
 

 
Assessing Common Method Bias: Problems with the ULMC Technique
Author(s): Wynne W. Chin, Jason Bennett Thatcher and  Ryan T. Wright
Source: MIS Quarterly, Vol. 36, No. 3 (September 2012), pp. 1003-1019
Published by: Management Information Systems Research Center, University of Minnesota
Stable URL: https://www.jstor.org/stable/41703491
Accessed: 25-06-2019 17:14 UTC

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

https://about.jstor.org/terms

Management Information Systems Research Center, University of Minnesota is
collaborating with JSTOR to digitize, preserve and extend access to MIS Quarterly

This content downloaded from 129.7.159.95 on Tue, 25 Jun 2019 17:14:39 UTC
All use subject to https://about.jstor.org/terms



 Qfteriy
 Assessing Common Method Bias:

 Problems with the ULMC Technique1

 Wynne W. Chin
 C. T. Bauer College of Business, University of Houston, Houston, TX 77204, U.S.A., and Department of

 Service Systems Management and Engineering, Sogang University, Seoul, KOREA {wchin@uh.edu}

 Jason Bennett Thatcher

 College of Business and Behavioral Science, Clemson University,

 Clemson, SC 29634-0701 U.S.A. {jthatch@clemson.edu}

 Ryan T. Wright
 Isenberg School of Management, University of Massachusetts, Amherst,

 Amherst, MA 01003 CA 94117 U.S.A. {rtwright@isenberg.umass.edu}

 Recent work, in journals such as MIS Quarterly ^¿/Management Science, has highlighted the importance of
 evaluating the influence of common method bias (CMB) on the results of statistical analysis. In this research
 note, we assess the utility of the unmeasured latent method construct (ULMC) approach in partial least squares
 (PLS), introduced by Liang et al (2007). Such an assessment of the ULMC approach is important, because
 it has been employed in 76 studies since it appeared in MIS Quarterly in early 2007. Using data generated via
 Monte Carlo simulations, we use PLS structural equation modeling (SEM) to demonstrate that the ULMC
 approach of Liang et al. is neither able to detect, nor control for, common method bias. Method estimates
 using this approach resulted in negligible estimates, regardless of whether there were some, large, or no
 method bias introduced in the simulated data. Our study contributes to the IS and research methods literature
 by illustrating that, and explaining why the ULMC approach does not accurately detect common method bias
 in PLS. Further, our results build on prior work done using covariance-based SEM questioning the usefulness
 of the ULMC technique for detecting CMB.

 Keywords: Common method bias, unmeasured latent method construct, partial least squares, structural
 equation modeling

 1 Chris Higgins was the accepting senior editor for this paper. Andrew Burton-Jones served as the associate editor.

 The authors contributed equally and therefore were listed alphabetically.

 The appendices for this paper are located in the "Online Supplements" section of the MIS Quarterly's website (http://www.misq.org).
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 Introduction

 Papers often offer both theoretical and methodological con-
 tributions to the Information Systems (IS) literature. This
 includes the introduction of new frameworks, which con-
 tributes to theory. For example, Davis' (1989) introduction of
 the technology acceptance model also drew attention to the
 theory of reasoned action as a framework. Papers contribute
 to methods when they offer guidelines for, or serve as
 exemplars of, how to conduct analysis. Davis's work provided
 an example of how to validate new construct measures (e.g.,
 perceived usefulness and perceived ease of use). By making
 contributions to theory and methods, papers reshape how we
 theorize about information systems while also demonstrating
 how to assess the strength of the theory's ability to describe
 reality.

 Recently, MIS Quarterly published a paper by Liang et al.
 (2007) that offered a contribution to our understanding of
 enterprise systems. In terms of theory, the paper explained
 how institutional forces interplay with top management to
 shape post-implementation assimilation of enterprise systems
 by organizations. Due to its theoretical implications, the
 findings of Liang et al. have been cited in conference pro-
 ceedings such as the International Conference on Information
 Systems, articles in journals including MIS Quarterly,
 Information Systems Research, and Management Science, and
 in several dissertations (see Appendix A).

 What is notable about the work of Liang et al., not unlike
 Davis's early work, is that the paper's reach has extended to
 shape methods employed to detect common method bias
 (CMB). Drawing on Podsakoff et al. (2003) and Williams et
 al. (1989), Liang et al. introduced an ad hoc unmeasured
 latent marker construct (ULMC) approach that uses partial
 least squares (PLS) structural equation modeling (SEM) to
 detect and control for the influence of common method bias

 on analysis. CMB is systematic variance attributable to com-
 mon measurement artifacts that alter (e.g., inflate or deflate)
 correlations in the underlying constructs (see Burton-Jones
 2009; Liang et al. 2007; Malhotra et al. 2006; Murphy et al.
 2004; Podsakoff et al. 2003; Sharma et al. 2009). ULMC is
 one method in the family of techniques used to control and/or

 detect CMB (Lindell and Whitney 2001; Richardson et al.
 2009; Spector 2006; Williams et al. 2010). By enabling
 researchers to parse out trait and method error, Liang et al.
 claimed to offer a ULMC approach that detects whether CMB
 influences the results of analysis using PLS. See Appendix A
 for a list of commonly used CMB detection techniques.

 Perhaps because of the simplicity and intuitive appeal of the
 ULMC approaches of Liang et al., it has rapidly diffused
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 across many IS literature streams beyond enterprise systems.
 The ULMC approach has been cited in at least 76 papers
 since its publication (see Appendix B). Across these studies,
 few authors have detected CMB' s presence in their data, and,
 if they did, they argue that the ULMC method suggests its
 influence is negligible (see Vance et al. 2008). In these 76
 papers, we found no evidence that the ULMC detected moder-
 ate or high levels of CMB. That the ULMC approach of
 Liang et al. has been so rapidly embraced by authors suggests
 that it has the potential to become part of the "normal" toolkit
 used by IS researchers to detect the influence of CMB. While
 we applaud Liang et al. for attempting to articulate a solution
 to CMB, the authors did not did conclusively prove their
 ULMC procedure works either in a closed form numerical
 proof or even via a reasonable set of simulation runs.

 Using Monte Carlo simulation to generate known true score
 data that conforms to models with or without CMB, we
 demonstrate that the ULMC approach does not correctly
 estimate, nor does it compensate for, the effect of CMB in
 PLS. Our simulations, which varied levels of CMB and
 reliability of measures, suggest that researchers who employ
 the ULMC approach may conclude that CMB does not influ-
 ence results when, in fact, it does. Our overall conclusion is

 that, regardless of whether CMB with differing impact levels
 exists or whether the reliabilities of measures are hetero-

 geneous or equivalent in measuring the underlying construct,
 this ULMC approach ends up with the same conclusion: there
 is no CMB. Our findings imply that researchers who use the
 ULMC approach in PLS may come away with the incorrect
 belief that there is minimal or no CMB, and lead the literature

 astray by making inappropriate inferences from their results.

 Hence, this research note constitutes a correction to the

 record. It begins by describing the ULMC approach of Liang
 et al. and explaining why it is necessary to evaluate this
 method using PLS SEM. Next, we explain how we con-
 structed our Monte Carlo simulations and evaluate 10 dif-

 ferent scenarios that applied ULMC in PLS. Then, we report
 the results and describe problems tied to this quickly diffusing
 ULMC method that appeared in MIS Quarterly. We conclude
 by discussing why PLS is less efficacious at detecting or con-
 trolling CMB than covariance-based SEM using the ULMC
 approach, even though the ULMC technique is quite problem-
 atic when using covariance-based SEM too (Richardson et al.
 2009).

 The ULMC Approach

 The ULMC approach draws upon the MTMM idea of
 modeling an underlying CMB construct. Instead of creating
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 a separate set of indicators that reflect the CMB, the ULMC
 is modeled by specifying factor loadings from the method
 factor to any or all other items in the model suspected of
 being contaminated by CMB. This model, which includes a
 CMB factor, is then estimated using covariance-based SEM
 (Richardson et al. 2009, p. 769). ULMC and other latent
 marker approaches have been widely diffused in behavioral
 and business research (Lindell and Whitney 2001 ; Podsakoff
 et al. 2003; Richardson et al. 2009; Williams et al. 2003;
 Williams et al. 2010).

 Liang et al. introduced an ULMC approach to test and control
 for CMB using PLS. According to Liang et al., four steps are
 necessary to implement a ULMC approach in PLS.2 First, this
 approach requires taking all of the indicators for each
 construct and reusing them to create single indicator con-
 structs. Second, the researcher links the original constructs to

 their respective single indicator constructs. Then, the method

 construct consisting of all indicators used in the study is
 linked to all the single indicator constructs (see Figure 1).
 Finally, researchers estimate a model using bootstrapping.

 To apply ULMC in PLS, Liang et al. suggest examining the
 "coefficients of [each indicator's] two incoming paths from its

 substantive construct and the method factor" (p. 87). They
 maintain that "these two path coefficients are equivalent to the

 observed indicator's loadings on its substantive construct and
 the method factor and can be used to assess the presence of
 common method bias" (p. 87). Citing Williams et al. (2003),
 Liang et al. argue that

 evidence of common method bias can be obtained by
 examining the statistical significance of factor
 loadings of the method factor and comparing the
 variances of each observed indicator explained by its
 substantive construct and the method factor. The

 squared values of the method factor loadings were
 interpreted as the percent of indicator variance
 caused by method, whereas the squared loadings of
 substantive constructs were interpreted as the
 percent of indicator variance caused by substantive
 constructs. If the method factor loadings are insigni-
 ficant and the indicators' substantive variances are

 substantially greater than their method variances, we
 can conclude that common method bias is unlikely
 to be a serious concern (p. 87).

 2Although Liang et al. do not provide explicit detail on how they imple-
 mented their ULMC approach, Vance et al. (2008) explicate on their multi-
 step process in PLS. For more detail on this analysis, please see Liang et al.
 or Vance et al. 's online appendices.

 Although Liang et al. do not present rigorous statistical
 vetting of their new ULMC method for detecting CMB, this
 approach has rapidly diffused and appears in respected IS
 research outlets. It has been used in studies that are published
 in top IS journals such as MIS Quarterly , Information Systems

 Research , Journal of the Association for Information Systems ,

 and Management Science. It is also finding its way into other
 top journals such as the Journal of Marketing. Moreover, this
 method seems to have been quickly embraced by junior
 scholars in master's theses and dissertations (see Appendix
 B). This is understandable, because junior scholars are often
 the first to adopt innovative analytic techniques as a means to

 demonstrate the timeliness and rigor of their work.

 Rigorously evaluating the PLS ULMC approach is important
 for several reasons. First, while the covariance-based SEM
 and PLS ULMC approaches are represented in a graphically
 similar manner, they differ in how they estimate models.
 Where covariance-based SEM evaluates model covariance fit,

 the PLS estimation technique maximizes variance explained
 in complex measurement and structural models. Conse-
 quently, when covariance-based SEM may struggle to
 estimate covariance matrices implied by complex ULMC
 models (Podsakoff et al. 2003), PLS, due to its ability to esti-
 mate "packages of variables and aggregate parameters," may
 more readily handle the "large, complex models with latent
 variables" (Wold 1985, p. 589) necessary for using ULMC to
 detect CMB.

 Second, these differences in model estimation influence how
 one uses ULMC to test, or control, for CMB. A covariance-
 based SEM ULMC approach compares the fit between the
 implied covariances from the model estimates and the sample
 data covariances (Kline 2005). To detect CMB' s influence,
 a covariance-based ULMC approach relies on comparisons of
 model fit. In contrast, using regression, PLS simultaneously
 estimates a system of linear relationships to maximize vari-
 ance in relationships from indicators and theoretical con-
 structs as well as relationships between constructs (Chin
 1998b). To detect CMB's influence, a PLS ULMC approach
 relies on tests of loadings and their significance. Perhaps this
 is why Liang et al. reasoned that PLS offers an alternative
 method for partialing out CMB, as the algorithm calculates
 the weight relations among the variables rather than using
 maximum likelihood to estimate the fit of the data to the theo-

 retical model; however, they offered no evidence that PLS can

 actually partial out CMB.

 Third, PLS ULMC and covariance-based ULMC are opera-
 tionalized in different ways. In covariance-based SEM, a
 method factor is operationalized as a first-order construct,
 which includes a path to every item in the model. However,

 MIS Quarterly Vol. 36 No. 3/September 2012 1005
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 because a method factor may present identification problems,
 attempts to detect CMB in covariance-based SEM do not
 always work (Podsakoff et al. 2003). When using PLS, a
 method factor is operationalized as a PLS-based second-order
 construct (Chin 2010, p. 666). Liang et al. cite two reasons
 for these "finesses" to the ULMC approach. First, PLS does
 not accommodate random error. Because the PLS algorithm
 maximizes the explained variance, all error is accounted for
 by the estimation technique. Second, practically speaking,
 they argue that PLS Graph 3.0 and similar software packages
 do not accommodate an item to be determined by more than
 one construct.3 As a result, the PLS ULMC approach requires

 that "all major constructs of interest and the method factor
 become second-order constructs" (p. 85; see Figure 2).
 Because a second-order PLS ULMC approach is substantially
 different from a first-order covariance-based ULMC ap-
 proach, it is important to evaluate its ability to detect or
 control for CMB under different conditions.

 Fourth, it is unclear whether PLS can detect, or control for,

 congeneric and noncongeneric CMB. According to Richard-
 son et al., researchers make one of two assumptions regarding

 CMB's distribution in a sample. First, the noncongeneric
 perspective assumes that CMB has equal effects on all con-
 structs within the nomological network. Second, the con-
 generic perspective assumes that CMB 's effects vary based on
 the "nature of the rater, item, construct, and/or context. As

 such, one or more method constructs will be differentially
 correlated with substantive items and constructs" (Richardson

 et al. 2009, p. 766). Due to factor interdeterminancy prob-
 lems (e.g., a complex model may not be identified or con-

 3Strictly speaking, this second rationale is not true. Similar to principal
 components analyses, any items utilized in PLS Graph 3.0 can be estimated
 as being influenced by one or more orthogonal PLS components. If a
 researcher specifies a second or higher dimensional analysis, the variance of

 each item would then be modeled as being impacted by the PLS components
 from each dimension (Lohmöller 1989).

 1006 MIS Quarterly Vol. 36 No. 3/September 2012
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 verge), the type of contamination has important implications
 when applying covariance-based SEM detection techniques.
 For this reason, the CMB will have to be modeled differently

 depending on assumptions about its form (e.g., congeneric or
 noncongeneric) (Podsakoff et al. 2003; Richardson et al.
 2009). Because PLS estimates latent variables as exact linear
 combinations of the observed measures (Chin et al. 2003), it,
 conversely, holds the potential for detecting or controlling for
 CMB' s influence on estimates and/or constructs (regardless
 of the CMB' s form) without changing the modeling assump-
 tions. Although PLS has the potential to estimate congeneric
 and noncongeneric models, there is a lack of evidence that a
 PLS ULMC approach can detect different forms of CMB.

 Fifth, the utility of the ULMC approach has been questioned
 in the broader research methods literature. After using a
 simulation to compare CMB detection techniques, Richardson
 et al. observed that "when used in data with CMV, the ULMC

 technique was almost always the least accurate at detecting
 CMV and bias" (p. 794). Their ULMC covariance-based
 analysis correctly identified CMB 41 percent of the time.
 This led Richardson et al. to conclude that "it is highly risky
 to use the ULMC approach for detection and to improve the

 accuracy of conclusions drawn about hypothesized relation-
 ships" (p. 794). They call for their results to be replicated and
 extended using other methods including regression-based
 approaches (p. 797). Given Richardson et al. 's admonition
 that the ULMC approach be used with caution in covariance-
 based SEM, it is understandable that we have seen a steady
 increase of this technique, utilizing PLS software, in top IS
 journals since 2009.

 Finally, within the IS literature, research has only begun to
 investigate the utility of the ULMC approach. Bagozzi (2011)
 suggests that it is "unclear whether significant loadings on the

 method factor actually represent or correct for method bias"
 (p. 278). Moreover, Bagozzi suggests that the ULMC
 approach could introduce unintended consequences such as
 overfitting the model, improper parameter estimates, or out-
 of-range factor loadings in covariance-based SEM. It is
 important to note that Bagozzi does not mention PLS or Liang
 et al. 's ULMC approach.

 Hence, the decision of Liang et al. to develop a PLS-based
 ULMC approach was reasonable, because of the properties of
 the estimation technique. However, because the utility of

 MIS Quarterty Vol. 36 No. 3/September 2012 1 007
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 ULMC approaches has been questioned in covariance-based
 SEM (Richardson et al. 2009, p. 794) and the PLS-based
 method loading approach is unvetted (Bagozzi 2011), we
 conducted a series of simulations to assess whether ULMC in

 PLS actually detects, or controls for, CMB.

 Evaluating the ULMC Approach Using
 Monte Carlo Simulation

 The use of Monte Carlo simulation affords an opportunity for

 assessing the effectiveness of the ULMC approach in PLS. In
 normal research settings, the investigator knows neither the
 true model relationships nor the true individual sample-case
 level scores for each construct in the model. The researcher

 can only make estimates using the item measures from the
 study's empirical data. In contrast, Monte Carlo simulation
 begins with a priori "known" (i.e., population) parameters of
 the model relationships and uses that information to generate
 data. The item-level data mirroring empirically gathered data
 would include varying levels of statistical noise and possibly
 other effects (e.g., CMB). These data are then used to see
 how well a proposed algorithm is able to estimate (i.e.,
 recover) the true population parameters. Thus, through the
 use of Monte Carlo-simulated data, a researcher knows
 exactly what the true model relationship effects are and can
 test how well a statistical procedure is able to estimate it.

 In the following steps, we describe our application of Monte
 Carlo simulation to evaluate the PLS UMLC approach. First,
 we explain our choice of simulation techniques. Next, we
 describe the heuristics that guided how we used Monte Carlo
 to create the data. Then, we provide detail on 10 different
 scenarios that varied the conditions (e.g., factor loadings and
 common method bias) used to assess the ULMC approach.
 Finally, we present the results of our simulation.

 Selecting a Monte Carlo Technique

 There are two common approaches that SEM researchers have
 used when generating Monte Carlo data (Reinartz et al. 2002).
 In the first approach, the implied covariance matrix of the
 observed variables is computed on the parameter the
 researcher specifies for the model. Then data are generated
 on the observed variables from a multivariate distribution

 having this covariance matrix. For the second approach, data
 are first generated to represent the true latent variables' scores

 according to the relationships specified in the model. Subse-
 quently, data are generated on the observed variables from the

 1008 MIS Quarterly Vol. 36 No. 3/September 2012

 latent variables in the model (i.e., item indicators). The
 second approach, in particular, is better suited for testing the

 PLS algorithm since the goal of PLS is to generate estimates
 of the true construct scores using the item-level data and the

 model relationships (e.g., paths) are estimated using these
 estimated scores. Using such data, we can then compare how
 close these estimates are to using the actual "true" scores.
 Hence, we used the second technique in our simulation.

 Monte Carlo Parameters

 True-value scores included in the Monte Carlo simulation

 adhered to best practices suggested in the SEM literature
 about the number of indicators, loadings, and error. By doing

 so, we conducted a conservative test of ULMC' s ability to
 detect or control for CMB in PLS under ideal conditions.

 This approach included utilizing the best possible research
 design for detecting CMB utilizing PLS. At the item level,
 the data were created using the following heuristics:

 1 . When creating data, our constructs were represented by
 six indicators. Our use of six indicators per construct
 reflects a conservative interpretation of guidelines for
 estimating structural equation models found in the litera-

 ture. Scholars such as Bollen (1989) suggest that the
 effective use of SEM requires using a minimum of three
 manifest indicators per construct. Reflecting a more
 cautious approach, Chin et al. (2003) suggested using six
 manifest indicators when evaluating a new method in
 PLS. Therefore, even though we were conducting a
 simulation, we adopted the more conservative approach
 to modeling our constructs in order to provide a rigorous
 test of the ULMC method in PLS.

 2. We adhered to prescriptions in the literature of simula-
 tion and methods when setting item loadings (Chin et al.
 2003; Goodhue et al. 2007; Hair et al. 2006). For the
 noncongeneric data, our indicators' loadings were set to
 .70. For the congeneric data, our indicator's loadings
 were set to an average .70 (with two set at .80, two set at
 .70, and two set at .60). We did so for three reasons.
 First, loadings greater than .60 are thought to be of prac-
 tical significance (Hair et al. 2006). Second, to be used
 in SEM analysis, methodologists suggest item loading
 should be greater than .70 (Bollen 1989; Hair et al.
 2006). When loadings are .70 or greater, the latent
 construct explains more of the variance in the item than
 the error. Third, a .70 loading is consistent with simula-
 tions that have evaluated the efficacy of PLS applications
 in prior IS research (Goodhue et al. 2007).
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 3. We ensured that our error was randomly distributed
 along a normal distribution within samples. As noted by
 Siemson et al. (2010), "if CMV inflates a correlation, it
 will at the same time deflate the standard error of this

 correlation. If CMV deflates a correlation, it will at the
 same time inflate the standard error of this correlation"

 (p. 471). By using randomly generated error, we emu-
 lated CMB's influence on data collected in a natural

 setting.

 4. To model CMB, we selected three levels of method
 effects. Our first level was zero or no CMB. We did this

 for two reasons: first, so that we could check how
 closely the simulated data corresponds to the true popula-

 tion parameter; second, so we could illustrate what a path
 would look like in a PLS model that lacked a method

 factor. Our second level was .16. This level was incor-

 porated into this study because Malhotra et al. (2006)
 suggest that the most likely method effect in IS research

 has a variance around . 1 6 (e.g., .40 method loading). The
 third level for CMB variance was .36. We selected this

 level because it represents a high level of common
 method bias (e.g., .60 method loading) (Richardson et al.
 2009; Williams et al. 2003).

 At the model level, the data reflected the following
 assumptions:

 1. Our model included only the relationship between two
 constructs. This approach is consistent with past simu-
 lations of covariance-based ULMC (see Richardson et al.
 2009) as well as past PLS techniques (see Chin et al.
 2003; Goodhue et al. 2007). Moreover, drawing on our
 conservative approach, this simple model allows for the
 best chance to detect CMB over more complex models.

 2, We set a population parameter estimate of .60. By doing
 so, we created a scenario where we could emulate
 different levels of CMB in the data while retaining our

 ability to estimate the true population parameter. Given
 that common method bias may account for between 16
 and 27 percent of variance observed (Cote and Buckley
 1987; Doty and Glick 1998; Sharma et al. 2009; Wil-
 liams and Brown 1994), a lower parameter estimate
 would have limited our ability to manipulate its level in
 our data and conduct meaningful tests of the UMLC
 approach's efficacy. In addition, estimating a .60 popula-
 tion parameter allowed us to evaluate CMB's influence
 against a backdrop of a large effect size (Cohen 1988),
 which is a circumstance under which reviewers often

 complain that CMB influences results (Pace 2010).

 Creating the Data

 We generated a series of simulated data using Monte Carlo
 techniques that provide different levels of method variance.
 Following procedures consistent with past studies (see Chin
 et al. 2003; Mattson 1997), we used PRELIS 2.14 (Jöreskog
 and Sorbom 1993) to generate true constructs scores, true
 CMB scores, and random noise in order to form item mea-
 surement data that conform to different underlying population

 models (i.e., varying degrees of CMB and reliability of mea-
 sures; see Appendix C for details on how we generated our
 data). For example, an item that is designed to reflect an
 underlying true construct with 0.70 standardized loading, 0.40

 standardized loading from method bias, and the rest from
 noise would be modeled as

 Item = 0.70 x LV + 0.4 x CMB + 0.591608 x NRAND

 where LV, CMB, and NRAND represent the underlying latent
 construct, common method effect, and random noise,
 respectively. All error terms are set such that the overall
 variance sums to 1.0 for each indicator.

 For each scenario, we generated 500 datasets of 5,000 cases.
 With the control allowed by generating simulated data, we
 saved the actual latent scores. This allows us to check how

 closely the simulated data at 5,000 cases corresponds to the
 true population path, which represents the asymptotic level
 (i.e., the population or infinite sample size situation) set at
 0.60 using PRELIS. Thus, when evaluating the ULMC
 approach, we can test the actual true path relationship given
 our large sample size as well as how close we get to this
 number when we no longer have the actual latent scores and
 must use the item measures. By using large sample sizes to
 evaluate the ULMC approach per scenario, we minimize the
 chance that statistical fluctuation confounds our results for

 each PLS run and maximize statistical power across our
 analyses (Chin et al. 2003).

 Monte Carlo Scenarios

 The scenarios varied in the following combinations of charac-
 teristics: CMB simulated, latent measure type, and CMB
 measure type (see Table 1). As noted above, CMB was at
 three levels - 0 or none, .16, and .36 - across the scenarios.
 The latent measure type for the construct items was either
 congeneric or noncongeneric. The CMB measure type was
 either congeneric, noncongeneric, or method score (M score).
 Where the congeneric and noncongeneric CMB measures
 utilize all of the indicators to represent the underlying method

 factor, the Method (M) score represents the true CMB gener-

 MIS Quarterly Vol. 36 No. 3/September 2012 1 009

This content downloaded from 129.7.159.95 on Tue, 25 Jun 2019 17:14:39 UTC
All use subject to https://about.jstor.org/terms



 Chin , Thatcher, & Wright/Assessing Common Method Bias

 aNoncongeneric assumes that the loadings are equal for all items on a construct.

 bCongeneric assumes that loadings vary based on the rater, item, construct, and/or context.

 Using PLS-Graph 3.0, we illustrate these problems with the
 ULMC approach by estimating (1) a baseline with no
 common method effect, (2) scenarios with method effects in
 the item loadings, and (3) scenarios with single-item common
 method effects (e.g., M score). Our analyses are presented in
 the following order: three noncongeneric scenarios, four con-
 generic and noncongeneric mixed scenarios, and noncon-
 generic and M score mixed scenarios. The actual relation-
 ships between variable X with variable Y are the true scores
 generated in the population; this is the true finite sample
 (albeit quite large) to the population baseline model of 0.60.
 Further, for the structural model where latent variable XX

 influences latent variable YY, the average of 500 runs (i.e.,
 sample sets) per scenario are given. In the remainder of this
 article, we utilize X and Y to denote the true score variables,
 whereas XX and YY represent the estimated latent variables.
 Further, the loadings on the XX and YY constructs will be
 defined as the trait loadings, whereas the loadings from the
 method construct will be defined as the method loadings.

 Figure 3 gives an example model utilized in our scenarios. In
 this figure, you can see the relationship between the XX and
 its underlying constructs, which are related to the single-item
 measure, respectively. For example, construct Al, which is
 derived from the single-item measure item 1 (il), is regressed
 on both the method effect and the XX construct. Path weights
 from XX to the Al construct are considered the factor

 loadings, whereas path weights from the method to the Al
 construct are considered the method effect.

 1010 MIS Quarterty Voi. 36 No. 3/September 2012

 ated in our simulation. Where one does not know the true

 CMB in the field data, we know the exact value of the M
 score in the simulated data and can represent it in one item,
 rather than reusing several items. By using the actual M
 score, we can test how well the ULMC-proposed partitioning
 of latent trait, method effect, and random error works when

 using the "exact" measure of the "method" factor that was
 employed to create the indicators in the first place. In other
 words, by using the actual M score, we eliminate questions
 about whether the aggregating of all the indicators in the
 congeneric or noncongeneric conditions represent good
 approximations for CMB (see Little et al. 2002). Through
 manipulating these three characteristics in the simulated data,

 we are able to examine the ULMC' s ability to detect and
 partial out CMB using PLS.

 PLS Analysis and Results ^^■■1

 In the following analysis, we will demonstrate that the PLS
 ULMC approach seems to result in negligible method esti-
 mates regardless of the amount of CMB. In other words,
 whether a large amount, a moderate amount, or no systematic
 method bias exists, our analysis suggests the same conclusion
 of no method effect is obtained. This is also true whether we

 kept the impact of the CMB constant for all measures (i.e.,
 noncongeneric measures) or if it the impacts varied (i.e.,
 congeneric).

 True Latent Common

 Amount of CMB Latent Measure CMB Measure Construct Method

 Scenarios Simulated Type Type Loading Loading

 1 0 Noncongeneric3 Noncongeneric .70 0

 2 .16 Noncongeneric Noncongeneric .70 .40

 3 .36 Noncongeneric Noncongeneric .70 .60

 4 .16 Congeneric5 Noncongeneric .80, .70, .60 .40

 5 .36 Congeneric Noncongeneric .80, .70, .60 .60

 6 .36 Noncongeneric Congeneric .70 .20, .40, .60

 7 .36 Congeneric Congeneric .80, .70, 0.6 .20, .40, .60

 8 0 Noncongeneric M Score .70 0

 9 .16 Noncongeneric M Score .70 .40

 10 .36 Noncongeneric M Score .70 .60
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 Tables 2 and 3 present the results from all 10 scenarios.
 Specifically, we first show the mean and standard deviation
 from each type of simulation for the path weight from the true

 X construct to the true Y construct. Next, we report the path

 weight between XX and YY when including the method
 effects in the model. Further, these tables convey each path
 weight from both the method effect and the substantive latent

 construct. The findings for each scenario are outlined below.

 Scenario 1 : No Common Method Effect,
 Noncongeneric Measures

 Our first analysis represents a baseline situation. Here, both
 constructs have six indicators and are set with identical

 loadings of 0.70 (i.e., noncongeneric measures), implying that
 the underlying constructs (whether latent variable or common

 method) have the same impact on all measures. The linkage
 between the latent scores is very close to the population value
 of 0.60. If one were conducting analysis using non-simulated
 data, this would be the path estimated without a method factor

 in the model. If we were to increase the sample size by
 tenfold, we suspect the estimate would be literally at 0.60.
 But, using the suggested procedure, the estimated path is
 0.495 and the resulting path estimates suggest that the method
 effect consisting of all the indicators has very little impact, as
 one would expect if no method source existed. Notice that the
 trait loadings are higher than the population setting of 0.7 by

 approximately 10 percent. This is due to a known bias in the
 PLS algorithm, as highlighted by Chin in his workshop
 lectures and articles, which increases the loadings (Chin
 1998a, 1998b; Chin and Gopal 1995; Chin et al. 2003). This
 reflects what is known statistically as consistency at large
 where PLS tends to underestimate the correlation between the

 latent variables and overestimate the loadings. This bias dis-
 appears only when the number of indicators per latent variable
 and the number of cases become very large (Lohmöller 1 989).
 Now, consider if these trait loadings were higher than 10
 percent. This might be an indication of additional effects
 beyond the accuracy of the PLS algorithm such as the ULMC
 method. Further, as per the recommendation of Liang et al.,
 we evaluate the path weights from the method to the specific

 constructs (e.g., Method Al) to see if there is a significant
 common method effect for this item. The path weight of .0 1 5

 is not statistically substantive. Using Liang et al.'s heuristic,
 this would suggest CMB has not contaminated the rela-
 tionship between the construct and the item.

 Scenario 2: Common Method Effect (.16
 Variance), Noncongeneric Measures

 Scenario 2 introduces a low level of common method effect

 of around 0. 1 6 (Malhotra et al. 2006). As before, each indica-
 tor had an identical loading of 0.70. However, each indicator
 now included a 0.40 loading to a common method factor. The
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 Scenario S1 S2 S3 S4 S5

 Path Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

 X -»Y (true score) 0.596

 XX-» YY 0.495

 XX-»A1

 XX-»A2

 XX-»A3

 XX-»A4

 XX-»A5 0.769 0.019 0.853 0.016 0.941 0.010 0.813 0.020 0.927 0.018

 XX-»A6 0.779 0.019 0.850 0.017 0.933 0.013 0.822 0.021 0.884 0.019

 YY-»B1

 YY-»B2

 YY-»B3 0.758 0.017 0.849 0.018 0.938 0.013 0.823 0.017 0.919 0.014

 YY-»B4

 YY-»B5 0.752 0.018 0.802 0.016 0.951 0.013 0.806 0.022 0.897 0.018

 YY-»B6

 M (Method)-»A1 0.015

 M-»A2

 M-»A3

 M-»A4

 M-»A5 -0.013 0.021 -0.011 0.018 -0.008 0.010 -0.039 0.021 -0.047 0.019

 M-»A6

 M-»B1 0.011 0.021 0.000 0.017 0.030 0.014 0.026 0.015 0.032 0.007

 M-»B2

 M-»B3

 M-»B4

 M-»B5 0.002 0.020 0.043 0.018 -0.018 0.014 -0.038 0.023 -0.014 0.018

 M-»B6 -0.030 0.020 -0.009 0.018 -0.013 0.015 -0.021 0.021 -0.072 0.019

 'Scenario 1 (S1) = Latent Item Loadings (LIL) are noncongeneric (NC), Method Loadings (ML) are 0,
 52 = LIL are NC, ML are NC at .4,

 53 = LIL are NC and ML are NC at .6,

 54 = LIL are congeneric (C) and ML are NC at .4,
 55 = LIL are C and ML are NC at .6.
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 Scenario

 Path Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

 X -»Y (true score) 0.587 0.009 0.596 0.009 0.596 0.009 0.596 0.009 0.599 0.009

 XX-»YY 0.635 0.008 0.646 0.008 0.495 0.011 0.636 0.008 0.748

 XX-»A1 0.905 0.020 0.953 0.017 0.752 0.007 0.847 0.006 0.936 0.005

 XX-»A2 0.926 0.021 0.924 0.018 0.753 0.006 0.850

 XX-» A3 0.896 0.017 0.856 0.017 0.768 0.006 0.832

 XX-» A4 0.880 0.015 0.866 0.017 0.762 0.006 0.843

 XX-»A5 0.751 0.013 0.723 0.018 0.757 0.006 0.841 0.006 0.930

 XX-»A6 0.734 0.014 0.710 0.017 0.759 0.007 0.838

 YY-»B1 0.878 0.019 0.935 0.018 0.743 0.007 0.843

 YY-»B2 0.936 0.021 0.933 0.018 0.754 0.006 0.841 0.006 0.929

 YY-»B3 0.866 0.017 0.863 0.017 0.760 0.006 0.843 0.006 0.935

 YY-»B4 0.869 0.017 0.833 0.017 0.762 0.006 0.847

 YY-»B5 0.746 0.014 0.729 0.018 0.754 0.006 0.833 0.006 0.944

 YY-»B6 0.762 0.013 0.736 0.017 0.756 0.007 0.844

 Method (M)-»A1 -0.184 0.022 -0.117 0.019 0.001 0.010 -0.005 0.009 0.005

 M-»A2 -0.155 0.022 -0.144 0.019 0.001 0.009 -0.007 0.009 0.001

 M-»A3 -0.058 0.019 -0.010 0.018 0.008 0.009 0.006

 M-»A4 -0.032 0.017 -0.024 0.018 0.000 0.010 0.000 0.009 -0.014

 M-»A5 0.173 0.014 0.135 0.019 -0.012 0.009 0.004 0.009 0.005

 M-»A6 0.191 0.015 0.149 0.018 0.003 0.009 0.003 0.009 0.006

 M-»B1 -0.132 0.021 -0.118 0.019 0.013 0.010 -0.002

 M-»B2 -0.203 0.022 -0.129 0.019 0.007 0.009 0.003 0.008 0.007

 M-»B3 -0.027 0.018 -0.020 0.019 -0.008 0.009 -0.002 0.009 -0.001

 M-»B4 -0.033 0.018 0.010 0.018 0.000 0.009 -0.012

 M-»B5 0.173 0.015 0.125 0.018 -0.010 0.010 0.019 0.009 -0.015

 M-»B6 0.158 0.014 0.123 0.018 -0.001 0.010 -0.006 0.009 -0.001 0.007

 'Scenario 6 (S1) = Latent Item Loadings (LIL) are noncongeneric (NC), Method Loadings (ML) are congeneric (C) at an ave. of .4,
 57 = LIL are C, ML are C at an average of .4,

 58 = LIL are NC and ML are represented by the method (M) score at 0,

 59 = LIL are NC and ML are represented by the method (M) score at .4,

 S10 = LIL are NC and ML are represented by the method (M) score at .6.
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 0.40 loading squared represents the 0. 16 variance contributed
 by the common method. Throughout the remaining scenarios,

 random noise was added (e.g., error) to each indicator to
 create standardized items.

 The path between the latent scores for this set of simulated
 data, once again, shows close approximation to the population
 path of 0.60. Tables 2 and 3 show the results of using the
 ULMC approach. Interestingly, the common method paths
 should be closer to 0.40 if the ULMC technique works cor-
 rectly. Instead, the estimated method effect indicates
 negligible CMB. But notice that the loadings are higher. On
 average, the loadings in this model are 0.85, whereas the
 previous loadings under conditions of no method effect were
 around 0.76. The difference in variance would be 0.85 * .085

 - .076 X .076 = 0.145, which is close to the 0.16 variance
 placed into the indicators. Thus, by not accurately estimating
 the method effect, the trait loadings are inflated by using the

 ULMC technique. In turn, the structural path using these
 measures with common method bias is now higher at 0.636
 than the true population setting of 0.60. Further, per Liang et
 al. 's recommendation, we evaluated the loadings from the
 method to the specific constructs (e.g., Method Al) to see
 if there is a significant common method effect for this item.

 The path loading of .015 is not substantive, which, according
 to the heuristic of Liang et al., suggests that CMB has not
 contaminated this relationship.

 Scenario 3: Common Method Effect (.36
 Variance ), Noncongeneric Measures

 In our final noncongeneric scenario, we evaluated a model
 with a higher level of CMB. We estimated the same baseline
 model, but increased the common method loading to 0.60
 (e.g., .36 CMB). The close approximation of the population
 path of 0.60 suggests that our simulation of true scores was
 set-up properly (see Figure 4). The common method paths
 should be around 0.60, but, as represented in Figure 5, these
 paths were once again negligible. The construct loadings are
 even higher - on average, at the 0.94 level. The difference in
 variance relative to no method bias would be 0.94 x .94 -

 .076 x .076 = 0.30, which approximates the 0.36 variance we
 placed onto each indicator. The structural path with these
 measures is also correspondingly higher than the true path at
 0.748. Thus, our simulations suggest that the ULMC ap-
 proach is ineffective. The paths from the method construct
 are estimated as trivial regardless of whether the amount of
 method bias was 0, 0. 1 6, or 0.36. This is striking, because we
 know that if the ULMC method worked, it should detect
 CMB in the inflated item loadings. This pattern of non-signi-
 ficant method loadings recurs throughout our simulations.
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 Scenario 4: Common Method Effect (.16
 Variance ), Congeneric Measures

 In Scenario 4, we simulated congeneric indicator loadings
 with the method effect set to .16 (similar to Scenario 2 with
 noncongeneric measures). Instead of being fixed at 0.70, the
 first two indicators were set to 0.80, the next two remained at

 0.70, and the last two were lowered to 0.60. Thus, while the
 average loading remains at 0.70, the reliabilities of each
 indicator are no longer equivalent. The path between the
 latent scores for this set of simulated data of 0.601, once
 again, shows a close approximation to the population path of
 0.60. The results are very similar to the Scenario 2 results
 where the model parameters are almost identical except for
 the congeneric loading from the measures to their underlying

 constructs (see Table 2). Again, the common method paths
 should be closer to 0.40, if the ULMC technique works
 correctly. Instead, the estimated method effects indicate it is
 negligible.

 Scenario 5: Common Method Effect (.36
 Variance ), Congeneric Measures

 Scenario 5 retained the congeneric loadings of Step 4, but
 increased the method effect to 0.36 (similar to Scenario 3 with

 noncongeneric measures). The path between the latent scores
 for this set of simulated data of 0.594 shows a close approx-
 imation to the population path of 0.60. The common method
 paths should be closer to 0.60, if the ULMC technique were
 able to detect or control for it. Instead, the path between the

 two latent constructs was inflated from a true 0.60 parameter

 to an estimate of 0.752. Hence, the results of using the
 ULMC approach with congeneric measures are very similar
 to those obtained in Scenario 3.

 Scenario 6: Common Method Effect (Congeneric
 Loadings ), Noncongeneric Measures

 For Scenario 6, we returned to noncongeneric construct
 loadings of 0.70, but varied the method effect. Instead of
 fixing the common method at 0.4 or 0.6, the first two indi-
 cators' common method effects were set at 0.2, the next two

 at 0.4, and the last two at 0.60. Thus, while the average CMB
 loading remains at 0.40, the effects on each measure are no
 longer equivalent. The path between the latent scores for this

 set of simulated data of 0.586, once again, shows a close
 approximation to the population path of 0.60. The results of
 using the ULMC approach are very similar to those obtained
 in Scenarios 2 and 4 where the method variance was set at

 0. 1 6 with an inflated path estimate of 0.635. If the technique
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 accurately estimated the loadings from the method factor, we
 should see 0.2, 0.4, or 0.6 from each set of items. Instead, the
 estimated loadings never exceeded an absolute magnitude of
 0.2 and incorrectly suggest the first four items for each con-
 struct would be negative (see Table 3). In turn, the loading
 estimates to the underlying constructs were inflated. Even
 when the common method varies, the PLS ULMC approach
 does not accurately detect and control for the CMB effects.

 Scenario 7: Common Method Effect (Congeneric
 Loadings ), Congeneric Measures

 For our final scenario using congeneric data, we varied both

 the loadings for the underlying construct and the method

 effect. The first two items for each construct had true score

 and method loadings of 0.8 and 0.2, respectively. This was
 followed by 0.7 and 0.4 for the next two items. The final two

 were set at 0.6 and 0.6 (i.e., equal amounts of true and method

 effects). The path between the latent scores for this set of
 simulated data of 0.596, once again, shows a close approxi-
 mation to the population path of 0.60. The results of using the

 ULMC approach again resulted in an inflated path estimate of
 0.647. The estimated method effect never exceeded an

 absolute magnitude of 0.15 and incorrectly suggests the first
 four items for construct XX and the first three items for

 construct YY would be negatively impacted by the method
 effect. Once again, the ULMC approach is unable to accu-
 rately detect or control for the CMB effects.
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 Scenarios 8 , 9, and 10: Assessing the ULMC
 Technique Using M Scores

 To further probe the utility of the ULMC technique, we
 remove one of the constraints of the procedure: accurate
 estimation of the common method. To do so, the next three

 scenarios (8, 9, and 10) replace the common method loadings
 with the true M score. Thus, with the actual method effect

 provided, we can test how well the ULMC technique per-
 forms in assessing the impact of the method on each item and

 on partialing out the method effect from the XX and YY trait
 constructs with the goal of reducing potential path inflation.
 The path between the latent scores for this set of simulated
 data, once again, shows a close approximation to the popula-
 tion path of 0.60 (see Figure 6 for Scenario 10). The results

 1016 MIS Quarterly Vol. 36 No. 3/September 2012

 of using the ULMC approach again resulted in an inflated
 path estimate. Figure 7 illustrates how the M score was incor-

 porated in the model when .36 CMB variance was added to
 the method path loadings. We also kept the loadings to the
 underlying construct fixed to 0.70 to allow us to compare with

 results from Scenarios 2 and 3. By fixing the construct
 loadings to .70 and using the M score, we remove the chance
 that random error confounds the results of our Monte Carlo

 simulation scenarios. Because we eliminated all additional

 sources of unexplained variance, this represents a conserva-
 tive test of ULMC's ability to detect CMB. We found that
 even when using the actual M score at moderate (. 1 6) or high
 (.36) levels of CMB, ULMC does not detect or control for
 CMB' s influence on the true parameter estimates (see
 Table 3).
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 In sum, our conclusion is that the ULMC approach seems
 incorrect. In very large samples, it does not accurately esti-
 mate the method effect when using the aggregated items. Nor

 does it work even if we have the true M scores. Our analysis
 leads to the conclusion that the ULMC approach using PLS
 does not detect or control for CMB and that the structural

 paths and the indicators' loadings are biased upward as the
 method bias increases.

 Discussion of the ULMC Technique H

 Where prior covariance-based SEM simulations have demon-
 strated that the ULMC procedure does not consistently
 identify CMB, our PLS SEM simulations suggest that the
 Liang et al. instantiation of ULMC does not accurately detect,
 or control, for CMB. Through analysis of 10 scenarios that
 varied the reliability of the construct loadings and type of
 CMB under ideal conditions, we provide evidence that the
 ULMC technique of aggregating existing measures does not
 detect CMB in PLS. This finding contrasts with Richardson
 et al., who reported that covariance-based SEM ULMC
 approaches correctly identify CMB, "about 41% of the time."
 Because such low accuracy rates " rarely meet the criteria for
 usefulness," Richardson et al. recommend that readers do not

 use ULMC approaches to detect CMB (p. 794). Given that
 we found even more severe problems with ULMC in PLS, our
 findings suggest that the IS community abandon the ULMC
 technique of Liang et al. and seek alternative means to detect
 or control for CMB.

 So the question remains, is the ULMC procedure problematic
 or is the operationalization in PLS of Liang et al. prob-
 lematic? We argue that while the ULMC technique when
 operationalized in covariance-based SEM has difficulties
 detecting and controlling for CMB (Richardson et al. 2009),
 the same technique applied in PLS has no ability to detect and
 control CMB. We offer three reasons for the failure of a PLS-

 based ULMC approach.

 First, while the PLS model is represented as graphically
 similar to the CB SEM, we believe the PLS procedure Liang
 et al. describe is inherently problematic. The primary reason
 is the difference in the underlying PLS algorithm as applied
 to the same graphical model heretofore only applied using the

 CB SEM algorithm. Specifically, PLS uses a component-
 based procedure where every construct in the model even-
 tually is estimated as a weighted average of its indicators,
 while the CB SEM algorithm estimates all parameters in the
 model with the objective of getting the implied covariances to

 closely match the sample covariances. Therefore, even

 though Figure 1 may give the impression that a method
 construct is partialing out the effects of CMB from each
 indicator, this is not true in PLS. Each of the traits examined

 by the Liang et al. model (e.g., mimetic forces [MIM],
 coercive forces [COE], and normative forces [NOR]) are
 modeled to load on the reused single indicator constructs
 while also being composed of the same set of indicators. For
 example, COE has two reflective indicators (see Figure 2).
 However, due to the finesse introduced by Liang et al., COE
 is also modeled with two paths to two single indicator
 constructs. Therefore, those indicators used to form the COE

 trait construct still contain CMB. Thus, any structural paths
 among any of the trait constructs, including COE, will still be

 biased by any method effect that exists.

 Second, although using PLS allows one to circumvent issues
 tied to model indeterminacy and complexity, it does not
 address other potential problems with the estimate of the
 method effect. Liang et al. ' s suggestion of using all indicators

 in the study to estimate CMB influence in a model is prob-
 lematic. This approach, as modeled, in fact represents a
 multidimensional construct comprising all the traits' indi-
 cators along with any potential CMB. Clearly, for more com-
 plex models with more traits, the estimated method construct

 will primarily represent traits. Considering that CMB may be
 derived from many different sources (e.g., rater effects, item
 characteristic effects, and context effects) and vary at dif-
 ferent levels (noncongeneric), it is not surprising that a single
 method factor, as demonstrated in our scenarios, may not
 effectively partial out CMB' s influence in PLS.

 Finally, the paths from the method construct to any single
 indicator construct will necessarily be minimal due to the
 component approach of PLS. Consider the COE construct as
 an example (see Figure 2). We know that PLS forms a COE
 component as a weighted combination of its two indicators.
 Then, the COE component score is used to predict each of the
 two reused single indicator constructs along with the method
 construct. We would expect a weighted sum of two indicators
 used to predict any one of the two indicators to be high. The
 method construct, in contrast, being a weighted sum of all
 indicators in the model, would be so diluted as to have mini-

 mal predictive impact. In fact, we would expect the more
 indicators used in a model, the more likely the negligible path

 estimates from the method construct, implying no CMB.

 Conclusion

 Addressing problems with the approach of Liang et al. for
 managing CMB is important, given that their ULMC tech-
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 nique has been used in 13 theses and dissertations, top
 journals (e.g., MIS Quarterly , Information Systems Research ,
 and Management Science ), as well as papers across the spec-
 trum of issues examined by IS researchers. Considering that
 the PLS ULMC approach has been widely applied in IS
 research in just four years, we believe it is important for
 researchers to pause and rigorously assess its merits before it
 becomes a dominant method for detecting CMB. Through
 simulation, our study clearly calls into question the method's
 ability to detect or correct for the influence of CMB on
 results. Given the importance of minimizing CMB, there
 needs to be further research that evaluates both covariance-

 based and PLS-based techniques.

 As a final point, we want to emphasize that the purpose of our

 research note is to prevent IS researchers being led astray by
 a problematic Appendix, not to challenge the core findings, of

 Liang et al. 's study. Lacking a reliable technique, we are
 unable to assess CMB' s influence on the findings of Liang et
 al. As a result, we believe that researchers with domain-
 specific expertise should assess their paper's core theoretical
 contribution and, clearly, scholars studying ERP have found
 much merit in the study of Liang et al.
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