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ABSTRACT

Phase-contrast X-ray imaging (PCI) can significantly improve the contrast of small and weakly-

absorbing materials. This is because of the sensitivity of PCI measurements to changes in both

the attenuation and phase of an X-ray wavefield due to interactions with matter. Yet, quantitative

estimates of material properties from PCI measurements require the use of phase retrieval (PR)

algorithms. Our team developed a capable PR strategy for propagation-based PCI that estimates

a pair of material properties from two or more energy-resolved measurements. Part of this work

is dedicated to broadening our understanding of the key advantages and practical limitations of

our method. To this end, a comprehensive analysis of the underlying theory and the sensitivity to

factors such as noise are provided. Based on our findings, we proposed a set of strategies that can

help enhance the quality and accuracy of estimated values. We also examined the performance of

the PR method with laboratory measurements of a heterogeneous sample. To simultaneously obtain

multiple energy-resolved measurements, we used a polychromatic source in combination with high-

resolution photon-counting detectors. Our findings demonstrate that the properties of multiple

(more than two) unique materials can be estimated with accuracies above 90%. Additionally, our

strategy produced results with satisfactory accuracy and image quality even when the detected

photon counts were as low as 250 photons per pixel. The underpinning theory in our approach

relies on the weak object approximation to simplify the transport-of-intensity equation (TIE).

Thus, a section of this work is dedicated to examining the errors related to enforcing the weak

object approximation when deriving a TIE-based PR algorithm. We also tested other prevalent

methods to simplify the TIE. Experimental results revealed that errors introduced by the weak

object approximation were below 5% even for the case of aluminum, which has a relatively high

atomic number.
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1 Introduction

From detecting the onset of cancer in a patient to identifying an explosive device in a package,

X-ray imaging is used routinely to visualize internal structures in opaque objects. This highly

effective and non-invasive technique has found a broad range of industrial, academic, and clinical

applications. The history of X-ray imaging can be divided into three epochs. The first begins with

the formal discovery of X-rays by Röntgen in 1895. In the years that followed, a vigorous race

unfolded in the scientific community. The primary objectives of many scientists were to uncover

the nature of these then mysterious (dubbed “X”) rays and to identify new applications [1].

The widespread popularity of X-rays in medicine eventually led to the revolutionary invention

of computed tomography (CT) imaging in 1972 by Godfrey Hounsfield. This marked the start of

the second epoch, which saw the creation and subsequent development of a tool to address the

limitation of 2D, or projection, imaging. With this, imaging scientists could render an accurate

representation of internal 3D structures. In medicine, CT imaging led to novel approaches in

diagnosing diseases and complications with greater accuracy.

Unlike the first two, the third epoch lacks a well-defined start. Instead, it is defined here to

include important (and somewhat recent) technological advancements that have enabled the sig-

nificant improvement of existing techniques and the emergence of promising ones. Three notable

advancements are the introduction of highly coherent X-ray sources like synchrotron facilities, the

development of high-resolution photon-counting detectors, and the arrival of powerful personal com-

puting. All of these areas remain under active development today. X-ray phase-contrast imaging,

which is the primary topic in this work, falls in the final stage.

In this section, elemental concepts related to medical X-ray imaging are discussed. This includes

a brief description of how X-rays interact with matter to produce conventional (absorption-based)

images. A short introduction to phase-contrast imaging and, subsequently, a description of spectral

imaging with photon-counting detectors are also included. The former is kept to an overview of

the technique since later parts of this work elaborate on the physics and show applications.
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1.1 Fundamentals of medical X-ray imaging

The prevailing method for generating X-rays involves the controlled bombardment of a dense metal-

lic target (commonly tungsten) with electrons. This process can be understood as a statistical

phenomena, where each electron has a probability p of interacting with the target to produce an

X-ray quanta [2]. For an arbitrarily large ensemble of N electrons, the probability, P , that the

random variable, N in, describing the number of generated X-ray quanta will take the value n is

given by the Binomial distribution

P (N in = n) =

(
N

n

)
pn(1− p)N−n. (1)

With the expectation value of N in defined as E
[
N in

]
= n̄, it can be shown that the production of

X-rays is a Poisson process. In other words, it satisfies

P (N in = n) =
n̄n

n!
e−n̄. (2)

If we infer that the process of detecting photon also satisfies Eq. 1, then the sequence of production

and detection of X-ray quanta is, as a whole, also a Poisson process [2].

The Poisson-distributed nature of measurements discussed here is essential to understand the

statistical character of data collected with photon-counting detectors (PCDs). These are the class of

detectors used for all experimental results included in this work. One implication of this statistical

viewpoint is the treatment of X-rays as “particles”. This will later be reconsidered to properly

account for observations related to phase-contrast imaging.

Another defining characteristic of X-ray radiation is energy. Typical X-ray sources, like those

in most clinical settings, emit radiation within a broad (polychromatic) spectrum. The upper limit

of the spectrum can be set by regulating the kinetic energy of the bombarding electrons while the

lower limit can be controlled by applying beam filters [3, 4]. In medical imaging, X-ray energies

can range between 10 and 150 keV. The interested reader can find additional details about the

2



production of X-rays in introductory textbooks like [4]. For details on the topic of X-ray photon

statistics, two pertinent sources are [2] and [5].

1.1.1 X-ray interaction mechanisms

So far, the interaction of X-rays with matter directly has not been considered. This section covers

the processes by which the intensity of X-rays penetrating an object is attenuated. Attenuation

refers to the process by which X-rays are either absorbed or scattered [3]. The quantity that

describes the probability that X-ray quanta will be attenuated is the linear attenuation coefficient

(LAC) µ, which has units of cm−1 and can be expanded in term of five interaction coefficients as:

µ = σr + σc + τ + π + γ, (3)

where σr is the Rayleigh (or coherent) scattering component, σc is the Compton (or incoherent)

scattering component, τ is the photoelectric absorption component, π is the pair-production com-

ponent, and γ is the triplet-production component [3].

All of the quantities in Eq. 3 are energy-dependent and are typically given as spatial distributions

when used to describe an object. For example, µ(x, y, z;E) defines the LAC at location (x, y, z)

for energy E. The LAC depends on the elemental composition and mass density. However, the

energy dependence of µ is characterized by the former while the mass density can be interpreted

as a scaling factor. A related quantity that depends only on the elemental composition is the mass

attenuation coefficient, which is found by dividing the LAC by the nominal density of a material.

Of the five interaction mechanisms represented on the right-hand side of Eq. 3, only the first

three are relevant in medical X-ray imaging since π and γ are feasible only above 1.02 and 2.04

MeV, respectively. Furthermore, in the imaging of soft tissues, contributions to the LAC from

Rayleigh scattering do not exceed 12% for energies above 30 keV [4]. This leads to the approximate

yet common expression [6]

µ(E) = σr(E) + σc(E) + τ(E) ≈ σc(E) + τ(E), (4)
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where E ∈ [10, 150] keV represents energies typical to biomedical applications. Fig. 1a shows the

component attenuation curves of water, which closely resemble the properties of soft tissue, between

20 and 80 keV. The values for this plot, and for many more elements, compounds, and common

materials can be found in the National Institute of Standards and Technology (NIST) database [7].

The relative contribution of σc, σr, and τ to the total attenuation are plotted in Fig. 1b. For all

energies, σr remains near or below 10% while σc becomes the dominant term after 30 keV and

accounts for over 80% of µ above 50 keV.

(a) (b)

Figure 1: (a) Mass attenuation curves for water. (b) Relative contribution of Rayleigh
scattering (σr), Compton scattering (σc), and photoelectric absorption (τ) to the total
linear attenuation coefficient (µ).

In spectral imaging applications, which involve multiple measurements of well-defined energies,

it can be beneficial to express the LAC as a linear combination of energy-dependent basis functions.

For example, we can write [6, 8, 9]:

µ(E) = a0
1

Enr
+ a1

1

Enp
+ a2ΦKN (E)

= a0fr(E) + a1fp(E) + a2fc(E),

(5)

where fr(E)[= E−nr ] and fp(E)[= E−np ] describe the energy functions of Rayleigh scattering and

the photoelectric absorption, respectively. The energy dependence of Compton scattering, ΦKN , is

defined by the Klein-Nishina function. The quantities a0, a1, and a2 describe energy-independent

material properties. Although a2 is understood to represent the electron density of a material, a
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general consensus on the definitions of a0 and a1 is absent in the literature. Likewise, the values

of the exponents nr and np are material dependent [9] and therefore have application-specific

definitions. It is common to see nr and np defined as sets of acceptable values rather than a pair

of specific numbers. Nevertheless, the usefulness of Eq. 5 for tasks like identifying material from

X-ray images [6, 10] and retrieving the phase of X-rays [11] is recognized.

The intensity of X-rays at a plane coinciding with the detector (e.g. z = 0) can be related to

the attenuating properties of a material by the Beer-Lambert law. For the case of monochromatic

radiation traveling along the z-axis we have that

I(x, y, 0;E) = I in(E) exp

{
−
∫
µ(r, E)dz

}
. (6)

Here I in(E) represents the intensity of X-rays incident on an object and r[= (x, y, z)] are spatial

coordinates. Eq. 6 relies on particle-like interactions and, therefore, cannot be used to learn about

the phase of X-rays.

1.2 Phase contrast imaging

Variations in the properties of a medium can result in changes to the amplitude and phase of

electromagnetic waves like X-rays. Consequently, waves are refracted (or deviated) relative to their

original direction. This can alter the intensity in ways that encode information about the phase-

shifting properties of the medium. The material property that describes this type of interaction

between X-ray and matter is the complex index of refraction

n = 1− δ + iβ = 1− δ + i
µ

2k
(7)

where δ regulates changes to the phase (or refractions) of the radiation, β[= µ/2k] is proportional to

the LAC, and k represents the wave-number. Like the attenuation properties described in Sec. 1.1.1,

every quantity here is energy-dependent and can be expressed as a spatial distribution.

In general, changes to the phase of X-rays (and the ensuing path deviations) are extremely
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small, since δ, β � 1, and require specialized equipment and geometries to be detected [12, 13].

Phase-contrast imaging (PCI) refers to techniques where the measured intensities are sensitive to

phase shifts. For many materials relevant to biomedical imaging, δ varies as E−2 while β varies

as E−4 away from absorption edges [14, 15]. Thus, δ becomes relatively more important with

increasing energy. Fig. 2 shows a comparison between the values of δ and β for aluminum and

water, which highlights that δ is significantly larger for both materials. A large and growing

number of PCI methods have been introduced over the years. They can be categorized based on

the instrumentation or complexity required as well as the property of the phase (e.g. first or second

derivative) they are most sensitive to [15].

Figure 2: Real (δ) and imaginary (β) parts of the complex refractive index of alu-
minum and water.

Three promising PCI prospects for widespread application in biomedicine, listed in decreasing

order of complexity, are grating-based interferometry, coded aperture, and propagation-based. Of

these, the first two require careful alignment of specialized X-ray optics and are most sensitive to

the first derivative of the phase. Both the phase and its derivative refer to the quantities along

planes transverse to the propagation direction, i.e. the xy-plane for waves traveling along the z-

axis. Propagation-based (PB) PCI is perhaps the simplest and most common technique [16]. The

characteristic of the phase that is most relevant for PB-PCI is the second derivative or curvature.

Several reviews about these and other methods have been published [12, 15–17]. Wilkins et al.

(2014) provide a comprehensive overview highlighting some important shortcomings and advantages
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of the techniques discussed here.

1.3 Spectral X-ray imaging

As we saw in Sec. 1.1.1, the intensity of X-rays reaching a detector placed immediately after an

object is regulated by the LAC. Thus, in principle, Eq. 6 can give a method to identify materials

from a single energy measurement when the X-ray energy is known. In practice, however, this is

complicated by the dependence of the LAC on material density, which is often unknown. As a

consequence, two materials with different chemical compositions can lead to identical (and indis-

tinguishable) intensities [18]. A way to circumvent this limitation is with the use of multiple energy

measurements to help uncover the energy dependence of a material and, with that, identify the

related composition. This approach is fundamental to all spectral X-ray techniques.

Energy-specific X-ray measurements can be obtained in a variety of ways, each having its merits

and disadvantages. Herein we focus on the use of photon-counting detectors in combination with

polychromatic X-ray sources. A comprehensive description of this and other spectral X-ray imaging

techniques relevant to biomedical imaging is given in [18].

1.3.1 Polychromatic radiation and its consequences

Since typical X-ray sources are polychromatic, the intensity measured at a detector element can be

written in a more general and applicable form (compared to Eq. 6) as:

I(x, y, 0;Eeff) =

Emax∫
Emin

N in(E)wd(E)Q(E) exp

{
−
∫
µ(x, y, z;E)dz

}
dE. (8)

Here N in(E) is the number of incident photons with energy E propagating along the z-axis. The

position of the detector is assumed to coincide with the plane z = 0. The functions Q(E) and wd(E),

respectively, describe the detection efficiency for photons with energy E and the weight given to

them by the detector. The effective energy, Eeff , is defined as the energy of a monochromatic beam

that would yield the same intensity as the right-hand side of Eq. 8 [19]. It is sometimes possible to
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obtain an accurate estimate of Eeff experimentally [20].

When the bandwidth ∆E[= Emax−Emin] of the spectrum is not negligible, several undesirable

effects must be carefully considered. An example arises when comparing Eq. 8 for monochromatic

and polychromatic radiation. For the former, Eq. 8 affords a simple relationship between the

projected LAC (
∫
µ(x, y, z;E)dz) and the measured intensity. In particular,

− ln

[
I(x, y, 0;E)

N in(E)wd(E)Q(E)

]
= − ln

[
I in(E) exp

{
−
∫
µ(x, y, z;E)dz

}
I in(E)

]
=

∫
µ(x, y, z;E)dz, (9)

where I in(E)[= N in(E)wd(E)Q(E)] is the intensity of the photons detected in the absence of an

object along the beam path. Eq. 9 shows that the projected LAC is not influenced by the wd and

Q for the case of monochromatic radiation. On the other hand, a more complicated relationship is

used to estimate the projected LAC [21], that is

− ln

 I(x, y, 0;Eeff)
Emax∫
Emin

I in(E)dE

 = − ln


Emax∫
Emin

I in(E) exp
{
−
∫
µ(r, E)dz

}
dE

Emax∫
Emin

I in(E)dE

 ≈
〈∫

µ(x, y, z;E)dz

〉
Iin(E)

.

(10)

The right-hand side describes an ensemble average of the projected LAC with respect to the incident

spectrum, i.e. I in(E), which can be used to identify a material when I in(E) is known for all energies.

Yet, the validity of the approximation in Eq. 10 deteriorates (rapidly) as the bandwidth of the

incident spectrum increases [21]. Also, values predicted by Eq. 10 are sensitive to wd and Q.

Another negative consequence of imaging with a broad polychromatic spectrum is the possi-

bility for beam hardening artifacts. These result from the preferential attenuation of lower energy

photons, which leads to an X-ray spectrum that is thickness dependent. Put differently, the spec-

trum within an object can be significantly different (especially in the lower energy region) than the

one that first interacted with the object’s surface. The detrimental consequences of beam harden-

ing, especially in tomographic imaging, are well documented in the literature, and its mitigation

remains an area of active research [21–23].
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1.3.2 Photon-counting detectors

Energy integrating detectors, the kind most commonly used in diagnostic imaging, combine all

impinging photons into one intensity measurement. In addition, photons are weighted proportion-

ally to their energy. This favors high-energy photons, which convey less contrast compare to the

low-energy counterparts. In term of Eq. 8, this corresponds to defining the limits of the integral

to encompass the full extent of the incident spectrum and ensuring that wd(E) ∝ E. Thus, mea-

surements taken by these devices are highly susceptible to the complications outlined above. By

contrast, energy resolving PCDs offer a way to accept photons confined to a narrow user-defined

energy window. The major advantages of modern PCDs include the ability to obtain multiple

spectroscopic measurements simultaneously, with high detector efficiency, high resolution, and in-

sensitivity to electronic noise.

TH

( + )( − )

E2

E1

E2THE1< <

1
0

TH

Bias Voltage

Electron-hole pairs

Monolithic cathode

Bump bonds

Amplifier Comparator

Counter

Figure 3: Two enlarged pixels of a PCD illustrating the basic steps that enable
spectroscopic imaging. Photons deposit a charge proportional to their energy. The
charge is converted to a voltage that is later amplified, compared to a user-defined
threshold (TH), and counted if it exceeds the threshold.

For this work we used high-resolution (pixel pitch of 55 µm) PCDs from the Medipix3 collabo-

ration, which were developed at CERN (Geneva). Even though the Medipix class of detectors was

originally designed for use in high energy and particle physics, their utility for biomedical applica-

tions is widely recognized today [18, 24, 25]. Aside from a high spatial resolution, Medipix3 PCDs

offer high detection efficiency, virtually zero electronic noise, energy resolutions of a few keV, and
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the ability to record up to eight (different) spectroscopic measurements simultaneously [26].

Fig. 3 provides a simplified representation of how PCDs discriminate photons based on their

energy. Namely, the incident radiation interacts with the sensor material resulting in a voltage

pulse. The pulse is, in turn, amplified, compared to a user-defined threshold (TH) value, and

counted if it exceeds the threshold. Only photons that produce signals within predefined energy

levels are thus counted, allowing for spectroscopic imaging.

1.4 Outline

Section 2 of this dissertation explores the theory of propagation-based phase-contrast imaging. To

this end, an overview of the problem within the context of the Fresnel-Kirchhoff diffraction theory

is given. This section also introduces the transport of intensity equation. A breakdown of the

experimental arrangement and conditions required by this method is also presented.

In Section 3 a phase retrieval algorithm developed by our group is introduced along with an in-

depth analysis of its benefits and limitations. This includes a close look at the material properties

that can be accurately estimated. A detailed analysis of how the phase retrieval algorithm handles

noise in the input data is presented in this section.

A case study using the spectral phase retrieval of Section 3 is covered in Section 4. This report

demonstrates that judicious implementation of our method can lead to significant improvements in

quality as well as accurate recovery of material properties. We tested the algorithm with biologically

relevant samples and, thus, believe the results to be of significance to clinical application.

In Section 5, the main focus is to provide an in-depth analysis of the consequences related to

simplifying the transport of intensity equation with the weakly interacting object approximation.

This is a key assumption in the phase retrieval of Section 3. To conduct our analysis, a framework

that linked material properties (i.e. thickness and linear attenuation) to the breakdown of this

approximation was derived. Through simulation, we were able to uncover details about the influence

of this approximation in phase retrieval. The theoretical predictions were tested with experimental

data, which lead to insightful and encouraging results.
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2 Propagation-based phase contrast imaging

Propagation-based phase-contrast imaging (PB-PCI) is possibly the simplest and most common

method to obtain phase-sensitive measurements in X-ray imaging. A distinguishing characteristic

of PB-PCI that relates to its simplicity is the lack of optics along the beam path. In principle,

phase-related signals in this imaging mode form through the free-space propagation of the X-ray

wavefront perturbed by the sample. The only difference from a conventional imaging geometry is a

suitable–and relatively large–separation between the sample and the detector. Although this basic

description ignores other important differences, such as stricter requirements on the minimal lateral

source coherence and detector resolution, it helps illustrate what is perhaps the most attractive

aspect of PB-PCI.

Today, propagation-based imaging is a mature technique with some examples in X-ray imaging

dating back to the early 1960’s [15]. Yet, it was not until the mid 1990’s [27] that the arrival of third

generation synchrotron facilities aided much of the early efforts to understand the experimental

aspects of this technique using hard X-rays (λ < 2 Å). Around the same time, in 1996, a seminal

work by Wilkins et al. [28] showed convincing proof that propagation-based experiments could

be performed with microfocus polychromatic (laboratory) sources. The widespread use of this

technique has led to many promising results in laboratory and preclinical applications [29–34].

This section provides a description of the underlying physics that governs the signal formation

in PB-PCI. The treatment here is by no means exhaustive, since its aim is to help in understanding

the results shown in other parts of this work. Thorough accounts of the material covered here can

be found in [12,14,17,35].

2.1 Experimental geometry and practical requirements

In propagation-based imaging experiments, a key requirement is a non-negligible distance between

the detector and the sample. Interference patterns, which encode the refractive properties of

the sample, intensify as they propagate over this distance. Similarly to conventional (contact)
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radiography, the sample is placed some distance R1 downstream of the source and a distance R2

upstream of the detector while no optics are added along the beam path. For contact imaging,

however, R2 is set as close to zero as practically possible. On the other hand, the choice of R1

and R2 for PB-PCI must be made judiciously to achieve sufficient lateral spatial coherence and a

desirable signal level while remaining in the near-field regime, c.f. Sec 2.2.4.

Fig. 4a shows a schematic of the typical geometry used for PB-PCI measurements. Throughout

this work R1 will be used to indicate the source-to-object distance and R2 will represent the

object-to-detector distance. The optic axis will be assumed to coincide with the z-axis of a three-

dimensional Cartesian coordinate system. Fig. 4b depicts the location and terminology used to

describe the planes immediately before and after the object. Here the former is called the entrance

plane while the latter is defined to coincide with the z = 0 plane and called the object or exit plane.

z = 0

z

z = − R1 z = R2
Source plane Object plane Detector plane

Microfocus  
X-ray source

High-resolution 
detector

(a)

z > 0

Object or exit  
plane, z = 0

Entrance  
plane

z

x

y

(b)

Figure 4: (a) Depiction of a propagation-based phase contrast experiment geometry.
The X-ray source and the sample are separated by a distance R1 while the distance
from the exit-plane of the sample to the detector is R2. In conventional X-ray imaging,
R2 ≈ 0. (b) Sketch showing the entrance and exit planes. The former is defined as
the plane immediately upstream of the object while the latter is the plane immediately
downstream of the object. In PCI, X-rays propagate from the exit plane towards the
detector plane.

Another critical component in a PB-PCI system is a source that provides sufficient lateral

spatial coherence. Practical sources have a finite spatial extent, or focal spot size, which hinders

the coherence of the X-ray waves. To illustrate this concept, one can consider a finite source

represented as a spatial distribution of point sources with varying intensities. For simplicity, lets
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assume that the source can be properly represented as a two-dimensional Gaussian distribution

of intensities along the (x, y)-plane having a standard deviation σx,y defined in units of cm. The

lateral spatial coherence of the radiation impinging on the object can be estimated as [15,36]

`x,y =
R1λ

d
= 5.265× 10−8[keV · cm]

R1

Eσx,y
, (11)

where d represents the full width at half maximum (∼ 2.355σx,y) of the source intensity distribution

and λ is the wavelength of the X-ray radiation. The final result was obtained using λ = hc/E,

where h[∼ 4.136 × 10−18 keV · s] and c[∼ 2.998 × 1010 cm/s] are Plank’s constant and the speed

of light in free-space. Here E is the energy of the X-rays in keV and R1 has units of cm. As

the ratio R1/Eσx,y indicates, perfect coherence (i.e. `x,y → ∞) is only achieved for the case of

an infinitesimally small source (i.e. σx,y → 0). Furthermore, if the source-to-object distance and

the focal spot size remain unchanged, the coherence deteriorates with increasing energy. On the

other hand, the coherence improves when the source-to-object distance is increased. To ensure a

significant phase contrast `x,y needs to satisfy `x,y ≥ ν−1
f , where νf is the spatial frequency (in

cm−1) corresponding the feature size of interest [15].

Unlike with spatial coherence, the requirements on temporal (or chromatic) coherence in near-

field propagation-based imaging are less stringent. In fact, as reinforced in the next section, the

character of the signals is essentially insensitive to the energy (and energy spread) of the incident

beam [14, 35]. The energy does influence the signal amplitude, which can be important to achieve

a desirable signal-to-noise level.

Detectors used in propagation-based methods must be able to resolve, and thus benefit from,

interference (or diffraction) patterns in the signal. For a source of quasi-spherical waves, e.g. a

microfocus source, the necessary detector resolution must be smaller than
√
MR2λ, where M [=

1 + R2/R1] is the geometrical magnification factor [16]. Therefore, building an effective PB-PCI

system requires careful consideration of the source, detector, and geometrical configuration.
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2.2 Physics of propagation-based imaging

Suppose a scattering object is composed of a linear and nonmagnetic medium that can be properly

described using the complex index of refraction, n(r, ω), introduced in Sec. 1.2. Furthermore, let

the source of X-ray wave-fields be monochromatic and sufficiently far away so that the radiation

incident on the object can be aptly treated as plane waves traveling down the z-axis. If the refractive

index of the object is essentially constant (i.e. slowly varying) over length-scales of the order of

λ (the wavelength of the X-rays), it follows that the Cartesian components Ψ(r, ω) of the X-ray

wave-field satisfy [37]: (
∇2 + k2

)
Ψ(r, ω) = −4πF (r, ω)Ψ(r, ω). (12)

Here k[= 2π/λ] is the wavenumber, r[= (x, y, z)] are spatial coordinates, and ∇2[= ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 ]

is the Laplacian operator in three dimensions. The components Ψ(r, ω)[= ψ(r)e−iωt], commonly

referred to as wave functions, are complex-valued and represent monochromatic propagating X-rays.

The quantity F (r, ω) is the scattering potential of the medium and is given by

F (r, ω) =
1

4π
k2[n2(r, ω)− 1]. (13)

Eq. 12, which is sometimes called the inhomogeneous Helmholtz equation, is a central result in

scattering theory [37]. As Paganin and Pelliccia elegantly show in [17], Eq. 12 can be use to obtain

a representation of the field at the exit plane, c.f. Sec. 2.1 and Fig. 4a, when paraxial propagation

through the object and the projection approximation are enforced. The former requires the direction

of the X-ray wave-field perturbed by the medium to remain effectively parallel to the propagation

axis of the incident (unperturbed) field as it propagates through the object. If valid, the wave

function can be written as the product of a “perturbation envelope” u(r) and the unperturbed

field exp{ikz} [12, p. 72]. Therefore, ψ(r) = u(r) exp{ikz}, where the dependence on frequency
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was omitted. Additionally, we can write Eq. 12 as

(
2ik

∂

∂z
+ ∇2

⊥

)
u(r) = −4πF (r)u(r), (14)

where ∇2
⊥[= ∂2

∂x2 + ∂2

∂y2 ] are the transverse components of the Laplacian operator.

When the projection approximation is valid at the exit plane, the contributions from ∇2
⊥ in

Eq. 12 can be ignored to show that [12, p. 73–74]

uo(x, y) ≈ uin(x, y)τ(x, y)

= uin(x, y) exp

{
iϕ(x, y)− µp(x, y)

2

}
,

(15)

where the subscript “o” indicates values at the exit (or object) plane, uin(x, y) represents the field

entering the object, and τ(x, y)[= exp{iϕ(x, y)− µp(x, y)/2}] is the transmission function that

encapsulates the properties of the object. In Eq. 15, the phase shift induced by the object is

represented by ϕ(x, y) while µp(x, y)[=
∫
µ(r)dz] gives the projected linear attenuation coefficient,

c.f. Sec. 1.1.1. Another important consequence of the projection approximation is that the phase

shifts can be written in terms of the projected electron density,
∫
ρe(r)dz, that is:

ϕ(x, y) = −λre
∫
ρe(r)dz, (16)

where re is the classic electron radius. From Eq. 15, the wave-field at the exit plane can be related

to the properties of the object.

Once the field exits the object and propagates through (essentially) free-space, it evolves ac-

cording to Fresnel diffraction theory. In free-space n(r) = 1 so that F (r) = 0 and Eq. 14 can be

used to arrive at the free-space paraxial wave equation:

(
2ik

∂

∂z
+ ∇2

⊥

)
u(r) = 0. (17)

If the paraxial approximation is valid on the half-space z > 0 and we define uin = exp{ikz} in
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Eq. 15, then using the Fresnel-Kirchhoff integral we can write the field at z that satisfies Eq. 17

as [14,35]

uz(x, y) =
i exp{ikz}

λz

∫
τ(X,Y ) exp

{
iπ

λz

[
(x−X)2 + (y − Y )2

]}
dXdY, (18)

where the notation uz(x, y) = u(x, y, z) was used for conciseness. In Fourier-space, this integral is

represented more practically as

Ũz(ν) = exp{ikz}T̃ (ν) exp
{
iπλz|ν|2

}
, (19)

where Ũ and T̃ are the Fourier transforms (FT) of u and τ , respectively. Here the Fourier-domain

vector ν[= (νx, νy)] is the conjugate of (x, y) and | · | is the modulus operator. An important use

of Eq. 19 involves simulating the response of propagation-based imaging systems [38, 39]. Two

examples are a study of the performance of CO2 as a contrast agent in PB-PCI [40] and the

development of a simulation packages for phase-contrast X-ray breast imaging [41]. Eq. 19 also

helps uncover some fundamental properties of propagation-based imaging, as demonstrated in the

following sections and by [14,35].

2.2.1 Weakly interacting object approximation

The subsequent analysis relies on the weakly interacting object approximation and similar accounts

can be found in [14,35,42]. Under this approximation, the values of the ϕ and the µp are assumed

to be sufficiently small so that the transmission function, to first order, can be written as

τ(x, y) ≈ 1 + iϕ(x, y)− µ∗(x, y), (20)

where µ∗ = µp/2. Upon substituting the FT of Eq. 20 into Eq. 19, the result is

Ũz(ν) ≈
[
δ(ν) + iP̃ (ν)− M̃(ν)

]
exp{iχ(ν)}, (21)
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where δ(ν) is a two-dimensional Dirac delta function in Fourier-domain and χ(ν) = πλz|ν|2. The

FT of ϕ and µ∗ are represented by P̃ and M̃ , respectively. It follows from Eq. 21 that:

uz ≈ 1− ϕF {sinχ} − µ∗F {cosχ}+ i [ϕF {cosχ} − µ∗F {sinχ}] (22)

where the explicit dependence of uz, µ
∗, and ϕ on (x, y) as well as the dependence of χ on ν was

omitted. The operator F {·} represents a two-dimensional Fourier transform.

The FT of the intensity, Iz(x, y)[= |uz(x, y)|2], corresponding to Eq. 22 and containing only

first-order terms is:

Ĩz ≈ δ + 2P̃ sinχ− 2M̃ cosχ, (23)

where Ĩz, P̃ , M̃ , δ, and χ all depend on ν. Much can be learned from Eq. 23. For example, if the

near-field regime is defined to correspond with values of χ sufficiently small so that sinχ ≈ χ, it

follows that for materials with negligible attenuation (M̃ ≈ 0) but non-negligible phase-shifts the

measured intensity is [35]

Iz(x, y) = 1− λz

2π
∇2
⊥ϕ(x, y)

= 1 +
1

E2

zreh
2c2

2π
∇2
⊥

∫
ρe(r)dz

. (24)

This result highlights how in the near-field regime, and when Eq. 16 is valid, the character of

signals caused by phase shifts is controlled by variations in the electron density of the sample,

which is independent of energy. The energy, in this case, acts only as a scalar multiplier. As

explained further in the next section, Eq. 23 is also useful to learn about the factors that influence

the transfer of contrast in propagation-based systems [35].

2.2.2 Phase and amplitude contrast transfer functions

The transfer of phase and amplitude contrast predicted by Eq. 23 is regulated by sinχ and cosχ,

respectively. Plotting these two contrast transfer functions (CTFs) in a coordinate system defined
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by (
√
λzνx,

√
λzνy) is instructive, since it reveals how they are affected by energy (∝ λ−1), propa-

gation distance (z), and the frequency content of the object (ν). Fig. 5 shows the two-dimensional

phase and amplitude CTFs (a) as well as one-dimensional cross-sections along νy = 0 for a system

with perfect resolution (b) and after the influence of an arbitrary point-spread-function (PSF) is

considered (c).

PSF  
of  

System

(a) (b) (c)

Figure 5: (a) Radially symmetric two-dimensional contrast transfer functions for the
phase and amplitude. (b) One dimensional profiles along νy = 0. The direct imaging

regime
√
λzνx < 1 is highlighted. This region includes the optimum-phase contrast

where the phase CTF is at a maximum. It also includes the near-field regime, where
sinχ ≈ χ. (c) Shows how the smoothing effect of the point-spread-function of a system
can impact the phase and amplitude CTF, labeled as pCTF and aCTF.

In Fig. 5a, the oscillation rate of the CTFs increases away from the origin. To understand the

consequence of this, consider how two periodic features of close but different frequencies would be

treated if the energy of X-rays is held constant. At small propagation distances, such that χ < π,

the two features will likely receive a similar gain factor from each CTF since they will be in close

proximity and in a region where the CTFs oscillate gently. On the other hand, for sufficiently

large propagation distances, the handling of each feature can vary significantly due to the rapidly

changing CTFs. For example, the CTFs can introduce differences in polarity between the pair of

features. These vastly different treatments of the phase and amplitude of features with similar

frequency content can lead to the visually unrecognizable images that are known to emerge in the

holographic regime [14]. A similar argument can be made if one instead considers decreasing the

energy while maintaining a fixed propagation distance.

A gray band in Fig. 5a and 5b highlights the “direct-imaging” regime [14], which encapsulates
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the near-field and the optimum phase-contrast regions. It corresponds to χ < π. In this region,

the two contrasts are complementary. For instance, phase contrast favours high-frequency features

while amplitude contrast performs best for negligible propagation distances. In Fig. 5b, we see how

the PSF of a system dampens the CTFs, thus leading to lower contrast. Since the PSF decreases in

amplitude with increasing frequency, its influence can be especially detrimental to phase contrast.

2.2.3 The transport of intensity equation

The transport of intensity equation (TIE) provides a functional relationship between the longitu-

dinal evolution of the intensity and variations of the phase and intensity of the wave-field along

transverse planes. In other words, it can be used to relate the intensity and phase of X-rays on

a plane (e.g. the object plane) to the intensity measured some perpendicular distance, e.g. R2,

away. For this reason, this equation is widely used in the development of algorithms that obtain

quantitative estimates of the phase, called phase-retrieval algorithms. The TIE can be derived by

first defining ψz(x, y) as [43]

ψz(x, y) =
√
Iz(x, y) exp{iϕz(x, y)}, (25)

such that |ψz(x, y)|2 ≡ Iz(x, y). The imaginary part of the equation that results from inserting

Eq. 25 into Eq. 14 is the TIE [12] and is given by:

− k ∂
∂z
Iz(x, y) = ∇⊥ · Iz(x, y)∇⊥ϕz(x, y). (26)

In a strict sense, Eq. 26 assumes monochromatic and planar radiation. For this reason, it is of

practical convenience to use modern synchrotron sources, which can provide quasi-monochromatic

and quasi-planar X-rays. On the other hand, the more easily accessible polychromatic microfocus

sources emit quasi-spherical radiation. Fortunately, this is readily addressed by accounting for

geometrical magnification [42]. Also, the assumption of monochromaticity is met by properly

estimating an effective energy for the polychromatic measurement.
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It is common to analyze Eq. 26 at the plane z = 0, especially for X-ray techniques where the aim

is to estimate the properties at z = 0 and the values of R1 and R2 are kept constant (e.g. single-shot

propagation-based methods). In the near-field regime, it is possible to expand the z-derivative in

Eq. 26 as a finite difference so that

− kIR2(x, y)− I0(x, y)

R2
= ∇⊥ · Iz(x, y)∇⊥ϕz(x, y)

∣∣
z=0

, (27)

or similarly,

IR2(x, y) = I0(x, y)− R2

k
∇⊥ · Iz(x, y)∇⊥ϕz(x, y)

∣∣
z=0

. (28)

Eq. 28 explicitly shows how the TIE relates the intensity at the detector plane, IR2 , to the intensity

at the exit surface, I0, and a term proportional to the propagation distance, R2, and variations in

the phase and intensity.

2.2.4 Validity of the near-field and projection approximations

Since much of the theory in this section is valid in the near-field regime and depends on the pro-

jection approximation, the requirements for these conditions to hold in X-ray imaging is important

to understand. The scope will be limited to “soft” biological materials, i.e. those with low (. 13)

effective atomic numbers like body parts. For the projection approximation to be accurate, the

size of the finest feature of interest must be significantly larger than
√
λT , where T is the object

thickness [44]. We also request for the Fresnel number, NF , to satisfy the inequality

NF ≡
a2

λT
� 1, (29)

where a is the size of the smallest feature of interest [12].

One can show that this condition is satisfied for resolutions down to 10 µm at 20 keV in objects

as thick as 80 cm [44]. As a practical example, consider the case of mammography, which poses the
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highest resolution requirement in radiology [4]. In approximately 30 % of patients, microcalcifica-

tions in the breast are accompanied by malignant lesions [45]. If we establish that the inequality

in Eq. 29 is satisfied whenever NF ≥ 10 [17], then the limits of the projection approximation can

be mapped for compressed breast thicknesses up to 8 cm at an energy of 20 keV (λ ≈ 62 Å).

Fig. 6a shows the Fresnel number that would result for microcalcifications ranging between 1 to 10

microns. A white line indicates the datum where NF = 10 so that all configurations to the right of

it satisfy the projection approximation. Note that this condition is met for microcalcifications of a

few microns in relatively thick breasts.

NF = 10

(a)

NF = 1

(b)

Figure 6: (a) Plot of the Fresnel number, as defined in Eq. 29, for compressed breast
thicknesses ranging up to 8 cm and microcalcifications below 10 microns. A white
line shows the NF = 10 datum, which marks the limit of validity for the projection
approximation. (b) Plot showing the Fresnel number as defined in Eq. 30 and a white
line marking the near-field regime. An energy of 20 keV was used for both plots.

The near-field (or Fresnel) region can be delineated by replacing T in Eq. 29 with the effective

propagation distance Reff , i.e. NF = a2/λReff , and defining the boundary [13, p. 307]

Near-field region: Reff ≈
a2

λ
or NF ≈ 1. (30)

Fig. 6b shows the Fresnel number for features up to 20 microns in size and propagation distances up

to 150 cm. The white contour marks the boundary where NF ≈ 1. Values much greater than this

approach the contact regime while values much smaller correspond to the Fraunhofer (or far-field)

21



regime. From the plot, the near-field approximation for features of 10 microns can be satisfied.

Additionally, the contact and near-field regime for distances up to about 150 cm can be accessed.
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3 Spectral phase retrieval assuming weak X-ray interactions

Improvements in signal strength combined with greater sensitivity to subtle fluctuations in mate-

rial properties are characteristics of PCI that can benefit many important clinical X-ray imaging

applications. Examples include breast imaging, lung imaging, and bone mineral-density estima-

tion [29,46,47]. Such tasks often involve distinguishing between materials with differences in their

attenuating properties that fall beneath those detectable by conventional (absorption-based) imag-

ing. The intensities measured in PCI can encode information about both the phase-shifting and

attenuating properties of matter. However, these methods do not represent a direct measurement

of either property. For this reason, PCI measurements alone are not sufficient to identify materials

and quantify their properties.

The task of recovering (or retrieving) material properties depends on how accurately one can

describe and model the physical mechanisms and link these to observations. Therefore, models

using a mathematical treatment of X-ray radiation that account for their wave nature are required.

The process of using such models to retrieve material properties is known as phase retrieval (PR).

Even within the narrow scope of propagation-based imaging, a wide variety of PR algorithms have

been proposed in the literature [48, 49]. The two most popular mathematical frameworks used to

derive PR algorithms for PB-PCI are the transport of intensity equation (TIE) and the contrast

transfer function [48]. The following discussion will focus solely on TIE-based techniques where

the necessary information for PR can be obtained in a single X-ray exposure. Therefore, methods

that require measurements at multiple positions are not included since this may be unattainable

or impractical in key biomedical applications like clinical computed tomography.

Two widely used phase retrieval techniques are the single-material (SM) approximation method

[50] and the “phase-attenuation duality” (PAD) method [51]. With implementations that resemble

the use of a low-pass frequency filter, these methods give an efficient way to estimate material

properties from a single X-ray measurement. In particular, the SM technique can aid in estimating

the projected thickness, while the PAD method can help find the projected electron density. Due to
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their efficiency, the two techniques can be readily adapted to computationally demanding tasks like

tomographic imaging [49]. However, the SM method [50] requires that samples be homogeneous

and for their refractive properties to be known a priori. On the other hand, the “duality” condition,

where the phase and the attenuation are both proportional to the electron density, is valid (with

error below 10%) for biological materials above X-ray energies of 60 keV [51]. Even when these

conditions are met, each technique estimates a single material property, which may not be adequate

to differentiate closely-related materials.

Recently, our group proposed a phase retrieval approach capable of estimating the projected

photoelectric (PE) absorption and electron density of a sample, which can be used to obtain the

X-ray attenuation and phase delay caused by the sample [11, 52]. This proposed method requires

a set of independent spectroscopic measurements. Unlike several alternatives [49], our phase re-

trieval approach is accurate for a broad range of X-ray energies (ranging from 20 keV to 100 keV)

and presents fewer constraints on the heterogeneity of samples. The following section presents a

comprehensive derivation of this technique. Similar accounts can be found in [11] and [53].

3.1 Theory and derivation

The phase retrieval scheme in [11] stems from the TIE, which was introduced in Sec. 2.2.3. If we

express the dependence on energy, E, in Eq. 26 and expand the div(grad()) operation, then

− 2π

λ

∂

∂z
I(r⊥, z;E) = ∇⊥I(r⊥, z;E) ·∇⊥ϕ(r⊥, z;E) + I(r⊥, z;E)∇2

⊥ϕ(r⊥, z;E). (31)

Here, λ[≈ 12.4(Å·keV)/E(keV)] represent the wavelength of the X-ray radiation while r⊥[= xx̂+yŷ]

and ∇⊥[= (∂/∂x)x̂ + (∂/∂y)ŷ] are the position vector and differential operator on the plane

transverse to the X-ray’s propagation direction. The transmitted intensity and phase at position

(x, y, z) are represented by I(r⊥, z;E) and ϕ(r⊥, z;E), respectively. Equation 31 is non-linear and,

therefore, difficult to implement directly. Instead, solutions are often found only after a number of

simplifying approximations are made.
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A common step in simplifying Eq. 31 involves assuming that the material(s) of interest introduce

only weak variations to the phase and intensity of the impinging radiation. This approximation is

sometimes called the weakly interacting object approximation. As a consequence, the propagation

direction of the wave-field after interacting with the object remains nearly parallel to the original

(unperturbed) direction and the projection approximation can be enforced [12]. Many materials,

including biological samples, satisfy this approximation within a permissible tolerance [54]. As

mentioned in Sec. 2.2.3, the TIE is further simplified when measurements are taken in the near-field

regime, where the left-hand-side of Eq. 31 may be approximated by its final difference counterparts.

With the simplifications above, and assuming plane wave illumination, the TIE can be modified to:

I(r⊥, R2;E) = I(r⊥, 0;E)

[
1− λR2

2π
∇2
⊥ϕ(r⊥, 0;E)

]
. (32)

Under the projection approximation, the Beer-Lambert law can be used to write I(r⊥, 0;E)

in terms of the linear attenuation coefficient µ(r⊥, z;E), c.f. Eq. 6 in Sec. 1.1.1. By invoking a

Rytov-like approximation [11] and replacing the plane wave illumination assumption with the field

due to a point source some distance R1 away from the sample, the following equation is derived:

ln

[
I in(Mr⊥;E)

I(Mr⊥, R2;E)

]
=

∫
µ(r⊥, z;E)dz +

λ

2π

R2

M
∇2
⊥ϕ(r⊥, 0;E), (33)

where M [= 1 + R2/R1] is the geometrical magnification factor and
∫
µ(r⊥, z;E)dz represents the

projected linear attenuation coefficient (pLAC). In past work by our team [11], we showed that

the (non-linear) energy dependence of the TIE form given in Eq. 33 can be linearized by using a

well-known decomposition of the pLAC [6]. After this process, the TIE gives an effective way to

estimate the refractive properties of a sample (phase and absorption) from a set of two or more

spectroscopic measurements, which can be acquired in a single exposure using photon counting
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detectors. In particular, we write the pLAC as

∫
µ(r⊥, z;E)dz =

1

Em

∫
kZn(r⊥, z)ρe(r⊥, z)dz + ΦKN(E)

∫
ρe(r⊥, z)dz

=
1

Em
a1(r⊥) + ΦKN(E)a2(r⊥),

(34)

where k is a constant related to the PE absorption, Z represents the effective atomic number,

ΦKN(E) is the Klein-Nishina function, and ρe(r⊥, z) is the electron density. The exponents n

and m in Eq. 34 are typically defined so that n and m are both approximately 3 for biological

samples [13,55]. A numerical fitting of tabulated PE absorption values [7] for a set of carbon-based

plastics resulted in a nearly constant value for m of 3.30 ± 0.02, c.f. Appx. C. Interestingly, an

essentially identical result was found by [9] for materials of similar composition.

The transmitted phase in Eq. 33 can be approximated as

ϕ(r⊥, 0;E) = −reλa2(r⊥), (35)

where re is the classical electron radius. If we let d(Mr⊥;E) = ln[I in(Mr⊥;E)/I(Mr⊥, R2;E)], we

get that:

d(Mr⊥;E) =

[
1

Em

]
a1(r⊥) +

[
ΦKN(E)− λ2reR2

2πM
∇2
⊥

]
a2(r⊥), (36)

where the terms in squared brackets are constants defined by the energy and geometry of the

spectroscopic measurements. This forward model is the central result of this derivation.

A solution to Eq. 36 can be found in Fourier-space, where it can be readily adapted to a least

squares, or a similarly efficient, solver. In particular, in Fourier-space Eq. 36 becomes

F {d(ξ;E)} =

[
1

Em

]
F {a1(ξ/M)}+

[
ΦKN(E) +M

λ2reR2

2π
|ν|2

]
F {a2(ξ/M)} (37)

where we substituted ξ[= Mr⊥] to represent the magnified coordinates at the detector plane. The

operation F {·} represents a 2D FT along the transverse plane, ν[= νxν̂x + νyν̂y] is the Fourier-

domain vector conjugate to ξ, and | · | is the modulus operator. In this work we solved Eq. 37 using
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weighted least squares with weights defined by the contrast-to-noise-variance ratio (CNVR) of each

spectral measurement [56].

Figure 7: Retrieved and tabulated properties of polymethyl methacrylate (PMMA).
Phase retrieval was performed on experimental measurements of a 3-mm PMMA rod
obtained with a photon-counting detector and a polychromatic X-ray source.

After phase retrieval, a map of the projected electron density, a2(r⊥), and the energy inde-

pendent part of PE absorption, a1(r⊥), are obtained. From these energy independent material

properties, the projected values for CS and PE can be estimated at any energy using the first and

second terms on the right-hand side of Eq. 34, [6]. Furthermore, the pLAC and transmitted phase

can be found using Eq. 34 and 35, respectively. Finally, the laplacian of the transmitted phase can

also be estimated using:

∇2
⊥ϕ(ξ/M ;E) = F−1

{
−
[
M2λre|ν|2

]
F {a2(ξ/M)}

}
. (38)

Figure 7 shows a comparison between tabulated [7] and retrieved values of Compton scattering,

σCS , and photoelectric abortion, τ , over energies ranging between 20 to 80 keV. The retrieved values,

which are indicated by the superscript R, were obtained using our spectral phase retrieval algorithm.

The inputs were spectroscopic measurements of a 3-mm polymethyl methacrylate (PMMA) rod

acquired in our lab with a polychromatic source and a photon-counting detector. As the plot

shows, it is possible to obtain highly accurate estimates of material properties with the algorithm
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presented in this section. In general, however, the accuracy will depend on factors like the effective

energy of the measurements, the influence of experimental parameters on the approximations built

into Eq. 36, and noise.

3.2 On the impact of data noise in spectral phase retrieval

In the absence of a noise mitigation strategy, the two retrieved properties, i.e. a1 and a2 in Eq. 36,

display notable differences in quality when dealing with noisy data. This is illustrated by the

cascaded framework shown in Fig. 8. Here the material properties of a phantom are simulated and

used to generate the intensity expected by the phase retrieval algorithm, c.f. Appx. C. In other

words, we use the forward model in Eq. 36 to generate synthetic data from a pair of projected

material properties (a1 and a2) at specific energy values.
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Figure 8: Cascaded framework used to test the sensitivity of the SPR algorithm to
noise and other relevant sources of error in the data and the phase retrieval workflow.
Here F represents the forward modeling process that generates measurements at defined
energies and N represents the introduction of noise into the simulated measurements.
The operator F−1 represents the phase retrieval step.

In Fig. 8, the forward simulation step is expressed by F while the retrieval process is represented

as F−1. If we describe a phantom with properties a1 and a2 as P (a1, a2), then we can use the

notation of operators and write the simulated measurements as F [P (a1, a2)]. Similarly, the phase

retrieval process becomes F−1[F [P (a1, a2)]] = P (a1, a2). When Poisson noise is introduced in

the simulated measurements, which corresponds to the application of the N operator in Fig. 8,
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inaccuracies in the estimated terms after phase retrieval reflect the impact of noise. A qualitative

inspection of the retrieved properties in Fig. 8 shows how the noise magnitude and the texture are

different between the retrieved a1 and a2 terms.

A thorough understanding of the observed differences in the image-noise of the two terms can

be obtained by investigating how noise is treated across the frequency spectrum of the images. One

way to obtain this information is by estimating the noise power spectrum (NPS), which describes

the frequency-dependent character of noise [4, p. 86]. In particular, the NPS can be estimated and

compared for inputs and outputs of the system F−1. A short but comprehensive description of the

steps involved in estimating the NPS is given in Appx. E. For the inputs to F−1, we can simulate

a pair of independent (noisy) flat-field measurements for each of the energies used in this example,

i.e. 15 and 20 keV, and divide (or flat-field correct) one by the other. This, in turn, produces a

dataset that captures the noise in the flat-field corrected inputs to F−1. Fig. 9 shows the NPS of

the simulated input measurements and the corresponding retrieved properties. Here the negative

log of the simulated measurements was used during the estimation of the NPS to ensure that the

expected values of the inputs and retrieved quantities were the same, that is zero.
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Figure 9: Noise power spectrum of the simulated (noisy) measurements and two
attenuation properties related to the retrieved quantities (a1 and a2).

To draw some meaningful conclusions from the result in Fig 9, one can compare the NPS of

the input measurements to those of the retrieved properties. One can also compare the NPS of

the two properties with each other. To start, note that the NPS values are highest for the 15 keV
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measurement. This trend reflects the properties of the spectrum used to simulate the measurements,

for which counts at 20 keV were higher than those at 15 keV and led to “higher” noise (and noise

power) for the latter. Next, except for the values at the lowest of frequencies shown, the noise power

in both of the retrieved properties is significantly lower than that of the inputs. Additionally, the

noise of the input images is uncorrelated (or “flat”) while the same is not true for a1 and a2. By

contrast, the noise in a2 is correlated [4, p. 87] while that of a1 shows a slight increase at low

frequencies preceding a nearly flat profile.

The observed differences in the noise texture between the retrieved terms in Fig. 8 are readily

explained by contrasting their respective NPS. Namely, the NPS of a2 shows a significant and rapid

reduction in noise power with increasing frequency and, thus, resembles what would be seen after

a smoothing operation. The results of a1 are strikingly different. The noise power of the a1 term

seems to increase, although slightly, with frequency. As a consequence, high-frequency content,

where SNR is typically low, can be preferentially amplified relative to the lower frequency band.

A similar result is achieved by sharpening (the opposite of smoothing) operations. The apparent

smoothing of a2 and a sharpening of a1 will be addressed in more detail in later sections.

The strategy used in this section is useful for more than only understanding how noise affects

phase retrieval. Two other important sources of error that can be easily studied with this approach

are the influence of mischaracterizing the effective energy of the measurements and ignoring the

blurring induced by the source and detector. Insight into these two problems is also given at the

end of this section.

3.3 Analytic frequency modulation functions of the retrieved quantities

Another powerful method to understand the frequency response of a system involves obtaining and

interpreting its response to an impulse. The result after such an analysis is sometimes called the

point spread (or impulse response) function (PSF) of the system and paints a clear picture of how

the system modifies the information in all resolvable frequencies. This section explores a way to

obtain a pair of analytical functions analogous to the PSF of the spectral phase retrieval technique.
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The main objectives are to obtain a suitable description of the frequency response of a1 and a2

and to relate the observations to material properties and experimental variables. By understanding

how undesirable behaviors emerge, we can propose strategies to potentially mitigate them.

To keep the notation concise, lets rewrite the Fourier-domain version of the forward model, that

is Eq. 37, as

D̃Ei(ν) = f1,EiÃ1(ν) + f2,Ei(ν)Ã2(ν), (39)

where the notation G̃(ν)[= F {g(r⊥)}] represents the FT of any arbitrary function g(r⊥) while

ν[= (νx, νy)] are the Fourier-domain coordinates conjugate to r⊥[= (x, y)]. The function f1,Ei

represents the energy dependence of PE absorption, i.e. E−ni with n ∼ 3, and f2,Ei is defined as

f2,Ei = ΦEi +

(
R2

h2c2

2πE2
i

)
|ν|2 = ΦEi + ΓEi |ν|2. (40)

In Eq. 39 and 40, the energy dependence of each variable is indicated with a subscript, e.g

D̃(ν;Ei) = D̃Ei(ν). The magnification is assumed to be unity, M = 1, for simplicity.

10 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

5 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Measurements: dEi

FT of measurements: D̃Ei
= ℱ {dEi}

νy
νx

ℜ (D̃E1)

ℜ (D̃E2)

E1

E2

Figure 10: Depiction of the hypothetical experiment used to learn about the frequency
response of the retrieved quantities, a1 and a2. A sample is measured twice at different
X-ray energies ensuring that the radiation is collected by a single pixel. This results in
two sparse measurements, dEi with constant Fourier representations.

To understand how each term behaves in frequency domain, one can consider how the algorithm

reacts to a pair of spatial impulses. These types of signals have constant Fourier-domain repre-

sentations. An experimental realization of this concept is depicted in Fig. 10. Namely, a sample
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illuminated by two X-ray beams having energies E1 and E2 is considered. The transmitted X-rays

are collected by a single pixel, resulting in a pair of sparse measurements like the ones shown in

Fig. 10. The FT of the measurements are purely real and constant in frequency (ν) allowing:

D̃E1 = f1,E1Ã1(ν) + f2,E1(ν)Ã2(ν) (41a)

D̃E2 = f1,E2Ã1(ν) + f2,E2(ν)Ã2(ν), (41b)

where the values of {D̃Ei : i = 1, 2} are constant. Solving for Ã2(ν) we get

Ã2(ν) =
D̃E1f1,E2 − D̃E2f1,E1

f1,E2f2,E1(ν)− f1,E1f2,E2(ν)

=
D̃E1f1,E2 − D̃E2f1,E1

(f1,E2ΦE1 − f1,E1ΦE2) + (f1,E2ΓE1 − f1,E1ΓE2) |ν|2
,

(42)

where the definition in Eq. 40 is used for the second expression. With the exception of the last term

in the denominator, every term in Eq. 42 is constant in ν. Furthermore, if the energies are defined

so that E1 < E2, it can be shown that the numerator as well as the two expressions enclosed in

parenthesis in the denominator are all negative. It follows that the shape of the amplitude spectrum

of Ã2(ν), i.e.
∣∣∣Ã2(ν)

∣∣∣, will resemble the transfer function of a smoothing (or low-pass) filter. This

agrees with the observations made in Sec 3.2. This result still holds when E1 > E2.

After substituting Eq. 42 into Eq. 41a and rearranging the result, we get that:

Ã1(ν) =
D̃E1

f1,E1

−
D̃E1f1,E2 − D̃E2f1,E1

f1,E1f1,E2 − f2
1,E1

[f2,E2(ν)/f2,E1(ν)]
. (43)

As was the case for Ã2, in Eq. 43 almost every term is constant in ν, with the only exception being

the ratio inside the square brackets. Unlike Ã2, however, the dependence on ν is more complicated.

Yet, the shape of
∣∣∣Ã1(ν)

∣∣∣ can be studied by specifying a pair of energy values and modeling the

absolute value of Eq. 43. Fig. 11 shows the amplitude response of the two terms modelled for

a variety of energy pairs. The material properties used to define D̃Ei were those of polymethyl
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methacrylate (PMMA). Since the material was assumed to be a uniform slab, the only property

needed was the linear attenuation coefficient. In addition, the radial symmetry of equations 42 and

43 in frequency-domain allow their representation with a single axial profile.

75
 k

eV
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Figure 11: Normalized amplitude response of the retrieved terms, i.e. |Ã1|
/

max|Ã1|
and |Ã2|

/
max|Ã2|, for different energy pairs. The energy pairs used to analyze Eq. 43

and 42 are listed on the perimeter.

Fig. 11 reveals some important details about the frequency response of each term. First, we

see that the amplitude response of Ã2 resembles a smoothing kernel for all energy combinations

as expected. Additionally, we see that the width of the profile broadens as either (or both) of the

energies increase. This results in more high-frequency content being accepted by this term, which

can influence the resulting image quality.

As expected from the comparison between the Eq. 43 and Eq. 42, the behavior of the Ã1 term

is more complex. The NPS analysis in Sec 3.2 gave some evidence to the amplification of power

with increasing frequency, which resembles the effect of a sharpening operation. For the chosen

energy pairs here, this is the dominant behavior and it becomes more prominent with increasing

energy. An exception occurs when the energies are 15 and 20 keV, in which both terms favor lower

frequencies. However, the amplitude response of the Ã1 term does not roll down to zero as would
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be the case for a high-cut or low-pass filter.

15-50 keV

Figure 12: Real part (left) and amplitude response (right) of the FT of the photo-
electric absorption term Ã1 for the 15-50 keV energy pair.

Considering Fig. 12, the amplification of amplitudes with increasing frequencies in the Ã1 term

can be explained by revisiting Eq. 43. In particular, the Ã1 is allowed to become negative. Since

the amplitude response is given as the modulus of the Fourier transform, it is strictly positive and

displays a switch in the behavior, from “smoothing” to “sharpening”, at the zero-crossing points

of Ã1. Fig. 12 illustrates this for the case of the 15-50 keV pair in Fig. 11. Namely, Ã1 becomes

negative after about 1 cyc/mm where the amplitude spectrum |Ã1| shows a kink. The sign reversal

of the negative branches results in amplification of the high-frequency content.

(a) 15 and 20 keV (b) 15 and 50 keV

Figure 13: (a) Amplitude response of the Ã1 term using the energies 15-and-20 keV
with two-times (2X) and three-times (3X) geometrical magnification. (b) Amplitude
response of Ã1 for the energies of 15-and-50 keV and two different materials, PMMA
and PTFE.

The method in this section also provides a way to explore the influence of different experimental

and material properties in the frequency response of the retrieved terms. This is achieved by mod-

ifying the f2,Ei terms to reflect the desired parameters and, subsequently, estimating the frequency

response of Ã1 and Ã2. Fig. 13a shows the effect of varying the geometrical magnification, M , from
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two-times (2X) to three-times (3X) for the 15-20 keV energy pair. The reason for selecting this

pair of inputs was the similar tapering behavior of the retrieved terms. For Ã1, the 3X case shows

stronger attenuation of higher frequencies (greater smoothing). On the other hand, the Ã2 term

has a comparable profile width for both magnifications but the 3X case has a higher amplification

at low frequencies compared to the 2X case.

Fig. 13b shows the effect of using materials with different LACs for the 15-50 keV energy pair.

For this example, comparing the changes going from PMMA to polytetrafluoroethylene (PTFE)

gives insight into the effect of increasing the LAC. Increasing the attenuation of the material

results in a slight broadening of the Ã2 term and strengthens its low-frequency response. Using

the common definition of the cut-off of a low-pass filter, i.e. the frequency corresponding to 50%

of the maximum gain, it appears increasing the attenuation leads to a lower “cut-off frequency”

for |Ã2|. The Ã1 term of both materials show a significant difference. Not only is the amplitude

response approximately four times higher at low frequencies, but the overall behavior may also be

better described as smoothing rather than sharpening going from PMMA to PTFE. This change

can lead to noticeable differences in the quality of the resulting images.

3.4 Noise mitigation strategies

From the results in the previous sections, it is evident that many of the undesirable features in

the retrieved images of the photoelectric (or the related a1) term are connected to how the high-

frequency content of the input is modified. In particular, an inherent increase in amplitudes with

increasing frequency was observed. For this reason, two justifiable approaches to improve the quality

of the retrieved images are filtering some of the high-frequency content and denoising the input.

Filtering by “rolling-off” high-frequencies counteracts the intrinsic behavior of the a1 term. On

the other hand, denoised input images will have higher SNR across all frequencies and, therefore,

should yield retrieved images that are less affected by the amplification of high-frequencies.

The following sections present our current methods to implement each of these two noise miti-

gation techniques. However, we acknowledge that a myriad of alternatives, some of which may lead
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to better results, exist. A third approach, involving an unintended smoothing of the output caused

by scaling the known terms in Eq. 36, will also be discussed. This last method currently lacks a

solid theoretical foundation, is prone to artifacts, and it might be a byproduct of the numerical

solver. For these reasons, this method is proposed as a way to obtain a glimpse of what a more

proper noise mitigation strategy can produce.
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Figure 14: (a) Workflow showing the approach used to investigate the three noise
mitigation strategies. Here W represents an apodization strategy using a Tukey win-
dowing kernel, D represents a spatial denoising step preceding phase retrieval, and
scaling the known terms (feature scaling) is represented by the phase retrieval operator
F−1 itself. The last choice illustrates that feature scaling is only a modification of how
F−1 is implemented and does not amount to an added step. (b) Shows the regions
used to estimate the percent error and SNR of the resulting images. The red, blue,
and green boxes enclose the water, POM, and PMMA rods, respectively. The dashed
white box shows the region used to estimate the standard deviation needed to compute
the SNR.

The performance of the three noise mitigation strategies was analyzed quantitatively by estimat-

ing the average percent error and SNR of the projected photoelectric (PE) and Compton scattering

(CS) maps found after phase retrieval. As described in Sec. 3.1, these two quantities are found

from the material properties a1 and a2, respectively. In our analysis, we use the simulation frame-

work described in Sec. 3.2 with modifications to include the denoising strategies. Fig. 14 shows

the resulting workflow. Only two measurements were simulated (15 and 20 keV). Like before, the

operator F represents the forward simulation step, which operates on the numerical phantom with

simulated material properties a1 and a2, i.e. P (a1, a2). The operation N [F [P (a1, a2)]] introduces

Poisson noise into the noise-free simulated measurements, F [P (a1, a2)], and F−1 operates on the
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noisy measurements to recover the material properties. The last step represents phase retrieval and

gives the estimated properties aR1 and aR2 so that:

P (aR1 , a
R
2 ) = F−1[N [F [P (a1, a2)]]]. (44)

The aim is then to compare P (aR1 , a
R
2 ) with P (a1, a2), or related material properties, using some

metric to assess how well the influence N was mitigated.

The percent error used in this comparison, for the case of Compton scattering, can be given by:

εcs(x
∗, y∗) =

∣∣∣σaR2 (x∗, y∗)− σa2(x∗, y∗)
∣∣∣

σa2(x∗, y∗)
· 100%, (45)

where σaR2
and σa2 are the retrieved and noise-free CS maps, respectively, while the superscript

“*” indicates coordinates within each region-of-interest (ROI) where the material properties are

not zero. A similar equation can be obtained for the PE term. Fig. 14 shows the ROIs used for

the water (red), POM (blue), and PMMA (green) rods in our phantom. The SNR was calculated

using the differential signal (peak-to-background) of each rod divided by the standard deviation of

the ROI enclosed by the dashed white box.

For the simulated measurements, we used a pixel pitch of 55 microns, a 512×512 pixel array, and

a monochromatic source. The two vertical rods (water and PMMA) were modeled with a diameter

of 1 mm while the horizontal (POM) rod had a diameter of 2 mm. A geometrical magnification

factor of three was used so that the dimensions of the rods at the detector plane correspond to

either 3 or 6 mm. One benefit of working with rods is that their projections resemble the tapered

lobe of a sinusoidal function and, thus, represent half of a cycle of a sinusoid. This perspective

allows one to simplify the interpretation of results in frequency-domain, which can help inform the

choices of cut-off frequencies.
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3.4.1 Apodization: frequency-domain filtering

The removal of high-frequency content (or apodization) is a common practice in medical imaging

that can mitigate artifacts and improve the signal-to-noise ratio [57]. Apodization is generally im-

plemented as a frequency filter. Consequently, this technique is most effective when the frequency-

domain representation of a measurement displays a clear separation between the “mostly-signal”

and “mostly-noise” regions. This, however, is rarely the case. This section will discuss the use of

a radial cosine-tapered, or Tukey windowing kernel, applied in frequency-domain following phase-

retrieval. Since a virtually unlimited variety of filters with varying levels of sophistication exist [58],

a more optimal apodization strategy is possible to find. Nevertheless, this relatively simple method

is suitable for medical imaging [57].

The radial Tukey windowing kernel in frequency- or ν-domain is defined as:

W(ν) =



1 |ν| < νc

cos2

(
(π (|ν| − νc)

2w

)
νc ≤ |ν| < νc + w

0 νc + w ≤ |ν|

(46)

where |·| is the modulus operator and νc is a user-defined radial cut-off frequency. A second user-

defined parameter is the transition-band width, w, which connects the pass-band region, where

W(ν) = 1, with the stop-band region, where W(ν) = 0. The choices of νc and w regulate the

trade-off between unwanted features (like noise and artifacts) and the resolution in the treated

images.

Fig. 15 shows the results of applying Eq. 46 to the retrieved PE and CS maps. A constant

transition width of approximately 0.25 cyc/mm was used along with four different cut-off frequencies

of 8.2, 1.6, 0.5, and 0.2 cyc/mm. The kernels estimated for these choices of w and νc are shown on

the last row of Fig. 15. Since the rods are either 3 or 6 mm in diameter at the detector plane, one

can expect the horizontal and vertical rods to be close approximations of a sinusoid oscillating 1/6

and 1/12 of a cycle every 1 mm. Therefore, frequencies far greater than approximately 0.2 cycles
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per mm will have negligible contributions to the information in the phase retrieved images. This

observation is corroborated by the last column in Fig. 15, where the expected shape of the material

properties is obvious.
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Figure 15: Shows the effect of increasing the amount of high frequency content that
is removed by the Tukey windowing kernel is shown. As more high frequency content
is removed (going from left to right), the visual appearance of the image seems to
improve. This, however, comes at the price of image resolution loss.

Table 1 summarizes the average percent error and SNR values for each of the materials and

seleted cut-off frequencies. By decreasing νc from 8.2 down to 0.2 cyc/mm, the SNR increased by

nearly 38 folds for PE, but only by two-folds for CS in all materials. The average percent error did

not show the same consistency across the materials. For the case of CS, only marginal gains are

shown and the cut-off frequency decreases from 0.5 to 0.2 cyc/mm for POM. The improvements are

more significant for PE, where the error improves by factors of 12, 9, and 16 for the water, POM,

and PMMA rods, respectively.

This section concludes with noting that although the results in Table 1 are encouraging, the

corresponding apodization scheme depends on the judicious choice of w and νc. In particular,

selecting a somewhat unbiased value of νc, i.e. a frequency near or at the Nyquist-frequency like
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Water POM PMMA

νc Property % Error SNR % Error SNR % Error SNR

8.2
CS 11.7 10.5 4.8 14.8 9.8 12.0
PE 80.4 1.4 39.6 1.7 113.7 1.0

1.6
CS 11.3 11.2 4.5 15.7 9.5 12.8
PE 16.2 6.6 8.4 7.9 23.3 4.7

0.5
CS 9.5 14.2 4.2 20.0 7.7 16.2
PE 7.3 18.0 3.9 21.7 9.9 12.9

0.2
CS 8.3 23.0 4.4 32.2 7.7 26.2
PE 6.9 53.5 4.3 63.1 7.1 38.6

Table 1: Average percent error and SNR for the quantitative assessment of the
apodization scheme using different choices of cut-off frequency, νc.

8.2 cyc/mm in this case, may not lead to satisfactory results. Instead, the best results were obtained

by placing the cut-off close to where we expected most of the relevant content to end. Nevertheless,

apodization seems to provide a valuable way to improve the quality and accuracy of the results.

3.4.2 Spatial denoising: block-matching and three-dimensional filtering

Section 3.3 described how the PR scheme preferentially amplifies the high-frequency content of

input measurements when estimating a1. The high-frequency regions of the Fourier-representation

measurements typically suffer from low SNR, and amplifying these regions can lead to poor image

quality. Applying spatial denoising on the measurements can mitigate this effect by increasing the

SNR across all frequencies. This strategy is shown in Fig. 14 as the path over D.

An ideal denoising strategy is one that operates on noisy data to ensure that P (aR1 , a
R
2 ) is

exactly equal to P (a1, a2). Thus, using the operator notation from Sec. 3.2, we expect that

F−1[D[N [F [P (a1, a2)]]]] = P (aR1 , a
R
2 ) = P (a1, a2) (47)

where the last equality is true if and only if D[N [·]] equals the identity operator. The denoising

operation chosen for this section is the block-matching and three-dimensional filtering (BM3D)

[59,60]. This decision was motivated by a recent and encouraging applications of BM3D in medical

40



imaging [61, 62] and by the impressive edge-preserving characteristics of this filter. The latter is

highlighted by Fig. 16 and is a key requirement for PB-PCI, in which edge enhancement is often

cited as a key benefit.
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Figure 16: Outcome of applying the BM3D filtering scheme, represented by D, to a
noisy PCI measurement. Comparing the average profiles below the noisy and filtered
images shows how this routine reduces noise without substantial damage to sharp edges.

The BM3D algorithm can be broadly described in five steps. The following description will

consider how BM3D works at a particular “reference” location (or patch). First, the entire image

is denoised, which typically involves a Wiener-denoising strategy. Next, a group of patches similar

to the reference patch are found across the image and subsequently stacked to form a 3D group.

These patches are selected by ensuring that a measure of dissimilarity, with respect to the reference

patch, falls beneath a predefined threshold. Once the patches are found, the next step is to denoise

the patches. At this stage, the denoising routine involves a transformation of the 3D group into a

domain where noise is assumed to correspond to a sparse set of small coefficients that can be easily

removed by thresholding. In other words, a clear distinction between signal and noise is assumed.

This step is commonly implemented using wavelet-based hard thresholding. For the fourth step,

the patches in the denoised 3D stack are aggregated to produce a 2D patch. The final step involves

repeating all previous steps, but a Wiener filter is used to denoise the 3D patches rather than hard

thresholding. A detailed description of BM3D is well beyond the scope of this work, but can be

found in [59,60].
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Fig. 17 shows the PE and CS terms obtained by treating the noisy inputs to the PR algorithm

with a freely available BM3D Python module. The module was created, and is actively maintained,

by the group that developed the original BM3D algorithm. The only input required to use the

BM3D filter is an estimate of the standard deviation of the noise (nSTD) in the images. Yet, a

motivated user can modify the algorithm at its multiple steps to optimize the performance for a

given task. For our measurements, the standard deviation of the noise was found to be between

0.015 and 0.020.

CS
PE

0.005 0.015 0.045 0.135

Figure 17: Results of the PE and CS terms when the inputs to PR are filtered by the
BM3D scheme using four different values for the standard deviation of noise.

A qualitative analysis of Fig. 17 shows that although the CS term is not noticeably altered by

applying the BM3D filter to the input data, the PE term is greatly improved. This is corroborated

by the results in Table 2. Interestingly, the SNR of the CS term was highest when the nSTD was

closest to that of the input images. The SNR value then decreases, but only by a few units. The

error of both properties, however, appears to benefit by the increasing nSTD. The PE shows a

different SNR trend. The SNR value seems to nearly saturate at around the value obtained when

the nSTD was 0.045. For this term, the error at the maximum nSTD is 9 to 12 times smaller than

at 0.005.

It should be noted that a different and perhaps equally valid approach is to implement BM3D

after, rather than before, PR. This workflow could lead to better results. Another important point
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Water POM PMMA

nSTD Property % Error SNR % Error SNR % Error SNR

0.005
CS 11.5 10.9 4.7 15.3 9.6 12.4
PE 93.7 1.2 45.7 1.5 130.3 0.9

0.015
CS 8.3 19.5 3.6 27.7 6.9 22.3
PE 18.9 6.1 7.9 7.3 30.0 4.3

0.045
CS 7.4 15.3 3.3 21.7 6.3 17.5
PE 11.6 22.8 4.3 27.5 16.4 16.3

0.135
CS 8.2 15.4 3.4 22.1 5.9 17.7
PE 8.8 23.2 4.9 28.1 10.2 16.7

Table 2: Average percent error and SNR for the quantitative assessment of spatial
denoising the inputs to the phase retrieval algorithm using a BM3D filter. The first
column lists the different standard deviation values used, which the filtering algorithm
interprets as the standard deviation of the noise in the input images.

is that the Python-based BM3D module assumes that the images noise is additive and spatially

correlated stationary Gaussian noise [60]. As discussed in Sec. 1.1, the noise in X-ray imaging

(especially in acquisitions with low exposure times from laboratory sources) can display statistical

properties that are significantly different than the ones assumed by this filter. For this reason, we

present this data as preliminary results and plan to explore the usefulness of this capable filter in

the near future.

3.4.3 Smoothing by feature scaling

The final noise mitigation strategy is arguably the simplest to use and it can undoubtedly improve

the quality and accuracy of the retrieved images. This technique is applied by changing the scaling

between the energy-dependent functions of the a1 and a2 terms in Eq. 36. The new scaling must

be accounted for by modifying the unknown terms (a1 and a2) to ensure that the mathematical

identity of the original model is preserved. This strategy can be demonstrated with the notation

used in Eq. 39, with M = 1 for simplicity, such that:

D̃Ei(ν) =
γ

γ
f1,EiÃ1(ν) +

Na

Na
f2,Ei(ν)Ã2(ν) = γf1,EiÃ

′
1(ν) +Naf2,Ei(ν)Ã′2(ν). (48)
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Here Na is Avogadro’s number and γ is an arbitrary constant while the unknowns are redefined

so that Ã′1 = Ã1/γ and Ã′2 = Ã2/Na. Furthermore, the energy is assumed to be specified in

keV, which dictates the scales of the f1,Ei and f2,Ei terms. As Eq. 48 shows, this scheme is

mathematically equivalent to multiplying by one. Yet, notable improvements in quality can be

obtained by regulating the value of γ. The formulas do not justify the outcomes, which may be a

byproduct of our choice of numerical solver.
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Figure 18: Increasing the scaling term introduces a sharp radial cut-off in the fre-
quency response of the estimated terms. When the scale is set to unit y, the character-
istic behavior of the two terms described in Sec. 3.3.The electron density rolls smoothly
to zero, while the PE term increases with frequency. A line profile for the scale of 100
shows the sharp transition that results from feature scaling, which can lead to ringing
artifacts and deterioration of the measurement quality.

Using an approach similar to the one in Sec 3.3, the results of this study revealed how changing

the value of γ can produce improved results. Two artificial measurements of a single illuminated

pixel were used as inputs, and the results provide insight into how the PR algorithm modulates

frequencies. Fig. 18 shows the outcome of four different choices of γ: 1, 10, 100, and 1000. If

no scaling is applied, i.e. γ = 1, then the amplitude spectrum of a1 and a2 agree with our

previous finding. Namely, |Ã1| resembles a sharpening kernel, while |Ã2| resembles a smoothing

kernel. Furthermore, as γ increases, the amplitude spectrum of both terms appears to multiply

with a narrowing binary mask that eliminates high frequency content. In other words, values inside

some radius in Fourier-domain were left unchanged (multiplied by one), while those outside were
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completely removed (multiplied by zero).

1 10 100 1000

CS
PE

Figure 19: The effect of different scaling terms for simulated data. The last term is
smooth and appears free of artifacts, but is highly inaccurate.

This approach can be used to retain relevant portions of Fourier-domain while avoiding “mostly-

noise” regions because it resembles a radial windowing. This, in turn, can produce accurate so-

lutions with improved quality. However, the frequency content, as shown in Fig. 18, is truncated

abruptly, which is known to cause ringing artifacts [63]. Fig. 19 shows the estimated CS and PE

terms for the same four values of γ used in Fig. 18. Note that when γ = 100, visible ringing appears

in the two terms. Although the images corresponding to γ = 1000 do not display obvious ringing

artifacts, the material properties there are highly inaccurate as shown in Table 3.

Table 3 lists the SNR and average percent errors from the analysis of this noise mitigation

technique. From γ = 1 to γ = 100, both the SNR and the error improve significantly for the PE

term. In particular, the SNR was between 27 and 30 times larger, while the error was 9 to 11 times

smaller in all cases. For γ = 1000, a drastic increase in SNR is counterbalanced by a similarly sharp

increase in the error. This observation suggests that for some γ, the trade-off between accuracy

and quality should reach an optimum value.

Unlike the PE term, the error for CS increases above γ = 10 while the SNR improves only

slightly between γ = 1 and γ = 100. Nevertheless, the loss in accuracy is not larger than two folds

in all cases, which is about five times smaller than the improvements to the PE term. From the

results in Fig. 19 and Table 3 we conclude that this method can be effective, but it may suffer from
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artifacts and poor accuracy.

Water POM PMMA

γ Property % Error SNR % Error SNR % Error SNR

1
CS 11.7 10.5 4.8 14.7 9.8 12.0
PE 97.6 1.2 48.0 1.4 135.6 0.8

10
CS 11.6 10.6 4.7 14.9 9.7 12.1
PE 39.4 2.7 20.0 3.3 56.6 2.0

100
CS 20.0 10.7 7.2 18.2 13.8 13.1
PE 11.4 34.0 5.2 37.5 11.8 24.5

1000
CS 446.6 200.9 384.0 262.3 283.0 160.9
PE 100.0 342.9 100.0 481.7 100.0 275.4

Table 3: Average percent error and SNR to assess the effect of feature scaling. For
these results, four values of γ during phase retrieval were used (Eq. 48). The scale of
the energy-functions was determine by the choice of units, namely keV.

3.4.4 Discussion

Since the Tukey kernel of Sec. 3.4.1 and the mitigation scheme in this section work in a similar

way, there is worth in comparing the two techniques. The former allows for an easier and more

conventional way to control the section of frequency-domain to exclude. Additionally, the Tukey

kernel transitions smoothly from pass-band to stop-band, and it is therefore less prone to ringing

artifacts. For these reasons, we suggest the method in Sec. 3.4.1 for better results, but remark that

the technique here is useful to obtain quick improvements. In our experience using Eq. 48, values

of γ ranging between 100 and 1000 can produce acceptable results in most cases.

3.5 Errors from misrepresenting the energy

The energy-dependent, but otherwise constant, terms in Eq. 36 must be properly defined to obtain

an accurate estimates of the material basis a1 and a2. The terms are defined with values that

correspond to the energies of the input measurements, which are not strictly monochromatic but

instead cover a (narrow) band of energies. In practice, effective energies are estimated for each
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measurement using one of several strategies, c.f. Sec. F. Thus, it is natural to wonder how misrep-

resenting the effective energies of the input bins can influence the accuracy of the results. This issue

is explored here using the simulation strategy introduced in Sec. 3.2, see also Sec. C. In particular,

the energy information required for PR was purposefully misrepresented relative to the values used

to simulate the input measurements.
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Figure 20: (a)Results of phase retrieval using two (noise-free) monochromatic input
measurements simulated with energies of 23.33 and 40 keV. The low-energy measure-
ment (23.33 keV) was assigned an incorrect energy value during phase retrieval. The
energy values used for the low energy bin are listed below the resulting PE and CS,
which were estimated for an energy of 30 keV, c.f. Eq. 34. Each plot also shows the
expected PE and CS and ignores negative values for clarity. (b) Average percent error
along the rod profile.

Fig. 20a shows the PE and CS contributions to the LAC estimated for 30 keV after PR. Two

monochromatic measurements of a 3 mm PMMA rod with energies of 23.33 and 40 keV were used

as inputs. The low-energy measurement was purposefully assigned values of 25, 27, and 29 keV

during PR. In every case, the discrepancy between the actual and specified energies led to an

underestimation of the CS term and overestimation of the PE term. Also, the magnitude of the

average percent error increased monotonically with the error in the specified energy (Fig. 20).

The error in the PE term can be explained by comparing the mathematical form of this term

with both the actual and the incorrectly specified energy values. Ideally, when Especified = Eactual

the retrieved (aR1 ) and simulated (a1) energy-independent properties should satisfy

PE =
a1

E3
actual

=
aR1

E3
specified

. (49)
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If instead E3.3
specified > E3.3

actual, the PR algorithm preserves the equality by compensating the aR1

term.

The energy-dependent function of the CS term (i.e. the Klein-Nishina function ΦE) also de-

creases with increasing energy. Therefore, based on the logic above one could expect for the CS

term to be overcompensated. However, unlike the E−3.3 dependence of the PE term, the Klein-

Nishina function varies gradually with increasing energy. In particular, the largest percent error

in the expected value of ΦE , which was found as 100 × (Φ23.3 − Φ29)/Φ23.3, is 1.9 % compared to

51.2 % for the energy dependence of the PE term. Furthermore, since the LAC is a combination

of PE and CS, an overcompensated PE is likely to be accounted for with a reduction of the CS to

minimize the overall error.
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Figure 21: (a) Two monochromatic measurements were simulated with energies of 30
and 60 keV. To induce an error, the 60 keV bin was mislabeled during PR as 62, 64
and 66 keV. (b) Average percent error along the rod profile.

The same study was repeated using two mono-energetic measurements of 30 and 60 keV. The

results are shown in Fig. 21. In this case, the high-energy measurement was assigned incorrect

values of 62, 64, and 66 keV. Compared to the results in Fig. 20, the errors in Fig. 21 are about 10

times smaller and remain below 25 % in all cases. One reason for this difference is the sensitivity of

energy-dependent material properties in the high- and low-energy regimes. For example, the LAC

changes rapidly with increasing energy in the low (< 40 keV) regime. On the other hand, changes

between two high energy values are small. In terms of the energy functions, those corresponding to

the low energy measurement are properly characterized and those for the high energy are close to

the actual values since above 60 keV the two functions change gradually. This results in relatively
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small errors.

The results in this section highlight the importance of correctly estimating the effective energy

of the input measurement. Additionally, errors in the low-energy regime are more detrimental and

an effort should be made to address them. This concept should be carefully considered when using

photon-counting detectors with high-Z sensor materials like CdTe. Spectral distortions in these

detectors, which are more severe at low energies, can yield difficulties in estimating the effective

energy of a measurement.
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4 Phase Retrieval of Soft Materials at Low Photon Counts

The imaging of poorly-attenuating materials presents an important challenge in clinical and indus-

trial X-ray imaging. Phase contrast imaging, along with phase retrieval, can improve the visibility

and identification of these materials. Here we present experimental results for the phase retrieval

technique described in Sec. 3.1, which is capable of correctly estimating the photoelectric absorption

and Compton scattering due to a sample over a wide range of energies (Fig. 7). Typical methods

to identify materials and quantify their abundance, like material decomposition [6, 64, 65], rely on

correct estimates of energy-dependent properties. Therefore, these results are evidence that our

method can help link phase contrast imaging with these spectral techniques.

The measurements used were obtained in a simple PB-PCI configuration, c.f. Sec. 2.1, using

energy resolving photon counting detectors (PCDs). The use of PCDs allows one to obtain the nec-

essary spectroscopic measurements in a single step when a polychromatic laboratory X-ray source

is used. Our findings demonstrate the accurate estimate of multiple attenuation mechanisms for

biologically relevant materials. In particular, errors in the estimates fall well below 10%. The

signal-to-noise ratio of our estimated properties is substantially (around 10 times) greater than

that of the corresponding PCI measurements. We highlight how the achieved accuracy in con-

junction with improvements in image quality can help identify materials that could otherwise be

indistinguishable with conventional techniques. Finally, insight into how reductions in the number

of detected photons affects the accuracy of our estimates will be given.

4.1 Materials and methods

4.1.1 Multi-Material Phantom and Biological Sample

A key objective was to investigate the performance of our phase retrieval method with materials

of low (< 10) but similar effective atomic numbers (Zeff). To this end, we built a multi-material

phantom from four homogeneous rods, each having a different composition, separated by a small
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Material Zeff ρe [×1023 e/cc] ρm [g/cc] µ [cm−1] τpe [cm−1] σcs [cm−1] �[cm]

PS 5.70 3.40 1.050 0.229 0.0212 0.188 0.296
PMMA 6.47 3.83 1.180 0.277 0.0396 0.211 0.296
POM 6.95 4.52 1.410 0.344 0.0604 0.248 0.318
Graphite 6.00 5.53 1.839 0.382 0.0403 0.304 0.310

Table 4: The properties listed are effective atomic number (Zeff), electron density
(ρe), mass density (ρm), total linear attenuation (µ), photoelectric absorption (τpe),
Compton scattering (σcs), and rod diameter (�).

(∼1 mm) air gap as shown in Fig. 22. The materials selected were polystyrene (PS), polymethyl-

methacrylate (PMMA), polyoxymethylene (POM), and graphite. A list of material properties

relevant to this study is given in Table 4. Except for the rod diameters and the mass density of

graphite, both of which were measured in our laboratory, all of the properties used for comparison

were obtained from the NIST database [66].

Although relatively simple, this phantom provides heterogeneity in the horizontal direction and

the constituents have characteristics similar to those of biological tissues [67,68]. Furthermore, all

of the Zeff values are well below 10, ranging between 5.70 and 6.95. Materials with these properties

are difficult to image and distinguish with absorption-based techniques.
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Figure 22: Experimental setup used to image the multi-material phantom. The
process of energy binning is also depicted. The Medipix3RX detector captures specific
sections of the incident spectrum, and a set of energy bins corresponding to narrow
sections of the incident spectrum are formed using energy binning.

In this study of how differences in detected photon-counts influence the quality and accuracy
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of our results (c.f. Sec. 4.2.2), the POM rod was used as the sample. To demonstrate the benefits

of the proposed phase retrieval algorithm on a biological sample, an Emory oak leaf was imaged.

This sample was selected because it contained features in a rich variety of sizes, which allowed for

resolving characteristics of our approach in a practical application.

4.1.2 Source and Detectors

The spectroscopic measurements of the rod phantoms were collected with a single-chip Medipix3RX

detector. This detector used a 1 mm thick cadmium telluride (CdTe) sensor and a 256× 256 pixel

array separated at a uniform pitch of 55 µm. The high quantum efficiency of the hybrid CdTe

sensor allowed the use of a high source voltage of 90 keV for the multi-material phantom.

The Emory oak leaf in Sec. 4.2.3 was imaged using a single chip Medipix3RX with a 675 µm

Si sensor and a pixel pitch is 55 µm. This detector was selected because of its robustness to

spectral distortions at the low energies (between 10 and 40 keV) used to image the leaf. All of

the measurements for this article were made in charge summing mode, which mitigates spectral

distortions due to charge sharing [69].

A polychromatic microfocus X-ray tube (Hamamatsu 150 kV L12161-07) was used for the

source. In all measurements, the small focus mode was selected. This configuration achieves a focal

spot of about 7 µm and offers sufficient spatial coherence for PB-PCI.

4.1.3 Spectroscopic Measurements

Spectral data was generated in two steps: threshold (TH) scanning and energy binning (Fig. 22).

In the first step, a series of independent scans were collected, each using different low-energy cut-off

(or threshold) values. Each TH scan consists of the counts due to photons with energies above the

threshold value. The second step involved subtracting two scans with the desired separation in low

energy cut-offs. By obtaining spectroscopic data in this way, further insight into the sensitivity of

our results to factors like different choices of energy bins and spectral distortions can be gained [70].

The multi-material phantom was scanned 60 cm downstream of the source and 120 cm upstream

52



of the detector (Fig. 22). Counts were recorded for 60 seconds using a peak voltage of 90 keV and

a current of 110 micro-Amps. From the TH measurements, three energy bins bounded between

18–32, 32–45, and 45–58 keV were created. The effective energy of each bin was found as the

weighted average of the energies it enclosed. In particular, the effective energy of the j-th bin was

found as

Ejeff =

M∑
i=1

ciE
j
i

/ M∑
i=1

ci, (50)

where ci is the weight (or recorded counts) for the i-th energy within the bin and M represents the

number of energies in the j-th bin. From Eq. 50 we estimated values of 25, 36, and 50 keV for the

three bins, respectively.

Two additional sets of measurements of the POM rod were recorded for the accuracy and

quality analysis described in Sec. 4.2.2. The measurements were taken with different source-to-

object distances to investigate how different magnifications influenced the results. For the first

measurements, the rod was positioned 60 cm from the detector and 60 cm from the source, resulting

in a magnification factor of two (2X). In the second configuration, the distance from the detector

was increased to 120 cm for a magnification factor of three (3X). In both cases, the source peak

voltage and current were set to 90 keV and 110 µA, respectively.

Three energy bins were constructed from the TH scans of the POM rod. Bounded between 20–

40, 40–60, and 60–90 keV, the effective energies of the bins were 28, 48, and 68 keV, respectively.

To obtain measurements corresponding to different acquisition times, 60 consecutive (1 s) frames

were recorded while maintaining a constant flux at the detector plane of approximately 1.86× 105

counts/mm2/s for the 2X case and 8.26 × 104 counts/mm2/s for the 3X case. The frames were

combined (or integrated) to produce results equivalent to acquisitions lasting 1, 3, 7, 15, and 30

seconds.

The leaf sample was imaged with three thresholds scans (with TH values of 10, 20, and 30 keV)

in a PCI geometry. The source-to-object distance was 60 cm, and the object-to-detector distance

was 120 cm. A single scan with a TH of 10 keV in a conventional (object-plane) geometry was also

53



recorded. In both cases, the peak source voltage was 45 keV, and the current was set to 220 µA

for the PCI measurements and 60 µA for measurements at the object-plane. From the PCI scans,

three consecutive bins (10–20, 20–30, and 30–45 keV) were created with effective energies of 15, 25,

and 35 keV. All of the scans were recorded for 60 seconds.

4.1.4 Quality and Accuracy Metrics

For the accuracy and quality analysis, scans of the POM rod were taken with different geometries

and different exposure times. To quantify how reductions in exposure time (and detected photons)

influence the quality of the estimates, we compared the differential signal-to-noise ratio (SNR) [71]

of the retrieved pLAC and phase to that of the lowest energy TH scans (of 20 keV). The TH scans

are similar to measurements from an energy-integrating detector and captured the counts between

20 keV and the kVp. However, data acquired with PCDs, as in this case, benefit from zero dark

noise and the equal (energy independent) weighting of detected photons [72]. In preparation to

compute the SNR, all TH scans were first flat-field corrected, and the negative natural log of the

results was found.

Before calculating the SNR, the 2D data was “projected” onto an axis perpendicular to the

edge of the POM rod [73]. This produced a 1D representation of our data containing the same

number of points as the 2D counterpart. The signal level was then estimated by averaging all of

the values enclosed in a narrow region near the center of the rod. The background level and the

noise were both estimated from the average and the standard deviation of a broad air region next

to the rod. Since the effective energy of the TH scans was 38 keV, the pLAC and phase values were

estimated for the same energy. The label “PCI” in the results is used to indicate outcomes linked

to the TH scans.

To examine the accuracy, the average percent error between the retrieved and expected profiles

of the projected electron density were compared. In particular, we used

ε =
1

P

P∑
i=1

∣∣∣∣ri − eiei

∣∣∣∣ , (51)
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where ε represents the average percent error and P is the total number of points along the profile.

Here ri and ei are the retrieved and expected values at the i-th position of along the profile of a

rod.

4.1.5 Phase-retrieval workflow

The phase retrieval workflow is composed of three simple steps (Fig. 23). The first step involves

identifying and correcting defective pixels in all the measurements. The next two steps in the work-

flow involve energy binning and flat-field correction. The effective energy of each bin is estimated

during energy binning. The final step is to implement the retrieval algorithm. For this, only the

effective energies of the binned measurements that serve as inputs need to be specified. To mitigate

the noise in the a1 term, the strategy described in Sec. 3.4.3 was applied.

Figure 23: Three steps involved in our spectral phase retrieval workflow. First, bad
pixel correction (BPC) is implemented to remove dead-pixels and outliers from the mea-
surements. Next, energy binning (EB) is implemented to create pseudo-monochromatic
measurements. Finally, the phase retrieval (PR) is applied to the energy bins, and the
material properties a1 and a2 are obtained (Sec. 3.1). Energy-dependent properties,
like CS and PE, using a1 and a2 can be estimated.

4.2 Results

4.2.1 Phase retrieval of multi-material phantom

Fig. 24a shows a PCI measurement of the multi-material phantom that corresponds to an effective

X-ray energy of 38 keV. Edge enhancement, a form of phase contrast, can be identified as bright
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vertical fringes running along material boundaries, and it is also visible in the average profile (blue

curve). The retrieved pLAC and phase of our phantom, estimated for 40 keV, are shown in Fig. 24b

and 24c. To obtain these results, we used three (non-overlapping) spectroscopic measurements

having effective energies of 25, 36, and 50 keV. As the expected (red) and the average retrieved

(green) profiles indicate, the quantities estimated by our phase retrieval display good accuracy.

Namely, the average errors between the expected and retrieved profiles of the pLAC and phase

were 7.8 % and 3.3 %, respectively.
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Figure 24: Phase retrieval results for the multi-material phantom. (a) PCI measure-
ments of multi-material phantom showing the expected edge enhancement. (b) pLAC
map with the average retrieved profile (green) and expected (red) values superimposed.
(c) The retrieved phase difference map with the retrieved (green) and expected (red)
average profiles. The retrieved quantities correspond to an effective energy of 40 keV.

A comparison between Fig. 24a and 24c highlights the limitation of relying on attenuation alone

to differentiate and properly identify materials. POM and graphite may not be easily discernible

from an absorption-based radiograph at 40 keV due to the closeness of their attenuation properties

at this energy (Fig. 24b). By contrast, Fig. 24c shows a better separation between these two

materials.

Similar to the phase, the projected PE absorption proves as another useful contrast mechanism
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for identifying some of the materials in the phantom. The average PE absorption profile is in good

agreement (6.3% error) with the expected response (Fig. 25a). Fig. 25b shows the normalized PE

contrast along with the other mechanisms. The three curves are unique in shape and show different

amounts of distinguishability between pairs of materials, which can be judged by comparing the

separation between any two contrast values. For example, one can see from Fig. 25b that the

difference between the contrast of graphite and POM due to the phase are greater than the difference

due to attenuation. To reiterate, phase retrieval methods which require only one phase enhanced

measurement estimate a single contrast mechanism. This method could prove insufficient for proper

material differentiation. Based on this evidence, this method can be effective for imaging tasks like

quantitative imaging of soft tissue heterogeneity.
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Figure 25: (a) Average profile of the retrieved and expected photoelectric term for the
four material phantom. (b) Normalized contrast for the three retrieved mechanisms.
The contrast estimated for each material was normalized by the maximum value for
each of the attenuation mechanisms.

4.2.2 Phase Retrieval with Low Photon Counts

The results of the quality analysis for varying photon counts are summarized in Fig. 26a and 26b.

For both sets of images, 2X and 3X, the pLAC images gave the highest SNR values (Fig. 26a).

Interestingly, the SNR for the 3X images were higher than those of the 2X images, although the

opposite was true for their PCI measurements. This observation indicates that gains in signal

strength with propagation distance combined with the reduction in effective pitch outweigh the

effect of increased noise during phase retrieval. A similar result was observed in a recent publication

[74].
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Figure 26: In all plots, 2X indicates the results for the measurements taken at a
two-times magnification and the 3X the configuration with a magnification of three.
(a) Signal difference-to-noise ratio (SNR) of the retrieved projected linear attenuation
coefficient (pLAC), retrieved phase, and negative log of the measured phase contrast
images (PCIs). An effective energy of 38 keV was estimated for the PCI measurement,
and the retrieved quantities were computed for this energy (b) Gain in SNR found as
the ratio between the SNR of the pLAC and PCI images as well as the phase and PCI
images. (c) Average percent error computed from the estimated and expected electron
density of POM.

The phase images also showed substantial improvements relative to the PCI images (Fig. 26b).

Although the SNR values are nearly equal for both experimental configurations in Fig. 26a, the

gains (see Fig 26b) for 3X are greater than those of 2X. It is worth noting that the pLAC is

estimated as a linear combination of the two material properties obtained during PR, c.f. Eq. 34

in Sec. 3.1. By contrast, only one property (the electron density) is used to calculate the phase. As

illustrated by the differences in SNR between the pLAC and phase, the process of combining the

two estimates improves the quality of the resulting images.

The ratio between the SNR values (Fig. 26b) of the pLAC and PCI images, for all acquisition

times, revealed nearly constant gains of 10.52 ± 0.35 folds for 3X and 5.80 ± 0.01 folds for 2X.

Similarly flat gain factors of 7.06± 0.92 and 4.13± 0.17 were obtained between the phase and PCI

images for 3X and 2X, respectively. The larger variability in the SNR gains of the 3X configuration

is likely due to the quality of the measurements at one and three seconds. The counts for these

two acquisition times were exceptionally low since an average of only 250± 31 counts/pixel/s were

measured for the 3X configuration.
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The accuracy of the retrieval for different acquisition times was examined using the average

percent error between the retrieved and expected values of the projected electron density. Fig. 26c

summarizes the results for both configurations. The error bars at each point represent standard

deviation of the error values. The results show errors below 10% for all acquisition times and

below 5% for acquisitions lasting three or more seconds. Additionally, the accuracy of the electron

density estimated in the 2X configuration is slightly improved for most acquisition times lower than

30 seconds, which could be related to the higher quality of the inputs to the PR algorithm resulting

from a higher flux on the detector in 2X compared to 3X.

4.2.3 Quality Improvements on a Bio-sample Image

To further demonstrate the benefits of our phase retrieval method, and specifically for a biological

sample, we imaged a small Emory Oak leaf (Fig. 27a). This sample was selected because of its

abundance of high spatial-frequency structures, which are enhanced by PCI geometries. Fig. 27a

and 27b show the negative log of the normalized intensities, − ln[I/I in], for a standard (contact)

and a PCI measurement of the leaf section. While this quantity is approximately equal to the

pLAC in the case of the contact measurement, the same is not true for the PCI measurement.
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Figure 27: (a) The negative log of the normalized intensity, − ln[I/I in], from mea-
surements taken at the contact plane, that is M = 1. (b) The same quantity as (a)
but using measurements taken in a phase-enhancing configuration, that is M = 3. (c)
Shows the same quantity as (a) and (b) but with intensity values reconstructed from
the retrieved material properties. The insets show the same ROI in all three images,
highlighting the quality and detail in each.

To ensure similar counting statistics, the flux for the contact and PCI measurements was,
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for both, 480 photons/pixel/s. For comparison, the negative log of the normalized intensity was

estimated using the retrieved properties (Fig. 27c). The intensities in all the figures correspond to

the same effective energy of 20 keV. Three insets provide an enlarged view of a vein network on

the right blade and serve to compare the vein visibility at various sizes and thickness.

In the contact image (Fig. 27a), only relatively large veins on either side of the midrib can be

easily discerned. By contrast, the PCI image (Fig. 27b) shows an impressive enhancement in the

number and quality of small features that can be resolved. The retrieved image (Fig. 27c) also

shows a clearly visible vein network as well as improvements in SNR. The enhanced quality allows

for resolving contrast variations between veins (due to differences in size) and at different parts of

the veins, possibly due to changes in composition.

4.3 Discussion

In this study, we demonstrated that a phase retrieval method proposed by our group [11] can

accurately estimate the material properties of heterogeneous samples with significant improvements

to image quality. As indicated by our findings, the complete refractive properties (absorption and

phase) can be simultaneously estimated from two (or more) spectroscopic PCI measurements. The

spectral PCI images needed for the results were obtained using photon-counting quantum detectors

and a polychromatic source.

Unlike some popular phase retrieval algorithms, this method does not restrict the number of

materials in a sample. Furthermore, two unique physical properties can be estimated without prior

knowledge of the sample. This can prove advantageous for material identification tasks, which may

not be possible with phase retrieval methods where a single property is estimated. We sought to

highlight this advantage by retrieving the properties of weakly attenuating materials with small

differences in effective atomic numbers. Such materials are often indiscernible in conventional

radiography.

An important finding in this work relates to the stability of the proposed method with increasing

quantum noise. We found that gains in SNR of ten folds and errors below 10% could be obtained
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even at low acquisition times, with as few as 250 counts per pixel. This gain in SNR can translate

to significant dose reduction in PCI mammography and tomographic imaging like PCI CT.

To date, few attempts have been made to understand the impact that object thickness has in

PCI and phase retrieval applications. Our recent efforts in this front show that even for a 5 cm

thick soft material, up to 70% of the phase signal is retained in the intensity measurement [75,76].

Our team is currently expanding on these findings to determine the viability of our method for

clinical applications.

Although demonstrated here for propagation-based PCI, the foundation of our approach has

been successfully adapted to other PCI geometries such as coded-aperture [77]. In the future, we

plan to explore if these geometries offer higher SNR gains, as they are known to improve phase

enhancement in comparison to propagation geometry.

Finally, gains in SNR may not adequately represent the benefit for human interpretation of phase

retrieved images. Previous work by our team dealt with task-based image quality assessments with

human- or model-observers as a reliable metric for evaluating imaging technology [78,79]. We plan

to pursue this direction for phase contrast imaging and phase retrieval. Deciphering the combined

impact of absorption and phase contrast in human-observer perception presents new opportunities

and challenges in task-based image quality assessment research.
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5 Assessments of the Error Introduced by Approximations to the

Transport of Intensity Equation

The transport of intensity equation (TIE), c.f. Sec. 2.2.3 and Sec. 3.1, has become the most common

mathematical framework to derive PR algorithms for PB-PCI [80,81]. This equation describes how

the intensity of a propagating field relates to variations in material properties perpendicular to the

direction of propagation. Due to its convoluted and non-linear form, the TIE is generally used only

after applying several simplifying assumptions.

A common and important strategy to simplify the TIE is to apply the weakly-interacting object

(or “weak object”) approximation [11, 14, 28, 35, 48]. This approach assumes a sufficiently weak

interaction between X-rays and the sample so that second-order variations in material properties

can be ignored. Analogously, the dot product of the two gradient terms in Eq. 31 can be neglected

and the TIE can be written as an inhomogeneous Poisson equation for which solutions can be

readily found. This section presents a strategy to understand the errors related to enforcing the

weak object approximation in PR algorithms. We also show how the validity of this approximation

can depend on the sample thickness as well as the differences between the LAC of a sample and its

background.

Two other common simplifications are to assume that the sample is homogeneous [50] or that the

energies of the radiation are high enough so that a “duality” between the phase and attenuation of

X-rays emerges [51]. For the latter, the phase and attenuation become primarily dependent on and

can be written in terms of the electron density. We studied the error due to these two assumptions

with experimental data using existing PR techniques that enforce them. In particular, we tested

the homogeneity assumption with the scheme proposed in [50], while the phase-attenuation duality

(PAD) condition was tested with the method given in [51]. Appx. A and B give derivation of these

two techniques in forms well suited for “point-like” laboratory sources. To test the weak object

approximation, a new PR scheme was derived in Sec. 5.4. In all three cases the retrieved property

was the projected thickness. We will refer to PR methods based on the homogeneous, PAD, and
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weak object approximations as hPR, PAD-PR, and wPR respectively.

5.1 Analytical form of the weakly interacting object approximation

For this section, it is convenient to write the TIE in the form given by [82], that is:

− k(E)
∂

∂z
ln I(r⊥, z;E) = ∇⊥ ln I(r⊥, z;E) ·∇⊥ϕ(r⊥, z;E) + ∇2

⊥ϕ(r⊥, z;E). (52)

This results is equivalent to Eq. 31 since g−1(r⊥)[∂g(x)/∂x] = ∂ ln g(x)/∂x for some arbitrary

function g(x). All variables are defined in Sec. 3.1. Due to a nonlinear coupling between the phase

and the intensity (i.e. ∇⊥ ln I ·∇⊥ϕ), an implementation of Eq. 52 without simplifications is often

prohibitively complex.

A common way to simplify Eq. 52 involves assuming that changes to the phase and intensity

of the X-rays due to interactions with the sample are sufficiently weak so that (at z = 0) the first

term can be neglected on the right-hand [83]. Equivalently, we require that

∇⊥ ln IE(r⊥, 0) ·∇⊥ϕE(r⊥, 0)

∇2
⊥ϕE(r⊥, 0)

� 1, (53)

where the energy dependence is written as a subscript, e.g. I(r⊥, z;E) = IE(r⊥, z). To better

understand the validity of this condition, an analytical representation can be developed with the

projection approximation. This simplifying assumption is generally valid in biomedical applications

[44].

We start by considering a sample composed of two homogeneous materials with projected

thicknesses given by T (m)(r⊥), where the superscript m[= 1, 2] identifies each material, see Fig. 28b.

In addition, their combined thickness is defined as A(r⊥)[= T (1)(r⊥) + T (2)(r⊥)]. If the projection

approximation holds at the z = 0 plane, then the intensity and phase of the X-ray wavefield due

to the sample can be written as [50,84]:

IE(r⊥) = I in
E exp

(
−∆µET

(2)(r⊥)− µ(1)
E A(r⊥)

)
(54)
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and

ϕE(r⊥) = −2π

kE
re

[
∆ρeT

(2)(r⊥) + ρ(1)
e A(r⊥)

]
, (55)

where as before re is the classical electron radius, ρe is the electron density, µE is the linear

attenuation coefficient (LAC) at energy E, ∆µE = µ
(2)
E − µ

(1)
E , and ∆ρe = ρ

(2)
e − ρ(1)

e . With these

results, the differential terms in Eq. 53 can be readily defined. Without lost of generality, we can

focus on a 1-D derivative (e.g. x) and arrive at:

∂

∂x
ln IE(r⊥) = −∆µE

∂

∂x
T (2)(r⊥)− µ(1)

E

∂

∂x
A(r⊥) (56)

and

∂

∂x
ϕE(r⊥) = −2π

kE
re

[
∆ρe

∂

∂x
T (2)(r⊥) + ρ(1)

e

∂

∂x
A(r⊥)

]
. (57)

Similarly, the second derivative becomes

∂2

∂x2
ϕE(r⊥) = −2π

kE
re

[
∆ρe

∂2

∂x2
T (2)(r⊥) + ρ(1)

e

∂2

∂x2
A(r⊥)

]
. (58)

An analogous set of equations would result for the y-component of the gradient operation in Eq. 53.

The y-component equations, in combination with Eq. 56 to 58, allow for an analytic expression

of Eq. 53 when the first and second order differentials of T (2)(r⊥) and A(r⊥) can be defined in

tractable functional forms. Although these results are limited to a two-material sample, they give

a powerful tool to study the TIE with analytical techniques.

5.1.1 Evaluating the approximation with an analytical phantom

A simple yet insightful example is that of a rod embedded inside a rectangular slab, each composed

of a different material. Fig. 28a shows a rendering of an object with these characteristics. The ends

of the slab are assumed to be found sufficiently far away from the field-of-view so that they can

be ignored. In [84], such an object is called “ternary” since it can account for up to three unique

materials (including free-space). Fortunately, a physical phantom with characteristics analogous
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to Fig. 28a can be constructed with ease. The setup depicted in Fig. 28b shows how experimental

measurements were collected in this study to test the findings described in this section.
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Figure 28: (a) Two-material phantom composed of two homogeneous objects with
basic shapes. The thickness A is constant and the field-of-view (FOV) is limited to
a small region that encapsulates the ends of the rod but is far from the ends of the
rectangular slab. (b) Geometrical configuration of the PCI measurements used for this
section.

The basic geometrical properties of the object lead to additional simplifications. First, the

projected thickness of a rod can be properly represented with a 1-D piece-wise function [85]:

T (2)(x) =


2
√
r2 − x2 |x| ≤ r

0 otherwise

. (59)

This, in turn, allows the use of the 1-D derivatives in Eq. 56 to 58. Next, since the combined

thickness A(r⊥)[= A] is a constant, we have that ∂xA(r⊥) = ∂xxA(r⊥) = 0 and Eq. 53 can be

written as:

2∆µEr

[
(x/r)2

√
1− (x/r)2

]
� 1, |x| ≤ r. (60)

An analysis of Eq. 60 leads to important points. First, the expression inside the square brackets

controls the shape, and its values are bounded between 0 and ∼0.385 irrespective of the choice of r.

For this reason, the maximum value of the left side of the inequality is approximately 0.77r∆µE ,

and the validity of Eq. 60 is therefore regulated by the product of r and ∆µE . Fig. 29a shows

three curves corresponding to different radii with ∆µE set to unity for all cases. By holding ∆µE
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constant, the effect of changing r is isolated to see how the condition deteriorates as the value of

r increases. The distance between the peak value and one shrinks with increasing radius. This

result indicates that the validity of the condition in Eq. 53 for regions of an image near material

boundaries can be less acceptable in thicker samples.
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Figure 29: (a) Plot of the left side of the inequality described by Eq. 60 using three
radii and ∆µE = 1. (b) Plot of the maximum value of the left side of Eq. 60 for
different combinations of ∆µ and r.

Fig. 29b shows the maximum value of the left-hand side of Eq. 60 for different combinations

of r and ∆µE . A set of the contour can be understood as delineations between different regions

of validity for the inequality. One limitation of this viewpoint is that, as shown in Fig. 29a, the

values in Fig. 29b pertain to a single point (the maximum) along the profile. Furthermore, all other

points predicted by Eq. 60 for a given choice of r and ∆µE fall below the values used for Fig. 29b.

Nonetheless, the information conveyed by the figure can help inform where the inequality is most

at risk of breakdown. We also note that a significant portion near the maximum of each curve, in

Fig. 29a, shows relatively high amplitudes and the values are close to those used to create Fig. 29b.

5.2 Influence of the weak-object approximation on phase retrieval

Phase retrieval (PR) can be viewed as the inverse to a mathematical model that describes the

physics of phase contrast image formation with sufficient accuracy (c.f. Sec. 3.2). For this reason,

a key aspect of a PR algorithm is the accuracy with which the measured intensity is predicted by
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its conjugate forward model. Here, the primary concern is understanding the influence of Eq. 53 in

PR schemes that use this approximation to simplify the TIE. To achieve this, we can investigate

how the intensity predicted by an approximation-free or “full” TIE differs from that predicted after

Eq. 53 is enforced. For the case of the two-material phantom in Fig. 28a, the intensity obtained

from the full TIE can be written as:

IE(r⊥, R2) = I ine−(AC+PC) (61)

where

AC = ∆µET
(2)(r⊥) + µ

(1)
E A (62)

represents the part of the exponent that provides the absorption contrast, while the phase contrast

is described by the term

PC =
2πR2

k2
E

re∆ρe

{
∆µE

[
∇⊥T (2)(r⊥)

]2
−∇2

⊥T
(2)(r⊥)

}
. (63)

To arrive at Eq. 61, the z-derivative on the left-hand side of Eq. 52 was expanded as a finite

difference. This is understood to be valid in the near-field regime where R2 is sufficiently small, see

Sec. 2.2.4. A comprehensive analysis of this approximation can be found elsewhere [86]. Note that

when PC is negligible, e.g. R2 ≈ 0, Eq. 61 yields the intensity of the sample predicted by Beer’s

law.

Enforcing the condition in Eq. 53 is equivalent to neglecting the quadratic term inside the set

brackets in Eq. 63. Therefore, by comparing the response of Eq. 61 with and without neglecting

the quadratic term in PC (Eq. 63), we can estimate the error in the intensities and gain insight

about the influence that enforcing Eq. 53 can have in PR. Furthermore, we can learn how material

properties can influence the error.

Fig. 30 describes the percent error for five polymethyl methacrylate (PMMA) rods of different

thicknesses in the absence of a background material (i.e. µ
(1)
E = 0). The horizontal axis corresponds
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to the ratio between the radius and the distance away from the center of each rod. This choice

facilitates a comparison between the different radii. The values were limited in the horizontal axis

to 96% of the way to the edge, since the errors converged for higher values. Interestingly, the plot

shows error that becomes less severe as the thickness of the sample increases. This may seem to

contradict the results in Fig. 29a. However, in here we are concerned with the errors in the intensity

as a whole. As the material thickness increases, the AC term, which is directly proportional to

the thickness, dominates over the PC term. Therefore, errors related to approximations in the PC

term become less significant even if the approximations become less valid.

Figure 30: Plot of the percent error between the intensity predicted by Eq. 61 with
and without enforcing the weak-interaction approximation. The intensities were esti-
mated for PMMA rods of different thicknesses. The horizontal axis represents the ratio
between the distance away from the center of each rod and the corresponding radius.

The contrast between the properties of the rod and the background can also influence the error

in the expected intensity. Fig. 31 shows the changes in error along the profile of the rod for a set

of ∆µ values. To obtain these results, we simulated a 3 mm Al rod embedded in a 10 mm block

of polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE), polyoxymethylene (POM), PMMA,

polystyrene (PS), as well as no background material (or free-space). At an energy of 30 keV, this

yielded ∆µ values of 0.99, 2.16, 2.58, 2.69, 2.77, and 3.05 respectively. The distance from the center

of the rod was allowed to reach 98% of the way to the edge.

Similar to the results found when evaluating the inequality in Eq. 53 (Fig. 29), reducing the
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contrast between the linear attenuation of the two materials is favorable for the weak object ap-

proximation and leads to lower error. Therefore, the approximation is more valid when dealing

with similar materials, as it may be the case when imaging different tissue types. Since the same

variation in material properties can be obtained for different material combinations and different

energies, the results shown here generalize beyond the choices we made.

[cm -1]

Figure 31: Percent error between the intensities predicted Eq. 61 with and without
enforcing the WOA in Eq. 63. One horizontal axis represent different contrast values
(∆µ) between the target and background materials while the other shows the ratio
between the distance from the center of the target to the radius of the target. The
ratio was kept to 98 % of the way to the edge of the target.

5.3 Overview of the homogeneous and phase-attenuation duality approxima-

tions

The homogeneous approximation can be enforced in Eq. 61 by assuming that the sample is composed

of a single material so that µ
(1)
E = 0, ∆µE = µ

(2)
E , and ∆ρe = ρ

(2)
e . The resulting intensity can

be used to obtain a PR equation that solves for T (2)(r⊥) as demonstrated by [50]. One way to

approximate a heterogeneous sample as a homogeneous object is to describe its properties with

average values. The LAC and electron density can be written as:

µ̄E =
1

N

N∑
i=1

µ
(i)
E and ρ̄e =

1

N

N∑
i=1

ρ(i)
e . (64)
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We emphasize that a PR equation based on the homogeneous approximation is an exact inverse to

Eq. 61 when the object is composed of a single material. Therefore, the error this approximation

introduces will be dictated by how well the properties of the object can be approximated with single

values of µ and ρe, as it is assumed in Eq. 64.

The PAD condition assumes that the LAC can be properly represented by only considering loss

of photons due to Compton scattering (i.e. µ ≈ σcs). When the projection approximation is valid,

we can write

µ
(i)
E ≈ ΦKN(E)ρ(i)

e T
(i)(r⊥), (65)

where ΦKN(E) is the Klein-Nishina function. For Eq. 65 to be valid (with around 90 % accuracy),

one should limit the use of this approximation to materials with effective atomic number falling

below 10 and X-ray energies above 60 keV [51]. Materials that can satisfy this condition include

soft tissues, water, and several carbon-based polymers. Sec. 1.1.1 discussed the case of water, for

which Compton scattering accounts for over 80% of the total attenuation above 50 keV and rises

above 90% for energies above 60 keV (Fig. 1).

5.4 Derivation of a phase retrieval to assess the weak-object approximation

When the gradient term can be neglected, Eq. 52 simplifies to:

− kE
∂

∂z
ln IE(r⊥, z) = ∇2

⊥ϕ(r⊥). (66)

From the finite difference expansion of the left-hand side we can write

ln
IE(r⊥, R2)

I in
= −µ(1)

E A−∆µET (r⊥) +
2πR2

k2
E

re∆ρe∇2
⊥T (r⊥). (67)

where T is understood to be the projected thickness of the target material, i.e. m = 2. This equation

assumes two important characteristics about the incident radiation. First, the source is assumed

to have an infinitesimally small dimension or to be sufficiently far away from the object so perfect
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spatial coherence is achieved. Second, the incident radiation is assumed to be monochromatic.

Combined, these two assumptions mean that the object is illuminated by a fully coherent wavefield

[12]. The interested reader can find more information about these two assumptions in [12,14,35,87].

The geometrical magnification, M , that results when the source is a finite distance away from

the illuminated object can be easily introduced into Eq. 67 following the steps in [53]. With this

addition, an estimate of the projected thickness of the second material can be readily obtained in

Fourier-domain as:

T (r⊥) = − 1

∆µE
F−1


F
{

ln

[
IE(Mr⊥, R2)

I in
eµ

(1)
E A

]}
1 + ΓE

∆ρe
∆µE

|ν|2

 (68)

where ΓE [= 2πreMR2/k
2
E ] depends on the energy and experimental geometry.

Similar equations for the homogeneous approximation and the phase-attenuation duality are

derived in Appx. A and B, respectively. Equation 68 shares many similarities with the PR formula

in [84], c.f. Eq. 81 in Appx. A. An important difference pertains to the placement of the natural

log. The PR formula in [84] can be shown to predict the same intensity as Eq. 61. Therefore, this

equation is used in Sec. 5.5.4 as an “approximation-free” PR implementation.

5.5 Phase retrieval with experimental data

The error in T (r⊥) estimated with the three PR algorithms was analyzed using measurements of a

physical phantom that closely resembled Fig. 28a. To construct the phantom, a rectangular plastic

container with a constant inner-thickness of 15.30± 0.02 mm was used as well as an aluminum rod

measuring 3.20 ± 0.02 mm in diameter. Using a 3-D printer, we manufactured a lid to facilitate

the placement and removal of the rod from the middle of the container. The rod was imaged in the

container with and without water. This allowed the testing of two material contrasts: aluminum

in air and aluminum in water. To ignore the effect of the plastic walls, we used measurements of

the empty box without the aluminum rod as flat-fields.

To satisfy the assumption of high temporal and spatial coherence, a microfocus source was
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used in conjunction with a high-resolution photon counting detector. In particular, a single-chip

CdTe Medipix3RX detector was used in charge-summing mode, which mitigates the effect of charge

sharing [69]. The Medipix3RX detector has a 256 × 256 pixel array separated at a uniform pitch

of 55 µm. For the source, we used a polychromatic microfocus X-ray tube (Hamamatsu 150 kV

L12161-07). The source was operated in “small focus mode” at a peak voltage of 90 keV and at a

current of 110 µA. The sample was placed 60 cm away from the source and 129 cm away from the

detector (Fig. 28b). A set of threshold measurements were recorded with 22 low-energy cut-offs

ranging from 17 to 72 keV and uniformly spaced at intervals of 2.5 keV. Each measurement lasted

60 seconds.

Background Material

Air Water

Set Bin Bounds [keV] Eeff [keV] Mean Counts SNR ∆µ [cm−1] SNR ∆µ [cm−1]

1
22.0→ 27.0 24.5 5473 11.1 5.3 7.0 4.7
27.0→ 37.0 31.5 5780 11.8 2.7 8.2 2.3
32.0→ 47.0 38.2 5652 10.2 1.7 7.5 1.4

2
29.5→ 37.0 33.0 3798 7.6 2.4 5.5 2.1
39.5→ 52.0 44.9 3669 6.7 1.2 4.7 1.0
47.0→ 62.0 53.6 3515 6.3 0.9 4.4 0.7

3
32.0→ 37.0 34.4 2292 4.5 2.2 3.3 1.9
49.5→ 59.5 54.4 2344 4.2 0.9 3.0 0.6
57.0→ 72.0 62.8 2284 4.9 0.7 3.3 0.5

Table 5: Sets of measurements used to study the error in phase retrieval due to ap-
proximations in the TIE. The sets were defined by grouping energy bins with similar
mean counts per pixel in the flat-field measurements and, therefore, similar SNR. The
same bin boundaries were used for air and water as background materials, which re-
sulted in different SNR values since the acquisition time was 60 s in both cases. The
contrast in LAC (∆µ) between Al and the background materials is also listed for every
Eeff . For air as background, the change in LAC is equal to the LAC of Al.

From the measurements, three sets of energy bins were created for each of the background

materials, which yielded a total of 18 unique energy bins. The criteria used to define each set

was a similar number of average counts per pixel in the flat-fields. Thus, the elements of each

set have similar SNR values. To estimate the SNR, a narrow region (of about 10 pixels wide by
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240 pixels long) extending along the middle of the rod was used to obtain the “signal” level. The

“background” level and “noise variance” were both extracted from the intensity values in a broader

region (around 20 pixels wide by 240 pixels long) on the air gap to the left of rod, see Fig. 32b.

The SNR was found as (signal− background)/
√

noise variance.

Table 5 lists the properties of the elements in each set of energy bins, including the SNR and ∆µ

for air and water as background materials. To obtain ∆µ between air and Al, air was considered to

be non-attenuating (i.e. an LAC of zero). Note that substituting air for water as the background

component led to a lower SNR. This is because the acquisition time was 60 seconds for all threshold

measurements. When water surrounded the rod, the resulting images had lower counts per pixel

because water has a higher attenuation than air.

5.5.1 Correcting spectral distortions

A key goal in this study was to check if any of the error trends described in Sec. 5.2 could be

observed after using Eq. 68 with experimental data. After analyzing the average percent error

between the expected T (r⊥) and that retrieved from the bins listed in Table 5, we observed that

energy-dependent (or spectral) distortions dominated the trend. Furthermore, we assumed that

trends due to the weak object approximation would be completely obscured by the high magnitude

of the errors due to spectral distortions. Figure 32a shows a plot of the average percent error

obtained after applying Eq. 68 without mitigating spectral distortions. The errors increase with

decreasing energy rising above 20% below 40-keV and reaching ∼ 50% at 24.5 keV.

We associated the trend in Fig. 32a primarily to effects introduced by the hybrid PCD used.

These types of detectors can introduce errors that are highly correlated with the energy of the

incident beam [25, 88, 89]. In some cases, detector-related distortions can be so severe that they

counterbalance the benefits of using PCDs [88]. For the CdTe Medipix3RX, spectral distortions

are strongest at low energies near the fluorescence peak of Cd (∼ 27 keV) and Te (∼ 31 keV)

and become less severe with increasing energies. Another possible source of energy-dependent

distortions influencing the measurements is beam hardening, which is also more detrimental at
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lower energies.
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Figure 32: (a) Error in the retrieved thickness found by applying Eq. 68 with the three
sets of energy bins in Table 5 corresponding to the Al rod in air. Since the elements in
each set have similar SNRs, the average SNR of the measurements and a unique color
were used to differentiate each set. The size of each point is related to the size of the
corresponding energy bin in keV. (b) Flat-field corrected (FFC) intensity before and
after spectral correction for the Al rod surrounded by air at the lowest effective energy
in Table 5.

Spectral distortions were mitigated with a strategy similar to the one proposed by [88]. In

particular, we calibrated the intensity values in the images to ensure a close match with the values

predicted by Eq. 61 for the phantom. Figure 32b shows the flat-field corrected (FFC) intensity of

the lowest energy bin (Eeff = 24.5 keV) in Table 5 before and after spectral correction, where the

background material is air. As the obvious change in the intensities of the sample indicates, the

original bin was severely distorted. In principle, the intensity at every pixel can be remapped to a

different value, and therefore the corrected images can be significantly different from the originals.

An effort was made to minimize changes to the noise “texture” and signals at (and near) material

boundaries. Additional details of our spectral correction strategy can be found in Appx. D.

5.5.2 Accurate estimates of the effective energy

Since each bin in Table 5 corresponds to a (relatively narrow) band of energies, to represent a

monochromatic measurement with these bins requires assigning an effective energy, Eeff , to each.

In phase retrieval algorithms like the ones considered in this section, the effective energy of a
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measurement is an important parameter that influences the accuracy and quality of the results

[84]. As Eq. 68 implies, the estimated thickness depends on the proper definition of three energy-

dependent parameters, i.e. ΓE , µ
(1)
E , and µ

(2)
E .

We estimated Eeff for our energy bins in three steps. First, the intensity of a numerical phantom

was simulated. The phantom was designed to have the dimensions and properties of the physical

analog. Because of its symmetry, the simulated intensity at energy E could be represented with a

1-D profile:

IE(x) = SEe
−(AC+PC) (69)

where SE are the photons emitted by the source at energy E, while AC and PC are the amplitude

and phase contrast terms defined by Eq. 62 and 63, respectively. This step involved estimating an

X-ray spectrum, SE , that properly represented the one emitted by our source. For this we used

xpecgen, a freely available Python program developed after [90]. The parameters required by the

program (e.g. target material and peak voltage) were selected to reflect our experimental choices.

Next we simulated the FFC intensities corresponding to our bins. For a bin bounded between

Ei and Ej , the FFC intensity was found using

IEi→Ej (x) =

Ej∑
n=Ei

In(x)

/ Ej∑
k=Ei

Sk. (70)

In the final step we searched for a monochromatic FFC intensity, IEeff
(x), that closely represented

IEi→Ej (x). We achieved this with an iterative scheme that minimized the cumulative absolute

difference between the intensities, that is

Eeff = arg min
Eeff

∫
|IEi→Ej (x)− IEeff

(x)|dx, (71)

where the limits of the integral are defined to include the profile of the sample. In practice, the

integral was applied as a sum that ran over the discrete elements of the profile. The value of Eeff

was updated until the cumulative difference reflected a 99.5 % match between the monochromatic
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and polychromatic profiles.

5.5.3 Analyzing the influence of the weak-object approximation

Figures 33a shows the average percent error obtained from the measurements of the Al rod sur-

rounded by air after correcting spectral distortions. The errors were between ∼ 3 to ∼ 15 times

lower than in Fig. 32a, where spectral distortions were not corrected. Furthermore, the errors re-

main below ∼ 5 % in all cases, averaging 4.4± 0.5 %. Although a decrease with increasing energy

was anticipated, the opposite was true in our results. This unexpected trend could have resulted

from the interplay between variations in data quality and some unintentional consequences of the

processing described in Sec. 5.5.1 and 5.5.2.

(a) Al in Air (b) Al in H2O

(c)

Figure 33: (a) Error in the retrieved thickness of the Al rod surrounded by air after
spectral correction was applied to the data. (b) Error in the retrieved thickness of the
Al rod submerged in water after spectral correction. (c) Relative change between the
average percent errors found after applying wPR to the bins with air in the background,
(a), and the errors found after substituting the background with water, (b).
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To elaborate on our interpretation of the trend in Fig. 33a, first recall that our strategy to

mitigate spectral distortions ensures a close agreement between the corrected intensity values and

those predicted by Eq. 70. Also, each intensity in the numerator of Eq. 70 is found with the full

TIE (Eq. 61). Our scheme to estimate Eeff aims to ensure that one can treat the corrected data

as a monochromatic measurements with an accuracy of at least 99.5 %. Ideally, after these two

steps, the errors from the experimental data should conform with the analytical results in Sec. 5.2.

In practice, however, factors like noise and source-induced blurring will introduce additional errors

that are not accounted for in this study.

The results for the Al rod submerged in water, shown in Fig. 33b, also fail to show a trend that

decreases with increasing energy. Interestingly, a comparison with Fig. 33a reveals improvements

in the accuracy, which agrees with our analytical prediction. This encouraging outcome emerged

despite the data with water in the background having lower SNR. Figure 33c shows the change

in the error after replacing air with water as the background material, in which a negative value

indicates a reduction in the error. Aside from the bin at 34.4 keV, which shows a slight (< 0.1

%) increase in the error, every bin shows more than 0.4 % improvement. Also, higher energy bins

appear to benefit the most.

5.5.4 Analysis of the phase-attenuation duality and homogeneous approximations

Since the PAD-PR equation estimates the projected electron density, ρp[=
∫
ρe(r⊥, z)dz], the thick-

ness of the rod was found using

ρp = ρ(1)
e A+ ∆ρeT

(2)(r⊥) −→ T (2) =
1

∆ρe

[
ρp − ρ(1)

e A
]
. (72)

This PR scheme is intended to work with materials having effective atomic numbers below 10,

which is not met in our case since Al has an atomic number of 13. Even when the condition for

the atomic number is satisfied, the energy of the X-rays is expected to be higher than 60-keV [51].

A more specific, but related, requirement is to use an energy where Compton scattering accounts
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for more than 90 % of the sample’s total LAC. For Al, Compton scattering constitutes ∼ 80 % of

the LAC at 100 keV, which is well above the highest bin in Table 5.

Perhaps as expected from the PAD-PR requirements, the errors in Fig. 34a and 34b are signifi-

cantly higher than those found using Eq. 68. The trends in both plots resemble the one influenced

by spectral distortions (Fig. 32a). This results because the assumptions in PAD-PR become more

valid with increasing energy and thus the estimated thickness becomes more accurate. Additionally,

unlike the results in Fig. 33, using water as the background material led to higher errors.

(a) Al in Air with PAD-PR (b) Al in H2O with PAD-PR

(c) Al in Air with hPR (d) Al in H2O with hPR

Figure 34: (a) Error in the retrieved thickness of three sets of spectroscopic measure-
ments. The measurements in each set were chosen to have nearly equal SNR. The size
of each point is related to the size of the energy bin corresponding to the measurement.
(b) Error in the retrieved thickness after implementing spectral correction.

Figure 34c and 34d show the results corresponding to the hPR equation for data with air and

water as the background material, respectively. The former shows the most accurate estimates of
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T (r⊥) in this study. This is likely due to the fact that the hPR equation and Eq. 68 are Fourier-

transform analogs if one assumes a single-material object in the latter. Therefore, the hPR equation

can be viewed as an exact inverse to the Al rod in air data processed with the steps described in

Sec. 5.5.1 and 5.5.2.

The hPR was far less successful for the case of two materials (Fig. 34d). As described in Sec. 5.3,

the average properties of the two materials were used to recover the projected thickness with hPR.

The sample was treated as a slab with a constant thickness of 1.53 cm and the average percent

error was calculated over the area of the image containing the projection of the rod. When the

properties of the rod approach those of the background material (i.e. a homogeneous phantom),

the error found in this way should decrease to a minimum.

Figure 35: Average percent error in the projected thickness of the Al rod after using
the two-material PR equation (Eq. 81 in Appx. A) on our data with water in the
background.

Highly accurate results for the data of the rod surrounded by water can be obtained with the

PR algorithm proposed by [84]. Similar to how the homogeneous PR in [50] represents the “exact”

solution to a single-material phantom (i.e. Al surrounded by air), the two-material PR in [84] is

the exact inverse of the experimental two-material phantom (e.g. Al submerged in water). In other

words, the two-material phase retrieval in [84] is the Fourier-transform analog of Eq. 63 without

any further simplifications. Fig. 35 shows the errors obtained after applying the two-material PR

equation to our data with Al surrounded by water. These results show the lowest errors achieved

for this phantom.
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To conclude, both Fig. 33a and 34c show trends with energies that are clearly similar. Since

the algorithms are fundamentally different, the similarities in the two error trends may support

the view that they are caused by characteristics of the data, like differences in SNR and others not

considered here. We also acknowledge that the results in Fig. 34d are somewhat arbitrary since the

material properties could have been defined in a way different than Eq. 64. Finally, errors in Fig. 34c

are lower than those in Fig. 35, even though the two were processed with PR algorithms based on

“approximation-free” versions of the TIE. The opposite was observed for the data processed with

the wPR (Fig. 33a and 33b). These trends could be evidence that reducing the material contrast

benefits the weak object approximation.

5.6 Summary and conclusions

This section discussed how the weak object approximation can influence PR algorithms that rely on

its accuracy. A good example is the algorithm presented in Sec. 3.1. Unlike the PR techniques tested

here, the algorithm in Sec. 3.1 can handle more than three materials and does not require prior

knowledge of the sample properties. In Sec. 5.1, an analytical representation for the weak object

approximation was derived and analyzed for its validity. To achieve this, we assumed a two-material

object built with basic shapes and invoked the projection approximation. Our analysis produced

an explicit relationship between the approximation and the properties of the object, namely the

thickness and LAC. Our results demonstrate how this approximation becomes less valid when the

thickness of the object and/or the contrast between the LAC of the object and the background

material increases.

When the TIE is modified with a simplifying assumption, the predicted intensity can deviate

from that of the “full” or “approximation-free” TIE. If we consider the full TIE as an accurate

description of the physics governing the formation of phase contrast images, then learning how

approximations modify the intensity can aid in understanding some of the errors in PR because PR

algorithms are generally derived as inverses to simplified-versions of the TIE. In Sec. 5.2, this logic

was used to conduct a numerical analysis of the intensities predicted by the TIE with and without
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the weak object approximation. The results showed that reducing the difference between the LAC

of the object and the background was beneficial and led to a smaller discrepancy between the

intensities. A less intuitive result indicated that increasing the object’s thickness can lead to lower

errors in PR because attenuation contrast, which becomes increasingly dominant as the thickness

grows, is properly described by the TIE even after enforcing the weak object approximation. These

results corroborate the fact that PB-PCI is most effective for small and poorly-absorbing objects.

In these cases, phase-related effects can be more relevant, and differences between the measured

intensity and the intensity expected after enforcing the weak object approximation will become

more influential.

In this work, the impacts of homogeneous [50] and phase-attenuation duality [51] assumptions

on PR were also considered. These approximations are used to derive the two most popular PR

techniques today and thus have been extensively scrutinized in the literature [49]. Therefore, our

findings are viewed as additions to the existing body of work. We tested these two approximations

using existing algorithms with experimental data collected in our laboratory. For the weak object

approximation, we derived a new PR algorithm with it as the only simplification to what we

considered the full TIE (Eq. 61).

Our measurements were collected using an object built to closely resemble the phantom in

Sec. 5.2. The object was imaged in a PB-PCI geometry using a microfocus X-ray source and a

photon counting detector. Because of the similarities between the physical and numerical phantom,

evidence of the trends was expected to be obtained in our numerical analysis. However, the results

showed that errors introduced by spectral distortions dominated and were likely masking other

trends. We mitigated spectral distortions with the steps described in Sec. 5.5.1 and 5.5.2, which

ensured that our measurements conformed with the full TIE (Eq. 61).

Upon applying the wPR equation to the corrected data and analyzing the error in T (r⊥),

the expected improvements with increasing energies were absent. A possible explanation may be

that errors introduced by unaccounted factors, including source-induced blurring and differences in

data quality, were more significant. Interestingly, the errors decreased after reducing the contrast
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between the target and background material. In particular, improvements were seen after changing

the background from air to water, which agrees with our analytical prediction. In general, our

findings show that PR algorithms enforcing the weak object approximation can recover material

properties with high (> 95%) accuracy.

The errors from the PAD-PR equation were more predictable. The assumption that the LAC can

be properly described by only considering Compton scattering becomes more valid with increasing

energy, which leads to smaller errors. The relatively large magnitude of the errors can be explained

by the properties of our sample. We used a target sample composed of Al, which has an atomic

number of 13 and falls above the value of 10 recommended for PAD-PR. Also, the effective energies

of our measurements are all below ∼ 60 keV, where Compton scattering accounts for only ∼ 50 %

of the total LAC.

Not surprisingly, the hPR algorithm produced exceptionally low errors for the single-material

variation of our phantom (Al surrounded by air). Although we worked with experimental data, our

processing forced measurements of our single-material phantom into a form for which hPR was close

to an exact inverse. This was confirmed by processing our data with water in the background using

the algorithm proposed by [84]. This, in principle, can be tuned to represent the exact inverse of

the two-material phantom data. In both cases, the lowest errors were obtained for their respective

phantoms. Not surprisingly, the hPR equation gave large errors for the case of the two-material

phantom.

In future studies an effort should be made to ensure a nearly constant quality across all of the

measurements. Furthermore, the noise should be pushed to the lowest practical level by acquiring

for longer times. Source-related blur may be accounted for with a strategy similar to the one

presented in [91]. Finally, more variations of target-background materials can help support our

findings.
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6 Conclusions

As demonstrated in this work, X-ray phase-contrast (PC) images can be collected with micro-focus

polychromatic sources and energy-resolving detectors. The enhanced contrast inherent to these

images can benefit tasks where the goal is to distinguish materials with similar properties. Such

materials are generally difficult, or impossible, to differentiate with conventional (absorption-based)

techniques.

A capable phase retrieval (PR) algorithm is needed to characterize materials using PC images

since PC images provide limited quantitative information. To this end, our team proposed a spectral

phase retrieval (SPR) technique, c.f. Sec. 3.1. This work demonstrates how this PR method can

help discriminate materials in heterogeneous samples. Our results show exceptional quantitative

accuracy. For this reason, we believe that a possible application for our method would be the

quantitative imaging of soft tissue.

One of our primary objectives was to understand how the SPR technique is influenced by

factors such as noise, errors in user-inputs, and the breakdown of approximations made during its

derivation. With theoretical and computational analyses, we uncovered how noise was amplified

in the retrieved quantities. This allowed us to propose, and subsequently investigate, strategies

to mitigate noise. We also discovered the effect of misrepresenting the energy of measurements

during PR and saw evidence of the impact that detector-related spectral distortions can have on

our estimates.

A major characteristic of our PR method is the ability to decompose spectral PC measurements

into a pair of material-basis [6]. Material-basis decomposition is not new. It was first proposed

in the late 1970s for conventional contact imaging, and its advantages are well documented in the

literature. These include the ability to mitigate beam-hardening artifact and virtual removal of

contrast agents. What our method effectively achieves is an extension of this powerful technique to

propagation-based phase-contrast imaging (PB-PCI). In doing so, and as validated here, it gives a

way to handle materials with higher degrees of heterogeneity than other popular alternatives.
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Moving forward we will systematically increase the complexity of our samples. Our first focus

will be the treatment of highly heterogeneous samples, that is samples with some constituent

materials covering a wide range of effective atomic numbers. We will also concentrate on expanding

our findings into phase-contrast computed tomography.
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A Two-material Phase Retrieval: Derivation for Point-Sources

An extension of the popular of the popular homogeneous PR equation [50] was proposed by [84]

and is given here for completeness. The reader may view this appendix as complementary to the

material in Sec. 5. We also show how the two-material PR equation reduces to the homogeneous PR

under the assumption of a single material, which means that the derivation applies to both results.

The original works, that is [50] and [84], contain details beyond those presented here, including

mentions of all simplifying assumptions. Another related work is [92], where the two-material

algorithm is carefully derived.

Consider a three-component object for which the complex index of refraction can take one of

three values, namely

n =



1− δ(1)
E + iβ

(1)
E inside material–1

1− δ(2)
E + iβ

(2)
E inside material–2

1 otherwise,

(73)

where δ and β are defined in Sec. 1.2. The subscript E is used to imply an energy dependence

while the superscript “(j)”, with j ∈ {1, 2}, is used to differentiate between the two materials.

As in Sec. 5.1, let the combined projected thickness, T (r⊥), of material–1 and material–2 satisfy

A(r⊥) = T1(r⊥) + T2(r⊥) ≈ constant. Under the validity of the projection approximation we can

write the intensity and phase at the exit plane (z = 0) as:

IE(r⊥, 0) = I in
E exp

{
−µ(1)

E A−∆µET
(2)(r⊥)

}
(74a)

and

ϕE(r⊥, 0) = −kE
[
δ

(1)
E A+ ∆δET

(2)(r⊥)
]
, (74b)

respectively [12]. Here we have that ∆δE = δ
(2)
E −δ

(1)
E and ∆µE = µ

(2)
E −µ

(1)
E while kE represents the

wavenumber. Note that, since A(r⊥) ≈ constant, the spatial dependence was excluded. Inserting

85



these definitions into the TIE (c.f. Sec. 2.2.3) and rearranging the terms we get

−kE
∂

∂z
IE(r⊥, z)

∣∣∣∣
z=0

= I in
E exp

{
−µ(1)

E A
}

∆δE∇⊥ ·
[
exp
{
−∆µET

(2)(r⊥)
}
∇⊥T (2)(r⊥)

]
(75)

From the identity (−∆µE)−1∇⊥ exp
{
−∆µET

(2)(r⊥)
}

= exp
{
−∆µET

(2)(r⊥)
}
∇⊥T (2)(r⊥) and us-

ing ∇⊥ ·∇⊥ = ∇2
⊥ it follows that Eq. 75 can be written as:

−kE
∂

∂z
IE(r⊥, z)

∣∣∣∣
z=0

= −I in
E exp

{
−µ(1)

E A
}∆δE

∆µ
∇2
⊥ exp

{
−∆µET

(2)(r⊥)
}
. (76)

The z-derivative on the left-hand side of Eq. 76 can be expanded using a finite difference

approximation, which is appropriate in the near-field regime, so that:

IE(r⊥, R2)− IE(r⊥, 0)

R2
= −I in

E exp
{
−µ(1)

E A
}∆δE

∆µ
∇2
⊥ exp

{
−∆µET

(2)(r⊥)
}
, (77)

where R2 is the separation (measured along the z-axis) between the illuminated object and the

detector. Inserting the definition of IE(r⊥, 0) given by Eq. 74a and rearranging the results, we get

that

exp
{
µ

(1)
E A

}IE(r⊥, R2)

I in
E

=

[
1−R2

∆δE
∆µE

∇2
⊥

]
exp
{

∆µET
(2)(r⊥)

}
. (78)

Until now, the formalism only considers planar radiation, for example X-rays due to a point

source an infinite distance away from the illuminated object. Luckily, some trivial substitutions [12]

are all that is needed to properly account for a point source some finite distance R1 away from the

object. Namely, if we let ξ[= Mr⊥] represents the coordinates at the detector-plane, then:

exp
{
µ

(1)
E A

}IE(ξ, R2)

I in
E

=

[
1−MR2

∆δE
∆µE

∇2
⊥

]
exp
{

∆µET
(2)(ξ/M)

}
. (79)

where M [= 1+R2/R2] is the geometrical magnification factor [53]. Please note that here we assume

IE(ξ, R2) and I in
E to be measured at the detector-plane.
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From the properties of the Fourier transform, we can represent Eq. 79 in ν-domain as [50]

F
{

exp
{
µ

(1)
E A

}IE(ξ, R2)

I in
E

}
=

[
1 +MR2

∆δE
∆µE

|ν|2
]
F
{

exp
{

∆µET
(2)(ξ/M)

}}
, (80)

where ν are the frequency coordinates conjugate to ξ. After rearranging and applying the inverse

Fourier transform, the thickness of material–2 is given by:

T (2)(ξ/M) = − 1

∆µE
lnF−1


F
{
I(ξ, R2)

I in
E

exp
{
µ

(1)
E A

}}
MR2|ν|2

∆δE
∆µE

+ 1

 (81)

A.1 Homogeneous phase retrieval equation

The steps outlined above lead to the homogeneous PR equation [50] if all quantities related to

material–1, that is δ(1), µ(1), and T (1), are zero. Namely, if we substitute µ(1) = 0 along with

∆δE = δ
(2)
E and ∆µE = µ

(2)
E into Eq. 81, then

T (ξ/M) = − 1

µE
lnF−1


F
{
I(ξ, R2)

I in
E

}
MR2|ν|2

δE
µE

+ 1

 , (82)

where the superscript “(2)” was dropped. Both equations, 81 and 82, require prior knowledge of

the complex refractive index of the sample to give accurate results.
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B Hybrid Phase Retrieval

The aim of this appendix is to describe a two-step (or hybrid) phase-retrieval approach, dubbed

hyPR, to estimate the projected electron density (a2) and the energy-independent part of the

photoelectric absorption (a1). Although these quantities can be recovered with the algorithm

presented in Sec. 3.1, the workflow here gives results with better quality. A drawback of hyPR,

however, is the potential for results that are highly subjective. Namely, the workflow allows for

four stages of filtering and the choices of implementation can vary substantially between different

users. Yet, it is possible to implement the workflow without any user-inputs, but this may only lead

to marginal improvements in some cases. Another option to minimize user-bias is a data-driven

approach where each filtering stage is only influenced by the standard deviation of the noise in the

input data.

a1

Smoothing

SPR

PAD-PR

a2 ∇2a2Laplacian
Operator

Solve for PE 
term

DenoisingDenoising

Bin 0Bin 0Bin 0
Lowest 
energy

Denoising

Bin N
Highest 
energy

Bin 0Bin 0Bin 0
Lowest 
energy

Bin 0
Lowest 
energy

Or

Figure 36: Hybrid phase retrieval workflow. In the first step a2 is estimated. Next
a numerical Laplacian operation is used to obtain approximate ∇2a2. Finally, the a1

term is estimated from one or multiple bins. A series of optional denoising steps as
well as a final smoothing of a1 can be applied to improve the result.

A breakdown of the hyPR workflow is shown in Fig. 36. The first step involves using the spectral

phase retrieval (SPR) algorithm of Sec. 3.1 or the phase-attenuation duality (PAD-PR) technique

proposed by [51], see Sec. B.1. An advantage of the latter is higher resilience to noise when only a

pair of spectroscopic measurements is available. This is related to the fact that applying PAD-PR

is analogous to applying a low-pass filter. As a consequence, hyPR with PAD-PR may be better

suited for dual-energy applications. We will elaborate on this claim in a later part of this appendix.

The second step of the hyPR workflow involves the calculation of the Laplacian of a2, which
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can be done in space- or frequency-domain. The space domain approach involves a convolution

with the kernel

kL = ∆−2


0 1 0

1 4 1

0 1 0

 , (83)

where ∆ is the detector pitch. This is equivalent to using a mid-point finite difference approximation

to the second derivative twice, once for each coordinate direction.

The Laplacian operator can be preceded (and followed) by the application of edge-preserving de-

noising. The current method of choice is the BM3D routine, which is briefly described in Sec. 3.4.2.

As previously shown, see Sec. 3.4.2, this sophisticated routine provides a capable denoising strategy

with excellent preservation of edges and sharp signals [60]. Also, the only input required by this

algorithm is the standard variation of the noise in the data, which is estimated inside of an ROI

defined by the user.

The third non-optional step involves solving for a1 and it requires two inputs: the Laplacian

of a2 and one (or more) energy bin(s). It is possible, at least in principle, to estimate a1 with the

same bin used to estimate a2 with PAD-PR. Although this approach was not tested, we expect the

resulting a1 term to display an unacceptable level of noise. In space-domain, the a1 term is found

using:

a1(ξ/M) =
1

fp(Ei)

[
d(ξ, Ei)− fc(Ei)a2(ξ/M) + fpc(Ei)∇2a2(ξ/M)

]
, (84)

where fpc[= MreR2h
2c2/2πE2] is the energy dependence of the phase contrast term, see Eq. 61–63.

The term d(ξ/M ;Ei) represents the negative natural log of the flat-field corrected input bin with

effective energy Ei and the functions fc(Ei) and fp(Ei) are defined in Sec. 1.1.1. Note that it is

possible to denoise d(ξ, Ei) prior to solving for a1.

After applying Eq. 84 we obtain an estimate of a1. If the quality of the resulting a1 term is not

satisfactory, then the term can be convolved with a smoothing kernel. Currently, the only option

for this is Gaussian smoothing. Like the BM3D denoising filter, the Gaussian kernel only needs

the specification of a standard deviation, which can be defined to be equal to the the standard
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deviation of the noise in the data.

Figures 37 show the pLAC reconstructed with the a1 and a2 terms, see Eq. 34, found using

the HyPR workflow. Each image shows a graphite (left) and a POM (right) rod. The pLAC were

calculated for energies of 20, 50, and 80 keV. This allows us to visualize a region where PE (or

a1) dominates the pLAC, i.e. at 20 keV, as well as a region where CS (or a2) is the dominant

term. The first row corresponds to the path in the workflow without denoising or smoothing, see

Fig. 36. For the second row, every filter was used and the standard deviation of the noise was found

automatically using an ROI on the air region to the left of the first rod. The last row shows the

result of making user-defined choices at every filtering stage. While the first two rows are virtually

independent of use-input, the last row represents one of many possible outcomes.

20 keV 50 keV 80 keV

Figure 37: Projected linear attenuation coefficients of graphite (left) and POM (right)
rod estimated from outputs of the HyPR workflow. The first row shows the result of
not using any denoising or smoothing. The second row shows the result of applying
denoising and smoothing based on the standard deviation of the noise in the input data
at each filtering stage. The images in the last row were found using user-defined values
for the standard deviations.

B.1 Phase-attenuation duality algorithm

The main assumption in the phase-attenuation duality algorithm is that the phase and the linear

attenuation can both be written in term of the projected electron density at the object plane [51].
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In particular, this means that the intensity can be written as:

IEh
(r⊥, 0) ≈ I in

Eh
exp{−ΦEh

a2(r⊥)} (85)

where ΦEh
is the Klein-Nishina function and Eh is an energy above 60 keV. If the phase is defined

as ϕEh
(r⊥) = −reλEh

a2(r⊥) and the steps outlined in Appx. A are followed, it can be shown that

a2(ξ/M) = − 1

ΦEh

lnF−1


F

{
IEh

(ξ, R2)

I in
Eh

}

1 +
MR2h

2rec
2

2πE2
hΦEh

|ν|2

 . (86)

Here re is the classical electron radius, h is Plank’s constant, and c is the speed of light in vacuum.

All other variables have definitions given in Appx. A. For Eq. 86 to be accurate, it is expected that

the components of the sample of interest will have effective atomic numbers below 9.
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C Simulation Framework for PCI Measurements

In this work, PCI measurements were simulated using two approaches. For measurements that

exactly matched the values expected by the spectral PR method of Sec. 3.1, we used its conjugate

forward model. In other words, we simulated the intensity as

IE(Mr⊥) = I in
E exp

{
k

Em
ZnρeT (r⊥) + ΦEρeT (r⊥)−

h2c2reR2

2πME2
∇2
⊥ρeT (r⊥).

}
(87)

Note that this equation assumes a homogeneous object with a projected thickness given by T (r⊥)

and requires knowledge of several material-dependent constants. In particular, we had to specify

ρe, Z, k, n, and m.

While the values of Z and ρe can be found in standard tables, the same is not true for the

constants in the PE term, i.e. k, n, and m. However, it is possible to estimate these constants by

minimizing the difference between the PE model in Eq. 87, i.e.

τE =
k

Em
Znρe, (88)

and the tabulated values for the PE contribution to the pLAC in the NIST (or similar) database.

The model in Eq. 88 can be linearized by computing the natural log of both sides such that

ln τE − ln ρe = ln k −m lnE + n lnZ. (89)

It follows that estimates of k, n, and m can be found by minimizing the cost function

J(m,n, k) =
1

2m

m∑
i=1

[
(ln k −m lnEi + n lnZ)−

(
ln τST

Ei
− ln ρST

e

)]2
, (90)

where the superscript ST is used to indicate values from standard tables.

We minimized Eq. 90 for PS, PMMA, POM, water, and PTFE. Table 6 lists the resulting

constants along with tabulated values for ρe, Z, and the mass density ρm. The material are listed
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in increasing order relative to their Z value. The exponents of the energy, m, are in excellent

agreement with the findings in [9], where m = 3.30 for Carbon-based substances. To test our

simulation approach, we implemented SPR with two or more simulated noise-free measurements

of different energies. In every case, and irrespective of our particular choices of energies, we found

virtually zero error between the expected and retrieved properties.

Material k m n ρ∗e [e/cm3] Z∗ ρ∗m [g/cm3]

PS 2.75× 10−22 3.33 2.23 3.40× 1023 5.70 1.050
PMMA 5.89× 10−23 3.30 3.12 3.83× 1023 6.47 1.180
POM 2.28× 10−23 3.29 3.61 4.52× 1023 6.95 1.410
Water 9.17× 10−24 3.29 4.05 3.34× 1023 7.42 0.997
PTFE 1.39× 10−24 3.27 4.87 6.36× 1023 8.43 2.200

Table 6: Constants for the PE model found by minimizing Eq. 90 along with tabulated
material properties. All properties marked with an asterisk correspond to tabulated
properties.

The second type of simulations used in this work is described in Sec. 5. Unlike Eq. 87, which

was found from a simplified version of the TIE, the simulation equation in Sec. 5, i.e. Eq. 61, is

obtained from the full TIE in the near-field regime. Nevertheless, the properties of the objects

simulated with Eq. 61 must satisfy several restrictive conditions. For example, the sample can be

composed of at most two different materials and each component must have a simple shape with a

simple representation.

C.1 Simulating noisy data

Noise was added to our simulated data using a pseudo-random number generator with values

distributed according to a Poisson distribution. A Poisson distribution is completely described

with a single value corresponding to its mean, which also defines the variance. Thus, we used the

intensity at each pixel as the mean of a Poisson probability density function and realized a new

(random) value. To make the noise in our simulations reflect the energy-dependence observed in

experimental data, we simulated a realistic X-ray spectrum [90] and used the counts at each energy

to define the counts of the incident (flat) fields.
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Figure 38 shows three noisy mono-energetic PCI measurements simulated with the approach

outlined above. The X-ray spectrum used to estimate the counts in the flat-field is also shown.

Polychromatic measurements, i.e. those corresponding to bins wider than one keV, were simulated

as the weighted sum of monochromatic measurements contained in the bin, where the weights were

defined using the counts in the flat-field.
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Figure 38: Three flat-field corrected monochromatic measurements simulated at dif-
ferent energies and displaying unique amounts of noise. The noise is Poisson dis-
tributed.
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D Spectral correction

We implemented a simulation-based approach to improve the accuracy of the recorded intensity

values, which were affected by spectral distortions and other sources of error. In our case, spec-

tral distortions were primarily caused by detector-related effects like charge sharing, K-escape,

and pulse-pileup [70, 89]. Evidence of beam-hardening was also observed. Like detector-related

distortions, beam-hardening is also an energy-dependent phenomena.

Bin projected data

Simulate 1D TIE 
response

Fit correction 
coefficients with 
smooth functions

Create 2D 
correction matrix

Multiply data with 
correction matrix

Project data to 1D 
axis

Calculate correction 
coefficients

Figure 39: Workflow used to correct spectral distortions.

The “spectral correction” approach is outlined in Fig. 39. The first step is to obtain an accurate

1-D representation of the 2-D data, which is achieved with the “reprojection” method proposed

by [93]. Next, a 1-D PCI response is simulated in space-domain with the exact TIE equation

(Eq. 61–63). This is possible because of the simple shape of the phantoms. A related, but more

general, spectral correction approach is proposed in [88].

After the simulation, a set of coefficients characterizing the mismatch between the 1D repre-

sentation of the data and the simulated PCI response are computed as the ratio of the two. Since

the coefficients reflect the noise in the data, we fit them with a smooth function. The choice of

fitting function depends on several factors. For example, some low-Z materials have nearly constant

correction coefficients that can be properly represented with lines. On the other hand, materials

like aluminum can require piecewise functions to properly account for the differences in the correc-

tion coefficients of the air and sample regions. A possible explanation for this is beam-hardening.

Namely, thin materials with low-Z will not introduce significant distortions so that the errors in

the air and material regions are similar. By contrast, the relatively high attenuation of Al makes it

more prone to beam-hardening and the variations in flux between the air and material region can

be substantial.
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The final two steps involve creating a correction matrix and, subsequently, applying the correc-

tion matrix to the data. The information obtained during reprojection is used to achieve this. In

particular, the fitted coefficients are analyzed at the (non-uniform) position of every pixel along the

1-D reprojection axis. The coefficients corresponding to every pixel position are then multiplied by

the original intensities to obtain a better match of the simulated data. The use of smooth coeffi-

cients minimizes the influence of our approach to the noise texture in the original data. We also

ensured that changes at material boundaries were minimal by disallowing significant corrections at,

and in close proximity to, the edges of the rods.

Figure 40 shows two low-energy (24 and 26 keV) bins of an Al and PMMA rod before and after

spectral correction. The workflow in Fig. 39 was used to correct the original. As the appreciable

difference between the original and corrected profile in Fig. 40a shows, the Al rod at this energy

was subject to severe spectral distortions. Interestingly, distortions along the profile of the PMMA

rod were minimal.

(a) Al at ∼ 24 keV (b) PMMA at ∼ 26 keV

Figure 40: (a) Original and corrected profile of a PCI measurement of an aluminum
rod. The measurement corresponds to an effective energy of 24 keV. A dashed line
shows the expected response for a bin bounded at the same energy values. (b) Original
and corrected profiles of a PMMA bin having an effective energy of 26 keV.

The method here is specific to the samples used we used. Nevertheless, the underlying approach

achieves the same objective as the popular method in [88]. Namely, distorted intensity values

are transformed into more accurate representations agreeing with those predicted by the relevant

physical model. In their work, [88] use Beer’s law to predict accurate intensity values. Here we

used the TIE, which is more proper for PCI measurements. The results in Sec. 5.5.2 support the

effectiveness of the spectral correction scheme described here.
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E Noise Power Spectrum

The noise power spectrum (NPS) gives the spectral decomposition of the noise in an image, which

conveys the noise power at each frequency [4]. Figure 41 illustrates the workflow used to obtain the

NPS results shown in this work. This method of estimating the NPS is a 2-D extension of Welch’s

method for spectral density estimation [94].

Select ROIs Subtract Mean 
from Each ROI

Apply windowing 
function

Radial Average

Estimate 2D Power 
Spectrum

Figure 41: Workflow used to estimate the noise power spectrum.

In the first step, a set of overlapping ROIs are defined. For this, the user must define three

parameters: the number, the size, and the overlap percentage of each ROI. Next, the mean value of

each ROI is found and subtracted from the enclosed pixels. Spatial tapering windows are applied

to each ROI in the third step. A common choice is the Hanning window, which is used in this

work. Finally, the 2-D power spectrum of each tapered ROI is estimated and, in turn, the radial

average of the combined results is found. This end product is a 1-D representation of the NPS.
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F Strategy to Estimate the Effective Energy

The aim here is to describe a strategy that gives a highly accurate estimate of the effective energy

of non-monochromatic measurements (or bins). Non-monochromatic refers to measurements corre-

sponding to X-ray energies ranging over regions of more than one keV. A common way to define the

effective energy of a bin is with the average energies that correspond to the bin. Another common

and, as we will show, more accurate method is to use the weighted average. In practice, however,

this requires knowledge of the source’s spectrum to define the weights. The method advocated

here is a simulation-based method applicable to PCI measurements and it produces results more

accurate than the weighted-mean approach.

(a) (b)

(c) (d)

Figure 42: (a) Polychromatic measurement (dashed line) simulated for an energy
bin covering the shaded region in (b). A red and blue curve indicate the monochro-
matic measurements found with the average and the weighted-average energy of the
bin, respectively. (b) Simulated source spectrum and the region used to estimate (a).
(c) Measurements for a narrower polychromatic bin. (d) Bin used to estimate the
polychromatic measurement in (c).

Figures 42a and 42c show the flat-field corrected intensities simulated using the full TIE (see

98



Sec. 5.1) for a broad and a narrow bin, respectively. We indicated the simulated measurement

using a dashed line in conjunction with the label “Poly”. A clear depiction of the simulated source

spectrum used as well as the regions matching each of the polychromatic measurements is given

in Fig. 42b and 42d. From Fig. 42a and 42c we see that the effective energy found as a weighted

average was more accurate in both cases. Perhaps not surprisingly, the average and weighted-

average strategies are less accurate when the bin is wider. On the other hand, the monochromatic

response for the weighted average is almost equal to the polychromatic measurement when the bin

width was 10 keV. The results support the use of narrow bins for ether strategy, especially if the

weighted-average can be used.

To improve the accuracy of the effective energy, a monochromatic measurement can be simu-

lated and compared to the polychromatic response. Through an iterative approach, the mismatch

between the polychromatic and monoenergetic profiles can be minimized until it falls below a desir-

able value. Fig. 43 shows this strategy in action. In this case, the initial prediction of the effective

energy was 72 keV, which corresponded to 30 % error. The algorithm updated the energy five times

until the error was 1 %.

Figure 43: Estimating the effective energy iteratively. The error at each iteration is
indicates with ε.
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