
Linear thermoacoustic instability in the time domain
S. Karpov and A. Prosperetti
Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218

~Received 30 April 1997; accepted for publication 17 February 1998!

An approximate time-domain description of the development of the thermoacoustic instability in
gas-filled tubes is developed by exploiting the difference between the instability time scale and the
period of standing waves. The perturbation results compare very favorably with the exact
frequency-domain theory of Rott. The perturbation results are further simplified by introducing a
short-stack approximation which is numerically much simpler and only slightly less accurate. An
approximate expression for the critical temperature gradient accounting for viscous effects and other
design features is also derived. In addition to the fundamental mode of a tube closed at both ends,
the theory includes higher modes as well as open-end boundary conditions. ©1998 Acoustical
Society of America.@S0001-4966~98!00606-7#

PACS numbers: 43.35.Ud@HEB#

INTRODUCTION

The linear theory of thermoacoustic effects as developed
in the well-known series of papers by Rott1–4 ~good reviews
are provided by Wheatley5 and Swift6! is based on a formu-
lation in the frequency domain. In the present paper we de-
velop an approximate time-domain approach that is valid
when the period of standing waves is much shorter than the
growth rate of the instability. Since this condition is com-
monly met in practice, we expect the present formulation to
furnish a realistic description of the time evolution of the
instability in a wide variety of situations.

One of the main results of the present work is an expres-
sion for the linear growth rate of the thermoacoustic instabil-
ity or, below threshold, for the decay rate of standing waves.
This latter result can also be viewed as expressing the power
requirement for the operation of a thermoacoustic refrigera-
tor. In the past these results have been approached by esti-
mating the so-called work flux~see, e.g., Ref. 6! or Q-value
of the device.7–9 Our method may therefore be interpreted as
a different approach to the evaluation of these quantities. Its
advantage is a greater flexibility that enables us to consider-
ably simplify their quantitative evaluation with respect to the
exact theory of Rott while at the same time maintaining a
greater accuracy than existing approximations.

A second result of the paper is an unambiguous defini-
tion of the concept of critical temperature gradient when vis-
cous and thermal effects are both important and an accurate
approximate expression for this quantity.

I. MATHEMATICAL MODEL

In Watanabeet al.10 it was shown that a model of ther-
moacoustic devices that, in the frequency domain, is exactly
equivalent to Rott’s, may be written in the form
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The system of equations is closed by assuming the validity
of the perfect gas law. Herer, p, T, andu are the density,
pressure, temperature, and velocity fields. The spatial coor-
dinatex is directed along the axis of the device,S(x) is the
~possibly variable! cross-sectional area, andg the ratio of
specific heats. The subscript zero denotes undisturbed quan-
tities. The temperatureTw(x) of the solid surfaces in contact
with the gas~i.e., the tube walls and the stack plates! is
assumed to be only a function ofx and is taken to be pre-
scribed in the following. It should be noted that, even when
this quantity evolves with time, it does so only slowly~com-
pared with the period of the oscillations! and therefore the
present method can be extended to deal with this case as well
as noted below.

The drag operatorD and the heat transfer operatorsH

andQ are given, in the frequency domain, by
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HereT85T2Tw and tildes denote frequency-domain quan-
tities. The parametersf V,K depend on the ratio of the diffu-
sion lengthsdV,K to the plate spacingl and, for disturbances
proportional to expivt̂, are given by6

f 5~12 i !
d

l
tanh~11 i !

l

2d
, ~7!

where the index can beV or K. The viscous and thermal
penetration lengthsdV,K are given by
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with n the kinematic viscosity,s the Prandtl number, and
a5n/s the thermal diffusivity. For a circular cross section
with radiusr 0 one has instead1

f 5
2J1„~ i 21!~r 0 /d!…

~ i 21!~r 0 /d!J0„~ i 21!~r 0 /d!…
, ~9!

again valid for bothf V and f K . When the diffusion penetra-
tion depths are small compared with eitherl or r 0 , f given
by either~7! or ~9! admits the asymptotic approximation

f .~12 i !
d

l
, f .~12 i !

d
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. ~10!

More generally, for other cross section shapes, in this limit
one may setf .2(12 i )d/dh , wheredh54S(x)/s(x) is the
hydraulic diameter defined in terms of the cross-sectional
areaS and the ‘‘wetted’’ perimeters.

If Eqs. ~1!–~3! are written in the frequency domain, after
reduction to a single equation by differentiation and elimina-
tion, one recovers Rott’s equation:
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The local adiabatic speed of soundc(x) equalsAgRTw(x),
with R the universal gas constant divided by the gas molecu-
lar mass, and is therefore also variable in general along the
axis of the system.

II. THE STABILITY CALCULATION

Experiment~see, e.g., Refs. 5, 8! shows that the initial
build-up of the thermoacoustic instability has the character
of a modulated standing wave the frequency of which is
essentially dictated by the resonator, while the amplitude is
slowly varying in time. This observations suggests the pos-
sibility of setting up a perturbation scheme based on the
smallness of the ratio of the characteristic period of oscilla-
tion to the characteristic time for the development of the
instability.

In the framework of the previous model, the terms in the
left-hand side of Eqs.~1!–~3! describe linear acoustic waves
in a gas column with variable cross-sectional area and tem-
perature stratification and are therefore responsible for the
‘‘carrier’’ frequency of the wave. The heart of the thermoa-
coustic effect is in the terms in the right-hand sides and,
more specifically, in the right-hand side of the energy equa-
tion ~3!. The observed slowness of the modulation implies
that these terms are small or, sinceD , H, andQ all vanish
with f V,K , that thef ’s are small. In order to set up a pertur-
bation scheme, we take thereforef V,K to be of ordere!1
and we will treat the ratiof V,K /e as a quantity of order 1.
While a formal definition ofe is not necessary as the final
results do not explicitly depend on this parameter, according
to ~10!, one may think of it as the ratiod/ l .

To proceed with a formal development of the previous
observation, we introduce the scaled times

t̂5t, t5et, ~12!

and, according to the method of multiple time scales, we
treat t̂ andt as independent variables. The original variablet
is recovered at the end of the calculation by using~12! ~see,
e.g., Refs. 11, 12!. As a consequence of these definitions we
have, correct to ordere,
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We also expand the dependent variablesp, u, etc., in a
power series ine; for example,

p5p11ep21¯ , ~14!

with a similar notation foru, etc. Now these expansions are
substituted into~1! to ~3! where~13! is used to express the
time derivative. Upon separating orders, to zero order ine,
we have
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and, at the next order,
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A. Zero order

The three equations~15! to ~17! can be combined to give

1

S

]
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S c2S

]p1

]x
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]2p1

] t̂2
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The solution of this equation may be taken in the form

p1~x, t̂,t!5A~t!P1~x!exp~ iv t̂ !1c.c., ~22!

where c.c. denotes the complex conjugate, and the eigen-
function P1(x) and eigenfrequencyv are determined by
solving the eigenvalue problem
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subject to appropriate boundary conditions. In this paper we
only consider rigid or open terminations at the ends of the
tube and therefore

dP1

dx
50 or P150 at x50, x5L. ~24!

With these conditions, it can readily be shown by standard
techniques that the eigenvaluev is real ~see, e.g., Refs. 14,
15!. The eigenfunctionP1 can therefore also be taken real
and, for later convenience, we normalize it so that

E
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where V is the volume of the device andp0 is the undis-
turbed static pressure. Since the total acoustic energy in the
device, to the present approximation, is given by~see, e.g.,
Ref. 16 section 63!
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we see that normalization~25! is equivalent to normalizing
the energy by

E05
Vp0

2g
. ~27!

It is readily found thatu1 , r1 , andT18 also satisfy Eq.
~21! and therefore they can also be written in the form~22!
with the samev and proportionality to the same function
A(t). In particular, from~16!,
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i

vr0
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. ~28!

B. First order

To ordere, the drag and heat transfer operatorsD , H,
andQ operate on the variablet̂ and, since the dependence on
this variable is only through the exponential factor expivt̂,
one can use the Fourier-space representation of these opera-
tors given in~4!–~6!. Upon substitution of solution~22! for
p1 and similar expressions for the other first-order fields into
~18!–~20!, we thus find

1

S

]

]x
S c2S

]p2

]x
D 2

]2p2

] t̂2

5H 2iv
dA

dt
P12

A

e F1

S

]

]x S i f V

12 f V
vr0Sc2U1D

1~g21!v2f KP1~x!

2 i
f V2 f K

~12s!~12 f V!
g

vp0U1

Tw

dTw

dx G J exp iv t̂1c.c.

~29!

The forcing at frequencies6v in the right-hand side will
generate resonant terms proportional tot̂ exp ivt̂ in the so-
lution for p2 which lead to a breakdown of the approxima-
tion over times of order (ev)21. To avoid this resonance, as
in the standard procedure,11–13 we impose the solvability
condition that the right-hand side of the equation be orthogo-
nal to the solution of the~adjoint! homogeneous equation,
namely exp(2ivt̂ )P1:
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where, for brevity, we write$¯% to denote the coefficient of
A in ~29!. Multiplication by S(x) before integration is nec-
essary so that thex-operator in the left hand side of~29! be
self-adjoint with the boundary conditions~24!. In this way
we find

dA
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where
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with, after an integration by parts,
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wherecp is the specific heat at constant pressure.
Since thef ’s are essentially the small parametere, and

since these results have an accuracy of first order ine, one
might be tempted to replace 12 f V simply by 1 in the de-
nominators. While justified in principle in the limite→0, we
have found that the numerical accuracy of these results ex-
tends to significantly larger values ofd/ l if the forms given
above are retained.

Clearly ~34! is also applicable whenTw depends slowly
~i.e., on the time scalet! on time. Integration of the ampli-
tude equation~31! in this case is however somewhat more
complicated and therefore, as already mentioned before, we
limit ourselves to the simpler situation in whichTw is inde-
pendent of time. In this case the solution of~31! is

A~t!5A0 expS 2V
t

e D5A0 exp~2Vt !, ~35!

with A0 dependent on the initial conditions, and therefore
grows or decays according to the sign ofMD1MH . The
second form of solution~35! demonstrates explicitly the in-
dependence of the result from the definition ofe. The previ-
ous results imply the following approximation for the exact
eigenfrequencyv̂ in Rott’s equation~11!:

v̂.v1 iV. ~36!
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It is interesting to verify that~35! reduces to the standard
expressions for the viscous and thermal damping of a stand-
ing wave in a hollow isothermal cylindrical tube. If we con-
sider the case of rigid terminations at both ends, by the nor-
malization~25!, we may write

P15&p0 cos
npx

L
. ~37!

With this expression, noting thatv5npc/L, and using ap-
proximation~10! for f V,K , it is immediate to verify that, to
lowest order in these quantities,

MD1 iND.~11 i !
A2nv

r 0
, ~38!

MH1 iNH.~11 i !~g21!
A2av

r 0
, ~39!

in agreement with well-known results~see, e.g., Ref. 17,
p. 534!.

In view of the proportionality ofE to theA2 shown by
~26!, we also see that~31! implies

dE

dt
52~MD1MH!E . ~40!

In the unstable caseMD1MH,0 and this relation gives the
growth rate of the disturbance energy. In the stable case
MD1MH.0 and, in order to maintain the oscillations, one
needs to supply energy externally at the rate dictated by the
right hand side of~40!. In this case the energy lost is in part
dissipated by viscosity and thermal conduction, but in part is
also the work needed to transport heat from the colder to the
warmer regions as, in this case, the device behaves as a heat
pump, or acoustic refrigerator.

Swift6 defines the work fluxẆ2 in a thermoacoustic
engine. This is equivalent to the rate of growth~or decay! of
the total acoustic energy in the device and, in the present
notation, is therefore given by

Ẇ252~MD1MH!E . ~41!

The connection between Swift’s expression forẆ2 and our
result is best explained after the considerations of Subsection
III A.

The quality factorQ is defined by

Q52
vE

Ẇ2

, ~42!

which, with ~32! and ~41!, becomes

Q5
v
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This relation establishes a connection between the present
study and the work of Atchley7–9 who estimated the growth
rate of the instability using an approximate calculation ofE

andẆ2 . The present approach has the advantage of greater
generality which, as will be seen in the following sections,
leads to very accurate results.

III. SHORT-STACK APPROXIMATION

The asymptotic results of Sec. I can be approximated by
adopting the so-called ‘‘short-stack approximation’’~see,
e.g., Ref. 6!. We thus assume that the stack occupies a length
much smaller than the wavelength of the standing waves so
that the pressure field in the stack can be considered as con-
stant. We takef V,K.0 outside the stack region.

We thus write~33!, approximately, as
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Here f̄ V and c2 ~or, equivalentlyT̄w! are evaluated at the
mean temperature in the stack,T̄w5 1

2(TC1TH). It is diffi-
cult on the basis ofa priori considerations to formulate the
kind of averaging that is most effective for the present pur-
poses. We have tried several definitions, such as averaging
computed by integration along the stack, but found insignifi-
cant differences. Furthermore,

VS5E
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xS2 1

2LS to xS1 1
2LS . The indexS appended toP1 denotes

evaluation at the stack’s midpointxS . In a similar way, from
~34!,
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and, upon combining results~44! and ~46!,
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where we have set for brevity
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For small diffusion penetration depths, from~10!, these
quantities are given by

Z1.
dV

l
, Z2.

1
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dV

l
, Z3.

1

As~11As!

dV

l
. ~49!

Use of these approximations in actual numerical calculations
is not recommended. We show them to stress the dependence
of the quantitiesZj on the Prandtl number and the ratio of the
viscous boundary layer thicknesses to the the plate spacing.
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From definitions~41! of Ẇ2 and~22! of p1 , and relation~26!
we have
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VSv

gp0
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v2 K S ]p1S
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where the angle brackets denote time average over one cycle.
In his Eq.~80! Swift6 gives an expression for the work flux
Ẇ2 . It can be shown that his expression is the same as ours
provided that f V,K in ~48! are approximated by~10! and
dTw /dx is much larger thanT̄w /L. Since usuallyTH2TC is
not very much smaller thanT̄w , while LS!L, this latter
approximation is often satisfied.

By equating~47! to zero we find a critical value of the
temperature gradient that, if exceeded, leads to instability:
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If viscous effects are neglected,f̄ V50, s50 and this expres-
sion is readily shown to coincide with the critical tempera-
ture gradient defined in the elementary theory of thermoa-
coustic processes~see, e.g., Ref. 6!. The minimum of
dTw /dxucrit occurs for

P1S

dP1S /dx
5
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v FZ1
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where it has the value
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S T̄w
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. ~53!

In particular, in the inviscid case, any nonzero value of the
temperature gradient will give rise to an instability if the
stack is positioned at a pressure node.

To obtain further explicit results, we distinguish several
types of boundary conditions.

A. Closed tube

Use of the previous formulae requires the approximate
knowledge ofv andP1 in the stack region. We calculatev
from

v2.S z
np

L D 2

gRTe , ~54!

where Te is an effective temperature andz is a factor ac-
counting for the difference between the actual and the ‘‘ef-
fective’’ length of the tube~see, e.g., Ref. 18 art. 265!. We
have used Rayleigh’s method to estimatez, but found a neg-
ligible difference and therefore we set this quantity to 1 in
the following. We takeTe to be the average temperature of
the system

Te5
1

L E
0

L

Tw~x!dx. ~55!

We approximate thenth pressure eigenmodeP1 in the stack
region by

P15&p0 cos
v

cH
~L2x!, ~56!

where cH5AgRTH and the factor& is suggested by the
form of ~37!. Taking the wave number asv/cH rather than
np/L is motivated by the result shown later that the optimal
stack position for instability is near the hot end of the tube.
We find that this choice indeed improves agreement with the
exact solution as expected.

With these approximations we find from~47!

MD1MH.2
VS

V
vH Z1

T̄w

TH
sin2F v

cH
~L2xS!G

1~g21!Z2 cos2F v

cH
~L2xS!G

2
1

2
Z3

cH

vTH

dTw

dx
sinF2v

cH
~L2xS!G J . ~57!

The first two terms are positive definite—and hence
stabilizing—and correspond to viscous and thermal dissipa-
tion, respectively. The only potentially destabilizing term is
the last one. If, as we assume,dTw /dx>0, it is therefore
evident that, for instability to be possible, the stack must be
positioned in a region where sin 2(v/cH)(L2xS).0. In par-
ticular, for the fundamental mode for whichn51, the stack
must be placed to the right of the tube’s midpoint. In this
case it is easy to see thatT̄w.Te .

With expression~54! for v, the smallest critical tem-
perature gradient~53! becomes

dTw

dx U
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52
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L
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Z3
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This relation shows that, for a given mean temperature gra-
dient, only a finite number of modes can be unstable.

Expression~57! can be identically rewritten as
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sin f5
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vTH
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Upon ignoring the small effect of the dependence ofv on
xS , it is evident from~59! that the instability will be greatest
at the position where the cosine equals21, from which

sinF2
v

cH
~L2xS!G5sin f. ~62!

It is readily verified that, if the mean pressure gradient is
very small, this relation requires that the stack be positioned
near a pressure node, as found before. However, in typical
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conditions of operation of thermoacoustic devices, the stack
length is much smaller than the tube length, while the tem-
perature difference along the stack is of the order of the
cold-end absolute temperature.6 As a consequence,dTw /dx
is usually much larger thanTe /L so that, for moderate mode
numbern, we may approximateB andf by

B.
Z3

Z2

cH

vTH

dTw

dx
, sin f.1. ~63!

With these approximations, the optimal position of the stack
to destabilize thenth mode is very nearly sin 2(v/cH)(L
2xS)51, i.e.,xS /L512(k11/4)cH /(nce), with k an inte-
ger subject to the only restrictions that 0<xS /L<1. In par-
ticular, for the fundamental moden51, k must be taken as 0,
so that

xS

L
512

1

4
ATH

Te
. ~64!

In the elementary theory of the thermoacoustic instability,
the optimal stack position is found to be at the three-quarter
point xS5 3

4L, i.e., one-eighth of a wavelength from the hot
end~Ref. 6; recall that here distances are measured from the
cold-end of the tube!. SinceTH.Te , our result~64! shows
that the optimal stack position is actually slightly displaced
further away from the hot end of the tube, in agreement with
the exact results shown in Figs. 1 and 2. It should be re-
marked that this conclusion only applies under the condition
that udTw /dxu@Te /L and therefore it can lead to erroneous
conclusions whenudTw /dxu is small.

As the ordern of the mode increases,v also increases
and the constantB given by ~63! accordingly decreases.
Thus higher-order modes are found to be always less un-
stable than the fundamental one.

B. Tube open at one end

For a tube open at the cold endx50 and rigidly termi-
nated atx5L, we approximate thenth eigenfrequency by
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L G2
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where the average temperatureTe is defined as before by
~55!. The corresponding eigenmodeP1 is taken as

P15&p0 sin
v
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x, ~66!

wherecC5AgRTC. Unlike the previous case, here we use
v/cC for the wave number since the optimal stack position
for instability will be found to be close to the cold end.
Proceeding as before, we find

MD1MH.2
VS

V
vFZ1

T̄w

TC
sin2 S v

cC
xSD

1~g21!Z2 cos2 S v

cC
xSD

2
1

2
Z3

cC

vTC

dTw

dx
sin2 S v

cC
xSD G . ~67!

With ~65!, the critical gradient~53! is

dTw

dx U
crit

52S n1
1

2D pTe

L

AZ1Z2

Z3
A~g21!

T̄w

Te
. ~68!

When udTw /dxu@Te /L the maximum instability occurs ap-
proximately atxS /L5 1

2@(4k11)/(2n11)#(cC /ce), where
ce5AgRTe. For the lowest moden50, k50 and xS

5 1
2L(cC /ce). This result is easily understood on the basis of

the previous one as the present situation is similar to a tube
of length 2L closed at both ends.

FIG. 1. Imaginary part of the eigenfrequency Imv̂ as a function of the stack
positionxS /L along the resonant tube. The temperature difference between
the two ends of the stack is 368 K and the gas pressure 307 kPa. When the
stack is positioned at the midpoint of the tube the ratio of the thermal
penetration length to the spacing of the stack plates is 0.34. The solid line is
the exact result from~11!, the dotted line the two-time-scales result~32!, the
dashed line the short-stack approximation~57!, and the dash-dot line Swift’s
result. Instability corresponds to Imv̂,0.

FIG. 2. Imaginary part of the eigenfrequency Imv̂ as a function of the stack
positionxS /L along the resonant tube. The temperature difference between
the two ends of the stack is 368 K and the gas pressure 307 kPa. When the
stack is positioned at the midpoint of the tube the ratio of the thermal
penetration length to the spacing of the stack plates is 0.17. The solid line is
the exact result from~11!, the dotted line the two-time-scales result~32!, the
dashed line the short-stack approximation~57!, and the dash-dot line Swift’s
result. Instability corresponds to Imv̂,0.
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The case of a tube closed at the cold end and open at the
other one is contained in the preceding formulae ifdTw /dx
is taken to be negative. The critical gradient is the negative
of ~68!. Again with the hypothesis thatudTw /dxu@Te /L, the
maximum instability occurs approximately atxS /L5 1

2(4k
13)/(2n11). For the lowest moden50, there is no integer
k such thatxS /L<1. The instability condition cannot be
therefore satisfied for the lowest mode of a tube open at the
hot end.

C. Both ends open

For a tube open at both ends, with the cold end at
x50, thenth eigenfrequency is approximately given by~54!.
The same relations~67! and~68! of the previous case apply.
The condition for instability is again given by~58!. When
udTw /dxu@Te /L the maximum instability occurs forxS /L
5 1

4@(4k11)/n#(cC /ce), approximately. For the fundamen-
tal moden51 we thus havek50 andxS5 1

4(cC /ce)L.

IV. COMPARISON WITH EXACT THEORY

We compare here the results of the multiple-time-scales
calculation and the short stack approximation with those ob-
tained from the exact equation~11! for some typical param-
eter values.

The geometry that we simulate is that of the experiments
of Atchley7,8 in which the tube length was 99.87 cm, its
radius 3.82 cm, and the stack lengthLS53.5 cm. The com-
bined cross-sectional area of the stack plates was 3.1 cm2,
i.e., 27% of the entire cross section. We have calculated the
exact eigenvaluev̂ both accounting for, and neglecting, the
blockage effect of the plates. As the differences between the
two cases are very small, in the results shown below we
neglect blockage for simplicity.

Of course, our purpose here is not to compare Rott’s
theory or our approximations with the data, a task that has
already been carried out, e.g., by Atchley himself and
others,7–9,19,10but to validate the asymptotic results against
the exact ones.

The gas used in the experiment was helium and accord-
ingly we takeg55/3, s50.71, cp55.2 kJ/kg K. Over the
temperature range of interest here, from 300 K to 700 K, we
fit thermal conductivity data20 by a linear function of tem-
perature ask50.15113.22831024(T2300), with k in W/
m K and T in K, which provides a better fit than a power
law. We have included this effect in our calculation as the
value of k determines the boundary layer thickness, and
therefore the heat transfer parameters. The measured tem-
perature was approximately constant and equal to its cold
and hot values to the left and right of the stack respectively,
and linear in the stack and therefore we takeT5TC for 0
<x<xS2 1

2LS , T5TH for xS1 1
2LS<x<L, and

T5TC1
x2~xS2 1

2LS!

LS
~TH2TC!, ~69!

for xS2 1
2LS,x,xS1 1

2LS . HerexS denotes the position of
the midpoint of the stack.

To solve Eq.~11! numerically we multiply byS and
discretize by centered differences on an equispaced grid.

This procedure requires the values of (12 f V)S at the half-
integer nodes which are calculated as simple arithmetic av-
erages. Typically 2000 cells were used along the tube length,
with approximately 100 in the stack region. The eigenvalues
were searched by the inverse iteration method.21 The same
method was used to calculate the eigenvalues and eigenfunc-
tions of the first-order approximation~21!. The integrations
necessary to calculateV in Eqs.~33! and~34! were effected
by the trapezoidal rule. In order to avoid introducing an ad-
ditional parameter—the radius of the tube—we have taken
f V and f K to vanish outside the stack region.

As the operation of a thermoacoustic prime mover is
critically dependent on the imaginary part of the eigenfre-
quency, we focus on this quantity. In Figs. 1 and 2 we show
Im v̂ as a function of the stack positionxS /L normalized by
the tube length. These figures are for an undisturbed pressure
of 307 kPa, with a temperature difference of 368 K along the
stack. The choice of this particular case is suggested by the
experimental conditions of Atchleyet al.9,22 The frequency
Rev̂/2p of the fundamental mode changes from about 505
Hz to 590 Hz as the stack is moved from the hot to the
middle of the tube. Within about 10%, these values are well
predicted by the formula~54! with n51, z51. Since the
thermal penetration depth depends on frequency, the ratio
d̄K / l is also a function of the stack’s position. When the
stack is in the middle of the tube this ratio has the value 0.34
in Fig. 1 and 0.17 in Fig. 2. As the stack is moved toward the
hot end, the frequency decreases and the penetration depth
correspondingly increases to 0.37 for Fig. 1 and 0.19 for Fig.
2.

In Figs. 1 and 2 the solid lines mark the results from the
solution of the exact Rott equation~11!, the dotted lines are
the two-time-scales approximation~32!, the dashed lines are
the short-stack approximation~57!, and the dash-dot lines are
the results obtained from Eq.~80! in Swift6 according to
~41!. The zero is marked by the horizontal line; a negative
value of Imv̂ implies instability, and a positive one stability.
Agreement between the two-times approximation~32! and
the exact solution is excellent even at the relatively large
value ofd̄K / l of Fig. 1. The difference is hardly noticeable at
the smaller value of Fig. 2, and practically disappears for
even larger gaps. The short-stack approximation~57! is not
as accurate, but the error is less than about 15% even in the
worst case. Swift’s result is good for the wider gap case of
Fig. 2 but, as Fig. 1 shows, it rapidly deteriorates as the gap
width decreases. It should be noted that, in plotting Swift’s
result, the values of pressure and velocity appearing in
Swift’s formula have been obtained from the exact solution
of Rott’s equation.

Another important quantity is the critical temperature
gradient, which is shown in Figs. 3 to 5 as a function ofdK/ l
for stack positions atxS /L50.594, 0.729, 0.864, respec-
tively. Here the geometry and conditions are as in the previ-
ous figures except for the hot temperatureTH which is evalu-
ated as follows. In the case of the exact Rott solutionTH is
adjusted so as to achieve marginal stability conditions~i.e.,
Im v̂50! with a fixed stack lengthLS , after which the criti-
cal temperature gradient is calculated as (TH2TC)/LS . ~Re-
call that the stack temperature is prescribed to be linear in
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this work.! These results are shown by the solid lines in the
figures. The short-stack approximation to the critical tem-
perature gradient has been calculated from~51! which, with
dTw /dx5(TH2TC)/LS , can be regarded as an equation for
TH . The dotted line shows this result withP1 approximated
by ~56!, while the dashed line is found from a corresponding
approximation,~66!, based on the cold-temperature wave
number. For the two positions closest to the hot end of the
tube~Figs. 4 and 5! most of the tube is occupied by gas at the
cold temperature and use of the second form of the eigen-
function gives a somewhat better result. When the stack is
positioned near the midpoint of the tube~Fig. 3!, on the other
hand, both alternatives give a comparable error that can be
reduced by using the average of the two approximations to
P1 ~not shown!. We have repeated these calculations using

the exact two-time-scale expression~51! with P1 found nu-
merically from ~23!. When the stack is positioned near the
tube’s midpoint the error is about 1%. When however the
stack is moved toward the hot end, this result is comparable
to that obtained by the short-stack approximation with the
cold-temperature wave number.

In Figs. 3 to 5 the dash-dot lines show the result ob-
tained by setting Swift’s expression forẆ2 to 0. The error
incurred in the approximation off V,K by ~10! is seen to lead
to a substantial discrepancy with the exact results. Our result
would show a comparable error if the same approximations
for f V,K were used.

V. CONCLUSIONS

By exploiting the difference between the time scale for
the development of the thermoacoustic instability and the
period of standing waves in a resonant tube, we have devel-
oped a time-domain description of the instability and ap-
proximate formulae for its growth rate. We have carried out
a multiple-time-scales expansion to first order and we have
given simplified formulae exploiting the short-stack approxi-
mation. In addition to closed tubes, we have also considered
tubes open at either or both ends. Results for modes higher
than the fundamental one have also been presented.

The exact perturbation results are very close to the the-
oretical prediction of the full Rott equation. In practice, their
evaluation requires the solution of the eigenvalue problem
~21! that is self-adjoint and has therefore real eigenvalues.
Accordingly, numerically the problem is more tractable than
Rott’s equation. Even this rather modest computational task
can be avoided—at the price of an error of a few
percent—by adopting the short-stack approximation dis-
cussed in Sec. III.

Another significant result of the present study is an ac-
curate~and numerically manageable! approximation for the
critical temperature gradient including viscosity, heat trans-

FIG. 3. Critical temperature gradient as a function of the ratio of the thermal
penetration lengthdK to the gap widthl for a stack positioned atxS /L
50.594, i.e., near the midpoint of the tube. The solid line is the exact Rott
result, the dotted line the short-stack approximation~51! with P1 approxi-
mated by the hot-temperature wave function~56!, and the dashed line by the
cold-temperature wave function~66!. The dash-dot line is the result found
by setting Swift’s~Ref. 6! Eq. ~80! to 0. The large discrepancy is principally
due to the use of the approximation~10! for the f V,K’s in ~48!.

FIG. 4. Critical temperature gradient as a function of the ratio of the thermal
penetration lengthdK to the gap widthl for a stack positioned atxS /L
50.729. The solid line is the exact Rott result, the dotted line the short-stack
approximation~51! with P1 approximated by the hot-temperature wave
function ~56!, and the dashed line by the cold-temperature wave function
~66!. The dash-dot line is the result found by setting Swift’s~Ref. 6! Eq.
~80! to 0. The large discrepancy is principally due to the use of the approxi-
mation ~10! for the f V,K’s in ~48!.

FIG. 5. Critical temperature gradient as a function of the ratio of the thermal
penetration lengthdK to the gap widthl for a stack positioned atxS /L
50.864. The solid line is the exact Rott result, the dotted line the short-stack
approximation~51! with P1 approximated by the hot-temperature wave
function ~56!, and the dashed line by the cold-temperature wave function
~66!. The dash-dot line is the result found by setting Swift’s~Ref. 6! Eq.
~80! to 0. The large discrepancy is principally due to the use of the approxi-
mation ~10! for the f V,K’s in ~48!.
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fer, and cross-sectional area changes. As Figs. 3 to 5 show,
the present expression is significantly more accurate than
others available in the literature.

As a final point, the approximate result~40! for the rate
of energy loss of a thermoacoustic device below the instabil-
ity threshold enables one to readily calculate the minimum
power required to maintain a certain temperature difference
across the stack, i.e., to operate the device as a refrigerator.

Although we have only considered a particular type of
thermoacoustic devices, in which the heated region contains
the so-called stack, the same method can be applied to other
configurations. The present results imply that good accuracy
may be expected as a result of this approach.
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