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Abstract
Necroptosis is a regulated caspase-independent cell death mechanism that results in morphological
features resembling non-regulated necrosis. This form of cell death can be induced in an array of cell
types in apoptotic deficient conditions with death receptor family ligands. A series of [1,2,3]
thiadiazole benzylamides was found to be potent necroptosis inhibitors (called necrostatins). A
structure activity relationship study revealed that small cyclic alkyl groups (i.e. cyclopropyl) and 2,6-
dihalobenzylamides at the 4- and 5-positions of the [1,2,3]thiadiazole, respectively, were optimal.
In addition, when a small alkyl group (i.e. methyl) was present on the benzylic position all the
necroptosis inhibitory activity resided with the (S)-enantiomer. Finally, replacement of the [1,2,3]
thiadiazole with a variety of thiophene derivatives was tolerated, although some erosion of potency
was observed.

Cell death has traditionally been categorized as either apoptotic or necrotic based on
morphological characteristics.1 These two modes of cell death were also initially thought to
fundamentally differ in underlying cellular regulation, with the former representing a regulated
caspase-dependent mechanism,2 while the latter resulting from non-regulated processes.
However, more recent studies demonstrate that the underlying basis of cellular necrosis is more
complex, as it can result in some instances from regulated caspase-independent cellular
signaling.3

A regulated caspase-independent cell death pathway with morphological features resembling
necrosis, called necroptosis, has recently been described.4 This manner of cell death can be
initiated with various stimuli (e.g. TNF-α and Fas ligand) and in an array of cell types (e.g.
monocytes, fibroblasts, lymphocytes, macrophages, epithelial cells and neurons). Necroptosis
may represent a significant contributor to and in some cases predominant mode of cellular
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demise under pathological conditions involving excessive cell stress, rapid energy loss and
massive oxidative species generation, where the highly energy-dependent apoptosis process is
not operative. The discovery of necroptosis, therefore, raises the possibility of novel therapeutic
intervention strategies for the treatment of maladies where necrosis is known to play a
prominent role,5 including organ ischemia (i.e. stroke6 and myocardial infarction7), trauma
and possibly some forms of neurodegeneration.8

The identification and optimization of low molecular weight molecules capable of inhibiting
necroptosis will assist in elucidating its role in disease patho-physiology and could provide
lead compounds (i.e. necrostatins) for therapeutic development. A series of hydantoin
containing indole derivatives, exemplified by 1, was the first potent in vitro and in vivo
necroptosis inhibitors to be described (Figure 1).4, 9 Since then, a series of tricyclic derivatives,
exemplified by 2,10 and substituted 3H-thieno[2,3-d]pyrimidin-4-ones, exemplified by 3,11
have also been reported. In the course of continued screening for additional classes of
necroptosis inhibitors, we discovered that the [1,2,3]thiadiazole derivative 4 was a moderately
potent inhibitor (EC50 = 1.0 μM).12 Herein, we report an initial structure activity relationship
(SAR) study for this class of necroptosis inhibitors.

Many of the [1,2,3]thiadiazole derivatives evaluated herein were prepared according to the
procedure outlined in Scheme 1. Meldrum's acid, 5, was treated with acyl chlorides in the
presence of pyridine to give β-ketoesters 6.13 The esters were allowed to react with mono-
Boc-hydrazine in the presence of a catalytic amount of p-toluenesulfonic acid (p-TsOH) to
give imines 7.14 Cyclization in the presence of thionyl chloride yielded the [1,2,3]thiadiazole
esters 8. Acid hydrolysis of the esters provided acids 9. These materials were coupled with
various amines utilizing HBTU (Method A), the corresponding acyl chlorides (Method B) or
through the use of EDCI (Method C) to give amides 10.

Compound 14 was prepared according to the procedure outlined in Scheme 2. Ester 11 was
reduced with sodium borohydride to give 12. The alcohol was converted to the corresponding
aldehyde 13 utilizing Dess-Martin reagent. The aldehyde was condensed with 2-chloro-6-
fluorobenzylamine in the presence of anhydrous magnesium sulfate to give an imine, which
was subsequently used as crude material. The imine was then reduced with sodium
triacetoxyborohydride to give the secondary amine 14. The imide derivative 17 was also
prepared starting with acid 15, which was first converted to the corresponding acid chloride
16. This material was then allowed to react with the anion of 2-chloro-6-fluorobenzamide
generated with sodium hydride to give imide 17 in 34% yield.

The α-substituted (±)-2-chloro-6-fluorobenzylamines were prepared according to Scheme 3.
2-Chloro-6-fluorobenzophenone,18a, was reduced with borane-THF complex to give the
corresponding secondary alcohol. The alcohol was converted to the corresponding phthalimide
via a Mitsunobu reaction followed by treatment with hydrazine monohydrate to give 19a.15
Nitriles 18b and 18c were treated with borane-THF complex followed by addition of n-BuLi
or PhLi to give amines 19b and 19c, respectively.16 The benzylnitrile 20a was first dialkylated
with methyl iodide to give 20b. This material was hydrolyzed to the corresponding carboxylic
acid and then subjected to a one-pot Curtius rearrangement (via an in situ generated acyl azide)
to give a Boc-protected amine that upon deprotection yielded amine 21.17

(S)-1-(2-Chloro-6-fluorophenyl)ethylamine was prepared by allowing 22 to react with methyl
magnesium chloride followed by treatment with acetic anhydride to give α-enamide 23
(Scheme 4). Asymmetric hydrogenation in the presence of the chiral catalyst (S, S)-Me-BPE-
Rh gave amide 24.18 Acid hydrolysis of the amide yielded the optically pure amine 25, isolated
as the hydrochloride salt. Similarly, (R)-25 was made utilizing (R, R)-Me-BPE-Rh.
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Evaluation of necroptosis inhibitory activity was performed using a FADD-deficient variant
of human Jurkat T cells treated with TNF-α as previously described.4,10 Utilizing these
conditions the cells efficiently underwent necroptosis, which was completely and selectively
inhibited by 1 (EC50 = 0.050 μM). For EC50 value determinations, cells were treated with 10
ng/mL of human TNF-α in the presence of increasing concentration of test compounds for 24
h followed by ATP-based viability assessment.19

The initial SAR revealed that the amide NH was crucial for activity. For example, simple
methylation (26 vs 4 and 50 vs 32) resulted in significant loss of activity. Introduction of
branching into the alkyl group at the 4-position of the [1,2,3]thiadiazole increased activity,
with i-Pr (31), c-Pr (32) and c-Bu (33) being optimal. However, introduction of a t-Bu (36) or
phenyl (37) at this position resulted in decreased activity. The 2-chloro-6-fluoro substitution
of the phenyl ring also appeared to be necessary for potent activity. For example, compounds
with a 2-methylphenyl (28) or 2-methoxyphenyl (29) were less active. In addition, the 2,6-
dichloro (38) or 2,6-difluoro (39) substituted derivatives were also less active in some cases
compared to 2-chloro-6-fluoro substitution (32). Consistent with these findings, removing one
of the halogens (40) or replacing one of the halogens with small (41) or large (42) electron-
donating groups also resulted in decreased activity. Replacing one of the halogens with other
electron-withdrawing groups, such as cyano (43) or CF3 (44), did not restore activity.
Replacing the 2-chloro-6-fluorophenyl with a 1-naphthyl (45), 2-pyridyl (46) or substituted 2-
pyridyl (47) was detrimental to activity. However, addition of a halogen to the 3-position of
the 2,6-difluorophenyl (49) gave an increase in necroptosis inhibition activity with an EC50
value of 0.18 μM.

Additional changes to the linker between the [1,2,3]thiadiazole and the 2,6-dihalophenyl were
also examined (Table 2). The corresponding secondary amine (14) and imide (17) derivatives
of 32 were inactive. Also, the benzylamide was necessary, with the homologous phenethyl
amide (51) and the truncated anilide (52)20 being significantly less active. Introduction of a
methyl group (53) onto the benzylic position gave a slight increase in activity. Quite
surprisingly, when the two enantiomers of 53 were examined all of the necroptosis activity
resided in the (S)-enantiomer (55). However, increasing the steric bulk of the benzylic
substituent to n-Bu (56), phenyl (57) or gem-dimethyl (58) resulted in loss of activity.

Finally, modifications to the [1,2,3]thiadiazole heterocycle were examined (Table 3).
Replacement with a variety of thiazoles (59 – 61) or an oxazole (62) was detrimental to activity.
Likewise, the pyridazine (63), which attempted to replace the sulfur of the [1,2,3]thiadiazole
with a CH=CH, was also inactive. However, moderate activity could be obtained with a variety
of thiophene derivatives (64 – 74), except for the ethoxy derivative 75 and the sulfone derivative
76. In one cases (74) the necroptosis activity approached that seen for the most potent [1,2,3]
thiadiazoles. However, replacement of the [1,2,3]thiadiazole with a furan (77) was less
effective.

In our previous analyses, we discovered that although 1 showed activity in a broad range of
necroptosis cellular systems, 2 was restricted to specific cell types/stimuli.9, 10 For example,
2 efficiently inhibited necroptosis initiated by TNF-α in mouse fibrosarcoma L929 cells, but
was ineffective against zVAD.fmk-induced necroptosis in the same cell line.10 Therefore, a
similar analyses with the [1,2,3]thiadiazole series was performed. Compound 55 showed the
same activity profile as 2, providing effective protection of Jurkat or L929 cells from TNF-α-
induced necroptosis, while lacking activity in zVAD.fmk treated L929 cells (Figure 2).
However unlike 2, [1,2,3]thiadiazole 55 was fully active in SV40-transformed mouse adult
lung fibroblasts stimulated to undergo necroptosis with a combination of TNF-α and
zVAD.fmk, in a similar manner to 1. Collectively, these results demonstrate that the [1,2,3]
thiadiazole series posses a distinct mode of necroptosis inhibition compared to the previously
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described necrostatins. These data further illustrate that cell-based screening for necrostatins
allows for identification of both “universal” (i.e. 1) and diverse cell type/stimulus specific
necroptosis inhibitors (i.e. 2 and 55). It remains to be determined whether cell type specificity
observed in vitro translates into in vivo models of pathologic injury. If it does, then cell type/
stimulus specific inhibitors of necroptosis, such as the tricyclic (i.e. 2) and the [1,2,3]thiadiazole
series (i.e. 55), may offer advantages under conditions where molecule specificity may be
beneficial, such as treating chronic conditions like neurodegenerative diseases.

In conclusion, a series of [1,2,3]thiadiazole benzylamides was found to inhibit TNF-α-induced
necroptosis in FADD-deficient variant of human Jurkat T cells. A SAR study revealed that: i)
secondary 2,6-dihalo substituted benzylamides were required; ii) when a small alkyl group (i.e.
methyl) was present in the benzylic position all the necroptosis inhibitory activity resided with
the (S)-enantiomer; iii) small branched or cyclic alkyl groups (i.e. i-Pr, c-Pr or c-Bu) were
optimal in the 4-position of the [1,2,3]thiadiazole; iv) replacement of the [1,2,3]thiadiazole
with a variety of thiophene derivatives was tolerated, although with some erosion of potency.
In addition, the [1,2,3]thiadiazole series showed a unique cell type/stimulus necroptosis
inhibition profile compared with two previously described classes of inhibitors. Studies are
currently underway to evaluate the pharmacology of these compounds in animal models of
disease where necroptosis is likely to play a substantial role (i.e. cerebral ischemia, traumatic
brain injury and liver injury). Additionally, these compounds are being used to further
interrogate the mechanism(s) of necroptotic cell death.
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Figure 1.
Necrostatins
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Scheme 1.
(a) RC(O)Cl, py, CH2Cl2, rt, 2 h, then MeOH, 2 h (75%); (b) H2NNHBoc, cat. TsOH, toluene,
60 °C, 4 h; (c) SOCl2, 60 °C, 1 h (47% over two steps); (d) 6N HCl, AcOH, 150 °C, 4h; (e)
Method A: H2N(CH2)nR3 , HBTU, i-Pr2NEt, CH2Cl2, rt, 12 h (30 – 90%); Method B: oxalyl
chloride, cat. DMF, CH2Cl2, 0 °C to rt, 1 h then H2N(CH2)nR3, EtOAc, saturated aqueous
NaHCO3, rt, 2 h (20 – 75%); Method C: H2N(CH2)nR3 , EDCI, HOBt, DMF, rt, 12 h (60 –
90%).
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Scheme 2.
(a) NaBH4, MeOH, rt, 12 h; (b) Dess-Martin reagent, CH2Cl2, rt, 1 h (65% over two steps);
(c) 2-Cl-6-F-PhCH2NH2, anhydrous MgSO4, Et3N, THF, rt, 2h then Na(OAc)3BH,
ClCH2CH2Cl, rt, 6 h (41%); (d) oxalyl chloride, cat. DMF, CH2Cl2, 0 °C to rt, 1 h; (e) NaH,
2-Cl-6-F-PhC(=O)NH2, THF, rt, 1 h (34% over two steps).
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Scheme 3.
(a) 1M BH3·THF, THF, rt, 2 h; (b) diethyl azodicarboxylate, PPh3, phthalimide, THF, rt, 18 h
(65 % over two steps); (c) H2NNH2·H2O, THF / EtOH (6:1), Δ, 11 h (50%); (d) 1M BH3·THF,
THF, 0 °C to rt, 1.5 h then n-BuLi or PhLi, −78 °C, 2 h (15% when R2 = n-Bu, 20% when
R2 = Ph); (e) NaO-t-Bu, MeI, NMP, THF, rt, 48 h (85%); (f) 6N HCl, 120 °C, 12 h; (g)
Boc2O, NaN3, n-Bu4NBr, 80 °C, 24 h; (h) TFA, DCM, rt (58% over three steps).
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Scheme 4.
(a) MeMgCl, THF, rt, 24 h then Ac2O, 120 °C, 20 min (43%); (b) (S, S)-Me-BPE-Rh (1 mol
%), H2 (60 psi), rt, 12 h (90%); (c) 4N HCl, 120 °C, 6 h (100%).

Teng et al. Page 10

Bioorg Med Chem Lett. Author manuscript; available in PMC 2008 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Cell type/stimulus specific activities of necrostatins. FADD-deficient Jurkat, L929 and mouse
adult lung fibroblast cells were treated for 24 hr with 10 ng/mL human TNF-α and/or 100 μM
zVAD.fmk as indicated in the presence of 30 μM of necrostatin 1, 2 or 55. Cell viability was
determined using an ATP-based assessment method. Values were normalized to cells treated
with necrostatins in the absence of necroptotic stimulus, which were set as 100% viability.
Error bars reflect standard deviation values (N = 2).
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Table 1
EC50 determinations of necroptosis inhibition in FADD-deficient Jurkat T cells treated with TNF-α.

Compound R1 R2 R3 EC50 (μM)a

4 Me H 2-Cl-6-F-Ph 1.0
26 Me Me 2-Cl-6-F-Ph 11
27 Me H 2,6-di-F-Ph 3.5
28 Me H 2-Me-Ph 27
29 Me H 2-OMe-Ph > 100
30 n-Pr H 2-Cl-6-F-Ph 4.1
31 i-Pr H 2-Cl-6-F-Ph 0.58
32 c-Pr H 2-Cl-6-F-Ph 0.50
33 c-Bu H 2-Cl-6-F-Ph 0.60
34 c-Pentyl H 2-Cl-6-F-Ph 1.9
35 c-Hex H 2-Cl-6-F-Ph 6.0
36 t-Bu H 2-Cl-6-F-Ph 18
37 Ph H 2-Cl-6-F-Ph > 100
38 c-Pr H 2,6-di-Cl-Ph 6.0
39 c-Pr H 2,6-di-F-Ph 1.5
40 c-Pr H 2-F-Ph 1.5
41 c-Pr H 2-Cl-6-Me-Ph 10
42 c-Pr H 2-Cl-6-(OPh)-Ph > 100
43 c-Pr H 2-Cl-6-CN-Ph > 100
44 c-Pr H 2-F-6-CF3-Ph > 100
45 c-Pr H 1-naphthyl > 100
46 c-Pr H 2-Py 40
47 c-Pr H 3-F-2-Py 9.6
48 c-Pr H 2-Cl-3,6-di-F-Ph 0.52
49 c-Pr H 3-Cl-2,6-di-F-Ph 0.18
50 c-Pr Me 2-Cl-6-F-Ph 16

a
Standard deviation < 10%.
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