IDEALS IN NEAR-RINGS

A Thesis<br>Presented to the Faculty of the Department of Mathematics University of Houston

In Partial Fulfillment of the Requirements for the Degree Master of Science

by
Frank J. Hall
August, 1967

## ACKNOWLEDGEMENTS

The author wishes to express his appreciation to his advisor, Joseph J. Malone, Jr., for his assistance in the preparation of this thesis.

# An Abstract of a Thesis Presented to the Faculty of the Department of Mathematics University of Houston 

In Dartial Fulfillment of the Requirements for the Degree Master of Science
by
Frank J. Hall
August, 1967

## ABSTRACT

Near-rings form a class which contains rings. In this thesis, a definition for a near-ring ideal is given. Generalizations from ideals in rings are then obtained.

## TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION ..... 1
Definition of near-ring ideal ..... 1
An example of an ideal ..... 4
II. GENERALIZATIONS FROM RING THEORY ..... 6
Sum of ideals ..... 6
A decomposition theorem ..... 7
Prime ideals ..... 11
Ideals in R-rings ..... 17
Ideals in C-rings ..... 19
Principal ideals in near-rings with
identities ..... 19
III. IDEALS IN MATRIX NEAR-RINGS ..... 22
Ideals in matrix rings ..... 22
Ideals in matrix near-rings ..... 22
BIBLIOGRAPHY ..... 27

## CHAPTER I

INTRODUCTION

Definition of near-ring ideal
Suppose that ( $G,+$ ) is an abelian group and that End(G) is the set of endomorphisms on $G$. We define on End(G) two binary operations (denoted by + and .) in the following manner:

$$
\begin{aligned}
& g(a+b)=g a+g b \\
& g(a \cdot b)=(g a) b
\end{aligned}
$$

where $g$ belongs to $G$ and $a, b$ belong to End $G$. . One can easily verify that the system (End $(G),+, \cdot)$ is an example of a ring.

Now, suppose that $G$ is not abelian. Then, not all of the ring properties hold for (End (G),,$+ \cdot$ ). For example, commutativity of addition fails. Moreover, closure with respect to addition is not guaranteed. However, if we consider the set $T(G)$ of transformations on $G$ (under the same binary operations), all ring properties except commutativity of addition and the right distributive law are satisfied. ( $T(G),+\cdot$ ) is an example of a (left) near-ring. More precisely, a (left) near-ring is a system ( $N,+, \cdot$ ) such that
(i) $(N,+)$ is a group,
(ii) $(\mathbb{N}, \cdot)$ is a semigroup,
(iii) multiplication is left distributive with respect to addition. Clearly, a ring is a near-ring.

If $R$ is a ring, the ideals in $R$ coincide with the kernels of homomorphisms of $R$. Do there exist definitions for ideals and near-ring homomorphisms such that the ideals in a near-ring N are the kernels of near-ring homomorphisms of N?

A mapping $\lambda$ from a near-ring $N$ into a near-ring $N^{\prime}$ will be called a near-ring homomorphism if

$$
\left(n_{1}+n_{2}\right) \lambda=n_{1} \lambda+n_{2} \lambda \text { and }\left(n_{1} n_{2}\right) \lambda=\left(n_{1} \lambda\right)\left(n_{2} \lambda\right),
$$

where $n_{1}, n_{2}$ belong to $N$. Suppose that $J$ is any additive normal subgroup of $N$. Let $\pi$ denote the natural group homomorphism from $N$ onto $N / J$. Define multiplication on $N / J$ in the following way:

$$
\left(n_{1}+J\right)\left(n_{2}+J\right)=n_{1} n_{2}+J .
$$

Under which conditions will this multiplication be welldefined? Suppose that $n_{1} \equiv n_{1}^{\prime}(\bmod J)$ and $n_{2} \equiv n_{2}^{\prime}(\bmod J)$. Now, $n_{1}=n_{1}^{1}+j_{1}$ for some $j_{1}$ in $J$. Since $J$ is normal in $(N,+), n_{2}^{\prime}+J=J+n_{2}^{\prime}$. So, $n_{2}=j_{2}+n_{2}^{\prime}$ for some $j_{2}$ in $J$.

Hence,

$$
\begin{aligned}
n_{1} n_{2} & =\left(n_{1}^{\prime}+j_{1}\right)\left(j_{2}+n_{2}^{\prime}\right) \\
& =\left(n_{1}^{\prime}+j_{1}\right) j_{2}+\left(n_{1}^{\prime}+j_{1}\right) n_{2}^{\prime} \\
& =\left(n_{1}^{\prime}+j_{1}\right) j_{2}+\left(n_{1}^{\prime}+j_{1}\right) n_{2}^{\prime}-n_{1}^{\prime} n_{2}^{\prime}+n_{1}^{\prime} n_{2}^{\prime}
\end{aligned}
$$

Assume that $N J$ is a subset of $J$ and that $(n+j) n^{\prime}-n n^{\prime}$ is in $J$ for $n, n^{\prime}$ in $N$ and $j$ in $J$. Then, $\left(n_{1}+j_{2}\right) j_{2}$ and $\left(n_{1}^{\prime}+j_{1}\right) n_{2}^{\prime}-n_{1}^{\prime} n_{2}^{\prime}$ belong to J. Thus,

$$
n_{1} n_{2}=j_{3}+n_{1}^{\prime} n_{2}^{\prime} \text { for some } j_{3} \text { in } J .
$$

Hence, $n_{1} n_{2} \equiv n_{1}^{\prime} n_{2}^{\prime}(\bmod J)$ and the multiplication is welldefined. Consequently, $N / J$ is a near-ring and $\pi$ is a nearring homomorphism. $J$ is the kernel of $\pi$.

Let $K$ be the kernel of a homomorphism $\lambda$ of a near-ring N. Then, $K$ is an additive normal subgroup of $N$. Since $\mathrm{nO}=\mathrm{n}(0+0)=\mathrm{nO}+\mathrm{nO}, \mathrm{nO}=0$ for any n in N . So NK is a subset of K. Also,

$$
\begin{aligned}
{\left[\left(n_{1}+k\right) n_{2}-n_{1} n_{2}\right] \lambda } & =\left[\left(n_{1}+k\right) n_{2}\right] \lambda-\left(n_{1} n_{2}\right) \lambda \\
& =\left[\left(n_{1}+k\right) \lambda\right]\left(n_{2} \lambda\right)-\left(n_{1} n_{2}\right) \lambda \\
& =\left(n_{1} \lambda+k \lambda\right)\left(n_{2} \lambda\right)-\left(n_{1} n_{2}\right) \lambda \\
& =\left(n_{1} \lambda\right)\left(n_{2} \lambda\right)-\left(n_{1} n_{2}\right) \lambda=0
\end{aligned}
$$

Thus, $\left(n_{1}+k\right) n_{2}-n_{1} n_{2}$ is in $k$ for $n_{1} n_{2}$ in $N, k$ in $k$.

We define an ideal $J$ in $N$ as an additive normal subgroup such that $N J$ is a subset of $J$ and $\left(n_{1}+j\right) n_{2}-n_{1} n_{2}$ belongs to $J$ for $n_{1}, n_{2}$ in $N$ and $j$ in $J$ (see [1]). Therefore, ideals in $N$ coincide with the kernels of near-ring homomorphisms of $N$. Note that if $N$ is a ring, an ideal in $N$ (considered as a near-ring) is an ideal in $N$ considered as a ring.

An example of an ideal
We give an example of an ideal which will be used for later reference. Consider the non-abelian group of order 6.

| + | 0 | $a$ | $b$ | $c$ | $d$ | $e$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | $a$ | $b$ | $c$ | $d$ | $e$ |
| $a$ | $a$ | $b$ | 0 | $e$ | $c$ | $d$ |
| $b$ | $b$ | 0 | $a$ | $d$ | $e$ | $c$ |
| $c$ | $c$ | $d$ | $e$ | 0 | $a$ | $b$ |
| $d$ | $d$ | $e$ | $c$ | $b$ | 0 | $a$ |
| $e$ | $e$ | $c$ | $d$ | $a$ | $b$ | 0 |

Let $M=\{0, a, b\}$ and $T=\{c, d, e\}$. If $m$ belongs to $M$ and $x$ belongs to $G$, define $m x=0$. If $y$ belongs to $T$ and $x$ belongs to $G$, define $y x=x$. Under this multiplication, $G$ is a nearring (see [3]). Notice that ( $c+e$ ) $a=b a=0$ and $c a+e a=a+a=b ;$ the right distributive law does not hold.

Now, $M$ is a normal subgroup of $(G,+)$ and $M G$ is a subset of M. Also, $\left(x_{1}+m\right) x_{2}-x_{1} x_{2}=0$ for $m$ in $M$ and $x_{1}, x_{2}$ in $G$. If $x_{1}$ belongs to $M$, then $\left(x_{1}+m\right) x_{2}-x_{1} x_{2}=0-0=0$. If $x_{1}$ belongs to $T, x_{1}+m$ belongs to $T$ for $m$ in $M$. In this case, $\left(x_{1}+m\right) x_{2}-x_{1} x_{2}=0$. Hence, $M$ is an ideal in $G$. As we shall see in Chapter $I I$, the ideal $M$ is also principal and prime.

## CHAPTER II

## GENERALIZATIONS FROM RING THEORY

## Sum of ideals

Suppose that $J$ and $L$ are ideals of a near-ring $N$. Let $J+L=\{j+1 \mid j$ is in $J, l$ is in $L\}$. Is $J+L$ an ideal? Suppose $j_{1}+1_{1}$ and $j_{2}+1_{2}$ are in $J+L$. Then,

$$
\begin{aligned}
\left(j_{1}+1_{1}\right)- & \left(j_{2}+l_{2}\right)=j_{1}+l_{1}-l_{2}-j_{2} \\
= & j_{1}+l_{3}-j_{2} \text { for some } l_{3} \text { in } L \\
= & j_{1}+j_{3}+l_{3} \text { for some } j_{3} \text { in } J \\
& \text { since } l_{3}+J=J+l_{3} \\
= & j_{4}+l_{3} \text { for some } j_{4} \text { in } J .
\end{aligned}
$$

So, $\mathcal{J}+L$ is a subgroup of $(N,+)$. Since,

$$
n+j+1-n=n+j-n+n+1-n \text { is in } J+L
$$

for $n$ in $N$, $j$ in $J$, and $l$ in $L, J+L$ is a normal subgroup of $(N,+)$. Now, $n(j+1)=n j+n l$, which is in $J+L$. Hence, $N(J+L)$ is a subset of $J+L$. Consider

$$
\left[\left(n_{1}+j\right)+i\right] n_{2}-\left(n_{1}+j\right) n_{2}=l_{1} \text { for some } l_{1} \text { in } L
$$

Now,

$$
\left[\left(n_{1}+j\right)+l\right] n_{2}=l_{1}+\left(n_{1}+j\right) n_{2}-n_{1} n_{2}+n_{1} n_{2} .
$$

Hence,

$$
\left[\left(n_{1}+j\right)+l\right] n_{2}-n_{1} n_{2}=l_{1}+j_{1} \text { for some } j_{1} \text { in } J .
$$

But, $I_{1}+j_{1}$ is in $J+L$ since $J$ and $L$ are normal in $(N,+)$. So, $J+L$ is an ideal. By induction, a finite sum of ideals is an ideal.

## A decomposition theorem

Suppose that $(N,+, \cdot)$ is a near-ring. A sub-near-ring of $(N,+, \cdot)$ is a system $(Q,+, \cdot)$ such that $(Q,+)$ is a subgroup of $(N,+)$ and ( $Q, \cdot$ ) is a sub-semi-group of ( $N, \cdot$ ). The nearring $(N,+, \cdot)$ is said to be the sum of the sub-near-rings $(S,+, \cdot)$ and $(T,+, \cdot)$ iff every element of $N$ can be expressed as a unique sum of elements $s+t$, $s$ in $S, t$ in $T$.

Let $N_{C}=\{a$ in $N \mid 0 a=0\}$ and $N_{z}=\{z$ in $N \mid a z=z$, a in $N\}$. Then $N_{C}$ and $N_{z}$ are sub-near-rings and $N$ is the sum of $N_{C}$ and $N_{z}$. Note that the intersection of $N_{c}$ and $N_{z}$ is $\{0\}$ (see [1]). Suppose that $J$ is an ideal in $N$. Let $J_{C}=\left\{n_{C}\right.$ in $N_{C} \mid n_{C}+n_{z}$ is in $J$ for some $n_{z}$ in $\left.N\right\}$ and $J_{z}=\left\{n_{z}\right.$ in $N_{z} \mid n_{C}+n_{z}$ is in $J$ for some $n_{C}$ in $\left.N_{C}\right\}$. We will show that $J=J_{C}+J_{z}$ and that $J_{C}$ and $J_{z}$ are ideals in $\mathrm{N}_{\mathrm{C}}$ and $\mathrm{N}_{\mathrm{z}}$ respectively.

Since $J$ is an ideal in $N, J$ is the kernel of some homomorphism $\lambda$ from $N$ onto a near-ring $N^{\prime}$. Let $\lambda$ restricted to $N_{c}$ be denoted by $\lambda_{1}$ and $\lambda$ restricted to $N_{z}$ be denoted by
$\lambda_{2} . \lambda_{1}$ and $\lambda_{2}$ are homomorphisms into $N^{\prime}$ of $N_{C}$ and $N_{Z}$, respectively. Since, for $\mathrm{n}_{\mathrm{C}}$ in $\mathrm{N}_{\mathrm{C}}$,

$$
0=0 \lambda=\left(0 n_{c}\right) \lambda=(0 \lambda)\left(n_{c} \lambda\right)=0\left(n_{c} \lambda\right) .
$$

$N_{C}{ }^{\lambda}$ is a subset of $N_{C}^{\prime}$. If $q$ belongs to $N^{\prime}$, there exists $n$ in $N$ such that $n \lambda=q$. So, $q\left(n_{z} \lambda\right)=(n \lambda)\left(n_{z} \lambda\right)=\left(n n_{z}\right) \lambda=n_{z} \lambda$ if $n_{z}$ is in $N_{z}$. Hence, $N_{z} \lambda$ is a subset of $N_{z}^{\prime}$.

Let $J_{1}$ be the kernel of $\lambda_{1}$ and $J_{2}$ be the kernel of $\lambda_{2}$. If $n_{c}$ belongs to $J_{1}$,

$$
\left(n_{C}+0\right) \lambda=n_{c} \lambda_{2}+0 \lambda_{2}=0+0=0 .
$$

So, $n_{c}$ is in $J_{C}$. If $n_{z}$ belongs to $J_{2}$,

$$
\left(0+n_{z}\right) \lambda=0 \lambda_{1}+n_{z} \lambda_{2}=0+0=0 .
$$

So, $\mathrm{n}_{\mathrm{z}}$ is in $\mathrm{J}_{\mathrm{z}}$. Now, if $\mathrm{n}_{\mathrm{C}}$ belongs to $\mathrm{J}_{\mathrm{C}}, \mathrm{n}_{\mathrm{C}}+\mathrm{n}_{\mathrm{z}}$ belongs to $J$ for some $n_{z}$ in $N_{z}$. Hence, $\left(n_{c}+n_{z}\right) \lambda=0$. So, $n_{c} \lambda_{1}+n_{z} \lambda_{2}=0$. Now, $n_{C} \lambda_{1}$ belongs to $N_{c}^{\prime}$ and $n_{z} \lambda_{2}$ belongs to $N_{z}^{\prime}$. Since every element of $N^{\prime}$ has a unique expression as a sum of elements from $N_{c}^{\prime}$ and $N_{z}^{\prime}, n_{c} \lambda_{1}=n_{z} \lambda_{2}=0$. Thus, $n_{C}$ belongs to $J_{1}$ and $J_{C}$ is a subset of $J_{1}$. Similarly, $J_{z}$ is a subset of $J_{2}$. Consequently, $J_{C}=J_{1}, J_{Z}=J_{2}$ and $J_{C}$ and $J_{z}$ are ideals in $N_{C}$ and $N_{z}$, respectively.

If $j$ belongs to $J, j=n_{c}+n_{z}$ where $n_{c}$ belongs to $N_{C}$ and $n_{z}$ belongs to $N_{z}$. So, $J$ is a subset of $J_{C}+J_{z}$. If $n_{C}+n_{z}$ belongs to $J_{C}+J_{z},\left(n_{C}+n_{z}\right) \lambda=n_{C} \lambda_{1}+n_{z} \lambda_{2}=0+0=0$.

So, $J_{C}+J_{z}$ is a subset of $J$. Therefore, $J=J_{C}+J_{z}$. $J_{c}$ and $\dot{J}_{z}$ are not necessarily ideals in N. Suppose that $J_{C}$ is an ideal in $N_{C}$ and $J_{Z}$ is an ideal in $N_{Z}$. Is $J_{C}+J_{Z}$ an ideal in $N$ ? We give an example to show that this is not always the case.

If $N$ and $N^{\prime}$ are near-rings, the cartesian product $N \times N^{\prime}$ is a near-ring under component-wise addition and multiplication. Let each of $(N,+)$ and $\left(N^{\prime},+\right)$ be the cyclic group of order 6 .

| + | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 2 | 3 | 4 | 5 |
| 1 | 1 | 2 | 3 | 4 | 5 | 0 |
| 2 | 2 | 3 | 4 | 5 | 0 | 1 |
| 3 | 3 | 4 | 5 | 0 | 1 | 2 |
| 4 | 4 | 5 | 0 | 1 | 2 | 3 |
| 5 | 5 | 0 | 1 | 2 | 3 | 4 |

Let the following be, respectively, the multiplication tables for ( $N, \cdot$ ) and ( $\left.N^{\prime}, \cdot\right)$ :

|  | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 3 | 0 | 3 | 0 | 3 |
| 1 | 0 | 3 | 0 | 3 | 0 | 3 |
| 2 | 0 | 1 | 2 | 3 | 4 | 5 |
| 3 | 0 | 3 | 0 | 3 | 0 | 3 |
| 4 | 0 | 1 | 2 | 3 | 4 | 5 |
| 5 | 0 | 1 | 2 | 3 | 4 | 5, |


| $\cdot$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 4 | 2 | 0 | 4 | 2 |
| 1 | 0 | 4 | 2 | 0 | 4 | 2 |
| 2 | 0 | 4 | 2 | 0 | 4 | 2 |
| 3 | 0 | 4 | 2 | 0 | 4 | 2 |
| 4 | 0 | 4 | 2 | 0 | 4 | 2 |
| 5 | 0 | 4 | 2 | 0 | 4 | 2. |

The systems ( $\mathrm{N},+, \cdot$ ) and ( $\mathrm{N}^{\prime},+, \cdot$ ) are near-rings (see [2]). So $N \times N^{\prime}$ is a near-ring.

Now,

$$
\begin{aligned}
& \left(N \times N^{\prime}\right)_{C}=\{(0,0),(2,0),(4,0),(0,3),(2,3),(4,3)\} \\
& \left(N \times N^{\prime}\right)_{z}=\{(0,0),(3,0),(0,2),(3,2),(0,4),(3,4)\} .
\end{aligned}
$$

and

The sets $J_{C}=\{(0,0),(0,3)\}$ and $J_{z}=\{(0,0),(3,0)\}$ are proper ideals in $\left(N \times N^{\prime}\right)_{c}$ and $\left(N \times N^{\prime}\right)_{z}$, respectively. Since

$$
\begin{aligned}
{[(1,0)+(3,3)](2,0)-} & (1,0)(2,0) \\
& =(4,3)(2,0)-(1,0)(2,0) \\
& =(2,0)-(0,0)=(2,0),
\end{aligned}
$$

$\mathrm{J}_{\mathrm{c}}+\mathrm{J}_{\mathrm{z}}$ is not an ideal in $\mathrm{N} \times \mathrm{N}^{\prime}$.

## Prime ideals

A. The intersection of an arbitrary number of ideals of a near-ring $N$ is clearly an ideal. By the ideal generated by a subset $S$ of $N$, we shall mean the intersection of all the ideals of $N$ which contain $S$. This ideal is denoted by (S). The ideal generated by an arbitrary element of $N$ is called a principal ideal. If $A$ and $B$ are two ideals in $N$, the product $A B$ is defined to be the ideal generated by the set of all products $a b, a$ in $A, b$ in $B$. An ideal $P$ in $N$ is a prime ideal iff $A$ and $B$ are ideals in $N$ such that if $A$ is not a subset of $P, B$ is not a subset of $P$, then $A B$ is not a subset of $P$. This definition generalizes the definition of a prime ideal for a ring (see [4]). Notice that the ideal $M$ of Section 2 in Chapter $I$ is prime. $M$ is the only non-zero proper ideal of $G$. So, the only ideal which is not a subset of $M$ is $G$. But, $G G$ is not a subset of $M$. Hence, $M$ is a prime ideal. Moreover, $M$ is a principal ideal; $M$ is generated by $a$ or by $b$.

The following proposition was stated without proof in [5]. An ideal $P$ in $N$ is prime iff any one of the following conditions is satisfied:
(i) If $a, b$ do not belong to $P$, then (a) (b) is not $a$ subset of $P$.
(ii) If $a, b$ do not belong to $P$, there exist an element $a_{1}$ in (a) and an element $b_{1}$ in (b) such that

$$
a_{1} b_{1} \text { is not in } P \text {. }
$$

(iii) If $A$ and $B$ are ideals in $N$ which properly contain $P$, then $A B$ is not a subset of $P$.

We give the proof here. Suppose that $P$ is a prime ideal in $N$ and that $a, b$ do not belong to $P$. So, (a) is not $a$ subset of $P$ and (b) is not a subset of $P$. Therefore, (a) (b) is not a subset of $P$. Thus, if $P$ is a prime ideal, (i) holds.

Suppose that (i) is satisfied and $a, b$ do not belong to $P$. Then (a) (b) is not a subset of $P$. If for each $a_{1}$ in (a), $b_{1}$ in (b), $a_{1} b_{1}$ is in $P$, then $P$ contains (a) (b). So there exist an element $a_{1}$ in (a) and an element $b_{1}$ in (b) such that $a_{1} b_{1}$ does not belong to $P$. Thus, (ii) holds.

Suppose that (ii) holds and $A$ and $B$ are ideals in $N$ which properly contain P. Then there exist an element $a$ in $A$ and an element $b$ in $B$ such that $a, b$ do not belong to $P$. So there exists $a_{1}$ in (a) and $b_{1}$ in (b) such that $a_{1} b_{1}$ is not in P. Now, (a) is a subset of $A$ and (b) is a subset of $B$. Now, $a_{1} b_{1}$ is in (a) (b). But, (a) (b) is a subset of $A B$. Hence, $A B$ is not a subset of $P$. Thus, (iii) is satisfied.

Finally, assume that (iii) holds. Suppose that $P$ is not a prime ideal. Then, there exist ideals $A, B$ such that $A$ is not a subset of $P, B$ is not a subset of $P$ and
$A B$ is a subset of $P$. So, there exist $a$ in $A, b$ in $B$ such that $a, b$ are not in P. Now, (a) is a subset of $A$ and (b) is a subset of $B$. Hence, (a) (b) is a subset of P. Now, (a) $+P$ and (b) $+P$ are two ideals which properly contain P. By (iii), [(a) + P][(b) +P] is not a subset of P. So, there exist $x_{1}+x_{2}$ in (a) $+P y_{1} y_{1}+y_{2}$ in (b) $+P$ such that $\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right)$ is not in P. Now,

$$
\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right)=\left(x_{1}+x_{2}\right) y_{1}+\left(x_{1}+x_{2}\right) y_{2} .
$$

Since $y_{2}$ belongs to $P$ and $P$ is an ideal, $\left(x_{1}+x_{2}\right) y_{2}$ belongs to $P$. Since $x_{2}$ belongs to $P$ and $P$ is an ideal, $\left(x_{1}+x_{2}\right) y_{1}-x_{1} y_{1}$ is in P. Also, $x_{1} y_{1}$ is in (a) (b) which is a subset of $P$. Therefore, $\left(x_{1}+x_{2}\right) y_{1}$ belongs to $P$. So, $\left(x_{1}+x_{2}\right) y_{1}+\left(x_{1}+x_{2}\right) y_{2}$ belongs to $P$. This is a contradiction. Hence, $P$ is a prime ideal.
B. If $R$ is a ring with commutative multiplication, an ideal $P$ in $R$ is prime iff $a b$ belongs to $P$, then a belongs to P or b belongs to P . We will show the same result holds for a near-ring $N$ with commutative multiplication.

Suppose that $J$ is an additive normal subgroup of $(N,+)$ such that $N J$ is a subset of $J$. Now,

$$
\begin{aligned}
\left(n_{1}+j\right) n_{2}-n_{1} n_{2} & =n_{2}\left(n_{1}+j\right)-n_{1} n_{2} \\
& =n_{2} n_{1}+n_{2} j-n_{1} n_{2} \\
& =n_{1} n_{2}+n_{2} j-n_{1} n_{2}
\end{aligned}
$$

belongs to $J$ for $n_{1}, n_{2}$ in $N, j$ in $J$, since $J$ is an additive normal subgroup of $(N,+)$. Hence, $J$ is an ideal in $N$. Suppose that $A$ and $B$ are ideals in N. Let
$T=\left\{_{\text {finite }}\left(d_{i}+a_{i} b_{i}-d_{i}\right) \mid a_{i}\right.$ is in $A, b_{i}$ in $B, d_{i}$ is in $\left.N\right\}$.
We will show that $A B=T$. Now, $T$ is clearly a subgroup of ( $N,+$ ). If $\sum_{\text {finite }}\left(d_{i}+a_{i} b_{i}-d_{i}\right)$ is in $T$,

$$
\begin{aligned}
n & +\sum_{\text {finite }}\left(d_{i}+a_{i} b_{i}-d_{i}\right)-n \\
& =n+\left[\sum_{\text {finite }}\left(d_{i}+a_{i} b_{i}-d_{i}-n+n\right)\right]-n \\
& =\sum_{\text {finite }}\left(n+d_{i}+a_{i} b_{i}-d_{i}-n\right)
\end{aligned}
$$

which belongs to $T$. So, $T$ is a normal subgroup of $(N,+)$. If $\sum_{\text {finite }}\left(d_{i}+a_{i} b_{i}-d_{i}\right)$ is in $T$,

$$
\begin{aligned}
n_{\text {finite }}\left(d_{i}+a_{i} b_{i}-d_{i}\right) & =\sum_{\text {finite }}\left[n d_{i}+\left(n a_{i}\right) b_{i}+n\left(-d_{i}\right)\right] \\
& =\sum_{\text {finite }}\left(n d_{i}+\left(n a_{i}\right) b_{i}-n d_{i}\right)
\end{aligned}
$$

which belongs to $T$. So, $T$ is an ideal in N. Now, $T$ contains $A B$ since $T$ contains all products $a b, a$ in $A, b$ in $B$. Since any ideal in $N$, which contains all products $a b$, a in $A, b$ in $B$, contains all elements in $T, A B$ contains $T$. Thus, $A B=T$.

Let $a$ be an arbitrary element of $N$. Let $W=\{ \pm(d+\dot{s} a+k a-d) \mid s, d$ is in $N, k$ an integer $\}$ and $V=\left\{\sum_{\text {finite }} x_{i} \mid x_{i}\right.$ is in $\left.W\right\}$. We will show that $(a)=V$. Clearly $V$ is a subset of (a). Now, $V$ is a subgroup of ( $N,+$ ). If $\sum_{\text {finite }} x_{i}$ is in $V$ and $n$ is in $N$,

$$
\begin{aligned}
n+\left(\sum_{\text {finite }} x_{j}\right)-n & =n+\left[\sum_{\text {finite }}\left(x_{i}-n+n\right)\right]-n \\
& =\sum_{\text {finite }}\left(n+x_{i}-n\right)
\end{aligned}
$$

which belongs to $V$ since $n+x_{i}-n$ belongs to $W$. So, V is a normal subgroup of $(\mathrm{N},+$ ). Since

$$
\begin{aligned}
& n(d+s a+k a-d)=n d+n(s a)+n(k a)+n(-d) \\
& =(n d+(n s) a+0 a-n d)+(n d+(k n) a+0 a-n d),
\end{aligned}
$$

$N V$ is a subset of $V$. Thus, $V$ is an ideal in $N$. Since a belongs to $V$, (a) is a subset of $V$. Hence ( $a$ ) $=V$.

Suppose that a and b belong to N . We show here that $(a b)=(a)(b)$. Since $a b$ belongs to (a) (b), (ab) is a subset of (a) (b). Let $c, d, t, s$ belong to $N$ and $m, k$ be integers. Because of the right-distributive law, it is sufficient to show that ( $c+t a+m a-c$ ) ( $d+s b+k b-d$ ) belongs to (ab) to prove that (a) (b) is a subset of (ab). Now,

$$
\begin{aligned}
(c+t a+m a-c)(d+s b+k b-d) & =(c+t a+m a-c) d+(c+t a+m a-c) s b \\
& +(c+t a+m a-c) k b-(c+t a+m a-c) d .
\end{aligned}
$$

But, $(c+t a+m a-c) s b=c s b+t s(a b)+m s(a b)-c s b$

$$
=(c s b+t s(a b)-c s b)+(c a b+m s(a b)-c s b)
$$

and

$$
\begin{aligned}
& (c+t a+m a-c) k b=c(k b)+(k t) a b+(m k) a b-c(k b) \\
& =(c(k b)+(k t) a b-c(k b))+(c(k b)+(m k) a b-c(k b))
\end{aligned}
$$

which belongs to ( $a b$ ). Since ( $a b$ ) is a normal subgroup of $(N,+),(c+t a+m a-c)(d+s b+k b-d)$ belongs to (ab).

Hence, (a) (b) is a subset of (ab). Thus, (a) (b) $=(a b)$.
We now verify that if $P$ is an ideal in $N$, $P$ is prime iff $a b$ belongs to $p$ implies $a$ belongs to $P$ or $b$ belongs to P. Suppose $P$ is prime, $a b$ belongs to $P$, and $a, b$ do not belong to P. By (i), (a) (b) is not a subset of P. So, (ab) is not a subset of $P$. But, since $a b$ belongs to $P$, (ab) is a subset of $P$. This is a contradiction. So, a belongs to $P$ or $b$ belongs to $P$.

Now, suppose that if $a b$ belongs to $P$, then a belongs to $P$ or $b$ belongs to $P$. Suppose $P$ is not prime. Then, there exist ideals $A$ and $B$ such that $A$ is not a subset of $P, B$ is not a subset of $P$ but $A B$ is a subset of $P$. There exist $a$ in $A, b$ in $B$ such that $a, b$ do not belong to $P$. However, $a b$ belongs to P. Hence, $a$ belongs to $P$ or $b$ belongs
P. This is a contradiction. Thus, P is a prime ideal. Ideals in R-rings

An element of a near-ring ( $\mathrm{N},+, \cdot$ ) is right distributive iff $(b+c) a=b a+c a$ for $b, c$ in $N$. An element a is anti-right distributive iff (b+c)a $=c a+b a$ for $\mathrm{b}, \mathrm{c}$ in N . An element a in N is weakly right distributive iff it is a finite sum of right and anti-right distributive elements. An R-ring is a near-ring in which every element is weakly right distributive (see [1]).

Suppose that N is an R-ring and the element a is right or anti-right distributive. Since

$$
0 a=(0+0) a=0 a+0 a,
$$

$0 \mathrm{a}=0$. A C-ring is a near-ring N in which $0 \mathrm{a}=0$ for each a in N. In particular, an R-ring is a C-ring.

Suppose that $J$ is an ideal in the $R$-ring $N$, $j$ belongs to $J$ and $a$ belongs to N. Now, $a=a+a+\ldots+a_{k}$ where each $a_{i}$ is right distributive or anti-right distributive. Since

$$
\begin{aligned}
j a & =j\left(a_{1}+a_{2}+\ldots+a_{k}\right)=j a_{1}+j a_{2}+\cdots+j a_{k} \\
& =\left((0+j) a_{1}-0 a_{1}\right)+\left((0+j) a_{2}-0 a_{2}\right)+\cdots+\left((0+j) a_{k}-0 a_{k}\right),
\end{aligned}
$$

which is in J, JN is a subset of $J$.

Suppose that $L$ is an additive normal subgroup such that $N L$ and $L N$ are subsets of $L$. Let 1 belong to $L$ and $a_{1}$, $a_{2}$ belong to $N$. Now, $a_{2}=b_{1}+b_{2}+\ldots+b_{k}$ where each $b_{i}$ is right distributive or anti-right distributive. So

$$
\begin{aligned}
& \left(a_{1}+1\right) a_{2}-a_{1} a_{2}=\left(a_{1}+1\right)\left(b_{1}+\ldots+b_{k}\right)-a_{1}\left(b_{1}+\ldots+b_{k}\right) \\
& \quad=\left(a_{1}+1\right) b_{1}+\left(a_{1}+1\right) b_{2}+\ldots+\left(a_{1}+1\right) b_{k}-a_{1} b_{k}-\ldots-a_{1} b_{1} .
\end{aligned}
$$

Notice that $\left(a_{1}+1\right) b_{k}$ is either $a_{1} b_{k}+l b_{k}$ or $l b_{k}+a_{1} b_{k}$. In either case, $\left(a_{1}+1\right) b_{k}-a_{1} b_{k}$ belongs to $L$.
Let $\left(a_{1}+1\right) b_{k}-a_{1} b_{k}=l_{k}$. Hence

$$
\left(a_{1}+1\right) a_{2}-a_{1} a_{2}=\left(a_{1}+1\right) b_{1}+\ldots+\left(a_{1}+1\right) b_{k-1}+l_{k}-a_{1} b_{k-1}-\ldots-a_{1} b_{1}
$$

Again,

$$
\left(a_{1}+1\right) b_{k-1} \text { is either } a_{1} b_{k-1}+l b_{k-1} \text { or } l b_{k-1}+a_{1} b_{k-1}
$$

If $\left(a_{1}+1\right) b_{k-1}=a_{1} b_{k-1}+1 b_{k-1}$,

$$
\begin{aligned}
\left(a_{1}+1\right) b_{k-1}+1_{k}-a_{1} b_{k-1} & =a_{1} b_{k-1}+1 b_{k-1}+1_{k}-a_{1} b_{k-1} \\
& =a_{1} b_{k-1}+1_{1}-a_{1} b_{k-1}
\end{aligned}
$$

for some $l_{1}$ in $L$. So, $\left(a_{1}+1\right) b_{k-1}+l_{k}-a_{1} b_{k-1}$ belongs to $L$. If $\left(a_{1}+1\right) b_{k-1}=1 b_{k-1}+a_{1} b_{k-1}$,

$$
\left(a_{1}+1\right) b_{k-1}+1_{k}-a_{1} b_{k-1}=1 b_{k-1}+\left(a_{1} b_{k-1}+l_{k}-a_{1} b_{k-1}\right)=l_{2}+I_{3} \text { for }
$$

some $l_{2}, l_{3}$ in L. So, $\left(a_{1}+1\right) b_{k-1}+l_{k}-a_{1} b_{k-1}$ is in L. We continue this finite process and find that $\left(a_{1}+1\right) a_{2}-a_{1} a_{2}$ belongs to $L$. Thus, we see that an ideal in $N$ is an additive normal subgroup $J$ such that $N J$ and $J N$ are subsets of $J$.

Ideals in C-rings
Suppose that $(N,+, \cdot)$ is a near-ring. We shail prove that $N$ is a C-ring iff each ideal $I$ is a normal subgroup such that NI and IN are subsets of I. First, suppose that $N$ is a C-ring and that $I$ is an ideal in $N$. Then,

$$
(0+a) n-0 n=a n
$$

is in $I$ if a belongs to $I$ and $n$ belongs to $N$. Hence, $I N$ is a subset of $I$.

Now, suppose that each ideal I is a normal subgroup such that NI and IN are subsets of I. Consider the zero ideal \{0\}. Now, $\{0\} \mathrm{N}$ is a subset of $\{0\}$. Thus $0 \mathrm{n}=0$ for each $n$ in $N$. Hence, $N$ is a C-ring. Notice that the ideals in a c-ring are defined the same as ideals in a ring.

## Principal ideals in near-rings with identities

Let ( $\mathrm{N},+, \cdot$ ) be a near-ring with multiplicative identity e. Take any element $a$ in $N$.

Let

$$
S_{1}=\left\{ \pm\left(n_{4}+n_{3}\left[\left(n_{1}+a\right) n_{2}-n_{1} n_{2}\right]-n_{4}\right) \mid n_{1}, n_{2}, n_{3}, n_{4} \text { are in } N\right\}
$$

$$
\begin{aligned}
& T_{1}=\left\{\sum_{\text {finite }} x_{i} \mid x_{i} \text { is in } S_{1}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& T_{2}=\left\{_{\text {finite }} x_{i} \mid x_{i} \text { is in } S_{2}\right\} \\
& S_{3}=\left\{ \pm\left(n_{4}+n_{3}\left[\left(n_{1}+y\right) n_{2}-n_{1} n_{2}\right]-n_{4}\right) \left\lvert\, \begin{array}{l}
n_{1}, n_{2}, n_{i s}, n_{i n} \mathrm{n}_{4} \text { are in } N
\end{array}\right.\right\} \\
& T_{3}=\left\{_{\left\{_{\text {finite }}\right.} x_{i} \mid x_{i} \text { is in } S_{3}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& T_{\mathrm{m}}=\left\{_{\text {finite }} \mathrm{x}_{\mathrm{i}} \mid \mathrm{x}_{\mathrm{i}} \text { is in } \mathrm{S}_{\mathrm{rn}}\right\}
\end{aligned}
$$

Notice that $S_{m}$ is a subset of $T_{m}$, which is a subset of $S_{m+1}$. Let H be the union of the $\mathrm{T}_{\mathrm{i}}, \mathrm{i}=1,2$, . . . We will show that $H=(a)$.

Take $h_{1}, h_{2}$ in $H$. Now $h_{1}, h_{2}$ are in $S_{m}$ for some positive integer $m$. So, $h_{1}-h_{2}$ is in $T_{m}$. Hence, $h_{1}-h_{2}$ is in $H$. So $H$ is an additive subgroup of ( $N,+$ ). If $h$ belongs to $H$ and $c$ belongs to $N, c+h-c=c+\left[\sum_{\text {finite }} x_{i}\right]-c$ where each $x_{i}$ is in $S_{m}$ for some positive integer $m$. Now, $c+\left[\sum_{\text {finite }} x_{i}\right]-c=c+\left[\sum_{\text {finite }}\left(x_{i}-c+c\right)\right]-c$, which is in $T_{m}$. So, $H$ is a normal subgroup of ( $N,+$ ). Clearly, $N H$ is a
subset of $H$. Now, $\left(n_{1}+h\right) n_{2}-n_{1} n_{2}$ is in $S_{m+1}$ for $n_{1}, n_{2}$ in N .

Thus, $H$ is an ideal in N. Since

$$
e[(-a+a) e-(-a) e]=e[0 e+a]=e a=a
$$

a belongs to H. Hence, H contains (a). But, any ideal which contains a contains all elements of H . So, (a) contains H. Thus, (a) $=\mathrm{H}$.

$$
\text { If } N \text { is a ring, } H=\left\{\sum_{\text {finite }}{n_{i}}_{i}^{a n_{2}}{ }_{i} \mid n_{i}, n_{i} \text { are in } N\right\} .
$$

Suppose that $A$ and $B$ are two ideals in $N$. If we let

$$
S_{1}=\left\{ \pm\left(n_{4}+n_{3}\left[\left(n_{1}+a b\right) n_{2}-n_{1} n_{2}\right]-n_{4} \left\lvert\, \begin{array}{c}
n_{1}, n_{2}, n_{3}, n_{4} \text { are in in in } A, b \text { is in } B
\end{array}\right.\right\}\right.
$$

then $H=A B$.

## CHAPTER III

## IDEALS IN MATRIX NEAR-RINGS

Ideals in matrix rings
Suppose that $R$ is a ring. Let $R_{m}$ denote the set of all matrices of order $m$ over $R$. We will use the notation (aij) to denote an arbitrary element of $R_{m}$. We define addition and multiplication on $\mathrm{Rm}_{\mathrm{m}}$ by

$$
\left(a_{i j}\right)+\left(b_{i j}\right)=\left(c_{i j}\right)
$$

and $\quad\left(a_{i j}\right)\left(b_{i j}\right)=\left(d_{i j}\right)$
where $\quad c_{i j}=a_{i j}+b_{i j}$ and $d_{i j}=\sum_{k=1}^{m} a_{i k} b_{k j}$.
Hence, $R_{m}$ is a ring. Moreover if $I$ is an ideal in $R$ then the set $I_{m}$ of all matrices of order $m$ over $I$ is an ideal in $\mathrm{Rm}_{\mathrm{m}}$ (see [4]).

Ideals in matrix near-rings
Suppose that $N$ is a near-ring and let $N_{m}$ denote the set of all matrices of order $m$ over $N$. Let addition and multiplication be defined on $\mathrm{N}_{\mathrm{m}}$ as in the case of rings. We will give an example to show that $N_{m}$ is not necessarily a near-ring.

Let N be the first near-ring defined on page 9. Consider $\mathrm{N}_{2}$. Let

$$
\left(a_{i j}\right)=\binom{22}{00},\left(b_{i j}\right)=\binom{40}{50}, \text { and }\left(c_{i j}\right)=\binom{40}{00} .
$$

Now

$$
\begin{aligned}
\left(a_{11} b_{11}+a_{12} b_{21}\right) c_{11}+\left(a_{11} b_{12}+a_{12} b_{22}\right) c_{21} & =(2 \cdot 4+2 \cdot 5) 4+(2 \cdot 0+2 \cdot 0) 0 \\
& =(4+5) 4=3 \cdot 4=0
\end{aligned}
$$

is the element in the first row, first column of the matrix $\left[\left(a_{i j}\right)\left(b_{i j}\right)\right]\left(c_{i j}\right)$.
But

$$
\begin{aligned}
a_{11}\left(b_{11} c_{11}+b_{12} c_{21}\right)+a_{12}\left(b_{21} c_{11}+b_{22} c_{21}\right) & =2 \cdot 4 \cdot 4+2 \cdot 5 \cdot 4 \\
& =4+4=2
\end{aligned}
$$

is the element in the first row, first column of the matrix $\left(a_{i j}\right)\left[\left(b_{i j}\right)\left(c_{i j}\right)\right]$. So the associative law for multiplication does not hold in $N_{m}$. Notice that ( $N,+$ ) is abelian. Thus, even if ( $N,+$ ) is abelian, $N_{m}$ is not necessarily a near-ring.

We wish to find conditions on $N$ so that $N_{m}$ is a nearring. Now, $N$ may not have a multiplicative identity. However, from [l], we know that $N$ can be embedded into a nearring with a multiplicative identity. So let us assume throughout the rest of the chapter that $N$ has an identity $e$. We can now show that $\mathbb{N}_{\mathrm{m}}$ satisfies the left distributive law
iff ( $\mathrm{N},+$ ) is abelian.
Suppose that $N_{m}$ satisfies the left distributive law. Let $x_{1}, x_{2}$ belong to N. Now,

$$
\begin{aligned}
& =\left(\begin{array}{lllllll}
x_{1}+x_{2} & 0 & 0 & . & . & . & 0 \\
0 & 0 & 0 & . & . & . & 0 \\
\dot{0} & \dot{0} & \dot{0} & \cdot & . & \cdot & . \\
0 & & . & 0
\end{array}\right) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
& =\left(\begin{array}{lllllll}
x_{2}+x_{1} & 0 & 0 & . & . & . & 0 \\
0 & 0 & 0 & . & . & . & 0 \\
\dot{0} & \dot{0} & \dot{0} & \cdot & . & \cdot & . \\
0 & & . & 0
\end{array}\right) .
\end{aligned}
$$

Hence, $(N,+)$ is abelian. If $(N,+)$ is abelian, the left distributive law in $N_{m}$ follows easily from the left
distributive law in $N$.
We will assume that $(N,+)$ is abelian. We now prove that $N_{m}$ is a near-ring iff $N$ is a ring. First, suppose that $N_{m}$ is a near-ring and that $x, y, z$ belong to N. Now,

$$
\begin{aligned}
& =\left(\begin{array}{cccccc}
(x+y) z & 0 & \cdot & \cdot & \cdot & 0 \\
0 & 0 & \cdot & \cdot & \cdot & 0 \\
0 & 0 & \cdot & \cdot & \cdot & 0 \\
0 & 0 & \cdot & \cdot & \cdot & 0
\end{array}\right)
\end{aligned}
$$

Also

$$
\left.\begin{array}{rl}
\left(\begin{array}{cccccc}
e & e & \cdot & \cdot & \cdot & 0 \\
0 & 0 & \cdot & \cdot & \cdot & 0 \\
\dot{0} & \dot{0} & \cdot & \cdot & \cdot & 0
\end{array}\right) & {\left[\begin{array}{cccccc}
x & 0 & \cdot & \cdot & \cdot & 0 \\
y & 0 & \cdot & \cdot & \cdot & 0 \\
\dot{0} & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & \cdot & \cdot & 0
\end{array}\right)\left(\begin{array}{ccccc}
z & 0 & \cdot & \cdot & \cdot \\
0 & 0 & \cdot & \cdot & \cdot \\
\dot{0} & \cdot & \cdot & \cdot & \cdot \\
0 & 0 & \cdot & \cdot & \cdot \\
0
\end{array}\right)}
\end{array}\right]
$$

Hence, $(x+y) z=x z+y z$. So, $N$ is a ring. If $N$ is a ring, $N_{m}$ is a ring and hence a near-ring. Thus, if $N_{m}$ is a nearring, every ideal in $N_{m}$ is of the form $I_{m}$ where $I$ is an ideal in $N$ (see [4]).

Let us return to the case where $N$ is an arbitrary near-ring. Assume that $\mathrm{N}_{\mathrm{m}}$ is also a near-ring. Then N
will not necessarily satisfy the right distributive law. We will give an example to verify this statement. Let $C_{4}$ be the cyclic group of order 4. From [2], $N=\left(C_{4},+, \cdot\right)$ is a near-ring under the following multiplication:

| - | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 2 | 0 | 2 |
| 2 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 | 0 |

Now, $(3+1) 3=0 \cdot 3=0$. But, $3 \cdot 3+1 \cdot 3=0+2=2$. So N does not satisfy the right distributive law. However, $(a b+c d) e=a b e+c d e$ for arbitrary elements $a, b, c, d, e$ in N. Hence, the associative law for multiplication holds in $N_{m}$, where $m$ is any positive integer. So, $N_{m}$ is a nearring. However, if $N$ is a near-ring, $N_{m}$ is a near-ring and $I$ is an ideal in $N$, then $I_{m}$ is an ideal in $N_{m}$. The proof of this statement is trivial.

## BIBLIOGRAPHY

1. Berman, Gerald, and Silverman, Robert J. Near-rings, Amer. Math. Monthly 66(1959), 23-34.
2. Clay, James R. The near-rings on a finite cyclic group, Amer. Math. Monthly 71 (1964), 47-50.
3. Malone, Joseph, J., Jr. Near-rings with trivial multiplications, Amer. Math. Monthly, to appear.
4. McCoy, Neal H. The Theory of Pings, The Macmillan Company, New York, 1964.
5. van der Walt, A. P. J. Prime ideals and nil radicals in near-rings, Arch. Math. 15 (1964), 408-414.
