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ABSTRACT 

In this research, new indirect digital redesign methods are presented for multi-rate 

sampled control systems with cascaded and dynamic output feedback controllers.  Unlike 

the classical direct bilinear transform, which is an open-loop direct digital redesign 

method, the proposed digital controllers take into account the state-matching of the 

original continuous-time closed-loop system and the digitally redesigned sampled-data 

closed-loop system.  Direct bilinear transform is a fairly simple method that has been 

widely used in industry for a long time.  However, it ignores the continuous-time 

controllers and plant as a complete system and treats all of the controllers individually.  

Generally, this method might be good for short sampling periods, however the system 

response might become unstable for longer sampling periods.  Therefore, closed-loop 

digital redesign methods are preferred while calculating digital controllers.   

Analog controllers are often predesigned based on a desirable frequency 

specification, such as the bandwidth, the natural angular frequency, etc.  To take 

advantage of the digital controllers over the analog controllers, digital implementation of 

analog controllers is often desirable.  However, continuous-time system states might not 

be readily available.  Therefore, an ideal state reconstructing algorithm was utilized to 

obtain the multi-rate discrete-time states of the original continuous-time system.  By 

utilizing these obtained states and applying Chebyshev quadrature method, improved 

digital redesign method and lifting methods, multi-rate cascaded and dynamic output 

feedback digital controllers were constructed.  Illustrative examples are provided to 

demonstrate the effectiveness of the developed methods.   
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CHAPTER 1 - INTRODUCTION 

Most practical and industrial processes often consist of continuous-time (analog) 

actuators and sensors with specific characteristics.  To improve the performance of the 

overall systems, the cascaded analog controller, such as the proportional-integral-

derivative (PID) controller [2-3], and the dynamic output feedback controller, such as the 

bending filter [10] are usually designed.   

The designed closed-loop continuous-time controllers are usually required to be 

converted into their discrete-time (digital) forms for the purpose of analysis and digital 

implementation of the controllers.  Digital controllers implemented using digital 

processors cost less, have a smaller size and offer better performance.   

The existing approximate methods to formulate digital counterparts of the 

continuous-time controllers are based on assumptions.  Direct bilinear transformation 

method simply substitutes the controllers into digital forms using (𝑠 = 2(𝑧−1)
𝑇(𝑧+1)

), which 

does not take state matching into consideration.  Moreover this method is considered an 

open loop design.  Further improved design considers using a closed-loop bilinear 

redesign method which improves the system response; however system response 

becomes unstable for small sampling rates.   

Plants with various sensor measurements and time constants led scientists to 

develop new solutions to accommodate different rates of data.  Radar, airplanes, 

satellites, internet based control systems [16,27] and hard disk drives are examples to be 

considered.  This aspect gave birth to multi-rate sampling techniques for hybrid control of 

the continuous-time systems.  There are different types of control structures, which can 
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be divided basically into two classes.  One is a multi-rate closed-loop system with a slow-

rate cascaded controller and a fast-rate output-feedback controller, and the other one is a 

multi-rate closed-loop system with a fast-rate cascaded controller and a slow-rate output-

feedback controller.  In hard disk driver and internet-based control systems, the feed-

forward controller is sampled at a fast-rate and the feedback controller is updated at a 

slow-rate [15].   

In this research, a new indirect multi-rate digital redesign method is developed for 

the control systems with both cascaded and dynamic output feedback controllers.  The 

state variables are not readily available to the controllers, so an ideal state reconstructing 

technique is utilized to compute the discrete-time states of the continuous-time controller.  

New techniques are formulated such as the Chebyshev quadrature method [21] and the 

improved digital redesign method to construct the cascaded and dynamic output feedback 

digital controllers.  Also, using different sampling rates the controllers are designed and 

combined together to achieve a multi-rate hybrid control of the continuous-time systems.   

1.1 Outline of the Research 

This research consists of six chapters.  Chapter 1 provides an introduction to the 

research subject.  The outline and the objective of this research and the review of 

previous works are also presented. 

Chapter 2 gives a brief description of the analytical models used in this study.  

New approximation methods such as the Chebyshev quadrature method and the improved 

digital redesign methods are formulated. Modeling errors are compared among different 



3 
 

methods.  The newly developed approximation methods are compared with existing 

solution methods such as direct bilinear method in the end.   

Chapter 3 presents a brief description of N-delay control; the lifting method is 

improved for the digital redesign method used in this study.  Chapter 4 presents the multi-

rate digital redesign method.  The multi-rate digital redesign method is formulated for 

plants with feedback and feed-forward gains.  Different digital controller gains are 

calculated for various sampling times.  Also, an ideal digital state reconstructor [17] is 

presented.   

Chapter 5 provides illustrative examples for both systems with and without input 

time delays.  Simulation results from the digital redesign method are compared with the 

actual system response and each method is compared.  Lastly, Chapter 6 gives a summary 

and conclusions of this study.  Possible future work is also mentioned in this chapter. 

1.2 Review of Previous Work 

Procedures for formulating and simulating multi-rate digital redesign started to be 

developed in the past 50 years.  In most of the methods developed by researchers, 

methods became very complex and hard to calculate whenever the ratio of slow to fast 

sampling ratio increases.  Studies related to this subject since the 1950s are briefly 

summarized below. 

Multi-rate digital controller design has been the interest of the researchers since 

the 1950’s and different approaches have been developed ever since [1,4-6,8-9,11-

15,19,21,23,26].  Due to recent developments in digital processors it is necessary to use 

digital controllers and implement them.  Early stages of multi-rate design start with the 
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frequency decomposition technique followed by the switch decomposition technique.  

Later, Kalman and Bertram show that state space techniques provide good results in 

characterizing sampled-data systems.  Both of these techniques are shown to be 

equivalent later.  However, there is a major disadvantage for both of these techniques.  

The analysis and synthesis become complex when the fast-rate and slow-rate sampling 

ratio increases [3,12].  A new indirect multi-rate digital redesign method is developed in 

this research for both cascaded and output-feedback systems and examples are provided 

to show this method can be used in different applications.   

1.3 Research Objectives 

The main purpose of this study is to develop a new method for multi-rate digital 

redesign control systems with and without input delays.  The specific objectives are as 

follows: 

1) Develop a new method to calculate digital gains of feedback and feedforward 

based on their continuous-time controller counterparts.   

2) Compare the existing methods with developed methods that are proposed in 

this research (qualitative and quantitative comparison). 
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CHAPTER 2 - PROBLEM FORMULATION AND DIGITAL 

REDESIGN METHODS WITH NO INPUT DELAY 

Consider a controllable and observable linear continuous-time control system 

with a cascaded and a dynamic output feedback controller depicted in Figure 2-1, where 

𝐺1(𝑠) is the continuous-time plant; 𝐺2(𝑠) and 𝐺3(𝑠) are the continuous-time cascaded 

and the output feedback controllers.  The state space models of 𝐺1(𝑠), 𝐺2(𝑠) and 𝐺3(𝑠) 

are (𝐴1,𝐵1,𝐶1,𝐷1), (𝐴2,𝐵2,𝐶2,𝐷2) and (𝐴3,𝐵3,𝐶3,𝐷3), 𝑟(𝑡) is the reference input and 

𝐸𝑐 is the forward gain.  The state dimensions, input and output numbers of 𝐺1(𝑠), 𝐺2(𝑠) 

and 𝐺3(𝑠) are (𝑛1,𝑚1,𝑝1), (𝑛2,𝑚2,𝑝2) and (𝑛3,𝑚3,𝑝3), respectively.   

 

ẋc2(t) = A2xc2(t) + B2uc2(t) 
yc2(t) = C2xc2(t) + D2uc2(t) 

Cascaded controller G2(s)

X
_

+r(t)

uc2(t)

ẋc1(t) = A1xc1(t) + B1uc1(t) 
yc1(t) = C1xc1(t) + D1uc1(t) 

Plant G1(s)

Ec
uc1(t)

yc1(t)

ẋc3(t) = A3xc3(t) + B3uc3(t) 
yc3(t) = C3xc3(t) + D3uc3(t) 

Feedback Controller G3(s)
yc3(t)

yc2(t)

 

Figure 2-1.  Continuous-time closed-loop system  

G2(z) 
(Tf)

Discrete-time Counterpart of 
Continuous-time Cascaded 

controller G2(s)

X
_

+r(t)

ud2(kfTf)

Tf ẋc1(t) = A1xc1(t) + B1uc1(t) 
yc1(t) = C1xc1(t) + D1uc1(t) 

Plant G1(s)

Zoh(Tf)Ec

Tf

ud1(kfTf)

yd1(t)

G3(z) 
(TS)

TSTS

Discrete-time counterpart 
of Continuous-time 

Feedback controller G3(s)

 

Figure 2-2.  Classical multi-rate sampling control system 
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Without loss of generality, we assume 𝐷1 = 0.  One of the classical multi-rate 

sampling control structures for the original continuous-time system 𝐺1(𝑠), is depicted in 

Figure 2-2, where 𝐺2(𝑧) and 𝐺3(𝑧) are digital controllers of 𝐺2(𝑠) and 𝐺3(𝑠).  𝑇𝑓 and 𝑇𝑠 

are noted as the fast-rate and slow-rate sampling time periods, respectively.  𝑇𝑠 = 𝑁𝑇𝑓, 

where N is a positive integer.  Moreover, 𝑍𝑜ℎ(𝑇𝑓) denotes a zero-order hold with holding 

time 𝑇𝑓.  The subscript “c” in the functions 𝑥𝑐1(𝑡) and 𝑦𝑐1(𝑡) in Figure 2.1 designates the 

continuous-time functions controlled by the continuous-time signal 𝑢𝑐1(𝑡).  Whereas the 

subscript “d” in the functions 𝑥𝑑1(𝑡) and 𝑦𝑑1(𝑡) in Figure 2.2 denotes the continuous-

time functions controlled by the discrete-time signal 𝑢𝑑1(𝑘𝑓𝑇𝑓).   

As described in Chapter 1, the other classical multi-rate sampling control structure 

is that the slow-rate sampling period 𝑇𝑠  is used in a cascaded controller 𝐺2(𝑠), and fast-

rate sampling period 𝑇𝑓 is employed in the output feedback controller 𝐺3(𝑠).  The 

proposed multi-rate digital redesign problem is that if we are given the analog controllers 

𝐺2(𝑠), 𝐺3(𝑠) and the gain 𝐸𝑐 with the multi-rate sampling periods 𝑇𝑠 and 𝑇𝑓, how can we 

find the equivalent digital controllers and gain from 𝐺2(𝑠), 𝐺3(𝑠) and 𝐸𝑐 so that the states 

or outputs of the digitally controlled plant 𝐺1(𝑠) closely match those of the plant 𝐺1(𝑠) 

with the analog controller.   

2.1 Digital Redesign Method 

Two figures and the following equations below indicate the basic of design.  As 

indicated in Figure 2-3, 𝐾𝑐 and 𝐸𝑐 are formerly calculated values to satisfy the desired 

conditions (settling time, peak value, rise time etc…) of the output value 𝑦𝑐(𝑡).  As 

shown on Figure 2-4, 𝐾𝑑 and 𝐸𝑑 are the discrete-time equivalent counterparts of 𝐾𝑐 and 
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𝐸𝑐.  𝐾𝑑 and 𝐸𝑑 are calculated to implement cascaded and feedback controls in 

microprocessors and digital signal processors to acquire the same output and conditions.  

𝐾𝑑 and 𝐸𝑑 will be calculated using 𝐾𝑐 and 𝐸𝑐, state matching equations.  Hence, the 

digital redesign of the system will be completed.   

X
_

+r(t)
ẋc(t) = Axc(t) + Buc(t)  

Plant G(s)

Ec

uc(t) yc(t)

Feedback 
Controller

Kc

C
xc(t)

 

Figure 2-3.  Continuous-time closed-loop system with continuous-time state feedback 

X
_

+r(t)
ẋd(t) = Axd(t) + Bud(t)  

Plant G(s)

Ed

ud(t)=ud(kT) yd(t)

Digital Feedback 
Controller

Zoh(T) Zoh(T)

Zoh(T)

Kd

C
xd(t)

 

Figure 2-4.  Continuous-time closed-loop system with discrete-time state feedback 

Consider the state-space model of a dynamic system G(s) as shown in Figure 2-3 

as  
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𝑥̇𝑐(𝑡) = 𝐴𝑥𝑐(𝑡) + 𝐵𝑢𝑐(𝑡), 𝑥𝑐(0) = 𝑥𝑐𝑜,    (2-1) 

𝑦𝑐(𝑡) = 𝐶𝑥𝑐(𝑡),      (2-2) 

where 𝑥𝑐(𝑡) ∈ 𝑅𝑛𝑥1, 𝑢𝑐(𝑡) ∈ 𝑅𝑚𝑥1, 𝑦𝑐(𝑡) ∈ 𝑅𝑝𝑥1 are system state, input and output 

vector, respectively.  𝑥𝑐0 is the initial condition and analog controller is  

𝑢𝑐(𝑡) = −𝐾𝑐𝑥𝑐(𝑡) + 𝐸𝑐𝑟(𝑡),     (2-3) 

where 𝑟(𝑡) ∈ 𝑅𝑚𝑥1 is the reference input, 𝐾𝑐 ∈ 𝑅𝑚𝑥𝑛, 𝐸𝑐 ∈ 𝑅𝑚𝑥𝑚 are the analog 

feedback and feed-forward gains.  Substituting equation (2-3) into (2-1) results in the 

closed-loop system 

𝑥̇𝑐(𝑡) = 𝐴𝑥𝑐(𝑡) + 𝐵[−𝐾𝑐𝑥𝑐(𝑡) + 𝐸𝑐𝑟(𝑡)],    (2-4) 

𝑥̇𝑐(𝑡) = 𝐴𝑐𝑥𝑐(𝑡) + 𝐵𝐸𝑐𝑟(𝑡),      (2-5) 

where 𝐴𝑐 = 𝐴 − 𝐵𝐾𝑐.   

The corresponding designed, discrete-time exact evaluation of the closed loop 

continuous-time system becomes the following:  

𝑥𝑐(𝑘𝑇 + 𝑇) = 𝑒𝐴𝑐𝑇𝑥𝑐(𝑘𝑇) + ∫ 𝑒𝐴𝑐(𝑘𝑇+𝑇−𝜆)𝐵𝐸𝑐𝑟(𝜆)𝑑𝜆𝑘𝑇+𝑇
𝑘𝑇 , (2-6) 

𝑥𝑐(𝑘𝑇 + 𝑇) = 𝐺𝑐𝑥𝑐(𝑘𝑇) + 𝐻𝑐𝐸𝑐𝑟(𝑘𝑇),   (2-7) 

where 𝐺𝑐 = 𝑒𝐴𝑐𝑇, 𝐻𝑐 = ∫ 𝑒𝐴𝑐(𝑘𝑇+𝑇−𝜆)𝐵𝑑𝜆𝑘𝑇+𝑇
𝑘𝑇 = [𝐺𝑐 − 𝐼𝑛]𝐴𝑐−1𝐵, 𝐼𝑛 is the identity 

matrix with dimension n, and 𝑟(𝑡) = 𝑟(𝑘𝑇) for 𝑘𝑇 ≤ 𝑡 < (𝑘 + 1)𝑇.   
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Consider the digitally controlled hybrid system which approximates the states of 

the continuous-time system in Figure 2-4 as 

𝑥̇𝑑(𝑡) = 𝐴𝑥𝑑(𝑡) + 𝐵𝑢𝑑(𝑘𝑇),     (2-8) 

𝑦𝑑(𝑡) = C𝑥𝑑(𝑡),     (2-9) 

with a digital controller  

𝑢𝑑(𝑘𝑇) = −𝐾𝑑𝑥𝑑(𝑘𝑇) + 𝐸𝑑𝑟(𝑘𝑇), for 𝑘𝑇 ≤ 𝑡 ≤ 𝑘𝑇 + 𝑇  (2-10) 

where T is the sampling period, 𝐾𝑑 ∈ 𝑅𝑚𝑥𝑛, 𝐸𝑑 ∈ 𝑅𝑚𝑥𝑚 are the discrete-time state 

feedback and state forward gains.  Although equation (2-8) is a hybrid system, it is still a 

continuous-time signal and the corresponding discrete-time model becomes 

𝑥𝑑(𝑘𝑇 + 𝑇) = 𝑒𝐴𝑇𝑥𝑑(𝑘𝑇) + ∫ 𝑒𝐴(𝑘𝑇+𝑇−𝜆)𝐵𝑑𝜆𝑘𝑇+𝑇
𝑘𝑇 ∗ 𝑢𝑑(𝑘𝑇) (2-11) 

which can be written such as 

𝑥𝑑(𝑘𝑇 + 𝑇) = 𝐺𝑥𝑑(𝑘𝑇) + 𝐻𝑢𝑑(𝑘𝑇),   (2-12) 

where 𝐺 = 𝑒𝐴𝑇 , 𝐻 = ∫ 𝑒𝐴(𝑘𝑇+𝑇−𝜆)𝐵𝑑𝜆𝑘𝑇+𝑇
𝑘𝑇 = [𝐺 − 𝐼𝑛]𝐴−1𝐵 for a non-singular matrix 

𝐴.  When the matrix 𝐴 is a singular matrix, the matrix 𝐻 can be evaluated as  

𝐻 = ∑ 𝑇
𝑖!

∞
𝑖=1 (𝐴𝑇)𝑖−1𝐵     (2-13) 

above.  Now that equation (2-12) is represented in its discrete-time, inserting equation 

(2-10) into equation (2-12) becomes the closed-loop equation, which is 
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𝑥𝑑(𝑘𝑇 + 𝑇) = (𝐺 − 𝐻𝐾𝑑)𝑥𝑑(𝑘𝑇) + 𝐻𝐸𝑑𝑟(𝑘𝑇)  (2-14) 

above.  Two closed-loop systems has been calculated in equations (2-7) and (2-14) so far.  

In this research, the discrete-time system is matched at every sampling period with the 

continuous-time system.  State matching conditions are shown below,   

𝑥𝑐(𝑡)|𝑡=𝑘𝑇+𝑇 = 𝑥𝑑(𝑡)|𝑡=𝑘𝑇+𝑇 ,   (2-15) 

𝑥𝑐(𝑡)|𝑡=𝑘𝑇 = 𝑥𝑑(𝑡)|𝑡=𝑘𝑇.    (2-16) 

Based on state matching equations above and using equations (2-7) and (2-14), 

the following equations are deduced,   

𝐺𝑐 = 𝐺 − 𝐻𝐾𝑑,    (2-17) 

𝐻𝑐𝐸𝑐 = 𝐻𝐸𝑑.     (2-18) 

However, as it can be understood, there is not an exact solution to the equations above.  

In these circumstances, approximate solutions are researched.  In the following sections 

different approximations are researched and explained.   

2.2 Chebyshev’s Bilinear Transform Method for Feedback Systems  

The Chebyshev quadrature method is a good approximation to calculate digital 

control gains 𝐾𝑑, and 𝐸𝑑.  A revision of the discrete-time model of the equation (2-1), 

similar to equation (2-11), can be rewritten as 



11 
 

𝑥𝑐(𝑘𝑇 + 𝑇) = 𝐺𝑥𝑐(𝑘𝑇) + ∫ 𝑒𝐴(𝑘𝑇+𝑇−𝜆)𝐵𝑢𝑐(𝜆)𝑑𝜆𝑘𝑇+𝑇
𝑘𝑇   (2-19) 

Consider the Chebyshev quadrature formula  

� 𝜔(𝜆)𝑓(𝜆)𝑑𝜆 =
𝑏

𝑎
� 𝜔(𝜆)𝑑𝜆 ∙ lim

𝑁→∞
�

1
𝑁 + 1

��𝑓(𝜆𝑖)
𝑁

𝑖=0

𝑏

𝑎
 

                              = � 𝜔(𝜆)𝑑𝜆 ∙ lim
𝑁→∞

�
𝑁

(𝑁 + 1)(𝑏 − 𝑎)��𝑓(𝜆𝑖)
𝑁

𝑖=0

(𝑏 − 𝑎)
𝑁

𝑏

𝑎
 

  = ∫ 𝜔(𝜆)𝑑𝜆 ∙ 1
𝑏−𝑎 ∫ 𝑓(𝜆)𝑑𝜆𝑏

𝑎
𝑏
𝑎 ,    (2-20) 

where 𝜔(𝜆) is a constant sign weighting function in [a,b] and 𝑓(𝜆𝑖) are the values of the 

function  𝑓(𝜆) evaluated at 𝜆 = 𝑎 + 𝑖(𝑏 − 𝑎/𝑁), for 𝑖 = 0, 1, … ,𝑁.  The above result can 

be utilized to approximately evaluate the integral term in equation (2-19) as  

∫ 𝑒𝐴(𝑘𝑇+𝑇−𝜆)𝐵𝑢𝑐(𝜆)𝑑𝜆𝑘𝑇+𝑇
𝑘𝑇 =� 1

𝑇 ∫ 𝑒𝐴(𝑘𝑇+𝑇−𝜆)𝐵𝑑𝜆 ∫ 𝑢𝑐(𝜆)𝑘𝑇+𝑇
𝑘𝑇 𝑑𝜆𝑘𝑇+𝑇

𝑘𝑇 . (2-21) 

So the following is obtained   

𝑥�𝑐(𝑘𝑇 + 𝑇) = 𝐺𝑥�𝑐(𝑘𝑇) + 𝐻𝑢𝑑(𝑘𝑇),    (2-22) 

where 𝑢𝑑(𝑘𝑇) = 1
𝑇 ∫ 𝑢𝑐

𝑘𝑇+𝑇
𝑘𝑇 (𝜆)𝑑𝜆 and 𝑥�𝑐(𝑘𝑇) in equation (2-22) is an approximate state 

of 𝑥𝑐(𝑘𝑇) in (2-19).  Substituting equation (2-3) into (2-22) results in 
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𝑥�𝑐(𝑘𝑇 + 𝑇) = 𝐺𝑥�𝑐(𝑘𝑇) + 𝐻 1
𝑇 ∫ (−𝐾𝑐𝑥�𝑐(𝜆) + 𝐸𝑐𝑟(𝜆))𝑑𝜆𝑘𝑇+𝑇

𝑘𝑇 . (2-23) 

Applying the trapezoidal rule integration to the integral term in equation (2-23), it is 

obtained that 1
𝑇 ∫ 𝑥�𝑐(𝜆)𝑑𝜆 =�  𝑘𝑇+𝑇

𝑘𝑇
1
2

(𝑥�𝑐(𝑘𝑇 + 𝑇) + 𝑥�𝑐(𝑘𝑇)).  As a result, equation (2-23) 

becomes  

𝑥�𝑐(𝑘𝑇 + 𝑇) = �𝐼𝑁 + 1
2
𝐻𝐾𝑐�

−1
�𝐺 − 1

2
𝐻𝐾𝑐� 𝑥�𝑐(𝑘𝑇) + �𝐼𝑁 + 1

2
𝐻𝐾𝑐�

−1
𝐻𝐸𝑐𝑟(𝑘𝑇). 

 (2-24) 

To match the closed-loop states in equations (2-14) and (2-24), states of both systems 

must match at every sampling period, resulting in the following conditions,   

𝑥�𝑐(𝑡)|𝑡=𝑘𝑇+𝑇 = 𝑥𝑑(𝑡)|𝑡=𝑘𝑇+𝑇 𝑎𝑛𝑑 𝑥�𝑐(𝑡)|𝑡=𝑘𝑇 = 𝑥𝑑(𝑡)|𝑡=𝑘𝑇. (2-25) 

As a result of the above condition, the following equations are solved for 𝐾𝑑 and 

𝐸𝑑,   

𝐺 − 𝐻𝐾𝑑 = �𝐼𝑛 + 1
2
𝐻𝐾𝑐�

−1
�𝐺 − 1

2
𝐻𝐾𝑐�,   (2-26) 

𝐻𝐸𝑑 = �𝐼𝑛 + 1
2
𝐻𝐾𝑐�

−1
𝐻𝐸𝑐.    (2-27) 

Using Chebyshev’s bilinear transformation method the equations shown above 

can be solved and the result 𝐾𝑑 and 𝐸𝑑 values are as follows,   
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𝐾𝑑 = 1
2
�𝐼𝑚 + 1

2
𝐾𝑐𝐻�

−1
𝐾𝑐(𝐼𝑛 + 𝐺),   (2-28) 

𝐸𝑑 = (𝐼𝑚 + 1
2
𝐾𝑐𝐻)−1𝐸𝑐,    (2-29) 

where 𝐻 ∈ 𝑅𝑛𝑥𝑚, 𝐺 ∈ 𝑅𝑛𝑥𝑛 and 𝐾𝑐  ∈ 𝑅𝑚𝑥𝑛.   

Remark 1:  Based on the Chebyshev quadrature formula in equation (2-21), when 

𝑢𝑐(𝜆) in equation (2-21) is a piecewise constant signal, the integral term in the left-hand 

side of equation (2-21) is exactly equal to the product of the two integral term in the 

right-hand side of equation (2-21).  Otherwise, the approximation error in (2-21) is 

proportional to the square of the sampling period T [18].  In addition, from equation 

(2-19) and (2-22), the digital control law 𝑢𝑑(𝑘𝑇) = 1
𝑇 ∫ 𝑢𝑐(𝑡)𝑑𝑡𝑘𝑇+𝑇

𝑘𝑇  is the average area 

under the curve 𝑢𝑐(𝑡) from 𝑘𝑇 to (𝑘𝑇 + 𝑇), as depicted in Figure 2-5.  As a result, when 

the 𝑢𝑐(𝑡) is a piecewise linear time-varying signal, the value of 𝑢𝑑(𝑘𝑇) becomes the 

average of 𝑢𝑐(𝑡) at 𝑡 = 𝑘𝑇 + 𝑇 and 𝑢𝑐(𝑡) at 𝑡 = 𝑘𝑇 obtained by the trapezoidal rule or 

the bilinear transform method.  Substituting the 𝑢𝑐(𝑡) in equation (2-3) into the 𝑢𝑑(𝑘𝑇) 

in (2-22) results in the indirect digital control gains in equations (2-28) and (2-29).  The 

digital control law 𝑢𝑑(𝑘𝑇) in equation (2-22) with the gains in (2-28) and (2-29) can be 

referred to as the closed-loop bilinear transformed controller.   
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uc(t)

tT 4T0 2T 3T

ud(kT)

 

Figure 2-5.  Analog control uc(t) and digital control ud(kT) 

2.3 Improved digital redesign method  

A better approach to evaluate digital control gains 𝐾𝑑 and 𝐸𝑑 is improved digital 

redesign method.  The method differs from Chebyshev bilinear method by exactly 

evaluating ∫ 𝑥𝑐(𝜆)𝑑𝜆𝑘𝑇+𝑇
𝑘𝑇  in equation (2-23).   

𝑢𝑑(𝑘𝑇) equation (2-23) can be written as   

𝑢𝑑(𝑘𝑇) = 1
𝑇 ∫ 𝑢𝑐(𝜆)𝑑𝜆𝑘𝑇+𝑇

𝑘𝑇 = −𝐾𝑐
𝑇 ∫ 𝑥𝑐(𝜆)𝑑𝜆𝑘𝑇+𝑇

𝑘𝑇 + 𝐸𝑐𝑟(𝑘𝑇) (2-30) 

shown above.  The integral term on the right-hand side of equation (2-30) can be exactly 

evaluated by integrating the analog designed system shown in equation (2-5), as a result 

the following results are obtained  
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∫ 𝑥̇𝑐(𝑡)𝑑𝑡𝑘𝑇+𝑇
𝑘𝑇 = 𝐴𝑐 ∫ 𝑥𝑐(𝜆)𝑑𝜆𝑘𝑇+𝑇

𝑘𝑇 + 𝐵𝐸𝑐 ∫ 𝑟(𝜆)𝑑𝜆𝑘𝑇+𝑇
𝑘𝑇 ,  (2-31) 

∫ 𝑥̇𝑐(𝑡)𝑑𝑡𝑘𝑇+𝑇
𝑘𝑇 = ∫ 𝑑𝑥𝑐(𝑡)𝑘𝑇+𝑇

𝑘𝑇 = 𝑥𝑐(𝑘𝑇 + 𝑇) − 𝑥𝑐(𝑘𝑇),  (2-32) 

then it follows as 

∫ 𝑥𝑐(𝑡)𝑑𝑡𝑘𝑇+𝑇
𝑘𝑇 = 𝐴𝑐−1[𝑥𝑐(𝑘𝑇 + 𝑇) − 𝑥𝑐(𝑘𝑇) − 𝑇𝐵𝐸𝑐𝑟(𝑘𝑇)], (2-33) 

where 𝑟(𝑡) = 𝑟(𝑘𝑇) for 𝑘𝑇 ≤ 𝑡 < 𝑘𝑇 + 𝑇.   

Utilizing equation (2-7) into equation (2-33) and solving for ∫ 𝑥𝑐(𝜆)𝑑𝜆𝑘𝑇+𝑇
𝑘𝑇  leads 

to the following  

∫ 𝑥𝑐(𝜆)𝑑𝜆𝑘𝑇+𝑇
𝑘𝑇 = 𝐴𝑐−1[𝐺𝑐𝑥𝑐(𝑘𝑇) + 𝐻𝑐𝐸𝑐𝑟(𝑘𝑇) − 𝑥𝑐(𝑘𝑇) − 𝐵𝐸𝑐𝑇𝑟(𝑘𝑇)], (2-34) 

∫ 𝑥𝑐(𝜆)𝑑𝜆𝑘𝑇+𝑇
𝑘𝑇 = 𝐴𝑐−1[(𝐺𝑐 − 𝐼𝑛)𝑥𝑐(𝑘𝑇) + (𝐻𝑐 − 𝐵𝑇)𝐸𝑐𝑟(𝑘𝑇)], (2-35) 

equations above.  Letting 𝑥𝑐(𝑡) in equation (2-35) as 𝑥�𝑐(𝑡), 𝑥𝑐(𝑘𝑇) =  𝑥�𝑐(𝑘𝑇) and 

𝑥𝑐(𝑘𝑇 + 𝑇) = 𝑥�𝑐(𝑘𝑇 + 𝑇), also substituting equation (2-35) into (2-30)  

𝑢𝑑(𝑘𝑇) = −
𝐾𝑐
𝑇

� 𝑥�𝑐(𝜆)𝑑𝜆
𝑘𝑇+𝑇

𝑘𝑇

+ 𝐸𝑐𝑟(𝑘𝑇), 

𝑢𝑑(𝑘𝑇) = −
𝐾𝑐
𝑇
�𝐴𝑐−1[(𝐺𝑐 − 𝐼𝑛)𝑥�𝑐(𝑘𝑇) + (𝐻𝑐 − 𝐵𝑇)𝐸𝑐𝑟(𝑘𝑇)]� + 𝐸𝑐𝑟(𝑘𝑇), 
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𝑢𝑑(𝑘𝑇) = −[𝐾𝑐(𝐴𝑐𝑇)−1(𝐺𝑐 − 𝐼𝑛)]𝑥�𝑐(𝑘𝑇) + [𝐾𝑐(𝐴𝑐𝑇)−1(𝐵𝑇 − 𝐻𝑐) + 𝐼𝑚]𝐸𝑐𝑟(𝑘𝑇),

 (2-36) 

results in the digitally redesigned input signal.   

Comparing equations (2-10) and (2-36) leads to the following cascaded and 

feedback digital controller gains 𝐾𝑑 and 𝐸𝑑 to be  

𝐾𝑑 = 𝐾𝑐(𝐴𝑐𝑇)−1(𝐺𝑐 − 𝐼𝑛),    (2-37) 

𝐸𝑑 = [𝐾𝑐(𝐴𝑐𝑇)−1(𝐵𝑇 − 𝐻𝑐) + 𝐼𝑚]𝐸𝑐.  (2-38) 

The corresponding digitally redesigned method is called as the improved bilinear 

transform method.   

2.4 Direct bilinear transform method  

The commonly used digital redesign method in industry is the direct bilinear 

transform, which could convert the predesigned cascaded and output feedback 

continuous-time controllers directly into their digital forms, however it fails to convert a 

state-feedback controller into digital form.  Unlike, the other methods described in this 

research, the direct bilinear transform method does not take state matching into 

consideration.  Although its structure is simple, the stability of the closed-loop sampled-

date system is not assured if the sampling time is set too large.  The digital control 

systems using the direct bilinear transform method are achieved as follows.   

Suppose 𝐺1(𝑠) is the transfer function of the continuous-time system in Figure 

2-1, then the digital form of 𝐺1(𝑠) is  
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𝐺1(𝑧) = 𝐺1(𝑧)|
𝑠=2𝑇

(𝑍−1)
(𝑍+1)

,   (2-39) 

where the respective variables s and z denote the continuous-time and discrete-time 

operators, and T is denoted as the sampling period.   

On the other hand, the continuous-time system 𝐺1(𝑠) is represented by equation 

(2-1), then the state-space model under the bilinear transform is  

𝑥𝑏(𝑘𝑇 + 𝑇) = 𝐺𝑏𝑥𝑏(𝑘𝑇) + 𝐻𝑏𝑢(𝑘𝑇),  (2-40) 

𝑦𝑏(𝑘𝑇) = 𝐶𝑥𝑏(𝑘𝑇),     (2-41) 

where 𝐺𝑏 = �𝐼𝑛 −
𝐴𝑇
2
�
−1

(𝐼𝑛 + 𝐴𝑇
2

), 𝐻𝑏 = (𝐼𝑛 −
𝐴𝑇
2

)−1𝐵𝑇, 𝑥𝑏(𝑘𝑇) is the discrete-time 

state of 𝑥𝑐(𝑡) evaluated at 𝑡 = 𝑘𝑇 for 𝑘 = 0, 1, 2,⋯.  For modeling error analysis, let the 

modeling error matrices be 𝐸𝑔 = 𝑒𝐴𝑇 − 𝐺𝑏 and 𝐸𝑏 = (𝐺 − 𝐼𝑛)𝐴−1𝐵 − (𝐼𝑛 −
1
2
𝐴𝑇)−1𝐵𝑇, 

then the modeling errors between the bilinear transform method represented by equations 

(2-40) and (2-41) and the exact discrete-time model of equation (2-1) become  

�𝐸𝑔� ≤� �
1

2𝑖−1
−

1
𝑖!
�

∞

𝑖=1
�(𝐴𝑇)𝑖� =

1 + 0.5‖𝐴𝑇‖
1 − 0.5‖𝐴𝑇‖

− 𝑒‖𝐴𝑇‖, 

‖𝐸𝑏‖ ≤ �𝐸𝑔�‖𝐴−1𝐵‖ ≤ �𝐸𝑔�‖𝐴−1‖‖𝐵‖, 

for 𝑇 ≤ 2
‖𝐴‖

 and a non-singular matrix 𝐴, where ‖𝐴‖ is the Euclidean norm of 𝐴.  The 

evaluation of the modeling error ‖𝐸𝑏‖ for the singular matrix A is given in the appendix 

A.   
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CHAPTER 3 - DIGITAL REDESIGN TECHNIQUE FOR 

STABLE AND UNSTABLE SYSTEMS USING LIFTING 

METHOD 

3.1 N-Delay Control  

Another approach that can be utilized is the N-delay lifting technique.  Using this 

technique the input matrix can be adjusted, so that the state variables are exactly matched 

and there is no approximation.   

3.1.1 Introduction to Lifting Technique  

Consider the input signal shown below in Figure 3-1.  The input signal is sampled 

with a sampling period of 𝑇𝑓 as shown in Figure 3-2 and the output signal becomes as 

shown in Figure 3-3.    

u(t)

tT/4 T0 2T/4 3T/4

u1(t)

u2(t)

u3(t)
u4(t)

 

Figure 3-1.  Continuous-time signal 
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Zoh(Tf)
Tf = T/N

N = 4

uc(t) ud(t)

 

Figure 3-2.  Continuous-time signal via zero-order hold 

ū(t)

tT/4 T0 2T/4 3T/4  

Figure 3-3.  Sampled output signal  

ū(t)

tT/4 T0 2T/4 3T/4

u1(kT)

u2(kT)

u3(kT)
u4(kT)

 

Figure 3-4.  Output signal series to parallel conversion  
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The output signal can also be represented as shown in Figure 3-4.  Although, the 

Figure 3-3 and Figure 3-4 representations indicate the same signal, the analytic 

representation can be shown below,   

𝑢 ���⃗ =  �

𝑢1(𝑘𝑇)
𝑢2(𝑘𝑇)
𝑢3(𝑘𝑇)
𝑢4(𝑘𝑇)

� =  

⎣
⎢
⎢
⎢
⎢
⎡

𝑢(𝑘𝑇)
𝑢(𝑘𝑇 + 𝑇

4
)

𝑢(𝑘𝑇 + 2𝑇
4

)

𝑢(𝑘𝑇 + 3𝑇
4

)⎦
⎥
⎥
⎥
⎥
⎤

 ≅ 𝑢(𝑡).   (3-1) 

Consider the state-space representation of a continuous-time plant below   

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),    (3-2) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡).     (3-3) 

Transfer function of the system shown in equations (3-3) and (3-4) can be 

represented as  

𝐺(𝑠) = 𝐶(𝑠𝐼𝑛 − 𝐴)−1𝐵 + 𝐷.     (3-4) 

Figure 3-2 represent s an input signal sampled with 𝑇/4 zero-order hold and as a 

result, Figure 3-3 is obtained.  However, using the lifting method, the series components 

are substituted with parallel signals as shown on Figure 3-4.  However, such a conversion 

cannot be achieved by the zero-order hold circuit as shown in Figure 3-2.  A simple block 

diagram expressing a continuous-time signal as a discrete-time signal using the lifting 

method is shown in Figure 3-5 below.  



21 
 

Zoh
Tf = T/4

uc(t) ud(t)
T/4

Plant

G(s)

y(t)

Tf

y(kTf)Zoh
u1(kT) = u(kT) 

T/4

Zoh
u2(kT) = u(kT+T/4) 

Zoh
u3(kT) = u(kT+2T/4) 

Zoh
u4(kT) = u(kT+3T/4) T/4

 

Figure 3-5.  Discrete-time representation of plant using lifting method  

The counterpart equivalent discrete-time representation of a continuous-time plant 

as shown in equations (3-2) and (3-3) can be calculated as   

𝑥(𝑘𝑇 + 𝑇) = 𝑒𝐴𝑘𝑇𝑥(𝑘𝑇) + � 𝑒𝐴(𝑘𝑇+𝑇−𝜏)𝐵𝑢1(𝜏)𝑑𝜏
𝑘𝑇+𝑇

𝑘𝑇
, 

                         +� 𝑒𝐴(𝑘𝑇+𝑇−𝜏)𝐵[𝑢2(𝜏) − 𝑢1(𝜏)]𝑑𝜏
𝑘𝑇+𝑇

𝑘𝑇+𝑇4

, 

                         +� 𝑒𝐴(𝑘𝑇+𝑇−𝜏)𝐵[𝑢3(𝜏) − 𝑢2(𝜏)]𝑑𝜏
𝑘𝑇+𝑇

𝑘𝑇+2𝑇4

, 

                          +∫ 𝑒𝐴(𝑘𝑇+𝑇−𝜏)𝐵[𝑢4(𝜏) − 𝑢3(𝜏)]𝑑𝜏𝑘𝑇+𝑇
𝑘𝑇+3𝑇4

.  (3-5) 

From Figure 3-4, the input signals are observed to be constant during the above 

time intervals, also the 𝐵 matrices are constant, so the equations can be written as 

follows,  

𝑥(𝑘𝑇 + 𝑇) = 𝑒𝐴𝑘𝑇𝑥(𝑘𝑇) + � 𝑒𝐴(𝑘𝑇+𝑇−𝜏)𝑑𝜏 𝐵𝑢1(𝜏),
𝑘𝑇+𝑇

𝑘𝑇
 

                    +� 𝑒𝐴(𝑘𝑇+𝑇−𝜏)𝑑𝜏 𝐵𝑢2(𝜏) −� 𝑒𝐴(𝑘𝑇+𝑇−𝜏)𝑑𝜏 𝐵
𝑘𝑇+𝑇

𝑘𝑇+𝑇4

𝑢1(𝜏)
𝑘𝑇+𝑇

𝑘𝑇+𝑇4

, 
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                    +� 𝑒𝐴(𝑘𝑇+𝑇−𝜏)𝑑𝜏 𝐵𝑢3(𝜏) −� 𝑒𝐴(𝑘𝑇+𝑇−𝜏)𝑑𝜏 
𝑘𝑇+𝑇

𝑘𝑇+2𝑇4

𝑢2(𝜏),
𝑘𝑇+𝑇

𝑘𝑇+2𝑇4

 

                     +∫ 𝑒𝐴(𝑘𝑇+𝑇−𝜏)𝑑𝜏 𝐵𝑢4(𝜏) − ∫ 𝑒𝐴(𝑘𝑇+𝑇−𝜏)𝑑𝜏 𝐵𝑢3(𝜏)𝑘𝑇+𝑇
𝑘𝑇+3𝑇4

𝑘𝑇+𝑇
𝑘𝑇+3𝑇4

.   (3-6) 

Solving the integrals in equation  (3-6), further simplifies the above equations to 

be expressed as  

𝑥(𝑘𝑇 + 𝑇) = 𝐺𝑥(𝑘𝑇) + (𝐻1 − 𝐻2)𝑢1(𝑘𝑇) + (𝐻2 − 𝐻3)𝑢2(𝑘𝑇) 

                                 + (𝐻3 − 𝐻4)𝑢3(𝑘𝑇) + 𝐻4𝑢4(𝑘𝑇) ,   (3-7) 

𝑥(𝑘𝑇 + 𝑇) = (𝐺4)4𝑥(𝑘𝑇) + [(𝐺4)3𝐻4, (𝐺4)2𝐻4, (𝐺4)1𝐻4,𝐻4] �

𝑢1(𝑘𝑡)
𝑢2(𝑘𝑡)
𝑢3(𝑘𝑡)
𝑢4(𝑘𝑡)

� , (3-8) 

where 𝐺4 = 𝑒𝐴
𝑇
4 , 𝐺𝑁 = 𝑒𝐴

𝑇
𝑁 and 𝐻𝑁 = [𝐺𝑁 − 𝐼]𝐴−1𝐵.   

Based on the discrete-time state variables of the N-delay lifted system represented 

in (3-8), the discrete-time output can be expressed as  

�

𝑦1(𝑘𝑇)
𝑦2(𝑘𝑇)
𝑦3(𝑘𝑇)
𝑦4(𝑘𝑇)

� ≜  

⎣
⎢
⎢
⎢
⎢
⎡

𝑦(𝑘𝑇)

𝑦 �𝑘𝑇 + 𝑇
4
�

𝑦 �𝑘𝑇 + 2𝑇
4
�

𝑦 �𝑘𝑇 + 3𝑇
4
�⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎡
𝐶
𝐶𝐺41

𝐶𝐺42

𝐶𝐺43⎦
⎥
⎥
⎤
𝑥(𝑘𝑇) +  

⎣
⎢
⎢
⎡

𝐷 0 0 0
𝐶𝐻4 𝐷 0 0
𝐶𝐺41𝐻4 𝐶𝐻4 𝐷 0
𝐶𝐺42𝐻4 𝐶𝐺41𝐻4 𝐶𝐻4 𝐷⎦

⎥
⎥
⎤
�

𝑢1(𝑘𝑇)
𝑢2(𝑘𝑇)
𝑢3(𝑘𝑇)
𝑢4(𝑘𝑇)

�, 

(3-9) 

where the system becomes a multi-input multi-output (MIMO) system.   
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3.2 Digital Redesign Using the Lifting Method  

Although digital control law developed using the improved digital method, the 

redesign method utilizes the exact integral term of the state 𝑥𝑐(𝑡), instead of the bilinear 

approximated term of the state 𝑥𝑑(𝑡) there exists discrepancy between the digitally 

redesigned approximated states 𝑥𝑑(𝑘𝑇) and 𝑥𝑐(𝑘𝑇).  This is due to the use of 

approximation via the principle of equivalent areas.  When the system of interest in 

equation (2-1) is unstable, the discrepancy of the state matching between 𝑥𝑑(𝑘𝑇) and 

𝑥𝑐(𝑘𝑇) might produce a degradation in the performance of the digitally redesigned 

system.  The lifted state-matching digital redesign method can be employed to develop 

the lifted digital control law to improve the performance of the digitally redesigned 

stable/unstable sampled-data systems.    

The sampled-data system with a set of lifted fast-rate sampled input 𝑢�𝑑(𝑘𝑓𝑇𝑓) can 

be represented as  

𝑥̇𝑑(𝑡) = 𝐴𝑥𝑑(𝑡) + 𝐵∑ 𝑢�𝑑𝑘𝑓(𝑘𝑓𝑇𝑓)𝑁
𝑘𝑓=1 ,   (3-10) 

where 𝑇𝑓 = 𝑇/𝑁.  𝑇 is the slow sampling period, 𝑇𝑓 is the fast sampling period and N is 

the sampling ratio during a slow sampling period 𝑇.  The associated fast-sampled 

discrete-time system in equation (3-10), with 𝑁 = 1 and 𝑢�𝑑�𝑘𝑓𝑇𝑓� = 𝑢𝑑�𝑘𝑓𝑇𝑓�, becomes  

𝑥𝑑�𝑘𝑓𝑇𝑓 + 𝑇𝑓� = 𝐺𝑁𝑥𝑑�𝑘𝑓𝑇𝑓� + 𝐻𝑁𝑢𝑑�𝑘𝑓𝑇𝑓�,  (3-11) 

where 𝐺𝑁 = 𝑒𝐴𝑇𝑓 and 𝐻𝑁 = [𝐺𝑁 − 𝐼𝑁]𝐴−1𝐵.   
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In addition, the corresponding discrete-time model in equation (3-10) for a slow-

sampled system with a lifted fast-sampled input for 𝑘𝑇 ≤ 𝑡 < 𝑘𝑇 + 𝑇 and 𝑘𝑇 = 𝑘𝑓𝑇𝑓 can 

be written as  

𝑥𝑑(𝑘𝑇 + 𝑇) = 𝐺𝑁𝑁𝑥𝑑(𝑘𝑇) + 𝐻�𝑁
(𝑁)𝑢𝑑

(𝑁)(𝑘𝑇),   (3-12) 

where the lifted system matrix 𝐺𝑁𝑁 becomes 𝐺𝑁𝑁 = (𝐺𝑁)𝑁 = 𝑒𝐴𝑇 and the lifted input 

matrix 𝐻�𝑁
(𝑁) is defined as     

𝐻�𝑁
(𝑁) = [𝐻�1,𝐻�2,⋯ ,𝐻�𝑛−1,𝐻�𝑛], 

          = [𝐺𝑁𝑁−1𝐻𝑁,𝐺𝑁𝑁−2𝐻𝑁 ,⋯ ,𝐺𝑁𝐻𝑁,𝐻𝑁] ∈ 𝑅𝑛𝑥𝑚𝑁 , 

and the lifted input vector 𝑢�𝑑
(𝑁)(𝑘𝑇) is defined as  

𝑢�𝑑
(𝑁)(𝑘𝑇) = [𝑢�𝑑1𝑇 (𝑘𝑇),𝑢�𝑑2𝑇 (𝑘𝑇),⋯ ,𝑢�𝑑𝑁𝑇 (𝑘𝑇)] 

                   =

⎣
⎢
⎢
⎡

𝑢𝑐(𝑘𝑇)
𝑢𝑐(𝑘𝑇 + 𝑇𝑓)

⋮
𝑢𝑐(𝑘𝑇 + (𝑁 − 1)𝑇𝑓)⎦

⎥
⎥
⎤

 ∈ 𝑅𝑛𝑁𝑥1, 

where 𝐻�𝑖 = 𝐺𝑁𝑁−𝑖𝐻𝑁 with 𝐻𝑁 = (𝐺𝑁 − 𝐼𝑁)𝐴−1𝐵 and 𝑢�𝑑𝑖(𝑘𝑇) = 𝑢𝑐(𝑡) at 𝑡 = 𝑘𝑇 + (𝑖 −

1)𝑇𝑓 for 𝑖 = 1, 2,⋯ ,𝑁.    

The discrete-time system in equation (3-12) can be considered as a multi-

input/multi-output (MIMO) discrete-time system and the corresponding lifted state 

feedback control law for equation (3-12) can be written as  
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𝑢�𝑑
(𝑁)(𝑘𝑇) = −𝐾�𝑑

(𝑁)𝑥𝑑(𝑘𝑇) + 𝐸�𝑑
(𝑁)𝑟(𝑘𝑇),   (3-13) 

where the lifted control gains 𝐾�𝑑
(𝑁) and 𝐸�𝑑

(𝑁) are defined as    

𝐾�𝑑
(𝑁) =  �

𝐾𝑑1
𝐾𝑑2
⋮

𝐾𝑑𝑁

�  ∈ 𝑅𝑚𝑁𝑥𝑛,    (3-14) 

𝐸�𝑑
(𝑁) = �

𝐸𝑑1
𝐸𝑑2
⋮

𝐸𝑑𝑁

�  ∈ 𝑅𝑚𝑁𝑥𝑚,    (3-15) 

and 𝑟(𝑡) is a constant reference input.  Substituting equation (3-13) into (3-12) results in 

the closed-loop digitally redesigned system via N-delay lifting method as shown below,  

𝑥𝑑(𝑘𝑇 + 𝑇) = �𝐺𝑁𝑁 − 𝐻�𝑁
(𝑁)𝐾�𝑑

(𝑁)�𝑥𝑑(𝑘𝑇) + 𝐻�𝑁
(𝑁)𝐸�𝑑

(𝑁)𝑟(𝑘𝑇).  (3-16) 

It is desirable to find the digitally redesigned gains 𝐾�𝑑
(𝑁) and 𝐸�𝑑

(𝑁) in equation 

(3-13) such that the discrete-time states 𝑥𝑑(𝑘𝑇 + 𝑇) and 𝑥𝑑(𝑘𝑇) in equation (3-16) are 

exactly matched with the continuous-time states 𝑥𝑐(𝑘𝑇 + 𝑇) and 𝑥𝑐(𝑘𝑇), in equation 

(2-7), respectively.  Comparing equations (2-7) and (3-16) results in  

𝐺𝑐 = 𝐺𝑁𝑁 − 𝐻�𝑁
(𝑁)𝐾�𝑑

(𝑁),     (3-17) 

𝐻𝑐 = 𝐻�𝑁
(𝑁)𝐸�𝑑

(𝑁),     (3-18) 

where 𝐺𝑐 ∈ 𝑅𝑛𝑥𝑛,𝐺𝑁𝑁  ∈ 𝑅𝑛𝑥𝑛,𝐻�𝑁
(𝑁)  ∈ 𝑅𝑛𝑥𝑚𝑁 ,𝐾�𝑑

(𝑁)  ∈ 𝑅𝑚𝑁𝑥𝑛 and 𝐸�𝑑
(𝑁)  ∈ 𝑅𝑚𝑁𝑥𝑚.  

Approximation methods in Chapter 2 were derived because equations (3-17) and (3-18) 
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can not be solved easily due to matrix sizes of 𝐺𝑁𝑁 and 𝐻�𝑁
(𝑁) not matching.  However, by 

using the lifting method, the following condition can be achieved and digital gains can be 

solved.  When the dimension 𝑚𝑁 ≥ 𝑛 and 𝑟𝑎𝑛𝑘�𝐻�𝑁
(𝑁)� = 𝑛, the desired lifted digital 

gains in equation (3-13) can be solved from equations (3-17) and (3-18) as  

𝐾�𝑑
(𝑁) = �𝐻�𝑁

(𝑁)�
+

(𝐺𝑁𝑁 − 𝐺𝑐),     (3-19) 

𝐸�𝑑
(𝑁) = (𝐻�𝑁

(𝑁))+𝐻𝑐𝐸𝑐,     (3-20) 

where (𝐻�𝑁
(𝑁))+ = (𝐻�𝑁

(𝑁))𝑇[𝐻�𝑁
(𝑁)(𝐻�𝑁

(𝑁))𝑇]−1.  The digital control law in equation (3-13) 

with digital gains in equations (3-19) and (3-20) is the exact state-matching digital 

redesign method.     
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CHAPTER 4 - MULTI-RATE DIGITAL REDESIGN 

TECHNIQUE 

In this section, two topics are discussed.  First, the ideal state reconstructor and 

second the methods above will be expanded to include a system with both analog 

feedback and cascade controllers.   

4.1 Ideal state reconstructing algorithm  

In order to use state feedback control to achieve the desired output characteristics, 

it is required to have the states available to connect to the controller.  However, states are 

not readily available.  As depicted in Figure 2-1, in the multi-rate cascaded and output 

feedback digital control structures, only the input-output signals of 𝐺1(𝑠) are available.  

In order to avoid the complexity of building state observers [22,25], an ideal state 

reconstructing algorithm [17] is employed to generate the real discrete-time states of the 

systems.   

Rewriting the discrete-time model of equation (2-1) as in equation (2-12) without 

the subscripts results as  

𝑥(𝑘𝑇 + 𝑇) = 𝐺𝑥𝑑(𝑘𝑇) + 𝐻𝑢𝑑(𝑘𝑇),    (4-1) 

𝑦(𝑘𝑇) = 𝐶𝑥𝑑(𝑘𝑇),      (4-2) 

where 𝐺 = 𝑒𝐴𝑇, 𝐻 = (𝐺 − 𝐼𝑛)𝐴−1𝐵, for a non-singular matrix 𝐴.  When the matrix 𝐴 is a 

singular matrix, the matrix 𝐻 can be evaluated as 𝐻 = ∑ 𝑇
𝑖!

∞
𝑖=1 (𝐴𝑇)𝑖−1𝐵.  In order to 
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reconstruct the state in equations (4-1) and (4-2), a fast-rate sampler is employed 

𝑇𝑓 =  𝑇 𝑁⁄ , where 𝑁 > 1 is an integer.  Slow-rate digital model (G, H, C) can be 

expressed with fast-rate model (𝐺𝑁, 𝐻𝑁, C) as  

𝐺𝑁 = 𝑒𝐴𝑇𝑓 = 𝑒𝐴𝑇 𝑁⁄ = 𝐺1 𝑁⁄ ≜ √𝐺𝑁  ⟹ (𝐺𝑁)−𝑖 ≜ � √𝐺𝑁 �
−𝑖

 , (4-3) 

𝐻𝑁 = [𝐺𝑁 − 𝐼𝑛]𝐴−1𝐵 ⇒ (𝐻𝑁)−𝑖 ≜ �(𝐺𝑁)−𝑖 − 𝐼𝑛�𝐴−1𝐵,  (4-4) 

where √𝐺𝑁  is the Nth root of the matrix 𝐺 [24].  After the zero order hold, 𝑢(𝑘𝑇) is a 

piecewise constant, therefore, the following will be true,  

𝑢�𝑘𝑇 − 𝑖𝑇𝑓� = 𝑢(𝑘𝑇 − 𝑇),    (4-5) 

for 0 < 𝑖 ≤ 𝑁.   

If the matrix 𝐺 has eigenvalues on the negative real axis for an assigned sampling 

period T, the unique Nith root of the matrix 𝐺 cannot be determined.  In this case, a 

bisection search method can be applied to select a reduced sampling period so that the 

matrix G would not have eigenvalues on the negative real axis.   

Converting equations (4-1) and (4-2) by using the sampling period 𝑇𝑓 an 

equivalent fast-rate sampling digital model is obtained as 

𝑥�𝑘�𝑇𝑓 + 𝑇𝑓� = 𝐺𝑁𝑥�𝑘�𝑇𝑓� + 𝐻𝑁𝑢(𝑘�𝑇𝑓),   (4-6) 

𝑦�𝑘�𝑇𝑓� = 𝐶𝑥�𝑘�𝑇𝑓�,      (4-7) 

Let 𝑘�𝑇𝑓 = 𝑘𝑇, then equations (4-6) becomes  
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𝑥�𝑘𝑇 + 𝑇𝑓� = 𝐺𝑁𝑥(𝑘𝑇) + 𝐻𝑁𝑢(𝑘𝑇).   (4-8) 

Only the input and output values of the system are available, in order to calculate 

the state variables in one period time (T), N previous values of the input and the output 

values are used.  Therefore moving one fast sampling period back in equation (4-8) 

results in the following equation,  

𝑥(𝑘𝑇) = 𝐺𝑁𝑥�𝑘𝑇 − 𝑇𝑓� + 𝐻𝑁𝑢�𝑘𝑇 − 𝑇𝑓�,   (4-9) 

where 𝑢�𝑘𝑇 − 𝑇𝑓� = 𝑢(𝑘𝑇 − 𝑇), which results as  

𝑥(𝑘𝑇) = 𝐺𝑁𝑥�𝑘𝑇 − 𝑇𝑓� + 𝐻𝑁𝑢(𝑘𝑇 − 𝑇).   (4-10) 

Previous discrete-time state value is obtained by moving 𝑥�𝑘𝑇 − 𝑇𝑓� to the right 

hand side of equation (4-10) with present input and output data.  Therefore,  

𝑥�𝑘𝑇 − 𝑇𝑓� = (𝐺𝑁)−1𝑥(𝑘𝑇) − (𝐺𝑁)−1𝐻𝑁𝑢(𝑘𝑇 − 𝑇) 

𝑥�𝑘𝑇 − 𝑇𝑓� = (𝐺𝑁)−1𝑥(𝑘𝑇) + (𝐻𝑁)−1𝑢(𝑘𝑇 − 𝑇) 

𝑥�𝑘𝑇 − 2𝑇𝑓� = (𝐺𝑁)−2𝑥(𝑘𝑇) + (𝐻𝑁)−2𝑢(𝑘𝑇 − 𝑇) 

⋮ 

𝑥�𝑘𝑇 − 𝑖𝑇𝑓� = (𝐺𝑁)−𝑖𝑥(𝑘𝑇) + (𝐻𝑁)−𝑖𝑢(𝑘𝑇 − 𝑇), 

for 𝑖 = 1, 2,⋯ ,𝑁𝑓 − 1.  Recalling every input and output value at every fast sampling 

period (𝑇𝑓) in one slow sampling period (𝑇) the exact state value can be calculated as  
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𝑦 =

⎣
⎢
⎢
⎢
⎢
⎡

𝑦(𝑘𝑇)
𝑦�𝑘𝑇 − 𝑇𝑓�
𝑦�𝑘𝑇 − 2𝑇𝑓�

⋮
𝑦�𝑘𝑇 − (𝑁 − 1)𝑇𝑓�⎦

⎥
⎥
⎥
⎥
⎤

= 𝐶

⎣
⎢
⎢
⎢
⎢
⎡

𝑥(𝑘𝑇)
𝑥�𝑘𝑇 − 𝑇𝑓�
𝑥�𝑘𝑇 − 2𝑇𝑓�

⋮
𝑥�𝑘𝑇 − (𝑁 − 1)𝑇𝑓�⎦

⎥
⎥
⎥
⎥
⎤

 

= 𝐶

⎣
⎢
⎢
⎢
⎡

𝑥(𝑘𝑇)
(𝐺𝑁)−1𝑥(𝑘𝑇) + (𝐻𝑁)−1𝑢(𝑘𝑇 − 𝑇)
(𝐺𝑁)−2𝑥(𝑘𝑇) + (𝐻𝑁)−2𝑢(𝑘𝑇 − 𝑇)

⋮
(𝐺𝑁)−(𝑁−1)𝑥(𝑘𝑇) + (𝐻𝑁)−(𝑁−1)𝑢(𝑘𝑇 − 𝑇)⎦

⎥
⎥
⎥
⎤

. 

Rewriting the equation above as  

𝑦 = 𝐷𝑥(𝑘𝑇) + 𝐸𝑢(𝑘𝑇 − 𝑇),    (4-11) 

where  

𝐷 =

⎣
⎢
⎢
⎢
⎡

𝐶
𝐶(𝐺𝑁)−1

𝐶(𝐺𝑁)−2
⋮

𝐶(𝐺𝑁)−(𝑁−1)⎦
⎥
⎥
⎥
⎤

,𝐸 =

⎣
⎢
⎢
⎢
⎡

0𝑝𝑥𝑚
𝐶(𝐻𝑁)−1

𝐶(𝐻𝑁)−1
⋮

𝐶(𝐻𝑁)−(𝑁−1)⎦
⎥
⎥
⎥
⎤

. 

Moving 𝑥(𝑘𝑇) to the left hand side of equation (4-11), then the following 

equation,  

𝐷𝑥(𝑘𝑇) = 𝑦 − 𝐸𝑢(𝑘𝑇 − 𝑇),    (4-12) 

is obtained.  Since the 𝑟𝑎𝑛𝑘(𝐷) = 𝑛, the left-side pseudo inverse of the “𝐷” vector is 

evaluated and 𝑥(𝑘𝑇) is calculated as  
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𝑥(𝑘𝑇) = (𝐷𝑇𝐷)−1𝐷𝑇[𝑦 − 𝐸𝑢(𝑘𝑇 − 𝑇)].    (4-13) 

4.2 New multi-rate digital control law redesign 

Digital redesign of the control law for the multi-rate sampled-data control system 

is shown in Figure 2-2.  The following continuous-time state equations are obtained and 

using the following equations the analogy between simple feedback, cascaded gain and 

state-feedback and state-cascaded gain are observed.  

𝑥̇𝑐1(𝑡) = 𝐴1𝑥𝑐1(𝑡) + 𝐵1𝑢𝑐1(𝑡) = 𝐴1𝑥𝑐1(𝑡) + 𝐵1[𝐶2𝑥𝑐2(𝑡) + 𝐷2𝑢𝑐2(𝑡)] 

             = 𝐴1𝑥𝑐1(𝑡) + 𝐵1�𝐶2𝑥𝑐2(𝑡) + 𝐷2[𝐸𝑐𝑟(𝑡) − 𝑦𝑐3(𝑡)]� 

             = 𝐴1𝑥𝑐1(𝑡) + 𝐵1𝐶2𝑥𝑐2(𝑡) + 𝐵1𝐷2𝐸𝑐𝑟(𝑡) − 𝐵1𝐷2[𝐶3𝑥𝑐3(𝑡) + 𝐷3𝑢𝑐3(𝑡)] 

             = 𝐴1𝑥𝑐1(𝑡) + 𝐵1𝐶2𝑥𝑐2(𝑡) + 𝐵1𝐷2𝐸𝑐𝑟(𝑡) − 𝐵1𝐷2𝐶3𝑥𝑐3(𝑡)   

−𝐵1𝐷2𝐷3𝐶1𝑥𝑐1(𝑡),       (4-14) 

𝑥̇𝑐2(𝑡) = 𝐴2𝑥𝑐2(𝑡) + 𝐵2𝑢𝑐2(𝑡) = 𝐴2𝑥𝑐2(𝑡) + 𝐵2[𝐸𝑐𝑟(𝑡) − 𝑦𝑐3(𝑡)] 

             = 𝐴2𝑥𝑐2(𝑡) + 𝐵2𝐸𝑐𝑟(𝑡) − 𝐵2𝐶3𝑥𝑐3(𝑡) − 𝐵2𝐷3𝑢𝑐3(𝑡) 

    = 𝐴2𝑥𝑐2(𝑡) + 𝐵2𝐸𝑐𝑟(𝑡) − 𝐵2𝐶3𝑥𝑐3(𝑡) − 𝐵2𝐷3𝐶1𝑥𝑐1(𝑡),  (4-15) 

𝑥̇𝑐3(𝑡) = 𝐴3𝑥𝑐3(𝑡) + 𝐵3𝑢𝑐3(𝑡) 

                       = 𝐴3𝑥𝑐3(𝑡) + 𝐵3𝐶1𝑥𝑐1(𝑡),   (4-16) 

where 𝑥𝑐1(𝑡) ∈ 𝑅𝑛1𝑥1, 𝑥𝑐2(𝑡) ∈ 𝑅𝑛2𝑥1, 𝑥𝑐3(𝑡) ∈ 𝑅𝑛3𝑥1 are the state variables, 𝑢𝑐1(𝑡) ∈

𝑅𝑚1𝑥1, 𝑢𝑐2(𝑡) ∈ 𝑅𝑚2𝑥1, 𝑢𝑐3(𝑡) ∈ 𝑅𝑚3𝑥1 are the input vectors, and 𝑦𝑐1(𝑡) ∈ 𝑅𝑝1𝑥1, 

𝑦𝑐2(𝑡) ∈ 𝑅𝑝2𝑥1, 𝑦𝑐3(𝑡) ∈ 𝑅𝑝3𝑥1 are the output vectors.  Also, as mentioned in chapter 2, 

𝐷1 is assumed as zero.    
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The extended overall closed-loop state equation for a single-rate sampled-data 

control system becomes  

𝑥̇𝑒𝑐(𝑡) = (𝐴𝑒 − 𝐵𝑒𝐾𝑒𝑐)𝑥𝑒𝑐(𝑡) + 𝐵𝑒𝐸𝑒𝑐𝑟(𝑡) 

          = 𝐴𝑒𝑐𝑥𝑒𝑐(𝑡) + 𝐵𝑒𝑐𝑢𝑒𝑐(𝑡),     (4-17) 

𝑢𝑒𝑐 = −𝐾𝑒𝑐𝑥𝑒𝑐(𝑡) + 𝐸𝑒𝑐𝑟(𝑡),   (4-18) 

where 𝐴𝑒𝑐 = 𝐴𝑒 − 𝐵𝑒𝐾𝑒𝑐.    

Equations (4-14), (4-15) and (4-16) combined together can be represented as 

follows  

𝑥̇𝑒𝑐(𝑡) = �
𝐴1 − 𝐵1𝐷2𝐷3𝐶1 𝐵1𝐶2 −𝐵1𝐷2𝐶3

−𝐵2𝐷3𝐶1 𝐴2 −𝐵2𝐶3
𝐵3𝐶1 0 𝐴3

� �
𝑥𝑐1(𝑡)
𝑥𝑐2(𝑡)
𝑥𝑐3(𝑡)

� + �
𝐵1𝐷2
𝐵2
0

� 𝐸𝑐𝑟(𝑡), (4-19) 

where 𝑥𝑒𝑐𝑇 (𝑡) = [𝑥𝑐1𝑇 (𝑡)   𝑥𝑐2𝑇 (𝑡)   𝑥𝑐3𝑇 (𝑡)].  Equation (4-18) can be also represented as 

shown below 

𝑥𝑐̇(𝑡) = ��
𝐴1 0 0
0 𝐴2 0
0 0 𝐴3

� − �
𝐵1 0 0
0 𝐵2 0
0 0 𝐵3

� �
𝐷2𝐷3𝐶1 −𝐶2 𝐷2𝐶3
𝐷3𝐶1 0 𝐶3
−𝐶1 0 0

�� �
𝑥𝑐1(𝑡)
𝑥𝑐2(𝑡)
𝑥𝑐3(𝑡)

�

+ �
𝐵1 0 0
0 𝐵2 0
0 0 𝐵3

� �
𝐷2𝐸𝑐
𝐸𝑐
0

� 𝑟(𝑡), 

where  
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𝐴𝑒 = �
𝐴1 0 0
0 𝐴2 0
0 0 𝐴3

� ,𝐵𝑒 = �
𝐵1 0 0
0 𝐵2 0
0 0 𝐵3

� , 𝑥𝑒𝑐 = �
𝑥𝑐1(𝑡)
𝑥𝑐2(𝑡)
𝑥𝑐3(𝑡)

� ,𝑢𝑒𝑐 = �
𝑢𝑐1(𝑡)
𝑢𝑐2(𝑡)
𝑢𝑐3(𝑡)

� , 

𝐾𝑒𝑐 = �
𝐷2𝐷3𝐶1 −𝐶2 𝐷2𝐶3
𝐷3𝐶1 0 𝐶3
−𝐶1 0 0

�  𝑎𝑛𝑑 𝐸𝑒𝑐 = �
𝐷2𝐸𝑐
𝐸𝑐
0

�. 

Since the equivalent continuous-time controller gains 𝐾𝑒𝑐 and 𝐸𝑒𝑐 can be 

calculated from cascaded and output feedback subsystems, the corresponding digital 

controller gains can be determined using the transformations methods described in 

Chapter 2.  The following equations correspond to the equivalent digital controller gains 

using the Chebyshev bilinear transform method described in section 2.2 

𝐾𝑒𝑑 = 1
2
�𝐼𝑚1+𝑚2+𝑚3 + 𝐾𝑒𝑐𝐻𝑒�

−1
𝐾𝑒𝑐(𝐼𝑛1+𝑛2+𝑛3 + 𝐺𝑒),  (4-20) 

𝐸𝒆𝑑 = �𝐼𝑚1+𝑚2+𝑚3 + 𝐾𝑒𝑐𝐻𝒆�
−1
𝐸𝑒𝑐,    (4-21) 

where 𝐺𝑒 = 𝑒𝐴𝑒𝑇 ,𝐻𝑒 = (𝐺𝑒 − 𝐼𝑛1+𝑛2+𝑛3)𝐴𝑒−1𝐵𝑒.  The respective state dimensions of 

𝐺1(𝑠), 𝐺2(𝑠) and 𝐺3(𝑠) are 𝑛1, 𝑛2 and 𝑛3, respectively.  Additionally, 𝑚1, 𝑚2 and 𝑚3 

are the respective input numbers of 𝐺1(𝑠), 𝐺2(𝑠) and 𝐺3(𝑠).  The digital controller gains 

using the new improved digital control law are  

𝐾𝑒𝑑 = 𝐾𝑒𝑐(𝐴𝑒𝑐𝑇)−1�𝐺𝑒𝑐 − 𝐼𝑛1+𝑛2+𝑛3�,   (4-22) 

𝐸𝑒𝑑 = �𝐼𝑚1+𝑚2+𝑚3 + (𝐾𝑒𝑐 − 𝐾𝑒𝑑)𝐴𝑒𝑐−1𝐵𝑒�𝐸𝑒𝑐,  (4-23) 

where 𝐺𝑒𝑐 = 𝑒𝐴𝑒𝑐𝑇.   
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uc(t)
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ud(kfTf)

ud(ksTs)

 

Figure 4-1.  Equivalent of multi-rate digital control (Ts=3Tf) 

In Figure 4-1, various controllers are drawn to show the equivalence of these 

controllers.  Based upon the Chebyshev quadrature method described in chapter 2.2 and 

the equivalent area concept in Remark 1, the area under 𝑢𝑐(𝑡) for one sampling period 𝑇𝑠, 

closely matches those of the curves under 𝑢𝑑(𝑘𝑓𝑇𝑓) and 𝑢𝑑(𝑘𝑠𝑇𝑠) for the sampling 

period 𝑇𝑠.  Hence, the state responses of the system excited by a continuous-time input 

𝑢𝑐(𝑡) in Figure 4-1, closely match those of the same system excited by the equivalent 

fast-rate discrete-time controller 𝑢𝑑(𝑘𝑓𝑇𝑓), as well as the equivalent slow-rate discrete-

time controller 𝑢𝑑(𝑘𝑠𝑇𝑠) in Figure 4-1.  As a result, for multi-rate sampling control 

structures, the desirable multi-rate digitally redesigned control law can be obtained by the 

combinations of the fast-rate and slow-rate discrete-time controllers.   

In this research, multi-rate digital redesign is not calculated simultaneously, for 

the mathematical analysis of the multi-rate feedback system becomes very complex, even 

for systems where the ratio of the slow sampling rate to fast sampling rate (𝑇𝑠𝑙𝑜𝑤 𝑇𝑓𝑎𝑠𝑡⁄ ≥
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2) is more than two.  Therefore the digital controllers are calculated separately for 

different sampling periods and then then the derived digital controlled systems are 

merged together.   

So considering the different sampling control structures, the multi-rate digital 

control law redesign steps are described as follows:   

1. Compute the single fast-rate sampling digital control law (𝐾𝑒𝑑𝑓, 𝐸𝑒𝑑𝑓) and the 

single slow-rate sampling digital control law (𝐾𝑒𝑑𝑠, 𝐸𝑒𝑑𝑠) and their corresponding 

discrete-time states (𝑥𝑒𝑑𝑓(𝑘𝑓𝑇𝑓), 𝑥𝑒𝑑𝑠(𝑘𝑠𝑇𝑠)) for continuous-time closed-loop 

system in equation (4-17) using equations (4-20) and (4-21), respectively.   

𝑥𝑒𝑑𝑓�𝑘𝑓𝑇𝑓� = �
𝑥𝑑1�𝑘𝑓𝑇𝑓�
𝑥𝑑2�𝑘𝑓𝑇𝑓�
𝑥𝑑3�𝑘𝑓𝑇𝑓�

� , 𝑥𝑒𝑑𝑠(𝑘𝑠𝑇𝑠) = �
𝑥𝑑1(𝑘𝑠𝑇𝑠)
𝑥𝑑2(𝑘𝑠𝑇𝑠)
𝑥𝑑3(𝑘𝑠𝑇𝑠)

�, 

𝐾𝑒𝑑𝑓 = �
𝐾𝑑11𝑓 𝐾𝑑12𝑓 𝐾𝑑13𝑓
𝐾𝑑21𝑓 𝐾𝑑22𝑓 𝐾𝑑23𝑓
𝐾𝑑31𝑓 𝐾𝑑32𝑓 𝐾𝑑33𝑓

� ,𝐾𝑒𝑑𝑠 = �
𝐾𝑑11𝑠 𝐾𝑑12𝑠 𝐾𝑑13𝑠
𝐾𝑑21𝑠 𝐾𝑑22𝑠 𝐾𝑑23𝑠
𝐾𝑑31𝑠 𝐾𝑑32𝑠 𝐾𝑑33𝑠

�, 

𝐸𝑒𝑑𝑓 = �
𝐸𝑑1𝑓
𝐸𝑑2𝑓
𝐸𝑑3𝑓

� ,𝐸𝑒𝑑𝑠 = �
𝐸𝑑1𝑠
𝐸𝑑2𝑠
𝐸𝑑3𝑠

�. 

2. Combine the gains of the fast-rate sampling control law and the slow-rate 

sampling control law according to the different multi-rate sampling control 

structures employed in the closed-loop system.   

a. The mixed gains (denoted as 𝐾𝑒𝑑𝑓𝑠 and 𝐸𝑒𝑑𝑓𝑠) of the fast-rate sampling 

cascaded controller and slow-rate sampling output feedback controller are  
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𝐾𝑒𝑑𝑓𝑠 = �
𝐾𝑑11𝑓 𝐾𝑑12𝑓 𝐾𝑑13𝑓
𝐾𝑑21𝑓 𝐾𝑑22𝑓 𝐾𝑑23𝑓
𝐾𝑑31𝑠 𝐾𝑑32𝑠 𝐾𝑑33𝑠

� , 𝐸𝑒𝑑𝑓𝑠 = �
𝐸𝑑1𝑓
𝐸𝑑2𝑓
𝐸𝑑3𝑠

�.   

Also, the equations corresponding to (2-10) for the digital controller gains above become 

the following,   

𝑢𝑑1𝑓(𝑘𝑇) = 𝐾𝑑11𝑓𝑥𝑑1𝑓(𝑘𝑇) + 𝐾𝑑12𝑓𝑥𝑑2𝑓(𝑘𝑇) + 𝐾𝑑13𝑓𝑥𝑑3𝑓(𝑘𝑇) + 𝐸𝑑11𝑓𝑟(𝑘𝑇),  (4-24) 

𝑢𝑑2𝑓(𝑘𝑇) = 𝐾𝑑21𝑓𝑥𝑑1𝑓(𝑘𝑇) + 𝐾𝑑22𝑓𝑥𝑑2𝑓(𝑘𝑇) + 𝐾𝑑23𝑓𝑥𝑑3𝑓(𝑘𝑇) + 𝐸𝑑21𝑓𝑟(𝑘𝑇),  (4-25) 

𝑢𝑑3𝑠(𝑘𝑇) = 𝐾𝑑31𝑠𝑥𝑑1𝑠(𝑘𝑇) + 𝐾𝑑32𝑠𝑥𝑑2𝑠(𝑘𝑇) + 𝐾𝑑33𝑠𝑥𝑑3𝑠(𝑘𝑇) + 𝐸𝑑31𝑠𝑟(𝑘𝑇),  (4-26) 

where subscripts 1, 2 and 3 correspond to plant, cascaded system and the dynamic output 

feedback system.   

b. The mixed gains (denoted as 𝐾𝑒𝑑𝑠𝑓 and 𝐸𝑒𝑑𝑠𝑓) of the slow-rate sampling 

cascaded controller and fast-rate sampling output feedback controller are  

𝐾𝑒𝑑𝑠𝑓 = �
𝐾𝑑11𝑠 𝐾𝑑12𝑠 𝐾𝑑13𝑠
𝐾𝑑21𝑠 𝐾𝑑22𝑠 𝐾𝑑23𝑠
𝐾𝑑31𝑓 𝐾𝑑32𝑓 𝐾𝑑33𝑓

� , 𝐸𝑒𝑑𝑠𝑓 = �
𝐸𝑑1𝑠
𝐸𝑑2𝑠
𝐸𝑑3𝑓

�.  

Also, the equations corresponding to (2-10) for the digital controller gains above become 

the following,   
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𝑢𝑑1𝑠(𝑘𝑇) = 𝐾𝑑11𝑠𝑥𝑑1𝑠(𝑘𝑇) + 𝐾𝑑12𝑠𝑥𝑑2𝑠(𝑘𝑇) + 𝐾𝑑13𝑠𝑥𝑑3𝑠(𝑘𝑇) + 𝐸𝑑11𝑠𝑟(𝑘𝑇),  (4-27) 

𝑢𝑑2𝑠(𝑘𝑇) = 𝐾𝑑21𝑠𝑥𝑑1𝑠(𝑘𝑇) + 𝐾𝑑22𝑠𝑥𝑑2𝑠(𝑘𝑇) + 𝐾𝑑23𝑠𝑥𝑑3𝑠(𝑘𝑇) + 𝐸𝑑21𝑠𝑟(𝑘𝑇),  (4-28) 

𝑢𝑑3𝑓(𝑘𝑇) = 𝐾𝑑31𝑓𝑥𝑑1𝑓(𝑘𝑇) + 𝐾𝑑32𝑓𝑥𝑑2𝑓(𝑘𝑇) + 𝐾𝑑33𝑓𝑥𝑑3𝑓(𝑘𝑇) + 𝐸𝑑31𝑓𝑟(𝑘𝑇),  (4-29) 

where subscripts 1, 2 and 3 correspond to plant, cascaded system and the dynamic output 

feedback system.   

The completed multi-rate digitally redesigned sampled-data system is shown in 

Figure 4-2.  In the multi-rate digital control system for case 1, where Γ is the final-value 

scaling factor of the unit-step response of the closed-loop system, SR is the ideal state 

reconstructor.   

For the improved digital redesign method, the same procedure is carried out that 

is described above for the digital gains 𝐾𝑒𝑑 and 𝐸𝑒𝑑 obtained in equations (4-22) and 

(4-23).  For the combination of the gains of the fast-rate and slow-rate sampling 

controllers, the final value of the unit-step response of the digitally controlled plant 𝐺1(𝑠) 

may deviate from that of the original continuous-time system, so a final-value scaling 

factor Γ can be used to compensate the steady state value of the digitally redesigned 

closed-loop system.  Γ is calculated as Γ = 𝑦𝑐1(∞)/𝑦𝑑1(∞), where 𝑦𝑐1(∞) is the steady 

state value of 𝑦𝑐1(𝑡) in Figure 2-1, 𝑦𝑑1(∞) is the steady state value of 𝑦𝑑1(𝑡) in Figure 

4-2, which is the output value of 𝐺1(𝑠) under the digital control law 𝑢𝑑1(𝑡).    
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Figure 4-2.  Multi-rate digital control system  
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CHAPTER 5 - ILLUSTRATIVE EXAMPLES 

5.1 Example 1  

In this example, a liquid level control system [7] with the cascaded and output 

feedback controllers is described by transfer functions of 

𝐺1(𝑠) =
3.15

30𝑠 + 1
 

𝐺2(𝑠) =
10

s + 1
 

𝐺3(𝑠) =
8.71

𝑠2 + 3𝑠 + 9
 

subsystems.  Using the digital redesign steps described in Chapter 4 with the fast-rate 

sampling period, 𝑇𝑓 = 0.2𝑠 in the cascaded controller 𝐺2(𝑠) and the slow-rate sampling 

period, 𝑇𝑠 = 0.6𝑠 in the output feedback controller 𝐺3(𝑠), the digital control law of the 

improved digital redesign method are      

𝐾𝑒𝑑𝑓 = �
0.0026 −9.0624 7.9359 0.4699
0.0052 0.0026 8.2640 0.6996
−0.1046 −0.0981 0.0570 0.0026

� ,𝐸𝑒𝑑𝑓 = �
0.9365
0.9999
0.0067

� , (𝑇𝑓 = 0.2𝑠) 

𝐾𝑒𝑑𝑠 = �
0.0479 −7.4626 17.4286 2.6035
0.0320 0.0479 5.8996 1.2222
−0.1033 −0.2580 0.4153 0.0479

� ,𝐸𝑒𝑑𝑠 = �
2.4740
0.9937
0.0542

� , (𝑇𝑠 = 0.6𝑠) 

as above.  The digital control law of the Chebyshev bilinear method is    
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𝐾𝑒𝑑𝑓 = �
0.0060 −9.0855 7.4011 0.5693
0.0066 0.0060 8.1412 0.6262
−0.1046 −0.0951 0.0775 0.0060

� ,𝐸𝑒𝑑𝑓 = �
1.8096
0.9953
0.0379

� , (𝑇𝑓 = 0.2) 

𝐾𝑒𝑑𝑠 = �
0.0680 −7.5354 13.8048 2.1797
0.0295 0.0680 5.9821 0.9445
−0.1018 −0.2350 0.4305 0.0680

� ,𝐸𝑒𝑑𝑠 = �
3.9564
0.8572
0.2468

� , (𝑇𝑠 = 0.6𝑠) 

as above.  The final scaling factor is Γ = 1.052077 for the Chebyshev bilinear method.  

For comparison, it is also calculated the unit-step responses of the control laws of the 

direct bilinear transform method and the single-rate sampling digital control with 

𝑇 = 𝑇𝑓 = 0.2𝑠.  Figure 5-1 shows the simulation results of the unit-step responses of the 

closed-loop systems.  The percentage error of the original continuous-time system vs. the 

system via the proposed Chebyshev bilinear method is defined as 

∑ �𝑦𝑜𝑟𝑔�𝑘𝑇𝑓�−𝑦𝑖𝑛𝑑�𝑘𝑇𝑓��
𝑘𝑓
𝑘=1

∑ �𝑦𝑜𝑟𝑔�𝑘𝑇𝑓��
𝑘𝑓
𝑘=1

𝑥100, where the final sampling index kf = 160, is given by 

0.9054%.  Similarly, the percentage errors of the original continuous-time system vs. the 

systems via the improved digital method and the direct bilinear method are 0.3248% and 

1.4896%, respectively.  It is clear that when the fast-rate sampling used in the cascaded 

controller and the slow-rate sampling employed in the output feedback controller, the 

proposed indirect digital method and the Chebyshev bilinear method perform much better 

than that of the direct bilinear method in both transient and steady state response of the 

closed-loop system.  The performance of the improved digital method is better than that 

of the Chebyshev bilinear method.      
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Figure 5-1.  Unit-step responses of multi-rate sampled-data system (Tf/Ts) 

 

Figure 5-2.  Unit-step responses of multi-rate sampled-data system (Ts/Tf) 

On the other hand, if we use the fast-rate sampling period 𝑇𝑓 = 0.2𝑠 in the output 

feedback controller G3(s) and the slow-rate sampling period 𝑇𝑠 = 0.6𝑠 in the cascaded 

controller 𝐺2(𝑠), the unit-step responses of the closed-loop systems are shown in Figure 

5-2.  The percentage errors of the original continuous system vs. the systems via the 

Chebyshev bilinear method, the improved digital method, and the direct bilinear method 
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for kf = 160 are 1.2836%, 0.5687%, 7.3357%.  Similarly, the performances of the 

proposed methods are much better than that of the direct bilinear transform method.    

 

Figure 5-3.  Unit-step responses of multi-rate sampled-data system with long time 
sampling 

As mentioned in abstract, although the direct bilinear method is a fairly simple 

and widely used method, it is an open-loop design which does not take closed-loop 

stability into account.  Sampling periods of the digital redesigned system are changed to 

𝑇𝑓 = 1𝑠 and 𝑇𝑠 = 2𝑠, as shown in Figure 5-3, and it is obvious that the digitally 

redesigned system follows the continuous-time output; however, the direct bilinear 

transformation method is unstable.     

5.2 Example 2   

In the second example, an electro-mechanical control system structure [3] with 

subsystems as  
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𝐺1(𝑠) =
3s + 2.5

s2 + 2𝑠 + 3
, 

𝐺2(𝑠) =
s + 2
s + 3

, 

𝐺3(𝑠) =
𝑠2 + 2𝑠 + 1
𝑠2 + 4𝑠 + 5

, 

specified above.  Following the redesign step in Chapter 4 with the fast-rate sampling 

period 𝑇𝑓 = 0.1𝑠 in the cascaded controller 𝐺2(𝑠) and the slow-rate sampling period 

𝑇𝑠 = 0.3𝑠 in the output feedback controller 𝐺3(𝑠), the digital control laws of the 

improved digital redesign method are  

𝐾𝑒𝑑𝑓 = �
1.5335 2.1219 0.7564 −2.9430 −1.5102
1.6182 2.2332 −0.1112 −3.0951 −1.5875
−1.8063 −2.4794 0.1192 −0.4685 −0.2383

� , 

 𝐸𝑒𝑑𝑓 = �
0.8393
0.8808
0.1276

� , (𝑇𝑓 = 0.1𝑠) 

𝐾𝑒𝑑𝑠 = �
0.5088 1.1367 0.4877 −1.7742 −0.9605
0.6226 1.3271 −0.1904 −2.0527 −1.1072
−0.9424 −1.8461 0.2376 −0.8962 −0.4717

� , 

𝐸𝑒𝑑𝑠 = �
0.6707
0.7621
0.2932

� , (𝑇𝑠 = 0.3𝑠) 

as specified above.  The digital control law of the chebyshev bilinear method are    

𝐾𝑒𝑑𝑓 = �
1.2818 1.7416 0.7181 −2.6741 −1.3681
1.4039 1.9074 −0.1659 −2.9288 −1.4984
−1.7151 −2.3303 0.2026 −0.7545 −0.3860

� , 
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𝐸𝑒𝑑𝑓 = �
0.7540
0.8258
0.2128

� , (𝑇𝑓 = 0.1𝑠) 

𝐾𝑒𝑑𝑠 = �
0.4547 0.8076 0.5226 −1.7195 −0.9124
0.5733 1.0183 −0.2107 −2.1681 −1.1504
−1.0528 −1.8701 0.3869 −1.2731 −0.6755

� , 

𝐸𝑒𝑑𝑠 = �
0.6009
0.7577
0.4449

� , (𝑇𝑠 = 0.3𝑠)  

as above.  The final scaling factor is Γ = 0.946063 for the Chebyshev bilinear method.  

The unit-step responses of the improved digital redesign method, the Chebyshev bilinear 

method, the direct bilinear transform method and the original continuous-time closed-

loop system are presented in Figure 5-4.  The percentage errors of the original 

continuous-time system vs. the system via the Chebyshev bilinear method, improved 

digital redesign method, and the direct bilinear method for kf = 108 are 1.33%, 0.1795%, 

1.8087% respectively.  From the simulation results, it is shown that the direct bilinear 

transform method cannot tract the transient response of the original continuous-time 

system correctly, while the proposed Chebyshev bilinear and improved digital redesign 

methods still exhibit acceptable levels of performance.     
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Figure 5-4.  Unit-step responses of multi-rate sampled-data system (Tf/Ts) 

 

Figure 5-5.  Unit-step responses of the multi-rate sampled-data system (Ts/Tf) 

If we employ the fast-rate sampling period 𝑇𝑓 = 0.1𝑠 in the output feedback 

controller 𝐺3(𝑠) and slow-rate sampling period 𝑇𝑠 = 0.3𝑠 in the cascaded controller 

𝐺2(𝑠), the unit-step responses of the closed-loop systems are shown in Figure 5-5.  The 

percentage errors of the original continuous-time system vs. the systems via the 

Chebyshev bilinear method, improved digital redesign method, and the direct bilinear 
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method for kf = 108 are 2.4270%, 0.4925%, and 1.6902% respectively.  The 

performances of the proposed methods are better than that of the direct bilinear transform 

method.   

5.3 Example 3   

In the third example, consider the control system structure with subsystems as  

𝐺1(𝑠) =
−s + 2

s2 + 2𝑠 + 3
, 

𝐺2(𝑠) =
s + 1
s + 2

, 

𝐺3(𝑠) =
𝑠2 + 2𝑠 + 2
𝑠2 + 4𝑠 + 5

, 

specified above.  Following the redesign step in Chapter 4 with the fast-rate sampling 

period 𝑇𝑓 = 0.05𝑠 in the cascaded controller 𝐺2(𝑠) and the slow-rate sampling period 

𝑇𝑠 = 0.1𝑠 in the output feedback controller 𝐺3(𝑠), the digital control laws of the 

improved digital redesign method are    

𝐾𝑒𝑑𝑓 = �
1.9679 −0.8555 0.9734 −2.7544 −1.8752
2.0166 −0.8776 0.0222 −2.8241 −1.9223
−2.1163 0.9223 0.0229 0.0662 0.0447

� , 

 𝐸𝑒𝑑𝑓 = �
0.9980
1.0226
−0.0233

� , (𝑇𝑓 = 0.05𝑠) 

𝐾𝑒𝑑𝑠 = �
1.9230 −0.7219 0.9442 −2.5186 −1.7517
2.0174 −0.7611 0.0392 −2.6479 −1.8404
−2.2156 0.8434 −0.0419 0.1160 0.0796

� , 
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𝐸𝑒𝑑𝑠 = �
0.9924
1.0405
−0.0434

� , (𝑇𝑠 = 0.1𝑠) 

as specified above.  The digital control law of the Chebyshev bilinear method are    

𝐾𝑒𝑑𝑓 = �
1.8564 −0.8108 0.9910 −2.7400 −1.8641
1.9492 −0.8514 0.0405 −2.8770 −1.9573
−2.1516 0.9398 −0.0448 0.1237 0.0842

� , 

𝐸𝑒𝑑𝑓 = �
0.9910
1.0405
−0.0448

� , (𝑇𝑓 = 0.1𝑠) 

𝐾𝑒𝑑𝑠 = �
1.6896 −0.6471 0.9679 −2.4747 −1.7163
1.8586 −0.7118 0.0647 −2.7221 −1.8879
−2.2592 0.8652 −0.0787 0.2011 0.1395

� , 

𝐸𝑒𝑑𝑠 = �
0.9679
1.0647
−0.0787

� , (𝑇𝑠 = 0.3𝑠) 

as above.  The final scaling factor is Γ = 1.03159 for the Chebyshev bilinear method.  The 

unit-step responses of the improved digital redesign method, the Chebyshev bilinear 

method, the direct bilinear transform method and the original continuous-time closed-

loop system are presented in Figure 5-6.  The percentage errors of the original 

continuous-time system vs. the system via the Chebyshev bilinear method, improved 

digital redesign method, and the direct bilinear method for kf = 126 are 0.4943%, 

0.0366%, and 0.8198% respectively.  From the error percentages it is obvious that the 

proposed Chebyshev bilinear and improved digital redesign methods perform better 

closed-loop system responses than direct bilinear method and both methods exhibit 

acceptable levels of performance.   
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Figure 5-6.  Unit-step responses of multi-rate sampled-data system (Tf/Ts) 

 

Figure 5-7.  Unit-step responses of multi-rate sampled-data system (Ts/Tf) 

If we employ the fast-rate sampling period 𝑇𝑓 = 0.05𝑠 in the output feedback 

controller 𝐺3(𝑠) and slow-rate sampling period 𝑇𝑠 = 0.1𝑠 in the cascaded controller 

𝐺2(𝑠), the unit-step responses of the closed-loop systems are shown in Figure 5-7.  The 

percentage errors of the original continuous-time system vs. the systems via the 

Chebyshev bilinear method, improved digital redesign method, and the direct bilinear 
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method for kf = 126 are 0.9072%, 0.0548%, and 0.8429% respectively.  The performance 

of the improved digital redesign method is better than both of the other methods.  

Although, direct bilinear transform and Chebyshev bilinear transform perform close 

results, it is unknown whether the direct bilinear transform will provide closed-loop 

system response stability.    

5.4 Example 4   

This example is the same as example 3 except the fast and slow sampling times 

are changes to 𝑇𝑓 = 0.2𝑠, and 𝑇𝑠 = 0.4𝑠, respectively.  Following the redesign step in 

chapter 4, and using the fast-rate sampling period for the cascaded controller 𝐺2(𝑠) and 

the slow-rate sampling period for the output feedback controller 𝐺3(𝑠), the digital control 

laws of the improved digital redesign method are     

𝐾𝑒𝑑𝑓 = �
1.8031 −0.4879 0.8799 −2.0804 −1.5127
1.9792 −0.5477 0.0598 −2.3017 −1.6688
2.3654 0.6801 −0.0687 0.1744 0.1235

� , 

 𝐸𝑒𝑑𝑓 = �
0.9721
1.0644
−0.0738

� , (𝑇𝑓 = 0.2𝑠) 

𝐾𝑒𝑑𝑠 = �
1.4927 −0.1450 0.7416 −1.3543 −1.0877
1.7890 −0.2078 0.0628 −1.6714 −1.3253
−2.4938 0.3640 −0.0852 0.1742 0.1338

� , 

𝐸𝑒𝑑𝑠 = �
0.9082
1.0748
−0.1000

� , (𝑇𝑠 = 0.4𝑠) 

as specified above.  The digital control law using Chebyshev bilinear method are    
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𝐾𝑒𝑑𝑓 = �
1.3488 −0.3996 0.8999 −1.9861 −1.4275
1.6185 −0.4796 0.0799 −2.3833 −1.7130
−2.3706 0.7024 −0.1171 0.2584 0.1857

� , 

𝐸𝑒𝑑𝑓 = �
0.8999
1.0799
−0.1171

� , (𝑇𝑓 = 0.2𝑠) 

𝐾𝑒𝑑𝑠 = �
0.8108 −0.1431 0.7552 −1.2838 −0.9817
1.1351 −0.2003 0.0572 −1.7973 −1.3744
−2.3649 0.4173 −0.1192 0.2027 0.1550

� , 

𝐸𝑒𝑑𝑠 = �
0.7552
1.0572
−0.1192

� , (𝑇𝑠 = 0.4𝑠) 

as above.  The final scaling factor is Γ = 1.12433 for the Chebyshev bilinear method.  The 

unit-step responses of the improved digital redesign method, the Chebyshev bilinear 

method, the direct bilinear transform method and the original continuous-time closed-

loop system are presented in Figure 5-8.  The percentage errors of the original 

continuous-time system vs. the system via the Chebyshev bilinear method, improved 

digital redesign method, and the direct bilinear method for kf = 66 are 1.6278%, 

0.4604%, and 4.0080% respectively.  From the error percentages it is obvious that the 

proposed Chebyshev bilinear and improved digital redesign methods perform better 

closed-loop system responses than direct bilinear method and both methods exhibit 

acceptable levels of performance.   

If we employ the fast-rate sampling period 𝑇𝑓 = 0.2𝑠 in the output feedback 

controller 𝐺3(𝑠) and slow-rate sampling period 𝑇𝑠 = 0.4𝑠 in the cascaded controller 

𝐺2(𝑠), the unit-step responses of the closed-loop systems are shown in Figure 5-9.  The 

percentage errors of the original continuous-time system vs. the systems via the 
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Chebyshev bilinear method, improved digital redesign method, and the direct bilinear 

method for kf = 66 are 4.0414%, 0.8140%, and 8.5239% respectively.  The performance 

of the improved digital redesign method is better than both of the other method.  Also, the 

resulting closed-loop system response of direct bilinear transform method does not reach 

stability after 6 seconds.     

 

Figure 5-8.  Unit-step responses of multi-rate sampled-data system (Tf/Ts)  

 

Figure 5-9.  Unit-step responses of multi-rate sampled-data system (Ts/Tf) 



52 
 

Comparing examples 3 and 4, it is concluded that the error between the 

continuous-time system response and redesigned systems is significantly less when the 

sampling time of the system is decreased.   

5.5 Example 5   

In the fifth example, consider the unstable control system structure,  

𝐺1(𝑠) =
−1

𝑠2 + 1.5𝑠 − 1
. 

Continuous-time controller gains are calculated to match the desired continuous-

time response.  The continuous-time controller gains are  

𝐾𝑐 = [2 1],𝐸𝑐 =  −1, 

as shown above.  Following the redesign step in chapter 3 with the sampling period 

𝑇 = 0.2𝑠 and using N = 2, the digital control laws of the lifted digital redesign method 

are   

𝐾�𝑑
(𝑁) = �1.9667 0.9833

1.8398 0.9199�, 

𝐸�𝑑
(𝑁) = �−0.9667

−0.8398�, 

as specified above.  Also, the digital control gains calculated using improved digital 

redesign method and chebyshev bilinear method are   

𝐾𝑑𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = [1.9033 0.9516],𝐸𝑑𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = −0.9033, 
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and 

𝐾𝑑𝑐ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣 = [1.9048 0.9524],𝐸𝑑𝑐ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣 = −0.9048, 

respectively.  The unit-step response of the N-delay lifted redesign method and the 

original continuous-time closed-loop system are presented in Figure 5-8.  The percentage 

errors of the original continuous-time system vs. the system via the N-delay lifting 

method for kf = 155 is 9.5695x10-6%, which is an indicates that the redesigned method 

exactly follows the continuous-time system.  Basis of the designed system as explained in 

Chapter 3 the state matching at every sampling time.  The states of the continuous-time 

system and the N-delay lifted redesigned method are shown in Figure 5-11.  As a 

conclusion it is concluded that using the N-delay lifting method the state variables are 

matched at every sampling period and as a result both the continuous-time system 

response and the digitally redesigned system using N-delay lifting method are the same.   

 

Figure 5-10.  Unit-step response of N-delay sampled-data system  
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Figure 5-11.  State variables for continuous-time system and lifted redesigned system 

5.6 Example 6  

In the sixth example, consider the multi-input, multi-output system [26] with 

controllable and observable plant with the following parameters as 

𝐴 =  �
0.2 1 0
0 −2 1
−2 −1 −3

� ,𝐵 =  �
2 1
1 −0.5
2 −1

� ,𝐶 =  �1.5 0.1 0
0 1 −0.1� , 𝑥𝑐0 = �

0.7
−0.8
0.5

�, 

and continuous-time controller gains as  

𝐾𝑐 =  �126.2651 61.6655 −4.6711
81.0979 −75.8646 6.8861 �  , 

𝐸𝑐 =  �84.0743 54.1265
54.1427 −84.0603�, 

shown above.  Following the redesign steps in chapter 3 with the sampling period T = 

0.05s and using N = 2, the digital control laws of the lifted digital redesign method are   
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𝐾�𝑑
(𝑁) = �

14.0380 26.3297 −1.8816
8.5621 −23.5760 1.2585
−3.9272 −4.8879 1.0102
11.0288 −19.3408 0.8653

�, 

𝐸�𝑑
(𝑁) =  �

9.2574 26.2916
5.7585 −26.8991
−2.6862 −3.7890
7.3984 −22.8233

�, 

as specified above.  Also, the digital control gains calculated using improved digital 

redesign method and Chebyshev bilinear method are   

𝐾𝑑𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = �5.0635 10.7161 −0.4352
9.7912 −21.4820 1.0642 � ,𝐸𝑑𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = �3.2910 11.2460

6.5756 −24.8846�, 

and 

𝐾𝑑𝑐ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣 = �10.4226 15.1798 −0.8488
14.4545 −28.7176 1.8267 �,  

𝐸𝑑𝑐ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣 = �6.8643 15.3484
9.6827 −32.4228� 

respectively.  In this example the output is designed to track the reference input signals, 

which are sin(t) and cos(t), which are shown in Figure 5-12.  The output responses of the 

N-delay lifted redesign method and the original continuous-time closed-loop system are 

presented in Figures 5-13 and 5-14.  Also, the reference input sin(t) is replaced with a 

step input and the output still follows the reference input as seen in Figure 5-15.  From 

the figures it is seen that digitally redesigned outputs follow the input references.     
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Figure 5-12.  Reference inputs 

 

Figure 5-13.  Reference input sin(t) and digitally redesigned lifted output 
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Figure 5-14.  Reference input cos(t) and digitally redesigned lifted output 

 

Figure 5-15.  Reference input step input and digitally redesigned lifted output 
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Figure 5-16.  Error of digitally redesigned system outputs 
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CHAPTER 6 - SUMMARY AND CONCLUSIONS 

6.1 Summary 

The use of multi-rate redesign, N-delay lifting methods has become popular in 

today’s world and has been widely used in several engineering problems.  This study 

presents new approximation methods derived using the Chebyshev bilinear redesign 

method, the improved digital redesign method for estimating the dynamic output 

feedback and cascaded controller gains 𝐾𝑑, 𝐸𝑑 values, respectively.  To implement the 

redesigned digital state feedback control law, an ideal state reconstructing algorithm is 

utilized to obtain discrete-time states of the original continuous-time closed-loop system.  

The approximation methods are further expanded to include systems as cascaded and 

feedback gains to calculate 𝐾𝑑 and 𝐸𝑑 matrices.  Further research is conducted using the 

N-delay lifting method to calculate the exact 𝐾𝑑 and 𝐸𝑑 values.  For this purpose, 

different continuous-time systems (stable/unstable) are simulated using Matlab/Simulink, 

which resulted in acceptable results in approximation methods and exact output responses 

for N-delay lifting method.  The results using both the approximation and exact methods 

are compared with widely used more simple methods to indicate the difference between 

all redesigned systems.  The simulated systems are examples that are previously used in 

books and papers, so that the simulated system is based on real-life problems.  After a 

significant amount of simulations were conducted to accurately model the continuous-

time systems and the digital redesigned systems, result of these examples are presented 

and several conclusions were drawn from this study. 

 



60 
 

6.2 Conclusions 

The study resulted in the following conclusions: 

1) Using the Chebyshev bilinear method and the improved digital redesign 

method, the gains of the digital controllers for a multi-rate sampled-data 

control system are determined, which ensures the states of the closed-loop 

hybrid control system closely matching those of the original continuous-

time control system.   

2) Using the N-delay lifting method, the gains of the digital controllers for a 

control system are determined, which results in the states of the closed-

loop hybrid control system to exactly match those of the original 

continuous-time control system.   

3) The output error percentages of different digital redesign methods are 

compared, and  as expected the lifting method results in almost zero 

percent error, while Chebyshev bilinear and improved digital redesign 

indicate between 0.2-4 percent errors which are within acceptable limits.  

All of the digital redesign methods exhibit a better performance than 

widely used direct bilinear method, which results in error percentages 

between 8-17 percent.   

4) Proposed multi-rate digital redesign method allows the development of 

inexpensive an high performance digital controllers for effective hybrid 

control of continuous-time systems.     
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5) The simulation results that the developed methods exhibit better output-

tracking performance than that of widely used traditional direct bilinear 

transform method.   

6.3 Future Research 

Scope of this work was limited to systems with no input delays.  The following is 

a list of ideas for possible future work: 

a) Systems with input-time delays could be in developed.  

b) Time delay while reconstructing digital states could be examined.   

c) The gains for muti-rate sampled-data using N-delay lifting method could 

be investigated.    

d) Research on multi-rate redesign on non-linears systems could be 

performed.   

 



62 
 

REFERENCES 

[1] Anderson, B. D. (1993, August). "Controller design: moving from theory to 

practice." IEEE Control Systems Magazine, 13(4), 16-25. 

[2] Astrom, K. J., & Hagglund, T. (1995). "PID controllers, theory, design and 

tuning." Instrument Society of America. 

[3] Astrom, K. J., & Wittenmark, B. (1997). "Computer controlled systems." Upper 

Saddle River, N.J.: Prentice Hall. 

[4] Chen, T., & Qiu, L. (1994, July). "H∞ design of general multirate sampled-data 

control systems." Automatica, 30(7), 831-847. 

[5] Cimino, C., & Pagilla, P. R. (2009, November). "A design technique for multirate 

linear systems." IEEE Transactions on Control Systems Technology, 17(6), 1342-

1349. 

[6] Costin, M. H., & Elzinga, D. R. (1989). "Active reduction of low-frequency tire 

impact noise using digital feedback control." IEEE Control Systems Magazine, 

9(5), 3-6. 

[7] Dorf, R. C., & Bishop, R. H. (2005). "Modern control systems." (10/E ed.). N.J.: 

Prentice Hall. 

[8] Fujimoto, H., Hori, Y., & Kawamura, A. (2001, June). "Perfect tracking control 

based on multirate feedforward control with generalized sampling periods." IEEE 

Transactions on Industrial Electronics, 48(3), 636-644. 

[9] Fujimoto, H., Kawamura, A., & Tomizuka, M. (1999, June). "Generalized digital 

redesign method for linear feedback system based on n-delay control." 

IEEE/ASME Transactions on Mechatronics, 4(2), 101-109. 



63 
 

[10] Glasson, D. P. (1983). "Development and applications of multirate digital 

control." IEEE Control System Magazine, 3(4), 2-8. 

[11] Guo, S.-M., Shieh, L. S., Chen, G., & Lin, C.-L. (2000, November). "Effective 

chaotic orbit tracker: A prediction-based digital redesign approach." IEEE 

Transactions on Circuits and Systems-I. Fundamental Theory and Applications, 

47(11), 1557-1570. 

[12] Huang, C., Frederick, D., & Rimer, M. (1989, August). "CACSD benchmark 

problem no. 3." IEEE Control Systems Magazine, 9(5), 12-14. 

[13] Kando, H., Yonemoto, Y., & Iwazumi, T. (1993). "Multi-rate regulator design of 

two-time-scale systems via digital redesign method." International Journal of 

Systems Science, 24(4), 691-706. 

[14] Kranc, G. M. (1957). "Input-output analysis of multirate feedback systems." IRE 

Transactions on Automatic Control, 3(1), 21-28. 

[15] Lee, S. H. (2006, January). "Multirate digital control system design and its 

application to computer disk drives." IEEE Transactions on Control Systems 

Technology, 14(1), 124-133. 

[16] Li, Y., Yang, S. H., Zhang, Z., & Wang, Q. (2010). "Network load minimisation 

design for dual-rate Internet-based control systems." IET Control Theory Appl., 

4(2), 197-205. 

[17] Polites, M. E. (1989). "Ideal state reconstructor for deterministic digital control 

systems." International Journal of Control, 49(6), 2001-2012. 

[18] Ralston, A., & Rabinowitz, P. (2001). "A first course in numerical analysis." (2 

ed.). Dover Publications. 



64 
 

[19] Shieh, L. S., Chen , G., & Tsai, J. S. (1992). "Hybrid suboptimal control of multi-

rate multi-loop sampled-data systems." International Journal of Systems Science, 

23(6), 839-854. 

[20] Shieh, L. S., Gu, J., & Bao, Y. L. (1993, November). "Model conversions of 

uncertain linear systems using the pade and inverse-pade method." IEE 

Proceedings-D, Control Theory and Applications, 140(6), 455-464. 

[21] Shieh, L. S., Wang, W. M., & Panicker, A. (1998). "Design of pam and pwm 

digital controllers for cascaded analog systems." ISA Transactions, 37(3), 201-

213. 

[22] Trinh, H. (1999). "Linear Functional state observer for time-delay systems." 

International Journal of Control, 72(18), 1642-1658. 

[23] Tsai, J. H., Chen, C. M., & Shieh, L. S. (1993, January). "Modelling of multirate 

feedback systems using uniform-rate models." Applied Mathematical Modelling, 

17(1), 2-14. 

[24] Tsay, Y. T., Shieh, L. S., & Tsai, J. S. (1986). "A fast method for computing the 

principal nth roots of complex matrices." Applications of Linear Algebra, 76, 205-

221. 

[25] Wang, H. P., Shieh, L. S., Tsai, J. S., & Zhang, Y. (2008, May). "Optimal digital 

controller and observer design for multiple time-delay transfer function matrices 

with multiple input-output delays." International Journal of Systems Science, 

39(5), 461-476. 



65 
 

[26] Wang, H. P., Tsai, J. S., Yi, Y. I., & Shieh, L. S. (2004, April 10). "Lifted digital 

redesign of observer-based tracker for a sampled-data system." International 

Journal of Systems Science, 35(4), 255-271. 

[27] Yang, L., & Yang, S. H. (2007, March). "Multi-rate control in internet based 

control systems." IEEE Transactions on Systems, Man and Cybernetics-Part C: 

Applications and Reviews", 37(2), 185-192. 

 

 



66 
 

Appendix A - Modeling Error of Direct Bilinear method for 

Singular A Matrices 

The exact discretization of the continuous-time system in equations (2-1) and 

(2-2) with a piece-wise-constant input 𝑢𝑐(𝑡) = 𝑢𝑐(𝑘𝑇),𝑘𝑇 ≤ 𝑡 < 𝑘𝑇 + 𝑇, can be 

described as  

𝑥𝑐(𝑘𝑇 + 𝑇) = 𝐺𝑥𝑐(𝑘𝑇) + 𝐻𝑢𝑐(𝑘𝑇),    (A-1) 

where 𝐺 = 𝑒𝐴𝑇 and 𝐻 =  ∫ 𝑒(𝑘𝑇+𝑇−𝜆)𝑘𝑇+𝑇
𝑘𝑇 𝐵𝑑𝜆 = (𝐺 − 𝐼𝑛)𝐴−1𝐵 for a non-singular 

matrix A are the same matrices with equations (4-1) and (4-2).  When the matrix A is a 

singular matrix, the matrix H can be evaluated as 𝐻 =  ∑ 𝑇
𝑖!

∞
𝑖=1 (𝐴𝑇)𝑖−1𝐵.  Integrating 

both side of equation (4-1) yields  

∫ 𝑥̇𝑐(𝑡)𝑘𝑇+𝑇
𝑘𝑇 𝑑𝑡 = 𝐴∫ 𝑥𝑐(𝑡)𝑘𝑇+𝑇

𝑘𝑇 𝑑𝑡 + 𝐵 ∫ 𝑢𝑐(𝑡)𝑘𝑇+𝑇
𝑘𝑇 𝑑𝑡.  (A-2) 

Since 𝑢𝑐(𝑡) = 𝑢𝑐(𝑘𝑇) for 𝑘𝑇 ≤ 𝑡 < 𝑘𝑇 + 𝑇, then the first integral term in the 

right-hand side of (A-2) can be approximately evaluated using the trapezoidal rule as 

∫ 𝑥𝑐(𝑡)𝑘𝑇+𝑇
𝑘𝑇 𝑑𝑡 =  𝑇

2
(𝑥𝑐(𝑘𝑇 + 𝑇) + 𝑥𝑐(𝑘𝑇)).  So equation (A-2) becomes  

𝑥𝑐(𝑘𝑇 + 𝑇) − 𝑥𝑐(𝑘𝑇) =  𝐴𝑇
2
�𝑥𝑐(𝑘𝑇 + 𝑇) + 𝑥𝑐(𝑘𝑇)� + 𝑇𝐵𝑢𝑐(𝑘𝑇)  (A-3) 

as above.  Then the state-space model in equations (2-40) and  (2-41) is obtained with 

𝐺𝑏 = �𝐼𝑛 −
𝐴𝑇
2
�
−1
�𝐼𝑛 + 𝐴𝑇

2
� ,𝐻𝑏 = (𝐼𝑛 − 𝐴𝑇/2)−1𝐵𝑇.  The Taylor series expansion of 

the system matrix 𝐺 = 𝑒𝐴𝑇 gives     
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𝐺 = 𝐼𝑛 + 𝐴𝑇 +
1
2

(𝐴𝑇)2 + �
1
𝑖!

∞

𝑖=3
(𝐴𝑇)𝑖 

     ≅ 𝐼𝑛 + 𝐴𝑇 +
1
2

(𝐴𝑇)2 + �
1

2𝑖−1
∞

𝑖=3
(𝐴𝑇)𝑖 

     = 𝐼𝑛 + 𝐴𝑇 +
1
2
�𝐼𝑛 − �

1
2
𝐴𝑇��

−1

 

     = �𝐼𝑛 − �
1
2
𝐴𝑇��

−1

�𝐼𝑛 + �
1
2
𝐴𝑇�� 

  = 𝐺𝑏        (A-4) 

for �1
2
𝐴𝑇� < 1.  The approximated input vector 𝐻 = (𝐺 − 𝐼𝑛)𝐴−1𝐵 gives  

𝐻 = (𝐺 − 𝐼𝑛)𝐴−1𝐵 ≅ (𝐺𝑏 − 𝐼𝑛)𝐴−1𝐵 = �𝐼𝑛 − �1
2
𝐴𝑇��

−1
𝐵𝑇 = 𝐻𝑏. (A-5) 

Define the system modeling error matrix 𝐸𝑔 = 𝑒𝐴𝑇 − 𝐺𝑏 for the open-loop 

bilinear system model equations (2-40) and (2-41), then 𝐸𝑔 = ∑ �1
𝑖!
− 1

2𝑖−1
�∞

𝑖=1 (𝐴𝑇)𝑖 is 

obtained.  Since 1
𝑖!
− 1

2𝑖−1
< 0 for i ≥ 3, then  

�𝐸𝑔� = ‖𝑒𝐴𝑇 − 𝐺𝑏‖ ≤ ∑ �1
𝑖!
− 1

2𝑖−1
�∞

𝑖=1 �(𝐴𝑇)𝑖� = 1+0.5‖𝐴𝑇‖
1−0.5‖𝐴𝑇‖

− 𝑒‖𝐴𝑇‖ (A-6) 

is obtained for 𝑇 ≤ 2
‖𝐴‖

.   

Similarly, The input modeling error vector (denoted as Eb) for the open-loop 

bilinear system model in equations (2-40) and (2-41) is  
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𝐸𝑏 = (𝐺 − 𝐼𝑛)𝐴−1𝐵 − �𝐼𝑛 − �
1
2
𝐴𝑇��

−1

𝐵𝑇  

      = ��
1
𝑖!
−

1
2𝑖−1

�
∞

𝑖=1

(𝐴𝑇)𝑖𝐵𝑇 

= �∑ �1
𝑖!
− 1

2𝑖−1
�∞

𝑖=1 (𝐴𝑇)𝑖� 𝐴−1𝐵 = 𝐸𝑔𝐴−1𝐵.  (A-7) 

Hence, the modeling error value becomes  

‖𝐸𝑏‖ ≤ �𝐸𝑔�‖𝐴−1𝐵‖ ≤ �𝐸𝑔�‖𝐴‖−1‖𝐵‖   (A-8) 

for 𝑇 ≤ 2
‖𝐴‖

 and a non-singular matrix A.  If the matrix A is singular, the modeling error 

value ‖𝐸𝑏‖ becomes  

‖𝐸𝑏‖ ≤ (∑ ( 1
2𝑖−1

− 1
𝑖!

)∞
𝑖=1 ‖𝐴𝑇‖𝑖−1)‖𝐵‖𝑇.   (A-9) 

 

Appendix B - Exact Evaluation of Discrete-time Model 

Consider the continuous-time signal expressed in state space model as below  

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 𝑥(0) =∝,    (B-1) 

and 𝑢(𝑡) = 𝑢(𝑘𝑇) for 𝑘𝑇 ≤ 𝑡 < 𝑘𝑇 + 𝑇.   

Assume that 𝑥(𝑡) = 𝑒𝐴𝑇𝑓(𝑡), then the derivative of x(t) follows 

𝑥̇(𝑡) = 𝐴𝑒𝐴𝑡𝑓(𝑡) + 𝑒𝐴𝑡𝑓(𝑡)̇  
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    = 𝐴𝑥(𝑡) + 𝑒𝐴𝑡𝑓(𝑡)̇ ,     (B-2) 

as shown above.  Comparing equations (B-1)and (B-2), it is concluded that 𝑒𝐴𝑇𝑓(𝑡)̇ =

𝐵𝑢(𝑡).  Integrating 𝑓(𝑡)̇  from -∞ to t is derived as below  

𝑓(𝑡)̇ = 𝑒−𝐴𝑡𝐵𝑢(𝑡),     (B-3) 

𝑓(𝑡) = ∫ 𝑒−𝐴𝜆𝑡
−∞ 𝐵𝑢(𝜆)𝑑𝜆,    (B-4) 

Replacing equation (B-4) with the assumption that was made for x(t) follows as  

𝑥(𝑡) =  𝑒𝐴𝑡𝑓(𝑡) = 𝑒𝐴𝑡 � 𝑒−𝐴𝜆
𝑡

−∞

𝐵𝑢(𝜆)𝑑𝜆 

= 𝑒𝐴𝑡 � � 𝑒−𝐴𝜆
0

−∞

𝐵𝑢(𝜆)𝑑𝜆 + �𝑒−𝐴𝜆
𝑡

0

𝐵𝑢(𝜆)𝑑𝜆� 

= 𝑒𝐴𝑡𝑥(0) + ∫ 𝑒−𝐴(𝑡−𝜆)𝑡
0 𝐵𝑢(𝜆)𝑑𝜆    (B-5) 

shown above.   

Equation (B-5) is one of the fundamental equations used to derive the exact 

discrete-time modeling.  Substituting two different time intervals t=kT and t=kT+T leads 

to the discrete-time model as follows.  For t=kT  

𝑥(𝑘𝑇) = 𝑒𝑘𝐴𝑇𝑥(0) + ∫ 𝑒𝐴(𝑘𝑇−𝜆)𝑘𝑇
0 𝐵𝑢(𝜆)𝑑𝜆 ,  (B-6) 

and for t=kT+T  
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𝑥(𝑘𝑇 + 𝑇) = 𝑒𝐴(𝑘𝑇+𝑇)𝑥(0) + � 𝑒𝐴(𝑘𝑇+𝑇−𝜆)
𝑘𝑇+𝑇

0
𝐵𝑢(𝜆)𝑑𝜆 

= 𝑒𝐴𝑇 �𝑒𝑘𝐴𝑇𝑥(0) + � 𝑒𝐴(𝑘𝑇−𝜆)
𝑘𝑇

0
𝐵𝑢(𝜆)𝑑𝜆� + � 𝑒𝐴(𝑘𝑇+𝑇−𝜆)

𝑘𝑇+𝑇

𝑘𝑇
𝐵𝑑𝜆𝑢(𝑘𝑇) 

= 𝑒𝐴𝑇𝑥(𝑘𝑇) + [𝑒𝐴𝑇 − 𝐼𝑛]𝐴−1𝐵𝑢(𝑘𝑇) 

= 𝐺𝑥(𝑘𝑇) + 𝐻𝑢(𝑘𝑇),        (B-7) 

is as shown above, where 𝐺 = 𝑒𝐴𝑇 𝑎𝑛𝑑 𝐻 = (𝐺 − 𝐼𝑛)𝐴−1𝐵.    
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