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Abstract 

Radiometric calibration of traditional lidar sensors that employ direct time of flight or 

phase-based ranging is well established. However, emerging inexpensive, lightweight, 

short-range lidar sensors that utilize non-traditional ranging methods report measurements 

that are not appropriate for existing radiometric calibration techniques. One such sensor, 

the TeraRanger Evo 60m by Terabee is a light emitting diode (instead of laser) lidar sensor 

with an automatically varying collection rate. This thesis investigates the performance of a 

new radiometric calibration model, one based on a neural network, applied to the Evo 60m. 

Application of the proposed radiometric calibration model resulted in performance similar 

to traditional lidar sensors, with mean differences in reflectance of no more than 5% and 

root mean square errors of no more than 6% for non-specular targets. The radiometric 

calibration model provides a generic approach that may be applicable to other low-cost 

lidar sensors and is a potential stepping stone toward development of a low-cost, multiple 

wavelength (multispectral) lidar sensor. The ranging performance of the Evo 60m was also 

evaluated in this work. Three of the four sensors evaluated fall below the manufacturer’s 

stated accuracy level of ±40 millimeters while one lies just above the threshold at ±43 

millimeters. 
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1. Introduction 

The use of light detection and ranging (lidar) for precise distance measurements within 

the geomatics discipline is traced to Erik Bergstrand’s work in the late 1930s through the 

1950s, where a known value for the speed of light was used to accurately determine range 

to a reflecting target (Bergstrand 1949). Bergstrand’s method was conceptually similar to 

the one used for determining the speed of light at the time, where a modulated light source 

was directed at a reflecting target at a known distance. The phase of the return energy was 

then measured and used to compute the transit time, and hence velocity, of the light. 

Bergstrand reversed this concept by using a known value for the speed of light and 

subsequently using the measured phase to compute the distance to the target.  

After their discovery in the 1960s, lasers were rapidly integrated into lidar instruments 

to take advantage of their more efficient, focused optical power characteristics compared 

to existing incoherent light sources (Maiman 1960; NOAA 2007). Today, laser-based lidar 

sensors are common for distance measurement, present on instruments ranging from 

affordable handheld devices used in the construction industry to spaceborne sensors that 

measure topography on a global scale (Wandinger 2006; Wehr and Lohr 1999). Lidar 

sensors are often combined with scanning devices to collect broad swaths of data from 

terrestrial or airborne platforms and are commonly referred to as laser scanners in this form. 

Laser scanners allow for the computation of 3D point locations for each measurement by 

combining range measurements with their associated angular measurements from the 

scanning device, thus building up a dense cloud of points representing the observed scene 

or object.  
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1.1. Low-Cost Lidar Sensors 

Traditionally, laser-based lidar sensors have been expensive to purchase and maintain. 

Due to this, alternative light sources, such as structured light (Li 2014; Melexis 2017) or 

light emitting diodes (LEDs) (Koyama and Shiina 2011), have been used to develop more 

economical lidar sensors. These inexpensive sensors typically have a very short range (less 

than 5 meters), are often challenged in ranging accuracy and precision, and do not report 

target radiometric information. However, the small size and light weight of these sensors 

allow for many applications such as navigation systems for drones or robotics, small area 

mapping, industrial automation, and structural inspection (GrindGPS 2015; Corrigan 

2019).  

Particularly for LED-based lidar sensors, a key difference from laser-based lidar is the 

relatively wide field of view (FOV) due to the incoherent light source. Although typically 

viewed as a limitation, this wide FOV can be an ideal characteristic for proximity sensing 

or irregular object detection. Another key difference from traditional topographic lidar 

sensors is the departure from range determinations based on direct time of flight or phase 

difference measurements. Instead LED-based lidar sensors indirectly measure time of 

flight by relating integrated return energy measurements from a modulated LED light 

source to the distance of the reflecting target.  

Recently, a LED-based lidar sensor with an advertised range of up to 60 meters was 

made commercially available – the TeraRanger Evo 60m by TeraBee. The sensor is 

economically priced at under $150, features an automatically varying measurement 

collection frequency up to 240 hertz, and has the potential to be adapted with different 

wavelength LEDs (Jan Kovermann, personal communication, 23 March 2018). This 
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creates the potential for an inexpensive multi-wavelength (i.e., multispectral) lidar system 

capable of providing rich target spectral information independent of solar illumination at a 

low cost.  

1.2. Radiometric Calibration 

Target spectral information is contained in the quantity of optical power returned to an 

illuminating lidar sensor from the observed target. The measurements of this optical power 

reported by a lidar sensor are typically referred to as ‘intensity’ values, and are a function 

of target material, target range, and sensor optical characteristics. Applications using lidar 

intensity, such as point cloud segmentation and target classification, are improved by 

radiometrically calibrating intensity values to a physical quantity tied to the observed 

target, e.g., reflectance or cross section (Höfle and Pfeifer 2007).  

However, the difference in ranging methodology between traditional laser-based lidar 

sensors and low-cost LED lidar sensors results in a different set of reported observables. 

For example, in addition to range, the Evo 60m is capable of reporting ambient light, 

integration time (a variable that is a function of the ranging method) and return signal 

amplitude (intensity). The return signal amplitude is similar to traditional lidar intensity 

values but is characterized by large discontinuities corresponding to changes in integration 

time, which fluctuates in response to ambient light levels, target reflectance, and target 

range. The complex interactions between the observables reported by the Evo 60m does 

not allow the application of traditional physical and empirical lidar radiometric calibration 

models, and therefore requires development of a new approach. 

1.3. Objective and Contribution 

The primary objective of this thesis is to radiometrically calibrate a low-cost, indirect 



4 

time of flight, LED-based lidar sensor – the TeraRanger Evo 60m – to extend the value 

found in traditional lidar intensity values to this non-traditional lidar sensor. The ranging 

accuracy and precision of the Evo 60m is also examined with respect to ranges obtained 

from an instrument of higher accuracy and precision to provide a more complete 

characterization of the sensor.  

The proposed radiometric calibration model approach is based on a simple neural 

network and may be extensible to other low-cost lidar sensors that do not report traditional, 

smoothly varying intensity values. To the author’s knowledge, radiometric calibration of 

the Evo 60m, or any similar LED-based lidar sensor, has not been reported in literature or 

applied in a commercial setting. Successful radiometric calibration of the Evo 60m also 

represents a step towards creation of a low-cost multispectral lidar sensor. Finally 

examining the range performance of the sensor (i.e., geometric calibration) will augment 

the manufacturer’s published specifications and provide relevant information to end users 

for making informed decisions on potential applications of the sensor.   
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2. Background 

2.1. Lidar Measurement Techniques 

The two most common lidar techniques, time of flight and continuous wave phase 

differencing, are briefly reviewed to provide context to the discussion of the indirect time 

of flight (ITOF) lidar technique used by the Evo 60m. The ITOF technique relies of 

observations of phase but, performs the measurements and calculations differently than the 

classical approach used by continuous wave phase differencing. Additional lidar 

measurements, such as triangulation and structured light, are not discussed as they are not 

directly relevant to this work. 

2.1.1. Time of flight 

Time of flight is the most common range determination method for lidar systems 

(Baltsavias 1999; Wehr and Lohr 1999; Shan and Toth 2009; Vosselman and Maas 2010). 

Time of flight ranging uses a precise timer to measure the time between a pulse of light’s 

emittance and return. Range, 𝑧, is determined as  

 
𝑧 = (

𝑐

𝑛
)
 𝑡

2
 , (1) 

where 𝑐 is the speed of light, 𝑡 is the two-way time of flight, and 𝑛 is the refractive index 

of the transmitting medium. Limitations of this method include the precision of the timer 

and the ability to identify a consistent location on the emitted and return pulse temporal 

profiles. This method is primarily used for long distance measurements where centimeter-

level precision is acceptable.  

2.1.2. Continuous Wave Phase Differencing 

Continuous wave phase differencing is the second most common range determination 
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technique (Baltsavias 1999; Wehr and Lohr 1999; Shan and Toth 2009; Vosselman and 

Maas 2010). Range is determined by measuring the difference in phase between a 

continuously emitted light source, which is modulated with a relatively long wavelength, 

and the returned energy. The range is determined as  

 
𝑧 =

1

4𝜋

𝑐

𝑓
𝜑 , (2) 

where 𝑐 is the speed of light, 𝑓 is the frequency of the modulating wave, and 𝜑 is the phase 

difference. The phase difference is measured by comparing the emitted signal with the 

return signal (Vosselman and Maas 2010). The precision of this method corresponds to the 

resolution of the electronics and the modulating wavelength. The maximum target range 

that can be determined without ambiguity (i.e., an unknown number of cycles between the 

instrument and target) is half the modulating wavelength. In order to increase the maximum 

measurable distance but retain the precision associated with a shorter wavelength, multiple 

wavelengths can be modulated onto the emitted light. The phase measurements of the 

longer wavelengths are used to remove distance ambiguity associated with the shorter, but 

more precisely measured, wavelength. Stationary terrestrial laser scanners often use this 

method where millimeter-level precision is desired.  

2.1.3. Indirect Time of Flight 

ITOF determines distance through the indirect measurement of phase delay (Bellisai et 

al., 2011; Charbon 2014; Li 2014; Melexis 2017; Perenzoni and Stoppa 2011). Both 

continuous wave phase differencing and ITOF rely on the principle of determining range 

from the phase delay of the return signal, but the two methods differ based on how they 

determine that phase delay. Instead of measuring phase delay through continuous, direct 

comparison with the emitted signal, ITOF relies on a quadrature sampling, which is the 
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integration of return energy four times per period, i.e., at 90-degree intervals. This is 

illustrated in Figure 1. Phase delay is then computed from these samples using  

 
𝜑 = 𝑡𝑎𝑛−1 (

𝑄4 − 𝑄2

𝑄1 − 𝑄3
), (3) 

where 𝑄1 − 𝑄4 are the four sample readings (Bellisai et al., 2011; Charbon 2014; Li 2014). 

Range is then calculated using Equation (2). Additionally, amplitude, 𝐴, and background 

light (i.e. combination of ambient light and the sensor’s emitted light), 𝐵, of the return 

signal is calculated as 

 
𝐴 =  

√(𝑄4 − 𝑄2)2 + (𝑄1 − 𝑄3)2

2
 and 

(4) 

Figure 1 – Phase Determination for Indirect Time of Flight using Quadrature Sampling. 

Note that the return signal is offset due to background light and has decreased 

in amplitude due to the reflectance of objects in the scene.  
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𝐵 =

𝑄1 + 𝑄2 + 𝑄3 + 𝑄4

4
 . (5) 

(Li 2014) demonstrates the variance of an ITOF lidar range is dependent upon the 

amplitude and ambient light and is given as  

 
𝜎 =

𝑐

4√2𝜋𝑓

√𝐴 + 𝐵

𝑐𝑑𝐴
, (6)  

where 𝑐𝑑 is modulation contrast, which describes the sensor’s capacity to measure the 

phase shift of the incident light with respect to the modulated signal, and 𝑓 the frequency 

of modulation. This indicates that a higher amplitude (strength of the returning signal), 

lower ambient light and a higher frequency is preferred. As with continuous wave phase 

differencing, the maximum target distance without ambiguity is half the modulating 

wavelength. This measurement technique can be implemented on single-pixel sensors such 

as the Evo 60m or multi-pixel sensors (Charbon 2014).  

2.2. Radiometric Calibration 

As previously noted, many sensors provide an intensity value in addition to range. 

Intensity is a unit-less and arbitrarily scaled quantity that is proportional to the power of 

the return signal received by the lidar sensor. Intensity values correspond to target 

reflectivity, but are also influenced by target range, orientation, and roughness, thus 

complicating their application to target characterization (Wagner et al., 2006; Wagner 

2010). Intensity values can be radiometrically ‘corrected’ by normalizing for range but still 

lack a physical unit. Radiometric ‘calibration,’ however, transforms the intensity value to 

a physically meaningful quantity, such as reflectance. This increases the utility of the lidar 

intensity data as it can then be compared to values from different sensors (e.g. a 

spectroradiometer measurement) or from different collection campaigns. Radiometric 
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calibration is reviewed in the following sections starting with a brief discussion of light 

scattering and followed by a review of physical and empirical radiometric calibration 

models. 

2.2.1. Scattering Theories 

Historically, two distinct approaches have been used to describe the scattering of 

electromagnetic radiation – radiative transfer for passive sensors operating in the optical 

spectrum and electromagnetic theory for radar applications (Wagner 2010; Wagner et al., 

2006). Electromagnetic theory considers coherent light, which is applicable to laser-based 

lidar sensors. The basic quantity of electromagnetic theory is the target cross-section, 

which describes the scattering of an incoming electromagnetic wave by an object. 

In contrast to electromagnetic theory, radiative transfer methods are primarily applied 

to incoherent light sources, e.g., solar energy, and therefore do not consider wave 

phenomena such as interference or refraction in a rigorous manner. Instead, a target’s 

reflectance is considered to depend only on the geometric arrangement of the light source, 

target, and receiver. This gives rise to the basic quantity used to describe the scattering of 

light in radiative transfer theory, the bidirectional reflectance-distribution function. An in-

depth review of these two approaches to scattering in the context of lidar applications, 

including simplifying assumptions that result in electromagnetic theory closely resembling 

radiative transfer theory is given in (Wagner 2010). 

2.2.2. Radiometric Calibration - Physical Models 

The power received by a lidar sensor is related to target characteristics, acquisition 

geometry, the atmospheric environment, and system characteristics. This relationship, 

often termed the lidar range equation is based on the radar range equation and 



10 

electromagnetic theory and is given by (Höfle and Pfeifer 2007) as  

 
𝑃𝑟 =

𝑃𝑡𝐷𝑟
2

4𝜋𝑅4𝛽𝑡
2  𝜂𝑠𝑦𝑠 𝜂𝑎𝑡𝑚𝜎, (7) 

where 𝑃𝑡 is the transmitted power, 𝐷𝑟 is the diameter of the receiver aperture, 𝑅 is the 

range, 𝛽𝑡 is the laser beam width, 𝜂𝑠𝑦𝑠 is the system transmission factor, 𝜂𝑎𝑡𝑚 is the 

atmospheric transmission factor, and 𝜎 is the target cross section. Target scattering 

characteristics, reflectance, and area are contained within the target cross section as 

 
𝜎 =

4𝜋

𝛺
 𝜌𝐴𝑡  , (8) 

where 𝛺 is the solid angle of scattering, 𝜌 is target reflectivity, and 𝐴𝑡 is the target area. 

Assuming a large Lambertian target that intercepts the entirety of the transmitted power, 

Equations (7) and (8) can be combined and simplified to 

 
𝑃𝑟 =

𝑃𝑡𝐷𝑟
2𝜌

4𝑅2
 𝜂𝑠𝑦𝑠  𝜂𝑎𝑡𝑚 cos 𝛼, (9) 

where 𝛼 the incidence angle. Noting that the difference (from unity) of the atmospheric 

transmission factor is often negligible due to the relatively short lidar ranges measured 

from terrestrial or low altitude airborne platforms, 𝜂𝑎𝑡𝑚 can be removed from Equation (9). 

Since the system parameters of a lidar system are typically constant, including the 

transmitted power, they can be represented by a single calibration constant,  

 
𝐶𝑐𝑎𝑙 = 

𝑃𝑡𝐷𝑟
2

4
 𝜂𝑠𝑦𝑠. (10) 

Substituting this calibration constant into equation (9) leaves, 

 𝑃𝑟 =
𝜌

𝑅2
 𝐶𝑐𝑎𝑙  cos 𝛼. (11) 

Solving for target reflectivity, we arrive at 
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𝜌 =

𝑃𝑟𝑅
2

𝐶𝑐𝑎𝑙 cos 𝛼
. (12) 

Thus, for large targets with Lambertian scattering characteristics, observed at normal 

incidence, and over short ranges, target reflectance is proportional to the received power 

and target range 

 𝜌 ∝  𝑃𝑟𝑅
2. (13) 

If 𝐶𝑐𝑎𝑙 can be estimated from observations of targets with known reflectance values, 

Equations (12) and (13) form the basis for a simple radiometric calibration approach that 

is based on the physical model of lidar ranging.  

2.2.3. Radiometric Calibration - Empirical Models 

The use of the lidar range equation for radiometric calibration assumes the intensity 

quantity reported by the lidar sensor is linearly related to the received optical power. When 

this is not the case, as is often true for short range terrestrial lidar sensors, regression models 

(i.e., an appropriate function fit to the data) or lookup tables can be used to create a purely 

empirical radiometric calibration model, e.g. (Hartzell, Glennie, and Finnegan 2015; 

Kaasalainen et al., 2008). These empirical models are developed from range and intensity 

measurements of multiple calibration targets with unique, known reflectance values 

observed at multiple ranges. Reflectance values can then be retrieved from a regression 

model or interpolating from a lookup table, providing the variables in the collected 

calibration data (typically lidar range, intensity, and target reflectance) vary systematically 

and smoothly with one another.  

For the work in this thesis, the measurements reported by the Evo 60m sensor (range, 

amplitude, integration time, ambient light) and target reflectance do not vary smoothly with 

one another, eliminating the use of a simple regression model approach. Direct 
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interpolation of the collected calibration data in 5D space also produced poor results. 

Therefore, use of a neural network to approximate the complex relationship between the 

reported observations and target reflectance, i.e., empirical model based on a neural 

network, is proposed. Background information on neural networks is given in Section 3.4.1 

to provide context to the network design methodology.  

2.3. Geometric Calibration 

In terms of the work in this thesis, geometric calibration is the verification of the Evo 

60m’s distance measurements against corresponding standard (known) distances, thereby 

providing an understanding of the uncertainties associated with the range measurements 

(Taylor and Kuyatt 1994). Since the Evo 60m measures only range (i.e., it is not a laser 

scanner where the lidar sensor is swept across a range of horizontal and vertical angles) the 

calibration method is similar to the range calibration methods applied to electronic distance 

measurement units on survey instruments, where, in a known environment, measurements 

of range are collected to targets at multiple distances (Gordon et al., 2005). Comparison of 

these measured ranges to the known values allows determination of whether systematic 

error exists. Multiple models for systematic error exist, ranging from simple (offset and 

scale) to more complex (e.g., inclusion of periodic components) (Gordon et al. 2005; Lichti 

2007). In addition to accuracy, measures of range repeatability, i.e., precision, is also of 

interest. (Wujanz et al., 2017) demonstrated that lidar range precision is influenced by the 

measurement’s return amplitude in a systematic manner. The relationship between the 

precision of a range measurement and its amplitude was modeled through use of a power 

function, which is also examined in the work herein.   
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3. Materials & Methods 

3.1. Sensor  

3.1.1. Description 

The Terabee TeraRanger Evo 60m, illustrated in Figure 2, is a LED based, solid-state 

lidar sensor that, as mentioned previously, uses the indirect time-of-flight method to 

determine range. TeraBee markets the Evo 60m as a distance measurement sensor for use 

in automation, robotics, and the internet of things. As such, the sensor only provides a 

distance measurement in its standard configuration. However, by using an internal 

debugging command along with custom firmware provided by Terabee to the University 

of Houston, the Evo 60m can report additional measurements of return signal amplitude, 

ambient light, and integration time for a total of four variables.  

The manufacturer provides basic specifications, shown in Table 1, for the Evo 60m 

including range accuracy and resolution, where resolution refers to the quantization 

(rounding) of the reported distance (Terabee 2017). A notable change in the range 

resolution and accuracy at a range of 14 meters is listed in the specifications, beyond which 

the sensor’s accuracy and resolution are degraded. This characteristic is important as it 

significantly affects the analyses in this thesis. Another important sensor measurement 

Figure 2 – TeraRanger Evo 60m 



14 

 

characteristic is the automatic adjustment of the sensor’s integration time, and therefore its 

collection, in response to the strength of the return signal, which is impacted by target range 

and reflectance and ambient light. As a consequence of these step-wise, rather than 

smoothly varying, integration time adjustments, the amplitude versus distance curves 

typically used for empirical lidar radiometric calibration models exhibit significant 

discontinuities.  

 The Evo 60m is an ‘always-on’ sensor, meaning that immediately after connecting the 

sensor to a power source it begins collecting measurements. Simultaneous use of multiple 

Evo 60m sensors, therefore, requires special care as the sensors will interfere with each 

other if aligned in the same direction. To eliminate this issue, the manufacturer provides a 

separate product to synchronize multiple sensors, although this product was not used in 

this work. Also noteworthy is that if the sensor’s field of view spans two items of varying 

distances during a measurement, the sensor returns an averaged distance to the two objects 

rather than two distinct range measurements. Finally, although the Evo 60m’s maximum 

range is listed as 60 meters, this is only achieved in optimal conditions, i.e., a highly 

Table 1 – Sensor Specifications 

Properties 

Operating Wavelength 950nm 

Size 29x29x22mm 

Weight 12g 

Measurement Principle Indirect Time of Flight 

Range 0.5m to 60m 

Collection Rate Up to 240Hz 

Field of view 1.7deg 

Approximate Cost €124.00 (~$140.00) 

Error 

 <14m >14m 

Resolution 5mm 20mm 

Accuracy ±40mm 1.5% 
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reflective target and low ambient light conditions (Terabee 2018). When the signal-to-noise 

ratio is too low, due to a large distance, low target reflectance, or high ambient light levels, 

the sensor reports a distance measurement of ‘-1’.  

A single Evo 60m was purchased in May 2018. In order to evaluate the consistency 

between sensors, particularly in the calibration models and parameters generated in the 

work reported in this thesis, three additional sensors were purchased in May 2019. All four 

Evo 60m sensors were used throughout this work to test the repeatability of results between 

sensors.  

3.1.2. Sensor Alignment 

Field of view alignment (i.e., knowledge of where the sensor is ‘pointing’) is difficult 

for a lidar sensor operating in the non-visible spectrum, particularly for distances further 

than a few meters. The Evo 60m, unlike a laser scanner, provides no point cloud that can 

be examined, nor does it provide a visual indicator such as a reference dot or aligned sight. 

Given that many of the targets to be illuminated by the Evo 60m are not large (i.e., not all 

targets will be a wall several meters in width and height) it is important to have knowledge 

of the sensor’s orientations to ensure valid measurements. Towards this end, a mount was 

constructed that enables the alignment of the four Evo 60m sensors with a Leica Disto laser 

distance meter (model E7400x), which emits a visible red laser beam.  

The mount consists of an aluminum plate, two survey tribrachs, two angle brackets, 

four 3d-printed sensor brackets, and various attachment hardware as shown in Figure 3. 

The mount not only maintains the alignment of the four sensors with the laser distance 

meter, but also provides the ability to adjust the horizontal and vertical viewing angles of 

the entire sensor suite via the bottom tribrach. The mount is attached to a small rolling 
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desk, allowing it to be easily moved to multiple ranges from a static target. After 

assembling the mount, the sensors were aligned with the Disto at a range of seven meters 

using an infrared-sensitive camera in a limited light environment. Seven meters was the 

longest range attainable with limited light in the Geosensing Systems Engineering 

Electronics Laboratory. For illustration purposes, Figure 4 shows the near infrared light 

pattern created by the four sensors at 1 meter range prior to fine alignment.  

 

In addition to a visible laser that enables sensor alignment, the Leica Disto provides a 

reference range measurement at higher accuracy and precision than the Evo 60m sensors. 

Figure 3 – Front and Side Views of Alignment Device 

Figure 4 – Infrared Image of the Footprints of the Four Sensors at 1 meter 
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The manufacturer’s specification for the Disto combines accuracy and precision together 

as ‘measuring tolerance’ listed as ±0.002 meter under normal operating conditions, which 

is an order of magnitude better than the quoted accuracy of ±0.040 meter for the Evo 60m. 

Ranges from the Leica Disto were compared to ranges measured with a Nikon NPL-322+ 

total station (used in reflector-less mode, accuracy listed as ±0.003 meter) and found to 

agree within ±0.002 meter.  

3.2. Targets 

Two groups of largely homogenous, flat materials were used as targets for calibration 

and validation of the radiometric models developed for the Evo 60m sensors. Due to the 

large sensor field of view (1.7 degrees), the reflectance standard panels currently possessed 

by the Geosensing System Engineering laboratory (12 inch/30.5 centimeter square) could 

not be confidently used at ranges of more than five meters. Five relatively large custom 

targets were, therefore, constructed from commonly available materials for the sensor 

radiometric calibration. A separate group of targets consisting of a variety of near-

homogenous surfaces, existing both indoors and outdoors to maximize environmental 

conditions, was selected for validation of the radiometric calibration.  

3.2.1. Calibration Targets 

A reflectance standard suitable for use in calibration applications is spectrally uniform, 

Lambertian, and is of adequate size (Satterwhite and Allen 2003). Spectrally uniform refers 

to a flat spectral response with no absorption features. Since the LEDs used in the Evo 60m 

are centered in the near infrared at 950nm, the targets only need to be spectrally uniform 

in the immediate vicinity of this wavelength. A Lambertian surface is diffuse (not specular) 

and reflects incident optical power back to the illumination source according to the cosine 
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of the angle between the incident light and surface normal. Regarding the size of the 

calibration targets, the sensor footprint size along with a margin of error must be considered 

such that the emitted light will be fully intercepted by the target. Table 2 shows the footprint 

size for the Evo 60m from 1 to 60 meters. Finally, the reflectance standards should span as 

large a range of reflectance values as possible in order to capture the dynamic range of the 

sensor and to create a radiometric calibration model that is able to adequately predict a 

large range of target reflectance values.  

To meet the requirements detailed in the prior paragraph, five 4x4 foot (1.22x1.22 

meter) square panels of oriented strand board (OSB) were painted with multiple mixtures 

of white and black flat (matte) latex paint. The large panel dimensions comfortably 

accommodate the large sensor FOV beyond 20 meters (Table 2), and the matte paint finish 

was selected to maximize the Lambertian reflectance property. The spectral signatures of 

Table 2 – Footprint Sizes 

Range (meters) 1 5 10 15 20 60 

Footprint Diameter (centimeters) 3 15 30 45 60 180 

 

Figure 5 – Spectral Signatures for Spectralon® Panels (left) and Homemade OSB 

Calibration Targets (right) 
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the OSB targets were measured with a Spectra Vista Corporation spectroradiometer (model 

HR-1024 with 1024 channels and a range of 350nm-2500nm) using a Spectralon® 99% 

standard as the white reference. The five OSB calibration panels have unique spectral 

signatures ranging from 3% to 80% and exhibit a Lambertian response (validated in the 

results section of this thesis). Figure 5 shows the spectral signature of the OSB calibration 

targets alongside the signatures of the four Spectralon® standards. In retrospect, OSB is 

not recommended for future targets due to its heavy weight and textured surface properties. 

However, the uniformity of the painted OSB panel spectral responses is similar to the 

Spectralon® standards and, as will be illustrated later in this thesis, the painted OSB is 

highly Lambertian.  

3.2.2. Test Targets 

Twelve test targets of ‘real-world’ materials were selected to test the performance of 

Table 3 – Test Target Observed Reflectance at 950nm 

Material Reflectance (%) 

Black Foam 5 

Gray Stucco Wall* 19 

Gray Tabletop 36 

Gray Painted Wall* 45 

Red Brick* 46 

Brown Paper 59 

White Poster Board 84 

Plywood 87 

Silver Door* 54 

Brown Door* 56 

White Painted Wall 82 

Corkboard 86 

* Material Collected Outdoors 



20 

the radiometric calibration. These materials were found in naturally occurring conditions 

in both indoor and outdoor environments. Seven of these targets were indoors where the 

ambient lighting was able to be controlled with a halogen light source. The remaining five 

targets were outdoors and therefore subject to natural (solar) ambient light conditions. As 

with the painted OSB, each test target’s reflectance was observed using a SVC 

spectroradiometer. The twelve target surfaces are shown in Figure 6 and their observed 

reflectance at 950 nm in Table 3.  

 

3.3. Data Collection 

Four collection campaigns were carried out to evaluate the Evo 60m. Each of the four 

Figure 6 – Test Targets (left to right, top to bottom): Black Foam, Gray Stucco Wall*, 

Gray Tabletop, Gray Painted Wall*, Red Brick*, Brown Paper, White Poster 

Board, Plywood, Silver Door*, Brown Door*, White Painted Wall, 

Corkboard.  

*Material Collected Outdoors 
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sensors collected data in each campaign. Fifty individual readings were collected for each 

unique collection, i.e., each unique combination of distance, ambient light level, target 

material, and incidence angle. These groups of 50 readings are hereafter referred to as a 

‘setup.’ For each setup, the Leica laser distance meter determined the true, or standard, 

range. All data collection occurred in a dry environment. Details for each of the four 

collection campaigns follow. 

3.3.1. Calibration Collection 

The goal of the calibration campaign was to collect reliable and well distributed 

measurements – in target reflectance, range, and ambient light – for use as training data for 

a neural network. The data was primarily collected in an indoor environment with ambient 

light levels controlled by a halogen light source. Measurements were collected with each 

Evo 60m sensor at approximately every meter between 1 and 18 meters for three ambient 

light levels on each of the five OSB calibration targets. Additionally, measurements were 

collected outdoors in a very high ambient light environment (a clear, sunny day) over the 

same distance interval and target selection. It is noted here that the measurements collected 

under the very high ambient light conditions (outdoors) have gaps due the sensor’s 

occasional inability to determine the range because of the low signal to noise ratio (very 

high ambient light overwhelms the sensor LED light output). This data was collected in 

June 2019 and consists of 15,400 unique measurements (308 setups) per sensor. 

3.3.2. Test Collection 

The purpose of the test campaign was to collect data for evaluating the trained 

radiometric calibration model. Measurements to the twelve test targets, which vary in size 

and composition were collected between 1 and 18 meters. The ambient light level also 
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varied, but in an uncontrolled manner due to cloud movement. This data was collected in 

June 2019 and consists of 15,000 unique measurements (300 setups) per sensor. 

3.3.3. Temporal Test Collection 

In order to examine the stability of the sensors, the same data as in the test collection, 

described above was acquired one month after the original collection. Data from two of the 

OSB calibration targets, 50% and 28%, was also acquired. The data was collected in 

August 2019 and consists of 25,600 unique measurements (512 setups) per sensor.  

3.3.4. Incidence Angle Collection 

In order to qualitatively evaluate the Lambertian scattering characteristic of the OSB 

calibration targets and several test targets that produced anomalous results, measurements 

were made with the incidence angle varied in ten-degree increments from 0 to 60 degrees. 

This collection was performed in an indoor environment where the ambient light was 

controlled. As the effect of the incidence angle was the primary focus, the target distance 

was kept approximately equal and the ambient light level held constant for each target. The 

ambient light was also kept at a low level to create a favorable environment for the sensor. 

The incidence angle data was collected in July 2019. 

3.4. Radiometric Calibration 

As stated earlier, a new model for radiometric calibration built on an artificial neural 

network is investigated in this thesis to accommodate the nonlinear and discontinuous 

nature of integration time and amplitude measurements reported by the Evo 60m. Neural 

networks are briefly reviewed in the following section, followed by a description of the 

methods used to design the neural network used for the radiometric calibration model.  
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3.4.1. Background on Neural Networks 

Neural networks are non-linear statistical models determined using controlled 

observations (Hastie, Tibshirani, and Friedman 2009; Goodfellow, Bengio, and Courville 

2016). There are two types of neural networks, supervised and unsupervised (Goodfellow, 

Bengio, and Courville 2016). Unsupervised neural networks are trained using an unlabeled 

dataset of only inputs and determines an output by identifying similar characteristics 

between the inputs. The outputs from an unsupervised network are then manually labeled. 

Supervised neural networks, which is the type used in this research, are trained using a 

labeled dataset where both inputs and outputs provided.  

Supervised neural networks are typically grouped into two major categories, 

classification and function estimation (regression) (Hastie, Tibshirani, and Friedman 

2009). A classification network’s purpose is to categorize the input, often an image, into 

one of multiple possibilities. An example input is a picture of an animal that a classification 

network must evaluate as a cat, dog, or cow. The purpose of a function estimation network 

is to determine an output related to an input through an unknown function. This is primarily 

used when the function being approximated has too many unknowns to solve for a solution 

(Hastie, Tibshirani, and Friedman 2009). This is the category of neural networks used in 

this work.  

Neural networks consist of three basic components: inputs, layers, and outputs (Hastie, 

Tibshirani, and Friedman 2009). Inputs are the measured quantities, outputs are the values 

to be determined, and layers each contain collections of nodes. These components can be 

connected (i.e., networked) in multiple ways. Three common architectures, illustrated in 

Figure 7, are: (1) feedforward, in which information flows from layer (or input) only to the 
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subsequent layer (or output), (2) recurrent, where the output of a node (or layer) is 

reprocessed through that node (or layer), and (3) cascade forward, where the inputs are 

connected to each hidden layer. This research focuses on a fully connected feedforward 

network, where fully-connected means all inputs, nodes, or outputs are connected between 

layers. Each of the network architectures were briefly tested with all the architectures 

producing comparable results. The feedforward network was selected as it is the least 

complex which, in turn, required fewer computing resources for training. 

In a feedforward network, node values are a function of the previous layer’s node 

values (or the inputs) in combination with weights that are assigned to each connection 

(Kriesel 2007). This relationship is illustrated in Figure 8, and expressed in equation form 

as  

Figure 7 – Example Neural Networks (L to R) – Feedforward, Recurrent, Cascade 

Forward. The output is calculated using nodes, Ni,j, which are computed using 

values from the previous layer’s nodes, inputs, Ii, or that node (for recurrent 

networks). 
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𝑦 =  𝑓 (∑𝑋𝑖𝑊𝑖

𝑛

𝑖=1

+ 𝑊𝑏) , (14) 

where 𝑦 is the computed node value, 𝑓 is an activation function, 𝑋𝑖 are node values from 

the prior layer (or inputs), 𝑊𝑖 are the weights for each connection to the prior layer node 

values (or inputs), and 𝑊𝑏 is the weight associated with the bias of that node. Note that the 

bias weight allows the resulting node value to be shifted for an improved fit (analogous to 

the y-intercept in a simple linear fit), and that the activation function transforms the 

weighted sum to a new value (activation functions are discussed in section 3.4.2.1). Since 

a layer is comprised of multiple nodes, their computations can be collected into a simple 

vector expression,  

Figure 8 – Node Computation. The inputs, 𝑋𝑖, are multiplied by their corresponding 

weights,𝑊𝑖, summed, and the sum is passed through the activation function 𝑓. 

Note the presence of the bias node input (value equal to 1) and bias node 

weight, 𝑊𝑏.  
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where m is the number of nodes within that layer. Note that all nodes within a layer use the 

same activation function.  

The network weights are unknown parameters that must be optimized for the network 

to produce the desired output values. The weights are determined in an iterative process to 

minimize error, in this case mean squared error calculated by 

 1

2𝑚
∑(𝑦̂(𝑖) − 𝑦(𝑖))

2
𝑚

𝑖=1

, (16) 

where i is the sample, 𝑦̂(𝑖) is the predicted value of the i-th sample, 𝑦(𝑖) is the expected 

(known) value of the i-th sample and 𝑚 is the number of samples. Some optimization 

algorithms, such as Bayesian Regularization, add a regularization term that penalizes large 

weights in order to mitigate overfitting. A model where some of the weights are very small 

effectively results in a simpler model with fewer nodes, which has the effect of preventing 

overfitting (Goodfellow, Bengio, and Courville 2016).  

Optimization algorithms require training data to be separated, typically into three 

groups: train, validate, and test. Train data is used to optimize the network weights, referred 

to as training the network, to minimize error in the predicted outputs. Validation data is 

used to independently assess the network training progress and prevent overfitting by 

stopping training if the validation error increases (a.k.a. early stopping). Stopping network 

training can also be trigged by a set number of training epochs (an epoch is a complete 

iteration using all the training data), reducing the error metric below a specific threshold, 
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or when the change in weight values after an iteration update (i.e., step size) falls below a 

defined threshold. Once network training has stopped, the network configuration that 

produced the smallest validation error is used. For example, in Figure 9 this occurred at 

epoch 12. Test data is independent of the training process, and is used to evaluate the 

effectiveness of the network. Note that the test data group must be consistent to provide 

comparable results when evaluating multiple neural networks.  

The initial values of the weights are usually set to random values. The optimization 

algorithm then adjusts these values to minimize the training data error. Gradient descent is 

a simple example of an optimization algorithm where updated weight values are 

determined via partial derivatives of the network error metric (e.g., Equation (16)) with 

respect to each unknown weight, 

 Θ1 = Θ0 −  𝛼∇𝐽(Θ), (17) 

where Θ1 is the next series of weights, Θ0 is the current series of weights, 𝛼 is the step size, 

and ∇𝐽(Θ) is the direction of fastest descent of the error surface determined using partial 

Figure 9 – Neural Network Training Error 
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derivatives. Many optimization algorithms are modifications of gradient descent, including 

those evaluated for use in this research (as discussed in the next section). Once the network 

weights have been optimized, the neural network can then be used to generate predicted 

output values from new input data.  

3.4.2. Radiometric Calibration Model – Neural Network Design 

A key strength of neural networks is their flexibility to model functions from simple to 

complex. This flexibility is seen in the numerous types (feedforward, recurrent, cascade, 

etc.), structural design possibilities (number of layers, number of nodes, activation function 

selection, etc.), and the choice of optimization algorithm. Consequently, the sheer number 

of design architectures, and the reality that multiple designs will likely achieve very similar 

results, is a challenge when developing a network. In order to determine an appropriate 

network design for the radiometric calibration model in this work, several design options 

were empirically evaluated. MATLAB® was used for the network design and analysis 

reviewed in the remainder of this section. 

In terms of training data, the separation between train, validate, and test data groups 

was kept consistent throughout the network design process to provide comparable results. 

The train and validation data groups were filled with measurements from the calibration 

collection campaign. The validation data group was 10% of the calibration campaign 

measurements, separated by unique setup (i.e., a unique combination of distance, ambient 

light, and target), with the exception of Bayesian Regularization, which does not use a 

validation dataset. In this case, all of the collection campaign measurements made up the 

train data group. To evaluate the robustness of the model, the test data group was made up 

of 10% of the measurements from the test collection after excluding any surfaces assessed 
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to have specular properties (see section 4.2.2 for a discussion of specular targets), again 

separated by unique setup. The remaining 90% of measurements from the test collection 

were used in the analyses in Section 4 (Results and Discussion).  

To begin the network design, a fully-connected feedforward network was selected due 

to the relative simplicity (four inputs and a single output) of the function being 

approximated. The following network design options were empirically evaluated: number 

of hidden layers, number of nodes within the layers, optimization algorithm choice, and 

activation function choice. These options are examined in the following subsections. 

3.4.2.1. Optimization Algorithms and Activation Functions 

Three optimization algorithms - Levenberg-Marquardt, Scaled Conjugant Gradient, 

and Bayesian Regularization - were considered. Briefly, the Levenberg-Marquardt (LM) 

algorithm combines both the gradient descent and Gauss-Newton minimization methods, 

shifting from gradient descent to the Gauss-Newton method as convergence slows. The 

LM algorithm is used on moderate sized problems and is a quick method of learning 

(Jazayeri, Jazayeri, and Uysal 2016; Gavin 2019). Scaled Conjugant gradient (SCG) was 

chosen as it is a classical optimization algorithm for neural networks. It is an improvement 

on the conjugant gradient method and uses a second order approximation to determine both 

the search direction as well as the step size (Møller 1990). Both the LM and SCG 

algorithms were set to terminate training when the validation results did not improve for 

six epochs. The Bayesian Regularization (BR) algorithm is known to be useful on noisy 

and difficult datasets (Jazayeri, Jazayeri, and Uysal 2016; Dan Foresee and Hagan 1997). 

In addition to minimizing the cost function, the BR algorithm eliminates weights with little 

impact to prevent overfitting. Since BR does not use a validation dataset, training was 
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terminated when either the gradient decreased below a threshold (set to be 10-7) or 1000 

training epochs.  

A variety of hidden layer and node counts were used with the three optimization 

algorithms. The mean error for the top ten percent of performing networks for each 

optimization algorithm for one, two, and three hidden layers is shown in Figure 10. The 

 

SCG algorithm performed the worst across all hidden layer numbers, while LM and BR 

methods were closely matched for one and two hidden layer models. A single hidden layer 

did not perform as well as two hidden layers and three hidden layers provides either worse 

results or results that were not notably better, depending on the optimization algorithm. 

Therefore, a two hidden layer network optimized using either the Bayesian Regularization 

or Levenberg-Marquardt algorithm is a good option for this application.  

3.4.2.2. Activation Function 

Six activation functions were tested: three step-wise linear functions and three 

Figure 10 – Mean Best Performance by Hidden Layer 
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nonlinear functions of the sigmoid variety. Linear activation functions are frequently used 

due to their computational efficiency and limited complexity (Nwankpa et al., 2018). Three 

linear functions, shown in Figure 11, were selected: the positive linear (poslin), saturating 

linear (satlin), and symmetric saturating linear (satlins). Nonlinear sigmoid functions all 

exhibit an ‘S’ shaped curve and, in contrast to some of the step-wise linear functions, are 

Figure 11 – Linear Family of Functions 

Figure 12 – Sigmoid Family of Functions 
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bounded and smoothly differentiable. Three sigmoid functions, shown in Figure 12, were 

selected: the Elliot symmetric sigmoid (elliotsig), log sigmoid (logsig), and hyperbolic 

tangent sigmoid (tansig) (Yonaba, Anctil, and Fortin 2010). 

Using a process similar to that for selecting the optimization algorithm, multiple 

networks with a variety of node counts (between 1 and 20 for each layer) were trained for 

each activation function. The mean errors for the top ten percent performing combinations 

of activation function and node numbers are shown in Figure 13, where it is seen that the 

two best activation functions are logsig and tansig. Additionally, Bayesian Regularization 

 

shows better performances across all activation functions. Therefore, the neural network 

design was further narrowed to either the logsig or tansig activation function and BR 

optimization. 

3.4.2.3. Number of Nodes 

The performance of the neural network as a function of the number of nodes in each of 

Figure 13 – Mean Best Performance by Activation Function 
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the two hidden layers was examined next. Initially, an interval grid search for each 

activation function determined that the optimal number of nodes in each layer was less than 

15. Following this, a continuous grid search was then performed (see Figure 14) the results 

of which suggest that node numbers in the range of 5-10 for each hidden layer are 

preferable. The randomness in the graphs in Figure 14 is due to the random initialization 

of the network weights at the start of training for each possible combination. It is likely 

 

that averaging the results from many grid searches would reduce the apparent noise in the 

results but would require a large amount of computing time. The top performing networks 

(i.e., combination of hidden layer node counts and activation function) were examined for 

Sensor 1’s model. The results of Sensor 1’s best five performing networks for each 

activation function were briefly compared. Although all of the examined networks 

performed similarly, the network with the lowest test error and number of weights (recall 

Bayesian regularization minimizes weights to prevent overfitting) was selected. 

Figure 14 – Neural Network Performance by Node Combination for tansig (left) and 

logsig (right) 
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Additionally, to reduce computing time, the neural networks for the remaining sensors’ 

models were trained only using the tansig activation function as the network selected for 

Sensor 1’s model used this activation function. The network with the lowest test error and 

number of weights from was selected for the other sensors’ models. The hidden layer node 

combinations for each sensor’s radiometric calibration model are shown in Table 4. 

 

  

Table 4 – Selected Network Hidden Layer Node Counts  

Sensor 
Nodes –  

Layer 1 

Nodes – 

Layer 2 

S1 8 3 

S2 14 1 

S3 7 4 

S4 7 4 

S2, S3, 

& S4 
6 3 
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4. Results & Discussion 

The result analyses are limited to measurements collected between 1 and 14 meters in 

range. The one-meter lower bound was chosen to be near, but not at, the sensor’s minimum 

distance of 0.5 meters in order to ensure valid measurements. Although the sensor’s 

maximum distance under optimal conditions is 60 meters, an internal adjustment in the 

sensor’s measurement method that occurs beyond 14 meters produces a distinct change in 

the accuracy and precision of the distance measurements. This change is illustrated in 

Figure 15 and reflected in the sensor specifications (see Table 1 in Section 3.1). Since the 

maximum range attainable in laboratory conditions was limited to 18 meters in this work, 

there was insufficient data beyond the 14-meter threshold to generate radiometric 

calibration models capable of accommodating the abrupt change in sensor performance at 

14 meters range. Therefore, the 14-meter threshold was chosen as the upper bound for all 

analyses.  

 

Figure 15 - Error vs Distance for All Sensors 
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4.1. Cross-Sensor Measurement Consistency 

Comparison of the measurements reported by the four Evo 60m sensors provides 

insight into the consistency of the manufacturing and factory calibration processes, which, 

in turn, informs the suitability of using a single radiometric calibration model for all four 

sensors. Measurements from each Evo 60m, collected in rapid sequence (recall that the 

sensors interfere when operated simultaneously) were used for comparison. As noted 

previously, the Evo 60m reports four measurements: distance, ambient light, amplitude, 

and integration time. Since integration time is directly correlated with the reported 

amplitude, it is not compared here. Furthermore, due to the discontinuities in amplitude 

caused by changes in integration time, only amplitude measurements having the same 

integration time were compared.  

Beginning with distance, visual comparison of the distance measurements between the 

four sensors, given in Figure 16, indicates strong agreement. However, paired t-tests of the 

six sensor combinations indicate only one sensor combination produces distance 

Figure 16 – Distance Comparison 



37 

measurements not statistically different at 2-sigma (95%) confidence – the Sensor 1 and 

Sensor 4 combination. The paired t-tests were applied to the mean setup distances (recall 

that a setup is comprised of 50 measurements collected at a unique distance, target, and 

ambient light combination) collected in controlled ambient light conditions (indoors).  

The mean differences in distance for the remaining, statistically different sensor 

combinations ranged from 4 millimeter to 17 millimeter (see Table 5), indicating 

systematic biases between the sensor pairs up to three times the reported 5mm range 

resolution of the Evo 60m (see Table 1 in Section 3.1). 

 

Although the ambient light and amplitude measurements reported by the four sensors 

have similar trends, see Figure 17, differences are more apparent. Paired t-tests confirm the 

ambient light measurements for all sensor combinations are statistically different at 2-

sigma. Noting again that the amplitude data being compared was restricted to 

measurements of equal integration time, paired t-tests show all four sensors have 

statistically different amplitude measurements. However, the large deviation between 

Sensor 1’s amplitude measurements and those of Sensors 2-4, readily apparent in Figure 

17, is likely due to slight differences in the production processes between the purchase 

Sensor 1 and Sensors 2-4, as the latter group of sensors were purchased a year later than 

Sensor 1. Mean differences in ambient light and amplitude measurements for all sensor 

Table 5 – Mean Distance, Ambient Light, and Amplitude Differences of Each Sensor 

Combination 

 S1-S2 S1-S3 S1-S4 S2-S3 S2-S4 S3-S4 

Distance (mm) -12.6 -16.6 0.0* -4.0 12.6 16.6 

Ambient Light (dn) -10.1 16.1 -44.5 26.2 -34.5 -60.6 

Amplitude (dn) -45.3 -39.4 -31.2 5.9 14.0 8.1 
* not statistically different 
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combinations are given in Table 5. 

 

 Given that a neural network can be viewed as a functional approximation that relates 

input and output values, it is unlikely that a radiometric calibration model based on a neural 

network will be capable of ingesting input measurement data from all four sensors and 

produce equivalent levels of accuracy and precision in predicted reflectance values. 

However, the relatively small differences between the amplitude measurements reported 

by Sensors 2-4 suggest that a single radiometric calibration model for these three sensors 

may provide results with only a small degradation in accuracy and precision. 

4.2. Radiometric Calibration  

4.2.1. Performance 

A performance summary is provided in Table 6 for each sensor’s trained radiometric 

calibration model where the reflectance values predicted by the calibration models are 

compared to those measured with a spectroradiometer. The accuracies of the radiometric 

calibration models are quantified by the mean difference in reflectance (Δ) and the root 

Figure 17 – Sensor Measurement Comparison of Ambient Light (left) and Amplitude 

(right) 
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mean square error (RMSE). Both accuracy measures were computed from predicted 

reflectance values generated from measurements to targets spanning all range and ambient 

light conditions. Note that RMSE is a more robust measure of the accuracy than the mean 

difference in this case since it does not allow positive and negative errors in the predicted 

reflectance (that may exist at different ranges and ambient light conditions) to cancel one 

Table 6 – Neural Network Performances for Each Sensors Trained Model 
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Observed 

Reflectance 

(%) 

5 19 36 45 46 59 84 87 54 56 82 86 

Sensor 

1 

Mean 

Reflectance 
5 21 32 49 47 64 84 84 83 64 134 70 

Δ 0X 2 -4 4 1X 5 0X -3 29 8 52 -16 

RMSE 3 3 4 5 5 6 4 4 33 12 53 16 

σ 2.7 1.8 2.2 3.2 5.2 2.9 4 2.8 15.5 9.4 8.8 2.1 

Sensor 

2 

Mean 

Reflectance 
4 22 31 49 46 62 82 84 82 72 138 69 

Δ -1 3 -5 4 0x 3 -2 -3 28 16 56 -17 

RMSE 2 3 5 5 4 4 5 4 32 23 57 17 

σ 1 1.5 1.6 3 4.4 2.5 4.4 2.7 15.9 17 10.4 2.9 

Sensor 

3 

Mean 

Reflectance 
3 22 32 49 48 64 85 84 96 59 138 70 

Δ -2 3 -4 4 2 5 1X -3 42 3 56 -16 

RMSE 2 3 4 4 3 6 4 4 119 6 57 16 

σ 0.6 1.8 1.3 2.3 2.6 3.3 4.4 2.4 111 5 10.2 2.2 

Sensor 

4 

Mean 

Reflectance 
4 22 32 49 47 63 83 85 89 70 132 70 

Δ -1 3 -4 4 1 4 -1 -2 35 14 50 -16 

RMSE 2 4 5 5 4 5 5 4 39 24 51 16 

σ 1.7 2.3 2.1 3.8 3.3 3 4.7 3.3 18.3 19 9 3.5 

* Material Collected Outdoor, X No Statistical Difference at 2σ 
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another out. The precision of the predicted reflectance values is quantified with standard 

deviation (σ).  

With exception of three targets suspected of specular scattering (examined in the next 

section) and the Corkboard material (i.e., all those targets to the right of the vertical double 

rule in Table 6), each calibrated sensor model predicted the test target reflectance values 

with mean differences of no more than 5% and RMSEs of no more than 6%. The predicted 

reflectance values for these well-performing targets are consistent throughout a span of 

different range and ambient light conditions. This is illustrated for the gray painted wall 

and red brick surface in Figure 18 for Sensor 1 (graphs of the remaining targets for this 

sensor are given in the Appendix, all other sensors performed similarly).  

Except for the Corkboard target, those materials with poor reflectance predictions 

(greater than 5% Δ and 6% RMSE) suffered from inconsistent results, i.e., lower precision, 

that varied with both range and ambient light. This is evidenced by their larger standard 

deviations (greater than ±8%, see Table 6) and by visual comparison, e.g. see the graph for 

the White Wall target in Figure 18. These materials also exhibit a high positive mean 

difference, which is believed to be caused by specular reflection. The Corkboard target, 

however, is anomalous. It exhibits a low standard deviation but suffers from a large 

negative mean difference, shown in Figure 18. The scattering characteristics of several of 

the materials suspected of specular reflectance and the Corkboard are examined in the 

following section.  

In terms of statistical significance, for almost all comparisons – 43 out of 48 – the 

difference between the mean predicted reflectance and the observed reflectance is 

statistically significant at 2-sigma according to t-tests. This is not surprising as reflectance 
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Figure 18 – Distance vs Reflectance (left), Ambient Light vs Reflectance (right) for (top 

to bottom): Gray Painted Wall, Red Brick, and White Painted Wall 
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estimates generated from lidar measurements are rarely in exact conformance with passive 

spectroradiometer measurements e.g. see (Hartzell, Glennie, and Finnegan 2015; 

Kaasalainen et al., 2011). This is caused, in part, by the different viewing geometry of 

active lidar sensors from typical passive sensors. Lidar sensors observe targets at the same 

geometry at which they are illuminated, while passive sensors typically view target 

surfaces at a different angle than the direction of illumination. This causes differences in 

phenomena such as shadow hiding and coherent backscatter, both of which influence the 

amount of optical power received by the sensor (Hapke et al., 1996).  

Finally, it is noted that the calibration models were able to reasonably predict 

reflectance values of two materials with observed reflectance values outside of the bounds 

of the calibration data (the Plywood and White Poster Board targets), with mean 

differences 3% or less and RMSEs 5% or less, and standard deviations under ±5% This 

indicates the calibration model is capable of extrapolating beyond the bounds of the 

training data.  

4.2.2. Effect of Incidence Angle 

Several targets – Brown Door, Silver Door, and White Painted Wall – were suspected 

of specular reflectance based on their performance results reviewed in the prior section. 

This hypothesis was qualitatively investigated by comparing reflectance values produced 

from observations of two of these targets, the Silver Door and White Painted Wall, at 

multiple incidence angles to the reflectance values predicted by Equation (11), where it is 

shown that the amount of light reflected by a Lambertian (non-specular) target is 

proportional to the cosine of the incidence angle. Two of the OSB calibration panels, the 

62% and 50% reflectance targets, were also examined. Graphs of the reflectance values 



43 

predicted by the calibration models versus those predicted by the cosine relationship 

(cosine of the incidence angle multiplied by the target’s observed reflectance value at 

normal incidence) are given in Figure 19. 

  

The calibration targets (top two graphs of Figure 19) follow the trend predicted by 

Equation (12), whereas the targets suspected of specular reflection exhibit a strong peak at 

0-degree incidence (bottom two graphs of Figure 19), indicating the presence of specular, 

or mirror-like, scattering at near-normal observation geometries. These specular targets 

also exhibit much more variation in their predicted reflectance values than the OSB panels, 

Figure 19 – Scattering Characteristics for (top to bottom, left to right): OSB Target 2, 

OSB Target 3, Silver Door, and White Painted Wall. 
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which is illustrated in Figure 20 and evidenced by their relatively large standard deviations 

(see Table 6). The large standard deviations are believed to result from small variations in 

the target incidence angle between the sensor setups due to minor inconsistencies in the 

sensor alignment with respect to the targets as well as non-planar characteristics of some 

of the targets (e.g. the corrugated geometry of the Silver Door target). It is noted that the 

Brown Door target also likely suffers from specular reflection based on its relatively high 

standard deviation and mean difference values. Similar analysis was performed for the 

corkboard target, which was found to exhibit Lambertian scattering characteristics. 

Unfortunately, this does not provide any potential reasons for the very low reflectance 

Figure 20 – Predicted Reflectance for (top to bottom, left to right): OSB Target 2, OSB 

Target 3, Silver Door, and Brown Door. 
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predicted by the calibration models for the Corkboard target.  

4.2.3. Temporal Stability  

For a calibration model to produce consistent results over time, the measurements fed 

into the model must also be consistent over time. Therefore, the test targets were observed 

twice, separated by at least a month in time, and the mean predicted reflectance for each 

setup (recall that a setup is a group of measurements collected at a unique combination of 

target type, distance, and ambient light level) compared between collection dates. Visual 

comparison for Sensor 1 is illustrated in Figure 21, where the non-specular target mean 

reflectance values appear to align, and the error bars indicate a high degree of agreement 

within the bounds of the measurement precision. The results are similar for Sensors 2-4 

and are given in the Appendix.  

Figure 21 – Temporal Variation by Material for Sensor 1 with 1-sigma Error Bars 

 * Material Collected Outdoors 
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The visual interpretation of temporal agreement is supported by two sample t-tests of 

the mean reflectance values from the temporally separated collections, which found that 

45 of 48 comparisons (4 sensors ×12 materials = 48) were not statistically different at 2-

sigma confidence. Table 7 shows the difference between the mean reflectance of each 

temporal collection. For the three pairs tested to be statistically different, only one of those 

was a non-specular target with a difference between mean reflectance values of 2.3%. This 

suggests that while the temporal differences may be statistically significant in some cases, 

they are likely not practically significant, particularly for a low-cost remote sensing 

instrument.  

4.2.4. Calibration Model Multi-Sensor Performance 

If a single model can provide equivalent reflectance predictions for multiple sensors, 

individual calibrations for each sensor may not be necessary. This is attractive in terms of 

efficiency if many sensors are to be calibrated. Results produced by cross-application of 

each of the four sensor-specific calibration models to the test target data collected by all 

four sensors were therefore compared. For clarity, the specular targets and Corkboard were 

Table 7 – Difference in Mean Reflectance for Temporally Separated Collections  
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Sensor 1 0.8 0.4 -0.3 0.7 -0.1 1 -0.7 -2.3X -9.4 0 -2.3 1.2X 

Sensor 2 0.7 -0.5 -0.7 0.6 -0.6 0.1 0.4 -1.6 -8.1 2.3 -1.3 1.4 

Sensor 3 0.3 0.3 -0.6 0.4 0 0.5 -0.2 -1.4 -7 1.3 -2 0.6 

Sensor 4 0.4 -1 -0.8 0.4 0.2 -0.2 0.4 -1.5 -12.4X 1 -2.3 0.2 

* Material Collected Outdoors X Statistically Significant at 2σ 
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not included in the analysis. The best performance, quantified by RMSE in Table 8, is 

achieved when applying the sensor-specific models to their own test target observations.  

 

The performance of the cross-application of the sensor-specific calibration models 

follows the patterns reported in Section 4.1, where the consistency of the reported 

measurements was compared between the four sensors: cross-application of the sensor-

specific calibration models perform better for Sensors 2-4 and worst when applying Sensor 

1’s calibration model to the test target data collected by Sensors 2-4 and vice-versa. Note 

that these results are ‘global’ – all RMSE values encompass all eight of the well-performing 

test targets. Similar results are found when examining the test target materials individually. 

In addition to the RMSE analysis, mean reflectance values for the 12 targets produced from 

an example cross-application are graphed in Figure 22 to provide additional context to the 

cross-application performance.  

Finally, in addition to the self and cross-application of the individual sensor calibration 

models, a single calibration model was trained using data from Sensors 2-4 and applied to 

the test target data collected by those sensors. The results (see Table 6) are reasonable, with 

performance being slightly worse than self-application of the sensor-specific models but 

better than the cross-applications.  

Table 8 – RMSE of the Eight Well Performing Test Materials for Each Sensor and 

Each Model 

  

Model 

S1 S2 S3 S4 
S2, S3, 

& S4 
D

at
a
 

Sensor 1 4 13 10 9 10 

Sensor 2 18 4 6 7 5 

Sensor 3 15 5 4 5 5 

Sensor 4 12 6 4 4 5 
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4.3. Geometric Calibration  

The accuracy and precision of the Evo 60m range measurements are examined in this 

section. As noted previously, the analysis is limited to a maximum of 14 meters in range 

due to the sensor’s internal measurement adjustment at this distance and limitations in lab 

space. It is also noted that the manufacturer supplies an accuracy specification, but not a 

precision specification, to which the results can be compared. 

4.3.1. Precision 

Table 9 shows the Evo 60m range precision (standard deviation) of all four sensors for 

all materials, ranges, and ambient light conditions. The computed precisions are all under 

±10 millimeters, which is well under the stated accuracy of ±40 millimeters (no precision 

value is supplied). However, this single number fails to show the effects that different 

variables, such as signal return power and ambient light, have on the Evo 60m’s precision.  

As mentioned in Section 2.3, (Wujanz et al., 2017) proposed a power law relating the 

Figure 22 – Performance of Each Sensor’s Data Using the Model Trained with Sensor 2 

Data 
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precision of lidar range measurements to the return signal intensity. The use of a power 

law relationship with respect to lidar signal return power agrees with standard models for 

predicting ranging variance for time-of-flight and continuous wave lidar (see (Baltsavias 

1999)). Per Equation (11), a power law is also an appropriate model for ITOF ranging 

variance. Assuming a constant ambient light level, Equation (11) predicts that ITOF range 

variance is proportional to the inverse square root of the measured ITOF amplitudes. Note 

that although the amplitude reported by the Evo 60m is a measure of signal intensity, it 

varies with the sensor integration time and, therefore, is not appropriate for comparison to 

the range precision. Instead, a proxy for return signal power is formed by normalizing the 

predicted target reflectance values by the square of the measured range to produce a 

quantity proportional to the received optical power per Equation (11). A graph of the 

relationship between observed range precision and normalized reflectance for all setups 

measured with all four sensors is shown in Figure 23. A power law relationship is fit to the 

data and indicates a similar trend, albeit with a higher floor in precision (at high return 

powers) than the model can accommodate. The high floor is a result of the Evo 60m’s range 

quantization of five millimeters.  

The precision of the Evo 60m’s range measurements also decreases with the increased 

ambient light, i.e., with lower signal to noise ratios. This effect can be seen in Figure 23 

Table 9 – Geometric Precision 

Sensor 
Precision 

(mm) 

Sensor 1 9.4 

Sensor 2 9.5 

Sensor 3 8.6 

Sensor 4 9.0 
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where the data points are colored by ambient light level, and is also highlighted in Figure 

24, where the range precision for a single sensor and single target (Sensor 1, 80% 

reflectance OSB target) is graphed versus the measured range and colored by ambient light 

Figure 23 – Standard Deviation of Distance Measurements for All OSB Target and Test 

Materials from all Sensors at Normalized Reflectance 

Figure 24 – Calibration OSB 80%  
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level. As range increases, and return power decreases, the negative impact of higher 

ambient light levels on ranging precision is clearly seen.  

4.3.2. Accuracy 

Whereas precision is concerned with the repeatability of the range measurements, 

accuracy considers the presence or absence of systematic errors that bias the range 

 

Figure 25 – Residual Before (left) and After (right) Removal of Modeled Systematic 

Error. Dashed black and red lines are the manufacturer’s stated accuracy at 1 

and 2-sigma. 
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measurements from the true values. Range residuals, defined as the difference between the 

ranges measured by the Leica Disto and the Evo 60m sensors, for targets with reflectance 

values greater than 20% were therefore examined for the presence of systematic errors. 

Ranges from low reflectance targets (<20%) were not considered to avoid spurious results 

due to their low ranging precision. Range residuals versus target range are plotted for the 

four sensors in Figure 25. An offset of approximately 200 millimeters is clearly evident 

and, to a lesser extent, a cyclical component with a period of 3-4 meters in range can be 

seen in the graphs for the four sensors. Note that the large offset is due to the physical 

distance between the Leica Disto and Evo 60m sensor origins. This offset could not be 

removed prior to this analysis because the location of the ranging origin for Evo 60m 

sensors is unknown. To date, this information is not found on any available specification 

sheets and several inquiries with Terabee have gone unanswered. 

In addition to the offset and apparent periodic component, the plots for Sensors 1 and 

4 in Figure 25 suggest that residuals may also increase as a function of range, i.e., the 

measured Evo 60m ranges may also be subject to a scale factor. A residual error model 

incorporating an offset, a scale factor, and a periodic component can be expressed as, 

 
𝑎0 + 𝑎1𝑥 + 𝑎2  sin (

2𝜋

𝑎3
+ 𝑎4) , (18) 

where 𝑎0 is the offset, 𝑎1 is the scale factor, and 𝑎2, 𝑎3, 𝑎4 are the amplitude, period, and 

phase shift of the periodic component. A least squares fit of the error model to the residuals 

was solved for each sensor. The resulting solved parameters, shown in Table 10, were all 

found to be statistically different from zero at 95% confidence.  

 Only Sensors 2 and 3 share a statistically consistent model (i.e., none of the parameters 

are statistically different). All other sensor combinations have at least two parameters that 
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are statistically different. Examining the 95% confidence intervals of the individual model 

parameters across all four sensors, only the amplitude of the periodic component is 

statistically equivalent across all sensors (see Table 11). Scale and phase shift are only 

statistically equivalent between sensors 2 and 3. These results indicate that although a 

common model may be appropriate for calibrating the sensor ranges, the best results are 

obtained from unique calibrations, i.e., the error model parameters should not be shared 

between sensors. 

 

Although the spread of the solved offset values is approximately 8 millimeters, the 

mean offset value indicates the physical location of the Evo 60m’s range reference point is 

located approximately in the middle of the sensor. This is illustrated in Figure 25. If the 

solved offset values are removed from the range residuals, RMSEs generated from the 

resultant residuals (see Table 12) fall below the manufacturer’s stated accuracy level of 

±40 millimeters for Sensors 2-4. Sensor 1’s RMSE lies just above the ±40 millimeter 

Table 10 – Solved Systematic Error Model Parameters 

 
Offset (mm) Scale 

Amplitude 

(mm) 
Period (m) Shift (m) 

Sensor 1 202.2 (±5.1) 3.8 (±0.7) -7.5 (±3.2) 3.8 (±0.3) 3.1 (±1.0) 

Sensor 2 207.5 (±3.6) 1.3 (±0.5) -10.9 (±2.3) 3.6 (±0.1) 1.0 (±0.4) 

Sensor 3 202.6 (±3.8) 1.4 (±0.5) -13.2 (±2.6) 3.7 (±0.1) 1.2 (±0.4) 

Sensor 4 210.9 (±3.9) 2.5 (±0.5) -9.4 (±2.5) 4.1 (±0.2) -1.9 (±0.5) 

 

Table 11 – Statistical Significance at 95% Confidence of the Solved Systematic Error 

Model for Sensor Pair 

 S1-S2 S1-S3 S1-S4 S2-S3 S2-S4 S3-S4 

Offset Same Same Same Same Same Different 

Scale Different Different Different Same Different Different 

Amplitude Same Same Same Same Same Same 

Period Same Same Same Same Different Different 

Shift Different Different Different Same Different Different 
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threshold at ±43 millimeters. This indicates that given knowledge of the sensor origin point, 

the ranging accuracy of the Evo 60m largely falls within the manufacturer’s stated accuracy 

specification. Although not likely to be applied in a practical setting, the RMSEs are 

improved (decreased) by 12%-25% when applying the entire systematic error model 

instead of only the offset (see Table 12). 

 

 

 

 

  

Figure 26 – EDM Reference Point (yellow line) and Determined Evo 60m Range 

Reference Point (red line) 

Table 12 – Root Mean Squared Error with and without Systematic Error  

Sensor 
No Systematic 

Error Removal 

Only Offset 

Removed 

Entire Systematic 

Error Removed 

S1 230.2 43.7 32.9 

S2 219.3 27.2 23.9 

S3 216.0 30.1 26.1 

S4 229.3 32.3 26.9 

All measurements are (±mm) 
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5. Conclusions 

Radiometric calibration of traditional lidar sensors that employ direct time of flight or 

phase-based ranging methods is well established. However, emerging low-cost, short-

range lidar sensors utilize different ranging methods, and, consequently, report 

measurements not appropriate for use in existing radiometric calibration techniques. This 

work examined an LED-based lidar sensor, the Terabee Evo 60m, which determines target 

ranges through indirect time of flight. A unique characteristic of this sensor is that the 

reported signal amplitudes are not smoothly proportional to incident optical power but 

instead exhibits large discontinuities as the sensor automatically adjusts the amount of time 

required to make a range measurement in response to changing signal and noise levels. 

An empirical radiometric calibration model based on a neural network was proposed 

as an alternative to existing calibration techniques for the Evo 60m lidar sensor. The 

network ingests the four measurements reported by the Evo 60m—range, amplitude, 

integration time, and ambient light—and outputs an estimate of target reflectance. For non-

specular materials, the network model predicts target reflectance values consistent with 

spectroradiometer measurements to within ±6% RMSE (accuracy) or better with precisions 

of ±5% or less. This performance is consistent with that of traditional lidar sensors and was 

able to be attained with four different Evo 60m sensors. The measurements reported by the 

four sensors were found to be most similar to one another for those sensors purchased at 

the same time (three sensors were purchased a year later than the first sensor), but largely 

different when statistically tested at 95% confidence. Accordingly, each sensor performs 

best when using a radiometric calibration model trained on its own measurements, i.e., 

reflectance prediction performance is degraded when using a network trained on data 
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collected from one or more of the other sensors.  

In addition to the radiometric analysis, the ranging performance of the Evo 60m was 

examined. On average, range precision was found to be less than ±10 millimeters for all 

targets in all conditions. Range precision approached the sensor quantization value of ±5 

millimeters for targets with relatively high signal return power, but rapidly increased at low 

signal return power levels. The relationship between signal return power and range 

precision approximately followed a power law, similar to traditional time of flight and 

continuous wave lidar sensors. In terms of accuracy, when the physical offset between the 

Evo 60m and Leica Disto ranges was modeled and removed, the ranging accuracy was 

found to be in conformance with the manufacturer’s stated specification of ±40 millimeters 

for three out of the four sensors tested. Although further improvements in ranging accuracy 

were able to be achieved by modeling and removing systematic scale and periodic error 

components, these are likely not of practical concern for such an inexpensive sensor.  

The work in this thesis was originally inspired by the desire for a low-cost multispectral 

lidar sensor. The performance of the proposed radiometric calibration model is in line with 

current techniques, and thus applicable to future research with multiple wavelength LED-

based lidar sensors. Furthermore, the neural network based calibration model represents a 

generic approach that may be applicable to other low-cost lidar sensors, which may be an 

avenue for future research. Ultimately, the neural network required to build a radiometric 

calibration model is simple and quite small. Embedding such a network into sensor 

firmware may be of interest to manufacturers in the future to provide additional and 

valuable information about target radiometry to end users.  



57 

References 

Baltsavias, E.P. 1999. “Airborne Laser Scanning: Basic Relations and Formulas.” ISPRS 

Journal of Photogrammetry and Remote Sensing 54 (2–3): 199–214. 

https://doi.org/10.1016/s0924-2716(99)00015-5. 

Bellisai, S., F. Villa, S. Tisa, D. Bronzi, and F. Zappa. 2011. “Indirect Time-of-Flight 3D 

Ranging Based on SPADs.” Quantum Sensing and Nanophotonic Devices IX 8268 

(January 2012): 82681C. https://doi.org/10.1117/12.908222. 

Bergstrand, Erik. 1949. “Measurement of Distances by High Frequency Light Signalling.” 

Bulletin Géodésique 23 (1): 81–92. https://doi.org/10.1007/BF02520682. 

Charbon, Edoardo. 2014. “Introduction to Time-of-Flight Imaging.” Proceedings of IEEE 

Sensors 2014-Decem (December): 610–13. 

https://doi.org/10.1109/ICSENS.2014.6985072. 

Corrigan, Fintan. 2019. “12 Top Lidar Sensors for UAVs, Lidar Drones and So Many Great 

Uses.” DroneZon. 2019. https://www.dronezon.com/learn-about-drones-

quadcopters/best-lidar-sensors-for-drones-great-uses-for-lidar-sensors/. 

Dan Foresee, F., and M. T. Hagan. 1997. “Gauss-Newton Approximation to Bayesian 

Learning.” IEEE International Conference on Neural Networks - Conference 

Proceedings 3: 1930–35. https://doi.org/10.1109/ICNN.1997.614194. 

Gavin, Henri P. 2019. “The Levenburg-Marqurdt Algorithm For Nonlinear Least Squares 

Curve-Fitting Problems.” Duke University, 1–19. 

http://people.duke.edu/~hpgavin/ce281/lm.pdf. 

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press. 



58 

http://www.deeplearningbook.org. 

Gordon, S., N. Davies, D. Keighley, D. Lichti, and J. Franke. 2005. “A Rigorous Rangefinder 

Calibration Method for Terrestrial Laser Scanners.” Journal of Spatial Science 50 (2): 

91–96. https://doi.org/10.1080/14498596.2005.9635052. 

GrindGPS. 2015. “50 Applications for Lidar.” 2015. https://grindgis.com/data/lidar-data-

50-applications. 

Hapke, Bruce, Dominick DiMucci, Robert Nelson, and William Smythe. 1996. “The Cause 

of the Hot Spot in Vegetation Canopies and Soils: Shadow-Hiding versus Coherent 

Backscatter.” Remote Sensing of Environment 58 (1): 63–68. 

https://doi.org/10.1016/0034-4257(95)00257-X. 

Hartzell, Preston J., Craig L. Glennie, and David C. Finnegan. 2015. “Empirical Waveform 

Decomposition and Radiometric Calibration of a Terrestrial Full-Waveform Laser 

Scanner.” IEEE Transactions on Geoscience and Remote Sensing 53 (1): 162–72. 

https://doi.org/10.1109/TGRS.2014.2320134. 

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of 

Statistical Learning. Springer Series in Statistics. New York, NY: Springer New York. 

https://doi.org/10.1007/b94608. 

Höfle, Bernhard, and Norbert Pfeifer. 2007. “Correction of Laser Scanning Intensity Data: 

Data and Model-Driven Approaches.” ISPRS Journal of Photogrammetry and 

Remote Sensing 62 (6): 415–33. https://doi.org/10.1016/j.isprsjprs.2007.05.008. 

Jazayeri, Kian, Moein Jazayeri, and Sener Uysal. 2016. “Comparative Analysis of 

Levenberg-Marquardt and Bayesian Regularization Backpropagation Algorithms in 



59 

Photovoltaic Power Estimation Using Artificial Neural Network.” In Lecture Notes in 

Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and 

Lecture Notes in Bioinformatics), 9728:80–95. https://doi.org/10.1007/978-3-319-

41561-1_7. 

Kaasalainen, Sanna, Antero Kukko, Tomi Lindroos, Paula Litkey, Harri Kaartinen, Juha 

Hyyppä, and Eero Ahokas. 2008. “Brightness Measurements and Calibration with 

Airborne and Terrestrial Laser Scanners.” IEEE Transactions on Geoscience and 

Remote Sensing 46 (2): 528–33. https://doi.org/10.1109/TGRS.2007.911366. 

Kaasalainen, Sanna, Ulla Pyysalo, Anssi Krooks, Ants Vain, Antero Kukko, Juha Hyyppä, 

and Mikko Kaasalainen. 2011. “Absolute Radiometric Calibration of ALS Intensity 

Data: Effects on Accuracy and Target Classification.” Sensors 11 (11): 10586–602. 

https://doi.org/10.3390/s111110586. 

Koyama, Moriaki, and Tatsuo Shiina. 2011. “Development of LED Mini-Lidar.” 2011 Int. 

Quantum Electron. Conf., IQEC 2011 and Conf. Lasers and Electro-Optics, CLEO 

Pacific Rim 2011 Incorporating the Australasian Conf. Optics, Lasers and 

Spectroscopy and the Australian Conf., no. September: 544–45. 

https://doi.org/10.1109/IQEC-CLEO.2011.6193859. 

Kriesel, David. 2007. A Brief Introduction to Neural Networks. 

Li, Larry. 2014. “Time-of-Flight Camera–An Introduction.” Texas Instruments - Technical 

White Paper, no. January: 10. 

Lichti, Derek D. 2007. “Error Modelling, Calibration and Analysis of an AM-CW Terrestrial 

Laser Scanner System.” ISPRS Journal of Photogrammetry and Remote Sensing 61 



60 

(5): 307–24. https://doi.org/10.1016/j.isprsjprs.2006.10.004. 

Maiman, T H. 1960. “Stimulated Optical Radiation in Ruby.” Nature 187 (4736): 493–94. 

https://doi.org/10.1038/187493a0. 

Melexis. 2017. “Time-of-Flight Basics,” 1–14. 

Møller, Martin F. 1990. “PREPRINT A Scaled Conjugate Gradient Algorithm for Fast 

Supervised Learning Supervised Learning.” Science. 

NOAA. 2007. “AGA Geodimeters, Models 4D and 4L.” 2007. 

https://celebrating200years.noaa.gov/distance_tools/geodimeters_4d_4l.html. 

Nwankpa, Chigozie, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall. 2018. 

“Activation Functions: Comparison of Trends in Practice and Research for Deep 

Learning,” November, 1–20. http://arxiv.org/abs/1811.03378. 

Perenzoni, Matteo, and David Stoppa. 2011. “Figures of Merit for Indirect Time-of-Flight 

3D Cameras: Definition, Experimental Evaluation.” Remote Sensing 3 (11): 2461–72. 

https://doi.org/10.3390/rs3112461. 

Satterwhite, Melvin B., and C. Scott Allen. 2003. “A Novel Low-Cost Approach for Large 

Gray-Toned Fabric Panels for Calibrating Remotely Sensed VIS/NIR/SWIR Data.” 

Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral 

Imagery IX 5093: 163. https://doi.org/10.1117/12.488364. 

Shan, Jie, and Charles K. Toth, eds. 2009. Topographic Laser Ranging and Scanning - 

Principles and Processing. CRC Press. 

Taylor, Barry N, and Chris E Kuyatt. 1994. “Guidelines for Evaluating and Expressing the 

Uncertainty of NIST Measurement Results.” National Institute of Standards and 



61 

Technology. 

Terabee. 2017. “TeraRanger Evo 60m Specification Sheet.” 

https://www.terabee.com/wp-content/uploads/2018/10/TeraRanger-Evo-60m-

Specification-sheet.pdf. 

———. 2018. “Test Results Report for TeraRanger Evo 60m Sensor Potential Maximum 

Range in Varying Outdoor Conditions.” Terabee. 

Vosselman, George, and Hans-Gerd Maas, eds. 2010. Airborne and Terrestrial Laser 

Scanning. Whittles Publishing. 

Wagner, Wolfgang. 2010. “Radiometric Calibration of Small-Footprint Full-Waveform 

Airborne Laser Scanner Measurements: Basic Physical Concepts.” ISPRS Journal of 

Photogrammetry and Remote Sensing 65 (6): 505–13. 

https://doi.org/10.1016/j.isprsjprs.2010.06.007. 

Wagner, Wolfgang, Andreas Ullrich, Vesna Ducic, Thomas Melzer, and Nick Studnicka. 

2006. “Gaussian Decomposition and Calibration of a Novel Small-Footprint Full-

Waveform Digitising Airborne Laser Scanner.” ISPRS Journal of Photogrammetry 

and Remote Sensing 60 (2): 100–112. 

https://doi.org/10.1016/j.isprsjprs.2005.12.001. 

Wandinger, Ulla. 2006. “Introduction to Lidar.” Lidar, 1–18. https://doi.org/10.1007/0-

387-25101-4_1. 

Wehr, Aloysius, and Uwe Lohr. 1999. “Airborne Laser Scanning - An Introduction and 

Overview.” ISPRS Journal of Photogrammetry and Remote Sensing 54 (2–3): 68–82. 

https://doi.org/10.1016/S0924-2716(99)00011-8. 



62 

Wujanz, D., M. Burger, M. Mettenleiter, and F. Neitzel. 2017. “An Intensity-Based 

Stochastic Model for Terrestrial Laser Scanners.” ISPRS Journal of Photogrammetry 

and Remote Sensing 125: 146–55. https://doi.org/10.1016/j.isprsjprs.2016.12.006. 

Yonaba, H., F. Anctil, and V. Fortin. 2010. “Comparing Sigmoid Transfer Functions for 

Neural Network Multistep Ahead Streamflow Forecasting.” Journal of Hydrologic 

Engineering 15 (4): 275–83. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000188. 

 

  



63 

Appendix

 

Figure 27 – Sensor 1 Performance Consistency for Black Foam, Gray Stucco Wall, 

Gray Tabletop, and Brown Paper (Reflectance vs Distance – Left, 

Reflectance vs Ambient Light – Right) 
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Figure 28 – Sensor 1 Performance Consistency for White Poster Board, Plywood, 

Silver Door, and Brown Door (Reflectance vs Distance – Left, Reflectance 

vs Ambient Light – Right) 
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Figure 29 - Temporal Stability for Sensors 2-4 

 



 

 


