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ABSTRACT 

Safety assurance in autonomous safety critical aerospace systems has become an 

increasingly relevant area of study as mission objectives, hardware, and even human lives 

become endangered when integrating complex and intelligent control system designs. 

With this rise of control and mission complexity for autonomous aerospace systems, a 

balance must be struck between mission objectives and system safety. A recent method of 

creating this balance has come to be known as online safety assurance techniques or Run 

Time Assurance (RTA), a control intervention method designed separately from a 

system’s primary controller to assure safety in real time. 

 The research presented in this thesis analyzes two RTA intervention methods, a 

switching-based filter known as the Simplex method, and an optimization-based filter 

known as the ASIF method, in the control of simulated quadcopters to create an 

impassible safety cube or ‘geofence’ in each of the quadcopter’s reference axes. The 

safety barriers created for the geofence are formally defined using the nascent topic of 

Control Barrier Functions (CBFs), independently defined for each flight direction (X, Y, 

Z), and implemented with Python, the primary language of the simulated environment. 

This thesis will conclude with a comparison of the two RTA methods and the 

effectiveness of their implementation on different quadcopter mission objectives. 
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1. Introduction 
 

 The autonomy of aerial vehicles through has become an integral part in carrying 

out increasingly complex missions from disaster relief through drone surveillance of 

affected areas to delivery of goods for humanitarian aid [1]. Though the driving action 

that controls these vehicles may be ideally sound, the stochastic nature of different 

operating environments and of the vehicle itself necessitates a method of assuring 

operational safety to prevent damage or complete loss. Designing control systems 

primarily concerned with safety can, however, lead to overly cautious designs which 

directly affect the overall performance of the vehicle’s task. A method of balancing the 

system’s performance and safety is therefore necessary. 

 In recent years, a variety of methods collectively known as online safety 

assurance techniques or Run Time Assurance (RTA), have been proposed to ensure 

system safety while performing mission objectives with a base controller. These 

techniques can take multiple forms such as switching to a secondary, predetermined 

controller when system safety is breached and filtering the original input signal to an 

optimal input signal to ensure safety at all times. Recently, Control Barrier Function 

(CBF) based methods have been introduced to ensure the system’s safety. Other methods 

of defining safety have also been explored, notably implicit safe sets which create closed 

loop trajectories under a backup controller over a given time horizon. This is useful in 

more complex systems in which a clear safety function may not be possible. 

 This thesis will explore the use of RTA for a micro-quadcopter platform, namely, 

Bitcrazie’s Crazieflie 2.1 [13], to create a geofence, i.e., a ‘safety cube’ which the drone 
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cannot pass through, in all cardinal directions (relative x, y, and z). The outline of this 

thesis is as follows. Part 2 reviews literature related to the concepts of RTA and CBFs. 

Part 3 introduces the background information relating to these topics and an overview of 

the micro-quadcopter’s control scheme. Part 4 presents the Python implementation used 

to test and verify safety assurance. Part 5 explores the RTA implementation on a 

Crazieflie 2.x in a simulated gym environment by subsystem, ordered in one degree of 

freedom and two degrees of freedom. The final part draws conclusions from the RTA 

implementations presented and will discuss potential expansion and future work. 
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2. Literature Review 
 

This section will explore the currently available literature relating to RTA systems 

and CBFs. Though this thesis primarily focuses on the aerospace application of these 

concepts, the literature surveyed in this section fits within the context of safety assurance 

techniques for safety critical systems. 

2.1 Run Time Assurance (RTA) 

 

 Known as online safety assurance techniques in some literature, RTA has been 

used in a variety of applications including control of nonlinear motors [2], autonomous 

satellites [3], safety of military aircraft [4], and in smaller examples such as in a reaction 

wheel pendulum [5] and has been implemented in a variety of controller types including 

reinforcement learning [6]. The need for safety assurance rose out of safety critical 

robotic operations where damage must be prevented while under normal operation. The 

control of robotic systems can only guarantee the minimization of error of actions from a 

given setpoint, not necessarily its safety through the avoidance of other robots or 

obstacles in its set path.   

 Collision avoidance is a major point of discussion within the field of aerospace 

control systems, as well as other robotics fields [7], as several types of air and surface 

obstacles can pose dangers to high-cost autonomous systems and even human lives. A 

current example of RTA being used in the aerospace field for collision avoidance is the 

automatic ground collision avoidance system (Auto-GCAS) which was designed as a 

backup controller in the event of a pilot losing consciousness or focus while the aircraft is 
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near the ground [8]. This system has been implemented into the F-16 and F-35 fighter 

systems and has already saved dozens of lives [4].  

 This style of collision avoidance has also been implemented in smaller-scale 

aerospace systems, most notably in other single quadrotor examples where tight space 

maneuvers through urban environments necessitate safety assurance [9]. A lead and 

follower safety bubble between two quadcopters in predetermined paths has also been 

used to assure collision avoidance in both systems [8].  

2.2 Control Barrier Functions (CBFs)  

 

The recent interest in autonomous systems has brought safety to the forefront of 

control system design. In this context, safety can be trained as enforcing the invariance of 

a set, i.e., the system is not leaving the safety set [11]. Safety conditions which lie at the 

root of RTA can sometimes give rise to conflicting control objectives and safety 

assurance. In order to unify a system’s objectives with safety assurance, a type of safety 

condition can be constructed commonly referred to in most literature as a Control Barrier 

Function (CBF). The functions provide a set of inequality constraints in the control input 

which can be unified with control functions in a quadratic program (QP) to allow for 

control objectives and admissible, safe states [10]. 

 These CBFs have been used in optimized safety assurance in the same broad 

spectrum of safety critical systems as RTA more generally. The construction of CBFs 

was introduced and used to build a safe system for a reaction wheel pendulum with an 

LQR controller [5] later explored in further detail in this paper. CBFs were similarly used 

for other nonlinear models such as bipedal walking robots [10]. 
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 CBFs have been used in other literature as a tool in the construction of a type of 

RTA known as an Active Set Invariance Filter (ASIF) or an optimization filter. In 

practice, the use of CBFs in this type of RTA filter is the same with a quadratic program 

being used to optimize the unsafe input control law [11].  
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3. Background 

3.1 Simulated Pybullet Gym Environment 

 The simulated environment used in this thesis is an open-source Gym-style 

environment based on Google’s Bullet Physics engine [16] using its Python binding, 

Pybullet, and is one of the first general purpose multi-agent Gym environment for 

quadcopters [13]. Though it was primarily constructed as a way of studying 

Reinforcement Learning control, this environment was chosen to simulate the drone 

described in the previous section because it hosts the ability to construct other types of 

controllers for the Bitcraze Crazyflie 2.x, its default quadcopter model.   

 The physics is based on a physical system identification performed on the 

Crazyflie 2.x [13] and independent study done on different physical phenomena including 

drag, ground effect, downwash, and various other aerodynamic effects [14]. 

 

Figure 1: Pybullet Drones Running with 3 Drones 

3.2 Dynamic Control System and Quadcopter Representation 

A state space representation is a set of equations which explains how a dynamical 

system evolves over time. This is a convenient tool for a system with multiple degrees of 
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freedom and dependencies on multiple states. The general form of the state space 

equation is as follows, 

 
{
𝒙̇(𝑡) = 𝑨(𝑡)𝒙(𝑡) + 𝑩(𝑡)𝒖(𝑡)

𝒚(𝑡) = 𝑪(𝑡)𝒙(𝑡) + 𝑫(𝑡)𝒖(𝑡)
 

(1) 

 

where 𝑥(𝑡) ∈ ℝ𝑛 denotes the state, 𝑢(𝑡) ∈ ℝ𝑛 and 𝑦(𝑡) ∈ ℝ𝑛 are the input and output, 

respectively, and 𝐴(𝑡), 𝐵(𝑡), 𝐶(𝑡), 𝐷(𝑡) are system matrices of appropriate dimensions, 

while 𝑡 is the continuous-time index. This representation can be simplified for systems 

where parameters A, B, C, and D are time invariant and have several non-linearities 

which can be simplified with a linearization process, resulting in, 

{
𝚫𝒙̇(𝑡) = 𝑨𝚫𝒙(𝑡) + 𝑩𝚫𝒖(𝑡)
𝚫𝒚(𝑡) = 𝑪𝚫𝒙(𝑡) + 𝑫𝚫𝒖(𝑡)

 
(2) 

where Δ signifies a vector which has gone through a linearization process. In the case of a 

nanoquadcopter, a state space representation can be formulated using linearized equations 

of forces and moments along its six degrees of freedom [12] which results in a 12-

element long state vector and a 12x12 state matrix. For the purposes of analysis and CBF 

construction, this is too large and complex. However, since quadcopters are 

underactuated platforms, it can be shown that the vertical, lateral, longitudinal, and 

directional forces act independently from one another and, therefore, the quadcopter 

dynamics are decoupled into individual subsystems [12] 2ith reference to Fig. 2 

representing the reference coordinate frame, 
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Figure 2: Reference Frame for Drones 

 in this thesis we will consider the quadcopter motion along the 𝑧- and 𝑦-axis, the 

vertical and longitudinal subsystems, respectively. 

3.2.1 Vertical Subsystem 

 The vertical subsystem represents the drone’s motion along the 𝑧-axis 

perpendicular to the ground and can be described by, 

[
Δ𝑤̇
Δ𝑧̇

] = [
0 0
1 0

] [
Δ𝑤
Δ𝑧

] + [
1/𝑚
0

] Δ𝐹𝑧 
(3) 

where 𝑤 is the velocity in the 𝑧 direction (vertical relative to the ground), 𝑚 is the mass 

of the drone, and 𝛥𝐹𝑧 is the linearized vector form of the thrust in the 𝑧 direction. This 

thrust can become control law u1 for this subsystem, resulting in, 

[
Δ𝑤̇
Δ𝑧̇

] = [
0 0
1 0

] [
Δ𝑤
Δ𝑧

] + [
1/𝑚
0

] u1. 

 

(4) 

 

3.2.2 Longitudinal Subsystem 

The longitudinal subsystem describes the quadcopter’s East-West motion and it is 

described by, 
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[

Δ𝑝̇

Δ𝜙̇
Δ𝑣̇
Δ𝑦̇

] = [

0 0 0 0
1 0 0 0
0 −𝑔 0 0
0 0 1 0

] [

Δ𝑝
Δ𝜙
Δ𝑣
Δ𝑦

] + [

1/𝐼𝑥𝑥

0
0
0

]Δ𝑀𝑥 

(5) 

 

where 𝑝 is the roll velocity, 𝜑 is the roll angle, 𝑣 is the linear velocity in the 𝑦 direction, 

𝐼𝑥𝑥 is the inertia relative to the 𝑥𝑥 direction, and 𝛥𝑀𝑥 is the moment relative to the 𝑥-

axis. This moment can, similarly, become a control law, u2 for this subsystem, resulting 

in, 

[

Δ𝑝̇

Δ𝜙̇
Δ𝑣̇
Δ𝑦̇

] = [

0 0 0 0
1 0 0 0
0 −𝑔 0 0
0 0 1 0

] [

Δ𝑝
Δ𝜙
Δ𝑣
Δ𝑦

] + [

1/𝐼𝑥𝑥

0
0
0

] u2. 

(6) 

 

It should be noted that the lateral subsystem, which is responsible for controlling motion 

in the quadcopter’s 𝑥-axis body frame, is similar in form to that of the longitudinal 

subsystem, 

[

Δ𝑞̇

Δ𝜃̇
Δ𝑢̇
Δ𝑥̇

] = [

0 0 0 0
1 0 0 0
0 −𝑔 0 0
0 0 1 0

] [

Δ𝑞
Δ𝜃
Δ𝑢
Δ𝑥

] + [

1/𝐼𝑦𝑦

0
0
0

]Δ𝑀𝑦. 

(7) 

 

Because of this similarity, the controller and safety assurance measures developed for one 

subsystem can be equivalently applied to the other. With this understanding, this thesis 

and particularly Part 5 will therefore primarily focus on the longitudinal subsystem. 

3.3 System Control and Architecture 

 

 The two primary controllers presented in this work are simple PD and PID 

controllers constructed for two specific control objectives: (a) a drone lifting off from the 

ground to a setpoint position; and (b) a drone moving in its relative y axis body frame. 

Because of the simplicity of the one degree of freedom vertical lift off example, an 
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integral component is not necessary in its controller. Mathematically, the control signal 

can be expressed as, 

𝑢(𝑡) = 𝐾𝑝 (𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝜏)𝑑(𝜏) + 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡

𝜏

0

). 
(8) 

 

where 𝑒(𝑡) is the tracking error, 𝐾𝑝 is the proportional coefficient, 𝑇𝑖 is the integral time 

constant (reset time), and 𝑇𝑑 is the derivative time constant (rate time). The control 

scheme for these two systems is different in how they are constructed and are described 

in the following sections. 

3.3.1 One Dimension Lift Off 

 

A system in which a drone starts from the ground then moves uniaxially to a 

certain position above the ground is defined by the vertical subsystem in Eq. (3). This 

type of system is also known as a double integrator system where z represents the drone’s 

vertical position relative to the ground, which can equally be represented by,  

𝑧̇ = 𝑓(𝑧) + 𝑔(𝑧)𝑢 (9) 

where 𝑧 ∈ ℝ  is bounded along the axis perpendicular to the ground and u is defined by a 

given control law. The base PD controller used by the simulated gym environment for a 

uniaxial drone take-off is described by the gain values which were predetermined for the 

base Crazieflie 2.1 model. Table 1 shows the controller parameters. 

Table 1: PD Parameters 

Parameters Value 

Kv 0.98 

Kp 0.49 
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 In order to calculate the input control action, the following equation describing 

the control law was used, 

𝑢(𝑡) = 𝑎𝑡𝑎𝑟𝑔𝑒𝑡 + 𝐾𝑣 ∗ 𝑒̇𝑧(𝑡) + 𝐾𝑝 ∗ 𝑒𝑧(𝑡) (10) 

where 𝑎𝑡𝑎𝑟𝑔𝑒𝑡 is the target acceleration as a function of the target position and of the 

simulated frequency. It should be noted that, for a uniaxial take-off, each propeller must 

have the same turn rate. From this control law 𝑢(𝑡), the RPM of each propeller can be 

calculated, 

𝑅𝑃𝑀 = √
𝑢 ∗ 𝑚𝑑𝑟𝑜𝑛𝑒 + 𝑔 ∗ 𝑚𝑑𝑟𝑜𝑛𝑒

4 ∗ 𝐾𝑓
  

(11) 

where the mass of the drone and RPM to force coefficient Kf are constants provided by 

the Crazieflie 2.x object already located within the gym [13]. 

3.3.2 Lateral Motion 

 

A PID controller is used to define the control actions in the 𝑦- and 𝑧-directions. 

The integral component was inserted to this controller so that tracking is introduced as 

the system representation for this motion is not as accurate, necessitating the need for an 

error integrator. The equation for the control law, therefore, takes a different form, 

𝑢(𝑡) = 𝑎𝑡𝑎𝑟𝑔𝑒𝑡 + 𝐾𝑣 ∗ 𝑒̇𝑦(𝑡) + 𝐾𝑝 ∗ 𝑒𝑦(𝑡) + 𝐾𝑖 ∫ 𝑒𝑦(𝑡)𝑑𝜏
𝜏

0

. 
(12) 

The architecture which defines the motion in the y direction is cascaded to where 

the output of the rate controller is used as the input for the attitude controller.  
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Figure 3: Cascaded Architecture 

From this, the quadcopter’s desired roll angle can be calculated from the control action in 

the y direction, 

𝜑𝑑𝑒𝑠(𝑡) = −
𝑦̈(𝑡)

𝑔
. 

(13) 

The angular velocity in the roll direction can be found using this desired roll position and 

the simulations physics step time. Control action in this angular direction, 𝜑̈, can be 

found using the PID controller described above. Given these PID inputs in the y, z, and φ 

directions, the thrust control law as described by the vertical state space subsystem can be 

derived using the linearized model described previously, 

𝑢1(𝑡) = 𝑚 ∗ (𝑔 ∗ 𝑧̈(𝑡)). (14) 

Similarly, the moment control law can be derived from the longitudinal state space 

subsystem (5) and be written as, 

𝑢2(𝑡) = 𝐼𝑥𝑥 ∗ 𝜑̈(𝑡). (15) 

These two control laws can be combined into an array which takes the RPM to force 

coefficient into account, 

𝑢(𝑡) =

[
 
 
 
 
 

𝑢1(𝑡)

𝑘𝑓

𝑢2(𝑡)

𝑘𝑓 ∗ 𝐿𝑎𝑟𝑚

0 ]
 
 
 
 
 

 

(16) 
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Where 𝑘𝑓 is the RPM to force coefficient and 𝐿𝑎𝑟𝑚 is the quadcopter armlength. 

Multiplying this by a (3,3) array, also known as a mixer, 

𝑢2𝑅𝑃𝑀 = [
2 1 1
0 1 −1
2 −1 −1

] 
(17) 

 

𝑢(𝑡) is converted into a three element RPM array which serves to actuate the drone’s four 

rotors. This array is a tunable parameter and can be changed by the controller designer. 

Note that two diagonally opposing propellers must have the same turn rate in order to 

smoothly travel in the y-z plane. 

3.4 Run Time Assurance (RTA) 

 

In practice, RTA acts as a third block to the common controller and plant 

architecture with it being placed between the latter two (Fig. 1) [4] where it functions as a 

command signal filter to ensure that the signal does not compromise the safety of the 

system.  

 

Figure 4: Run Time Assurance Block Diagram 

 With this type of architecture, the RTA blocks can act independently from the 

objectives of the primary controller to ensure safety, giving the control system designer 

the liberty to enable and disable safety parameters. In order to provide safety to a system, 

safety must first be formally defined.   
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3.4.1 Safety Equation and Control Barrier Function 

 

The most effective way of defining safety in a dynamical system is by 

constructing two sets, an allowable set 𝐶𝐴 where a state is said to be safe if it remains 

within the set at all times and a safe set 𝐶𝑠 which is defined when an initial state 𝒙(𝑡0) of 

a dynamical system is within a forward invariant subset of 𝐶𝐴, 𝐶𝑠 ⊆ 𝐶𝐴. The allowable set 

must be constrained by a set of safety inequality constraints which can be developed from 

the system dynamics or, alternatively, defined implicitly using predetermined trajectories 

under an alternative control law. A set of M inequality constraints 𝜑𝑖 defining the 

system’s safety can be developed such that, 

𝜑𝑖(𝒙):𝓧 → ℝ, ∀𝑖 ∈ {1,… ,𝑀}  (18) 

which can be used for a system with states within a set of states χ so that the allowable set 

is defined as, 

𝐶𝐴 = {𝑥 ∈ 𝒳 | 𝜑𝑖(𝑥) ≥ 0, ∀𝑖 ∈ {1, … ,𝑀}}. (19) 

 The inequality constraint can be constructed explicitly from CBFs. The concept of 

a CBF was introduced in [15] and is most generally defined as a function ℎ ∈ 𝐶1(𝜒) for a 

system and set of unsafe states which satisfy, 

𝑥 ∈ 𝒳𝑢 ⟹ ℎ(𝑥) > 0, 

𝐿𝑔ℎ(𝑥) = 0 ⇒ 𝐿𝑓ℎ(𝑥) < 0, 

{𝑥 ∈ 𝒳| ℎ(𝑥) ≤ 0} ≠ 0 

(20) 

where 𝐿𝑔and 𝐿𝑓 are Lie derivatives of the system. The function ℎ(𝑥) is called a CBF if 

there exists an extended κ-class function 𝛼(ℎ(𝑥)) such that, 
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sup[𝐿𝑓ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢 + 𝛼(ℎ(𝑥))] ≥ 0             ∀𝑥 ∈ ℝ𝑛. (21) 

This definition arises from the condition that ℎ(𝑥) should be greater than 0 at all times 

including the initial time which gives us a condition to enforce, 

ℎ(𝑥) = 0 ⇒ ℎ̇(𝑥) ≥ 0. (22) 

The time derivative of ℎ(𝑥) given by the above condition can be calculated by, 

ℎ̇(𝑥) =
𝑑ℎ

𝑑𝑡
=

𝑑ℎ

𝑑𝑥
∗

𝑑𝑥

𝑑𝑡
=

𝑑ℎ

𝑑𝑥
𝑥̇ 

(23) 

where 𝑥̇ represents the state equations as given in Eq. (1). Therefore, the time derivative 

of h(x) can be equally written as, 

ℎ̇(𝑥) =
𝑑ℎ

𝑑𝑥
(𝐴𝑥 + 𝐵𝑢) =

𝑑ℎ

𝑑𝑥
(𝑓(𝑥) + 𝑔(𝑥)𝑢) 

(23.1) 

where 𝑓(𝑥) and 𝑔(𝑥) are arbitrary functions of 𝑥. Finally, ℎ̇(𝑥) can be calculated for the 

general case, 

ℎ̇(𝑥) =
𝑑ℎ

𝑑𝑥
(𝑓(𝑥) + 𝑔(𝑥)𝑢) = 𝐿𝑓ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢. 

 

(23.2) 

In order to create a smooth controller, this condition can be slightly modified so 

that it becomes mathematically impossible for ℎ < 0 when ℎ̇ ≥ 0 so that the condition to 

enforce becomes, 

ℎ̇(𝑥) ≥  −𝛼(ℎ(𝑥)) (24) 

where the continuously increasing nature of the κ-class function α maintains the 

condition (22). A new safety function ℎ(𝑥) can, therefore, be constructed which then 

takes the form, 
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{ℎ(𝑥) = ℎ̇(𝑥) + 𝛼(ℎ(𝑥))} ≥ 0                 ∀𝑥 ∈ ℝ𝑛 

 

(25) 

or, more generally,  

{ℎ(𝑥) =  𝐿𝑓ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢 + 𝛼(ℎ(𝑥))} ≥ 0              ∀𝑥 ∈ ℝ𝑛. (25.1) 

 Alternatively, to create the inequality constraint from the dynamics of the system 

and a CBF, the constraint can be defined online through the generation of backup 

trajectories. This method is known as an implicit approach to defining safety [8] but will 

not be further explored in this thesis. 

3.4.2 Simplex and ASIF RTA 

 

 Now that safety has been defined, it can be used in one of two primary RTA 

approaches. The first approach, known as a switching filter in some literature, is the 

simplex approach. This RTA system uses the defined safety to switch between the 

primary, unsafe control law u and a predetermined safe control law usafe. A simple block 

diagram is shown below in Fig. 5. 

 

Figure 5: Simplex RTA Block Diagram [8] 

 Let us illustrate this concept with an example. Consider a double integrator car 

which has a lead foot controller, i.e., a binary controller which switches between positive 
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and negative acceleration or thrust and is moving in the positive direction from some 

negative reference position. There is a wall at 𝑥 = 0 and safety must be assured so that 

the car does not crash into the wall. The state space equation which describes this system 

can be written as, 

𝒙̇ = [
0 1
0 0

] 𝒙 + [
0
1
] 𝑢 (26) 

where state 𝑥1represents the car’s position and state 𝑥2 represents its velocity. The state 

and control vector can be represented as 𝒙 = [𝑥1, 𝑥2]
𝑇 ∈ 𝓧 = ℝ2 and 𝒖 = 𝑇 ∈ 𝓤 =

[−1, 1], respectively. The allowable set for this simple system can then be written as, 

𝐶𝐴 = {𝒙 ∈ ℝ2 |𝑥1 ≥ 0}. (27) 

Finally, this system’s control invariant safety set can be made from a safety equation 

defined by the system’s constant-acceleration kinematics. The unique safety constraint is 

given by, 

ℎ(𝑥) = 2𝑥1 − 𝑥2
2 (27.1) 

where it is assumed x2 > 0 (meaning it is moving towards the wall). From this, the final 

safety set can be written as, 

𝐶𝑆 = {𝒙 ∈ ℝ2|2𝑥1 − 𝑥2
2 ≥ 0}. (27.2) 

This safety set creates a ‘safety envelope’ which defines the maximum safe velocity the 

car can be in at a certain position. A visualization of this envelope is shown in the Fig. 6, 
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Figure 6: Safety Envelope for Double Integrator Car 

 If this envelope is violated, then the opposing lead foot backup controller can take over 

from the primary, similar to a bang-bang control switch, making the car decelerate. 

 The second RTA approach is an optimization approach which, in some literature, 

is known as an Active Set Invariance Filter (ASIF). Instead of switching to a backup 

controller which may deviate greatly from the system’s task or setpoint, the optimization 

approach optimizes the difference between the desired and safe signal through a quadratic 

program (QP). The constraint for this optimization is defined by the control barrier 

function as previously discussed, 

𝒖𝑠𝑎𝑓𝑒(𝒙) = 𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝑢𝑑𝑒𝑠 − 𝑢‖2 𝑠. 𝑡. 𝐶𝐵𝐹𝑖(𝑥, 𝑢) ≥ 0, ∀𝑖 ∈ {1,… ,𝑀}. (28) 

Taking the same double car integrator example as before, a control barrier function can 

be constructed to be used in an ASIF RTA filter. Using the criteria from equations (18), 

the constraint for safety can be written in the form, 

𝐿𝑓ℎ(𝑥) + 𝐿𝑔ℎ(𝑥)𝑢 + 𝛼(ℎ(𝑥)) ≥ 0. (29) 

The first time derivative of the safety constraint h is given by, 

ℎ̇(𝑥) = −2𝑥2 − 2𝑥2𝑢 = −2𝑥2(1 + 𝑢) (30.1) 
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which results in the final control barrier function. The CBF can be written as a safety 

constraint, 

ℎ(𝑥) = −2𝑥2(1 + 𝑢) + 𝛼(−2𝑥1 − 𝑥2
2). (30.2) 
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4. Methodology 
 

This thesis’ primary analysis was conducted using a combination of the Pybullet Gym 

Environment for all the base simulations and the CVXPY Python package for its convex 

quadratic programming/optimization solver. In order to verify the validity of the CBF 

construction using the CVXPY Python package, the method was used in a previously 

conducted experiment [5] known as an angular pendulum example. In this example, an 

LQR controller, a type of optimization controller, with known weight matrices is used to 

control a reaction wheel located at the end of a rotating pendulum where the angle and 

angular velocity of the pendulum are given by 𝑎, 𝑎̇, respectively and the angular velocity 

of the reaction wheel is given by 𝜃̇. 

 

Figure 7: Reaction Wheel Pendulum Drawing [5] 

The state space equation for the system was given as, 

[
𝛼
𝛼̇
𝜃̇
]
̇

= [
0 1 0
66 0 1

−66 0 −6
] [

𝛼
𝛼̇
𝜃̇
] + [

0
−70
385

] 𝑢. 
(31) 

The safety for this system was defined at αmax = 0.087 and a simple CBF was constructed 

using this maximum angle, 

ℎ(𝑥) = (𝛼𝑚𝑎𝑥
2 − 𝛼2 − 𝑐2𝛼̇

2). (32) 
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Though the safety parameter that is being tracked is α, the inclusion of 𝛼̇ is necessary 

since the control input u is solely dependent on it and h(x) must impact u in some way. It 

should be noted, however, that the effect of the angular velocity in the CBF can be 

reduced by making the parameter c2 comparatively small. The input to the system was 

dependent on a reference to the pendulum angular displacement and was tracked by the 

controller. The graph from the python implementation without the CBF is presented in 

Fig. 8. 

 

Figure 8: Reaction Wheel Pendulum Example without RTA 

As can be seen in the figure, the α state follows the given reference signal with the given 

LQR controller but goes above the safe amplitude defined at αmax = 0.087, therefore 

necessitating the need for a CBF to be implemented into this system. The original control 

law u can be optimized using a QP to solve a minimization problem defined by, 

𝑢𝑠𝑎𝑓𝑒 = min(𝑢𝑟𝑒𝑓 − 𝑢𝑠𝑎𝑓𝑒)
2
|
𝑑ℎ

𝑑𝑥
[𝐴𝑥 + 𝐵𝑢] ≥ −𝛽ℎ(𝑥)  

(33) 

where β is a tunable parameter. Fig. 9 shows the results of this simulation. 
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Figure 9: Reaction Wheel Pendulum Example with RTA 

Where the red dashed lines represent the safety bounds of this system. As can be seen 

from this figure, safety is assured at all times without necessarily having to include a 

backup controller. 
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5. Results 
 

5.1 Simulating Safety for 1-D Uniaxial Take-off 

This example was studied within the simulated environment with graphs showing the 

relevant position and velocity presented to demonstrate the effectiveness of the safety 

assurance used. The difference between the Simplex and ASIF approaches will be 

analyzed from the data presented in these graphs. 

5.1.1 Simplex Approach 

 

Using the PD controller explained in the background section, a setpoint of 1 [𝑚] 

above the ground was set. For a simplex approach, a function which defines the safe 

states of the system can be defined by setting a ‘ceiling’ value which, to test the 

effectiveness of the simplex RTA, should be set below the setpoint. A backup control law 

must also be defined. For this example, a ceiling at 0.5 [𝑚] above the ground and a 

constant backup control law of 𝑢 = −1 (where the control law is defined as the thrust or 

action force) was set. Since the backup control law provides a constant acceleration, the 

safety constraint can be defined using a simple kinematic equation of constant 

acceleration, 

𝑤𝑓
2 − 𝑤0

2 = 2𝑎𝑧(𝑧𝑓 − 𝑧0) (34) 

which can be reordered according to the ceiling value to arrive at, 

𝑧𝑓 = 𝑧0 −
1

2
𝑤0

2 +
𝑐

2
, 𝑧𝑓 ≥ 0, ℎ(𝑧) = 𝑧𝑓  

(35) 

where 𝑐 is a parameter which defines the ceiling value and ℎ(𝑧) is the safety function. 

Defining a safety function in this fashion ensures that the drone does not exceed the set 

ceiling value and does not move with a high enough velocity at any given position to 
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crash into the ceiling even with the backup controller active, effectively similar to the 

double integrator car example. The control invariant safety constraint can therefore be 

written as, 

∁𝑆= {𝑧 ∈ ℝ2 | 𝑧0 −
1

2
𝑤0

2 +
𝑐

2
 ≥ 0}. 

(36) 

 With a defined safety constraint, a Simplex RTA filter can be implemented by an 

if statement included in the base controller which will switch to the backup control law if 

ℎ(𝑥) < 0 is violated. The following figures show the simulation running without RTA 

and with Simplex RTA with ℎ(𝑥) as previously defined. 

 

 

Figure 10: 1-D Uniaxial Takeoff without RTA 
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Figure 11: 1-D Uniaxial Takeoff with Simplex RTA 

 As can be seen from Fig. 11, the Simplex RTA implementation successfully 

forces the drone to settle just below 𝑧 = 0.5 [𝑚], but with some steady state error in the 

position and chattering in the velocity. This is a highly intrusive type of behavior which 

can be reduced using optimization methods.  

5.1.2 ASIF Approach 

 

 From the definition of a CBF as previously introduced, an optimized filter can be 

introduced to the uniaxial model with a strengthening function 𝛼(ℎ(𝑥)) being a simple 

linear equation for this example (Note that this function can be tuned by the control 

designer). Using state-space representation variables, the new ℎ(𝑥) for a ceiling set at 

𝑐 = 0.5 [𝑚] can be written as, 
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ℎ(𝑥) =  −2𝑥2(1 + 𝑢) + (−2 ∗ 𝑥1 − 𝑥2
2 + 1) (37) 

where 𝑥1 and 𝑥2 are defined as, 

[
𝑥1

𝑥2 
] = [

𝑧
𝑤

] (38) 

and the control law u controls the drone’s acceleration or thrust. Implemented into the 

simulation, this new safety function results in a smoother climb to the ceiling with less 

chatter in the decelerating velocity as can be seen in Fig. 12. 

 

 

Figure 12: 1-D Uniaxial Takeoff Example with Optimization RTA 

Quadratic Programming (QP) may be used in this scenario, however, because of the 

simplicity of the backup controller, an if statement similar to the simplex approach was 

used in conjunction with the CBF. 
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5.2 Simulating Safety for Longitudinal Motion 

 

 In this problem, a drone starts from an arbitrary position above the ground (𝑧 =

0.15 [𝑚] in this case) and is set to travel to the point 𝑦 = 1 [𝑚] from 𝑦 = 0 [𝑚]. With 

this setpoint and the PID controller previously introduced Eq. (12), a simulated trajectory 

can be formed which results in Fig 13. Note that the red line represents the safety limit at 

𝑦 = 0.8 [𝑚]. 

  

Figure 13: Longitudinal Motion Without RTA 

 A wall, or geofence, at a particular y-position, similar in concept to the ceiling in 

the one degree of freedom example, was set at 𝑦 = 0.8 [𝑚]. Since this problem is higher 

dimensional with a 4x4 state matrix defining the roll and y positions and velocities, in 

order to develop a safety equation, the full definition of the control barrier function, Eq. 

(25.1), must be used. The state matrix to develop this CBF is given by the longitudinal 

subsystem Eq. (5). Unlike the uniaxial example, a safety equation cannot be derived from 

the system’s kinematics. An alternative method of developing a CBF can be adopted 

from the reaction wheel pendulum example where the square of the maximum safety 
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parameter can be subtracted by the square of that parameter’s current state and, if 

necessary, by a second parameter which is control dependent. The simplest equation that 

meets these criteria can be written as, 

ℎ(𝑦) = 𝑦𝑚𝑎𝑥
2 − 𝑐1𝑝

2 − 𝑦2 (39) 

where the constant 𝑐1 can be used to minimize the effect of the roll velocity p’s effect on 

the safety equation. For the purposes of creating the CBF, the partial derivative of ℎ(𝑦) 

relative to its states should be taken. The partial derivative for each state can be written in 

a vector, 

𝜕ℎ

𝜕𝒚
= [

−2c1𝑝𝑝̇
0
0

−2y𝑦̇

]. 

(40) 

From this, the final CBF to be enforced can be created, 

𝜕ℎ

𝜕𝒚
([

0 0 0 0
1 0 0 0
0 −𝑔 0 0
0 0 1 0

] [

Δ𝑝
Δ𝜙
Δ𝑣
Δ𝑦

] + [

1/𝐼𝑥𝑥

0
0
0

] u2) + 𝛼ℎ(𝑦) ≥ 0 

(41) 

which results in the control invariant safety constraint set, 

∁𝑆= {𝒚 ∈ ℝ2 |  
𝜕ℎ

𝜕𝒚
([

0 0 0 0
1 0 0 0
0 −𝑔 0 0
0 0 1 0

] [

Δ𝑝
Δ𝜙
Δ𝑣
Δ𝑦

] + [

1/𝐼𝑥𝑥

0
0
0

]u2) + 𝛼ℎ(𝑦)  ≥ 0}  

(42) 

The strengthening function in this case can be a constant that is multiplied by the safety  

equation h(y). This constant is a tunable parameter which can be changed by the 

controller. Implementing this CBF into a QP similar to that introduced in the 
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methodology section (using CVXPY) results in the graphs found in Fig. 14. 

 

Figure 14: Longitudinal Motion With RTA 

Note that the drone successfully avoids the wall at y = 0.8 [m]. After encountering the 

wall, however, the drone moves away from it with increasing velocity in the opposite 

direction while falling towards the ground as can be seen in the decaying z position. To 

better visualize this error, the RPM values and the safety function h(x) were plotted over 

the simulation time in Fig. 15 and 16, respectively. 

 

Figure 15: RPM Values With RTA 
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Figure 16: h(x) Over Time 

The RPM values from propellers 0 and 2 plotted in Fig. 15 increase uncontrollably after 

the barrier is encountered at the three second mark. This increase corresponds to a change 

in the convexity of the safety function h(x) within the time domain.  
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6. Discussion and Conclusion 

As can be seen in the simpler one degree of freedom vertical example, a switching 

filter developed with CBF, though not reliant on quadratic programming, results in a 

smoother climb to the safety limit which can be explained by when the RTA switches to 

the backup controller. In the simplex approach, the RTA only reacts when the drone 

reaches the safety limit, forcing a switch between the primary and secondary controller 

until it is settled at the safety limit whereas the ASIF approach creates a visible actuation 

transition (as can be seen in the velocity graph) at around one second. It can therefore be 

concluded that an ASIF approach is more desirable when creating a safety controller. 

Developing a safety constraint for the longitudinal subsystem necessitates a different 

approach as the safety parameter, the y-position, is underactuated, meaning that the 

controller does not directly control the parameter, rather, it only controls the roll. Because 

of this, the method in which the CBF is constructed is different to that in the one degree 

of freedom example in that it must be developed independent from kinematic equations 

while ensuring that the control law still appears in the function. Through developing a set 

of safety constraints in this fashion, safety can be ensured so that the drone does not pass 

the established geofence limit through the implementation of a quadratic program to 

create an alternative, safe control law. Because of the similarities between the 

longitudinal and lateral subsystems, the fashion in which safety is developed in one can 

equally be applied to the other. A geofence can therefore be created in each of the 

cardinal directions with respect to the drone. 
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Though the drone avoided the safety limit in the longitudinal case, the trajectory that 

is formed after safety is assured forces the drone to move backwards away from the 

safety limit indefinitely while causing the drone to dip in altitude. The primary PID 

controller attempts to reverse this dipping effect by actuating an increase in the RPM 

values for the propellers most directly controlling vertical thrust, propellers 0 and 2, but 

fails to actuate in time to eventually avoid a crash. Though assuring safety, this motion 

moves the drone further away from the target, jeopardizing the initial objective. 

Additional work in ensuring mission objectives while also ensuring safety is required. 

6.1 Flight Test Recommendations 

The RTA introduced in this thesis can be readily applied to physical testing with the 

Crazyflie 2.x platform using the Lighthouse positioning system [17] for state tracking. 

The additional communication between the drone’s flight computer and the controller 

will not cause significant delay if a Simplex-type RTA method is utilized, however, the 

additional time required for the QP to solve for the filtered control signal may cause 

significant communication delay. An alternative to creating safety assurance with a CBF 

without necessarily having to utilize a QP would be an explicit method of switching 

between primary and secondary controller types as used in the uniaxial takeoff example. 

This would effectively take the form of an if statement where, 

𝐼𝑓 ℎ̇(𝑥)(𝐴𝑥 + 𝐵𝑢𝑝𝑟𝑖𝑚𝑎𝑟𝑦) ≥ −𝛼ℎ(𝑥) 

𝑡ℎ𝑒𝑛 𝑢𝑠𝑎𝑓𝑒 = 𝑢𝑝𝑟𝑖𝑚𝑎𝑟𝑦 

𝐼𝑓 ℎ̇(𝑥)(𝐴𝑥 + 𝐵𝑢𝑝𝑟𝑖𝑚𝑎𝑟𝑦) < −𝛼ℎ(𝑥) 

𝑡ℎ𝑒𝑛 𝑢𝑠𝑎𝑓𝑒 =
−𝛼ℎ(𝑥) − ℎ̇(𝑥)𝐴𝑥

ℎ̇𝐵
. 
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Creating an RTA filter in this fashion ensures safety in a similar manner as the QP would 

while reducing computational resources and most essentially time. 
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