfrequency &vas a function of the stack
positionxs/L along the resonant tube. The temperature difference betweepositionxg/L along the resonant tube. The temperature difference between
the two ends of the stack is 368 K and the gas pressure 307 kPa. When tliee two ends of the stack is 368 K and the gas pressure 307 kPa. When the
stack is positioned at the midpoint of the tube the ratio of the thermalstack is positioned at the midpoint of the tube the ratio of the thermal
penetration length to the spacing of the stack plates is 0.34. The solid line igenetration length to the spacing of the stack plates is 0.17. The solid line is
the exact result fronil1), the dotted line the two-time-scales req@®), the the exact result fronil1), the dotted line the two-time-scales req@®), the
dashed line the short-stack approximati{éi), and the dash-dot line Swift's  dashed line the short-stack approximat{é), and the dash-dot line Swift's
result. Instability corresponds to 1&<0. result. Instability corresponds to 1<0.

conditions of operation of thermoacoustic devices, the stacB. Tube open at one end
e o e For  tbe open a he cold e 0 and rigidy e
peratu ! 9 ! ————  hated atx=L, we approximate thath eigenfrequency by
cold-end absolute temperatifrés a consequencelT,,/dx

is usually much larger thah,/L so that, for moderate mode ) 1\ 7?2
numbern, we may approximat® and ¢ by ot=|\Nt 5 YRTe, (65)
-— where the average temperatufg is defined as before by
Z3 cy dT, i : . .
B=—— —, sing=1. (63)  (55). The corresponding eigenmo@ is taken as
Zz (DTH dX '

w
P,=v2pg sin— x, 66
With these approximations, the optimal position of the stack ! Po Cc (66)

to destabilize thenth mode is very nearly sin 2(/cy)(L
—Xg)=1, i.e.,Xg/L=1—(k+ 1/4)cy/(nce), with k an inte-
ger subject to the only restrictions that®g/L=<1. In par-
ticular, for the fundamental mode= 1, k must be taken as 0,

wherecc=\yRT:. Unlike the previous case, here we use
wlc¢ for the wave number since the optimal stack position
for instability will be found to be close to the cold end.

Proceeding as before, we find

so that
VS TW X w
X_Szl_l E (64) MD+MH—2V(,U ZlT_CS|n2 (%XS>
L 4 VT,

w
+(‘y_ 1)22 CO§ (C_ Xs)
In the elementary theory of the thermoacoustic instability, c

. (67)

w
— X
cc

the optimal stack position is found to be at the three-quarter 1 ce dT,
point xs= 3L, i.e., one-eighth of a wavelength from the hot 3 Z3 T dx sir?
end(Ref. 6; recall that here distances are measured from the ¢
cold-end of the tube SinceT,>T,, our result(64) shows  With (65), the critical gradient53) is
that the optimal stack position is actually slightly displaced
further away from the hot end of the tube, in agreement with  dT,, 1\ 7Te V2125 ] Ty
the exact results shown in Figs. 1 and 2. It should be re- dx '=2(n+§ L Zs (y=1) T (68)
marked that this conclusion only applies under the condition ort
that|dT,,/dx|>T./L and therefore it can lead to erroneous When|dT, /dx|>T./L the maximum instability occurs ap-
conclusions whendT,,/dx| is small. proximately atxg/L=3[(4k+1)/(2n+1)](cc/ce), Where

As the ordem of the mode increaseg also increases c.=+yRT.. For the lowest moden=0, k=0 and Xg
and the constanB given by (63) accordingly decreases. = 3L(cc/ce). This result is easily understood on the basis of
Thus higher-order modes are found to be always less urthe previous one as the present situation is similar to a tube
stable than the fundamental one. of length 2 closed at both ends.
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The case of a tube closed at the cold end and open at tHEhis procedure requires the values of{(1,,)S at the half-
other one is contained in the preceding formuladT{,/dx  integer nodes which are calculated as simple arithmetic av-
is taken to be negative. The critical gradient is the negativerages. Typically 2000 cells were used along the tube length,
of (68). Again with the hypothesis thédi T,,/dx|>T./L, the  with approximately 100 in the stack region. The eigenvalues
maximum instability occurs approximately at/L=3(4k were searched by the inverse iteration metffoihe same
+3)/(2n+1). For the lowest mode=0, there is no integer method was used to calculate the eigenvalues and eigenfunc-
k such thatxs/L=<1. The instability condition cannot be tions of the first-order approximatiof21). The integrations
therefore satisfied for the lowest mode of a tube open at thaecessary to calculaf in Egs.(33) and(34) were effected

hot end. by the trapezoidal rule. In order to avoid introducing an ad-
ditional parameter—the radius of the tube—we have taken
C. Both ends open fy andfy to vanish outside the stack region.

For a tube open at both ends, with the cold end at _.As the operation of a t.herm.oacoustic prime mover is
x=0, thenth eigenfrequency is approximately given (5. critically dependent on_the imaginary _part of the eigenfre-
The same relationg7) and (68) of the previous case apply. 9uency, we focus on this quantity. In Figs. 1 and 2 we show
The condition for instability is again given b{g8). When [M®asa function of th? stack positiow/L nqrmahzed by
|dT,,/dx|>T./L the maximum instability occurs foxg/L the tube Iengt_h. These figures are for an undisturbed pressure
=1 (4k+1)/n](cc/ce), approximately. For the fundamen- of 307 kPa, wnh atemperaturg dlfference.of 368 K along the
tal moden=1 we thus havé=0 andxs=(cc/co)L. stack._ The choice pf this particular casgezzls suggested by the
experimental conditions of Atchlegt al.”““ The frequency
IV. COMPARISON WITH EXACT THEORY Re @/27 of the fundamental mode changes from about 505

Hz to 590 Hz as the stack is moved from the hot to the

We compare here the results of the multiple-time-scalegniddle of the tube. Within about 10%, these values are well
calculation and the short stack approximation with those Obpredicted by the formuld54) with n=1, {=1. Since the
tained from the exact equatidh1) for some typical param- thermal penetration depth depends on frequency, the ratio
eter values. _ _ _ Sk /1 is also a function of the stack’s position. When the

The geometry that we simulate is that of the experimentgack is in the middle of the tube this ratio has the value 0.34
of Atchley ™ in which the tube length was 99.87 cm, its i Fig. 1 and 0.17 in Fig. 2. As the stack is moved toward the
radius 3.82 cm, and the stack lendth=3.5 cm. The com- ot eng, the frequency decreases and the penetration depth
bined cross-sectional area of the stack plates was 31 cmcorrespondingly increases to 0.37 for Fig. 1 and 0.19 for Fig.
i.e., 27% of the entire cross section. We have calculated thg
exact eigenvalué both accounting for, and neglecting, the | Figs. 1 and 2 the solid lines mark the results from the
blockage effect of the plates_. As the differences between thgg|tion of the exact Rott equatigfil), the dotted lines are
two cases are very small, in the results shown below Wene two-time-scales approximatid@?), the dashed lines are
neglect blockage for simplicity. _ the short-stack approximati@s7), and the dash-dot lines are

Of course, our purpose here is not to compare Rott'§pe results obtained from Eq80) in Swift® according to
theory or our approximations with the data, a task that hags1). The zero is marked by the horizontal line; a negative
already been carried out, e.g., by Atchley himself and,sye of Im& implies instability, and a positive one stability.
others!2191%yt to validate the asymptotic results against Agreement between the two-times approximatiég) and
the exact ones. _ _ the exact solution is excellent even at the relatively large
_The gas used in the experiment was helium and accordjg) e ofs, /1 of Fig. 1. The difference is hardly noticeable at
ingly we take y=5/3, 0=0.71,¢,=5.2kJ/kg K. Over the yho smaller value of Fig. 2, and practically disappears for
tgmperature range _of interest here,_from 300 P_(to 700 K, W&y an larger gaps. The short-stack approximath is not
fit thermal conductivity dafd byj‘ linear function of tem- g accyrate, but the error is less than about 15% even in the
perature a=0.151+3.228<10"*(T—300), withk in W/ 515t case. Swift's result is good for the wider gap case of
mK and T in K, which provides a better fit than a power g 5 ¢ as Fig. 1 shows, it rapidly deteriorates as the gap
law. We have included this effect in our calculation as they i decreases. It should be noted that, in plotting Swift's
value of k determines the boundary layer thickness, andresult, the values of pressure and velocity appearing in

therefore the heat trf_msfer parameters. The measured 8yifrs formula have been obtained from the exact solution
perature was approximately constant and equal to its colds roirs equation.

and hot values to the left and right of the stack respectively,
and linear in the stack and therefore we take T for O
=X=Xg— %Ls, T:TH for Xs+ %LS$XSL, and

Another important quantity is the critical temperature
gradient, which is shown in Figs. 3 to 5 as a functiondpfl
for stack positions ais/L=0.594, 0.729, 0.864, respec-
X—(xg— 1L o) tively. Here the geometry and conditions are as in the previ-
3 (Ty—To), (69) ous figures except for the hot temperat@iyewhich is evalu-
S ated as follows. In the case of the exact Rott solufignis
for xg— sLs<x<xg+ 3Ls. Herexg denotes the position of adjusted so as to achieve marginal stability condititires,
the midpoint of the stack. Im ®=0) with a fixed stack lengtlhg, after which the criti-
To solve Eq.(11) numerically we multiply byS and  cal temperature gradient is calculated @g{ T¢)/Ls. (Re-
discretize by centered differences on an equispaced gri¢all that the stack temperature is prescribed to be linear in

T:Tc+
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x./L=0.594 x,/L=0.864
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FIG. 3. Critical temperature gradient as a function of the ratio of the thermal
penetration lengthsy to the gap widthl for a stack positioned atg/L FIG. 5. Critical temperature gradient as a function of the ratio of the thermal
=0.594, i.e., near the midpoint of the tube. The solid line is the exact Rotfpenetration length, to the gap widthl for a stack positioned atg/L
result, the dotted line the short-stack approximatiibt) with P, approxi- =0.864. The solid line is the exact Rott result, the dotted line the short-stack

mated by the hot-temperature wave funct{gf), and the dashed line by the approximation(51) with P, approximated by the hot-temperature wave

cold-temperature wave functigi6). The dash-dot line is the result found function (56), and the dashed line by the cold-temperature wave function

by setting Swift's(Ref. 6 Eq.(80) to 0. The large discrepancy is principally (66). The dash-dot line is the result found by setting SwiffRef. 6 Eq.

due to the use of the approximati¢hO) for the fy «’s in (48). (80) to 0. The large discrepancy is principally due to the use of the approxi-
mation (10) for the fy ’s in (48).

this work) These results are shown by the solid lines in the ) . .
figures. The short-stack approximation to the critical tem-tN€& €xact two-time-scale expressi@t) with P, found nu-
perature gradient has been calculated fi&® which, with mencally_ from (23). When _the stack is positioned near the
dT, /dx=(Ty—Tc)/Ls, can be regarded as an equation fortube’s_ midpoint the error is about 1%. When_however the
stack is moved toward the hot end, this result is comparable

Ty . The dotted line shows this result wily, approximated ' e "
by (56), while the dashed line is found from a correspondingto that obtained by the short-stack approximation with the
cold-temperature wave number.

approximation,(66), based on the cold-temperature wave ) .

number. For the two positions closest to the hot end of the In Figs. 3_ o 5 the dash-dot. lines show the result ob-
tube(Figs. 4 and Smost of the tube is occupied by gas at the fained by setting Swift's expression fo, to 0. The error
cold temperature and use of the second form of the eigerfPcurred in the approximation di, x by (10) is seen to lead
function gives a somewhat better result. When the stack i @ substantial discrepancy with the exact results. Our result
positioned near the midpoint of the tutféig. 3, on the other would show a comparable error if the same approximations
hand, both alternatives give a comparable error that can b@" fv.x were used.

reduced by using the average of the two approximations to

P, (not shown. We have repeated these calculations using/- CONCLUSIONS

By exploiting the difference between the time scale for

x./L=0.729 the development of the thermoacoustic instability and the

3.50 - . . . — period of standing waves in a resonant tube, we have devel-
- | oped a time-domain description of the instability and ap-
. proximate formulae for its growth rate. We have carried out
€ s00F . a multiple-time-scales expansion to first order and we have

given simplified formulae exploiting the short-stack approxi-
mation. In addition to closed tubes, we have also considered
- tubes open at either or both ends. Results for modes higher
than the fundamental one have also been presented.

N

~

o
T

[dT/dx]e (K/m

2250 i The exact perturbation results are very close to the the-

2.00k ] oretical prediction of the full Rott equation. In practice, their
evaluation requires the solution of the eigenvalue problem

785 o 02 ) o2 05 06 (21) that is self-adjoint and has therefore real eigenvalues.

0.3

S/t Accordingly, numerically the problem is more tractable than
FIG. 4. Critical temperature gradient as a function of the ratio of the thermalROtt S equathn. Even this rather modest computational task
penetration length, to the gap widthl for a stack positioned ats/L can be avoided—at the price of an error of a few

=0.729. The solid line is the exact Rott result, the dotted line the short-stacpercent—by adopting the short-stack approximation dis-
approximation(51) with P, approximated by the hot-temperature wave cyssed in Sec. Ill.

function (56), and the dashed line by the cold-temperature wave function NP . _
(66). The dash-dot line is the result found by setting SwifRef. 6 Eq. Another significant result of the present study is an ac

(80) to 0. The large discrepancy is principally due to the use of the approxi-CU'rlate‘(and numerically manggeablgpprgximgtion for the
mation (10) for the fy «’s in (48). critical temperature gradient including viscosity, heat trans-
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