
Application Agnostic Network Traffic Modeling for Realistic Traffic

Generation

by

Oluwamayowa Ade Adeleke

A dissertation submitted to the Department of Computer Science,

College of Natural Sciences and Mathematics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Computer Science

Chair of Committee: Deniz Gurkan

Committee Member: Jaspal Subhlok

Committee Member: Edgar Gabriel

Committee Member: Ricardo Lent

University of Houston

December 2020

Copyright 2020, Oluwamayowa Ade Adeleke

DEDICATION

Dedicated to God, and to my parents.

Oluwamayowa Ade Adeleke

December, 2020

iii

ACKNOWLEDGMENTS

I would like to especially thank my advisor, Dr. Deniz Gurkan, throughout my Ph.D. program, you

never stopped believing in me. You always mentored, encouraged, and pushed me to be a better

version of myself. Thanks, Dr. Gurkan. My deep appreciation also goes to our laboratory research

professor, Nicholas Bastin. Without your guidance and technical direction throughout my Ph.D.,

I would not have come so far on this dissertation. Both of you helped nurture what was only a

simple idea into the interesting project it has become. I genuinely appreciate you.

My sincere gratitude goes to my dissertation committee members, Dr. Jaspal Subhlok, Dr.

Edgar Gabriel, and Dr. Ricardo Lent. Your feedback during and after my dissertation proposal

helped me to focus on what was most important.

I would like to appreciate my colleagues from the UH Netlab - Stuart Baxley and Levent Dane.

It is a pleasure working with you guys. I also thank my friends who stood by me through all the

highs and lows of my Ph.D. program: Ezekiel, Afis, Fela, Oscar, Tolu, Arinze, and Damilola. I

cannot thank you enough.

Finally, to my family: my dad, mum, sisters, brothers-in-law, nieces, nephews. I love you.

Thanks for being my biggest supporters throughout this process. This Ph.D. is for us all. My most

profound appreciation also goes to my uncle Matt, aunt Abiola, Yemisi, Dolapo, and uncle Biola.

Your presence and frequent calls throughout my Masters and Ph.D. helped me not to miss home

too severely.

iv

ABSTRACT

Research and testing in networking sometimes require experiments that utilize real application

network traffic. However, the process of obtaining production network traffic data from industry

partners for testing novel algorithms, protocols, and network functions is a significant pain point

for many researchers in academia. Many industry operators are reluctant to share network traffic

data with third parties to avoid violating privacy policies and avoid unintentional exposure of

proprietary information to competitors. Therefore, many researchers resort to the use of synthetic

traffic generators in networking experiments.

Our survey of over 7000 networking research papers revealed that most research projects exclu-

sively use constant/maximum throughput traffic generators in their evaluation experiments. These

generators do not always generate traffic that is similar to real production traffic. They often

blast out packets at fixed rates or rates based on statistical distributions. Existing realistic traf-

fic generators are rarely used, and there is no standardized evaluation system for realistic traffic

generators.

Therefore, this work focuses on developing a new application-agnostic framework for producing

abstract, high-fidelity models of application network traffic patterns for realistic application traffic

generation in laboratory environments. The framework includes a comprehensive evaluation system

for realistic traffic generation models. We evaluated the methods and algorithms applied in the

framework, then we created and evaluated a new application traffic modeling method that combines

clustering methods with stochastic modeling for realistic traffic modeling. The evaluation results

reveal that traffic generated is similar to actual production traffic for many types of applications.

This work’s outcome is vital to researchers and industry operators in computer networking,

especially those involved in large scale enterprise, data-center, and internet of things (IoT) network

v

testing. The methods presented make it easy to investigate how various changes in a network’s

traffic patterns and infrastructure can impact its performance. Researchers can test new protocols

and algorithms with realistic traffic derived from actual applications, without violating privacy

policies or replaying extra-large traffic trace files.

vi

TABLE OF CONTENTS

DEDICATION . iii
ACKNOWLEDGMENTS . iv
ABSTRACT . v
TABLE OF CONTENTS . viii
LIST OF TABLES . ix
LIST OF FIGURES . xii
LIST OF ALGORITHMS . xiii
ACRONYMS . xiv
GLOSSARY . xvi
PREVIOUSLY PUBLISHED MATERIAL . xvii

1 INTRODUCTION . 1
1.1 Problem . 2
1.2 Solution . 3
1.3 Summary of Contributions . 5
1.4 Organization of the Dissertation . 6

2 LITERATURE REVIEW . 7
2.1 Traffic Generators Classification . 8

2.1.1 Constant or Maximum Throughput Generators (CMT) 8
2.1.2 Application Level Synthetic Workload Generators 8
2.1.3 Trace File Replay Systems . 9
2.1.4 Script Driven Traffic Generators . 10
2.1.5 Model-based Traffic Generators . 10
2.1.6 Trace Driven Model-based Traffic Generators 10

2.2 Traffic Modeling and Realistic Traffic Generators . 11
2.3 Common Realistic Traffic Generators in Research . 13
2.4 The Need for a New Realistic Traffic Generation Framework 15

3 SURVEY OF TRAFFIC GENERATORS . 17
3.1 Comprehensive List of Traffic Generators . 19

3.1.1 List of Traffic Generators . 19
3.2 Tool Availability . 26
3.3 Traffic Generation Tool Popularity . 27

3.3.1 Top 10 Traffic Generators . 32
3.4 Traffic Generator Selection: Common Requirements and Features 35

3.4.1 Methodology for Traffic Generator Selection 36
3.4.2 An Example: Load-balancing Research . 41

4 METHODOLOGY: FRAMEWORK FOR REALISTIC TRAFFIC MODEL-
ING AND GENERATION . 44
4.1 Dataset Extractor . 46

4.1.1 Header Decoding . 47
4.1.2 TCP and UDP Sessions Identification . 48
4.1.3 Removal of Network Protocol Responses . 49

vii

4.1.4 Application Detection . 49
4.1.5 Protocol Data Units (PDUs Detection) . 51
4.1.6 Application User Session Identification . 53
4.1.7 Connection Class Clusters Detection . 54
4.1.8 Connection Pools . 56
4.1.9 Request Bursts Detection . 58

4.2 Modeling System . 60
4.2.1 The uhgeneric-v4 Modeling Algorithm . 60

4.3 Traffic Generator . 65
4.3.1 The uhgeneric-v4 Traffic Generation Method 66

4.4 Evaluation System . 68
4.4.1 Research and Development of Metrics for System Evaluation 69
4.4.2 Metrics Selection for Realistic Traffic Generator Evaluation 71
4.4.3 First-Order Analysis . 73
4.4.4 Second-Order Analysis . 74

4.5 Chapter Summary . 77

5 EVALUATION EXPERIMENTS AND DISCUSSION 78
5.1 Modeling and Generating Single Application Traffic 78

5.1.1 Input Network Traffic Data . 79
5.1.2 Dataset Extraction, Traffic Modeling, and Generation 81
5.1.3 Evaluation and Discussion . 82

5.2 Modeling and Generating Multi-tier Application Traffic 102
5.2.1 Input Network Traffic Data . 102
5.2.2 Dataset Extraction, Traffic Modeling and Generation: 104
5.2.3 Evaluation and Discussion . 104

5.3 Comparing Realistic Traffic Modeling Algorithms - Effect of Modeling Higher Level
Application Network Behavior . 124
5.3.1 Dataset Extraction, Traffic Modeling and Generation 125
5.3.2 Evaluation and Discussion . 126

5.4 Chapter Summary . 133

6 CONCLUSION . 134
6.1 Future Work . 135

BIBLIOGRAPHY . 137

A DEFINITIONS OF TABLE ROW HEADERS 155
A.1 Table 3.3 . 155
A.2 Table 3.5 . 157

B SAMPLE TRAFFIC MODEL . 159

viii

LIST OF TABLES

3.1 Status of traffic generators in research and industry as of Jan 2019. Generators
sorted on descending order of popularity per section 3.3 19

3.2 Classification of traffic generators per section 2.1 . 27
3.3 Traffic generator selection: common features and experiment requirements 37
3.4 Supported configuration of header fields for the top 10 traffic generators 38
3.5 Reported metrics for the top 10 generators . 39

4.1 List of metrics calculated by the evaluation system (traffic metrics) 70

5.1 Evaluation results for modeling and generation of web documentation application
traffic . 82

5.2 Evaluation results for modeling and generation of a multi-tier campus network ap-
plication traffic . 105

ix

LIST OF FIGURES

1.1 Privacy preservation with the new modeling and generation framework 4

3.1 Top traffic generators from ACM and USENIX networking-related conference pub-
lications [132] . 29

3.2 Usage by year of top 10 generators as cited in ACM and USENIX networking-related
conference publications . 31

3.3 Per year exclusive usage citations of iperf2. 32

4.1 Framework for realistic traffic modeling and generation 45
4.2 Dataset extraction process . 47
4.3 Connection classes in RDP . 55
4.4 Connection pools in web browser traffic . 57
4.5 Request bursts in web browsing traffic . 59
4.6 Application data exchange patterns . 62
4.7 Model parameters for ’uhgeneric-v4’ traffic modeling method 63
4.8 Traffic generation using the ’uhgeneric-v4’ traffic modeling method 67
4.9 Illustration of the Kolmogorov-Smirnov 2-sample (KS-2-sample) test statistic 74
4.10 Illustration of the second order evaluation process for evaluating performance of

realistic traffic generation algorithms . 76

5.1 Experiment topology for the web browser application traffic generation experiment . 80
5.2 Box plots, cumulative frequency curves and histograms comparing PDU rate distri-

butions of real web browsing traffic with PDU rate distributions of generated web
browsing traffic based on the uhgeneric-v4 modeling algorithm 84

5.3 Box plots, cumulative frequency curves and histograms comparing inter-PDU time
distributions of real web browsing traffic with inter-PDU time distributions of gen-
erated web browsing traffic based on the uhgeneric-v4 modeling algorithm 86

5.4 Box plots, cumulative frequency curves and histograms comparing PDU size distri-
butions of real web browsing traffic with PDU size distributions of generated web
browsing traffic based on the uhgeneric-v4 modeling algorithm 88

5.5 Box plots, cumulative frequency curves and histograms comparing PDU through-
put distributions of real web browsing traffic with PDU throughput distributions of
generated web browsing traffic based on the uhgeneric-v4 modeling algorithm . . . 89

5.6 Box plots, cumulative frequency curves and histograms comparing server response
time distributions of real web browsing traffic with server response time distributions
of generated web browsing traffic based on the uhgeneric-v4 modeling algorithm . 91

5.7 Box plots, cumulative frequency curves and histograms for second order comparison
of inter-PDU time between real web browsing traffic and uhgeneric-v4 model gen-
erated web browsing traffic based on pairwise user-sessions KS-2-sample test statistics 94

5.8 Box plots, cumulative frequency curves and histograms for second order comparison
of PDU size between real web browsing traffic and uhgeneric-v4 model generated
web browsing traffic based on pairwise user-sessions KS-2-sample test statistics . . . 95

x

5.9 Box plots, cumulative frequency curves and histograms for second order comparison
of PDU rate between real web browsing traffic and uhgeneric-v4 model generated
web browsing traffic based on pairwise user-sessions KS-2-sample test statistics . . . 97

5.10 Box plots, cumulative frequency curves and histograms for second order comparison
of PDU throughput between real web browsing traffic and uhgeneric-v4 model gen-
erated web browsing traffic based on pairwise user-sessions KS-2-sample test statistics 98

5.11 Box plots, cumulative frequency curves and histograms for second order compari-
son of server response time between real web browsing traffic and uhgeneric-v4

model generated web browsing traffic based on pairwise user-sessions KS-2-sample
test statistics . 99

5.12 L4 sessions duration in typical user-sessions of real and generated traffic for remote
desktop application traffic . 101

5.13 Experiment network architecture for modeling and generation of a multi-tier network
application traffic . 103

5.14 Box plots, cumulative frequency curves and histograms comparing inter-PDU time
distributions of real multi-tier application traffic with inter-PDU time distributions of
generated multi-tier application traffic based on the uhgeneric-v4 modeling algorithm107

5.15 Box plots, cumulative frequency curves and histograms comparing PDU size distri-
butions of real multi-tier application traffic with PDU size distributions of generated
multi-tier application traffic based on the uhgeneric-v4 modeling algorithm 108

5.16 Box plots, cumulative frequency curves and histograms comparing PDU rate distri-
butions of real multi-tier application traffic with PDU rate distributions of generated
multi-tier application traffic based on the uhgeneric-v4 modeling algorithm 110

5.17 Box plots, cumulative frequency curves and histograms comparing PDU throughput
distributions of real multi-tier application traffic with PDU throughput distributions
of generated multi-tier application traffic based on the uhgeneric-v4 modeling al-
gorithm . 111

5.18 Box plots, cumulative frequency curves and histograms comparing server response
time distributions of real multi-tier application traffic with server response time
distributions of generated multi-tier application traffic based on the uhgeneric-v4

modeling algorithm . 113
5.19 Box plots, cumulative frequency curves and histograms for second order compari-

son of inter-PDU time between real multi-tier application traffic and uhgeneric-v4

model generated multi-tier application traffic based on pairwise user-sessions KS-2-
sample test statistics . 115

5.20 Box plots, cumulative frequency curves and histograms for second order comparison
of PDU size between real multi-tier application traffic and uhgeneric-v4 model
generated multi-tier application traffic based on pairwise user-sessions KS-2-sample
test statistics . 116

5.21 Box plots, cumulative frequency curves and histograms for second order comparison
of PDU rate between real multi-tier application traffic and uhgeneric-v4 model
generated multi-tier application traffic based on pairwise user-sessions KS-2-sample
test statistics . 118

xi

5.22 Box plots, cumulative frequency curves and histograms for second order comparison
of PDU throughput between real multi-tier application traffic and uhgeneric-v4

model generated multi-tier application traffic based on pairwise user-sessions KS-2-
sample test statistics . 119

5.23 Box plots, cumulative frequency curves and histograms for second order comparison
of server response time between real multi-tier application traffic and uhgeneric-v4

model generated multi-tier application traffic based on pairwise user-sessions KS-2-
sample test statistics . 120

5.24 L4 sessions durations in typical user-sessions of real and generated traffic for multi-
tier application . 122

5.25 PDU counts percent by application for modeling and generation of a multi-tier net-
work application traffic . 123

5.26 Byte counts by application for modeling and generation of a multi-tier network ap-
plication traffic . 124

5.27 Box plots and cumulative frequency curves for First order comparison of Inter-PDU
time between real multi-tier application traffic and traffic generated based on four 4
different traffic modeling algorithms . 127

5.28 Box plots and cumulative frequency curves for First order comparison of PDU sizes
between real multi-tier application traffic and traffic generated based on four 4 dif-
ferent traffic modeling algorithms . 127

5.29 Box plots and cumulative frequency curves for First order comparison of PDU rates
between real multi-tier application traffic and traffic generated based on four 4 dif-
ferent traffic modeling algorithms . 128

5.30 Box plots and cumulative frequency curves for First order comparison of PDU
throughput between real multi-tier application traffic and traffic generated based
on four 4 different traffic modeling algorithms . 128

5.31 Box plots and cumulative frequency curves for First order comparison of server re-
sponse times between real multi-tier application traffic and traffic generated based
on four 4 different traffic modeling algorithms . 129

5.32 Box plots and cumulative frequency curves for second order comparison of Inter-
PDU time between real multi-tier application traffic and traffic generated based on
four 4 different traffic modeling algorithms . 129

5.33 Box plots and cumulative frequency curves for second order comparison of PDU
sizes between real multi-tier application traffic and traffic generated based on four 4
different traffic modeling algorithms . 130

5.34 Box plots and cumulative frequency curves for second order comparison of PDU
rates between real multi-tier application traffic and traffic generated based on four
4 different traffic modeling algorithms . 131

5.35 Box plots and cumulative frequency curves for second order comparison of PDU
throughput between real multi-tier application traffic and traffic generated based on
four 4 different traffic modeling algorithms . 131

5.36 Box plots and cumulative frequency curves for second order comparison of server
response times between real multi-tier application traffic and traffic generated based
on four 4 different traffic modeling algorithms . 132

xii

LIST OF ALGORITHMS

1 Heuristic for identifying application level protocol data units (PDU) 52
2 Heuristic for identifying application user sessions . 54
3 Algorithm for connection classes detection . 56
4 Algorithm for connection pools detection . 58
5 Algorithm for request bursts detection . 59

xiii

ACRONYMS

ADU Application Data Unit.

CDF Cumulative distribution Function.

CSV Comma Separated Values.

DPI Deep Packet Inspection.

FTP File Transfer Protocol.

GPU Graphic Processing Unit.

HTML5 Hypertext Mark-up Language Version 5.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

IOT Internet of Things.

IP Internet Protocol.

IPv4 Internet Protocol Version 4.

IPv6 Internet Protocol Version 6.

ISP Internet Service Provider.

KS-2-sample Kolmogorov Smirnoff Two Sample Test.

xiv

LDAP Lightweight Directory Access Protocol.

MAC Media Access Control.

MSS Maximum Segment Size.

MTU Maximum Transmit Unit.

NFV Network Functions Virtualization.

NS2 Network Simulator Version 2.

PCA Principal Component Analysis.

PDU Protocol Data Unit.

RDP Remote Desktop Protocol.

SDN Software Defined Networking.

SSH Secure Shell.

SVM Support Vector Machine.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

VLAN Virtual Local Area Network.

VNF Virtual Network Function.

WAN Wide Area Network.

xv

GLOSSARY

Application Data Unit (ADU) Data block sent by an application client or server at a single

time through an operating system call.

Application Network Traffic Network traffic packets that are sent or received due to a specific

applications process(es).

Capture See Network Trace.

KS-2-sample Refers to Kolmogorov Smirnoff two sample tests for testing the equality and simi-

larity between two empirical distributions.

Network Capture See Network Trace.

Network Trace A file that shows all of the network activity on the wire. It shows the packets

flowing into or out of a network interface.

Protocol Data Unit (PDU) Data block sent by a protocol or application operating directly

above the transport layer. A single PDU may be broken down into many packets while it is

being sent out of an interface.

Trace See Network Trace.

Traffic model A model (often stochastic) of the traffic flows from data sources in a communication

network.

xvi

PREVIOUSLY PUBLISHED MATERIAL

• Chapters 1, 2, and 4 contain revised excerpts of text from a previous publication [4]: Oluwa-

mayowa Ade Adeleke, Nicholas Bastin, and Deniz Gurkan. “Network Testing Using a Novel

Framework for Traffic Modeling and Generation”. International Conference on Computer

Communications and Networks. IEEE ICCCN, 2020

• Chapter 3 contain revised excerpts of text from a submitted publication [3] : Oluwamayowa

Ade Adeleke, Nicholas Bastin, and Deniz Gurkan. “A Survey of Methods and Outcomes

in Network Traffic Generation”. Association for Computing Machinery (ACM) Computing

Surveys (CSUR), submitted in 2020

• Chapter 1, contain excerpts of text from a previous publication [2] : Oluwamayowa Ade

Adeleke, Echo-State networks for network traffic prediction. IEEE 10th Annual Information

Technology, Electronics and Mobile Communication Conference (IEMCON). Oct. 2019.

xvii

Chapter 1

Introduction

The internet has become ubiquitous. Although it started as a small network with wired con-

nections between 4 computers in 4 universities in the western part of USA, it has evolved into a

massive web with over 18 billion networked devices and over 3.48 billion users as of 2017, according

to the Cisco networking index [24]. The implication is that about half of the population of the

world now uses internet based services on daily basis, and the numbers continue to increase every

day.

This sustained increase in the internet size and utility continues to ride on the tireless work

of researchers in the field of computer networks and distributed computing. Over the last decade,

developments in Network Functions Virtualization (NFV) and Software Defined Networking (SDN)

[81] have made it possible for academic computer networking researchers to easily create large test

networks in laboratory environments. It is no longer surprising to find research experiments where

virtual networks with hundreds of virtual hosts, switches and routers are instantiated on a single

server [29, 75, 16]. This development has driven a big increase in research output in networking in

the last few years. As a result, many new protocols, virtual functions, and hardware which have

improved computer networks have been developed in the last decade.

1

1.1 Problem

In computer networking experiments, tests with real network traffic workloads are crucial for

ensuring that the system under test can perform as expected when eventually deployed into pro-

duction. Although it is often best to test new ideas with actual production traffic, the process

for obtaining appropriate network traffic to use for testing novel ideas, algorithms, protocols, and

network functions is a major pain point for many researchers. That is, even though researchers can

easily create production scale networks in virtualized environments for experiments, it is challeng-

ing to do production-scale testing because of the difficulty in obtaining and applying real network

traffic from production networks in the test experiments. There are a few reasons for this.

Firstly, privacy policies in many states and countries impose limits on the nature of network data

that industry operators can share with third parties [113], including most academic researchers.

This is because network traffic often contains sensitive user data that is protected by privacy laws.

In addition to this, many industry operators are reluctant to share traffic data with third parties so

that they do not unwittingly expose any internal information, systems, or methods to competitors,

and thus lose their competitive edge.

Even when privacy policies are not an issue and researchers can obtain actual production traffic

for testing, the logistical hurdles of anonymizing and scaling production traffic into a testbed with

limited capacity can be daunting for many academic researchers. Furthermore, the process of

anonymizing traffic by scrubbing all payload data, IP addresses, and other headers [86] sometimes

yield network traces that are devoid of some important header or payload parameters that may be

useful for some experiments that require real values for such parameters.

As a result of the factors above, networking researchers have to resort to alternative methods

2

for creating traffic workloads for their experiments. One of the most popular options is the use of

synthetic traffic generator applications. Traffic generators are software tools or hardware devices

that put synthetically created network packets into a computer network. That is, packets in traffic

generators are not generated by actual production application user processes. Thus traffic genera-

tors play an important role in computer networking research because they enable experimenters to

quickly test new algorithms, protocols, and network-functions with synthetic network traffic.

Synthetic traffic workload is said to be realistic for an application or network environment if it

has a decent level of resemblance to real network traffic captured from the application or network

environment, in terms of metrics distributions and traffic patterns. There are many categories

of synthetic network traffic generators. However, as we show in our survey in chapter 3, many

network experiments rely exclusively on constant or maximum throughput traffic generators that

do not produce realistic application traffic by default but only blast out packets through a network

interface at fixed rates, or maximum possible throughput. Only a few experiments use model-

based realistic traffic generators. Furthermore, there are no standards guidelines for how workload

is generated for network experiments. This implies that researchers in networking often test new

hardware, software, and protocols with synthetic traffic that is not similar to real application traffic

in target production networks. This is the main research problem that this work addresses.

1.2 Solution

To tackle the problems described above, in this dissertation, we have developed a high-fidelity

modeling framework of novel and existing computer application networking traffic patterns for the

purpose of realistic traffic generation. We have also developed a comprehensive evaluation system

for measuring the effectiveness of the traffic models.

3

Research Environment - Application Traffic Regenerated

Production Enterprise / Provider - Preserve Privacy

Traffic Capture

network topology 1
Modeling
System

Traffic Models:
application flows

& end points

network topology 2

Traffic Models:
application
flows & end

points Traffic Regeneration
system

Evaluate:
1. network equipment,
2. new network design
3. new protocols

Air
Gap

Fig. 1.1: Privacy preservation with the new modeling and generation framework: traffic models containing
no private data, created from a production environment can be taken to a test-bed environment and used
to regenerate similar traffic.

The framework can be used in any production network to create traffic models that contain no

private data. These models are in simple text format, contain just enough information to enable

regeneration of the traffic. They can be shared with any researcher to use in their respective test-

bed environments. When the models are shared this way, the actual network traffic data remains

exclusively under the control of the production network operator (Fig. 1.1).

This dissertation shows that the hierarchical modeling method based on application data ex-

change patterns, with parameters at application user level, connection level, and at individual PDU

level performs well at generating realistic traffic for many classes of applications. Our evaluation

also shows that incorporating high level application network behavior like the use of connection

classes, connection pools and request bursts improves the quality of a model in generating realistic

traffic.

The framework allows users to add custom modeling methods and corresponding generation

methods to the system, allowing them to be evaluated alongside with existing models. The frame-

work is designed to be portable, it can operate on any UNIX based operating system, and does not

4

require a specific test bed environment, neither is it limited to a specific class of traffic.

The modeling system we have developed utilizes machine learning clustering methods along with

statistical distributions. It is designed to be effective at modeling any arbitrary network traffic and

from any type of application. We have evaluated the modeling method based on diverse sets of

application traffic including web application, video streaming, secure shell (SSH), remote desktop,

and many others.

This framework is useful to researchers and academics in computer network research, especially

those involved in large scale enterprise, data-center, and IoT network testing. The methods pre-

sented make it easier to empirically investigate how various changes to a network’s traffic patterns,

and infrastructure will impact the production network performance using realistic traffic. Industry

players, including network operators and equipment vendors can use the framework to demonstrate

to operators that their new devices and network functions can successfully handle the specific pat-

terns of traffic that operators have on their production networks. It also enables industry operators

to be able to make more informed decisions when designing new networks and optimizing existing

networks. Our solution serves as a good foundation for others to build more advanced solutions

that apply machine learning to the problem of realistic traffic generation.

1.3 Summary of Contributions

Our contribution in this dissertation includes:

• Traffic modeling framework for traffic generation that uses advanced learning algorithms to

process input traffic traces to provide privacy-preserving models

• A new application-agnostic traffic model generation method based on application data ex-

change patterns, incorporating representations for high level application behavior including

5

true transport layer semantics, Connection classes, connection pools, and request bursts.

• A comprehensive evaluation showing that the modeling method above is effective and ap-

plication agnostic, and that the incorporation of high level application network behavior

(connection classes, connection pools and request bursts) improves the quality of the model

in generating realistic traffic.

• The outcomes of our extensive survey on about 100 network traffic workload generators used

in computer networks research, and our analysis of their usage in over 7000 networking papers

• A set of tools and a recommended methodology to guide experimenters in selecting appropri-

ate network traffic generators for specific experimental use-cases based on required features,

and recorded metrics.

1.4 Organization of the Dissertation

In chapter 2 we provide background literature on network traffic workload generators, their

evaluation, and usage scenarios that is relevant to the body of this dissertation. Afterwards in

chapter 3 we share the results of our extensive survey on workload generation techniques in computer

networks research as the groundwork on evaluation of traffic generation needs. Details for traffic

modeling, generation, and evaluation are in chapter 4. In chapter 5 we provide the details of our

evaluation experiments, and a discussion of the results showing the benefits of our new modeling

approach.

6

Chapter 2

Literature Review

In computer network research, tests on new artifacts (algorithms, network functions and proto-

cols) are rarely ever done in actual production environment, because of the high risk factor involved.

Any mistake in the design or implementation of the new artifact can disrupt a production network

and adversely impact users, administrators and even other connected networks. Hence before any

new network artifact is deployed in production, it usually undergoes many stages of testing in lab-

oratory and test bed environments. When carrying out tests in the laboratory, the type of network

traffic workload used in experiments matter. The type of traffic used can positively or negatively

impact experimental results. One common objective of many test processes is to have an estimate

of how the new artifact will perform when deployed in a new production environment. To achieve

this objective, some tests must be carried out using traffic that is typical to the target production

network. However, as described in section 1.1 researchers usually still have to rely on traffic gen-

erators for testing these artifacts. Therefore, traffic generators that produces traffic workload that

is realistic for the target deployment network must be used. This is why realistic traffic generators

play an important role in network experimentation. The next section explores common classes of

network traffic generators, providing a few examples of generators in each category.

7

2.1 Traffic Generators Classification

In a 2013 paper by Molnár et al. [83], the authors provided a classification for network traffic

generators from the perspective of their techniques for pushing packets into the network. We have

expanded on this classification in the section below. In general, traffic generators can be categorized

into constant / maximum throughput generators, application-level synthetic workload generators,

trace file replay systems, model-based generators, and script driven traffic generators. We describe

each class below.

2.1.1 Constant or Maximum Throughput Generators (CMT)

Traffic generators in this category typically create a packet with specific header fields. The

packet is then repeatedly sent out of a network interface at a constant rate or the maximum

possible rate in bits per second (bps) or packets per second(pps). Popular examples of traffic

generators in this category are iperf [128] and netperf [58]. Other examples include nuttcp [42]

and SolarwindsWANkiller [119]. These are often the easiest to use, and are suitable for quick

network throughput stress testing. A characteristic of generators in this category is that they offer

little or no variation in header and payload content of the packets blasted out of the interfaces. In

most traffic generators in this class, a user can specify only one flow per native run instance such

as the source and destination IP address and port numbers before the packet generation process

starts.

2.1.2 Application Level Synthetic Workload Generators

These generate network packet traffic for a specific type of application or protocol such as

the httperf [84]. In some cases, researchers may launch actual application programs and run

8

a specific set of workloads using their data exchanges to generate the traffic. This approach of

workload generation is often capable of realistic variations on packets for the specific application or

protocol. However, the resulting workload still consists of a limited set of application events. Some

other popular examples of traffic generators in this category include httperf [84], Surge [14] and

packmime-http [140]. Exclusive usage of these approaches may result in a skewed performance

deprived of the realistic simultaneous background traffic or the application-user interaction in a

typical production environment [136].

2.1.3 Trace File Replay Systems

Replay systems inject packets from a trace file into a network interface at the indicated time

intervals in the capture file. In some cases, users are able to specify the speed at which they would

like to replay the packets. Many researchers obtain trace files with anonymous data and empty

payload contents from public data sets [109, 44, 72], and replay them on the nodes of their individual

experiment topologies using tools like TCPreplay [130]. These replay systems can produce traffic

workloads that mirror the original traffic, especially if the workload can be run on an experiment

topology that is similar to the original network. In addition, most replay systems are stateless

and are unable to send the packets in a manner that will be responsive to the impairments in the

experiment network. For example, such a replay will continue to send out TCP packets even when

the links between endpoints are down whereas a realistic TCP flow control would have limited

further packet transmissions. In addition, continuous replay of the same trace file on a network

will keep producing the same events periodically resulting in an unrealistic traffic pattern. Other

common examples of replay systems include TCPIVO [41], EAR replay [69], Bit-twist [147] and

divide and conquer [146].

9

2.1.4 Script Driven Traffic Generators

In recent years many new script driven traffic generators have been developed. These generators

allow users to dynamically modify the full range of packet header and data content. Popular

examples of generators in this category are DPDK pktgen [142] and moongen [37]. These allow users

to create any type of packet, with almost any packet header value, and while also dynamically

modifying the packets at run time.

2.1.5 Model-based Traffic Generators

A popular method of generating realistic traffic is the creation and transmission of packets

following random distributions of their time intervals, packet sizes, etc. One example of these

is the Multi-Generator (MGEN) [88] traffic generator. Other examples include D-ITG [10], and

Brute [21]. These generators allow users to specify a random distribution model with parameters

that may match the intended scenario of network traffic workload. With carefully selected random

distributions, they can generate traffic that is statistically similar to traffic workload in specific

production environments.

2.1.6 Trace Driven Model-based Traffic Generators

Some traffic generators go a step further than the purely model-based approach by allowing

experimenters to supply a trace file input or log files of actual traffic from production networks.

The input trace file or log file is analyzed to create a model by fitting the various traffic parameters

to random distributions which are then used to generate packets. Some examples are harpoon [120]

and swing [137]. Other examples include TMIX [141], sourcesonoff [134], Litgen [108] and reneto

[45]. They generate packets that are statistically similar to actual packets seen in the corresponding

10

input production network trace or log file.

2.2 Traffic Modeling and Realistic Traffic Generators

In networking research experiments that are designed to evaluate how a device or software

would perform in a real production network environment, it is important that such experiments

are carried out using network traffic that is realistic for the target production network. When the

researchers are unable to obtain and replay actual production traffic due to the privacy policies

described earlier in section 1.1, they often have to resort to one of the synthetic work load generation

methods described in section 2.1 above. However, in this kind of experiments, traffic generators

with better realistic traffic modeling methods will yield better evaluation results than constant or

maximum throughput generators. Hence an understanding of network traffic modeling research is

crucial in any realistic traffic generation effort.

One important characteristic of realistic traffic is the high variability in source and sink end-

points, applications, and packet header parameters. When researchers carry out tests with only

simple traffic generators, the limited variation in packets seen might cause a wrong prediction of

expected performance measurements, because non-realistic traffic generators will not expose new

protocol or network function to entire range of possible traffic mixes that will be seen in production.

Network traffic flowing through a link or an interface at any point is made up of a summation of all

packets flowing between all the sources and sinks that are connected to that point of the network,

with each source and sink pair typically having multiple applications that exchange network traffic.

Hence, the traffic observed at any point can be taken as the aggregate of all traffic from every ap-

plication running on all sources and sinks in the network. A good realistic traffic model must create

good representations for how applications and endpoints on a target network exchanges network

11

traffic.

Since the early days of computer networks, most network traffic modeling efforts have been

focused on getting accurate representations for packet the inter-arrival times parameter. Initially,

many efforts were focused on the use of non-self-similar distribution models for inter-packet times

[145]. In the eighties and early nineties, most traffic models were based on the simple Poisson

distribution [79]. The simple Poisson model was popular because of its ease of use, and because

it was assumed that burstiness in observed values of inter-packet times could be smoothed by

aggregating traffic from a large number of sources, in adherence with the central limit theorem.

Other possion-based models were later developed in an attempt to account for the burstiness

observed. Some examples of such models include the compound Poisson traffic model [57], the

Markov-modulated Poisson traffic model (MMPP) [51] and the packet trains [57].

In the early 1990s, a large scale network traffic data collection and analysis effort yielded results

that clearly showed evidence of self-similarity and long range dependence in real Ethernet traffic [73,

143]. However, Poisson models are not self similar in nature, making them inadequate in modeling

traffic for packet generation in simulations. This was also proven experimentally by Paxson et. al.

[99]. They demonstrated that packet inter-arrivals could not be adequately modeled with Poisson

processes.

Since that time, many distributions have been developed that are better at modeling network

traffic. A Pareto distribution was found to be suitable in modeling real network traffic inter-arrival

times, even though the Pareto distribution is not inherently self-similar, as it exhibits visual self-

similarity due to its heavy tail [99]. Other self similar models include fractional Brownian motion

traffic model [92] and Chaotic Maps traffic models [38].

12

2.3 Common Realistic Traffic Generators in Research

In the application of traffic models to realistic packet generation, the typical approach is to

create a system that identifies various characteristics of network traffic and create stochastic distri-

butions to represent values observed for each of the characteristics. There are many realistic traffic

generators that follow this approach [71, 10, 120, 137]. These generators fall into the category of

model-based traffic generators and trace driven model-based traffic generators which we describe

in sections 2.1.5 and 2.1.6 respectively. Each of them generates traffic based on a model containing

distributions for differing sets of parameters. By incorporating multiple sources and sinks based

on the hierarchical models, some of them are able to provide good self similarity characteristics.

In this rest of this section we provide brief descriptions and references for some common realistic

traffic generators in research.

D-ITG: The distributed internet traffic generator (D-ITG) [10] is a traffic generator that allows

users to specify statistical distributions for network traffic parameters including inter-packet times

and packet sizes. It then generates network traffic from a source, based on the distributions.

Harpoon: Harpoon [120] is a flow-level TCP traffic generator for router and network testing

that extracts statistical distributions for 7 traffic parameters from router netflow logs, and then

generates packets based on these statistical distributions.

TMIX: TMIX [141] generates realistic TCP application workloads in NS-2. The traffic generator

consists of two applications, the first extracts connection vectors (details of Application Data Units)

from the traces. The second application takes the connection vectors as input, and generates

packets, either by replaying the pattern seen in the connection vectors, or by using calculated

values after fitting the connection vectors to statistical distributions.

13

Swing: Swing [137] is a realistic and responsive network traffic generator that uses a hierarchical

model to extract probabilistic distributions for many parameters from traffic traces at user level,

request-response exchange level, connection level and packets level. It attempts to replicate both

the traffic and observed network conditions in a laboratory. The generator is able reproduce the

burstiness characteristic observed in self similar internet traffic, by recreating original network

conditions in a closed generation environment.

SourcesOnOff: Sourcesonoff [134] uses multiple source and sink processes to generate packets,

with each source having periodic on and off packet trains to create self similar traffic, as suggested

by Jain et al. [57] and Willinger et al. [144]. The tool also allows users to select statistical

distributions to be used for packet sizes and inter-arrival times in the multiple sources.

Litgen: Litgen [108] automatically extracts statistical distributions from traces for the multiple

sources at session, object and packet levels to later generate traffic based on values from these

distributions.

Reneto: Reneto [45] is made up of two distinct applications, a traffic generator for the OM-

NeT++/INET simulator. First, A trace analyzer that extracts packets to fit distributions for 13

hierarchical parameters at UDP/TCP, Flow, Session, and user levels, to create an XML file con-

taining the model. Second, a traffic generator application to generate traffic based on the XML

file.

Brute: Brute [21] allows users to write code extensions to define custom statistical models. These

code extensions can then be used to generate packets in a live network.

RAMP: RAMP [71] utilizes traces to estimate end-user behavior and network conditions, it then

generates a 3-level structural source model for web and FTP traffic and uses the models to generate

14

realistic traffic.

SURGE Scalable URL Reference Generator (SURGE) [14] is a realistic traffic generator for web

(HTTP) traffic. It creates a model with distributions obtained from empirical measurements for 6

parameters, and uses this model to generate packets at desired sources and sinks.

2.4 The Need for a New Realistic Traffic Generation Framework

In our survey of traffic generators and their use in research (section 3.3), we observed realistic

traffic generators are not as popular as constant or maximum throughput traffic generators in

terms of usage in research experiments. We believe there are many reasons for this. Some of them

are complicated to use, some are too tightly bound to specific test bed environments [141, 45].

Others require that all nodes are connected with an out of band control network [137]. In addition,

since network traffic typically evolves over time as newer applications are created, some of these

generators have modeling methods that are no longer valid for the nature of traffic seen in typical

networks today.

Our work in this research is unique, and different from all those described in section 2.3 in that

our focus is on creating a framework, and not just another traffic modeling and generation methods.

The framework makes it possible for users to continuously add custom modeling and generation

methods for desired application network traffic in response the evolving nature of network traffic.

In addition to this, the modeling system is designed to be portable to all operating systems that

support the python programming language, and it does not require a specific test-bed or out of band

control network. Ease of use was a major guiding principle in the design of the framework, thus, the

framework design makes it possible for a user to select from a library of ready made traffic model files

for a specific application or network, and use the model to generate traffic in a test environment

15

without having to go through the more tasking process of model creation. By decoupling the

modeling system from the generation system, the framework also ensures compliance with any

privacy policies, if the model files are created within a production network operator domain, and

shared with third parties via other channels.

Using the framework, we also developed a new modeling method from realistic traffic generation.

The modeling is based on 2-way client-server data exchanges as seen in real TCP and UDP traffic,

unlike most of the realistic traffic generators where modeling is done based on 1-sided flows. Fur-

thermore, the modeling method is unique in its hierarchical structure in that it includes a machine

learning based clustering of application connections, in addition to the usual stochastic distribution

based modeling seen in other method.

In the next chapter we share the details of our survey on network traffic generation methods

before we go on to provide the details of our framework in the subsequent chapter.

16

Chapter 3

Survey of Traffic Generators

There are a plethora of tools to generate network traffic workloads with different implications on

the measurement outcomes. As a result of the diverse set of options available, researchers tend to

generate traffic using varying methods for even similar experimental goals. In fact, in many cases,

distinct traffic generation methods report separate sets of metrics for similar traffic workloads, thus

making comparisons between experiments difficult and hindering repeatability of outcomes.

A workload generation approach to a networking research experiment has to supply the behavior

and the means to validate the desired characteristics. There is not any one particular traffic

generation method that is capable of answering the needs of all types of experiments. Hence, a

comprehensive assessment of traffic generator features and possible usage scenarios are important

steps in experiment design.

In this chapter, we present a comprehensive survey of network traffic generators in academia and

industry. Unlike existing traffic generator surveys [36, 66, 83], our objective is not a performance

comparison, rather a determination of the behaviors. The performance of traffic generators has

been studied extensively in the literature and our survey focuses on the types of variances and

functionality of the available traffic generators even though it is possible that they could be run in

a high performance setting with the support of hardware platforms and techniques guaranteeing

a wire-speed generation capability. In fact, most generators in our analysis are software programs

17

that are vulnerable to the limitations in the runtime environment and the hardware systems. Our

goal is to analyze available characteristics and features of commonly preferred tools and then to

provide a systematic methodology to pick suitable generators for the type of research goals.

We first present our survey of traffic generators and their usage in a comprehensive set of

publications in the top ACM and USENIX conferences where we collect information on usage

frequency of a traffic generation method of any kind. (IEEE publications were not included in

our corpus because the API to pull papers from the IEEE database made it difficult to perform

extensive downloads of a large number of papers.) We compile almost 100 traffic generators used

in academia and industry. For each one we attempt to obtain the binaries or the source code and

then study available documentation or reference papers. We investigate and then categorize each

as either dormant or active based on their last-reported maintenance date. We then group the

generators into classes based on how they function. Afterwards, based on the usage scenarios in

papers from prestigious networking research conferences over the last 13 years (over 7000 papers),

we rank them per popularity. We then pick the top 10 to carry out a closer examination of the

individual features. Based on the literature analysis, key observations are as follows:

1. Most research papers have used constant/maximum throughput traffic generators. These

traffic generators blast packets at a given rate with no specific application behavior or header

field programmability.

2. Only a few research projects use realistic (model-based) traffic generators.

3. Traffic generators produce output metrics in a non-standard manner.

In the next sub-sections, we provide the details of our survey of traffic generators, and their

usage in research and academia. We then focus on specific features and metrics provided in each

18

of the top 10 traffic generators. We also present a methodology to help researchers in choosing

appropriate traffic workload generators based on their experiment needs.

3.1 Comprehensive List of Traffic Generators

We assembled an exhaustive list of network traffic generators used across research and indus-

try, finding 96 traffic generators created between 1995 and 2018. Our list of traffic generators

was sourced from computer networking research papers (over 7000 papers in published by ACM

SIGCOMM and USENIX [132]) and general internet document searches [111, 112, 127, 49].

3.1.1 List of Traffic Generators

The Table 3.1 below lists all 96 traffic generators we considered in this survey. We have in-

cluded the information on licensing, software maintenance status, supported operating systems, the

generation category as outlined in the taxonomy section 2.1, and the best available web link to get

further information about each traffic generator. The generators in the table have been listed in

descending order of popularity based on our findings in the section 3.3.

Table 3.1: Status of traffic generators in research and industry as of Jan 2019. Generators sorted on
descending order of popularity per section 3.3

.

ID Name License Status
Date

Platform5 Category Link (Source, Binaries, Paper)

1 iPerf2
[128]

BSD 2019-
01

All CMT2 https://sourceforge.net/projec

ts/iperf2/

2 Netperf
[58]

Free1 2018-
06

All CMT2 https://hewlettpackard.github.

io/netperf/

3 Httperf
[84]

GPLv2 2018-
11

All App level
gen

https://github.com/httperf/htt

perf

4 Moongen
[37]

MIT 2018-
12

Unix,
Linux

Script
driven

https://github.com/emmericp/Mo

onGen

19

Table 3.1. (continued). Status of traffic generators in research and industry as of Jan 2019.
Generators sorted on descending order of popularity - per section 3.3

ID Name License Status
Date

Platform Category Link (Source, Binaries, Paper)

5 Scapy [20] GPLv2 2019-
01

All Script
driven

http://www.secdev.org/project

s/scapy/

6 Linux Pkt-
gen [93]

GPLv1 2018-
09

linux Script
driven

https://github.com/torvalds/li

nux/blob/master/net/core/pktge

n.c

7 Netcat
[53]

2019-
01

All Other3 http://nc110.sourceforge.net/

8 iperf3 [33] BSD-
3-
Clause

2018-
12

All CMT2 https://github.com/esnet/iperf

9 TCPreplay
[130]

GPLv3 2018-
12

All Traffic re-
play

http://tcpreplay.appneta.com/

10 DPDK
Pktgen
[142]

BSD 2019-
01

Unix,
Linux

Script
driven

https://pktgen-dpdk.readthedoc

s.io/en/latest/

11 Harpoon
[120]

GPLv2 2018-
01

Unix,
Linux

Trace
driven

https://github.com/jsommers/ha

rpoon

12 D-ITG
[10]

GPLv3 2013-
03

All Model
based

http://www.grid.unina.it/soft

ware/ITG/

13 TMIX
[141]

MIT 2011-
11

NS2 or
NS3

Other3 https://github.com/weiglemc/tm

ix-ns2

14 Nuttcp
[42]

GPLv2 2018-
07

All CMT https://www.nuttcp.net/

15 SWING
[137]

Free1 2008-
09

Unix,
Linux

Trace
driven

http://cseweb.ucsd.edu/~kvish

wanath/Swing/

16 Surge [14] Free1 1998-
11

All App level
gen

http://cs-www.bu.edu/faculty/

crovella/surge 1.00a.tar.gz

17 OSNT [8] - 2019-
01

NetFPGA Script
driven

http://osnt.org/

18 Bit-Twist
[147]

GPLv2 2012-
04

All Traffic re-
play

http://bittwist.sourceforge.n

et/

19 Globetraff
[62]

- 2016-
09

All Trace
driven

https://github.com/lookat119/G

lobeTraff

20 Ixnetwork
[65]

Comm-
ercial

- - - https://www.ixiacom.com/produc

ts/ixnetwork

21 UDPgen
[124]

- - - - http://www.fokus.fhg.de/usr/s

ebastian.zander/private/udpgen

22 Nping [91] GPLv2 2018-
03

All CMT https://nmap.org/nping/

20

Table 3.1. (continued). Status of traffic generators in research and industry as of Jan 2019.
Generators sorted on descending order of popularity - per section 3.3

ID Name License Status
Date

Platform Category Link (Source, Binaries, Paper)

23 TRex [25] Apache-
v2

2019-
01

Unix,
Linux

Script
driven

https://trex-tgn.cisco.com/

24 Ostinato
[123]

GPLv3 2019-
01

All Script
driven

https://ostinato.org/

25 Libcrafter
[101]

MIT 2017-
09

Unix,
Linux

Script
driven

https://github.com/pellegre/li

bcrafter

26 PackMime-
HTTP
[140]

MIT 2005-
06

NS2 App level
gen

https://www.cs.odu.edu/~mweig

le/research/packmime/

27 Spirent
SmartBits
[122]6

Comm-
ercial

- - - https://www.spirent.com/produc

ts/testcenter

28 Nemesis
[87]

GPLv2 2003-
11

All Script
driven

http://nemesis.sourceforge.ne

t/

29 IPB [77] - - - - https://ieeexplore.ieee.org/ab

stract/document/693678

30 LANforge
FIRE [22]6

Comm-
ercial

- All - http://www.candelatech.com/

31 GenSyn
[50]

- - - - https://www.researchgate.net/p

ublication/234056921 GenSyn-a J

ava based generator of synthet

ic Internet traffic linking use

r behaviour models to real netwo

rk protocols

32 Mtools [9] - - - - http://www.grid.unina.it/grid

/mtools/

33 Netspec
[59]

- 1997-
12

Unix,
Linux

Trace
driven

http://www.ittc.ku.edu/netspe

c/

34 Packet
Shell [124]

- - - - http://pksh.tecsiel.it/

35 Skaion
TGS [116]

Comm-
ercial

- - Other http://www.skaion.com/

36 Trafgen
[52]

GPLv2 2019-
01

Unix,
Linux,
Mac

App level
gen

http://netsniff-ng.org/

37 RAMP
[71]

- - - Trace
driven

http://www.csie.ncku.edu.tw/~k

lan/data/materials/ramp.pdf

38 BRUTE
[21]

GPLv2 2016-
11

Linux CMT2 https://github.com/awgn/brute

21

Table 3.1. (continued). Status of traffic generators in research and industry as of Jan 2019.
Generators sorted on descending order of popularity - per section 3.3

ID Name License Status
Date

Platform Category Link (Source, Binaries, Paper)

39 Breaking-
Point
[63]

Comm-
ercial

- - App level
gen

https://www.ixiacom.com/produc

ts/breakingpoint-ve

40 IP-Packet
[12]

GPLv2 2003-
11

Linux,
FreeBSD

CMT2 http://p-a-t-h.sourceforge.ne

t/html/index.php

41 Rude/
Crude [70]

GPLv2 2002-
06

All CMT2 http://www.atm.tut.fi/rude

42 Bruno [7] - - - Trace
driven

https://ieeexplore.ieee.org/st

amp/stamp.jsp?tp=&arnumber=46

67607

43 Divide &
Conquer
[146]

- - - Traffic re-
play

https://ieeexplore.ieee.org/do

cument/1386202

44 Byte-
Blower
[39]

Comm-
ercial

- - - https://www.excentis.com/produ

cts/byteblower/

45 Colosoft
Packet
Builder
[56]

Free1 2016-
06

Windows CMT2 http://www.colasoft.com/downl

oad/products/download packet b

uilder.php

46 EAR Re-
play [69]

- - - Traffic re-
play

ieeexplore.ieee.org/abstract/d

ocument/6214199/

47 GL traffic
generator
[47]

Comm-
ercial

- - - https://www.gl.com/traffic-gen

erators.html

48 HexInject
[1]

BSD-
2-
Clause

2017-
01

Linux CMT2 http://hexinject.sourceforge.

net/

49 IPGen [74] - 2001-
03

- CMT2 http://sourceforge.net/projec

ts/ipgen/

50 IxChariot
[64]

Comm-
ercial

- - Trace
driven

https://www.ixiacom.com/produc

ts/ixchariot

51 PIM-SM
Packet
Generator
[5]

- - - - https://literature.cdn.keysigh

t.com/litweb/pdf/5988-6560EN.p

df?id=1649878

52 EPB [135] Free1 2019-
05

All (C) Script
driven

http://m-a-z.github.io/epb/

53 NETI@
home [114]

- - - - http://neti.gatech.edu/

22

Table 3.1. (continued). Status of traffic generators in research and industry as of Jan 2019.
Generators sorted on descending order of popularity - per section 3.3

ID Name License Status
Date

Platform Category Link (Source, Binaries, Paper)

54 TTCP,
Test TCP
[26]

- - - - https://www.cisco.com/c/en/us/

support/docs/dial-access/async

hronous-connections/10340-ttcp

.html

55 LANTraffic
[27]

Comm-
ercial

2015-
11

Windows CMT2 https://www.zti-communications

.com/lantrafficv2/

56 Libtins
[43]

BSD 2019-
01

All Script
driven

https://github.com/mfontanini/

libtins

57 LitGen
[108]

- - - Trace
driven

https://www.researchgate.net/p

ublication/220850223 LiTGen a L

ightweight Traffic Generator A

pplication to P2P and Mail Wirel

ess Traffic

58 MGEN
[89]

MIT-
ish

2018-
11

All Model
based.

https://www.nrl.navy.mil/itd/n

cs/products/mgen

59 UDP Gen-
erator
[125]

MIT 1999-
05

Linux,
Unix

CMT2 http://www.citi.umich.edu/pro

jects/qbone/generator.html

60 Network
Expect
[35]

- - Unix,
Linux,
Mac

CMT2 http://www.netexpect.org/

61 Cat Karat
[31]

Comm-
ercial

2010-
01

Windows CMT2 https://sites.google.com/site/

catkaratpacketbuilder/

62 NTG [149] - - - App level
gen

http://www.wseas.us/e-library

/conferences/2013/Paris/CCTC/C

CTC-35.pdf

63 Fragout
[121]

BSD-
3-
Clause

2002-
04

All CMT2 http://www.monkey.org/~dugsong

/fragroute/

64 GEIST
[60]

BSD-
2-
Clause

2012-
11

All Model
based

http://kkant.net/geist/

65 NTGM
[100]

Comm-
ercial

2018-
10

Windows CMT2 http://pbsftwr.tripod.com/id1

7.html

66 Graph-
Based TG
[115]4

- - - - http://rvs.unibe.ch/research/

pub files/SSKB10.pdf

23

Table 3.1. (continued). Status of traffic generators in research and industry as of Jan 2019.
Generators sorted on descending order of popularity - per section 3.3

ID Name License Status
Date

Platform Category Link (Source, Binaries, Paper)

67 Inter-
networking
Test TG
[32]4

- - - - http://www.donfraysoftware.co

m/MITS/MITS.htm

68 Omnicor
TG [94]4

Comm-
ercial

- - Model
based

https://www.omnicor.com/produc

ts/network-testing-tools

69 Jugi’s TG
[78]4

GPLv2 2010-
11

Linux CMT2 http://www.netlab.tkk.fi/~jma

nner/jtg.html

70 KUTE
[150]

GPLv2 2007-
09

Linux CMT2 http://caia.swin.edu.au/geniu

s/tools/kute/

71 LAN-
decoder32T
[129]

- - - - http://www.triticom.com/triti

com/ld32/trafgen.htm

72 packet
sender [85]

GPLv2 2018-
12

All CMT2 https://packetsender.com/

73 PackETH
[98]

GPLv3 2017-
12

All CMT2 http://packeth.sourceforge.ne

t/

74 Mausezhan
[139]

GPLv2 2011-
12

Linux (C) CMT2 https://github.com/uweber/maus

ezahn

75 MxTraf
[68]

GPLv2 - - - http://mxtraf.sourceforge.net/

76 Solarwinds
WAN
killer [118]

Comm-
ercial

- Windows CMT2 https://www.solarwinds.com/top

ics/traffic-generator-wan-kill

er

77 NSWEB
[138]

- - NS2 - https://www.net.t-labs.tu-berl

in.de/~joerg/

78 NTGen
[11]

- 2002-
11

Linux
(C/C++)

- http://softlab-pro-web.techni

on.ac.il/projects/NTGen/html/n

tgen.htm

79 STG-10G
[34]

Comm-
ercial

- - Model
based

https://www.ecdata.com/product

s/stateful-traffic-generator/

80 PacGen
[96]

GPL-
v2

2006-
09

Linux (C) CMT2 http://sourceforge.net/projec

ts/pacgen/

81 PlayCap
[95]

GPLv3 2010-
03

All Traffic re-
play

https://github.com/signal11/Pl

ayCap

82 Poisson
TG [107]4

- 2003-
06

(C) Model
based

http://www.spin.rice.edu/Soft

ware/poisson gen/

83 ProvaGEN
3.0 [124]

- - - - http://www.provanet.com/packe

t generator tts page.htm

24

Table 3.1. (continued). Status of traffic generators in research and industry as of Jan 2019.
Generators sorted on descending order of popularity - per section 3.3

ID Name License Status
Date

Platform Category Link (Source, Binaries, Paper)

84 Qosnetics
TG [111]4

- - - - http://www.qosnetics.com/

85 Real-Time
Voice TG
[110]4

- - - - http://www.cs.ucr.edu/~msamidi

/projects.htm

86 VOIP TG
[17]4

- 2005-
11

(perl) App level
gen

http://voiptg.sourceforge.net/

87 Self Sim-
ilar TG
[67]4

MIT 2001-
04

(C) Model
based

http://research.glenkramer.co

m/code/trf gen3.shtml

88 Sources-
OnOff
[134]

GPLv3,
Ce-
CILL

2013-
03

Linux (C) Model
based

http://www.recherche.enac.fr/

~avaret/sourcesonoff

89 SPAK [61]
Packet
Generator

- - - - http://static.lwn.net/lwn/199

8/0312/a/spak.html

90 TCPivo
[41]

- 2002-
09

Linux (C) Traffic re-
play

https://www.thefengs.com/wucha

ng/work/tcpivo/

91 TfGen
[126]

- 1998-
02

Windows CMT2 http://www.pgcgi.com/hptools/

92 IP-traffic
[97]

Comm-
ercial

2019 Windows CMT2 https://www.pds-test.co.uk/pro

ducts/ip test measure.html

93 Traffic
Generator
Tool [102]

- - - - http://www.postel.org/tg/

94 WRAP
[90]

BSD
clause

2019-
01

All Script
driven

https://github.com/Juniper/war

p17

95 Yersinia
[15]

GPLv2 2017-
09

All CMT2 https://github.com/tomac/yersi

nia

96 YouTube
Workload
generator
[23]

- - - - -

Table 3.1 Footnotes

1 Some traffic generators classified as free require attribution

2 CMT stands for constant or maximum throughput traffic generators (see section 2.1)

3 Other, when not listed in the pre-defined traffic generator categories in section 2.1

25

4 TG is used as an abbreviation for traffic generator

5 Platform refers to supported operating systems

6 Hardware traffic generators, all others are software traffic generators

3.2 Tool Availability

For each of the generators on our list we evaluated the distribution status - whether there

were freely available binaries or source code, or trial variants. We found that thirteen generators

required commercial licenses, and only two of those had available trial versions. This includes all

of the hardware traffic generators on our list and a small number of software traffic generators.

For the remaining non-commercial generators we were unable to locate source code or binaries for

twenty-nine of them, leaving us with source code or binaries in full or as a free trial version for only

fifty-six of the generators.

For these fifty-six generators, we obtained the latest date of development update (code change or

package release) to gain a sense of maturity and development activity. Twenty-five of the generators

have not been updated since 2012.

We provided a taxonomy for the generators in the section 2.1 with a reference to one of the

listed categories in the Table 3.2 below. There were a few of the generators that did not fit into any

of the specified categories (marked as ”other” in the table). We were unable to verify the category

of the rest because they were either no longer unavailable or required commercial licences that we

could not obtain. The complete detail of these findings are in the Table 3.1.

26

Table 3.2: Classification of traffic generators per section 2.1

Traffic Generator Category All

1 Constant or maximum throughput generators 26
2 Application level generators 7
3 Trace file replay tools 7
4 Model-based traffic generators 11
5 Trace driven model-based traffic generators 5
6 Script driven traffic generators 11
7 Others 29

Total 96

3.3 Traffic Generation Tool Popularity

We collected the 96 traffic generators listed in the Table 3.1 based on their usage in papers

published over the last 13 years (from 2006 to 2018). We examined a total of over 7000 computer

networking related papers, including 2762 papers published in various conferences and journals

by the Association for Computing Machinery’s (ACM) Special Interest Group on Data Commu-

nications (SIGCOMM). The ACM conferences we explored include ACM-ICN, AllThingsCellular,

ANRW, APNet, CHANTS, Cnet, GreenNets, HomeNets, HotNets, HotSDN, IoTS&P, LANCOMM,

MECOMM, MobiArch, NetAI, NetEcon, NSEthics, NSDR, SIGCOMM, SOSR and 43 others. The

remaining 4623 papers were published in various conference proceedings and journals of the Ad-

vanced Computing Systems Association (USENIX) computer networking related conferences be-

tween the years 2006 to 2018. The conferences we explored include the ATC, APSys, CoolDC,

CSET, EVT, FOCI, HotCloud, HotEdge, HotSec, IPTPS, LISA, NetDB, NSDI, ONS, OSDI, Secu-

rity, SRUTI, SustainIT, SysML, WASL, WebApps and 37 others. We could not include any of the

Institute of Electrical and Electronics Engineers (IEEE) papers in the analysis because the API of

27

the IEEE digital library made it difficult to perform extensive downloads of a large number of pa-

pers. The full list of papers examined in the surveys and the corresponding journals or conferences

have been povided online [132].

We conducted a detailed word search analysis of all 7000+ papers. First, we created a list of

terms/phrases that uniquely describe each generator. For example, search terms for the DPDK

packet generator included ’dpdk pktgen’, ’pktgen dpdk’, ’dpdk packet generator’, ’dpdk generator’,

’dpdk based packet generator’ and ’dpdk based generator’. We then created n-gram indices with

n = 1 to 5, from the raw text of the entire corpus of papers. We searched these indices to locate

matches of the traffic generator terms/phrases. For each match, we ran a script that captured the

surrounding sentences for the location of the match, which resulted in about 1800+ papers. We

manually examined the sentences for each match in order to determine whether the generator was

actually used, cited, or just merely mentioned in the paper. Based on the surrounding text we were

also able to identify and exclude cases where the search terms in the paper was found to refer to

something other than the traffic generation context. The scripts that we wrote and used for the

search and analysis of papers is open source and made publicly available online [132].

The result of the analysis is a list of traffic generators and the associated lists of papers where

the generators are used, cited, and mentioned. Based on the result, we rank the generators and

select the top 10 based on their usage popularity in the last 13 years for further examination.

The top 10 list consists of: iperf2 [128], netperf [58], httperf [84], moongen [37], scapy [20],

linux pktgen [93], netcat [46], TCPreplay [130], iperf3 [33], DPDK pktgen [142] in descending

order of usage. Fig. 3.1 gives the details of the results of this analysis, while Table 3.1 gives the

complete list of traffic generators in descending order of usage. All top 10 traffic generators are

open source, and they are all software traffic generators.

28

ip
er

f2

ne
tp

er
f

ht
tp

er
f

m
oo

ng
en

sc
ap

y

lin
ux

 p
kt

ge
n

ne
tc

at

tc
pr

ep
la

y

ip
er

f3

dp
dk

 p
kt

ge
n

200

100

60

50

40

30

20

10

0

Mentions
Citations
Usages

Fig. 3.1: Top traffic generators from ACM and USENIX networking-related conference publications [132]

29

The usage reference of each of these generators is given in Fig. 3.2 per year from 2006 to 2018.

Based on the results, constant / maximum throughput traffic generators, especially iperf2 [128],

continue to dominate in terms of usage. More recent realistic traffic generators that are based

on stochastic models, e.g., swing, DITG, etc., are not cited as much as the constant / maximum

throughput traffic generators, even in the recent publications. Although they do not make the top

10, there are many of other realistic traffic generators in the next 10 on the list in Table 3.1.

In the later years, usage of script driven traffic generators like moongen [37], and DPDK pktgen

[142] that allow extensive variations in specific header values have gained more traction, and we

expect the trend to continue in the upcoming years. In addition, some of these script driven traffic

generators like trex [25] do not feature among the top 10. However, we believe that such generators

will find more utility in research in the upcoming years. When a generator is script driven, there is

usually a script file that configures its running parameters with various options for programmability

of the individual packet header fields per flow and some of the desired traffic characteristics. On

the other hand, a typical native run of a generator such as the iperf2 is a pre-defined flow of TCP

or UDP at a user-defined throughput level.

Most constant / maximum throughput traffic generators create packets with almost no variation

in header and payload contents, they usually only allow for selection of a single value for specific

header fields before the beginning of their generation process. Hence they are useful for a narrow

class of applications and may not reflect a true mix of network traffic in typical topologies. For

example, one such generator is iperf2. Per each native run, iperf2 can provide a TCP or UDP flow

that is driven by a constant throughput goal. Despite these limitations, these types of generators

are quite popular. In order to further verify this observation, we examined all papers where iperf2

were used and we read through them to find out if such papers used any other traffic generation

30

Fig. 3.2: Usage by year of top 10 generators as cited in ACM and USENIX networking-related conference
publications

31

mechanisms in combination with iperf2. We counted the number of papers per year in which

iperf2 was used exclusively to plot in Fig. 3.3.

In some types of experiments that require specific traffic patterns, researchers may write appro-

priate wrapper scripts and native packet creators for the generation task with the desired traffic

patterns. Nevertheless, there was not a significant percentage of papers referring to traffic genera-

tion without a reference to a specific generator.

Fig. 3.3: Per year exclusive usage citations of iperf2.

3.3.1 Top 10 Traffic Generators

Based on the survey results described in the previous section, we give a brief description for

each of the top 10 traffic generators below.

3.3.1.1 Iperf2

Iperf2 [128] is a bandwidth / throughput measurement utility. It is often used to measure the

maximum achievable TCP or UDP throughput of a network, and it can also generate UDP packets

at fixed throughput rates. The default output of an iperf2 test often includes the throughput in

bits per seconds, total bytes sent and packet loss. Iperf supports multiple parallel connections, and

can allow users to set the bandwidth, parallel streams, TCP options, number of bytes and time

32

duration of testing.

3.3.1.2 Netperf

Netperf [58] is a network bench-marking tool developed by Hewlett Packard. It can be used to

measure many different aspects of networking performance. It provides tests that measure both

unidirectional throughput, and end-to-end latency. It usually operates in client-server mode, where

a separate server application (netserver) is used to listen for incoming packets, while the client

application (netperf) sends packets. It establishes a separate control channel between the client

and the server, that is used for exchange of control information. Netperf results reports usually

include throughput in bits per second, and the socket send and receive buffer sizes of the two

communicating endpoints.

3.3.1.3 Httperf

The httperf [84] tool measures web server performance. With httperf, a user can generate HTTP

request URIs with various http header values towards and send to any desired server address. It also

allows users to specify parameters like number of times to repeat requests and number of connections

to use. Its output is a report that includes metrics such as the connection rate, connection times,

request rates, request sizes, reply times and reply sizes.

3.3.1.4 Moongen

Moongen [37] is a script-based high-speed traffic generator built on top of the libmoon library.

Its work load generation process is typically controlled by a user-provided lua script. As a high-

speed generator, and it has been tested to be able to generate up to up to 178.5 Million packets per

seconds at 120 Gbit/s. It is also designed with specific features that enable it to generate packets

with accurate timing injection to match expected inter packet times.

33

3.3.1.5 Scapy

Scapy [20] is a packet manipulation program. It is able to forge, sniff or decode packets for a

wide number of protocols, and send or receive them through the network interface. It is often used

as a python library in developing of other software applications that and probe, scan, analyze or

attack networks. It allows a user to create any type of packet, inserting any value into the packet

headers.

3.3.1.6 linux pktgen

Pktgen [93] is a module bundled with the linux kernel, that can generate packets at very high

speeds. To use the traffic generator, a configuration script must first be written to prescribe

packet generation parameters. It can randomize some packet headers parameters like IP and MAC

addresses, provided that the random ranges are specified in the pre-start configuration script.

3.3.1.7 Netcat

Netcat [53] is a UNIX networking utility which reads and writes data into and out of network

connections, using the network protocol stack on UNIX based operating systems. It is also often

used as a basic network debugging tool. It allows users to write arbitrary data files into both the

client and listener sides of TCP and UDP connections.

3.3.1.8 Iperf3

Iperf3 [33] is a redesign of the original iperf2. It was designed with a goal to have a simpler code

base, and to have a API library that can be used from within other applications. Iperf3 essentially

supports everything the original iperf2 does. In addition, it also supports a zerocopy mode, and

allows an optional json output. However it is not backwards compatible with the older version and

34

both exist as independent projects.

3.3.1.9 TCPreplay

The TCPreplay tool [130] is used for replaying network traffic from previously saved trace files.

The tool was initially created to replay malicious traffic patterns for intrusion detection/prevention

systems testing. It is able to resend all packets seen in an input trace file either at the same

time intervals at which the packets were captured, or at a specified data rate, depending on the

bandwidth of the network interface.

3.3.1.10 DPDK pktgen

DPDK Pktgen [142] is a traffic generator based on the DPDK fast packet processing framework.

It is able to saturate a 10Gbps line with 64byte packets. It also has a run-time environment that

allows users to supply configuration parameters and control commands for individual traffic flows.

The configuration can also be written in Lua, and the configuration scripts can be used to set

up repeatable experiments. Sequential packets with different header values can be generated by

iterating over a set of packet headers values.

3.4 Traffic Generator Selection: Common Requirements and Fea-

tures

Traffic generators have diverse sets of features and various traffic generators typically report

different set of metrics. There is no single traffic generator that is better in all experiment use cases

than every other one in terms of serving a research objective through these features and reported

metrics. For instance, while a particular traffic generator may be good at injecting packets into a

network at very high speeds, it may not provide dynamic packet length variations.

35

In Table 3.3 we show whether there is support for a particular feature among the top 10 traffic

generators in our survey. We examined the experiments, evaluations and methodology sections of

the surveyed papers for the research goals, the types of traffic workloads and their corresponding

required features. We then examined the documentation, source code, man pages, help information

and the associated research papers for each of the generators in the top 10 list to list the presence

of a particular capability in the Table 3.3.

Table 3.4 further gives a list of the header fields in the Ethernet, IPv4, TCP and UDP protocol

stacks, and provides information on how each of the traffic generators in the top 10 list supports

the configuration of that header field. In some cases header fields can be set to a single value, while

in other cases header fields can be set to values that vary or that are randomized during the packet

generation process.

Table 3.5 presents a list of common metrics among the auto-generated reports of traffic gen-

erators. No single traffic generator reports all metrics. In fact, there are some that do not give a

report at all. It is important to note that even when a generator is able to report metrics, the use

of virtual interfaces in packet generation may sometimes confound the accuracy of some reported

metrics. Therefore it is sometimes useful to calculate the metrics from the packet traces that are

captured on the wire.

3.4.1 Methodology for Traffic Generator Selection

The Table 3.3 illustrates how there is no single generator in the top 10 list that supports

every feature. There are some generators that support all of the features in addition to giving a

comprehensive set of metric reports, but they usually require commercial licenses that are quite

expensive [116, 65]. There is an overwhelming number of options for generator selection as shown

36

Table 3.3: Traffic generator selection: common features and experiment requirements

Generator

Feature 1 iperf2 net-
perf

http-
erf

moon-
gen2

scapy Linux
pkt-
gen2

netcat iperf3 TCP-
replay

DPDK
pkt-
gen2

1 set # of packets X X X X X
2 set total bytes X X X
3 set fixed throughput X3 X X X X X X
4 set randomized through-

put
X X

5 set packet rate X X X X X
6 set time duration X X X X X X X
7 send data files X X X X
8 replay traffic traces X X X
9 set fixed packet size X X X X
10 set randomized packet

sizes
X X X X

11 set fixed inter-packet
time

X X

12 set randomized inter-
packet times

X X

13 support TCP connec-
tions

X X X X X X

14 support SCTP connec-
tions

X X X

15 set MSS X X X
16 set reporting intervals X X X X X X X
17 set interface X X X X X
18 specify IP addr. of inter-

face
X X X X

19 set CPU affinity X X X X X
20 generate IP fragments X X X X
21 bi-directional generation X X X X
22 multiple parallel connec-

tions/flows
X X X X X X X X

23 arbitrary http requests X X X

Table 3.3 Footnotes
1 Feature descriptions are provided in appendix A.1
2 Requires exclusive control of the network interface
3 UDP only

37

Table 3.4: Supported configuration of header fields for the top 10 traffic generators

Generator

Header Field 1 iperf2 net-
perf

http-
erf

moon-
gen

scapy Linux
pkt-
gen

netcat iperf3 TCP-
replay

DPDK
pktgen

1 L2 source MAC ? ? ? ? ?
2 L2 destination MAC ? ? ? ? ?
3 L2 VLAN ID ? ? X ? ?
4 L2 ethertype ? ? ? ?
5 L3 source IP X X ? ? ? X X ? ?
6 L3 destination IP X X X ? ? ? X X ? ?
7 L3 header length ? ? ? ?
8 L3 DSCP/TOS X ? ? X X X ? ?
9 L3 ECN ? ? ? ?
10 L3 total length ? ? ? ?
11 L3 identification ? ? ? ?
12 L3 don’t fragment ? ? ? ?
13 L3 more fragments ? ? ? ?
14 L3 fragment offset ? ? ? ?
15 L3 TTL X ? ? ? ?
16 L3 protocol ? ? ? ?
17 L3 header checksum ? ? ? ?
18 L4 source port X ? ? ?2 X X ? ?
19 L4 destination port X X X ? ? ?2 X X ? ?
20 TCP sequence num ? ? ? ?
21 TCP ack number ? ? ? ?
22 TCP data offset ? ? ? ?
23 TCP reserved bits ? ? ? ?
24 TCP flags ? ? ? ?
25 TCP window size X X ? ? X ? ?
26 TCP checksum ? ? ? ?
27 TCP urgent pointer ? ? ? ?
28 TCP options X3 X3 ? ? X3 ? ?
29 UDP length ? ? ? ?
30 UDP checksum ? ? ? ?

Table 3.4 Legend

X: set to single value (no variation of the header field is supported during generation)
? : single, varying, or randomized values can be set for the header field

Table 3.4 Footnotes
1 L2, L3, and L4 represents Layer 2, Layer 3 and Layer 4 of the TCP/IP network stack
2 UDP only
3 TCP NODELAY option only

38

Table 3.5: Reported metrics for the top 10 generators

Generator

Reported Metric 1 iperf2 net-
perf

http-
erf

moon-
gen

scapy Linux
pkt-
gen

netcat iperf3 TCP-
replay

DPDK
pktgen

1 throughput X X X X X X X X

2 latency X X X X

3 packet rate X X X X

4 total no. of packets X X X X X X

5 total no. of bytes X X X X X X

6 duration X X X X X X X X

7 jitter X X X X

8 no. of retransmissions X X X

9 no. of drops X X X X X X

10 MSS X X X

11 congestion win. size(s) X X

12 CPU demand X X

13 number of flows or con-
nections

X X X X X X X X

14 request/response trans-
action rates

X X2

Table 3.5 Footnotes
1 Metric descriptions are provided in appendix A.2
2 http only

39

on the list of generators in our Table 3.1. For every experiment, researchers are tasked with a

preliminary assessment of generator features and an evaluation of each generator for the research

objectives. We propose a methodology that uses this paper’s compilations on generator category,

available features and built-in reporting of the metrics. The goal is to serve the research tasks with

the capabilities of an applicable generator while reporting a consistent set of metrics leading into

repeatable results that are comparable with other similar studies.

1. Definition of Workload Requirements: Before selecting a generator, an experimenter

first needs to identify specific requirements of the traffic workload that are of vital importance

for the experimental goals of the research. Specifically a researcher must identify:

• the specific features of the desired traffic workload picked from tables 3.3 and 3.4

• the metrics that need to be reported picked from the Table 3.5

This first step is in a sense the most important one in the methodology. The chosen require-

ments will serve as the driving input for each of the subsequent steps below.

2. Availability: A researcher may start with the list of 96 traffic generators given in the Table

3.1 to determine which generators are available. We define the availability of a generator by

its active maintenance status and note also that the generator has to be within the skill-set,

resources and capabilities of the researcher from the perspectives of the platform requirements

and ease-of-use.

3. Replace with Validation/Workload: The initial list is then filtered based on the category

of traffic workloads. A taxonomy for the workload characteristics has been provided in section

3.2.

40

4. Features: One of the key pivoting points for the researcher is what features are supported

by a generator of choice (tables 3.3 and 3.4). The desired workload properties for the specific

research goals could result in a trade-off when generators that lack some of the key features are

preferred per availability concerns. This step highlights what has been desired, what decision

has been made, and what trade-off has taken place so that the outcomes of the research data

is assessed accordingly.

5. Reported Metrics: The reported metrics in Table 3.5 lists the metrics automatically made

available by each generator. If a desired metric is not available in a specific generator, other

generators that provide the metric could be considered. In essence, this step raises awareness

about the measurement outcome objectives for the research tasks.

We expect that these steps are overlapping with the current practice. As researchers make

choices on available generators at their disposal some preference has been established for the most

popular ones such as the observed preference for iperf2 in our survey. We provide these steps as

a guide to raise awareness on the process of the selection of workload generation techniques in the

community.

3.4.2 An Example: Load-balancing Research

To demonstrate the methodology, we walk through the steps in the previous section for a

research project on the evaluation of the performance of a new fictitious transport layer load-

balancing network function that leverages TCP header information in forwarding transport layer

packets.

Step 1 - Workload Requirements:

1. Features:

41

(a) multiple parallel TCP connections or flows with diverse transaction characteristics and

relatively fixed total throughput

(b) ability to generate packets with varying packet sizes

(c) ability to vary header fields: layer 3 source IP addresses and layer 4 source port numbers

2. Metrics: throughput per flow, packet rate per flow and jitter

Step 2 - Availability: From Table 3.1, generators are picked based on accessibility and active

maintenance status. Based on section 3.2, this leaves us with 31 generators among which we have

all those in the top 10 list - iperf2, netperf, httperf, moongen, scapy, linux pktgen, netcat,

TCPreplay, iperf3, DPDK pktgen and 21 others from Table 3.1.

Step 3 - Workload: Many classes of traffic generators have support for multiple TCP con-

nections with variations in source IP addresses and port numbers. For example, some constant/-

maximum throughput traffic generators (section 2.1.1) allow for multiple simultaneous TCP and

UDP connections. Many model-based generators (section 2.1.5 and 2.1.6) and script driven traffic

generators (section 2.1.4) also support the type of traffic desired.

Step 4 - Features: Tables 3.3 and 3.4 are utilized to narrow down the generators of interest

for the research task. Based on the feature list in step-1, shortlisted generators must have check

marks on rows 3, 10, and 22 of Table 3.3 and a star in rows 5 and 18 of Table 3.4. Thus, the

resulting list includes scapy, moongen and dpdk pktgen. We do not include linux pktgen in the

shortlist because randomized layer 4 source port numbers is not possible as shown in footnote 1 of

Table 3.4, even though all the other requirements are met by this generator.

Step 5 - Metrics: The metrics requirements in step-1 is searched in the Table 3.5. By taking

a look at rows 1, 3, and 7 of that table, we see that we are left with moongen and dpdk pktgen. A

42

choice could be made between any of the two for the targeted research goal, since they both meet

workload objectives.

In summary, our survey has found that most research papers have used constant / maximum

throughput traffic generators over the last 13 years and that there are very few instances where

trace driven model-based realistic traffic generators are used. In the next chapter we go on to

explore the details of our new frame work for network traffic modeling and generation.

43

Chapter 4

Methodology: Framework for Realistic Traffic

Modeling and Generation

This chapter provides the details of our new framework for network traffic modeling and realistic

application traffic generation. We share specific algorithms and methods used in each component

of the framework, showing how it enables creating and evaluating a diverse set of traffic modeling

algorithms for any input application network traffic. We also describe one of the new modeling

algorithms (uhgeneric-v4 modeling algorithm) that we have developed using the framework and

its corresponding traffic generation method. In addition to the framework details, we introduce a

comprehensive evaluation system for realistic traffic generators, with the specific metrics designed

to assess the performance of modeling and traffic generation methods created using the framework.

An illustration of the framework is given in Fig. 4.1.

The framework consists of 4 main components:

• A dataset extractor

• A modeling system

• A traffic generator

• An evaluation system

44

dataset

extractor

modeling

system
dataset

validation validation

traces from a pro‐

duction network

topology

capture

traffic

Modeling

System Design

Trace file Analysis

Dataset Creation

traffic

models

in original topology

evaluation

system

capture

traffic

Continuous

Evaluation

packet

generator

validation

in other topologies

traces from other

sources

Traffic

Regeneration

Production Enterprise Network

Test Environment

Fig. 4.1: Framework for realistic traffic modeling and generation showing the four components: a dataset
extraction system, a modeling system, a packet generation system, and an evaluation system.

45

The dataset extractor analyzes packets in an input trace file to create a dataset. The mod-

eling system uses various algorithms to create traffic model files from the dataset. In the traffic

generator, the model files are used on nodes within a test network to generate realistic traffic.

Finally, the evaluation system measures the modeling and traffic generation method’s performance

by comparing the generated traffic with real traffic. Each component in the framework is designed

to be independent, with well-defined input and output interfaces. They have all been implemented

as open-source software utilities and are available online [131].

4.1 Dataset Extractor

Synthetically generated traffic is considered realistic for an application if it has metrics and

statistics that closely match traffic from a real production network with devices running that ap-

plication. Thus traffic that is realistic for a specific application or network may not be realistic

for another application. For example, real traffic from a web browsing application will differ sig-

nificantly from video streaming application traffic. Similarly, there will be significant differences

between traffic from a home network and traffic from an enterprise or data-center network. Hence

all work done in realistic packet generation must start with actual network traffic traces obtained

from the target application or production network.

Therefore, in the framework, the process begins with analyzing real network traffic from various

applications in a dataset extraction stage that performs careful packet processing and further

computation to obtain a comprehensive dataset. In our evaluation experiments (chapter 5), we

obtain real network traffic by packet captures on networks with many categories of application

traffic, including web browsing traffic, remote desktop protocol (RDP) traffic, secure shell (SSH

traffic), video streaming traffic, and a multi-tier application traffic.

46

input: tracefile

TCP/UDP sessions
identification

network effects removal:
tunneling, fragmentation,
retransmissions, packet

reordering

application detection

protocol data units (PDU)
detection

output:
dataset of PDUs

header decoding
(ethernet, IPv4/IPv6,

TCP/UDP)

application user sessions
identification

connection class clusters
detection

connection pools
detection

request bursts detection

Fig. 4.2: Dataset extraction process

The dataset extraction process first decodes packet headers in the input network traffic trace. It

determines the transport layer sessions associated with each packet. It then detects how packets may

have been affected by networking effects like fragmentation, retransmissions, and packet reordering,

making adjustments to the dataset when required. The process continues with additional steps for

application detection, protocol data unit (PDU) detection, user-session identification, connection

cluster detection, connection pools detection, and request bursts detection. The output of all this

data set extraction process is a set of csv files that describe the packets, PDUs, and connections

seen in the input trace file. Fig. 4.2 illustrates each of the steps involved in the dataset extraction

process [131]. We have also provided details of each step involved in the process in the subsections

below.

4.1.1 Header Decoding

This first step in the dataset extraction process involves analyzing the input trace to decode

basic packet headers and data across all the network stack layers. We extract and decode all

47

Media Access Control (MAC) headers at the data-link layer, including source and destination

MAC addresses and VLAN headers. We also determine the data-link layer payload data sizes.

Similarly, we extract all internet protocol version 4 (IPv4) and internet protocol version 6 (IPv6)

headers at the network layer, and we extract TCP or UDP header values at the transport layer.

Our implementation leverages the DPKT python library [13] to decode packet header contents

while following the recommendations in the Ethernet, IPv4, IPv6, TCP and UDP RFCs [54, 104,

105, 103].

4.1.2 TCP and UDP Sessions Identification

The second step involves the determination of the transport layer sessions for each packet found

in the traces. For UDP, we identify unique sessions based on a tuple consisting of the source

IP address, destination IP address, source port number, and destination port number, assigning

packets with the same tuple to the same UDP session. To identify TCP sessions, we use an identifier

consisting of a unique number and the tuple consisting of the source IP address, destination IP

address, source port number, and destination port number. We check the packets sequentially and

label each new TCP SYN packet (without an ACK flag) as the beginning of a new TCP session if it

does not match any previously discovered session. For each packet found with matching the tuple

identifier of an existing TCP session, the tool labels the packets as belonging to the corresponding

TCP session, following the TCP state machine’s guidelines [105]. On detecting TCP FIN packets

from each side of a session, the connection is closed, and any new packet matching the same tuple

identifier is classified as a new TCP session.

48

4.1.3 Removal of Network Protocol Responses

It is essential to start with clean packets devoid of network-level responses to network impair-

ments when modeling realistic traffic for an application. Hence, in this step, we make adjustments

for network effects like packet reordering, fragmentation, and packet losses to produce clean packets

data suitable for further analysis and modeling. We detect and remove tunnel encapsulations at

the protocol stack’s data-link and network layers before proceeding to decode the next upper-layer

protocol. We perform fragmentation analysis at the network layer to label packets belonging to

the same original packets fragment for both IPv4 and IPv6. We also analyze each TCP connection

based on TCP sequence and acknowledgment numbers to identify and label all duplicated packets

and reorder all out-of-order packets. The outcome of the dataset extraction process is a list that

contains all Ethernet, IPv4, TCP, and UDP header values extracted for each packet, along with

the first 10 bytes of payload content.

4.1.4 Application Detection

Any network traffic trace typically contains traffic from many applications. Different applica-

tions send and receive data according to differing patterns. Hence, network traffic that is realistic

for a given application may not be realistic for another kind of application. Therefore separate

models must be created for different applications. Consequently, it is necessary to label individual

packets by their respective applications before application-level traffic modeling occurs. Network

packets applications detection is an entire field of research on its own. Many methods have been

proposed in research for application detection in networks. These methods are in 3 main categories

which we discuss in the subsections below:

1. Port Number Based Methods: Port number based methods are the earliest and easiest

49

methods for application classification. They typically determine the application of packets

in a transport layer session based on the server port numbers. If the server port number is

a on the list of Internet Assigned Numbers Authority (IANA) reserved port numbers [55],

the packet can be easily identified as belonging to an application corresponding to the port

number on the IANA list [82]. For example, packets with port number 53 can be detected

to be DNS packets. This method is fast and easy to implement. However, this method may

give incorrect classifications when the port numbers in a packet header are not on the IANA

list, or when applications use arbitrary port numbers. Hence additional heuristics are often

used in such cases to make quick guesses from packet headers contents.

2. Deep Packet Inspection (DPI) Based Methods: Deep packet inspection (DPI) based

methods for application identification were created to avoid the limitations of the port number

based approaches. DPI based methods operate by matching various packet header values

and payload contents, with predetermined signatures for known applications [19]. These

methods are often fast enough to operate at line rate, and typically give better accuracy for

applications with known signatures. DPI based methods are usually unable to classify packets

for new applications for which signatures have not been identified previously [82]. The most

commonly used open-source application detection methods in this category are ntop nDPi

[30] and libprotoident [6].

3. Machine Learning Based Methods: More recently, various machine learning algorithms

have been proposed for traffic application identification. Some of the algorithms proposed

include support vector machines (SVM) [148], naive Bayes [40], k-means clustering [76] and

many other supervised and unsupervised methods [28]. Many of these machine learning-based

50

methods can identify new applications without a requirement for prior signatures. In many

cases, after creating a classification model, they can classify packets at line rates. However,

their accuracy levels are often not as high as DPI based methods for applications with known

signatures [82].

In our dataset extraction process, we use the port number based application classification.

However, our dataset extractor is designed to be modular and has hooks for the future addition of

DPI and machine learning-based methods.

4.1.5 Protocol Data Units (PDUs Detection)

When an endpoint of a network application is sending data to its counterpart, the data sent

may be a file or a string of bytes. In most cases, applications send data by pushing the bytes

through a network socket controlled by the operating system. However, the Ethernet protocol’s

maximum transmit unit (MTU), the TCP Maximum segment size (MSS), and other factors may

limit how many bytes can be transferred in 1 packet through an interface per time. Hence when

an application is to send a large chunk of data through a network, the operating system network

stack on most devices breaks up the large chunk of data into smaller sizes so that the packets can

fit into the allowed MTU and MSS of the interfaces used. The entire chunk of data or file that the

application pushes at a time is what we refer to as the application-level protocol data unit (PDU).

A single PDU may be broken down into many packets while being sent out of an interface. Hence,

when modeling an application’s network behavior, it is necessary to identify and group packets

that could have been derived from the same PDU so that models of data exchange behavior at the

application level can be created.

In the dataset extraction process of our framework, we use a heuristic to identify PDUs. The

51

heuristic is based on our observations of packets in TCP or UDP sessions. We found that a PDU

typically consists of an uninterrupted continuous sequence of payload bearing packets from the

same endpoint. The sequence of packets in the same PDU ends when a payload bearing packet

from the other endpoint is observed in the stream, or when a packet with a payload size less than

the maximum possible payload is seen. A PDU also ends when a packet from the same endpoint

with a relatively large inter-packet time is observed. The algorithm for this PDU detection method

is given in Algorithm 1 below. Our actual implementation uses a vectorized version of the algorithm

to speed up the detection process. Based on our validation experiments with packets from a web

browsing application, the algorithm was able to correctly identify PDUs over 99% of the time.

Algorithm 1 Heuristic for identifying application level protocol data units (PDU)

1: procedure IdentifyPDUs(l4 session pkts, ipt threshold,max data size)
2: curr pdu id← −1
3: prev pkt← NULL
4: for pkt in l4 session pkts do
5: if pkt.payload size 6= 0 then
6: if pkt.src ip 6= prev pkt.src ip OR pkt.src port 6= prev pkt.src port then
7: curr pdu id += 1
8: else if pkt.time− prev pkt time > ipt threshold then
9: curr pdu id += 1

10: else if prev pkt size < max data size then
11: curr pdu id += 1
12: end if
13: pkt.pdu id← curr pdu id
14: prev pkt← pkt
15: end if
16: end for
17: end procedure

52

4.1.6 Application User Session Identification

In any trace file, the traffic may come from multiple ’user-sessions’ of constituent applications,

and the user sessions may occur either simultaneously or sequentially. Multiple user sessions of

an application may exist between the same two endpoints. For example, in a remote desktop

application, a user session corresponds to one login session between a user’s client computer and a

server, and it begins when a user first attempts to log in to the remote computer and ends when

a user logs out or closes the remote desktop client application. Similarly, for Hypertext Transfer

Protocol (HTTP) website browsing, a single user session may correspond to a user’s interactions

with a website in the interval between the time when a user first accesses a specific website and

the time when that user stops interacting with the website. In some cases, these application user

sessions may not involve a physical human being; the ’user’ may be a software agent in such cases.

In our dataset extractor, we use a heuristic to identify user sessions in traffic for any pair of

communicating endpoints. The heuristic leverages our observation that user-sessions boundaries

are associated with periods of significant idle times where there are no active connections between

two communicating endpoints for an application. Typically, when a user quits an application, TCP

connections that have been opened by that application will be closed. New connections will be

started only when a new user session starts, after a time interval. This time interval between user

sessions is thus user-interaction based and must be at least in the order of a few seconds. Thus,

the heuristic extracts user sessions by grouping connections from the same client machine to the

same server that overlap in time or are separated in time by less than a threshold. It is possible to

obtain suitable value for the user session interval threshold by running a 1-dimensional clustering

of inter-session-gaps. An excerpt from the algorithm used is given in Algorithm 2 below. Based on

our validation experiments with packets from a web browsing application, the algorithm correctly

53

identified user-sessions over 99% of the time.

Algorithm 2 Heuristic for identifying application user sessions

1: procedure DetectUserSessions(endpt pair pkts, default gap threshold)
2: gaps, l4 sess pkts← GetPreL4SessionGaps(endpt pair pkts)
3: threshold← default gap threshold
4: u idx← 0
5: for i = 0 to Length(gaps) −1 do . for each connection & pre connection gap
6: if gaps[i] > threshold then
7: u idx += 1
8: end if
9: for packet in l4 sess pkts[i] do

10: packet.u idx← u idx
11: end for
12: end for
13: end procedure

4.1.7 Connection Class Clusters Detection

An application may have multiple transport layer sessions (TCP or UDP conversations) of

distinct types with dissimilar statistics. It is essential to detect when such multiple connection

classes exist and factor them in when creating high fidelity realistic traffic models for the traffic for

such applications.

For example, in a popular remote desktop application (RDP) client application, a single user-

session usually consists of at least two or more TCP connections in a sequence. When there are n

TCP connections in a user session, the first (n−1) connections opened at the beginning of the user

session are typically brief (only a few seconds long), in comparison with the nth connection, which

is usually much longer and often lasts for the duration of the RDP session. A closer examination

of the RDP network traffic revealed that the first connection in any RDP session is used for user

authentication, while the last connection is used for data exchange. Multiple short connections

54

TC
P

Se
ss

io
ns

 ID

relative time (s)

TCP 9
TCP 8
TCP 7
TCP 6
TCP 5
TCP 4
TCP 3
TCP 2
TCP 1
TCP 0

Fig. 4.3: Connection classes in RDP: 4 sequential RDP user-sessions showing 2 distinct connection classes,
with connections TCP 0, 2, 4, 6, 7, 8, in connection class 1, and connections TCP 1, 3, 5, 9 in connection
class 2

at the beginning of each user session were found to correspond to multiple failed login attempts.

Once authentication is successful, the RDP application opens a more extended connection for data

exchange, which lasts for the rest of the user session duration. The authentication connections

usually have very different statistics in comparison to the data connection. A plot of the connection

duration for multiple sequential RDP sessions from our captured RDP investigation is shown in

Fig. 4.3.

In our dataset extractor, we use clustering algorithms to group an application’s connections into

clusters based on a set of features extracted from each connection. The features extracted include:

the duration of each connection, the connection start time relative to the start of its user-session,

the number of PDUs sent from the client, the number of PDUs sent from the server, the total

data in bytes from the client, and the total data in bytes from the server. After extracting this

dataset for each connection, the tool pre-processes the input dataset by standardization, it then

performs dimensionality reduction using principal component analysis (PCA). After pre-processing,

we use the DBSCAN algorithm to cluster the dataset, yielding possible connection classes. We use

DBSCAN clustering because it does not require an a-priori specification of the number of clusters,

it can find arbitrarily shaped clusters, and it is insensitive to the ordering of entries in the input

55

dataset. Our dataset extractor component is designed to be modular and allows users to add any

desired clustering algorithm, with corresponding input arguments for detecting connection classes.

An excerpt from the connection class detection algorithm used is given in Algorithm 3 below. Our

validation experiments with packets from RDP traffic showed that the algorithm correctly identified

connections over 98% of the time.

Algorithm 3 Algorithm for connection classes detection

1: procedure DetectConnClasses(app conns)
2: dataset← NewList
3: for conn in app conns do
4: row ← NewDictionary
5: user session← GetUserSession(conn)
6: row[conn duration]← conn.last pkt.time− conn.first pkt.time
7: row[conn start time]← conn.first pkt.time− user session.first pkt.time
8: row[num pdus cli]← Length(conn.client pdus)
9: row[num pdus srv]← Length(conn.server pdus)

10: row[total data cli]← GetTotalBytesFromClient(conn)
11: row[total data srv]← GetTotalBytesFromServer(conn)
12: Add(dataset, row)
13: end for
14: x← MakeArray(dataset)
15: x scaled← StandardScaler().FitTransform(x)
16: x pca← PCA().FitTransform(x scaled)
17: conn classes← Dbscan().fit(x pca).labels
18: for i = 0 to Length(app conns) −1 do . for each connection
19: for pkt in app conns[i] do
20: pkt.conn class← conn classes[i]
21: end for
22: end for
23: end procedure

4.1.8 Connection Pools

Some applications send and receive data by creating a pool of connections between two commu-

nicating endpoints. These applications then use connections from the pool to service any requests

56

or responses to be sent. This behavior is common in database client applications and web browser

applications. For example, in a popular web browser application that we examined, the client

endpoints opened a set of connections to the server and repeatedly used each of these connections

to service all outgoing requests, and connections are recycled at intervals during the user session,

as shown in Fig. 4.4. It is important to capture this behavior when modeling network traffic to

enable the generation of realistic traffic for applications that use connection pools.

relative time (s)

TC
P

Se
ss

io
ns

 ID

relative time (s)

TCP 12
TCP 11
TCP 12
TCP 10
TCP 9
TCP 8
TCP 7
TCP 6
TCP 5
TCP 4
TCP 3
TCP 2
TCP 0

Fig. 4.4: Connection classes in web browser: A web browser user-session showing connection pools. Connec-
tions TCP 0, 3, 4, 5, 6 in a pool, and connections TCP 8, 9, 11 in a second pool

Our dataset extraction process classifies connections as belonging to the same pool if they

belong to the same user session and connection class, have the same server endpoint, the same

source IP, and if they start and end at approximately the same time, or within a few milliseconds

of each other. We use a simplified union-finding algorithm based on the criteria above to get the

connections that are in the same pool. An excerpt of the algorithm is given in Algorithm 4 below.

Validation experiments with packets from web browsing traffic showed that the algorithm correctly

identified connections over 97% of the time.

57

Algorithm 4 Algorithm for connection pools detection

1: procedure DetectConnPools(app conns, c threshold)
2: for i = 0 to Length(app conns) −1 do
3: app conns[i].pool← i
4: end for
5: for i = 0 to Length(app conns) −1 do
6: for j = i + 1 to Length(app conns) −1 do
7: if
8: app conns[i].conn class == app conns[j].conn class AND
9: app conns[i].server endpoint == app conns[j].server endpoint AND

10: app conns[i].client ip addr == app conns[j].client ip addr AND
11: app conns[i].start time− app conns[j].start time <= c threshold AND
12: app conns[i].end time− app conns[j].end time <= c threshold then
13: if
14: app conns[i].pool == app conns[j].pool then
15: for k = 0 to Length(app conns) −1 do
16: if app conns[k].pool == app conns[j].pool then
17: app conns[k].pool← app conns[i].pool
18: end if
19: end for
20: end if
21: end if
22: end for
23: end for
24: end procedure

4.1.9 Request Bursts Detection

Most applications generate network traffic in a bursty way. That is, they send data in a repeating

sequence of sudden bursts of PDUs with idle intervals where no data is sent. For example, in

web browsing traffic, bursts of requests and responses usually correspond to times when the user

agent performed an action, usually by clicking on a link. A chart showing requests and responses,

corresponding to user clicks from web browsing traffic is given in Fig. 4.5.

In our dataset extraction process, client PDUs in the same connection pool that are sent at

approximately the same time, without any replies in between, are considered to be in the same

request burst. The algorithm used for identifying request bursts is given in Algorithm 5. Our

58

validations tests of the algorithm with web browsing traffic showed 99% accuracy in identifying

request bursts.

0 10 20 30 40 50
time (secs)

100

102

104

106

108

siz
e

(b
yt

es
)

webpage_browsing (PDUs vs Time)
server PDUs
client PDUs

Fig. 4.5: Request bursts in web browsing traffic. Request burst and idle times correspond to intervals
between user clicks

Algorithm 5 Algorithm for request bursts detection

1: procedure DetectRequestBursts(connpools, rb threshold)
2: currburst id← −1
3: for cpool in connpools do
4: prev time← −inf
5: for cpool in connpool.pduslist do
6: if pdu.time− prev pdu time > rb threshold then
7: currburst id += 1
8: end if
9: pdu.request burst← currburst id

10: end for
11: end for
12: end procedure

At the end of all of the dataset extraction steps described in the subsections 4.1.1 to 4.1.9

above, the result is a set of csv dataset files, one per each of the packets, PDUs, and transport

layer (TCP and UDP) sessions found in the input trace file. These files are used as input into the

traffic modeling system component of the framework.

59

4.2 Modeling System

In any realistic traffic generation framework, the generated traffic quality can only be as good

as the model. A good model must make it possible to generate traffic that is similar to the real

application traffic and must not store any payload data. It must be flexible enough to model

any application effectively, and it should also allow traffic generation on networks with diverse

topological variations.

Our new framework’s modeling system component accepts the dataset created in the dataset

extractor component to produce an output traffic model file. The modeling and generation frame-

work is designed to be easily extensible, to allow other users to add implementations of their custom

modeling methods or algorithms, and their corresponding packet generation methods. Using the

framework, we created many traffic modeling methods. One of the high fidelity algorithms we cre-

ated is the uhgeneric-v4 modeling algorithm. We provide the details of this modeling algorithm

in the subsection below.

4.2.1 The uhgeneric-v4 Modeling Algorithm

We implemented a traffic modeling method using our traffic modeling system. This modeling

method, the uhgeneric-v4 modeling algorithm, performs well at regenerating realistic traffic for

any generic application. The development of the modeling algorithm is based on our observations

on how several applications send and receive data over connected networks. The modeling algo-

rithm combines an expert packet processing system with machine learning clustering algorithms

and stochastic models to create a model that effectively generates realistic network traffic for any

application.

Real network traffic often consists of traffic from many applications. Real applications send out

60

application-level protocol data units (PDUs) according to patterns dictated by the application’s

internal processes. They usually create network traffic with multiple connections that exhibit

unique data exchange behavior. Hence, a good generic modeling system must replicate traffic

characteristics for any application found in an input dataset. The traffic metrics statistics and

distribution for the synthetically generated traffic based on the models must be as similar as possible

to the real application network traffic at all levels.

Therefore, before designing the uhgeneric-v4 modeling method, we examined network traffic

from many applications to understand how they send and receive data, that is, to determine their

Application Data Exchange Patterns. We explored traffic for Web browsing data, video and audio

streaming traffic, log push traffic, Secure Shell (SSH) login traffic, remote desktop traffic, and

many others. For each of the applications above, we extracted client and server PDUs and plotted

the request and response sizes a function of time on a semi-log scale, showing how each of the

applications exchanges data. Some of the unique application data exchange patterns are plotted in

Fig. 4.6.

The plots clearly illustrate how data exchange patterns can be different across different appli-

cations. As an example, we noted in our web page browsing traffic that there was a corresponding

reply PDU for every request PDU. On the other hand, for the video streaming application, we

saw that a single request PDU was followed by a continuous stream of response PDUs at random

intervals of time, while for the log push service, we observed a series of client PDUs at intervals

without any reply from the server. We have designed our modeling system to capture any of these

behaviors and model the traffic for each of these types of applications appropriately. In addition

to the request-response exchange patterns, we also observed that traffic from various applications

could be decomposed into user-sessions, connection clusters, connection pools, and request bursts,

61

0 10 20 30 40 50
time (secs)

100

102

104

106

108

siz
e

(b
yt

es
)

webpage_browsing (PDUs vs Time)
server PDUs
client PDUs

0 10 20 30 40 50
time (secs)

100

102

104

106

108

siz
e

(b
yt

es
)

video_stream (PDUs vs Time)
server PDUs
client PDUs

0 10 20 30 40 50
time (secs)

100

102

104

106

108

siz
e

(b
yt

es
)

syslog_service (PDUs vs Time)
server PDUs
client PDUs

Fig. 4.6: Application data exchange patterns showing the request and response exchange nature in web
browsing traffic, video streaming traffic, and syslog service traffic

62

Fig. 4.7: Model parameters for ’uhgeneric-v4’ traffic modeling method, showing the hierarchical structure of
the modeling method.

as already discussed in sections 4.1.6 to 4.1.9.

The uhgeneric-v4 modeling algorithm creates independent models for each application seen

in the input traffic dataset. Each application’s model is defined by a set of useful parameters

for representing how data is sent and received over the network for any arbitrary application. The

system determines average values, stochastic distributions, and empirical distributions that describe

various parameters for the user-sessions and connection classes for each application being modeled

from the input dataset. The hierarchical structure of the models created is given in Fig. 4.7.

The uhgeneric-v4 modeling method consists of parameters at the application user-session level,

connection level, and at individual PDU level. For each model parameter, we obtain an empirical

model and the best stochastic distribution, then include them in the model file. We describe the

parameters at each level of the hierarchical model below.

Parameters at application user session level include:

• Connection Pool Inter Arrival The time intervals between the starting times of succeeding

63

connection pools.

• Connection Pool Interval: The interval between the end of a connection pool, and the

beginning of the next connection pool in a user-session.

• Has Overlapping Connections: This parameter is a boolean flag that indicates if any

overlapping connections were found for the application being modeled.

• Inter Connection Class Sequences Distributions: a probability distribution for each

possible sequence of connection classes for user-sessions of an application.

Parameters at connection classes level include:

• Port number: The transport layer port number used by the server endpoint for sending

and receiving data.

• Layer4 Protocol: The transport layer protocol (TCP or UDP) used by the connections in

the application.

• Number of Connections in Connection Pool: The empirical distribution for the number

of connections that are present in each connection pool for a specific connection class of an

application.

• Number of Request Bursts per Connection Pool: The empirical distribution for the

number of request bursts per connection.

• Number of Requests in Request Bursts: The empirical distribution for the number of

individual requests in each request burst.

• Inter Request Burst Time: The empirical distribution for the interval between the start

of successive request bursts.

64

Parameters at PDU level include:

• Request Sizes: The empirical distribution for the request (client PDU) sizes.

• Number of Responses per Requests: The empirical distribution for the number of dis-

tinct servers PDUs sent in response to each client PDU.

• Response Sizes: The empirical distribution for the response (server PDU) sizes.

• Response Time Delay: The empirical distribution for the server processing time before

sending each response.

A sample of the uhgeneric-v4 model for RDP traffic is given in appendix B. In addition to the

traffic model file, the uhgeneric-v4 modeling algorithm also creates an additional file containing

a list of user-sessions found in the input dataset and their relative start times. This list of detected

user-session can be used in conjunction with the traffic model file to generate traffic using our traffic

generation system, which we describe in the next section below.

4.3 Traffic Generator

In our framework’s traffic generator component, the main objective is to inject PDUs into the

network for each application in the model based on the model’s parameters. We designed the

traffic generator system to send PDUs by faithfully following the pattern dictated in the model,

thus generating traffic that is realistic for the applications modeled.

When using the traffic generation system for experimentation, we first set up a network on

which to generate traffic. The main requirement is that the network must have nodes with IP

addresses found in the input list of application user-sessions.

65

In a similar vein to the modeling system, the design of the traffic generator component in the

framework allows easy extensibility to enable the addition of custom traffic generation algorithms.

We implemented a packet generation method for the uhgeneric-v4 model described earlier. We

give a brief description of the modeling method below.

4.3.1 The uhgeneric-v4 Traffic Generation Method

When traffic is being generated in server mode using the uhgeneric-v4 model, the traffic

generation method uses an in-band signaling technique to send control information from the client

to the server. We fill the first few bytes of each request PDU sent from the client with data

about the response(s) that the server is expected to send in reply. Hence, after opening the

appropriate TCP and UDP listeners, the server endpoints receive incoming requests for each UDP

listener and TCP connection. The server processes examine each request payload and determine

the number of response PDUs to send, each response PDU’s size, and the time delay before sending

each response. The interaction between the client-side and the server-side processes of this traffic

generation method is illustrated in Fig. 4.8.

When traffic is to be generated in client mode using the uhgeneric-v4 algorithm, the system

starts a new process for each user-session found to match the local interface IP address(es) in the

user-session input file. For each application user-session process started, the process launches new

connection pools at intervals dictated by the application model’s user-session level parameters. In

each connection pool, the system uses parameters at the connection pool level of the uhgeneric-v4

model to generate packets. For each connection pool, the client process determines the number of

TCP or UDP sessions in the pool, it determines the number of requests bursts to send, and starts

a loop to send each request burst. For each request burst, the process determines the number of

66

Fig. 4.8: Traffic generation using the ’uhgeneric-v4’ traffic modeling method, showing the hierarchical struc-
ture, and the interaction between the client-side and the server-side of the traffic generation process

67

request PDUs to be sent and proceeds to send them using the initiated TCP or UDP sessions as

illustrated in Fig. 4.8. For each request burst, the system calculates an inter request burst time

from the model and waits for that inter request burst time before sending the next request burst.

At the individual request level, the system uses the uhgeneric-v4 model’s PDU level parameters

to determine how to send each request and its replies. The system calculates a request size based on

the distribution specified in the application model for each request. It also determines the number

of responses to expect for that request, and then the size and response time delay expected for each

response. It bundles all the response details in a stream of bytes and appends this with a random

string of bytes to make up for the total calculated request PDU size. It then sends this request

through the connection selected. Once the request is received at the server end of the connection,

the server extracts the response details from the request and sends the expected responses back to

the receiver. This completes the send-and-receive sequence for that request.

In our experiments, results, and discussion (chapter 5, we describe the results of our experiments

to evaluate the traffic modeling and generation algorithms used. However, we first describe our

evaluation system in the next section below.

4.4 Evaluation System

The final component of the framework is a comprehensive evaluation system. Synthetic network

traffic workload is realistic for an application if it is similar to network traffic captured from the

real application, in terms of metrics distributions and traffic patterns. Therefore, as part of our

framework, we have designed an evaluation system that compares traffic generated based on the

models with real traffic from modeled applications, to measure the effectiveness of traffic modeling

and generation algorithms. We have implemented this evaluation system as a tool box that enables

68

quantitative analysis of statistical similarity of input and generated traffic patterns [133]. It analyzes

input network traffic trace(s) to provide detailed reports and graphs for many network metrics and

can compare various metrics’ distributions for two or more traffic traces. The evaluation system

makes it possible quantify the level of confidence in the effectiveness of a realistic traffic model.

In the evaluation process, we first create a dataset as described in section 4.1 from the input

traces. Next, we filter the dataset using the Ethernet addresses, IP addresses, port numbers, and

application names, where necessary. Based on the filtered datasets, we carry out further analysis

calculate several metrics for all applications in each input dataset to produce a report, along with

tables and charts that reveal how the datasets compare based on metrics calculated. The reports,

tables and charts contain baseline statistical characteristics for each metric calculated. The design

makes it possible to compare multiple modeling algorithms by supplying generated traffic based

on each modeling algorithm as input to the evaluation system, which produces a report with side-

by-side comparisons for every metric for each modeling method to be compared. We discuss an

example of this in section 5.3.2.

4.4.1 Research and Development of Metrics for System Evaluation

Many metrics are relevant to the evaluation of network traffic models. These metrics span

across the physical layer, layer2, layer3, layer4, and the network protocol stack’s application layer.

A full list of the metrics we calculate in our evaluation process is presented in Table 4.1. We have

distilled a list of metrics through a comprehensive review of several networking-related papers that

utilize metrics specifically associated with network traffic workloads.

69

Table 4.1: List of metrics calculated by the evaluation system (traffic metrics)

Single-Valued Metrics Time-Variant Metrics

Total packets Packet rate (packets per second)
Duration (seconds) Inter-packet time (seconds)

Throughput / data rate (bits per second)
Packet size (bytes)

L2 total payload (bytes) L2 payload throughput (bits per second)
L2 total vlan packets L2 payload size (bytes)
L2 number of vlans

L3 total payload (bytes) L3 payload throughput (bits per second)
L3 fragmented packets L3 payload size (bytes)

L4 total payload (bytes) L4 payload throughput (bits per second)
L4 total retransmitted packets L4 payload size (bytes)
L4 total out of order packets L4 retransmission rate (packets per second)
L4 total acknowlegement packets L4 out of order rate (packets per second)
L4 total push packets L4 window size (bytes)

L4 session inter arrival time (per second)

L4 Total connections L4 connection inter-arrival time
L4 connection arrival rate

App total PDUs App PDU size (bytes)
App inter-PDU time (seconds)
App PDU rate (PDUS per second)
App PDU throughput (bits per second)
App server response time (seconds)

1. L2, L3, L4 and App represents physical layer2, layer3, layer4 and application layer in the
TCP/IP network stack respectively.

70

Since there are many networking metrics, the most important metric for evaluating the per-

formance of a realistic workload generator for a given experiment will depend on the specific ex-

perimental goals and expected traffic patterns typical to the application. We provide a detailed

analysis of the metrics selection process in the next section (section 4.4.2).

The metric quantities in Table 4.1 are in two categories: single-valued metrics and time-variant

metrics. For the single value metric, we calculate their values for each user-session of the input

traffic dataset. For each of the time-varying metrics, the system calculates the metric values per

second or per packet in each application user-session. The calculation process involves a sliding

window time analysis at selected time resolutions for some of the time-variant metrics. The default

time resolution used in our evaluation system is 0.1 secs which is possible to adjust per application

traffic requirements.

4.4.2 Metrics Selection for Realistic Traffic Generator Evaluation

A traffic modeling system performs well if there is a close similarity in distributions of values

between generated traffic and real application traffic for as many metrics as possible. In our evalu-

ation of traffic models in chapter 5, one of our goals is to ensure that our traffic modeling algorithm

enables the generation of realistic traffic that matches real traffic patterns at the application layer.

We try to avoid using metrics whose values may have been influenced by device lower-level network

protocol stack implementations.

For example, in experiments where the goal is evaluating transport layer load-balancing algo-

rithms for an application, the critical metrics may be Packet Rates and connection inter-arrival

time. Hence when evaluating a realistic traffic modeling algorithm for such a workload, the dis-

tributions of packet rates and connection inter-arrival time metrics must be as close as possible to

71

real traffic from the application.

As another example, in an experiment that requires a realistic traffic workload for a web brows-

ing application, it will be essential to consider the patterns of requests and responses seen. Hence

the requests per second (or PDUs per second) and the server response time metrics will be critical

in evaluating the realistic traffic modeling and generation method for such an experiment.

Similarly, in an experiment that requires realistic workload based on the secure shell (SSH)

protocol traffic, the distribution of packet sizes and packets rate will be very important. This

is because, the SSH protocol can be used as a base for many upper level applications, including

remote login shell, secure file transfer and X11 remote desktop viewer applications. The pattern of

packet sizes and packet rates differ for each of these applications, even though they use the same

SSH protocol. Hence in experiments where realistic SSH based traffic is required, good choices

of metrics for evaluating the performance of the realistic workload generator used will include

distributions of packet sizes and packet rates.

We focus mainly on the application-level network metrics that are important for realistic network

traffic generator evaluations. We describe each of these metrics below.

4.4.2.1 Inter-PDU Times Distribution (Seconds)

Inter-PDU time measures the time interval between successive PDUS for an application, as seen

at a point on a network.

4.4.2.2 PDU Size Distributions (Bytes)

The PDU size distributions give a measure of the sizes of PDUs for an application, arriving at

a point on the network.

72

4.4.2.3 Data Rate or Throughput Distribution (Bytes per Seconds, bps)

Data rate or throughput measures the rate of data for an application flowing across a node per

unit of time. It indicates the amount of data in bytes per second sent from the source(s) flowing

through a node or link on a network.

4.4.2.4 PDU Rate Distribution (PDUs per Seconds)

PDU rates are a measure of the number of PDUs per unit time, seen at a node. It indicates

the amount of PDUs flowing through a node or link on a network per second.

4.4.3 First-Order Analysis

For each of the time-variant metrics in section 4.4.2 and Table 4.1, we calculate the statistics,

including the mean, median, maximum, minimum, inter-quartile range (IQR), standard deviation

(SD), skewness, kurtosis, and Hurst exponent. Our evaluation system presents the calculated

statistics for both the generated traffic and real traffic side by side metrics in tabular format.

We also create various charts, including cumulative frequency curves, box plots, and frequency

histograms, for both generated and real traffic, to compare each of the metrics.

As part of our analysis, we also calculate statistical measures that directly compare each metric

quantity’s distributions for all input traces. For example, we evaluate the values of Kolmogorov-

Smirnov two sample (KS-2-sample) test statistic [80]. Based on these, we can easily judge the

similarity of a metric for two or more traces. KS-2-sample tests are often used to test the level of

similarity between two empirical distributions. An illustration of the KS-2-sample statistic is given

in Fig. 4.9. The test statistic value obtained from the test gives a numerical representation of

the statistical distance between two distributions. Hence a lower KS-2-sample test statistic value

73

indicates a close fit between the two distributions that are being compared.

C
um

ul
at

iv
e

Pr
ob

ab
ilit

y
F(

x)

X

Fig. 4.9: Illustration of the Kolmogorov-Smirnov 2-sample (KS-2-sample) test statistic. The blue and green
lines represent the empirical cumulative frequency curves of the quantities being compared, while the red
arrow represents the KS-2-sample test statistic.

4.4.4 Second-Order Analysis

In typical application network traffic, metrics from different user-sessions of the same appli-

cations usually have some variation in the distribution of their values. This variation in network

traffic distributions of the same application can sometimes be due to random user behavior. The

synthetically generated realistic traffic must also exhibit this behavior of randomness in metrics for

multiple user-sessions. We evaluate this behavior using the kolmogrov-sminorff two sample (KS-2-

sample) tests [80] statistic values as a second-order measure to compare distributions of each metric

per user-session pair in the input trace files. If there are many user-sessions in both the original and

generated traffic, a good traffic model must produce generated traffic with a distribution of pairwise

user-session KS-2-sample test statistic for each metric that is similar to that of the corresponding

74

real application traffic.

For each metric, we determine the KS-2-sample test statistic based on the metric values for

each pair of user-sessions in the generated traffic, and in the real application traffic. For a selected

metric quantity, we create a distribution of these pairwise KS-2-sample test statistics for all user-

session pairs in the real traffic and plot the cumulative frequency curves, box-plots, and frequency

histograms. An illustration of these second order analysis process is given in Fig. 4.10.

For example, in our experiment on single network application traffic (section 5.1) where we

evaluate our modeling and generation method based on the PDU rate metric, the input dataset

is made up of traffic for 20 web browsing user-sessions. We calculate the PDU rates (as a time

series data) for all 0.1 second intervals in each user-session. For this second order analysis, we then

compare user-session based on how the PDU rate spreads in the input trace, by calculating the

KS-2-sample values of the PDU rates for each pair-of user-sessions. We then create cumulative

frequency curves, box plots and histograms for the distribution of this KS-2-sample values. After

creating a traffic model from the input trace and generating traffic with the model for 20 distinct

user sessions, we also extract the PDU rates for each user-session and calculate the KS-2-sample

values of the PDU rates for each pair of user-sessions. We also create cumulative frequency curves,

box plots and histograms from the distribution of this KS-2-sample values, and compare this side-

by-side with what was obtained from the original traffic. Depending on the evaluation metric

selected, a good model should produce traffic with similar distributions as that of the original

traffic when the cumulative frequency curves, box plots and histograms are compared.

75

 1

pa
ck

et
s

ca
pt

ur
e

m
et

ric

(e
g

PD
U

 ra
te

)
tim

e
se

rie
s

2 20

pa
ir-

w
is

e
us

er
-s

es
si

on
KS

-2
-s

am
pl

e
te

st

st
at

is
tic

s

0.
11

0.
24

0.
15 . . .

0.
05

…

…

…

tim
e

(s
)

tim
e

(s
)

tim
e

(s
)

1 2 20

0.
21

0.
04

0.
15 . . .

0.
23

…

…

…

tim
e

(s
)

tim
e

(s
)

tim
e

(s
)

bo
x

pl
ot

s,
 c

um
ul

at
iv

e
di

st
rib

ut
io

ns
, a

nd

hi
st

og
ra

m
s

us
er

se
ss

io
ns

KS-2-sample test statistic

re
al

 w
eb

br

ow
si

ng
 tr

affi
c

ge
ne

ra
te

d
tra

ffi
c

F(x)

KS
-2

-s
am

pl
e

 te
st

 s
ta

tis
tic

re
al

 w
eb

 b
ro

w
si

ng
 tr

affi
c

ge
ne

ra
te

d
tra

ffi
c

Frequency

KS
-2

-s
am

pl
e

 te
st

 s
ta

tis
tic

m
ea

n:
 0

.1
18

m
ed

ia
n:

 0
.1

16
SD

: 0
.0

34ge
ne

ra
te

d
tra

ffi
c

Frequency

KS
-2

-s
am

pl
e

 te
st

 s
ta

tis
tic

m
ea

n:
 0

.1
14

m
ed

ia
n:

 0
.1

09
SD

: 0
.0

38

re
al

 a
pp

lic
at

io
n

tra
ffi

c

re
al

ap
pl

ic
at

io
n

tra
ffi

c

ge
ne

ra
te

d
tra

ffi
c

F
ig

.
4.

10
:

Il
lu

st
ra

ti
on

of
th

e
se

co
n

d
or

d
er

ev
al

u
a
ti

o
n

p
ro

ce
ss

fo
r

ev
a
lu

a
ti

n
g

p
er

fo
rm

a
n

ce
o
f

re
a
li

st
ic

tr
a
ffi

c
g
en

er
a
ti

o
n

a
lg

o
ri

th
m

s.
F

ir
st

,
m

et
ri

c
ti

m
e

se
ri

es
va

lu
es

ar
e

ca
lc

u
la

te
d

fr
om

ea
ch

u
se

r-
se

ss
io

n
.

T
h

e
K

S
-2

-s
a
m

p
le

te
st

st
a
ti

st
ic

s
a
re

th
en

ca
lc

u
la

te
d

fo
r

ea
ch

p
a
ir

o
f

u
se

r
se

ss
io

n
s

in
th

e
re

al
an

d
ge

n
er

at
ed

tr
ac

es
.

T
h

e
d

is
tr

ib
u

ti
on

s
o
f

th
es

e
ca

lc
u

la
te

d
st

a
ti

st
ic

s
a
re

th
en

p
lo

tt
ed

in
b

ox
p

lo
ts

,
cu

m
u

la
ti

ve
fr

eq
u

en
cy

cu
rv

es
a
n

d
h

is
to

gr
am

s
to

co
m

p
ar

e
th

e
se

co
n

d
or

d
er

sp
re

ad
o
f

th
e

va
lu

es
o
f

th
e

se
le

ct
ed

m
et

ri
c

a
cr

o
ss

th
e

re
a
l

a
n

d
g
en

er
a
te

d
tr

a
ce

s.

76

4.5 Chapter Summary

In this chapter, we have described each component of our framework for traffic modeling and

generation. We have also described our evaluation system and reported how it could be used to

analyze and compare network traffic. In the next chapter, we focus on specific evaluation experi-

ments we carried out to demonstrate the utility of the framework and evaluate our uhgeneric-v4

modeling method.

77

Chapter 5

Evaluation Experiments and Discussion

We carried out several experiments on the framework, to evaluate the performance of our

uhgeneric-v4 method in modeling traffic of a diverse set of applications. In our experiments we

used the global environment for network innovations (GENI) [18] virtual topology service(VTS)

[16]. VTS is a distributed system that enables the creation of arbitrary isolated network topolo-

gies with any number of nodes and links of any bandwidth and delay. VTS can create networks

that have actual servers, virtual machines, containers with any operating system, in addition to

OpenVswitches, and routers.

This chapter discusses the results of evaluation experiments with single application traffic and

multi-service application traffic. We also discuss the results of our experiment to compare multiple

modeling methods for traffic generation. Our experiments’ outcomes on the uhgeneric-v4 model,

with various applications, show that traffic generated by the framework and modeling method

is similar to real application traffic for the metrics examined. We present our results for these

experiments in the corresponding subsections below.

5.1 Modeling and Generating Single Application Traffic

We started our evaluation with experiments focused on evaluating the performance of the frame-

work and the modeling method in generating realistic traffic for single application network traffic.

78

We carried out experiments to model and generate traffic for four different applications:

• Web browser client traffic

• Remote desktop protocol (RDP) traffic

• Secure shell (SSH) traffic

• HTML 5 video streaming traffic

One of our goals in creating the uhgeneric-v4 modeling algorithm was to support the gener-

ation of realistic traffic for any application. Therefore we carried out experiments with multiple

applications to investigate how the modeling algorithm performed in generating traffic for different

classes of network traffic. We selected the set of applications listed above because they represent

some of the broader categories of traffic popular on many networks today. We used the framework

and our uhgeneric-v4 modeling algorithm to create traffic models for each of the applications.

The models created were then used to generate packets in our testbed environment. We evaluated

the traffic modeling and generation algorithm’s performance by comparing generated traffic with

real traffic for each application.

5.1.1 Input Network Traffic Data

Real network traffic for each of the applications itemized in section 5.1 above was obtained

through traffic captures on networks that had endpoint devices running multiple user-sessions of

each application.

For example, to obtain an input traffic trace for modeling in the case of the web browser

application, we set up a network, as shown in Fig. 5.1 in our laboratory environment. The

network had a nginx web server loaded with web pages of a read-the-docs [106] documentation

79

website. The client machine on the same network was used to send automated page requests for

the documentation web pages at random time intervals using a selenium web automation driver

[117], thus simulating a typical user. Another node in the network was used as a syslog server to

store log messages pushed from the nginx web server. The client was made to send requests and

receive replies for about twenty minutes, while the monitor node captured the resulting network

packets through a span port on the network bridge. We repeated this twenty times to obtain a

network traffic trace file containing traffic for twenty user-sessions for typical browser traffic for a

text-based web documentation application.

client
machine

Web
Documentation

Server
monitor
node

Syslog
Server

Fig. 5.1: Experiment topology for the web browser application traffic generation experiment

Similar networks were created to capture real network traffic from remote desktop, secure shell,

and HTML 5 video streaming applications. In each of them, we captured traffic for as many as

twenty user-sessions of the application. These trace files for each of the four applications were then

used as input to the modeling and traffic generation framework.

80

5.1.2 Dataset Extraction, Traffic Modeling, and Generation

We went through the traffic modeling and realistic traffic generation process for each application

traffic trace files captured. We applied each traffic trace file to the dataset extractor to yield a csv

dataset file containing decoded packet headers and additional relevant fields (including detected

application, user-session, and connection class) for every packet in the trace file, as described in

section 4.1. We examined the resulting dataset to ensure that the decoded data matches expected

values. In a few cases, we ran a utility script within the dataset extractor to modify the dataset

values based on adjustments to an auto-generated metadata file, in cases where the obtained values

did not match the expected information.

We passed the resulting datasets for each application into the modeling system component of

the framework. For each input application traffic dataset, the outcome of the traffic modeling

phase is a traffic model json file based on the uhgeneric-v4 modeling algorithm that has values

and stochastic distributions for parameters at the user-session level, connection class level, and

individual PDU level as described in section 4.2.1.

We created replicas of the original networks where the traces were captured within our VTS

testbed [16]. (For example, for the web browser application experiment, we created a replica of

the network in Fig. 5.1 with the VTS testbed.) Using the traffic generator component of our

framework, and our repeatable experiment orchestration framework [48], we generated traffic on

each host of the test network, based on the traffic model, for twenty user-sessions of the application.

The traffic generation was done in a simulated mode to ensure accurate evaluation of PDU arrival

times, avoiding packet/PDU processing delays that may be caused by the operating system network

stack. The result of the packet generation process is a dataset of PDUs, and corresponding param-

eters pushed into the network stack by each application user-session process for each application

81

Table 5.1: Evaluation results for modeling and generation of web documentation application traffic

Metric Median Mean Maximum Standard Devi-
ation

KS-2-
Sample

Real
Traffic

Generated
Traffic

Real
Traffic

Generated
Traffic

Real
Traffic

Generated
Traffic

Real
Traffic

Real
Traffic

Test

Inter-PDU Times
(seconds)

0.0004 0.0004 0.0148 0.0148 76.732 108.2390 0.0346 0.0346 s=0.049

PDU Sizes
(bytes)

386 386 345 347 656568 656568 124 146 s=0.044

PDU Rates
(PDUs per second)

20.00 20.00 38 37 169.00 191.0 38 28 s=0.088

PDU Throughput
(bps)

6.19e+4 9.11e+4 1.60e+5 1.60e+5 2.90e+8 1.50e+8 1.60e+5 1.83e+5 s=0.210

Server Response
Times (seconds)

0.0002 0.0002 0.0004 0.0004 0.004 0.004 0.0007 0.0007 s=0.041

considered in our experiments. This generated traffic dataset was compared with the real input

application traffic dataset in the evaluation phase, which we describe below.

5.1.3 Evaluation and Discussion

To evaluate the performance of the uhgenric-v4 method in traffic modeling and generating

realistic traffic, we compared the generated traffic based on the model with real traffic for each ap-

plication (web browser, SSH, RDP, and video streaming applications) using our evaluation system.

We extract ’per packet’ values or ’per second’ values at 0.1 second intervals for each of the metrics

described in section 4.4.2 on both real and generated traffic. We use various statistical measures

to make comparisons between them.

5.1.3.1 First-Order Comparison of Metric Distributions

We started with a direct first-order comparison of metric values for both real and generated

traffic. We compared each metric’s distribution based on statistical measures (including the me-

dian, mean, maximum, minimum, and standard deviations). For example, in our experiments on

modeling and generating realistic packets for a web browser application, the tabulated side-by-side

statistics for each metric of the real and generated traffic is given in Table 5.1.

82

In the Table 5.1, the median values for each of the metrics are comparable. The median PDU

size of 388 bytes in the real application trace file is exactly the same as the 386 bytes seen in the

generated traces. Similarly, the median inter-PDU time of 0.004 seconds in the real trace is the

same as in the generated traces. The same applies to the median values of the PDU rate, PDU

throughput, and server response time metrics. The mean, maximum, and standard deviation of

each metric of generated traffic in the Table 5.1, have some values that are different from those of

the real traffic, but are quite close, and still realistic for real web browsing traffic. For example, 342

bytes in the mean PDU size of generated traffic is possible for a realistic web browsing workload,

even though it is quite different from the value of 345 bytes seen in the real trace. The same

applies to many of the other metrics’ mean, maximum, and standard deviation values. The low

KS-2-sample test statistic values (< 0.3) for each metric also indicates a close similarity between

the empirical distributions of generated traffic and the real traffic.

When evaluating our traffic modeling and generation algorithm’s performance for web browsing

traffic, it is important to consider metrics related to the patterns of requests and responses seen. In

many experimental scenarios, HTTP based web application traffic is often characterized in terms of

outgoing request PDUs per second sent by a client (or incoming requests per second seen at a server).

In addition, the response PDU rates sent by the server, and the server response times, are also very

important metrics in experiments involving HTTP workloads. Therefore, the distributions of PDUs

(requests and responses) per second and the server response time metrics are very important in

evaluating the realistic traffic modeling and generation method for experiments that utilize HTTP

traffic. Hence, we create the corresponding box plots, cumulative frequency curves, and histograms

to compare each metrics’ distribution for both real web browsing traffic and generated traffic based

on our model. These plots for the PDU rate metric are given in Figs. 5.2a, 5.2b, 5.2c and 5.2d.

83

PD
U

 ra
te

(P

DU
s

pe
r s

ec
on

d)

real web
browsing traffic

generated
traffic

(a) Box plots comparing PDU rate distributions for
real web browsing traffic and generated traffic based
on the uhgeneric-v4 modeling algorithm

F(
x)

PDU rate (PDUs per second)

real web browsing traffic

generated traffic

(b) Cumulative frequency curves comparing PDU
rate distributions for real web browsing traffic and
generated traffic based on the uhgeneric-v4 model-
ing algorithm

Fr
eq

ue
nc

y

PDU rate (PDUs per second)

real web
browsing traffic

mean: 38
median: 20
SD: 38

(c) Histogram of PDU rate distribution for real web
browsing traffic

Fr
eq

ue
nc

y

PDU rate (PDUs per second)

generated
traffic

mean: 37
median: 20
SD: 28

(d) Histogram of PDU rate distribution for gener-
ated web browsing traffic based on the uhgeneric-v4
modeling algorithm

Fig. 5.2: Box plots, cumulative frequency curves and histograms comparing PDU rate distributions of
real web browsing traffic with PDU rate distributions of generated web browsing traffic based on the
uhgeneric-v4 modeling algorithm

84

The box plots in Fig. 5.2a show that the generated traffic PDU rate has the same median and

interquartile ranges as in the real web browsing traffic. The cumulative frequency curves in 5.2b also

show that the PDU rates have comparable distributions; however, it also reveals that distributions

do not perfectly overlap. The histograms in Figs. 5.2c and 5.2d show the very slight differences

in the PDU rate mean, median, and standard deviation values between real and generated traffic.

The real web browsing traffic has a mean of 38 PDUs per second, while the generated traffic has

37 PDUs per second. The median values are equal (20 PDUs per second respectively.) while the

standard deviations are 38 PDUs per second and 28 PDUs per second respectively. A look at the

shape of both histograms also shows how similar the distributions are.

Other metrics that are also relevant in characterizing HTTP based web browsing workloads

include the inter-PDU time, PDU sizes, and throughput. The corresponding box plots, cumulative

frequency curves, and histograms for the first-order comparison of all these metrics (including the

PDU rates discussed above) are given in Figs. 5.3a to 5.6d.

The box plots for the inter-PDU time in Fig. 5.3a show that the generated traffic inter-PDU

time has the same median and interquartile ranges as in the real web browsing traffic. The box

plots also exhibit matching outlier ranges. The cumulative frequency curves plotted in Fig. 5.3b

also show that the distribution of the inter-PDU times of the generated traffic closely overlaps that

of the real web browsing traffic. The histograms (Figs. 5.3c and 5.3d) show exactly identical values

of 0.0148 seconds in the mean, 0.0004 seconds in the median, and 0.0346 seconds in the standard

deviation of inter-PDU times for both real web browsing traffic and the generated traffic.

85

in
te

r-P
DU

 ti
m

e
(s

ec
on

ds
)

real web
browsing traffic

generated
traffic

(a) Box plots comparing inter-PDU time distribu-
tions of real web browsing traffic and generated traf-
fic based on the uhgeneric-v4 modeling algorithm

F(
x)

inter-PDU time (seconds)

real web browsing traffic

generated traffic

(b) Cumulative frequency curves comparing inter-
PDU time distributions of real web browsing traf-
fic and generated traffic based on the uhgeneric-v4

modeling algorithm

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

inter-PDU time (seconds)

mean: 0.0148
median: 0.0004
SD: 0.0346

real web
browsing traffic

(c) Histogram of inter-PDU time distribution for real
web browsing traffic

Fr
eq

ue
nc

y

inter-PDU time (seconds)

mean: 0.0148
median: 0.0004
SD: 0.0346

generated
traffic

(d) Histogram of inter-PDU time distribution
for generated web browsing traffic based on the
uhgeneric-v4 modeling algorithm

Fig. 5.3: Box plots, cumulative frequency curves and histograms comparing inter-PDU time distributions of
real web browsing traffic with inter-PDU time distributions of generated web browsing traffic based on the
uhgeneric-v4 modeling algorithm

86

For the PDU size metric, the box plots in Fig. 5.4a shows that the generated traffic PDU size

metric also has identical interquartile ranges as in the real web browsing traffic. The close overlap

in the cumulative frequency curves plotted in Fig. 5.4b show that the distribution of the PDU

size of the generated traffic also closely resembles that of the real web browsing traffic. In the

corresponding histograms (Figs. 5.4c and 5.4d), the mean values of 345 bytes and 347 bytes in

real and generated traffic are very close. The median values are equal (386 bytes). The standard

deviations values of 146 bytes in the generated traffic histogram, is quite different to the value of

124 bytes in the real web browsing traffic, but still valid to pass for realistic web browsing traffic.

Fig. 5.5a also reveals matching interquartile ranges for PDU throughput between the real

and generated traffic. The cumulative frequency curves plotted in Fig. 5.5b also show that the

distribution of the PDU throughput for the generated traffic closely overlaps that of the real web

browsing traffic. The histograms (Figs. 5.5c and 5.5d) show that mean, median and standard

deviation values across both real web browsing traffic and the generated traffic are always in the

same order. The mean of 160,299 bps in generated traffic is very close to the mean of 160,025 bps

in the generated traffic. The median of 91,120 bps in generated traffic is of the same order as the

median of 61,000 in the generated traffic. And the standard deviations of 160,600 and 183,071 bps

are also in the same order.

87

PD
U

 s
ize

 (b
yt

es
)

real web
browsing traffic

generated
traffic

(a) Box plots comparing PDU size distributions of
real web browsing traffic with PDU size distribu-
tions of generated web browsing traffic based on the
uhgeneric-v4 modeling algorithm

F(
x)

PDU size (bytes)

real web browsing traffic

generated traffic

(b) Cumulative frequency curves comparing PDU
size distributions of real web browsing traffic with
PDU size distributions of generated web browsing
traffic based on the uhgeneric-v4 modeling algo-
rithm

Fr
eq

ue
nc

y

PDU size (bytes)

mean: 345
median: 386
SD: 124

real web
browsing traffic

(c) Histogram of PDU size distribution for real web
browsing traffic

Fr
eq

ue
nc

y

PDU size (bytes)

mean: 347
median: 386
SD: 146

generated
traffic

(d) Histogram of PDU size distribution for gener-
ated web browsing traffic based on the uhgeneric-v4
modeling algorithm

Fig. 5.4: Box plots, cumulative frequency curves and histograms comparing PDU size distributions of real web
browsing traffic with PDU size distributions of generated web browsing traffic based on the uhgeneric-v4

modeling algorithm

88

2.0e+6

1.5e+6

1.0e+6

0.5e+6

0

PD
U

 th
ro

ug
hp

ut
 (b

ps
)

real web
browsing traffic

generated
traffic

(a) Box plots comparing PDU throughput distribu-
tions of real web browsing traffic with PDU through-
put distributions of generated web browsing traffic
based on the uhgeneric-v4 modeling algorithm

0 0.5e+6 1.0e+6 1.5e+6 2.0e+6

F(
x)

Throughput (bps)

real web browsing traffic

generated traffic

(b) Cumulative frequency curves comparing PDU
throughput distributions of real web browsing traffic
with PDU throughput distributions of generated web
browsing traffic based on the uhgeneric-v4 modeling
algorithm

0 1.0e+6 2.0e+6

Fr
eq

ue
nc

y

Throughput (bps)

mean: 160,025
median: 61,920
SD: 160,600

real web
browsing traffic

(c) Histogram of PDU throughput distribution for
real web browsing traffic

0 1.0e+6 2.0e+6

Fr
eq

ue
nc

y

Throughput (bps)

mean: 160,229
median: 91,120
SD: 183,071

generated
traffic

(d) Histogram of PDU throughput distribution
for generated web browsing traffic based on the
uhgeneric-v4 modeling algorithm

Fig. 5.5: Box plots, cumulative frequency curves and histograms comparing PDU throughput distributions
of real web browsing traffic with PDU throughput distributions of generated web browsing traffic based on
the uhgeneric-v4 modeling algorithm

89

The box plots for the server response times in Fig. Fig. 5.6a indicate that the generated traffic

server response times has the identical median and interquartile ranges as in the real web browsing

traffic. The box plots also exhibit matching outlier ranges. The cumulative frequency curves plotted

in Fig. 5.6b also show that the distribution of the server response times of the generated traffic

closely overlaps that of the real web browsing traffic. In addition, the histograms (Figs. 5.6c and

5.6d) show exactly the same values of 0.0004 seconds in the mean, 0.0002 seconds in the median,

and 0.0007 seconds in the standard deviation of server response times for both real web browsing

traffic and the generated traffic.

The close similarity between the distributions of these metrics (especially PDU rates, and server

response times) discussed above, for generated traffic and the real web browsing traffic, indicates

that the uhgeneric-v4 model is very effective in modeling and generating realistic traffic for HTTP-

based web applications. Analogous results were also obtained in our evaluation experiments with

RDP, SSH, and video streaming traffic.

90

se
rv

er
 re

sp
on

se
 ti

m
e

(s
ec

on
ds

)

real web
browsing traffic

generated
traffic

(a) Box plots comparing server response time dis-
tributions of real web browsing traffic with server
response time distributions of generated web brows-
ing traffic based on the uhgeneric-v4 modeling al-
gorithm

F(
x)

real web browsing traffic

generated traffic

 0 0.001 0.002 0.003 0.004

(b) Cumulative frequency curves comparing server
response time distributions of real web browsing traf-
fic with server response time distributions of gener-
ated web browsing traffic based on the uhgeneric-v4
modeling algorithm

 0 0.001 0.002 0.003 0.004

Fr
eq

ue
nc

y

server response time (seconds)

generated
traffic

mean: 0.0004
median: 0.0002
SD: 0.0007

(c) Histogram of server response time distribution for
real web browsing traffic

 0 0.001 0.002 0.003 0.004

Fr
eq

ue
nc

y

server response time (seconds)

generated
traffic

mean: 0.0004
median: 0.0002
SD: 0.0007

(d) Histogram of server response time distribution
for generated web browsing traffic based on the
uhgeneric-v4 modeling algorithm

Fig. 5.6: Box plots, cumulative frequency curves and histograms comparing server response time distributions
of real web browsing traffic with server response time distributions of generated web browsing traffic based
on the uhgeneric-v4 modeling algorithm

91

5.1.3.2 Second-Order Comparison of Metric Distributions

In typical application network traffic, metrics from different user-sessions of the same appli-

cations usually vary due to random user behavior. That is, distributions of each metric usually

differ between user-sessions of the same application traffic. Synthetically generated traffic must

also exhibit this behavior of randomness. Therefore, we performed second-order comparisons to

examine how each metric’s distributions vary within user-sessions of the real traffic and generated

traffic.

These second order comparisons are based on the distributions of calculated Kolmogorov-

Smirnov 2 sample (KS-2-sample) test statistics for user session pairs in both real traffic, and

generated traffic. KS-2-sample tests are typically used to compare two empirical distributions,

and the resulting test statistic value gives a numerical representation of the statistical distance

between two empirical distributions. Hence a lower KS-2-sample test statistic value indicates a

close fit between the two distributions that are being compared. Therefore in the case where we

have many user-sessions in both the original and generated traffic, when evaluating a good traffic

model, the distribution of pairwise user-session KS-2-sample test statistic for each metric in the

original trace must be comparable to the distribution of pairwise user-sessions KS-2-sample test

statistics for the same metric in the generated traffic.

In this second order evaluation process, we first calculate the ’per packet’ values or the ’per

second’ values at 0.1 second intervals for each user-session, and for each metric in section 4.4.2,

using the real traffic dataset. For each metric and each pair of user-sessions, we go on to determine

the KS-2-sample test statistic using the metric values from that pair of user-sessions. For a selected

metric quantity, we create a distribution of these pairwise KS-2-sample test statistics for all user-

session pairs in the real traffic and plot the cumulative frequency curves, box-plots, and frequency

92

histograms. We then repeat the same process for the generated traffic, plotting the cumulative

frequency curves, box-plots, and frequency histograms on shared axes. The plots give a measure of

the second-order spread or variation of the metric values within the user-sessions of the real traffic

and within the user-sessions of the generated traces. An illustration of these second order analysis

process has been given in Fig. 4.10 of chapter 4. For our experiment on modeling and generating

realistic traffic for the web browser application, the plotted results are provided in Figs. 5.7a to

5.11d.

The box plots in Fig. 5.7a indicate that the pairwise user-sessions KS-2-sample test statistics

for the inter-PDU time in the generated traffic has similar median and interquartile ranges as found

in the real web browsing traffic. The cumulative frequency curves plotted in Fig. 5.7b also show

that the distribution of the inter-PDU times KS-2-sample test statistics of the generated traffic

closely overlaps that of the real web browsing traffic. The histograms (Figs. 5.7c and 5.7d) show

almost identical values of 0.114 and 0.118 in the mean values. And the standard deviation values

of 0.038 and 0.034 are also very close.

For the PDU size metric, the box plots in Fig. 5.8a show that the pairwise user-sessions KS-2-

sample test statistics for the generated traffic PDU size metric has interquartile ranges that is fairly

close to that of the real web browsing traffic. The close overlap in the cumulative frequency curves

plotted in Fig. 5.8b show that the distributions of the KS-2-sample test statistics for PDU size of

the generated traffic also closely overlaps that of the real web browsing traffic. In the corresponding

histograms (Figs. 5.8c and 5.8d), the mean, median, and standard deviation values of 0.120, 0.116,

and 0.034 in the generated traffic are not the same as the values of 0.091, 0.078 and 0.051 seen for

the real traffic. However the values in the generated traces are close enough to pass for generated

realistic web browsing traffic.

93

KS
-2

-s
am

pl
e

 te
st

 s
ta

tis
tic

real web
browsing traffic

generated
traffic

(a) Box plots comparing distributions of pairwise
user-sessions KS-2-sample test statistics for the Inter-
PDU time metric of real and generated web browsing
traffic based on the uhgeneric-v4 model

F(
x)

real web browsing traffic

generated traffic

(b) Cumulative frequency curves comparing distri-
butions of pairwise user-sessions KS-2-sample test
statistics for the Inter-PDU time metric of real
and generated web browsing traffic based on the
uhgeneric-v4 model

Fr
eq

ue
nc

y

KS-2-sample test statistic

mean: 0.114
median: 0.109
SD: 0.038

real web
browsing traffic

(c) Histogram of pairwise user-sessions KS-2-sample
test statistics for the Inter-PDU time metric of real
web browsing traffic

Fr
eq

ue
nc

y

KS-2-sample test statistic

mean: 0.118
median: 0.116
SD: 0.034

generated
traffic

(d) Histogram of pairwise user-sessions KS-2-sample
test statistics for the Inter-PDU time metric of gener-
ated web browsing traffic based on the uhgeneric-v4
model

Fig. 5.7: Box plots, cumulative frequency curves and histograms for second order comparison of inter-PDU
time between real web browsing traffic and uhgeneric-v4 model generated web browsing traffic based on
pairwise user-sessions KS-2-sample test statistics

94

KS
-2

-s
am

pl
e

 te
st

 s
ta

tis
tic

real web
browsing traffic

generated
traffic

(a) Box plots comparing distributions of pairwise
user-sessions KS-2-sample test statistics for the PDU
size metric of real and generated web browsing traffic
based on the uhgeneric-v4 model

F(
x)

KS-2-sample test statistic

real web browsing traffic

generated traffic

(b) Cumulative frequency curves comparing distri-
butions of pairwise user-sessions KS-2-sample test
statistics for the PDU size metric of real and gener-
ated web browsing traffic based on the uhgeneric-v4
model

Fr
eq

ue
nc

y

KS-2-sample test statistic

mean: 0.091
median: 0.078
SD: 0.051

real web
browsing traffic

(c) Histogram of pairwise user-sessions KS-2-sample
test statistics for the PDU size metric of real web
browsing traffic

KS-2-sample test statistic

mean: 0.120
median: 0.116
 SD: 0.042

Fr
eq

ue
nc

y

generated
traffic

(d) Histogram of pairwise user-sessions KS-2-sample
test statistics for the PDU size time metric of gener-
ated web browsing traffic based on the uhgeneric-v4
model

Fig. 5.8: Box plots, cumulative frequency curves and histograms for second order comparison of PDU size
between real web browsing traffic and uhgeneric-v4 model generated web browsing traffic based on pairwise
user-sessions KS-2-sample test statistics

95

The box plots in Fig. 5.9a show that the generated traffic PDU rate’s pairwise user-sessions

KS-2-sample test statistics also has the identical median and interquartile ranges as in the real

web browsing traffic. The cumulative frequency curves plotted in Fig. 5.9b also show that the

distributions of the test statistics for PDU rates are comparable. In the corresponding histograms

(Figs. 5.9c and 5.9d), the mean, median, and standard deviation values of 0.174, 0.161 and 0.080

in the generated traffic are also quite close to the values of 0.159, 0.143, and 0.086 seen for the real

traffic.

Fig. 5.10a also reveals quite different interquartile ranges for pairwise user-sessions KS-2-sample

test statistics of the PDU throughput metric between the real and generated traffic. The cumulative

frequency curves plotted (Fig. 5.10b) also have differing shapes. The histograms (Figs. 5.10c and

5.10d) show that mean, median and standard deviation values across both real web browsing traffic

and the generated traffic also quite different. Our analysis reveals that this is due to the large

order of values (in the 106 range) observed for throughput. When distributions with large values

are being compared the KS-2-sample tests often yield results that show significant differences.

The box plots for the server response times pairwise user-sessions KS-2-sample test statistics in

Fig. 5.11a show that the generated traffic has median and interquartile ranges that are marginally

close to those of the real web browsing traffic. The cumulative frequency curves plotted in Fig.

5.11b also show the same marginal similarity between the distributions of KS-2-sample statistics

for the server response time metric of the generated traffic and the real web browsing traffic. In

the corresponding histograms (Figs. 5.11c and 5.11d), the mean, median, and standard deviation

values of 0.169, 0.165 and 0.054 in the generated traffic are respectively in the same order asthe

values of 0.205, 0.189, and 0.075 seen for the real traffic.

The close match between the distributions of pairwise user-sessions KS-2-sample test statistics of

96

KS
-2

-s
am

pl
e

 te
st

 s
ta

tis
tic

real web
browsing traffic

generated
traffic

(a) Box plots comparing distributions of pairwise
user-sessions KS-2-sample test statistics for the PDU
rate metric of real and generated web browsing traffic
based on the uhgeneric-v4 model

F(
x)

KS-2-sample test statistic

real web browsing traffic

generated traffic

(b) Box plots comparing distributions of pairwise
user-sessions KS-2-sample test statistics for the PDU
rate metric of real and generated web browsing traffic
based on the uhgeneric-v4 model

Fr
eq

ue
nc

y

KS-2-sample test statistic

mean: 0.159
median: 0.143
SD: 0.086

real web
browsing traffic

(c) Histogram of pairwise user-sessions KS-2-sample
test statistics for the PDU rate metric of real web
browsing traffic

KS-2-sample test statistic

mean: 0.174
median: 0.161
SD: 0.080

Fr
eq

ue
nc

y

generated
traffic

(d) Histogram of pairwise user-sessions KS-2-sample
test statistics for the PDU rate metric of gener-
ated web browsing traffic based on the uhgeneric-v4
model

Fig. 5.9: Box plots, cumulative frequency curves and histograms for second order comparison of PDU rate
between real web browsing traffic and uhgeneric-v4 model generated web browsing traffic based on pairwise
user-sessions KS-2-sample test statistics

97

KS
-2

-s
am

pl
e

 te
st

 s
ta

tis
tic

real web
browsing traffic

generated
traffic

(a) Box plots comparing distributions of pairwise
user-sessions KS-2-sample test statistics for the PDU
throughput metric of real and generated web brows-
ing traffic based on the uhgeneric-v4 model

F(
x)

KS-2-sample test statistic

real web browsing traffic

generated traffic

(b) Cumulative frequency curves comparing distri-
butions of pairwise user-sessions KS-2-sample test
statistics for the PDU throughput metric of real
and generated web browsing traffic based on the
uhgeneric-v4 model

Fr
eq

ue
nc

y

KS-2-sample test statistic

mean: 0.136
median: 0.118
SD: 0.065

real web
browsing traffic

(c) Histogram of pairwise user-sessions KS-2-sample
test statistics for the PDU throughput metric of real
web browsing traffic

Fr
eq

ue
nc

y

KS-2-sample test statistic

mean: 0.215
median: 0.210
SD: 0.0597

generated
traffic

(d) Histogram of pairwise user-sessions KS-2-sample
test statistics for the PDU throughput metric
of generated web browsing traffic based on the
uhgeneric-v4 model

Fig. 5.10: Box plots, cumulative frequency curves and histograms for second order comparison of PDU
throughput between real web browsing traffic and uhgeneric-v4 model generated web browsing traffic
based on pairwise user-sessions KS-2-sample test statistics

98

KS
-2

-s
am

pl
e

 te
st

st
at

is
tic

real web
browsing traffic

generated
traffic

(a) Box plots comparing distributions of pairwise
user-sessions KS-2-sample test statistics for the
server response time metric of real and generated web
browsing traffic based on the uhgeneric-v4 model

F(
x)

KS-2-sample test statistic

real web browsing traffic

generated traffic

(b) cumulative frequency curves comparing distri-
butions of pairwise user-sessions KS-2-sample test
statistics for the server response time metric of real
and generated web browsing traffic based on the
uhgeneric-v4 model

Fr
eq

ue
nc

y

KS-2-sample test statistic

mean: 0.205
median: 0.189
SD: 0.075

real web
browsing traffic

(c) Histogram of pairwise user-sessions KS-2-sample
test statistics for the server response time metric of
real web browsing traffic

Fr
eq

ue
nc

y

KS-2-sample test statistic

mean: 0.169
median: 0.165
SD: 0.054

generated
traffic

(d) Histogram of pairwise user-sessions KS-2-sample
test statistics for the server response time met-
ric of generated web browsing traffic based on the
uhgeneric-v4 model

Fig. 5.11: Box plots, cumulative frequency curves and histograms for second order comparison of server
response time between real web browsing traffic and uhgeneric-v4 model generated web browsing traffic
based on pairwise user-sessions KS-2-sample test statistics

99

these metrics (especially PDU rates) discussed above, for generated traffic and the real web browsing

traffic, indicates that the uhgeneric-v4 model is very effective in modeling and generating realistic

traffic for HTTP-based web applications. Our experiments with RDP, SSH, and video streaming

traffic also obtained analogous results between real application

5.1.3.3 TCP and UDP Sessions in Typical Application User-Sessions

An effective realistic traffic modeling and generation algorithm should produce traffic that is

similar to real application traffic in terms of the number and diversity of connections in a user-

session. To evaluate this, we plotted the start times and duration for each transport layer connection

used within each user-session. Fig. 5.12 presents a plot of 2 typical user-sessions each for both the

real RDP traffic and the generated traffic. The plots show matching profiles across both the real

and the generated traffic, indicating that the generated traffic contains transport layer connections

with start times and durations that are realistic for the RDP client application based on comparison

with the real traffic.

In Fig. 5.12 (a), the first TCP sessions for both real and generated traffic are short, representing

connections used for authentication at the start of typical RDP user-sessions. While the second

connections are longer representing data-exchange connections in the RDP user-session. Further-

more, in Fig. 5.12 (b), the first three TCP sessions for both real and generated traffic are short,

while the fourth connections in both are much longer. We also obtained user-sessions with identical

profiles between real and generated traffic in our web browser, SSH, and video streaming traffic

generation experiments.

The evaluation outcomes discussed above gives us a good level confidence that the uhgeneric-v4

modeling and generation algorithm performs well when used to generate realistic traffic for arbitrary

individual network applications.

100

(a
) T

yp
ic

al
 T

C
P

se
ss

io
ns

 in
 re

al
 R

DP
 tr

affi
c

TC
P

se
ss

io
n

2
TC

P
se

ss
io

n
1

TC
P

se
ss

io
n

2
TC

P
se

ss
io

n
1

TC
P

se
ss

io
n

4
TC

P
se

ss
io

n
3

TC
P

se
ss

io
n

2
TC

P
se

ss
io

n
1

TC
P

se
ss

io
n

4
TC

P
se

ss
io

n
3

TC
P

se
ss

io
n

2
TC

P
se

ss
io

n
1

Ti
m

e(
se

co
nd

s)
Ti

m
e(

se
co

nd
s)

Ti
m

e(
se

co
nd

s)
Ti

m
e(

se
co

nd
s)

0

50

 1

00

 1
50

 2
00

25
0

 3

00

 5
0

 1

00

15

0

 2
00

 2

50

 3
00

 5
0

 1

00

 1
50

 2

00

 2
50

 3

00

 3
50

 5
0

 1

00

 1
50

 2

00

 2
50

 3

00

(b
) T

yp
ic

al
 T

C
P

se
ss

io
ns

 in
 tr

affi
c

ge
ne

ra
te

d
by

 th
e

uh
ge

ne
ric

-v
4

RD
P

m
od

el

Layer 4 session
index

Layer 4 session
index

Layer 4 session
index

Layer 4 session
index

5 4 3 2 1

5 4 3 2 1 4 3 2 1

4 3 2 1

F
ig

.
5.

12
:

L
4

se
ss

io
n

s
d

u
ra

ti
on

in
ty

p
ic

a
l

u
se

r-
se

ss
io

n
s

o
f

re
a
l

a
n

d
g
en

er
a
te

d
tr

a
ffi

c
fo

r
re

m
o
te

d
es

k
to

p
a
p

p
li
ca

ti
o
n

tr
a
ffi

c

101

5.2 Modeling and Generating Multi-tier Application Traffic

In the modern internet, network traffic for an application typically consists of a mix of network

traffic from many related network services and protocols. Many user applications utilize multiple

network services running on different nodes in a network. This is common in many multi-tier and

multi-service applications. This section focuses on examining how well the modeling and generation

framework performs for one of such multi-tier applications.

5.2.1 Input Network Traffic Data

In the application, users interact with a Hypertext Transfer Protocol Secure (HTTPS) server,

serving jupyter notebooks. The server, in this case, had multiple downstream connections with a

group of Lightweight Directory Access Protocol (LDAP) servers, SSH servers, domain name service

(DNS) servers, and servers running another proprietary service used in managing our testbed

infrastructure (genilib). Each of the services are independent applications in their own right.

However, in our deployment, they all produce network traffic only in response to user interaction

with the jupyter notebook server.

We obtained input network traffic by capturing packets from the jupyter server, on a network

with an architecture shown in Fig. 5.13. During the capture, members of our lab used various

client devices to create notebooks on the jupyter server and executed commands that triggered

communication between the jupyter server and the DNS, LDAP and genilb VTS servers. There

were also several ssh connections from the jupyter server to virtual machines running within the

VTS servers. We captured traffic on the jupyter server for 2.5 hours, while members within our

lab environment carried out various tasks. This captured traffic was then used as input into our

framework for traffic modeling and generation.

102

LDAP Servers

Cloud Servers

HTTPs
server

DNS Servers

Client
Devices

Fig. 5.13: Experiment network architecture for modeling and generation of a multi-tier network application
traffic showing the various network services utilized in the multi-tier application software stack

103

5.2.2 Dataset Extraction, Traffic Modeling and Generation:

We applied the captured traffic trace file as input into the dataset extractor to yield a csv

dataset file containing details of packet headers and connection details, as described in section 4.1.

Initially, our dataset extraction process detected the various services in the multi-tier application, as

expected. However, by making adjustments to the input metadata, the dataset extractor adjusted

the dataset to recognize the capture as belonging to a multi-tier application, which had multiple

connection classes belonging to each of the services included. The dataset was detected to have

26 user-sessions. This dataset was then applied to the modeling system and used to create a

traffic model file based on the uhgeneric-v4 model method. We created a test network having the

same architecture as the network on which the input traffic was captured (Fig. 5.13). Using our

repeatable experiment orchestration framework [48], we generated traffic on each host based on the

traffic model, for twenty user-sessions of the application while we captured the generated traffic for

evaluation.

5.2.3 Evaluation and Discussion

We evaluated the modeling and generation algorithm’s performance in generating realistic traffic

for multi-tier applications by comparing the generated traffic with the real traffic using our evalu-

ation system (section 4.4). We calculate first and second-order statistics for each metric described

in section 4.4.2. We also compare the arrival time and distributions of transport layer sessions, and

we compare the percentage traffic volume composition for each network service present in the real

and generated traffic.

104

Table 5.2: Evaluation results for modeling and generation of a multi-tier campus network application traffic

Metric Median Mean Maximum Standard Devi-
ation

KS-2-
Sample

Real
Traffic

Generated
Traffic

Real
Traffic

Generated
Traffic

Real
Traffic

Generated
Traffic

Real
Traffic

Generated
Traffic

Test

Inter-PDU Time
(seconds)

0.004 0.003 0.105 0.096 3932.161 1435.638 0.252 0.238 s=0.108

PDU Sizes
(bytes)

325 413 1318 1390 383346 354956 2125 2201 s=0.045

PDU Rates
(PDUs per second)

10 20 18 21 4130.0 2080.0 13 16 s=0.167

PDU Throughput
(bps)

0.99e+4 1.38e4 4.25e+4 9.96e+4 1.23e+8 0.85e+8 1.02e+5 1.64e+5 s=0.154

Server response
times (seconds)

0.004 0.002 0.014 0.012 3538.944 1272.321 0.029 0.026 s=0.076

5.2.3.1 First-Order Comparison of Metric Distributions

As described in section 4.4.3, we carried out first-order comparisons between real and generated

traffic for each metric. We compared each metric’s distribution based on statistical measures

(including the median, mean, maximum, minimum, and standard deviations). For these evaluations

with multi-tier application traffic, the tabulated side-by-side statistics for each metric of the real

and generated traffic is given in Table 5.1.

In Table 5.2, the median values for each of the metrics are comparable. The median inter-

PDU time of 0.004 seconds in the real trace is of the same order as the 0.003 seconds seen in the

generated traces. Comparable values are also seen for the median values of the PDU size, PDU

throughput, and server response time metrics. The mean, maximum, and standard deviation of

each metric of generated traffic in the Table 5.2, have values that are different from those of real

traffic but are quite comparable and still realistic for our multi-tier application traffic. For example,

0.096 seconds in the mean inter-PDU time of generated traffic is plausible for real traffic from our

multi-service application, even though it is quite different from the value of 0.105 seconds seen in

the real trace. The same applies to many of the other metrics’ mean, maximum, and standard

deviation values. The low KS-2-sample test statistic values (< 0.3) for each metric also indicate a

105

close match between the empirical distributions of generated traffic and the real traffic.

We went on to create the corresponding box plots, cumulative frequency curves, and histograms

to compare each metrics’ distribution for both real multi-tier application traffic and generated traffic

based on our model. These plots, for the each metric, are given in Figs. 5.16a to 5.18d.

The box plots for the inter-PDU time in Fig. 5.14a show that the generated traffic inter-PDU

time has the identical median and interquartile ranges as in the real multi-tier traffic. The box

plots for both real and generated traffic also exhibit many similar outlier values. The cumulative

frequency curves plotted in Fig. 5.14b are closely overlapping, thus indicating that the distribution

of the inter-PDU times of the generated traffic is similar to that of the real multi-tier traffic. The

histograms (Figs. 5.14c and 5.14d) show exactly the similar values of 0.105 seconds and 0.096

seconds in the mean, 0.004 seconds and 0.003 seconds in the median, and finally 0.025 seconds

and 0.238 seconds in the standard deviation of inter-PDU times for both real m traffic and the

generated traffic respectively.

For the PDU size metric, the box plots in Fig. 5.15a show that the generated traffic also

has similar median and interquartile ranges as in the real multi-tier traffic. The close overlap in

the cumulative frequency curves plotted in Fig. 5.15b show that the entire distribution of the

PDU size of the generated traffic also closely resembles that of the real multi-tier traffic. In the

corresponding histograms (Figs. 5.15c and 5.15d), the mean values of 1318 bytes and 1390 bytes

in real and generated traffic are very similar. The standard deviations values of 2201 bytes in the

generated traffic histogram, is also similar to the value of 2125 bytes in the real multi-tier traffic.

106

in
te

r-P
DU

 ti
m

e
(s

ec
on

ds
)

real multi-tier
app traffic

generated
traffic

(a) Box plots comparing inter-PDU time distribu-
tions of real multi-tier application traffic and gen-
erated traffic based on the uhgeneric-v4 modeling
algorithm

F(
x)

real multi-tier app traffic
generated traffic

inter-PDU time (seconds)

(b) Cumulative frequency curves comparing inter-
PDU time distributions of real multi-tier appli-
cation traffic and generated traffic based on the
uhgeneric-v4 modeling algorithm

Fr
eq

ue
nc

y

inter-PDU time (seconds)

mean: 0.105
median: 0.004
SD: 0.252

real multi-tier
app traffic

(c) Histogram of inter-PDU time distribution for real
multi-tier application traffic

inter-PDU time (seconds)

generated
traffic

mean: 0.096
median: 0.003
SD: 0.238

Fr
eq

ue
nc

y

(d) Histogram of inter-PDU time distribution for
generated multi-tier application traffic based on the
uhgeneric-v4 modeling algorithm

Fig. 5.14: Box plots, cumulative frequency curves and histograms comparing inter-PDU time distributions
of real multi-tier application traffic with inter-PDU time distributions of generated multi-tier application
traffic based on the uhgeneric-v4 modeling algorithm

107

PD
U

siz
e

(b
yt

es
)

real multi-tier
app traffic

generated
traffic

(a) Box plots comparing PDU size distributions of
real multi-tier application traffic with PDU size dis-
tributions of generated multi-tier application traffic
based on the uhgeneric-v4 modeling algorithm

F(
x)

PDU size (bytes)

real multi-tier app traffic
generated traffic

(b) Cumulative frequency curves comparing PDU
size distributions of real multi-tier application traffic
with PDU size distributions of generated multi-tier
application traffic based on the uhgeneric-v4 mod-
eling algorithm

Fr
eq

ue
nc

y

PDU size (bytes)

mean: 1318
median: 325
SD: 2125

real multi-tier
app traffic

(c) Histogram of PDU size distribution for real multi-
tier application traffic

PDU size (bytes)

mean: 1390
median: 413
SD: 2201

Fr
eq

ue
nc

y

generated
traffic

(d) Histogram of PDU size distribution for gen-
erated multi-tier application traffic based on the
uhgeneric-v4 modeling algorithm

Fig. 5.15: Box plots, cumulative frequency curves and histograms comparing PDU size distributions of real
multi-tier application traffic with PDU size distributions of generated multi-tier application traffic based on
the uhgeneric-v4 modeling algorithm

108

The box plots in Fig. 5.16a show that the generated traffic PDU rate has the same interquartile

ranges as in the real multi-tier traffic. The box plots also indicate similar ranges of outlier values.

The cumulative frequency curves plotted in Fig. 5.16b also show that the distributions of the PDU

rates are similar, although they do not perfectly overlap. The histograms in Figs. 5.16c and 5.16d

reveal very some differences in the PDU rate mean, median, and standard deviation values between

real and generated traffic. The real multi-tier traffic has a mean of 18 PDUs per second, while

the generated traffic has 21 PDUs per second. The median values are 10 PDUs per second and

20 PDUs per second respectively. However, a look at the shape of both histograms also show how

similar the distributions are.

In Fig. 5.17b, the cumulative frequency curves plotted reveals that the distribution of the PDU

throughput for the generated traffic marginally overlaps that of the real multi-tier traffic. The

Histograms (Figs. 5.17c and 5.17d) show that mean, median and standard deviation values across

both real multi-tier traffic and the generated traffic are always quite different but the generated

values are close enough to pass for real multi-tier traffic. The shape of both histograms indicate

very similar distributions between real and generated traffic.

109

PD
U

 ra
te

(P

DU
s

pe
r s

ec
on

d)

real multi-tier
app traffic

generated
traffic

(a) Box plots comparing PDU rate distributions for
real multi-tier application traffic and generated traf-
fic based on the uhgeneric-v4 modeling algorithm

F(
x)

PDU rate (PDUs per second)

real multi-tier app traffic
generated traffic

(b) Cumulative frequency curves comparing PDU
rate distributions for real multi-tier application traf-
fic and generated traffic based on the uhgeneric-v4

modeling algorithm

Fr
eq

ue
nc

y

PDU rate (PDUs per second)

mean: 18
median: 10
SD: 13

real multi-tier
app traffic

(c) Histogram of PDU rate distribution for real multi-
tier application traffic

PDU rate (PDUs per second)

mean: 21
median: 20
SD: 16

Fr
eq

ue
nc

y

generated
traffic

(d) Histogram of PDU rate distribution for gen-
erated multi-tier application traffic based on the
uhgeneric-v4 modeling algorithm

Fig. 5.16: Box plots, cumulative frequency curves and histograms comparing PDU rate distributions of real
multi-tier application traffic with PDU rate distributions of generated multi-tier application traffic based on
the uhgeneric-v4 modeling algorithm

110

PD
U

 th
ro

ug
hp

ut
 (b

ps
)

real multi-tier
app traffic

generated
traffic

(a) Box plots comparing PDU throughput distribu-
tions of real multi-tier application traffic with PDU
throughput distributions of generated multi-tier ap-
plication traffic based on the uhgeneric-v4 modeling
algorithm

F(
x)

Throughput (bps)

real multi-tier app traffic
generated traffic

(b) Cumulative frequency curves comparing PDU
throughput distributions of real multi-tier applica-
tion traffic with PDU throughput distributions of
generated multi-tier application traffic based on the
uhgeneric-v4 modeling algorithm

Fr
eq

ue
nc

y

Throughput (bps)

mean: 42478
median: 9920
SD: 102,489

real multi-tier
app traffic

(c) Histogram of PDU throughput distribution for
real multi-tier application traffic

Throughput (bps)

mean: 99633
median: 13840
SD: 163,959

Fr
eq

ue
nc

y

generated
traffic

(d) Histogram of PDU throughput distribution for
generated multi-tier application traffic based on the
uhgeneric-v4 modeling algorithm

Fig. 5.17: Box plots, cumulative frequency curves and histograms comparing PDU throughput distributions
of real multi-tier application traffic with PDU throughput distributions of generated multi-tier application
traffic based on the uhgeneric-v4 modeling algorithm

111

The cumulative frequency curves plotted in Fig. 5.18b show that the generated traffic’s server

response times distribution of the generated traffic closely overlaps that of the real multi-tier traffic.

In addition, the histograms (Figs. 5.18c and 5.18d) show similar values of 0.014 seconds and 0.012

seconds in the mean, and exactly the same values of 0.002 seconds in the median. The values of

standard deviation (0.029 and 0.026 seconds) are also very close for both real multi-tier traffic and

the generated traffic.

The close similarity between the distributions of these metrics (especially PDU rates, and server

response times) discussed above, for generated traffic and the real multi-tier traffic, indicates that

the uhgeneric-v4 model is very effective in modeling and generating realistic traffic for multi-tier

applications.

112

se
rv

er
 re

sp
on

se
 ti

m
e

(s
ec

on
ds

)

real multi-tier
app traffic

generated
traffic

(a) Box plots comparing server response time dis-
tributions of real multi-tier application traffic with
server response time distributions of generated multi-
tier application traffic based on the uhgeneric-v4

modeling algorithm
F(

x)

server response time (seconds)

real multi-tier app traffic
generated traffic

(b) Cumulative frequency curves comparing server
response time distributions of real multi-tier applica-
tion traffic with server response time distributions of
generated multi-tier application traffic based on the
uhgeneric-v4 modeling algorithm

Fr
eq

ue
nc

y

server response time (seconds)

mean: 0.014
median: 0.002
SD: 0.029

real multi-tier
app traffic

(c) Histogram of server response time distribution for
real multi-tier application traffic

server response time (seconds)

mean: 0.012
median: 0.002
SD: 0.026

Fr
eq

ue
nc

y

generated
traffic

(d) Histogram of server response time distribution
for generated multi-tier application traffic based on
the uhgeneric-v4 modeling algorithm

Fig. 5.18: Box plots, cumulative frequency curves and histograms comparing server response time distri-
butions of real multi-tier application traffic with server response time distributions of generated multi-tier
application traffic based on the uhgeneric-v4 modeling algorithm

113

5.2.3.2 Second-Order Comparison of Metric Distributions

We carried out a second-order evaluation to compare each metric’s variations for user-sessions of

real and generated traffic, based on the process described in section 4.4.4. The results are presented

in Figs. 5.19a to 5.23d.

The box plots for the inter-PDU time in Fig. 5.19a show that the pairwise user-sessions KS-2-

sample test statistics for the inter-PDU time in the generated traffic has median value that is close

to that of real multi-tier application traffic. The cumulative frequency curves plotted Fig. 5.19b

also show that the distribution of the inter-PDU times KS-2-sample test statistics of the generated

traffic is marginally close to that of the real multi-tier application traffic. The mean, median, and

standard deviation values of 0.268s, 0.246, and 0.144 seen in the inter-PDU time histograms of the

generated traffic are different but still quite close to the values of 0.353, 0.308, and 0.198 seen in

the real traffic’s inter-PDU time histograms(Figs. 5.19c and 5.19d).

For the PDU size metric, the box plots in Fig. 5.20a show that the pairwise user-sessions KS-2-

sample test statistics for the generated traffic PDU size metric has a similar range of values as that

of the real multi-tier application traffic. In the corresponding histograms (Figs. 5.20c and 5.20d),

the mean, median, and standard deviation values of 0.340, 0.319 and 0.172 in the generated traffic

are not the same as the values of 0.449, 0.430 and 0.180 seen for the real traffic. However the values

in the generated traces are close enough to pass for generated realistic multi-tier application traffic.

The box plots in Fig. 5.21a show that the generated traffic PDU rate’s pairwise user-sessions

KS-2-sample test statistics also has similar ranges as in the real multi-tier application traffic. The

cumulative frequency curves plotted Fig. 5.21b also show that the distributions of the test statistics

for PDU rates are only marginally similar. In the corresponding histograms (Figs. 5.21c and 5.21d),

the mean, median, and standard deviation values of 0.302, 0.227 and 0.235 in the generated traffic

114

KS
-2

-s
am

pl
e

 te
st

 st
at

ist
ic

real multi-tier
app traffic

generated
traffic

(a) Box plots comparing distributions of pairwise
user-sessions KS-2-sample test statistics for the inter-
PDU time metric of real and generated multi-tier ap-
plication traffic based on the uhgeneric-v4 model

F(
x)

KS-2-sample test statistic

real multi-tier app traffic
generated traffic

(b) Cumulative frequency curves comparing distri-
butions of pairwise user-sessions KS-2-sample test
statistics for the inter-PDU time metric of real and
generated multi-tier application traffic based on the
uhgeneric-v4 model

Fr
eq

ue
nc

y

KS-2-sample test statistic

mean: 0.353
median: 0.308
SD: 0.198

real multi-tier app
traffic

(c) Histogram of pairwise user-sessions KS-2-sample
test statistics for the inter-PDU time metric of real
multi-tier application traffic

KS-2-sample test statistic

mean: 0.268
median: 0.246
SD: 0.144

generated
traffic

Fr
eq

ue
nc

y

(d) Histogram of pairwise user-sessions KS-2-sample
test statistics for the inter-PDU time metric of gen-
erated multi-tier application traffic based on the
uhgeneric-v4 model

Fig. 5.19: Box plots, cumulative frequency curves and histograms for second order comparison of inter-PDU
time between real multi-tier application traffic and uhgeneric-v4 model generated multi-tier application
traffic based on pairwise user-sessions KS-2-sample test statistics

115

KS
-2

-s
am

pl
e

 te
st

 st
at

ist
ic

real multi-tier
app traffic

generated
traffic

(a) Box plots comparing distributions of pairwise
user-sessions KS-2-sample test statistics for the PDU
size metric of real and generated multi-tier applica-
tion traffic based on the uhgeneric-v4 model

F(
x)

KS-2-sample test statistic

real multi-tier app traffic
generated traffic

(b) Cumulative frequency curves comparing distri-
butions of pairwise user-sessions KS-2-sample test
statistics for the PDU size metric of real and gen-
erated multi-tier application traffic based on the
uhgeneric-v4 model

Fr
eq

ue
nc

y

KS-2-sample test statistic

mean: 0.449
median: 0.430
SD: 0.180

real multi-tier app
traffic

(c) Histogram of pairwise user-sessions KS-2-sample
test statistics for the PDU size metric of real multi-
tier application traffic

KS-2-sample test statistic

mean: 0.340
median: 0.319
SD: 0.172

generated
traffic

Fr
eq

ue
nc

y

(d) Histogram of pairwise user-sessions KS-2-sample
test statistics for the PDU size time metric of gen-
erated multi-tier application traffic based on the
uhgeneric-v4 model

Fig. 5.20: Box plots, cumulative frequency curves and histograms for second order comparison of PDU size
between real multi-tier application traffic and uhgeneric-v4 model generated multi-tier application traffic
based on pairwise user-sessions KS-2-sample test statistics

116

are not the same as the values of 0.413, 0.421 and 0.247 seen for the real traffic. However the values

in the generated traces are close enough to pass for generated realistic multi-tier application traffic.

Fig. 5.22a also reveals quite different interquartile ranges for pairwise user-sessions KS-2-sample

test statistics of the PDU throughput metric between the real and generated traffic. The cumulative

frequency curves plotted (Fig. 5.22b) are also only marginally similar. The histograms (Figs. 5.22c

and 5.22d) show that mean, median and standard deviation values across both real multi-tier

application traffic and the generated traffic also quite different due to the large order of values (in

the 106 range) observed in first order throughput values. When distributions with large values are

being compared the KS-2-sample tests often yield results that show significant differences.

The box plots for the server response times pairwise user-sessions KS-2-sample test statistics in

5.23a show that the generated traffic has median and interquartile ranges that are also marginally

close to those of the real multi-tier application traffic. The cumulative frequency curves plotted in

Fig. 5.23b also show the same marginal similarity between the distributions of KS-2-sample statis-

tics for the server response time metric of the generated traffic and the real multi-tier application

traffic. In the corresponding histograms (Figs. 5.23c and 5.23d), the mean, median, and standard

deviation values of 0.305, 0.272 and 0.152 in the generated traffic are not the same as the values

of 0.477, 0.454 and 0.215 seen for the real traffic. However the values in the generated traces are

close enough to pass for generated realistic multi-tier application traffic.

This similarity between the distributions of pairwise user-sessions KS-2-sample test statistics of

these metrics (especially PDU rates) discussed above, for generated traffic and the real multi-tier

application traffic, indicates that the uhgeneric-v4 model performs adequately in modeling and

generating realistic traffic for real multi-tier applications.

117

KS
-2

-s
am

pl
e

 te
st

 st
at

ist
ic

real multi-tier
app traffic

generated
traffic

(a) Box plots comparing distributions of pairwise
user-sessions KS-2-sample test statistics for the PDU
rate metric of real and generated multi-tier applica-
tion traffic based on the uhgeneric-v4 model

F(
x)

KS-2-sample test statistic

real multi-tier app traffic
generated traffic

(b) Box plots comparing distributions of pairwise
user-sessions KS-2-sample test statistics for the PDU
rate metric of real and generated multi-tier applica-
tion traffic based on the uhgeneric-v4 model

Fr
eq

ue
nc

y

KS-2-sample test statistic

mean: 0.413
median: 0.421
SD: 0.247

real multi-tier app
traffic

(c) Histogram of pairwise user-sessions KS-2-sample
test statistics for the PDU rate metric of real multi-
tier application traffic

KS-2-sample test statistic

generated
traffic

Fr
eq

ue
nc

y

mean: 0.302
median: 0.227
SD: 0.235

(d) Histogram of pairwise user-sessions KS-2-sample
test statistics for the PDU rate metric of gen-
erated multi-tier application traffic based on the
uhgeneric-v4 model

Fig. 5.21: Box plots, cumulative frequency curves and histograms for second order comparison of PDU rate
between real multi-tier application traffic and uhgeneric-v4 model generated multi-tier application traffic
based on pairwise user-sessions KS-2-sample test statistics

118

KS
-2

-s
am

pl
e

 te
st

 st
at

ist
ic

real multi-tier
app traffic

generated
traffic

(a) Box plots comparing distributions of pairwise
user-sessions KS-2-sample test statistics for the PDU
throughput metric of real and generated multi-tier
application traffic based on the uhgeneric-v4 model

F(
x)

KS-2-sample test statistic

real multi-tier app traffic
generated traffic

(b) Cumulative frequency curves comparing distri-
butions of pairwise user-sessions KS-2-sample test
statistics for the PDU throughput metric of real and
generated multi-tier application traffic based on the
uhgeneric-v4 model

Fr
eq

ue
nc

y

KS-2-sample test statistic

mean: 0.569
median: 0.555
SD: 0.257

real multi-tier
app traffic

(c) Histogram of pairwise user-sessions KS-2-sample
test statistics for the PDU throughput metric of real
multi-tier application traffic

Fr
eq

ue
nc

y

KS-2-sample test statistic

mean: 0.448
median:0.431
SD: 0.244

generated
traffic

(d) Histogram of pairwise user-sessions KS-2-sample
test statistics for the PDU throughput metric of
generated multi-tier application traffic based on the
uhgeneric-v4 model

Fig. 5.22: Box plots, cumulative frequency curves and histograms for second order comparison of PDU
throughput between real multi-tier application traffic and uhgeneric-v4 model generated multi-tier appli-
cation traffic based on pairwise user-sessions KS-2-sample test statistics

119

KS
-2

-s
am

pl
e

 te
st

st
at

ist
ic

real multi-tier
app traffic

generated
traffic

(a) Box plots comparing distributions of pair-
wise user-sessions KS-2-sample test statistics for
the server response time metric of real and gen-
erated multi-tier application traffic based on the
uhgeneric-v4 model

F(
x)

KS-2-sample test statistic

real multi-tier app traffic
generated traffic

(b) cumulative frequency curves comparing distri-
butions of pairwise user-sessions KS-2-sample test
statistics for the server response time metric of real
and generated multi-tier application traffic based on
the uhgeneric-v4 model

Fr
eq

ue
nc

y

KS-2-sample test statistic

mean: 0.477
median: 0.454
SD: 0.215

real multi-tier app
traffic

(c) Histogram of pairwise user-sessions KS-2-sample
test statistics for the server response time metric of
real multi-tier application traffic

Fr
eq

ue
nc

y

KS-2-sample test statistic

mean: 0.305
median: 0.272
SD: 0.152

generated
traffic

(d) Histogram of pairwise user-sessions KS-2-sample
test statistics for the server response time metric of
generated multi-tier application traffic based on the
uhgeneric-v4 model

Fig. 5.23: Box plots, cumulative frequency curves and histograms for second order comparison of server
response time between real multi-tier application traffic and uhgeneric-v4 model generated multi-tier ap-
plication traffic based on pairwise user-sessions KS-2-sample test statistics

120

5.2.3.3 TCP and UDP Sessions in Typical Application User-Sessions

To evaluate how the modeling and generation system performs in terms of the number and

kind of connections used in traffic generation for each user-session, we plotted the start times and

duration for each transport layer connection used within each user-session. In Fig. 5.24, we provide

a plot of 2 typical user-sessions each for both the original real traffic and the generated traffic. These

plots of L4 sessions in have similar profiles across both the real and the generated traffic, indicating

that the generated traffic contains a number of connections and with start times and durations that

are realistic for the web browser application based comparison with the real traffic.

121

0

10
00

 2

00
0

 3

00
0

 4

00
0

 5

00
0

(a
) T

yp
ic

al
 T

C
P

se
ss

io
ns

 in
 re

al
 m

ul
ti-

tie
r a

pp
lic

at
io

n
tra

ffi
c

Ti
m

e(
se

co
nd

s)
Ti

m
e(

se
co

nd
s)

Ti
m

e(
se

co
nd

s)
Ti

m
e(

se
co

nd
s)

0

10
00

 2

00
0

 3

00
0

 4

00
0

 5

00
0

(b
) T

yp
ic

al
 T

C
P

se
ss

io
ns

 in
 tr

affi
c

ge
ne

ra
te

d
by

 th
e

uh
ge

ne
ric

-v
4

m
od

el

0

10
00

 2

00
0

 3

00
0

 4

00
0

 5

00
0

0

10
00

 2

00
0

 3

00
0

 4

00
0

 5

00
0

LE
G

EN
D

Ea
ch

 c
ol

or
 b

an
d

re
pr

es
en

ts
 th

e
du

ra
tio

n
of

a

TC
P

or
 U

DP
 s

es
si

on

LE
G

EN
D

Ea
ch

 c
ol

or
 b

an
d

re
pr

es
en

ts
 th

e
du

ra
tio

n
of

a

TC
P

or
 U

DP
 s

es
si

on

LE
G

EN
D

Ea
ch

 c
ol

or
 b

an
d

re
pr

es
en

ts
 th

e
du

ra
tio

n
of

a

TC
P

or
 U

DP
 s

es
si

on

LE
G

EN
D

Ea
ch

 c
ol

or
 b

an
d

re
pr

es
en

ts
 th

e
du

ra
tio

n
of

a

TC
P

or
 U

DP
 s

es
si

on

Transport Layer
Session ID

Transport Layer
Session ID

Transport Layer
Session ID

Transport Layer
Session ID

F
ig

.
5.

24
:

L
4

se
ss

io
n

s
d
u

ra
ti

on
s

in
ty

p
ic

a
l

u
se

r-
se

ss
io

n
s

o
f

re
a
l

a
n

d
g
en

er
a
te

d
tr

a
ffi

c
fo

r
m

u
lt

i-
ti

er
a
p

p
li

ca
ti

o
n

122

5.2.3.4 Multi-tier Application Composition

When generating realistic traffic for application with multiple services, it is important that the

distribution of network traffic volume across services in the generated traffic is similar to the real

application traffic. Hence, we evaluate our model’s effectiveness by comparing the charts in Fig.

5.25 and Fig. 5.26, which show the distribution PDUs and bytes from each of the component

services in the real and generated traces. For example in Fig. 5.25, HTTPS and SSH traffic

dominate the total PDU counts metric in both real and generated traffic, with HTTPS and SSH

having 75% and 15% respectively in the real traffic, and 71% and 17% respectively in the generated

traffic. However, in 5.26, HTTPS and genilib traffic dominate the byte counts in both real and

generated traffic, with HTTPS and SSH having 66% and 29% respectively in the real traffic, and

69% and 25% respectively in the generated traffic. Thus the results show good similarity between

the distributions for both the PDU counts and the byte counts.

keberos
1%

https
75%

LDAP2
2%

SSH
15%LDAP1

4%

DNS
1%

genilib
2%

pdus_percent original-pdus

keberos https LDAP2 SSH LDAP1 DNS genilib

keberos
2%

https
71%

LDAP2
2%

SSH
17%

LDAP1
5%

DNS
1%

genilib
2%

pdus_percent modeltype4-pdus

keberos https LDAP2 SSH LDAP1 DNS genilib

Application Composition by Percentage PDUs

Real Multi-tier Application Traffic Generated Traffic

Fig. 5.25: PDU counts percent by application for modeling and generation of a multi-tier network application
traffic

123

keberos
1%

https
66%

LDAP2
3%

SSH
0%

LDAP1
1%

DNS
0% genilib

29%

bytes_% original-pdus

keberos https LDAP2 SSH LDAP1 DNS genilib

keberos
1%

https
69%

LDAP2
3%

SSH
1%

LDAP1
1%

DNS
0%

genilib
25%

bytes_% modeltype4-pdus

keberos https LDAP2 SSH LDAP1 DNS genilib

Real Multi-tier Application Traffic Generated Traffic

Application Composition by Percentage Bytes

Fig. 5.26: Byte counts by application for modeling and generation of a multi-tier network application traffic

5.3 Comparing Realistic Traffic Modeling Algorithms - Effect of

Modeling Higher Level Application Network Behavior

Our framework primarily makes it easy for users to implement desired traffic modeling and

generation algorithms and provide the tools to evaluate the performance of the models created.

Our evaluation system also makes performance comparison of multiple traffic modeling easy. This

section compares four modeling and generation methods to determine which one performs better

for a given realistic traffic generation objectives.

Using the modeling system, we created four traffic models file based on four different model-

ing algorithms we developed. We named the modeling methods uhgeneric-v1, uhgeneric-v2,

uhgeneric-v3 and uhgeneric-v4. The first three models are earlier iterations (versions) of the

same uhgeneric-v4 modeling method that we described in Fig. 4.7 and which we have been using

124

in all our experiments described so far.

The concepts for high level application behavior, including connection classes, connection pools

and request bursts have been discussed earlier in sections 4.1.7, 4.1.8 and 4.1.9. In the first version

– i.e., the uhgeneric-v1 model, we simply model request response exchange patterns between

applications. In the uhgeneric-v2, we do an upgrade on the first version, by incorporating the

modeling request bursts. In the third model (uhgeneric-v3) we added support for connection

classes. Finally, in the fourth, uhgeneric-v4, we included support for connection pools. Hence in

this section we evaluate the effect of incorporating each of these concepts into a traffic model by

comparing the four the results of traffic generation based on each of the 4 models above.

5.3.1 Dataset Extraction, Traffic Modeling and Generation

In this section, we used the same input trace file described in section 5.2. The trace file was

for a multi-tier application containing traffic associated with several network services, including

HTTPs, DNS, LDAP, SSH, and genilib services, on a network architecture shown in Fig. 5.13. We

applied the captured traffic trace file as input into the dataset extractor to yield a csv dataset file

as already described in section 5.2.2. This csv dataset was then applied to the modeling system

and used to create four traffic models file based on four different modeling algorithms we described

in the previous subsection.

We went on to create a test network having the same architecture as the network on which the

input traffic was captured (Fig. 5.13). Using our repeatable experiment orchestration framework

[48], we generated traffic on each host based on each of the four traffic models while capturing the

traffic for further evaluation.

125

5.3.2 Evaluation and Discussion

We evaluated the results of the framework by comparing the generated traffic from each of the

four models with the original real traffic using our evaluation system described in section 4.4. We

carried out both first order and second order analysis to compare the each of the models. The first

order analysis shows that all four models do a good job at generating traffic with the producing

traffic with distributions that match real multi-tier application traffic for all five metrics considered.

However the second order analysis reveals that the uhgeneric-v4 model performs better than the

others in producing traffic with metric variations across user sessions that matches observations

in real multi-tier application traffic. This indicates that incorporating request bursts, connection

pools and connection classes into the model improves its accuracy in generating realistic traffic.

5.3.2.1 First Order Comparisons of Metric Distributions

The box plots, cumulative distribution curves of each metric for both the real and generated

traffic are given in Figs. 5.27a to 5.31b.

For the inter-PDU time metric, the box plots in Fig. 5.27a shows that the uhgeneric-v4 traffic

has interquartile ranges that are closer to that of the real multi-tier traffic, than the other modeling

methods, even though they all have similar outlier value ranges. The large number of outlier values

corresponds to the heavy tails that has been found to be associated with typical internet traffic.

However, the cumulative frequency plots (Fig. 5.27b) for all four modeling methods closely overlaps

with that of the real multi-tier traffic.

In the box plots within Fig. 5.28a, the median and interquartile ranges for PDU sizes for the

uhgeneric-v4 traffic is also much closer to that of the real traffic than that of all other modeling

methods. The outlier value ranges in the uhgeneric-v4 traffic are also much more similar to what

126

in
te

r-P
DU

 ti
m

e
(s

ec
on

ds
)

real multi-tier
app traffic

uhgeneric-v4
traffic

uhgeneric-v3
traffic

uhgeneric-v2
traffic

uhgeneric-v1
traffic

(a) Inter-PDU time Box plots

F(
x) real multi-tier app traffic

uhgeneric-v4 traffic
uhgeneric-v3 traffic
uhgeneric-v2 traffic
uhgeneric-v1 traffic

(b) Inter-PDU time CDF

Fig. 5.27: Box plots and cumulative frequency curves for First order comparison of Inter-PDU time between
real multi-tier application traffic and traffic generated based on four 4 different traffic modeling algorithms

PD
U

siz
e

(b
yt

es
)

real multi-tier
app traffic

uhgeneric-v4
traffic

uhgeneric-v3
traffic

uhgeneric-v2
traffic

uhgeneric-v1
traffic

(a) PDU size Box plots

F(
x)

PDU size (bytes)

real multi-tier app traffic
uhgeneric-v4 traffic
uhgeneric-v3 traffic
uhgeneric-v2 traffic
uhgeneric-v1 traffic

(b) PDU size CDF

Fig. 5.28: Box plots and cumulative frequency curves for First order comparison of PDU sizes between real
multi-tier application traffic and traffic generated based on four 4 different traffic modeling algorithms

is seen in the multi-tier traffic, indicating that the uhgeneric-v4 modeling algorithm performs

better than the others in modeling our multi-tier traffic.

When we take a look at the box plots in Fig. 5.29a, it is obvious that all four modeling method

display similar interquartile ranges and outlier values for the PDU rate metric. The shapes of the

cumulative frequency curves (Fig. 5.29b) for each metric are also similar. This indicates that each

of the modeling methods do a good job at modeling the multi-tier traffic, in terms of PDU rate

distributions.

In the box plots of Fig. 5.30a, none of the traffic modeling methods do a perfect job at generating

traffic with the same narrow inter quartile band of PDU throughput as seen in the real multi-tier

traffic. However, the cumulative frequency curves (Fig. 5.30b) show an acceptable level of overlap

127

PD
U

 ra
te

(P

DU
s

pe
r s

ec
on

d)

real multi-tier
app traffic

uhgeneric-v4
traffic

uhgeneric-v3
traffic

uhgeneric-v2
traffic

uhgeneric-v1
traffic

(a) PDU rate Box plots

F(
x)

PDU rate (PDUs per second)

real multi-tier app traffic
uhgeneric-v4 traffic
uhgeneric-v3 traffic
uhgeneric-v2 traffic
uhgeneric-v1 traffic

(b) PDU rate CDF

Fig. 5.29: Box plots and cumulative frequency curves for First order comparison of PDU rates between real
multi-tier application traffic and traffic generated based on four 4 different traffic modeling algorithms

PD
U

 th
ro

ug
hp

ut
 (b

ps
)

real multi-tier
app traffic

uhgeneric-v4
traffic

uhgeneric-v3
traffic

uhgeneric-v2
traffic

uhgeneric-v1
traffic

(a) PDU throughput Box plots
F(

x)

Throughput (bps)

real multi-tier app traffic
uhgeneric-v4 traffic
uhgeneric-v3 traffic
uhgeneric-v2 traffic
uhgeneric-v1 traffic

(b) PDU throughput CDF

Fig. 5.30: Box plots and cumulative frequency curves for First order comparison of PDU throughput between
real multi-tier application traffic and traffic generated based on four 4 different traffic modeling algorithms

among all the traffic models compared.

For the server response times, the box plots in Fig. 5.31a show that the other models (especially

the uhgeneric-v3 model) performs better than the uhgeneric-v4 model. The interquartile band

of the uhgeneric-v4 is very narrow, compared to that of the real multi-tier application traffic.

On the aggregate, since the uhgeneric-v4 model performs better than the others in terms of

inter-PDU times and PDU sizes, and it also performs adequately in terms of the PDU rates, we

can infer that the model performs better in general, than each of its previous iterations.

128

se
rv

er
 re

sp
on

se

tim
e

(s
ec

on
ds

)

real multi-tier
app traffic

uhgeneric-v4
traffic

uhgeneric-v3
traffic

uhgeneric-v2
traffic

uhgeneric-v1
traffic

(a) PDU rate Box plots

F(
x)

server response time (seconds)

real multi-tier app traffic
uhgeneric-v4 traffic
uhgeneric-v3 traffic
uhgeneric-v2 traffic
uhgeneric-v1 traffic

(b) PDU rate CDF

Fig. 5.31: Box plots and cumulative frequency curves for First order comparison of server response times
between real multi-tier application traffic and traffic generated based on four 4 different traffic modeling
algorithms

5.3.2.2 Second Order Comparisons of Metric Distributions

The results of the second-order analysis based on pairwise user-session Kolmogorov-Smirnov

test statistics for each metric are presented in Figs. 5.32a to 5.36b.

For the inter-PDU time, the box plots in Fig. 5.32a shows the uhgeneric-v4 traffic model as

having identical median value and close over lap with the interquartile ranges of the real multi-tier

appplication traffic, in comparison with other modeling methods. The cumulative frequency curves

(Fig. 5.32b) also show that the uhgeneric-v4 curve has a closer overlap with the curve of the real

multi-tier application traffic among all the traffic models compared. Thus the inter

KS
-2

-s
am

pl
e

 te
st

 st
at

ist
ic

real multi-tier
app traffic

uhgeneric-v4
traffic

uhgeneric-v3
traffic

uhgeneric-v2
traffic

uhgeneric-v1
traffic

(a) Inter-PDU time Box plots of pairwise user-sessions KS-2-sample
test statistics

KS-2-sample test statistic

real multi-tier app
uhgeneric-v4 traffic
uhgeneric-v3 traffic
uhgeneric-v2 traffic
uhgeneric-v1 traffic

(b) Inter-PDU time cumulative frequency
curves for pairwise user-sessions KS-2-
sample test statistics

Fig. 5.32: Box plots and cumulative frequency curves for second order comparison of Inter-PDU time between
real multi-tier application traffic and traffic generated based on four 4 different traffic modeling algorithms

129

KS
-2

-s
am

pl
e

 te
st

 st
at

ist
ic

real multi-tier
app traffic

uhgeneric-v4
traffic

uhgeneric-v3
traffic

uhgeneric-v2
traffic

uhgeneric-v1
traffic

(a) PDU size Box plots of pairwise user-sessions KS-2-sample test
statistics

KS-2-sample test statistic

real multi-tier app
uhgeneric-v4 traffic
uhgeneric-v3 traffic
uhgeneric-v2 traffic
uhgeneric-v1 traffic

(b) PDU size cumulative frequency curves
for pairwise user-sessions KS-2-sample test
statistics

Fig. 5.33: Box plots and cumulative frequency curves for second order comparison of PDU sizes between
real multi-tier application traffic and traffic generated based on four 4 different traffic modeling algorithms

In the box plots within Fig. 5.33a, the median and interquartile ranges for PDU sizes of the the

uhgeneric-v4 traffic are also much closer to that of the real traffic than that of the other modeling

methods. The uhgeneric-v3 model is also more accurate than the earlier 2 versions, but is not as

good as the uhgeneric-v4 model. The cumulative frequency curves also corroborate this, with a

marginal closeness between the curves of real multitier app traffic and curves of both uhgeneric-v4

traffic and the uhgeneric-v3.

When we take a look at the box plots and cumulative frequency curves in Fig. 5.34b and Fig.

5.32b, it is again obvious that for the PDU rates metric, the uhgeneric-v4 model performs better

than the other models. The interquartile ranges in the box plots for uhgeneric-v4 are closer to

that of real traffic, than the other models.

In cumulative frequency curves within Fig. 5.35b, we observethat the curves uhgeneric-v3

traffic and the uhgeneric-v4 model are closer to that of the original traffic, than the other modeling

methods. The same observation is made for the box plots Fig. 5.32a. Hence in terms of PDU

throughput, we can confidently deduce that the uhgeneric-v3 model and the uhgeneric-v4 model

are significantly better than the other two models in modeling this multi-tier traffic.

130

KS
-2

-s
am

pl
e

 te
st

 st
at

ist
ic

real multi-tier
app traffic

uhgeneric-v4
traffic

uhgeneric-v3
traffic

uhgeneric-v2
traffic

uhgeneric-v1
traffic

(a) PDU rate Box plots of pairwise user-sessions KS-2-sample test
statistics

KS-2-sample test statistic

real multi-tier app
uhgeneric-v4 traffic
uhgeneric-v3 traffic
uhgeneric-v2 traffic
uhgeneric-v1 traffic

(b) PDU rate cumulative frequency curves
for pairwise user-sessions KS-2-sample test
statistics

Fig. 5.34: Box plots and cumulative frequency curves for second order comparison of PDU rates between
real multi-tier application traffic and traffic generated based on four 4 different traffic modeling algorithms

KS
-2

-s
am

pl
e

 te
st

 st
at

ist
ic

real multi-tier
app traffic

uhgeneric-v4
traffic

uhgeneric-v3
traffic

uhgeneric-v2
traffic

uhgeneric-v1
traffic

(a) PDU throughput Box plots of pairwise user-sessions KS-2-sample
test statistics

KS-2-sample test statistic

real multi-tier app
uhgeneric-v4 traffic
uhgeneric-v3 traffic
uhgeneric-v2 traffic
uhgeneric-v1 traffic

(b) PDU throughput cumulative frequency
curves for pairwise user-sessions KS-2-
sample test statistics

Fig. 5.35: Box plots and cumulative frequency curves for second order comparison of PDU throughput
between real multi-tier application traffic and traffic generated based on four 4 different traffic modeling
algorithms

Finally, for the server response times, the box plots in Fig. 5.36a show that only the uhgeneric-v4

traffic modeling method really does a good job at generating traffic with the same inter quartile

band as seen in the real multi-tier traffic. However, the cumulative frequency curves in 5.36b in-

dicate that the other models do also generate traffic that is fairly adequte in terms of the server

response times distributions.

On the aggregate, both the uhgeneric-v3 and uhgeneric-v4 models are more accurate than

the others in terms of most metrics considered. Thus we can infer that both modeling meth-

ods are better suited for modeling our multi-tier application traffic than their uhgeneric-v1 and

131

KS
-2

-s
am

pl
e

 te
st

 st
at

ist
ic

real multi-tier
app traffic

uhgeneric-v4
traffic

uhgeneric-v3
traffic

uhgeneric-v2
traffic

uhgeneric-v1
traffic

(a) Server response times Box plots of pairwise user-sessions KS-2-
sample test statistics

KS-2-sample test statistic

real multi-tier app
uhgeneric-v4 traffic
uhgeneric-v3 traffic
uhgeneric-v2 traffic
uhgeneric-v1 traffic

(b) Server response times cumulative fre-
quency curves for pairwise user-sessions
KS-2-sample test statistics

Fig. 5.36: Box plots and cumulative frequency curves for second order comparison of server response times
between real multi-tier application traffic and traffic generated based on four 4 different traffic modeling
algorithms

uhgeneric-v2 counterparts. However the uhgeneric-v4 is the best of all the models.

132

5.4 Chapter Summary

Our experiments in this chapter have demonstrated that our new traffic modeling and genera-

tion framework effectively creates traffic models and generates realistic traffic for diverse kinds of

application network traffic. We have also shown that the uhgeneric-v4 modeling method performs

well at generating traffic for simple single service applications and multi-tier applications, based on

our set of evaluation metrics.

We have also demonstrated that our framework’s evaluation system component effectively com-

pares traffic generated through different traffic modeling different modeling algorithms. The com-

parison function can help model developers evaluate the improvements gained from new traffic

models and support traffic model users to choose the best traffic models out of many options for a

specific application network traffic. Our comparison of multiple models in section 5.3.2 also shows

that incorporating request bursts, connection pools and connection classes into the model improves

its accuracy in generating realistic traffic.

133

Chapter 6

Conclusion

This dissertation studies network traffic modeling and improves the state of the art in realistic

traffic generation with a new framework that makes it possible to create diverse application traffic

models and evaluate their performance.

The dissertation presents a survey that identifies 96 traffic generators from a large corpus of

conference proceeding publications. We performed a classification of the generators based on the

method of traffic generation. We determined the top 10 most popular traffic generators from our

survey results by analyzing over 7000 papers published in ACM SIGCOMM and USENIX con-

ferences over the last 13 years. We observed that the set of supported features by each traffic

generator vary considerably. Based on each generator’s main functionality, we categorized indi-

vidual generators’ features into a structured form to eventually culminate in a traffic generator

selection mechanism. The survey outcome indicates that many research projects use constant or

maximum throughput generators only, in evaluating new algorithms, protocols, and network func-

tions. Just a few projects use existing realistic traffic generators. The results also reveal no common

standards or conventions set for traffic workload generation in networking research.

This dissertation also gives a detailed description of our new framework for traffic modeling

and generation. In addition, it presents a new high fidelity traffic modeling and generation algo-

rithm that we developed using the framework. Our evaluation experiments demonstrate that the

134

framework and our traffic modeling algorithm perform well, generating realistic traffic for target

applications, including several single-service applications and multi-tier or multi-service applica-

tions. The dissertation shows how the framework can be used to compare multiple traffic modeling

methods in terms of their effectiveness for realistic traffic generation. The dissertation also proved

that the accuracy of our traffic modeling system was significantly improved by including represen-

tations for higher level application network behavior such as request bursts, connection pools and

connection classes. The traffic models created using the framework can also be shared publicly by

model creators with researchers, thus reducing the need for actual traffic from industry operators.

Hence, alleviating the privacy concern of many industry operators have in sharing network traffic

with third parties.

6.1 Future Work

There are many exciting directions in going forward with this work. We are currently working

towards integrating the modeling and traffic generation system into a well-known public computer

networking testbed for academia. As future work, our data extraction process can be improved with

additional methods for application detection and with additional machine learning based methods

for connection class clustering.

The source code, and documentations for all software components of our framework are online

[131]. Hence, independent researchers can easily contribute by using the framework to create

additional modeling methods and actual models for diverse applications. Therefore we are setting

up a public repository where high fidelity application traffic models created with the framework can

be made available to researchers, instead of actual traffic traces, reducing the need for researchers

to make their models.

135

The dataset extractor, modeling system, and evaluation system all perform comprehensive pro-

cessing on network traffic or datasets derived from real network traffic. When processing more

massive datasets of input network traffic, the processes take considerable time. As a future work

item, each of these components can be made faster with improvements that leverage parallel pro-

cessing based solution with graphical processing units (GPUs) when available.

136

Bibliography

[1] Emanuele Acri. “HexInject: The Power of Raw Hex Network Access”. 2017. url: http://h

exinject.sourceforge.net/ (visited on 04/13/2020).

[2] Oluwamayowa Adeleke. “Echo-State Networks For Network Taffic Prediction”. In: 2019

IEEE 10th Annual Information Technology, Electronics and Mobile Communication Con-

ference (IEMCON). Oct. 2019, pp. 202–206.

[3] Oluwamayowa Adeleke, Nicholas Bastin, and Deniz Gurkan. “A Survey of Methods and

Outcomes in Network Traffic Generation”. In: ACM Computing Surveys (Submitted) vol. 54

(2020).

[4] Oluwamayowa Adeleke, Nicholas Bastin, and Deniz Gurkan. “Network Testing Using a Novel

Framework for Traffic Modeling and Generation”. In: International conference on computer

communications and networks (ICCCN). Vol. 29. Honolulu, USA: IEEE, 2020, pp. 514–515.

[5] Agilent Technologies. “PIM-SM Multicast Performance Testing”. 2002. url: https://li

terature.cdn.keysight.com/litweb/pdf/5988-6560EN.pdf?id=1649878 (visited on

04/12/2020).

[6] Shane Alcock and Richard Nelson. “Libprotoident: Traffic Classification Using Lightweight

Packet Inspection”. In: WAND Network Research Group, Tech. Rep (Aug. 2012).

[7] Gianni Antichi, Andrea Di Pietro, Domenico Ficara, Stefano Giordano, Gregorio Procissi,

and Fabio Vitucci. “Bruno: A High Performance Traffic Generator for Network Processor”.

137

In: Performance Evaluation of Computer and Telecommunication Systems, 2008. SPECTS

2008. International Symposium on. Edinburgh, UK: IEEE, 2008, pp. 526–533.

[8] Gianni Antichi, Muhammad Shahbaz, Yilong Geng, Noa Zilberman, Adam Covington, Marc

Bruyere, Nick Mckeown, Nick Feamster, Bob Felderman, Michaela Blott, Andrew Moore,

and Philippe Owezarski. “OSNT: Open Source Network Tester”. en. In: IEEE Network 28.5

(Sept. 2014), pp. 6–12.

[9] Stefano Avallone, Marcello Esposito, Antonio Pescape, Simon Pietro Romano, and Giorgio

Ventre. “Mtools: A One-Way Delay and Round-Trip-Time Meter”. In: Recent Advances in

Computers, Computing and Communications. 2002.

[10] Stefano Avallone, Salvatore Guadagno, Donato Emma, Antonio Pescape, and Giorgio Ven-

tre. “D-ITG Distributed Internet Traffic Generator”. In: Quantitative Evaluation of Systems,

2004. QEST 2004. Proceedings. First International Conference on the. IEEE, 2004, pp. 316–

317.

[11] Yariv Bachar and Ophir Ovadia. “NTGen Project”. 2002. url: http://softlab-pro-web

.technion.ac.il/projects/NTGen/html/ntgen.htm (visited on 04/13/2020).

[12] Bastian Ballman and Stefan Krecher. “IP-Packet Generator”. 2005. url: http://p-a-t-h

.sourceforge.net/html/index.php (visited on 04/13/2020).

[13] Kiran Bandla. “DPKT: Fast, Simple Packet Creation and Parsing”. Dec. 2019. url: https

://github.com/kbandla/dpkt (visited on 12/29/2019).

[14] Paul Barford and Mark Crovella. “Generating Representative Web Workloads for Network

and Server Performance Evaluation”. In: Proceedings of the 1998 ACM SIGMETRICS joint

138

international conference on Measurement and modeling of computer systems. Madison Wis-

conson, USA, 1998, pp. 151–160.

[15] David Barroso. “Yersinia Traffic Generator”. Apr. 2020. url: https://github.com/tomac

/yersinia (visited on 04/13/2020).

[16] Nicholas Bastin. “GENI - Virtual Topology Service”. 2017. url: https://geni-vts.read

thedocs.io/en/latest/ (visited on 11/08/2018).

[17] Bruno Benchimol. “VoIP Traffic Generator”. 2005. url: http://voiptg.sourceforge.ne

t/ (visited on 04/13/2020).

[18] Mark Berman, Jeffrey S Chase, Lawrence Landweber, Akihiro Nakao, Max Ott, Dipankar

Raychaudhuri, Robert Ricci, and Ivan Seskar. “GENI: A Federated Testbed for Innovative

Network Experiments”. In: Elsivier Computer Networks 61 (2014), pp. 5–23.

[19] Laurent Bernaille, Renata Teixeira, Ismael Akodkenou, Augustin Soule, and Kave Salama-

tian. “Traffic Cassification on The Fly”. en. In: ACM SIGCOMM Computer Communication

Review 36.2 (Apr. 2006), p. 23.

[20] Philippe Biondi. “Scapy - Packet Crafting for Python2 and Python3”. 2011. url: https:

//scapy.net/ (visited on 11/09/2020).

[21] Nicola Bonelli, Stefano Giordano, Gregorio Procissi, and Raffaello Secchi. “Brute: A High

Performance and Extensible Traffic Generator”. In: Proceedings of SPECTS. 2005, pp. 839–

845.

[22] Candela Technologies. “Lanforge: Stateful IP Traffic Generators and Network Emulators”.

2020. url: http://www.candelatech.com/ (visited on 04/13/2020).

139

[23] Pedro Casas, Andreas Sackl, Sebastian Egger-Lampl, and Raimund Schatz. “YouTube &

Facebook Quality of Experience in Mobile Broadband Networks”. In: 2012 IEEE Globecom

Workshops. Anaheim, California, USA, Dec. 2012, pp. 1269–1274.

[24] Cisco Inc. “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,

2017–2022”. In: Global Mobile Data Traffic Forecast 2017 (2019), p. 2022.

[25] Cisco Inc. “TRex: Realistic Traffic Generator”. 2019. url: https://trex-tgn.cisco.com/

(visited on 10/09/2020).

[26] Cisco Inc. “Using Test TCP (TTCP) to Test Throughput”. en. 2005. url: https://www.c

isco.com/c/en/us/support/docs/dial-access/asynchronous-connections/10340-tt

cp.html (visited on 04/13/2020).

[27] ZTI Communications. “LanTraffic V2”. en-US. 2020. url: https://www.zti-communicat

ions.com/lantrafficv2/ (visited on 04/13/2020).

[28] Walter De Donato, Antonio Pescape, and Alberto Dainotti. “Traffic Identification Engine:

an Open Platform for Traffic Classification”. In: IEEE Network 28.2 (Mar. 2014), pp. 56–64.

[29] Rogério Leão Santos De Oliveira, Christiane Marie Schweitzer, Ailton Akira Shinoda, and

Ligia Rodrigues Prete. “Using Mininet for Emulation and Prototyping Software-Defined

Networks”. In: 2014 IEEE colombian conference on communications and computing (COL-

COM). Bogota, Columbia, 2014, pp. 1–6.

[30] Luca Deri, Maurizio Martinelli, Tomasz Bujlow, and Alfredo Cardigliano. “nDPI: Open-

Source High-Speed Deep Packet Inspection”. In: Wireless Communications and Mobile Com-

puting Conference (IWCMC), 2014 International. IEEE, 2014, pp. 617–622.

140

[31] Valery Diomin and Yakov Tetruashvili. “Cat Karat Packet Builder”. 2010. url: https://s

ites.google.com/site/catkaratpacketbuilder/ (visited on 04/13/2020).

[32] Donfrays Software. “Inter-Networking Test Traffic Generator”. 2018. url: http://www.do

nfraysoftware.com/MITS/MITS.htm (visited on 04/13/2018).

[33] Jon Dugan, Seth Elliott, Bruce A Mah, Jeff Poskanzer, and Kaustubh Prabhu. “iPerf3, Tool

for Active Measurements of the Maximum Achievable Bandwidth on IP Networks”. 2019.

(Visited on 09/10/2020).

[34] East Coast Data Comm Inc. “Stateful Traffic Generator”. 2019. url: https://www.ecdat

a.com/Products/Stateful-Traffic-Generator/ (visited on 04/13/2020).

[35] Paris Eloy. “The Network Expect Project”. 2018. url: https://www.netexpect.org/

(visited on 04/13/2020).

[36] Paul Emmerich, Sebastian Gallenmüller, Gianni Antichi, Andrew W Moore, and Georg

Carle. “Mind the Gap-a Comparison of Software Packet Generators”. In: 2017 ACM/IEEE

symposium on architectures for networking and communications systems (ANCS). Beijing,

China: IEEE, 2017, pp. 191–203.

[37] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and Georg Carle.

“Moongen: A Scriptable High-Speed Packet Generator”. In: Proceedings of the 2015 internet

measurement conference. Tokyo, Japan: ACM, 2015, pp. 275–287.

[38] Ashok Erramilli, Matthew Roughan, Darryl Veitch, and Walter Willinger. “Self-Similar Traf-

fic and Network Dynamics”. In: Proceedings of the IEEE 90.5 (2002), pp. 800–819.

[39] Excentis Inc. “ByteBlower - Making Accurate IP Testing Quick and Easy”. en. July 2013.

url: https://www.excentis.com/products/byteblower (visited on 04/13/2020).

141

[40] Dewan Md Farid, Nouria Harbi, and Mohammad Zahidur Rahman. “Combining Naive Bayes

and Decision Tree for Adaptive Intrusion Detection”. In: International journal of Network

Security & Its Applications 2.2 (Apr. 2010), pp. 12–25.

[41] Wu-chang Feng, Ashvin Goel, Abdelmajid Bezzaz, Wu-chi Feng, and Jonathan Walpole.

“Tcpivo: A High-Performance Packet Replay Engine”. In: Proceedings of the ACM SIG-

COMM workshop on Models, methods and tools for reproducible network research. Karlsruhe,

Germany: ACM, 2003, pp. 57–64.

[42] B Fink and R Scott. “Nuttcp, v5. 3.1”. 2006. url: https://www.nuttcp.net/ (visited on

01/23/2020).

[43] Matias Fontanini. “Libtins: C++ Packet Sniffing and Crafting Library”. 2019. url: https

://libtins.github.io/ (visited on 04/13/2020).

[44] Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda. “MAWILab: Com-

bining Diverse Anomaly Detectors for Automated Anomaly Labeling and Performance Bench-

marking”. In: ACM CoNEXT ’10. Dec. 2010.

[45] Fabien Geyer, Stefan Schneele, and Georg Carle. “Reneto, a Realistic Network Traffic Gen-

erator for Omnet++/INET”. In: Proceedings of the 6th international ICST conference on

simulation tools and techniques. Cannes, France: ICST (Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering), 2013, pp. 73–81.

[46] Giovanni Giacobbi. “The GNU Netcat Project”. 2014. url: http://netcat.sourceforge

.net (visited on 10/22/2019).

142

[47] GL Communications. “GL Traffic Generator: Simulation & Analysis Network Traffic Char-

acteristics”. 2020. url: https://www.gl.com/traffic- generators.html (visited on

04/13/2020).

[48] Deniz Gurkan and Nicholas Bastin. “UH Netlab Experiment Orchestration Service”. 2017.

url: https://bitbucket.org/UH-netlab/uhexp/src/default/ (visited on 11/08/2018).

[49] Hakawati. “Hakawati - Traffic Generators”. TISTORY, Nov. 2018. url: http://www.haka

wati.co.kr/318 (visited on 09/09/2020).

[50] Poul E. Heegaard. “GenSyn - a Generator of Synthetic Internet Traffic Used in QoS Exper-

iments”. In: Proceedings of 15th Nordic Teletraffic Seminar. 2000.

[51] Harry Heffes and David Lucantoni. “A Markov Modulated Characterization of Packetized

Voice and Data Traffic and Related Statistical Multiplexer Performance”. In: IEEE Journal

on Selected Areas in Communications 4.6 (Sept. 1986), pp. 856–868.

[52] Eric Lee Helvey. “Trafgen: An Efficient Approach to Statistically Accurate Artificial Network

Traffic Generation”. en. PhD thesis. Ohio University, 1998. url: https://etd.ohiolink.e

du/pg_10?0::NO:10:P10_ACCESSION_NUM:ohiou1176494135 (visited on 04/13/2020).

[53] Hobbit. “Netcat 1.10”. 1995. url: http://nc110.sourceforge.net/ (visited on 12/02/2019).

[54] Charles Hornig. “RFC 894: Standard for the Transmission of IP Datagrams Over Ethernet

Networks”. Tech. rep. Cambridge, Massachusetts, USA: Internet Engineering Task Force,

1984.

[55] IANA. “Service Name and Transport Protocol Port Number Registry”. url: https://www

.iana.org/assignments/service-names-port-numbers/service-names-port-numbers

.xhtml (visited on 05/25/2020).

143

[56] Colasoft Inc. “Colasoft Packet Builder - Colasoft”. 2020. url: https://www.colasoft.com

/download/products/download_packet_builder.php (visited on 04/13/2020).

[57] R. Jain and S. Routhier. “Packet Trains–Measurements and a New Model for Computer

Network Traffic”. In: IEEE Journal on Selected Areas in Communications 4.6 (Sept. 1986),

pp. 986–995.

[58] Rick Jones et al. “Netperf: A Network Performance Benchmark”. In: Information Networks

Division, Hewlett-Packard Company (1996). url: https://github.com/HewlettPackard

/netperf.

[59] Roel Jonkman. “Netspec: Philosopy, Design and Implementation”. PhD thesis. Lawrence,

Kansas, USA: University of Kansas, 1994.

[60] K. Kant, V. Tewari, and R. Iyer. “Geist: A Generator for E-Commerce & Internet Server

Traffic”. en. In: 2001 IEEE International Symposium on Performance Analysis of Systems

and Software. ISPASS. Tucson, Arizona, USA: IEEE, 2001, pp. 49–56.

[61] Stein Karyl. “Spak-0.6b - Arbitrary Packet Generator/Sender”. 1998. url: http://static

.lwn.net/lwn/1998/0312/a/spak.html (visited on 05/07/2020).

[62] Konstantinos V. Katsaros, George Xylomenos, and George C. Polyzos. “GlobeTraff: A Traffic

Workload Generator for the Performance Evaluation of Future Internet Architectures”. In:

2012 5th International Conference on New Technologies, Mobility and Security (NTMS).

May 2012, pp. 1–5.

[63] Keysight Technologies. “BreakingPoint VE - Virtualized Security Resilience Testing for

Enterprise-Wide Networks”. 2020. url: https://www.ixiacom.com/products/breaki

ngpoint-ve (visited on 04/13/2020).

144

[64] Keysight Technologies. “Ixchariot - Instant Performance Assessment of Complex Networks

from Pre- to Post-Deployment”. 2020. url: https://www.ixiacom.com/products/ixchar

iot (visited on 09/13/2020).

[65] Keysight Technologies. “Ixnetwork - L2-3 Network Infrastructure Performance Testing That

Scales to Business Needs”. 2020. url: https://www.ixiacom.com/products/ixnetwork

(visited on 04/12/2020).

[66] Samad S Kolahi, Shaneel Narayan, Du DT Nguyen, and Yonathan Sunarto. “Performance

Monitoring of Various Network Traffic Generators”. In: 2011 UkSim 13th international con-

ference on computer modelling and simulation. Cambridge, UK: IEEE, 2011, pp. 501–506.

[67] G Kramer. “Generator of Self-Similar Traffic”. 2014. url: http://research.glenkramer

.com/code/trf_gen3.shtml (visited on 04/13/2020).

[68] Charles Krasic. “Home Page of Mxtraf”. url: http://mxtraf.sourceforge.net/ (visited

on 04/13/2020).

[69] Chia-Yu Ku, Ying-Dar Lin, Yuan-Cheng Lai, Pei-Hsuan Li, and Kate Ching-Ju Lin. “Real

Traffic Replay Over Wlan with Environment Emulation”. In: 2012 IEEE Wireless Commu-

nications and Networking Conference (WCNC). Apr. 2012, pp. 2406–2411.

[70] Juha Laine, Sampo Saariso, and Ruii Prior. “RUDE & CRUDE Traffic Generator”. 2002.

url: http://rude.sourceforge.net/ (visited on 04/13/2020).

[71] Kun-Chan Lan and John Heidemann. “Rapid Model Parameterization from Traffic Mea-

surements”. In: ACM Transactions on Modeling and Computer Simulation (TOMACS) 12.3

(2002), pp. 201–229.

145

[72] LBNL/ICSI berkley lab. “LBNL/LCSI Enterprise Tracing Project - Trace File Download”.

url: http://www.icir.org/enterprise-tracing/download.html.

[73] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. “On the Self-Similar Nature

of Ethernet Traffic”. In: IEEE/ACM Transactions on Networking 2.1 (Feb. 1994), pp. 1–15.

[74] Leo Liang. “IPGen IP Packets Generator”. en. 2016. url: https://sourceforge.net/pro

jects/ipgen/ (visited on 04/13/2020).

[75] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tallapragada, Nuno P Lopes,

Andrey Rybalchenko, Guohan Lu, and Lihua Yuan. “Crystalnet: Faithfully Emulating Large

Production Networks”. In: Proceedings of the 26th symposium on operating systems princi-

ples. Shanghai, China, 2017, pp. 599–613.

[76] Yingqiu Liu, Wei Li, and Yunchun Li. “Network Traffic Classification Using K-means Clus-

tering”. In: Second International Multi-Symposiums on Computer and Computational Sci-

ences (IMSCCS 2007). Aug. 2007, pp. 360–365.

[77] B.A. Mah, P. Sholander, L. Martinez, and L. Tolendino. “IPB: An Internet Protocol Bench-

mark Using Simulated Traffic”. In: Proceedings. Sixth International Symposium on Modeling,

Analysis and Simulation of Computer and Telecommunication Systems (Cat. No.98TB100247).

July 1998, pp. 77–84.

[78] Jukka Manner. “Jugi’s Traffic Generator (jtg)”. 2006. url: http://www.netlab.tkk.fi

/~jmanner/jtg.html (visited on 04/13/2020).

[79] MARA82 Marathe and W Hawe. “Predicted Capacity of Ethernet in a University Environ-

ment”. In: Proceedings of southcon. Orlando, Florida, USA, 1982, pp. 1–10.

146

[80] Frank J Massey Jr. “The Kolmogorov-Smirnov Test for Goodness of Fit”. In: Journal of the

American statistical Association 46.253 (1951), pp. 68–78.

[81] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer

Rexford, Scott Shenker, and Jonathan Turner. “OpenFlow: Enabling Innovation in Campus

Networks”. In: ACM SIGCOMM Computer Communication Review 38.2 (2008), pp. 69–74.

[82] Pooja Mehta and Ruchil Shah. “A Survey of Network Based Traffic Classification Methods”.

In: Database Systems Journal 7.4 (), pp. 24–31.

[83] Sándor Molnár, Peter Megyesi, and Geza Szabo. “How to Validate Traffic Generators”.

In: Communications workshops (ICC), 2013 IEEE international conference on. Budapest,

Hungary: IEEE, 2013, pp. 1340–1344.

[84] David Mosberger and Tai Jin. “Httperf — a Tool for Measuring Web Server Performance”.

In: SIGMETRICS Perform. Eval. Rev. 26.3 (Dec. 1998), pp. 31–37.

[85] Dan Nagle. “Packet Sender - Free Utility to for Sending and Receiving of Network Packets”.

en. 2020. url: https://PacketSender.com/ (visited on 04/13/2020).

[86] Arvind Narayanan and Vitaly Shmatikov. “Robust De-Anonymization of Large Sparse Datasets”.

In: Security and privacy, 2008. SP 2008. IEEE symposium on. Oakland, California, USA:

IEEE, 2008, pp. 111–125.

[87] Nathan Jeff. “Nemesis Packet Injection Tool Suite”. 2013. url: http://nemesis.sourcef

orge.net/ (visited on 04/13/2020).

[88] Naval Research Laboratory. “Mgen User’s and Reference Guide Version 5.0”. url: https:

//downloads.pf.itd.nrl.navy.mil/docs/mgen/mgen.html (visited on 04/13/2020).

147

[89] Naval Research Laboratory. “Multi-Generator (mgen)”. 2019. url: https://www.nrl.nav

y.mil/itd/ncs/products/mgen (visited on 04/13/2020).

[90] Juniper Networks. “WRAP17 Traffic Generator”. Apr. 2020. url: https://github.com

/Juniper/warp17 (visited on 04/13/2020).

[91] NMap. “Nping - Network Packet Generation Tool / Ping Utiliy”. 2019. url: https://nma

p.org/nping/ (visited on 04/12/2020).

[92] Ilkka Norros. “A Storage Model with Self-Similar Input”. en. In: Queueing Systems 16.3-4

(Sept. 1994), pp. 387–396.

[93] Robert Olsson. “Pktgen: The Linux Packet Generator”. In: Proceedings of the linux sympo-

sium. Vol. 2. Ottawa, Canada, 2005, pp. 11–24.

[94] Omnicor. “Network Testing Tools”. 2018. url: http://www.omnicor.com/products/netw

ork-testing-tools (visited on 09/13/2020).

[95] Alan Ott. “PlayCap Packet Replay”. Apr. 2020. url: https://github.com/signal11/Pl

ayCap (visited on 04/13/2020).

[96] Pacgen Team. “Pacgen Packet Generator”. en. 2013. url: https://sourceforge.net/pro

jects/pacgen/ (visited on 04/13/2020).

[97] Packet Data Systems Ltd. “IP-Traffic Test and Measure”. 2019. url: https://www.pds-t

est.co.uk/products/ip_test_measure.html (visited on 04/13/2020).

[98] Packeth Team. “packeth”. 2018. url: http://packeth.sourceforge.net/packeth/Home

.html (visited on 04/13/2020).

[99] V. Paxson and S. Floyd. “Wide Area Traffic: The Failure of Poisson Modeling”. In: IEEE/ACM

Transactions on Networking 3.3 (June 1995), pp. 226–244.

148

[100] PB Software. “Network Traffic Generator and Monitor”. 2018. url: http://pbsftwr.trip

od.com/id17.html (visited on 04/13/2020).

[101] Esteban Pellegrino. “pellegre/libcrafter”. Apr. 2020. url: https://github.com/pellegre

/libcrafter (visited on 04/12/2020).

[102] Postel. “TG Tool”. 2017. url: http://www.postel.org/tg/ (visited on 04/13/2020).

[103] Jon Postel. “RFC 768: User Datagram Potocol”. Tech. rep. Marina del Rey, California, USA:

Internet Engineering Task Force, 1981.

[104] Jon Postel. “RFC 791: Internet Protocol”. Tech. rep. Marina del Rey, California, USA:

Internet Engineering Task Force, 1981.

[105] Jon Postel. “RFC 793: Transmission Control Protocol”. Tech. rep. Marina del Rey, Califor-

nia, USA: Internet Engineering Task Force, 1981.

[106] Read the docs Inc. “Home — Read the Docs”. url: https://readthedocs.org/ (visited

on 08/20/2020).

[107] Vinay Ribeiro, Ryan King, and Niels Hoven. “Poisson Traffic Generator”. 2003. url: http

://www.spin.rice.edu/Software/poisson_gen/ (visited on 04/13/2020).

[108] Chloé Rolland, Julien Ridoux, Bruno Baynat, and Vincent Borrel. “Using LitGen, a Realistic

IP Traffic Model, to Evaluate the Impact of Burstiness on Performance”. In: Proceedings of

the 1st international conference on Simulation tools and techniques for communications, net-

works and systems & workshops. Marseille, France: Institute for Computer Sciences, Social-

Informatics and Telecommunications Engineering (ICST), 2008, p. 26.

149

[109] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren. “Inside the

Social Network’s (datacenter) Network”. In: Proceedings of the 2015 ACM conference on

special interest group on data communication. London, United Kingdom, 2015, pp. 123–137.

[110] M Samidi. “Real-Time Voice Traffic Generator”. 2004. url: http://static.lwn.net/lwn

/1998/0312/a/spak.html (visited on 05/07/2020).

[111] Henning Schulzrinne. “Traffic Generators”. 2017. url: https://www.cs.columbia.edu/~h

gs/internet/traffic-generator.html.

[112] Faculty of Management Science and Informatics. “Network Information Library - Traffic

Generators”. 2019. url: https://nil.uniza.sk/traffic-generators-list/.

[113] Douglas C Sicker, Paul Ohm, and Dirk Grunwald. “Legal Issues Surrounding Monitoring

During Network Research”. In: Proceedings of the 7th ACM SIGCOMM conference on In-

ternet measurement. New York, New York, United States: ACM, 2007, pp. 141–148.

[114] Charles Robert Simpson and George F. Riley. “NETI@home: A Distributed Approach to

Collecting End-to-End Network Performance Measurements”. en. In: Passive and Active

Network Measurement. Ed. by Chadi Barakat and Ian Pratt. Lecture Notes in Computer

Science. Berlin, Heidelberg: Springer, 2004, pp. 168–174.

[115] Peter Siska, Marc Ph Stoecklin, Andreas Kind, and Torsten Braun. “A Flow Trace Gen-

erator Using Graph-Based Traffic Classification Techniques”. In: Proceedings of the 6th in-

ternational wireless communications and mobile computing conference. Caen, France: ACM,

2010, pp. 457–462.

[116] Skaion Corporation. “Skaion Traffic Generation System (TGS)”. 2015. url: http://www.s

kaion.com/ (visited on 04/13/2020).

150

[117] Software Freedom Conservancy. “SeleniumHQ Browser Automation”. url: https://www.s

elenium.dev/ (visited on 08/20/2020).

[118] SolarWinds. “Network Traffic Generator – WAN Killer Test”. en. 2020. url: https://ww

w.solarwinds.com/engineers-toolset/use-cases/traffic-generator-wan-killer

(visited on 04/13/2020).

[119] Solarwinds. “WAN Killer Network Traffic Generator”. 2020. url: https://www.solarwin

ds.com/engineers-toolset/use-cases/traffic-generator-wan-killer.

[120] Joel Sommers, Hyungsuk Kim, and Paul Barford. “Harpoon: A Flow-Level Traffic Generator

for Router and Network Tests”. In: SIGMETRICS Perform. Eval. Rev. 32.1 (June 2004),

pp. 392–392. url: http://doi.acm.org/10.1145/1012888.1005733.

[121] Dug Song. “Fragroute”. 2000. url: https://www.monkey.org/~dugsong/fragroute/

(visited on 04/13/2020).

[122] Spirent Communications. “Spirent TestCenter—Verifying Network and Cloud Evolution

- Spirent”. 2020. url: https://www.spirent.com/products/testcenter (visited on

04/13/2020).

[123] P Srivats. “Ostinato Packet Generator”. 2017. url: http://ostinato.org/ (visited on

11/08/2018).

[124] Universita’ degli Studi di Napoli. “Other Internet Traffic Generators”. 2020. url: http://w

ww.grid.unina.it/software/ITG/link.php (visited on 04/13/2020).

[125] Qbone Testbed. “Gen send, Gen recv: A Simple Udp Traffic Generator Application”. url:

http://www.citi.umich.edu/projects/qbone/generator.html (visited on 04/13/2020).

151

[126] TFGen Team. “TFGen Traffic Generator”. 2000. url: http://www.pgcgi.com/hptools/

(visited on 04/13/2020).

[127] The Wireshark Team. “Traffic Generator Tools List - Traffic Generator Tools List”. 2019.

url: https://wiki.wireshark.org/Tools.

[128] A. Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs. “Iperf: The Tcp/Udp

Bandwidth Measurement Tool”. 2005. url: http://dast.nlanr.net/Projects (visited on

12/15/2019).

[129] Triticom. “LANDecoder32 LAN Protocol Analyzer and Traffic Monitor”. 2006. url: http:

//www.netunlim.com/master_site/pdfs/LD32_V3.4.pdf.

[130] Aaron Turner. “Tcpreplay”. 2011. url: http://tcpreplay.synfin.net/trac/ (visited on

11/13/2019).

[131] University of Houston Netlab. “Documentation for all Traffic Modeling and Generation

Projects”. 2018. url: http://docs.uh-netlab.org/projects/trafficmodeling (visited

on 11/13/2018).

[132] University of Houston Netlab. “Documentation of Papers Analysis for the Traffic generator

Survey”. 2019. url: https://docs.uh-netlab.org/projects/surveypaperanalysis/

(visited on 09/09/2020).

[133] University of Houston Netlab. “Documentation of traffic metrics: Network Traces Analysis

Tool”. 2019. url: http://docs.uh-netlab.org/projects/traffic_metrics/ (visited on

11/08/2019).

[134] Antoine Varet and Nicolas Larrieu. “Realistic Network Traffic Profile Generation: Theory

and Practice”. In: Computer and Information Science 7.2 (2014), pp–1.

152

[135] Matti Vattinen. “epb - Ethernet Packet Generator”. 2019. url: http://m-a-z.github.io

/epb/ (visited on 04/13/2020).

[136] Kashi Venkatesh Vishwanath and Amin Vahdat. “Evaluating Distributed Systems: Does

Background Traffic Matter?” In: USENIX annual technical conference. Boston, Massachusetts,

2008, pp. 227–240.

[137] Kashi Venkatesh Vishwanath and Amin Vahdat. “Swing: Realistic and Responsive Net-

work Traffic Generation”. In: IEEE/ACM Transactions on Networking (TON) 17.3 (2009),

pp. 712–725.

[138] Joerg Wallerich. “NSWEB Traffic Generator”. 2008. url: https://www.net.t-labs.tu-b

erlin.de/~joerg/ (visited on 04/13/2020).

[139] Ulrich Weber. “mausezahn”. Nov. 2019. url: https://github.com/uweber/mausezahn

(visited on 04/13/2020).

[140] Michele C. Weigle. “Web Traffic Generation in NS2 with PackMime-HTTP”. 2011. url:

https://www.cs.odu.edu/~mweigle/research/packmime/ (visited on 04/12/2020).

[141] Michele C. Weigle, Prashanth Adurthi, Félix Hernández-Campos, Kevin Jeffay, and F. Donel-

son Smith. “Tmix: A Tool for Generating Realistic Tcp Application Workloads in NS2”. In:

SIGCOMM Comput. Commun. Rev. 36.3 (July 2006), pp. 65–76. url: http://doi.acm.o

rg/10.1145/1140086.1140094.

[142] Keith Wiles. “The DPDK Pktgen Application - Documentation”. Aug. 2019. url: https:

//pktgen-dpdk.readthedocs.io/en/latest/.

[143] Walter Willinger. “The Discovery of Self-Similar Traffic”. In: Performance evaluation: ori-

gins and directions. Berlin, Germany: Springer, 2000, pp. 513–527.

153

[144] Walter Willinger, Murad S Taqqu, Robert Sherman, and Daniel V Wilson. “Self-Similarity

Through High-Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level”.

In: IEEE/ACM Transactions on Networking (ToN) 5.1 (1997), pp. 71–86.

[145] Michael Wilson. “A Historical View of Network Traffic Models”. In: Unpublished survey paper

(2006). url: https://www.cse.wustl.edu/~jain/cse567-06/ftp/traffic_models2/

(visited on 08/08/2020).

[146] Tao Ye, Darryl Veitch, Gianluca Iannaccone, and S Bhattacharya. “Divide and Conquer:

PC-based Packet Trace Replay at OC-48 Speeds”. In: Testbeds and research infrastructures

for the development of networks and communities, 2005. tridentcom 2005. first international

conference on. Trento, Italy: IEEE, 2005, pp. 262–271.

[147] Andy Yeow and Chin Heng. “Bit-Twist: Libpcap-Based Ethernet Packet Generator”. 2006.

url: http://bittwist.sourceforge.net/ (visited on 04/12/2020).

[148] Ruixi Yuan, Zhu Li, Xiaohong Guan, and Li Xu. “An SVM-Based Machine Learning Method

for Accurate Internet Traffic Classification”. In: Information Systems Frontiers 12.2 (Apr.

2010), pp. 149–156.

[149] Petr Zach, MARTIN Pokorny, and ARNOST Motycka. “Design of Software Network Traf-

fic Generator”. In: Recent Advances in Circuits, Systems, Telecommunications and Control

(2013), pp. 244–251.

[150] Sebastian Zander, David Kennedy, and Grenville Armitage. “Kute a High Performance

Kernel-Based Udp Traffic Engine”. Tech. rep. 0501118A. Swinburne University of Technol-

ogy. Centre for Advanced Internet Architectures (CAIA), 2005.

154

Appendix A

Definitions of Table Row Headers

A.1 Table 3.3

The descriptions for each feature listed in Table 3.3 are given below.

1 Set # of packets: Configure the total number of packets to send.

2 Set total bytes: Configure the total number of bytes to send.

3 Set fixed throughput: Set a fixed value for the throughput in bits per second (bps).

4 Set randomized throughput: Configure set of values, or a random distribution for the

throughput at which to send packets.

5 Set packet rate: Configure a fixed value in packet rates per second (pps) at which packets

should be sent.

6 Set time duration: Set a time limit for the duration of the traffic generation process.

7 Send data files: Configure the generator to use an arbitrary data file as data source for the

payload of the packets to be sent.

8 Replay traffic traces: Generator supports the replay network traffic trace files.

155

9 Set fixed packet size: Configure a packet size in bytes, for all packets to be sent by the

generator.

10 Set randomized packet sizes: Configure packet sizes to be picked from a set of values.

These values can be picked from a particular random distribution.

11 Set fixed inter-packet time: Set a fixed value for inter-packet time intervals in seconds

for the packets.

12 Set randomized inter-packet times: Configure inter-packet time values to be picket from

a set of values or from a random distribution.

13 Support TCP connections: Generator supports actual TCP connections, and not just

1-sided flows.

14 Support SCTP connections: Generator supports actual SCTP connections, and not just

1-sided flows.

15 Set MSS: Configure a fixed value for maximum segment size(MSS).

16 Set reporting intervals: Configure time intervals at which to show a summary of the

packets sent so far, while the generation process is ongoing.

17 Set interface: Select the network interface on which to send out packets.

18 Specify IP address of interface: Select the interface on which to send out packets, by

specifying the IP address associated with the interface.

19 Set CPU affinity: Select a CPU core to use for the packet generation process on multi-core

systems.

156

20 Generate IP fragments: Native support for the generation of fragmented IP packets.

21 Bi-directional generation: Native support for sending packets in both directions, from the

source and the target, each one towards the other.

22 Multiple parallel connections/ flows: Native support for sending packets associated with

multiple flows or connections simultaneously.

23 Arbitrary http requests: Configure to send any HTTP request to a target host.

A.2 Table 3.5

The descriptions for each feature listed in Table 3.5 are given below.

1 Throughput: The amount of data delivered by the traffic generator from the source to

target per unit time, usually measured in bytes per second (bps).

2 Latency: The interval between the time a packet is sent from a source, and the time it is

received at the destination.

3 Packet rate: The number of packets delivered by the traffic generator from the source to

target, usually measured in packets per second (pps).

4 Total no. of packets: The total number of packets sent from the source to the target during

the entire traffic generation process.

5 Total no. of bytes: The total amount of data in bytes sent from the source to the sink

during the traffic generation process.

157

6 Duration: The total time elapsed during the traffic generation process usually measured in

seconds.

7 Jitter: The variation in latency of packets usually measured in seconds.

8 No. of retransmissions: The total number of packets that had to be re-transmitted during

the packet generation process.

9 No. of drops: The total number of packets that were sent from the source but not success-

fully received at the receiver.

10 MSS: The maximum segment size of TCP packets sent by the generator.

11 Congestion win. size(s): The congestion window size of the sending host of the traffic

generator.

12 CPU demand: The amount of CPU utilized by the traffic generator.

13 Number of flows or connections: The total number of unique connections or the total

number of unique flows created by the traffic generation process.

14 Request/response transaction rates: For the traffic generators that conform to the

request-response model, this is the number of request and response pairs completed per unit

time.

158

Appendix B

Sample Traffic Model

1 {
2 "3389.0tcp": {
3 "app_name": "3389.0tcp",
4 "conn_models": {
5 "3389.0tcp_-1": {
6 "port_number": 3389,
7 "l4_proto": "tcp",
8 "request_sizes": {
9 "len_dataset": 6408,

10 "empirical": {
11 "x": [0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, ... 100],
12 "y": [37.0, 37.0, 37.0, 37.0, 53.0, 53.0, 53.0, 69.0, ... 133.0],
13 "mean": 85.24769,
14 "max": 821.0,
15 "min": 37.0,
16 "RMSE_all": 128.84116,
17 "ks_2_test": [0.04008, 7e-05],
18 "non_outlier_prob": 0.99672,
19 "outliers": [821.0, 1029.0, 1029.0, 1445.0, ... 21936.0, 21936.0],
20 "25_50_75th_percentiles": [53.0, 69.0, 117.0]
21 }
22 },
23 "response_sizes": {
24 "len_dataset": 41661,
25 "empirical": {
26 "x": [0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, ... 100.0],
27 "y": [19.0, 85.0, 341.0, 645.0, 949.0, 1445.0, 1877.0, ... 15861.0],
28 "mean": 4445.84242,
29 "max": 15861.0,
30 "min": 19.0,
31 "RMSE_all": 5371.64928,
32 "ks_2_test": [0.02153, 0.0],
33 "non_outlier_prob": 1.0,
34 "outliers": [],
35 "25_50_75th_percentiles": [1445.0, 3621.0, 6421.0]
36 }
37 },
38 "inter_req_burst_time_per_conn": {
39 "mtype": "all-models",
40 "len_dataset": 6042,
41 "empirical": {
42 "model_type": "empirical",
43 "x": [0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, ... 100.0],
44 "y": [0.00033, 0.09053, 0.10359, 0.10399, 0.104, 0.10432, ... 0.68996],
45 "mean": 0.2189,
46 "max": 4.34376,
47 "min": 0.00033,
48 "RMSE_all": 0.71915,
49 "ks_2_test": [0.03519, 0.00115],

159

50 "non_outlier_prob": 0.99239,
51 "outliers": [4.66039, 4.71589, 4.72737, 4.76548, 4.7922, ... 217.25088],
52 "25_50_75th_percentiles": [0.10442, 0.11208, 0.19198]
53 }
54 }
55
56 },
57 "3389.0tcp_0": {...}
58 },
59 "usess_model": {
60 "has_overlap_conns": false,
61 "connpool_inter_arrival": {
62 "mtype": "all-models",
63 "len_dataset": 11,
64 "empirical": {
65 "model_type": "empirical",
66 "x": [0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, ... 100.0],
67 "y": [0.04999, 0.10251, 0.15504, 2.0249, 3.89476, 4.14998, ... 12.74268],
68 "mean": 6.58599,
69 "max": 12.74268,
70 "min": 0.04999,
71 "RMSE_all": 5.62786,
72 "ks_2_test": [0.18182, 0.98517],
73 "non_outlier_prob": 1.0,
74 "outliers": [],
75 "25_50_75th_percentiles": [4.14998, 6.09221, 10.70509]
76 }
77 },
78 "connpool_interval": {
79 "mtype": "all-models",
80 "len_dataset": 11,
81 "empirical": {
82 "model_type": "empirical",
83 "x": [0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, ... 100.0],
84 "y": [0.0046, 0.00479, 0.00498, 0.0053, 0.00562, 0.00592, ... 8.7272],
85 "mean": 2.12317,
86 "max": 8.7272,
87 "min": 0.0046,
88 "RMSE_all": 3.70186,
89 "ks_2_test": [0.18182, 0.98517],
90 "non_outlier_prob": 1.0,
91 "outliers": [],
92 "25_50_75th_percentiles": [0.00592, 0.00871, 4.22892]
93 }
94 },
95 ...
96 "usess_connpool_seqs_distr": {
97 "conn_seqs": [
98 ["3389.0tcp_0", "3389.0tcp_0", "3389.0tcp_0", "3389.0tcp_-1"],
99 ["3389.0tcp_0", "3389.0tcp_-1"]

100],
101 "probs": [0.2857142857142857, 0.7142857142857143]
102 }
103 }
104 }
105 }

160

