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ABSTRACT 

The Houston area has undergone significant ground deformation in the last century, 

with the main factor being attributed to groundwater/natural gas withdrawal. However, 

subsidence can be due to groundwater withdrawal or excess loading brought about by 

heavy precipitation. Houston has recently been subjected to multiple flooding events 

which appear to be increasing in frequency. The Houston area is also home to faults and 

salt domes that contribute to surface deformation. The effect that these factors have had 

on ground deformation has not previously been studied; certain components of ground 

motion have been misinterpreted, or largely ignored in scientific studies and when 

making policies.  

In this study we investigate the contributions of surface and groundwater to 

subsidence using data collected over the past 30 years to model/predict groundwater 

fluctuations and look at the correlation with faults/salt domes and GPS data to see how 

surface deformation patterns have changed in recent years. The high rate of salt motion 

coupled with CO2 injection has resulted in uplift in southern Harris County, which acts to 

alleviate groundwater/gas withdrawal induced subsidence. Observed fault motion along 

the Long Point-Eureka Heights system is correlated with groundwater trends from 2006-

20107. The northern Houston area shows strong subsidence of up to 16 mm/yr and an 

elongated subsidence bowl. The weakened aquifer systems in the north and southwest 

are more susceptible to intense subsidence and major flooding. These trends may be 

matched in the Woodlands and southwest Harris County in the future. 
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Chapter 1:  Introduction 

1.1. Geologic Setting 

The Houston area has undergone significant ground deformation in the last century, with 

the main factor being attributed to groundwater and natural gas withdrawal. However, the 

observed surface deformation is not purely anthropogenic in origin, with many geologic factors, 

such as faults and salt domes, playing a contributing role. During the Triassic period, the Gulf of 

Mexico experienced extensional rifting, which was followed by seafloor spreading in the middle 

Jurassic (Salvador, 1991; Bird et al., 2005). Large salt deposits also accumulated in this region in 

the late Triassic and Jurassic (Kupfer, 1974). Then throughout the Cretaceous and Cenozoic 

periods, deposition resulted in a prograding shelf margin. This series of events resulted in multiple 

growth faults across the Gulf Coast Region, most of which occur near the prograding shelf margin, 

and which divide the area into structural corridors (Winker, 1985). The Houston area is situated 

over three primary growth fault zones: 1) Hockley-Conroe Fault System, 2) Addicks Fault System, 

and 3) the Long Point-Eureka Heights Fault System (Figures 1 and 2). These faults cut through 

Holocene and Paleocene sediments and primarily move through aseismic creep, resulting in both 

spatial and temporal variation (Mastroianni, 1991; Englekemeir et al., 2010). The large salt 

deposits of the past have resulted in modern salt domes, which due to their low density, rise to 

the surface and fracture the surrounding regions in radial patterns (Khan et al., 2014). 
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1.2. Subsidence  

The Houston area has experienced some of the largest subsidence of any city, losing over 10 

feet in elevation in certain areas from 1927-present (Kasmarek et al., 2009; Kasmarek, 2012; 

Kearns et al., 2015).  There are two primary causes for ground subsidence that deal with ground 

and surface water respectively: 1) excessive water withdrawal, and 2) sediment compaction 

caused by an increased load (Kreitler, 1977; Galloway et al., 1999). The Houston area relies on 

alluvial aquifers made up of semi-consolidated silt, clay, and sand layers (aquitard) for its main 

water supply. As water levels decrease in these aquifer systems, the fluid pressure in the pores 

and cracks that make up the aquitard also decreases as they become filled with air. The air-filled 

pores/cracks reduce the strength of the aquifer skeletal system and cause surface deformation 

(Kreitler, 1977; Galloway et al., 1999). Under normal conditions, aquifer systems will only 

experience seasonal variation and cause reversible surface deformation on the scale of 1-5 cm 

(Galloway et al., 1999). However, excessive groundwater decline causes a drastic reduction in fluid 

pressure, where the now weakened skeletal system becomes compressed. This can result in a 

permanent reduction of porosity, the aquifer storage capacity, and non-reversible ground 

deformation (Galloway et al., 1999). The increased load is caused by the addition of extra weight 

above the aquifer system, as caused by heavy snow or rain precipitation. If this overhead weight 

remains under the maximum loading capacity previously experienced by the aquifer, it will only 

cause reversible seasonal variation (Galloway et al., 1999). Similarly, if the overhead weight 

exceeds this maximum value, there will be a permanent reduction in porosity, storage capacity, 

and the deformation will be non-reversible (Galloway et al., 1999).  

Houston’s subsidence has been primarily due to groundwater, where fluids are also thought 

to have reactivated and amplified fault movement (Kasmarek, 2012; Qu et al., 2015). While much 

less common than water withdrawal, increased load poses a real threat to the city’s welfare as 
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exemplified by the 2016 Memorial Day floods and the 2017 hurricane Harvey. The additional 

water released by both events resulted in increased loading, whose effects on subsidence are still 

being evaluated. Unfortunately, precipitation data needed to assess the impact of increased 

loading lacks the temporal coverage of groundwater data, is far more limited due to incomplete 

records (and occasionally damaged gauges) and is more challenging to model. This has resulted 

in surface water often getting overlooked as a contributor to observed subsidence and a poor 

understanding of the environmental impact in the area. In this study we investigate the 

contributions of surface and groundwater to subsidence using potentiometric water surfaces to 

model and predict groundwater fluctuations in the Houston Area collected over the past 30 years, 

and look at the correlation with rainfall and GPS data subsidence rates to see how surface 

deformation patterns have changed in recent years over the Houston area. In addition, we also 

examine the flooding related to the 2017 Hurricane Harvey.  

1.3. Hurricane Harvey 

Hurricane Harvey struck the Texas coast on August 25, 2017, as a category 4 hurricane 

with winds above 150 miles per hour (Blake and Zelinsky, 2017; Watson et al., 2018). As the 

storm moved inland, it slowed considerably which allowed for an unprecedented level of 

rainfall during its 8-day trek. Historic flood levels were recorded across Southeast Texas, with 

some areas experiencing over 60 inches of rainfall. Hurricane Harvey was recorded as the 

most significant rainfall event in US history since the start of the 1880 rainfall records (Watson 

et al., 2018). The total wind and flood damage are estimated to be $125 billion with at least 

68 direct casualties being linked to the storm. The worst flooding was recorded in Houston, 

Texas, a city previously notorious for large-scale subsidence (Kearns et al., 2015; Blake and 

Zelinsky, 2017; Watson et al., 2018). Since the 1900s, losses of up to 3 m in elevation have 

been reported in the city of Houston, due mainly to over-pumping of groundwater (Kasmarek 
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et al., 2009; Kasmarek, 2012; Kearns et al., 2015). This severe subsidence has increased the 

probability of flooding and created a negative feedback loop in affected areas. As flooding 

occurs, the overbearing weight of floodwater acts to compress sediments in the subsurface 

(Kreitler, 1977; Galloway et al., 1999; Kasmarek and Lanning-Rush, 2004). A healthy 

environment is elastic and will be able to spring back up after compaction. Areas that have 

undergone subsidence lack this quality; flooding will thus aid in further compacting the soil 

and drive subsidence (Kreitler, 1977).  Flooding and subsidence are highly correlated, as has 

been shown by Milliner et al., 2018; this relationship necessitates accurate flood mapping. 

Both during and following Harvey, multiple organizations such as the U.S. Geological 

Survey (USGS) and the Federal Emergency Management Agency (FEMA) set out to map the 

flooding extent, calculate the flood magnitude, and determine the probability of flood 

occurrence (Watson et al., 2018). Primary data for such studies include 74 streamflow-gaging 

stations, 34 National Oceanic and Atmospheric Administration (NOAA) meteorological 

stations, and in-situ high-water mark measurements located throughout Southeast Texas. 

However, the in-situ stations themselves were also affected by the storm with multiple 

failures being recorded across the station networks. At least 12 rain gauge stations were 

identified to have recorded erroneous data in the August report (Blake and Zelinsky, 2017; 

Watson et al., 2018; Harris County Flood Control District). 

 Additionally, while in-situ measurements in the form of high-water marks provide much 

needed data, they are slow to collect and generally lack a proper spatial distribution. High-

water mark data are also a cumulative measurement that only shows the maximum water 

level. These data are unable to show any temporal variation associated with flooding events 

(Watson et al., 2018). Furthermore, most efforts are directed towards mapping the flooding 

associated with/or near rivers. However this approach ignores the floods associated with 
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urban environments, where poor drainage due to an abundance of impermeable surfaces is 

common.  

Synthetic Aperture RADAR (SAR) is a spaceborne remote sensing technique that is ideal 

for mapping large areas and detecting water bodies. SAR data are unaffected by flooding 

conditions at the surface, and unlike optical techniques, it can readily penetrate through 

storm clouds and acquire data even during nighttime conditions (Kasischke et al., 1997; 

Giustarini et al., 2012). An additional benefit is the ability of SAR data to penetrate through 

the tree canopy and detect returns that would otherwise be hidden by vegetation, which is 

important to flood mapping where determining the amount of flooded vegetation can be a 

major challenge (Wegmuller and Werner, 1995; Kasischke et al., 1997; Giustarini et al., 2012). 

Moreover, the high temporal resolution of SAR data allows for additional information on 

floods, such as drainage patterns to be detected (ESA Online). The recent improvements in 

land coverage, data availability, and revisit frequency (6 days for Sentinel-1) of SAR data have 

shown its potential for land use mapping and natural hazard monitoring (Kasischke et al., 

1997). Fully polarimetric radar data can readily distinguish between different endmembers; 

however, the limited availability of fully polarized datasets does not make their use common 

(Kasischke et al., 1997).  

This work focuses on mapping simple land use maps following Hurricane Harvey in 2017 

to assess the flooding using single polarized data. Output maps are divided into the following 

classes: 1) urban areas, 2) bare soil, 3) water, 4) vegetation, 5) flooded areas, and 6) flooded 

vegetation. This is done by obtaining a false color composite images made up of RGB: 

coherence, the mean backscatter, and the backscatter difference between a SAR image pair 

as described by Kasischke et al., 1997.  
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1.4. Synthetic Aperture Radar 

1.4.1. Radar Background 

In remote sensing applications, radar (RAdio Detection And Ranging) uses wavelengths 

spanning the microwave region to image the Earth’s surface actively. A radar wave can be 

described by the standard wave equation shown below where A is the wave amplitude, Ф (phi) 

is the phase, and t is the travel time (Kasischke et al., 1997; Henderson and Lewis, 1998). 

Equation 1: (Wave Equation) A*exp(Фt) = A*[cos(Фt) + i*sin(Фt)] 

The wave is described by both real and imaginary parts using the cos and sin function, 

respectively to capture the full energy spectrum. The amplitude and phase both change 

according to the surface target properties and can thus be used to identify the target, travel-

time, and target range, as shown below (Figure 3).  

 

 

Figure 3: From right to left, a) cross-section view of satellite imaging a target where the black 
arrow is the outgoing ray and red arrow is the incoming ray with changed amplitude and phase; 
b) example of phase change in cosine wave where the x-axis is time and the y-axis is amplitude. 
The change in phase can be correlated to a 2-way travel time (2WTT) and a distance/range to the 
target. 
 

 

Unlike most satellites, Synthetic Aperture Radar (SAR) is side-looking (Figure 3a), which results 

in stronger/brighter returns for rough surfaces with low dielectric constants (non-conductive 

materials). However, this geometry can lead to issues such as shadow, foreshortening, and 
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layover (Kasischke et al., 1997; Henderson and Lewis, 1998). The primary cause of noise in 

satellite radar imagery is speckle, which is caused by the constructive and destructive 

interference of sub-pixel targets.  Speckle gives a ‘salt-and-pepper’ look, reduces the contrast in 

the image, and alters the observed radar backscatter.   

There are 4 primary types of scatter as shown in Figure 4: 1) point – from a single 

point source, 1) specular/surface – from a flat surface, 3) volume – from multiple point 

sources, and 4) double bounce/dihedral – when the ray bounces off multiple surfaces 

(Kasischke et al., 1997; Henderson and Lewis, 1998). The type of scatter is depended on the 

satellite/target(s) geometry and the intrinsic properties of the material, which can change 

through time. Certain targets can change the direction/polarization of the RADAR wave, 

resulting in volume and double-bounce/dihedral scatter.  

 

 

Figure 4: Types of scattering. Modified from https://earth.esa.int/handbooks/asar/CNTR1-1-
2.html.  
 

 

 

https://earth.esa.int/handbooks/asar/CNTR1-1-2.html
https://earth.esa.int/handbooks/asar/CNTR1-1-2.html
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1.4.2. Radar Mapping 

A common approach to natural hazard mapping with SAR data is to use a gray-threshold 

technique. Using two or more images, one before the incident known as the archive image and 

another taken either during or post the incident known as the crisis image, the gray-threshold 

technique creates a false color composite (Kasischke et al., 1997; White et al., 2015). When a 

natural hazard strikes, such as a flood, the backscatter becomes significantly altered in the 

affected areas. For example, flooded areas not obscured by vegetation or buildings will change to 

the scattering mechanism to specular reflectance and have decreased brightness. The abrupt 

change in backscatter can be used to define a threshold that delineates the affected areas. The 

affected area can then be estimated by multiplying the number of pixels by the pixel size 

(Kasischke et al., 1997; Martinis and Rieke, 2015; White et al., 2015). This technique is currently 

used by the Dartmouth Flood Observatory and the Advanced Rapid Imaging and Analysis (ARIA) 

team at NASA's Jet Propulsion Laboratory for global food monitoring. Milliner et al., 2018 have 

also used the gray-threshold to delineate the flooded extent of Hurricane Harvey.  

While the gray-threshold technique is rather simplistic, it is widely used because of its 

computational efficiency and high effectiveness over simple targets. However, because of intrinsic 

variation between the images due to temporal decorrelation, geometric decorrelation, volume 

scattering, and processing errors, the gray-threshold technique may not successfully identify all 

pixels of interest (Kasischke et al., 1997; Shen et al., 2019). The threshold value is also user 

dependent and does not have strict rules. Moreover, this approach only gives users a measure of 

the intensity change, but no other information regarding the surface targets (White et al., 2015; 

Shen et al., 2019). It is primarily up to the user to interpret what is causing the change in 

backscatter using outside information, which may not always be available.  
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A more effective technique for SAR mapping would be to use fully polarimetric data 

(Kasischke et al., 1997; Henderson and Lewis, 1998; Lee and Pottier, 2009; White et al., 2015). 

Polarization is used to describe the way in which an electromagnetic wave oscillates as it travels. 

A vertically polarized (V) wave oscillates up and down as it moves forward, whereas a horizontally 

polarized (H) wave oscillates from side to side. Both vertically and horizontally polarized waves 

are said to have linear polarization (Lee and Pottier, 2009). There are four possible polarization 

combinations, HH, HV, VV, and VH, where HH, VV are called co-polarized, and HV,, VH are called 

cross-polarized. The different polarization modes can be thought of as the wavelength equivalent 

of multispectral data; fully polarized (having all four polarization modes) datasets can be used for 

in-depth textural analysis and identification/classification of end-members (Henderson and 

Lewis, 1998; Lee and Pottier, 2009). Unlike the gray-threshold method, polarimetric techniques 

do not require multiple images for target identification and classification (Lee and Pottier, 2009). 

However, the limited availability of fully polarized datasets does not make their use common. 

Instead, similar information may be extracted from two or more single polarized images using the 

backscatter and coherence changes (Kasischke et al., 1997).  

The correlation of two images is called the coherence image, and it is a measure of how 

well related features are across the image pair, where the reference image (the older image) is 

known as the master and the comparative image (the younger image) is known as the slave 

(Henderson and Lewis, 1998; Chini et al., 2019). Areas of bare soil and urban areas, such as 

buildings or bridges, experience little motion and are typically stable over long periods. This 

behavior is called coherent, and it allows these features to be readily identified across multiple 

images, even if the images are taken years apart (Xia and Henderson, 1997; Henderson and 

Lewis, 1998; Chini et al., 2019; Li et al., 2019). Bare soil and urban areas are stable and thus have 

very high coherence, while features like vegetation and water, which change rapidly, have poor 
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coherence (Wegmuller and Werner, 1995; Xia and Henderson, 1997; Chini et al., 2019).  A typical 

scene is made up of 1) water, 2) vegetation, 3) bare soil, and 4) urban areas. Each of these 

components has a distinct scatter type, return brightness, and coherence as summarized below 

in Table 1. Traditionally, the SAR coherence has been for urban mapping with over 95% accuracy, 

however recent work has shown its potential for food mapping in complex environments such 

as urban or vegetated areas (Chini et al., 2019; Li et al., 2019). The change in backscatter 

experienced by flooded areas is highly dependent on the SAR satellite and target geometry; 

subtle changes in backscatter associated with natural hazards are hard to identify which can lead 

to under detection in complex environments. Integrating both backscatter changes and 

coherence into a detection/classification scheme allows for detection of subtle features using a 

self-consistent approach (Kasischke et al., 1997; Chini et al., 2019).  

 

Table 1: Summary of scatter, brightness, and coherence for common materials. 

Material Scatter Type Return Brightness Coherence 

Water Bragg/surface Low Low 

Vegetation Volume High Low 

Bare Soil Surface Low High 

Urban Area Dihedral/double-

bounce 

High High 

*Flooded Area* Bragg/surface Low Low 

*Flooded 

Vegetation* 

Volume/Dihedral High Low 
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1.4.3. Sentinel-1 

The Sentinel-1 mission is the joint effort of the European Commission (EC) and the 

European Space Agency (ESA). The mission is a constellation of two polar-orbiting satellites 

that share the same orbital plane, Sentinel-1A and Sentinel-1B, which provide continuous 

radar coverage of the Earth (ESA Online). Sentinel-1A was launched on April 3, 2014, with 

Sentinel-1B closely following on April 25, 2016 (Potin et al., 2016). The satellites operate in C-

band frequency (central frequency of 5.405 GHz) and support dual polarization of either 

HH+HV or VV+VH through a switchable transmit chain (Torres et al., 2012). Sentinel-1 

operates in 4 possible acquisition modes: stripmap (SM), interferometric wide-swath (IW), 

Extra-Wide swath (EW), and Wave mode (WV).  The SM mode consists of a high-resolution 

(5x5 m) narrow swath that is similar to previous ERS and Envisat missions (Torres et al., 2012). 

The IW mode is comprised of three sub-swaths with resolution ranging from 5-20 m, which 

are acquired in Terrain Observation with Progressive Scans SAR (TOPSAR) mode. In TOPSAR 

mode the radar beam is steered both in range along the azimuth of each burst (Meta et al., 

2008). The EW mode is similar to IW but is comprised of 5 sub-swaths rather than 3. The WV 

mode is designed for ocean applications and can determine the direction, wavelength, and 

height of waves on the ocean’s surface (Torres et al., 2012).   
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Chapter 2:  Methods 

2.1 Water Data 

To evaluate changes in water table this study implemented data from 144 rain gauges 

from 2011-2016 part of the Harris County Flood Warning System (FWS) and well-water depth 

from 268 stations from January, 1990 – March, 2017 from the Advisory Committee on Water 

Information (ACWI), Texas Water Development Board (TWDB), the National Ground-Water 

Monitoring Network (NGWMN), and the United States Geological Society (USGS) (Figure 2). By 

comparing surface and groundwater, we can directly observe if subsidence is related to increased 

loading or groundwater withdrawal.  

Potentiometric surfaces were generated and used to calculate water level change and to 

visualize the areas most affected by water withdrawal and increased loading. Water data were 

first compiled into an Oracle database for easy sorting and grouped based on the year and season 

of acquisition to provide enough points for spatial interpolation. Data were then imported into 

ArcMap and potentiometric surfaces were generated for each season (spring, summer, fall, and 

winter) from winter 1990 to spring 2017. Interpolation was carried out using the ordinary Kriging 

interpolation with a variable search radius and 20 input points. Average seasonal groundwater 

level and average rain were then calculated to serve as baselines for ground and surface water 

levels, respectively (Figures 5 and 6). The potentiometric surfaces were then used to generate a 

time-series analysis and determine the total water level change in from 1) 1990-2017, 2) 2000-

2017, and 3) 2006-2017.  Figure 7c from 2006-2017 shows the best correlation with the recent 

GPS data as expected; hence this relationship was further analyzed. 
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Figure 5: Seasonal water table trends for the Houston area showing the area of constant low water 
level in the center of Harris County associated with the city of Houston. a) Spring season showing 
the moderately sized area of low water level. b) Summer season showing the smallest area of low 
water level as most rain occurs during the summer months, c) Fall season showing the largest area 
of low water level, d) Winter season showing the enlarged area of low water level. 
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Figure 6: Average rainfall for Harris County from 2011-2016. Unlike the water level, surface water 
is concentrated towards the southeast along the Gulf Coast and responsible for increased load. 
Northwest Harris County experiences the least amount of rain, has the smallest loading capacity, 
and is the most susceptible to subsidence induced by heavy precipitation. 
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Figure 7:  Water level change from a) 1990-2017, b) 2000-2017, and c) 2006-2017 generated using 
groundwater potentiometric time-series. In all three images, there is a water level decrease in the 
north and a water level increase in the south.  
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2.2 GPS Data 

Originally, this study set out to processed raw GPS data and independently derive station 

velocities. Raw GPS data for 68 continuously operating reference stations (CORS) were 

downloaded from the UNAVCO data archive covering the Houston area from 1990 to September 

of 2017 (Figure 8). Additional GPS data were provided by the Harris-Galveston Subsidence District 

(HGSD) for 365 port-a-measure (PAM) stations from 2014-2017. Out of these data, 65 CORS 

stations and 148 PAM stations had enough data to be processed. PAM station data were first 

converted into Rinex file format using Trimble’s ConvertoRinex application. GPS data were then 

processed using the Canadian Spatial Reference System (CSRS) Precise Point Positioning (PPP) 

direct tool provided by Natural Resources Canada’s Canadian Geodetic Survey (CGS). CSRS-PPP 

uses precise GNSS satellite orbit ephemerides to provide positions at the centimeter to decimeter 

level. This method of GPS processing is highly robust as PPP processing requires fewer reference 

stations than other methods, the output solution is unaffected by individual reference-station 

failures, and the same precise orbit and clock data are applicable to users everywhere (National 

Resources Canada). CSRS-PPP outputs the positioning solution in either CSRS or the International 

Terrestrial Reference Frame 2008 (ITRF2008) reference frame (option for most global users and 

the one used in this processing) (Natural Resources Canada).  
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Figure 8:  GPS stations independently processed in this study made up of CORS (yellow) and PAM 
(blue) stations from 1990 to September of 2017. 
 

 

GPS data were then compiled into an Oracle database and used to calculate station velocities. 

Station velocity was calculated by first rotating the data into a fixed North American reference 

frame using a pole-of-rotation calculation and then fitting a first-order polynomial though the GPS 

observations. The pole-of-rotation calculation was carried out with a python code courtesy of 

Bennedict Ofeigson of the Icelandic Meteorological Society and plate motion values from 

Altamimi et al., 2012. The polynomial fit was carried out in MATLAB where coefficients were 

solved for using a leas-squares approximation; final output were displacement vectors for the 

easting, northing, and vertical directions (see Appendix).   
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However, due to inconsintencies in this dataset and the less robust processing methods, GPS 

data from 1990 to June 2019 were downloaded from the Nevada Geodetic Laboratory (NGL) and 

used in this study. NGL is a public database of Global Positioning System (GPS) data located within 

the Nevada Bureau of Mines and Geology at the University of Nevada, Reno (Blewitt et al., 2018). 

NGL works together with the Department of Geologic Sciences and the Nevada Seismological 

Laboratory to provide processed GPS data and various GPS derived data products that can be used 

for both regional and global scale geoscience applications, with the primary goal being to study 

tectonic and geothermal activity across Nevada. NGL currently operates the Mobile Array of GPS 

for NEvada Transtension (MAGNET) GPS network. However data products for other GPS station 

networks are also provided (Blewitt et al., 2018). GPS data are analyzed using the GIPSY-OASIS-II 

software package provided by the Jet Propulsion Laboratory, Pasadena, California. Processed daily 

solutions for Continuously Operating Reference Stations (CORS) are compiled in text files and 

available to users as either (x, y, z) or (easting, northing, up) in either the IGS08 or NA12 coordinate 

frames (Blewitt et al., 2018). 

The IGS08 reference frame is the GPS-based realization of the global secular frame 

International Terrestrial Reference Frame 2008 (ITRF2008), which an Earth-fixed system with 

respect to the Earth’s center of mass (Blewitt et al., 2013). The NA12 terrestrial reference frame 

is a plate-fixed frame designed for crustal deformation studies in North America. The NA12 

reference frame is based on GPS data from 1996-2012; it is a secular frame defined by 6 Cartesian 

coordinates of epoch position and velocity of 299 select GPS stations with step-free, or data 

lacking abrupt jumps, time spans of 4.7 – 16.1 years. There is no net rotation with respect to the 

stable interior of the North American plate, making it ideal for crustal deformation studies (Blewitt 

et al., 2013). The origin is also aligned with the IGS08 reference frame such that all vertical motion 

is with respect to the Earth’s center of mass with an accuracy of +0.5 mm/yr (Blewitt et al., 2013).  
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For this study, processed GPS data and station velocities in the NA12 reference frame 

were downloaded for 118 total Continuously Operation Reference Stations (CORS) throughout 

the greater Houston area (Figure 2). Station velocities are derived using the Median Interannual 

Difference Adjusted for Skewness (MIDAS) trend estimator as described by Blewitt et al., 2016. 

Please see the Appendix for a complete list of station velocities. GPS data were then imported 

into ArcMAP and interpolated surfaces were generated using an Inverse Distance Weighting 

(IDW) method (Figure 9). GPS vectors were also used to predict surface deformation from 2017-

2021, where GPS rates were assumed to be linear.  
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Figure 9: GPS velocity and uncertainty surfaces generated using IDW interpolation method, GPS 
data from the Nevada Geodetic Laboratory and the MIDAS velocity estimation method. Sub-
figures a, c, and e show the GPS velocities in mm/yr for the Easting, Northing, and Vertical 
components where the red color represent motion in that respective direction and blue represents 
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motion in the opposite direction. Sub-figures b, d, and f show the uncertainties in mm/yr for the 
Easting, Northing, and Vertical components where green is low uncertainty and red is high 
uncertainty. Uncertainty is primarily concentrated towards the boundary of Walker and Harris 
Counties, and along the boundary of Galveston and Harris Counties across all three components 
of motion. This corresponds to poor spatial distribution and reduced data coverage in these areas. 
A subsidence bowl in northern Harris County can be observed in the vertical velocity surface map. 
This causes nearby areas to deviate from a predominantly southeast track and point towards the 
center of this subsidence bowl.  
 

 

2.3 Groundwater Modeling 

Groundwater level modeling and predictions from 1990-2027 were performed to 

evaluate the impact of current withdrawal rates in the future. Modeling was carried out in 

MATLAB and involved calculating both the high and low-frequency components of groundwater 

level. The time-series groundwater data from 1990-2017 generate earlier were imported into 

MATLAB, where an 8th order sum of sines (sin8) fit, as shown below, was used to interpolate 

values from 1986-2031.  

 

Equation 2: (Sum of Sines Equation) 

 

The sin8 fit was the only function capable of handling the strong seasonal (high-

frequency) variation of the data, however, because predictions degraded around the edges of the 

time-series, the data had to be padded by four years at the beginning and end, hence the 1986-

2031 time frame. The resulting sin8 fit had an average R-squared factor of ~68% and a correlation 

coefficient ranging from ~0.3-0.5, indicating that the fit accounts for most of the observed data 

and that the fit and raw data have a moderately positive linear relationship. The R-squared factor 
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and correlation coefficient are not higher because of the sinuous nature of the data and because 

edge artifacts were not fully removed. A simple boxcar filter with cutoffs of ±152.4 m (500 ft) was 

then applied to remove aberrant water level predictions. Next, a 6th order polynomial function 

was fit through the sin8 fit so as to model the low-frequency variation and calculate water level 

for each point from 1990-2027. However the prediction started to degrade around winter 2021.  

The 6th order polynomial fit had a smaller average R-squared factor of ~50%, but that is expected 

since it is modeling the low-frequency variation. Another boxcar filter with the same cutoffs as 

before was also applied to remove aberrant values. Lastly, Kriging interpolation was applied to 

the prediction results. 

 

 

Figure 10: Groundwater prediction workflow. 
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2.4 Radar Mapping 

For this work, we examined the city of Houston, Texas recently following Hurricane 

Harvey using 7 ascending TOPSAR Sentinel-1 IW (interferometric wide swath) VV polarized 

images from August 12, 2017, and September 17, 2017, as shown below (Figure 11). While 

the images share track and frame numbers, the August 30, 2017 (20170830) image had a 

slightly different footprint, which resulted in no data across the bottom of the image. Despite 

the missing data, this image was processed and analyzed as it covers the period when the 

flooding was most severe (Blake and Zelinsky, 2017). These images are acquired in TOPSAR 

mode and contain three sub-swaths: IW1, IW2, and IW3. Data in each sub-swath is acquired 

in multiple bursts which create seams in the image. These seams, or demarcations as they are 

also called, must be removed in TOPSAR processing through the process of debursting (Veci, 

2015). 

 

 

Figure 11: Seven ascending Sentinel-1 IW images. 
 

 

Radar processing was done using the Sentinel Application Platform (SNAP) software 

provided by the European Space Agency (ESA) and ENVI software provided by Harris Geospatial 

Solutions. Radar pre-processing was done by first applying a Sentinel precise orbit files. The 
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orbital files contain additional information about the position of the satellite during data 

acquisition such as orbital state vectors, which are used to determine a more precise orbit (Veci, 

2015). As the city of Houston is contained within the IW1 and IW2, the TOPSAR images were into 

the respective sub-swath components to save computing power. Sub-swaths IW1 and IW2 were 

then radiometrically calibrated to backscatter (Sigma0) and deburst before merging into a single 

image. The image was then terrain corrected and speckle filtered using a Refined Lee filter.  The 

coherence was calculated by designating the August 12, 2017 pre-flood image as the master for 

all 6 image pairs; the August 12, 2017 image was also used for backscatter comparison.   Visual 

inspection revealed coregistration issues between the backscatter of images of August 18, 2017 

(20170818), August 30, 2017 (20170830), and September 11, 2017 (20170911) due to slight 

misalignments of satellite orbits. These backscatter images were manually coregistered to the 

August 12, 2017 (master) image in ENVI using a first-order polynomial wrap method and nearest 

neighbor resampling. Coregistration information is summarized below in Table 2. False color 

composite images of RGB: coherence, mean backscatter, and backscatter difference were then 

created, as shown in Figure 12 and used to identify different endmembers.  

 

Table 2: Coregistration information. 
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Figure 12: False-color composite images of RGB: coherence, mean backscatter, and backscatter 
difference for a) August 18, 2017 (20170818), b) August 24, 2017 (20170824), c) August 30, 2017 
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(20170830), d) September 5, 2017 (20170905), e) September 11, 2017 (20170911), and f) 
September 17, 2017 (20170917). The base image for coherence and backscatter changes is August 
12, 2017. Blue is water (areas of both low backscatter and low coherence), yellow is urban (high 
backscatter and high coherence), green is vegetation (high backscatter and low coherence), and 
red is bare soil or roads (low backscatter and high coherence). Bright green area along the bottom 
edge of Figure 11c represents a lack of data and was excluded from further processing. This same 
figure shows an increase in red areas over what should be urban settings and an increase in 
vegetation over what should be water. Both of these changes are a result of loss of coherence and 
increased texture during this time. Flooding was most severe August 30, with flood waters 
persisting until late September. The southwest corridor of Houston retained flood water for the 
longest time.  
 

 

Cutoff thresholds for endmembers in each image were calculated by analyzing the 

histograms of the difference and mean backscatter. As the images are made up of flooded and 

dry areas, the histograms are bimodal, as shown in Figures 13.  
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Figure 13: a) Histogram of backscatter difference showing bimodal distribution associated with 
flooded areas. b) Histogram of mean backscatter showing bimodal distribution associated with 
flooded areas. 
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Martinis, S., and Rieke, C. (2015) compiled a list of common vegetation types and their 

associated backscatter range when flooded. For a coastal wetland, the backscatter was found to 

decrease by 15.1-6.8 dB when flooded; for the Houston area, a cutoff of -13.5 dB was used in 

this study. For urban areas, the coherence cutoff been identified as 0.48 by Grey et al., 2003. 

The ocean areas in the southeast were then masked using an SRTM 30m DEM, and the images 

were classified into 1) urban areas, 2) bare soil, 3) water, 4) vegetation, 5) flooded areas, and 6) 

flooded vegetation. Lastly, a 3x3 arithmetic mean filter was applied to each class to further 

smooth out any remaining speckle. This filter was chosen because it preserved fine details such 

as thin streams and flooded streets, while still smoothing the image. Statistics for each image 

pair were then computed to determine the percentage of each component. 
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Chapter 3:  Results  

3.1 GPS and Water Data 

Figures 5a-d of seasonal water withdrawal averages from 1990-2017 highlight the typical 

seasonal (high frequency) variation and show elongate, approximately north-south, concentric 

patterns centered over the city of Houston.  The highest water withdrawal occurs in the fall and 

winter seasons and is concentrated in northern Harris County, also expanding into parts of Fort 

Bend, Brazoria, and Galveston Counties. This water withdrawl is likely linked to the recent and 

rapid growth of cities such as Sugarland, Missouri City, Pearland, and League City. These images 

delineate the spatial extent and groundwater level change associated with seasonal variation. All 

aquifer systems undergo reversible surface deformation in response, yet large scale deviations 

from these baselines will result in irreversible deformation (Galloway et al., 1999).  

Figure 6 shows the average rainfall over Harris County from 2011 to 2016. Increased 

rainfall will result in overloading the local aquifer system and lead to increased subsidence. While 

the Gulf Coast is known for its wet climate, most of the rain is concentrated around the coast and 

southern Harris County. This difference in rainfall makes northwest Harris County the most at risk 

for large scale deviations in aquifer loading, as can occur during storms, hurricanes, and floods. 

The water level change images in Figure 7 represent low-frequency variation experienced by the 

aquifer systems and shows large scale concentric patterns centered primarily over northern Harris 

County. Figure 7a from 1990-2017 shows an increase in the water level over the south and 

northern Harris County, likely the result of monitoring and control efforts from the Harris County 

Subsidence District, and a noticeable decrease in the water level over northeast Harris and 

southern Montgomery counties centered over the Woodlands area. This trend is also apparent in 

Figures 7b and 7c with an increase in the water level in the south, and a decrease in the water 

level in the north.  
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Figure 9 shows the GPS velocity and uncertainty surfaces that were generated using an 

IDW interpolation method, data from the Nevada Geodetic Laboratory and the MIDAS velocity 

estimator. Surfaces in Figure 9a, c, and e correspond to GPS velocity in mm/yr along the Easting, 

Northing, and Vertical directions respectively. Motion along these three principle directions is 

represented by the red color, while blue color represents motion in the opposite direction. 

Surfaces in Figure 9b, d, and f correspond to the GPS uncertainties in mm/yr along the Easting, 

Northing, and Vertical directions respectively. High uncertainty in the final velocity is shown by 

the red color while low uncertainty is shown by green color. The horizontal components of 

motion, the Easting and Northing, have the lowest uncertainties with data showing less than 1.5 

mm/yr uncertainty. The Vertical uncertainty is much higher, going up to 7.8 mm/yr; however 

these are in line with the resolution of GPS data. Across all three uncertainty maps, areas of high 

uncertainty are primarily concentrated on the boundary of Walker and Harris Counties, as well as 

on the boundary of Galveston and Harris Counties. These areas correspond to poor spatial 

distribution of GPS stations and reduced data coverage as can be seen in Figure 2.  

Figure 9a of the Easting velocity shows stations in Fort Bend, Harris, and Montgomery 

Counties moving slightly westward. These same areas are shown to move towards the north in 

Figure 9b and move downwards in Figure 9e. This motion is contrary to stations outside of these 

areas, where the general trend seems to be a southeastern motion with very little vertical motion. 

The juxtaposed motion is best explained by the presence of a subsidence bowl as can be seen in 

Figure 9e. The area undergoing subsidence is spatially distributed as an oblong oval covering most 

of northern Harris County. Northern Harris County is subsiding as high as 16.32 mm/yr, and shows 

an average range of ~14-8 mm/yr in downwards motion. As this area is subsiding very quickly, it 

creates a bowl shape which causes nearby GPS stations to record motion towards the center of 

the bowl.  
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Interpolated surfaces were generated for horizontal velocity vectors, vertical velocity 

vectors, and total velocity vectors which were then overlaid with groundwater change contours 

from 2006-2017 (Figures 14). Figure 14a shows the rotated GPS total velocity vectors over the 

Houston area, and highlights the southern track of salt domes and motion along the Long Point-

Eureka Heights Fault System. The total GPS velocity surface with overlaying water level change 

from 2006-2017 is shown in Figure 14b, where the areas with the highest velocities are found to 

the north and south. The south corresponds to where most of salt domes are located, however it 

is likely that the high velocity in Grimes County and further north is an interpolation artifact due 

to too few data points. Large amounts of motion are found in northern Harris County, 

northwestern Fort Bend County, and central Montgomery County which correspond to areas of 

water withdrawal. There is much lower motion towards the southwest and northeast sections of 

the map; however this may be due to too few data points outside of Harris County.  

The decomposed GPS velocity into horizontal and vertical components of motion are 

shown in Figures 14c and 14d. The area of high horizontal motion in Figure 13c are concentrated 

along the Long Point-Eureka Heights fault system, central Montgomery County, central Fort Bend 

County, central Jefferson County, and southeast Harris County/Galveston County. Southeast 

Harris County and Galveston County are located over salt domes and experienced a groundwater 

increase from 2006-2017. Here horizontal motion is from 3.25-3.76 mm/yr along a southern track. 

The remaining areas experienced ground water level decrease from 2006-2017, with the most 

notable being over central Harris County and central Montgomery County. Horizontal motion in 

these two areas ranges from ~2-3 mm/yr. Motion along the Long Point-Eureka Heights fault 

system is approximately 3.2-3.7 mm/yr in the horizontal and pointing northwards.  
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Figure 14: Surfaces in Figures B through D are generated using an Inverse Distance Weighting 
interpolation and GPS data from the Nevada Geodetic Laboratory in NA12 reference frame. GPS 
data consist of CORS stations from 1990 to June of 2019. Groundwater changes are shown from 
2006 to 2017. a) Plotted GPS total velocity vectors over the Houston area; vectors highlight 



38 
 

southern salt dome movement and fault motion along the Long Point-Eureka Heights fault system. 
b) GPS Total Velocity Vector Surface (mm/yr) with plotted GPS stations and GPS vectors. c) GPS 
Horizontal Velocity Vector Surface (mm/yr); areas of high horizontal motion are concentrated 
along the Long Point-Eureka Heights fault system, central Montgomery County, central Fort Bend 
County, and central Jefferson County which correspond to a decrease in the water table from 2006-
2017. Areas of high horizontal motion are also found in southeast Harris County/Galveston County 
over salt domes. Here horizontal motion is ~1-3.5 mm/yr along a Southern track. d) GPS Vertical 
Velocity Vector Surface (mm/yr); it shows the best water level change correlation, with uplift over 
salt domes of up to 3.5 mm/yr and increasing vertical displacement over the Long Point-Eureka 
Heights faults system from west to east. Subsidence takes place primarily in northern Harris 
County, central Montgomery County, and northern Fort Bend County. Differential fault motion 
corresponds to increase in groundwater from west to east, while subsidence corresponds to a 
decrease in the water table.  
 

 

3.2 Radar Mapping and Classification 

The false color composite images are shown in Figure 12 where blue color represents 

areas of low backscatter and low coherence (water), yellow color are areas of high backscatter 

and high coherence (urban), green color are areas of high backscatter and low coherence 

(vegetation), and red color are areas of low backscatter and high coherence (bare soil/roads). 

This simple visual classification works rather well except for the case of Figure 12c (August 30, 

2017; 20170830). Figure 12c (August 30, 2017; 20170830) shows green color in the lower 

right-hand corner that should be classified as water. There is also an abundance of red color 

in what should be urban areas. Such a drastic change compared to the other images is due to 

the large coherence and backscatter difference caused by the extreme flooding that occurred 

at this time. August 30, 2017 (20170830) was characterized by peak hurricane activity and 

large amounts of rainfall which flooded much of the greater Houston area and decreased the 

observed backscatter (Blake and Zelinsky, 2017). The increased storm activity had the 

opposite effect for the Gulf of Mexico where surface texture was increased, causing an 

increase in the backscatter. To accurately classify this image, threshold values for the 

difference and mean backscatter had to be relaxed to detect subtle changes. This increase in 
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surface texture also made it necessary to apply a mask over the sea portion of the images and 

a smoothing filter to avoid erroneous classification. Note that the green area on the lower 

part of Figure 12c designates a lack of data and was not considered for classification.  

Classified images and statistics are shown in Figures 15-16 and Table 3. In Figure 15, green 

is vegetation, blue is water, light orange is bare soil, and red are urban areas. As before, the 

green areas on the lower portion of Figure 15c designated a lack of data and was not 

considered.  The urban areas and bare soil become harder to distinguish in the zoomed-out 

views as the flooding intensifies due to the increase in backscatter. In these classification 

images, the water class designates the total amount of detected water and does not 

differentiate between flooded and normal conditions. The same can be said for the vegetation 

class, which does not distinguish between dry and flooded vegetation. These classes are 

broken up into the flooded and dry components in Figure 16. The backscatter differences 

images are shown for each date along with water under normal conditions (blue), flooded 

areas of open water (cyan), and areas of flooded vegetation (red). In order to reduce possible 

misclassification due to the backscatter variability caused by storm conditions, classes were 

defined as non-overlapping. The water under normal conditions was derived from the August 

18, 2017 (20170818) image, before the flooding event.  

It is to be noted that during this time rainfall was experienced in the Houston area, which 

led to very minor flooding as shown in Table 3. Overall, the flooding was most prolonged along 

the lower left-hand side of the image corresponding to the Brazos River. This area started 

flooding as early as August 24, 2017 (20170824), and remained in such a state past September 

17, 2017 (20170917). From the following images, it does not appear that the San Jacinto River 

was inundated for very long, despite the rather larger footprint recorded by USGS in-situ 

measurements. The heavy rainfall, coupled with the long time it took to drain flood on 
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Houston’s southeast corridor, makes the southwest Houston area one to monitor for future 

surface deformation and possible subsidence. The 4-year prediction from 2017-2021 shows 

this area deforming by about -1.4 cm under normal conditions. This will likely increase in the 

presence of extensive flooding, each even likely deforming an additional 1-2 cm if of a similar 

magnitude/longevity as Hurricane Harvey (Milliner et al., 2018).  

 



41 
 

 

Figure 15: Classification images for a) August 18, 2017 (20170818), b) August 24, 2017 
(20170824), c) August 30, 2017 (20170830), d) September 5, 2017 (20170905), e) September 11, 
2017 (20170911), and f) September 17, 2017 (20170917). Green is vegetation, blue is water, light 
orange is bare soil, and red are urban areas. The urban areas and bare soil become harder to 
distinguish in the zoomed-out views as the flooding intensifies due to the increase in backscatter. 
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Figure 16: Backscatter difference images where blue is water under normal conditions, cyan is 
flooded areas, and red is flooded vegetation. Images are as follows: a) August 18, 2017 
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(20170818), b) August 24, 2017 (20170824), c) August 30, 2017 (20170830), d) September 5, 2017 
(20170905), e) September 11, 2017 (20170911), and f) September 17, 2017 (20170917).  Note that 
the green area in Figure 16c is masked out and not considered due to a lack of data. 
 

 

Table 3: Statistics of radar classification. The green color represents images that did not have to 
be manually coregistred, while the yellow corresponds to images that had to be coregistered and 
had a different spatial extent. The open water class is made up of all the detected water in the 
image, while the flooded class indicated what fraction of the water is due to flooding.  
 

 

 

Looking at Table 3, the conditions prior to Harvey on August 18, 2017 (20170818) indicate 

that around 8% of the image is flooded. This aligns with weather reports of heavy rainfall at 

the time. The amount of flooded areas jumps up drastically from 0.3% to 18% on August 30, 

2017 (20170830). This is accompanied by a 4% increase in the flooded vegetation, likely an 

underestimate due to the complex target and thick tree canopies as discussed previously. By 

September 5, 2017 (20170905) the flooding has decreased significantly, but the image is still 

not experiencing pre-Harvey conditions. The classification results before the flooding in 

August 18, 2017 (20170818) also show that the image is made up of about 74% vegetation. 

20170818 20170824 20170830 20170905 20170911 20170917

Urban 43551092 23471667 11605876 15931718 15487145 15473941

Bare Soil 428319 1979952 2193911 667754 733382 743799

Vegetation 136199718 143869111 129563744 155656837 154807164 155098518

Open Water 4605115 15406428 41420713 12408451 13756576 13411088

flooded 624900 7781052 33635191 8134308 11789563 7825805

flooded veg 13736425 13639439 21240930 21956440 18197908 15065776

Urban (%) 23.5686 12.7061 6.2808 8.6274 8.3812 8.3766

Bare Soil (%) 0.2318 1.0718 1.1873 0.3616 0.3969 0.4026

Vegetation (%) 73.7074 77.8819 70.1162 84.2916 83.7772 83.9608

Open Water (%) 2.4922 8.3401 22.4157 6.7194 7.4447 7.2599

flooded (%) 0.3382 4.2122 18.2024 4.4049 6.3802 4.2364

flooded veg (%) 7.4338 7.3836 11.4950 11.8899 9.8482 8.1557

Number of Pixels per Class per Observation
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After the flooding event this number jumped to 84%, an overall increase of ~10%.  

It is unlikely that during this time vegetation grew so drastically as to make up for the 

above change, however the reduction in coherence that was experienced by flooded buildings 

with high backscatter may have caused them to be misclassified as vegetation (Chini et al., 

2019). Similarly, water bodies experienced an increase in surface texture during the storm, 

which resulted in misclassification as vegetation to a much lesser degree. These changes, 

along with the increase in vegetated debris following the flooding, can account for the 

increase in observed vegetation. Moreover, this information tells that around half of the 

observed buildings in August 18, 2017 (20170818) became inundated to some degree as a 

result of Hurricane Harvey. A change in the coherence/backscatter also affects the amount of 

detected bare soil. The bare soil is shown to increase during and after the flooding due to the 

increase in surface texture caused by the storm, primarily over water bodies. As satellite radar 

sensitive to target texture, areas that became textured were misclassified as bare soil. This 

can be avoided by applying a harsher filter over the detected water bodies; however, this 

information can also be used as a proxy for surface conditions. The largest amount of bare 

soil was detected in the August 24, 2017 (20170824) and the Augst 30, 2017 (20170830) 

images, indicating that the storm was most active at these times.  
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Chapter 4:  Discussion 

4.1. Deformation Analysis 

The water level change from 2006-2017 and 3D GPS velocity vectors in Figure 14 shows a 

good spatial correlation. A substantial decrease in the groundwater level will cause subsidence, 

reduce the strength of the aquifer, and possibly lead to non-reversible deformation. Likewise, an 

increase in the overbearing load will cause subsidence and may cause sediment 

compaction/porosity loss in the aquifer system (Galloway et al., 1999; Kasmarek et al., 2009; 

Kasmarek, 2012). Figure 17 shows a zoomed in view of the GPS vertical velocity surface over Harris 

County. Figure 17a is overlaid with average rainfall contours from 2011-2016, where the 

southeast portion of the map is receiving the highest average rainfall and the northwest portion 

is receiving the lowest amount of rain. This difference in rainfall indicates that the aquifer system 

to the southeast is more resistant to loading. Figure 17b is overlaid with ground water changes 

from 2006-2017 and shows northern Harris County undergoing as much as -16 mm/yr of vertical 

deformation. This is coupled with a decrease in the ground water level of over 10 m between 

2006-2017. However, long-term ground water trends, such as in Figure 7a and 7b, show an 

increase in the ground water level.  

While this study did not analyze time-series trends for porosity data or soil compaction, 

it is likely that the observed deformation over northern Harris County is linked to some degree of 

inelastic deformation. Similar trends are also observed over the Woodlands area (gray star in 

Figure 17) in Montgomery County. The Woodlands area has experienced a groundwater level drop 

of over 20 m since 2006-2017, and over 40 m of groundwater level loss from 1990-2017. Yet the 

current observed subsidence rates are relatively small, only about 6-4 mm/yr. Compared to 

northern Harris County, this area has experienced more than double the groundwater level loss 

but has ¼ the subsidence rate.  If inelastic deformation is taking place, it is likely only in the 
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beginning stages in this area. Regardless, continued groundwater pumping over the Woodlands 

may soon result in this area resembling northern Harris County and experiencing increased rates 

of subsidence.  

Further south there is the increase of groundwater coupled with positive uplift rates. A 

water level high concentrated over southeast Harris County shows both large vertical (~1-3.5 

mm/yr) and horizontal (~3.5 mm/yr) motion. These rates of motion are much higher than similar 

areas that have also undergone an increase in water level, therefore  that cannot be attributed 

solely to increased groundwater level. Instead, high motion over this area is best explained by the 

fact that League City happens to overly multiple salt domes along with the Hastings Oil Field. Salt 

domes being lighter than the surrounding rocks, rise to the surface and cause uplift along with 

associated faulting (Engelkemeir et al. 2008; Engelkemeir et al., 2010; Khan et al., 2014). The salt 

domes here also appear to be some the most active, moving at ~3.5 mm/yr along a southern 

track. However, the Hasting Oil Field is currently operated by Denbury Resources Incorporated, 

which uses CO2 injection in the CO2 Enhancement Oil Recovery (CO2 EOR) method to recover oil 

not extracted previously with traditional methods (Denbury Inc., 2011). The CO2 injection method 

has previously been shown to increase surface deformation, primarily by causing positive uplift 

along the vertical direction (Cappa and Rutqvist, 2012; Karegar et al., 2015). For southeast Texas, 

Karegar et al., 2015 also noted a high degree of correlation between CO2 injection pressure and 

observed uplift. Vertical motion in this area ranges from 1-3.5 mm/yr with surrounding regions 

that have also undergone an increase in ground water are showing no vertical motion or slight 

subsidence ranging from 1-2 mm/yr. While it is difficult to quantify the amount of vertical motion 

associated with CO2 injection or salt dome movement due to GPS being a cumulative 

measurement, it is likely that the deformation in this area is primarily caused by these factors.  
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Figure 17: GPS Vertical Velocity Vector Surface (cm/yr) with Water Level Change contours (m); X 
over Hasting salt dome/League City, gray star over Woodlands area. a) Average rain from 2011-
2016 showing less rain/smaller loading capacity over northern Harris County and more rain/higher 
loading capacity over southeast Harris County/Hastings salt dome. b) Ground water level change 
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contours from 2006-2017 show uplifting area in southeast Harris County/Hastings salt dome 
where salt dome movement ranges from 1-3.5 mm/yr upwards. Area between Addick’s Conroe 
and Long-Point-Eureka-Heights Fault systems is likely showing positive uplift due to faults, but 
uplift is hard to quantify. Northern Harris County (blue circle) is undergoing deformation and 
subsiding at ~3.7mm/yr. The Woodlands (gray star) is similar to League City and also affected by 
salt domes whose uplift of up to 5mm/yr is counteracting the 1mm/yr subsidence. In the future 
this area may resemble northern Harris County. 
 

 

The high degree of visual correlation between the GPS velocity vectors and the water level 

change from 2006-2017 also reveals spatial variation in the displacement rate across the fault 

systems. As shown in Figure 17b, the Long Point-Eureka Heights faults system shows lower rates 

of vertical deformation towards to east associated with an increase in the water level. Most faults 

in the Houston area act as fluid barriers; an increase in fluid pressure on one side of the fault is 

reducing the pressure difference that was previously experienced in this area by long-term 

groundwater pumping (Kreitler, 1977; Holzer, 1976; Bubey, 2002). Fault related differential 

compaction is being likely mitigated by an increase in the fluid pressure towards the east, causing 

the different deformation rates from east to west (Kreitler, 1977; Holzer, 1976).  

The predicted groundwater withdrawal increase has further implications for fault 

reactivation as noted over the Long-Point Eureka-Heights Fault System (Kreitler, 1977; Holzer, 

1976). Faults in the Houston area were largely inactive until the last century, with most acting as 

fluid barriers. However, as pore pressure is reduced and sediment is compacted in the fluid 

production side due to groundwater pumping, the differential pressure is transferred to the 

surface and the fault is reactivated (Kreitler, 1977; Holzer, 1976; Burbey, 2002). Fault movement 

is thus highly correlated with aquifer elasticity in the Houston area. If current ground pumping 

trends continue, it is likely that faults in the Woodlands and southwest Harris County will become 

reactivated.  
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The GPS vertical velocity surface shows the best water level change correlation, and shows 

uplift over salt domes in southeast Harris County of up to 3.5 mm/yr. Negative vertical motion, or 

subsidence, is shown primarily over northern Harris County and central Montgomery County as 

low as -16.3 mm/yr. Areas along the western portion of the Long Point Eureka Heights fault system 

are showing subsidence ranging from ~10-6 mm/yr, whereas the eastern section only shown 

subsidence ranging from 4-0.45 mm/yr. This corresponds to an increase in ground water towards 

the southeast. Smaller subsidence is shown over Fort Bend County of about 4-6 mm/yr, but the 

lack of well distributed data in this region makes it hard to distinguish the actual extent of the 

affected area. The high correlation of the ground water trends and vertical deformation data 

reveals that the resent observed vertical deformation is primarily linked to low frequency 

variation in the aquifer system, which can cause inelastic deformation. 

4.2. Predicted Surface Deformation 

The groundwater level prediction degrades around winter 2021, therefore the water level 

change was only calculated for 2017-2021 (Figure 18). The predicted images all show an increasing 

area of low water level, particularly over northern Houston, and the Woodlands areas, with a 

small area towards the south overlaying the most salt domes and increasing water level. The 

water level change and vertical GPS displacement from 2017-2021 is shown in Figure 18; the 

predicted groundwater level change largely resembles the pattern observed in the water level 

change from 2006-2017 (Figure 5b). The Hastings area shows a predicted 1 cm of uplift, largely 

due to the active salt dome nearby and CO2 injection.  
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Figure 18: Predicted surface deformation and groundwater level change from 2017-2021 where H 
is over Hastings Salt Dome/Oil Field, star over Woodland area, cross-hair over damaged area in 
southwest Harris County, and three main fault systems: 1) Hockley-Conroe Fault System, 2) 
Addick’s Fault System, and 3) the Long Point-Eureka Heights Fault System. The 4-year prediction 
shows a continued decrease in the water level over the Woodlands area and various parts of Harris 
County. Deformation is predicted to increase significantly over the damaged areas in southwest 
Harris County. 
 

 

The Woodlands area also shows ~3-7 cm of subsidence alongside the predicted water level 

decrease of ~5 m.  Southwest Harris County shows two worrying developments of increased 

subsidence and decreased water level (cross-hairs in Figure 18). In Figures 14, these areas are 

relatively small and just starting to show negative water level concentric contours. Further south, 

the Hastings Salt Dome shows continued increase in water level and increased uplift. This area of 

uplift is predicted to increase towards areas that are undergoing slight ground water level loss. 

The active salt dome coupled with CO2 injection is predicted to overcome the subsidence 

associated with groundwater withdrawal over these areas in the next 4 years. Uplift is also 
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predicted to occur in the northwest corner of the map; however, this is likely an interpolation 

artifact due to poor data coverage outside of Harris County. This prediction indicates that if water 

withdrawal rates continue at their current level, deformation as seen in northern Houston will 

likely also occur in the Woodlands and possibly over southwest Harris County; areas undergoing 

subsidence will continue to expand but be slightly offset by uplift associated with CO2 injection 

and salt domes in the south.  

4.3. Inconsistencies in GPS Data 

While raw GPS dataset that was processed independelty in this study provided many more 

GPS observations, they were generally of lower quality than the NGL dataset largely due to the 

reduced time of observation. For example, PAM stations make up most of the observations in this 

dataset. However, as these are mobile stations that are only intermittently operating for a few 

days to a few weeks a year, they are much less reliable than CORS data and more likely to capture 

seasonal variation rather than long-term displacement rates (Blewitt and Lavallée, 2002; Blewitt 

et al., 2016). This can cause variability between measurements and bias velocity estimates even 

over nearby areas, as can be seen by the different pointing directions in Figure 19a. For PAM 

stations, large seasonal variation is a primary concern and cannot be filtered out due to limitations 

in temporal coverage. Even with data collected across multiple years, the source signal is likely 

aliased, and GPS derived velocity results are of reduced accuracy when compared to CORS stations 

(Blewitt and Lavallée, 2002; Blewitt et al., 2016). 
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Figure 19: Plotted GPS total velocity in mm/yr for a) independently processed data and b) Nevada 
data. Difference between the temporal span, reference frames, and processing methods resulted 
in different GPS velocity estimates. However, both datasets show relatively similar trends of 
southern moving vectors over southeast Harris County and northern moving vectors over the Long 
Point-Eureka Heights fault system.  
 

 



53 
 

On the other hand, a large part of CORS data over central Harris County are relatively new 

and only span back to 2013 or later. In 2011 the Houston area CORS GPS network consisted of 

only 38 stations, 6 of which were no longer operational. To overcome the poor data distribution, 

fifteen new stations were added in 2012 and 2013 respectively, followed by 28 stations in 2014, 

and 18 stations in 2015 (Figure 20). No new stations were added following 2015. Out of the 118 

CORS stations to have been established throughout the greater Houston area, only 98 are still 

operational as of June 2019. The recent growth of the Houston CORS network meant that at the 

time of processing in 2017, only 25 out of the 107 operating stations had data spanning back more 

than 6 years. In other words, only 25 stations could provide robust GPS solutions not affected by 

seasonal variation or other factors.   

The method for calculating station velocity is also not as robust as the MIDAS trend estimator. 

A least-squares trend works well for normally distributed data; however, performance has been 

shown to degrade in the presence of outliers, data discontinuities, and abrupt jumps or steps in 

the data. For short time-series, the least-squares method has also been shown to produce velocity 

estimates correlated with seasonal variation (Blewitt et al., 2016). On the other hand, the MIDAS 

estimator works by calculating the median between data pairs separated by 1 year, which reduces 

the effects of seasonal variation and step discontinuities in the data. MIDAS reduces velocity bias 

by removing data outliers and recomputing the median; trend uncertainty is also computed in the 

final output (Blewitt et al., 2016). Tested MIDAS velocities have a root-mean-square (RMS) 

accuracy of +0.33 mm/yr in the horizontal and +1.1 mm/yr in the vertical directions respectively. 

The least-squares and MIDAS velocities have been shown to vary by up to 3.5 mm/yr in synthetic 

tests; this number may be higher for actual GPS data (Blewitt et al., 2016).  
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Figure 20: Time series view of CORS GPS stations added each year across the greater Houston area. 
Sub-views showing stations added during that time period where a) 1990-2012, b) 2012-2013, c) 
2013-2014, d) 2014-2015, and e) 2015-2015.  
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Due to the increased temporal coverage and more robust processing methods, this study 

adopted the GPS data available from NGL and used these for interpretation alongside the ground 

and surface water data. However, processed GPS results and images are included in the appendix 

section for reference.  Differences between the NGL GPS data and the GPS data processed in this 

study arise due to the difference in temporal coverage, spatial reference frame, and processing 

methods. Even with these differences, it is to be noted that CORS stations have relatively similar 

movement directions across both datasets. Southeast Harris County showed southern moving 

vectors, whereas central Harris County shows northern moving vectors along the Long Pont-

Eureka Heights fault system.  

4.4. Radar Mapping Validation 

Radar classification results were validated by comparing to urban areas from the City 

of Houston GIS Portal and derived flooded extents made up of flooded areas and flooded 

vegetation to USGS in-situ measurements as show in Figures 21-23. Building footprints for the 

city of Houston from August of 2016 were downloaded from the City of Houston GIS Portal. 

The dataset is comprised of 649,510 recoded buildings listed as either existing, demolished, 

new, possibly changed, or unknown. These data were imported into ArcMap along with the 

urban classes derived from the August 18, 2017 (20170818) image. This image was selected 

because it was the furthest from the flooding occurrence and thus had the least amount of 

water or surface texture that might obscure features. The difference in resolution, spatial 

extent, and time between the datasets did not allow for a direct one-to-one comparison; only 

a qualitative analysis could be made. However, the radar imagery as shown in Figure 21, 

shows good agreement with the building footprint data over both residential and urban areas. 

While the radar data has a resolution of 14x14 m, it is still able to detect sub-pixel features 

such as houses and buildings over both residential (Figure 21a) and urban areas (Figure 21b). 
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The two datasets have good agreement overall, but the detection of urban features becomes 

more difficult over complex targets such as thick vegetation where both endmembers may 

exhibit high coherence and backscatter. This is primarily an issue in residential areas and does 

not affect the larger urban core of the city of Houston.  

 

 

Figure 21: Urban area classification validation showing the August 18, 2017 radar imagery in RGB: 
coherence, mean Sigm0, and difference Sigma0 where blue areas are water, red are bare 
soil/streets, green is vegetation, and yellow corresponds to urban areas. Red polygon indicates 
building footprint data from the City of Houston GIS Portal. Study areas over primarily residential 
(a) and primarily urban (b) environments are shown for comparison. While the radar data has a 
resolution of 14x14 m, it is still able to detect sub-pixel features such as houses and buildings. The 
two datasets have good agreement overall, but the detection of urban features becomes more 
difficult over complex targets such as thick vegetation. 
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Watson et al., 2018 provide in-situ flood measurements in shapefile format over various 

rivers across the Houston area. For this study, data over the upper Brazos River and the San 

Jacinto River were analyzed in ArcMap as they had the best image overlap. The cumulative 

flooded areas derived from all processed imagery over unobstructed areas show proper 

alignment with the in-situ measurements, as shown in Figures 22 and 23. Small scale features 

such as ox-bow lakes and inundated streets are readily made out. Discrepancies between the 

satellite and in-situ measurements arise over more complex targets, primarily over 

vegetation. As vegetation is a complex target and changes rapidly, only the August 30, 2017 

(20170830) and September 5, 2017 (20170905) images were used for comparison with the in-

situ data; these dates correspond to the most severe flooding. Comparing the flooded 

vegetation, it is more detectable in images when surface texture is not a dominate component 

and where there is no thick canopy. While image for August 30, 2017 (20170830) experienced 

more flooding, flooded vegetation is much harder to detect because of the tumulus ground 

conditions. In fact, a similar outline like the USGS in-situ measurements in Figures 22 and 23 

can be faintly made out on the difference images of Augut 18, 2017 (20170818) and August 

24, 2017 (20170824).  

A possible method to reduce speckle while preserving image quality could be 

coregistation of all images and applying a temporal filter, as demonstrated by White et al., 

2015 for wetland mapping. Figures 22 and 23 lack detected flooded vegetation along the river 

edges, but farmlands are well detected. This phenomenon likely occurs because most farm 

crops lack a thick canopy that acts to block the radar signal, unlike the typical environment 

along riverbanks. Flooded vegetation in these areas would be more detectable with a longer 

wavelength system such as L-band which would allow for further tree canopy penetration; 

the satellite image would also be less sensitive to small-scale backscatter changes (Wegmuller 
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and Werner, 1995; Henderson and Lewis, 1998). Vegetation mapping may similarly be 

improved by utilizing a different polarization such as HH or HV (Xia and Henderson, 1997).  

 

 

Figure 22: The inundated extent of the Upper Brazos River from in-situ measurements shown in 
pink, and radar data shown in blue and green. The blue corresponds to the cumulative flooded 
areas detected across all imagery, while the green corresponds to areas of flooded vegetation 
from August 30, 2017 (20170830) and September 5, 2017 (20170905). Flooded extents of the A) 
Upper Brazos River and B) the San Jacinto River are shown in the upper right-hand sub-view. 
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Figure 23: The inundated extent of the San Jacinto River from in-situ measurements show in pink, 
and radar data shown in blue and green. The blue corresponds to flooded areas, or open water, 
while the green corresponds to areas of flooded vegetation from August 30, 2017 (20170830) and 
September 5, 2017 (20170905). Flooded extents of the A) Upper Brazos River and B) the San Jacinto 
River are shown in the upper right-hand sub-view. 
 

 

While this mapping approach shown promise, it is still dependent on the user defined 

threshold. Similarly to the gray-threshold technique, the threshold is the single most important 

factor for improving accuracy and providing quality results in a short time. The processing scheme 

could be improved by creating stricter guidelines for classification or by utilizing universal 

threshold standards. While not tested in this work, unsupervised and supervised classification 

algorithms might also be employed for a consistent and semi-automated approach. However, this 

required knowledge of the number of endmembers present, their spatial distribution, etc., which 
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may or may not be available. To maintain a self-consistent approach, the use of neural networks 

and machine learning may be utilized given that the study area is large enough to be detected (Li 

et al., 2019). However, even with such sophisticated methods, it may still be challenging to 

accurately classify images acquired at different times due to the high variability of backscatter. 

The lack of quantitative error analysis to this and other remote sensing-based flood detection 

techniques is another hurdle to overcome. Currently, there is only limited ground-truth data 

available that makes it hard to discern the performance of different thresholds/methods in less 

than general terms.   

However, despite the following limitations space borne radar data shows great potential for 

mapping natural hazards like floods and can provide real-time solutions to aid in decision making. 

Unlike optical remote sensing techniques, it can penetrate though storm clouds and tree canopy; 

it does not require daytime condition to operate. By exploiting the high temporal resolution of 

data, the change in backscatter and coherence components between two or more images can be 

derived. These data can be used to quickly identify and map endmembers, similarly to 

multispectral datasets. The large availability of data also allows for time-series analysis and 

change detection. Additional benefits of radar data include being able to map the surface 

deformation and soil moisture associated with floods, without the need for time consuming in-

situ measurements. As the data are acquired from space, it is not prone to shortages associated 

with natural disasters. Thus, SAR data and the technique presented in this work will likely become 

an indispensable tool for flood analysis and other natural hazard studies.  
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Chapter 5:  Conclusions 

The Houston area consists of both geologic and anthropogenic elements which contribute to 

the observed deformation. Naturally occurring southern moving salt domes, thrust faults, storms, 

flooding, and human-induced subsidence all contribute to surface deformation. Currently, the 

Houston area is experiencing deformation in northern Harris County due to excessive 

groundwater withdrawal, which likely is or may become non-reversible in the future. This has 

increased susceptibility to subsidence from flooding and storms, events that are likely to become 

more common as global climate patterns change.  Salt domes and CO2 injection are primarily 

controlling deformation rates towards the south. The local aquifer system located in Houston’s 

southwest corridor is currently more robust, having suffered much less ground water withdrawal. 

However, prolonged flooding in this area, such those caused by Hurricane Harvey, pose a risk of 

sediment compaction and flood-induced subsidence. Predicted surface deformation in the next 

four years shows the Woodlands and southwest Harris County undergoing subsidence, which may 

also have implications for fault reactivation.  
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APPENDIX 
List of GPS Stations processed by the Nevada Geodetic Laboratory (NGL). Data are in NA12 

reference frame with velocities calculated using the MIDAS method.  
station start time stop time vel_east 

(mm/yr) 
vel_north 
(mm/yr) 

vel_up 
(mm/yr) 

unc_east 
(mm/yr) 

unc_north 
(mm/yr) 

unc_up 
(mm/yr) 

'ADKS' 2002.1383 2019.3457 0.056 0.79 -2.916 0.312 0.368 0.964 

'ALEF' 2014.256 2019.4141 -0.271 0.697 -9.286 0.512 0.455 1.989 

'ALVN' 2012.46 2017.2402 1.711 -2.441 -3.046 0.329 0.336 1.277 

'ANG5' 2003.4442 2019.4114 -0.193 -0.664 -1.743 0.184 0.206 0.814 

'ANG6' 2003.4251 2019.4114 0.384 -1.051 -3.226 0.146 0.162 0.714 

'AULT' 2015.5537 2019.4141 -0.46 -0.352 -8.777 0.441 0.5 1.967 

'CFHS' 2015.5921 2019.4141 -1.021 0.077 -11.659 0.514 0.575 2.308 

'CFJV' 2015.77 2019.4141 0.918 -0.735 -11.443 0.616 0.557 2.62 

'CMFB' 2014.4066 2019.4141 -1.184 0.448 -5.391 0.356 0.372 1.531 

'COH1' 2009.0157 2017.7194 -0.387 1.265 -3.234 0.351 0.285 1.53 

'COH2' 2009.0021 2019.4141 -1.639 -0.001 -1.473 0.569 0.358 1.518 

'COH4' 2009.0021 2011.6906 -0.32 1.959 1.04 0.81 0.531 2.501 

'COH6' 2009.0021 2015.4935 -0.035 1.363 -7.06 0.244 0.284 1.144 

'COTM' 2015.0938 2019.4141 -1.706 -0.958 -3.636 0.49 0.551 1.698 

'CSTA' 2013.1444 2015.3238 0.254 3.973 -0.642 0.652 0.618 2.345 

'CSTE' 2015.3812 2019.4141 -2.439 3.01 -8.959 0.533 0.627 2.121 

'DEN1' 2011.7755 2019.2389 1.106 -1.316 -1.722 0.56 0.264 1.12 

'DEN2' 2011.7755 2017.0842 2.139 -0.544 -0.782 0.649 0.362 1.202 

'DEN3' 2011.7755 2019.2389 0.925 0.19 -0.801 0.466 0.347 1.052 

'DEN4' 2015.822 2019.2142 -1.595 -0.842 1.596 0.531 0.472 2.016 

'DISD' 2015.4771 2019.4141 -0.935 -0.718 -0.824 0.526 0.443 2.205 

'DMFB' 2014.768 2019.4141 -0.768 1.153 -9.69 0.435 0.452 1.873 

'DWI1' 2009.3881 2019.4141 0.737 0.643 -2.452 0.292 0.304 1.274 

'FSFB' 2014.3682 2019.4141 -0.523 1.291 -1.763 0.408 0.434 1.487 

'GAL2' 1997.577 2003.0609 1.158 -1.45 -5.989 0.223 0.353 1.202 

'GAL7' 1996.0356 2003.5209 0.833 -0.83 -4.981 0.212 0.271 0.983 

'GSEC' 2015.7536 2019.4141 -1.253 -1.8 -2.686 0.71 0.614 2.904 

'HCC1' 2012.9117 2019.4141 -1.839 3.332 -10.707 0.418 0.701 1.692 

'HCC2' 2013.1362 2019.0856 -2.251 2.452 -11.352 0.575 0.526 2.09 

'HPEK' 2014.3929 2018.3929 -1.31 0.459 -13.486 0.38 0.396 1.427 

'HSMN' 2013.295 2019.4141 -1.143 1.326 -6.257 0.363 0.328 1.441 

'JGS2' 2012.46 2019.4141 -0.723 0.569 -1.613 0.291 0.325 1.235 

'KKES' 2015.5948 2019.4141 1.157 -2.007 -13.636 0.621 0.521 2.235 

'KPCD' 2016.4381 2019.0801 0.755 0.558 -8.775 1.016 1.006 4.714 

'KPCS' 2016.4381 2019.0801 0.034 -0.949 -4.617 1.282 1.539 4.647 

'LCBR' 2010.5352 2016.0903 -0.162 0.464 -2.304 0.211 0.203 1.128 

'LCI1' 2012.46 2019.4141 -1.287 1.77 -4.402 0.34 0.355 1.344 

'LGC1' 2013.5277 2019.4141 0.026 -3.658 -4.363 0.32 0.408 1.386 
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'LKHU' 1996.3395 2019.3621 0.92 0.999 -2.535 0.272 0.265 0.838 

'MDWD' 2013.3005 2019.4141 -0.967 2.865 -7.71 0.5 0.493 1.94 

'ME01' 2015.4634 2017.6646 -0.858 -1.057 -1.31 0.851 0.488 2.004 

'MEPD' 2014.037 2019.4141 -3.132 1.03 1.162 0.803 0.541 1.301 

'MRHK' 2014.3929 2019.4141 -0.841 -0.134 -16.332 0.32 0.326 1.485 

'NASA' 2014.1985 2019.1239 2.894 -2.307 -0.817 0.792 1.037 1.69 

'NETP' 2002.1355 2019.4141 -0.895 -1.872 -0.085 0.372 0.399 1.006 

'OKEK' 2014.5736 2019.4141 0.045 0.504 -8.046 0.465 0.358 1.503 

'PA00' 1996.0082 2018.9405 1.3 -2.455 -1.639 0.45 0.897 1.425 

'PWES' 2015.217 2019.4114 -2.017 -2.61 -4.045 0.444 0.495 2.526 

'RDCT' 2013.5578 2019.4114 -2.19 1.516 -8.38 0.478 0.376 1.498 

'ROD1' 2007.0007 2019.4141 0.951 1.765 -14.745 0.191 0.203 1.193 

'RPFB' 2014.7707 2019.4114 0.089 1.007 -1.593 0.373 0.538 1.494 

'SESG' 2014.6749 2019.4114 -2.082 0.248 -10.873 0.327 0.418 1.809 

'SHSG' 2014.7187 2019.4114 -0.698 -0.848 -12.634 0.329 0.388 2.001 

'SISD' 2015.1732 2019.4114 -1.188 0.295 -3.831 0.439 0.462 1.956 

'SPBH' 2013.3005 2019.4114 -1.559 2.081 -7.849 0.319 0.366 1.666 

'STS1' 2012.46 2015.3046 0.541 -1.109 -1.296 0.554 0.539 1.813 

'TDAM' 2013.4319 2019.4114 -0.12 -0.074 -3.083 0.302 0.319 1.249 

'THSU' 2012.95 2019.4114 -1.268 0.774 0.22 0.396 0.301 1.143 

'TSFT' 2013.3771 2019.4114 -1.355 2.288 -7.615 0.415 0.41 1.752 

'TXAC' 2011.1211 2019.4141 -0.325 -0.248 -2.368 0.305 0.417 1.011 

'TXAG' 2005.577 2019.4141 0.4 0.158 -2.354 0.281 0.27 0.837 

'TXB1' 2013.1882 2019.4141 0.136 -1.143 -0.752 0.355 0.442 1.599 

'TXB2' 2012.46 2019.4141 -2.326 -2.776 -14.297 0.343 0.446 1.63 

'TXB6' 2012.46 2018.2341 0.438 1.128 -1.958 0.424 0.378 1.256 

'TXBC' 2009.4018 2019.4141 2.093 -1.82 -2.437 0.266 0.397 1.034 

'TXBM' 1996.3368 2013.8042 0.272 -0.093 -3.039 0.246 0.27 0.857 

'TXCF' 2012.46 2017.2074 0.477 0.687 -1.01 0.303 0.391 1.566 

'TXCM' 2010.4339 2019.4141 -0.002 0.278 -2.834 0.224 0.208 1.127 

'TXCN' 2005.577 2019.4141 -0.329 0.701 -14.176 0.188 0.193 0.939 

'TXCV' 2012.6626 2019.4141 -0.485 -0.014 -5.725 0.326 0.32 1.21 

'TXED' 2009.4209 2019.4141 0.437 -0.359 -0.827 0.227 0.258 1.03 

'TXGA' 2005.577 2019.4141 0.349 -0.4 -3.472 0.207 0.231 0.885 

'TXGV' 2007.1266 2011.5483 1.021 -0.475 0.067 0.393 0.422 1.494 

'TXH2' 2016.0876 2019.2909 0.619 -1.053 1.895 0.628 0.676 3.117 

'TXHE' 2005.577 2019.4141 -0.476 0.91 -7.06 0.315 0.312 1.066 

'TXHS' 2012.46 2019.4141 -0.667 1.023 -9.244 0.361 0.413 1.672 

'TXHU' 1996.0465 2007.9617 -1.215 0.23 -3.462 0.33 0.32 1.386 

'TXKO' 2011.7673 2019.4141 -0.114 0.865 -1.024 0.242 0.281 1.23 

'TXKY' 2012.46 2017.2402 1.448 -0.801 -11.654 0.478 0.334 1.135 

'TXLI' 2005.577 2019.4141 -0.435 0.172 -1.484 0.173 0.179 0.862 

'TXLM' 2005.577 2019.4141 -1.232 -0.51 -4.686 0.194 0.168 0.888 
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'TXLQ' 2013.0568 2019.4141 -2.044 -0.855 -0.298 0.308 0.381 1.196 

'TXMG' 2013.306 2019.4141 0.398 -0.448 -5.668 0.308 0.273 1.368 

'TXNV' 2012.46 2019.4141 1.893 0.308 -4.066 0.213 0.264 1.235 

'TXPH' 2015.3101 2019.4141 -1.077 -1.384 -2.799 0.592 0.558 2.359 

'TXPT' 2011.2608 2019.4141 -0.962 -2.058 -6.405 0.343 0.489 1.321 

'TXPV' 2010.2888 2019.4141 0.32 0.174 -0.755 0.234 0.226 1.175 

'TXRN' 2015.2033 2019.4141 -0.826 0.947 -2.778 0.397 0.409 2.069 

'TXRO' 2005.577 2011.4387 -4.986 4.137 -11.777 1.524 1.012 3.361 

'TXRS' 2011.1211 2019.4141 -0.481 0.434 -3.415 0.233 0.227 1.072 

'TXSP' 2016.4517 2019.4141 0.515 -0.551 2.457 1.052 1.494 7.852 

'TXTG' 2015.4634 2019.4141 -0.627 -0.148 -3.276 0.551 0.519 2.311 

'TXWH' 2010.423 2019.4141 0.06 0.702 -5.337 0.23 0.235 1.046 

'TXWI' 2015.4771 2019.4141 0.159 -3.785 -3.427 0.436 0.53 1.998 

'TXWN' 2015.0007 2019.4141 -0.99 -0.395 -2.205 0.358 0.489 1.968 

'UH01' 2012.742 2019.4114 -0.917 1.19 -1.787 0.322 0.444 1.346 

'UH02' 2015.0007 2019.3593 -1.213 1.094 -5.652 0.377 0.427 2.162 

'UHC0' 2014.1355 2019.1239 3.904 -7.049 -4.815 0.774 1.126 1.612 

'UHC1' 2014.1355 2019.1239 -3.521 -3.409 -3.937 0.597 0.576 1.434 

'UHC2' 2014.1355 2019.1239 -0.529 -0.919 -4.313 0.364 0.432 1.442 

'UHC3' 2014.1355 2019.1239 -0.574 -0.093 -5.613 0.46 0.444 1.418 

'UHCL' 2014.2396 2019.4114 1.339 -0.877 0.473 0.721 1.082 1.591 

'UHCR' 2014.1218 2019.1184 -1.773 -0.029 -9.313 0.455 0.617 1.503 

'UHDT' 2013.5606 2019.4114 -1.59 1.269 -2.016 0.391 0.344 1.412 

'UHEB' 2014.5927 2019.4114 -0.747 0.885 -3.036 0.32 0.346 1.594 

'UHEP' 2014.3628 2019.3922 -2.533 0.977 -1.874 0.486 0.439 1.631 

'UHF1' 2014.3874 2019.4114 -1.008 1.192 -7.388 0.494 0.53 2.963 

'UHJF' 2014.3874 2019.4114 -3.075 1.388 -4.708 0.433 0.738 2.342 

'UHL1' 2014.3546 2019.4114 1.012 -0.086 3.313 1.252 1.412 1.807 

'UHRI' 2014.3272 2019.4114 -2.271 1.033 -3.679 0.594 0.392 1.755 

'UHSL' 2014.1821 2019.4114 -1.402 0.496 -3.691 0.416 0.365 1.62 

'UHWL' 2014.3546 2019.3812 -3.796 0.086 -1.563 0.629 0.71 1.54 

'UTEX' 2012.4928 2019.4114 -2.72 3.393 -10.272 0.425 0.621 1.664 

'WCHT' 2013.2923 2019.4114 -0.536 2.641 -10.886 0.494 0.594 1.884 

'WDVW' 2013.3169 2019.4114 -1.723 2.507 -6.714 0.355 0.535 1.538 

'WEPD' 2014.0753 2019.4114 -2.806 1.671 3.603 0.46 0.501 1.507 

'WHCR' 2014.7762 2019.4114 -2.032 -1.036 -3.058 0.422 0.482 2.257 

'ZHU1' 2003.039 2019.4141 -0.229 0.828 -8.967 0.168 0.209 0.824 

 

 

 

 

List of GPS stations processed independently using a least-squares trend.  

Station Longitude Latitude 
Easting 
(cm/yr) 

Northing 
(cm/yr) 

Vertical 
(cm/yr) Type 
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1 -95.57693919 30.35301453 0.233 -0.805 0.798 PAM 

2 -95.57885656 30.3530145 -0.258 -0.328 1.080 PAM 

3 -95.42432721 30.29111078 -0.301 -0.686 0.841 PAM 

4 -95.73022264 30.19342937 0.566 0.682 0.848 PAM 

5 -95.73114667 30.19342935 0.037 1.116 0.507 PAM 

6 -95.5921887 30.18483271 0.291 -0.894 -0.646 PAM 

7 -95.58681102 30.18483271 -0.197 -0.738 -0.846 PAM 

8 -95.48999306 30.19480793 -0.153 0.839 0.704 PAM 

9 -95.48813 30.19480789 0.151 1.028 0.379 PAM 

10 -95.45894483 30.19897085 -0.022 0.574 0.940 PAM 

11 -95.45395597 30.19897087 0.177 0.503 0.964 PAM 

12 -95.6152969 30.09116232 0.278 1.022 -0.393 PAM 

13 -95.60780139 30.09116236 0.271 0.877 -0.658 PAM 

14 -95.42354439 30.08955321 -0.178 -0.279 1.048 PAM 

15 -95.41982944 30.08955331 -0.178 -0.144 1.075 PAM 

16 -95.2424857 30.14703 -0.122 1.081 0.119 PAM 

17 -95.10694361 30.10646155 -0.169 0.457 -0.979 PAM 

18 -95.26307532 30.05969828 -0.176 0.151 1.074 PAM 

19 -95.249255 30.05969828 0.113 0.543 0.948 PAM 

20 -95.07146542 30.0381248 -0.103 -0.966 -0.513 PAM 

21 -95.8652249 30.03216301 -0.277 -0.372 1.093 PAM 

22 -95.85036582 29.97903777 0.041 1.110 -0.348 PAM 

23 -95.76665413 30.01716567 0.360 0.963 0.511 PAM 

24 -95.67171345 30.04535739 -0.145 0.741 0.824 PAM 

25 -95.6056575 30.02996919 -0.010 1.054 0.355 PAM 

26 -95.60005914 30.02996922 0.011 1.055 -0.353 PAM 

27 -95.67822855 29.96493469 -0.136 -1.069 0.259 PAM 

28 -95.67155903 29.96493472 0.132 -0.968 0.524 PAM 

29 -95.47627157 29.97967694 -0.057 -0.088 -1.092 PAM 

30 -95.46883694 29.97967695 -0.064 -0.374 -1.030 PAM 

31 -95.41586662 30.00065407 0.156 0.797 -0.736 PAM 

32 -95.40153236 30.00065399 0.127 0.191 -1.072 PAM 

33 -95.57665211 29.93629584 -0.168 1.087 0.014 PAM 

34 -95.8167708 29.90261578 -0.069 0.909 0.650 PAM 

35 -95.6868626 29.88013016 -0.180 -0.791 0.747 PAM 

36 -95.61662159 29.91187514 -0.170 -0.287 -1.049 PAM 

37 -95.60322111 29.91187519 0.108 -0.616 -0.906 PAM 

38 -95.50076219 29.88139488 -0.165 -0.757 -0.780 PAM 

39 -95.38545335 29.87589578 -0.189 -0.255 1.053 PAM 

40 -95.3825245 29.87589577 -0.029 -0.318 1.053 PAM 

41 -95.2842013 29.93254509 0.208 0.435 0.992 PAM 

42 -95.05728876 29.90802912 0.051 -1.036 0.393 PAM 

43 -95.80534789 29.84111797 -0.108 0.655 0.893 PAM 
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44 -95.82218678 29.76901913 -0.062 1.047 0.348 PAM 

45 -95.67188791 29.81849975 0.126 -0.444 0.998 PAM 

46 -95.6684125 29.81849978 0.158 -0.245 1.060 PAM 

47 -95.61338321 29.82081159 0.124 -0.717 -0.824 PAM 

48 -95.60065007 29.8208116 -0.053 -0.896 -0.635 PAM 

49 -95.58591021 29.79120761 0.155 -0.793 0.746 PAM 

50 -95.58362028 29.79120756 -0.069 -0.545 0.952 PAM 

51 -95.49320308 29.78319202 0.215 -0.633 0.882 PAM 

52 -95.48141583 29.78319203 0.127 -0.401 1.023 PAM 

53 -95.17673576 29.85202488 -0.241 0.601 -0.908 PAM 

54 -95.17720049 29.79418734 0.297 1.080 0.075 PAM 

55 -95.0343892 29.8014697 -0.196 -0.922 -0.605 PAM 

56 -95.02878694 29.80146975 0.203 -1.102 -0.011 PAM 

57 -94.85604269 29.84834263 -0.279 0.413 0.996 PAM 

58 -94.84594229 29.84834268 0.101 0.491 0.994 PAM 

59 -96.01566323 29.73869637 0.123 1.090 0.126 PAM 

60 -96.00232937 29.73869651 -0.049 0.827 -0.730 PAM 

61 -95.97244064 29.67539266 0.011 0.159 1.092 PAM 

62 -95.97418738 29.59328828 0.149 1.020 -0.398 PAM 

63 -95.90191652 29.68925149 -0.020 1.100 0.112 PAM 

64 -95.81955353 29.68591314 -0.147 -0.983 0.479 PAM 

65 -95.72181855 29.6840606 0.021 0.416 1.019 PAM 

66 -95.71729694 29.68406061 0.167 0.452 0.989 PAM 

67 -95.63534888 29.73248722 -0.145 -0.873 -0.656 PAM 

68 -95.63296917 29.73248722 0.175 -0.958 -0.516 PAM 

69 -95.74041602 29.61665973 -0.058 -0.900 -0.634 PAM 

70 -95.733245 29.61665972 0.018 -1.041 -0.363 PAM 

71 -95.59686484 29.63039197 0.177 0.951 -0.527 PAM 

72 -95.58278898 29.63039222 0.087 0.368 -1.035 PAM 

73 -95.47550241 29.66190812 0.217 0.845 -0.685 PAM 

74 -95.46427778 29.66190828 0.224 0.529 -0.948 PAM 

75 -95.33928306 29.64524778 -0.282 1.082 0.056 PAM 

76 -95.32924917 29.64524783 0.077 1.116 -0.036 PAM 

77 -95.23120503 29.73555949 0.235 -0.231 1.092 PAM 

78 -95.22295415 29.64927473 0.133 -0.918 -0.630 PAM 

79 -95.21223361 29.64927467 -0.077 -1.088 -0.261 PAM 

80 -95.15959559 29.71018218 0.059 0.876 0.703 PAM 

81 -95.03056898 29.75779264 0.170 0.746 0.826 PAM 

82 -95.01154056 29.75779261 -0.044 1.070 0.347 PAM 

83 -94.91763189 29.75121935 -0.331 -1.004 -0.400 PAM 

84 -94.91105047 29.75121938 0.023 -1.022 -0.481 PAM 

85 -95.04133286 29.66822356 0.068 -1.115 -0.158 PAM 

86 -95.02801359 29.66822356 -0.215 -1.072 -0.279 PAM 
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87 -95.1010125 29.63070579 -0.335 -0.298 1.041 PAM 

88 -95.0942643 29.63070579 -0.193 -0.421 1.034 PAM 

89 -95.85479107 29.53176617 0.083 0.641 0.892 PAM 

90 -95.85118472 29.53176611 0.056 0.777 0.779 PAM 

91 -95.79917167 29.56638935 0.151 -1.081 0.142 PAM 

92 -95.78474528 29.56638528 0.155 -0.731 0.809 PAM 

93 -95.70730668 29.54060279 -0.079 0.957 -0.542 PAM 

94 -95.71493193 29.48476476 0.025 0.473 -0.997 PAM 

95 -95.6441071 29.47365563 0.003 1.072 -0.264 PAM 

96 -95.63228398 29.47365568 -0.177 0.760 -0.781 PAM 

97 -95.5474124 29.50786559 -0.203 0.773 -0.767 PAM 

98 -95.53139722 29.50786561 0.148 0.134 -1.089 PAM 

99 -95.52724526 29.54446293 0.025 1.006 0.460 PAM 

100 -95.51482306 29.54446296 -0.190 1.038 -0.333 PAM 

101 -95.46249832 29.49329485 -0.112 1.009 -0.441 PAM 

102 -95.44795889 29.49329489 -0.003 0.684 -0.870 PAM 

103 -95.4378823 29.44563461 -0.112 1.020 0.421 PAM 

104 -95.43080833 29.44563469 -0.206 1.062 0.246 PAM 

105 -95.3120749 29.5454668 0.084 0.517 0.979 PAM 

106 -95.29709665 29.54546684 0.035 0.920 0.620 PAM 

107 -95.22356765 29.48991212 -0.062 -1.098 -0.203 PAM 

108 -95.21254306 29.48991219 -0.113 -1.099 0.175 PAM 

109 -95.15223578 29.5386185 0.065 0.022 1.122 PAM 

110 -95.14521815 29.53861854 0.242 0.363 1.036 PAM 

111 -95.1698031 29.5557654 -0.258 -1.037 -0.339 PAM 

112 -95.16221513 29.55576543 -0.211 -1.101 -0.022 PAM 

113 -95.16513506 29.57809857 0.309 -0.935 0.546 PAM 

114 -95.14500056 29.57809858 -0.243 -0.659 0.880 PAM 

115 -95.08244045 29.47261518 -0.193 -1.114 -0.007 PAM 

116 -95.06114238 29.47261514 -0.255 -1.080 0.213 PAM 

117 -95.01324324 29.53290549 -0.256 -0.072 -1.103 PAM 

118 -94.99402326 29.5329054 0.095 -0.739 -0.856 PAM 

119 -95.01555002 29.58313747 -0.041 -0.356 1.080 PAM 

120 -94.99380611 29.58313751 0.261 0.443 1.014 PAM 

121 -94.94162505 29.49417744 -0.099 -1.119 0.201 PAM 

122 -94.92677806 29.49417733 -0.101 -0.941 0.637 PAM 

123 -95.84837822 29.39801979 -0.148 0.980 -0.483 PAM 

124 -95.73134755 29.29565914 -0.196 -0.536 -0.948 PAM 

125 -95.71530472 29.29565911 0.056 -1.082 -0.226 PAM 

126 -95.45847729 29.25773073 0.239 -0.532 0.954 PAM 

127 -95.44627161 29.25773074 0.054 -0.466 1.015 PAM 

128 -95.37030522 29.29685053 0.305 0.879 -0.636 PAM 

129 -95.3618962 29.29685049 -0.012 0.919 -0.651 PAM 
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130 -95.2781482 29.34258044 0.204 -1.095 -0.163 PAM 

131 -95.26182046 29.34258042 -0.299 -0.851 0.674 PAM 

132 -95.18152126 29.26241364 0.005 -0.080 1.133 PAM 

133 -95.16075706 29.2624136 -0.217 0.031 1.114 PAM 

134 -95.04546766 29.36089036 0.335 1.060 -0.209 PAM 

135 -95.02772528 29.36089053 0.093 0.583 -0.965 PAM 

136 -95.02071249 29.33452157 -0.346 -0.241 -1.059 PAM 

137 -95.01024535 29.33452156 -0.261 -0.207 -1.090 PAM 

138 -94.91777856 29.33508074 -0.160 -1.120 0.121 PAM 

139 -94.91032339 29.33508071 -0.182 -1.065 0.359 PAM 

140 -94.7015285 29.4224457 0.347 -1.015 0.374 PAM 

141 -95.67676173 29.05807639 -0.268 0.750 0.812 PAM 

142 -95.66112954 29.05807638 0.162 1.115 0.159 PAM 

143 -95.47127028 29.03479898 0.321 0.291 -1.050 PAM 

144 -95.46106679 29.03479899 0.120 -0.504 -1.011 PAM 

145 -95.11059615 29.09324702 0.361 0.730 -0.801 PAM 

146 -95.09351417 29.09324706 -0.313 0.121 -1.091 PAM 

147 -94.93832664 29.21031551 0.225 0.603 0.941 PAM 

148 -94.92686667 29.2103155 0.023 0.837 0.773 PAM 

ALEF -95.635052 29.691833 0.120 0.951 0.538 CORS 

ANG1 -95.48507419 29.30147522 0.235 1.069 -0.187 CORS 

AULT -95.744665 29.997772 -0.010 1.021 -0.474 CORS 

CFHS -95.631934 29.919234 -0.198 0.942 0.543 CORS 

CFJV -95.55584 29.881648 -0.071 1.090 0.124 CORS 

CMFB -95.728793 29.681363 0.061 -0.903 0.627 CORS 

COTM -94.998199 29.39384 0.286 0.739 -0.800 CORS 

CSTA -95.511599 29.795872 0.160 -0.754 0.783 CORS 

CSTE -95.510738 29.795637 -0.080 -0.412 1.018 CORS 

DEN1 -95.258008 29.510413 -0.261 1.044 0.305 CORS 

DEN2 -95.253958 29.504882 -0.209 -0.391 1.027 CORS 

DEN3 -95.254638 29.493718 -0.198 1.005 -0.453 CORS 

DISD -95.740414 29.289266 0.036 -0.194 -1.088 CORS 

DMFB -95.583739 29.622647 -0.161 -1.042 0.310 CORS 

FSFB -95.630447 29.556183 -0.157 -0.153 1.078 CORS 

GSEC -95.528092 30.197301 0.152 0.828 0.742 CORS 

HCC1 -95.561221 29.787869 -0.098 0.503 0.971 CORS 

HCC2 -95.562019 29.788385 -0.138 -0.746 0.795 CORS 

HPEK -95.715723 29.754878 0.068 1.063 -0.287 CORS 

HSMN -95.469616 29.80035 -0.086 -1.085 -0.137 CORS 

KKES -95.594934 29.850327 0.166 -0.775 -0.763 CORS 

KPCD -95.923971 29.926014 0.276 0.961 0.547 CORS 

ICI1 -95.442498 29.807472 -0.237 -1.062 -0.224 CORS 

MDWD -95.595211 29.771379 -0.148 -0.531 0.951 CORS 
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ME01 -95.275714 29.60754 -0.158 0.941 0.568 CORS 

MEPD -95.239591 29.658082 -0.203 -1.054 0.297 CORS 

MRHK -95.745145 29.804143 0.049 -0.791 0.782 CORS 

NASA -95.096219 29.551953 -0.249 1.008 0.452 CORS 

OKEK -95.803313 29.725025 0.200 -0.682 0.850 CORS 

PA00 -95.152235 29.538619 0.065 0.022 1.122 CORS 

PWES -95.51057 30.198988 0.178 -1.082 0.194 CORS 

RDCT -95.494717 29.810418 -0.107 -0.157 -1.081 CORS 

RPFB -95.513654 29.48417 -0.161 -0.889 0.627 CORS 

SESG -95.429619 29.987468 0.013 0.948 -0.553 CORS 

SHSG -95.430054 30.053611 -0.197 -0.079 1.081 CORS 

SISD -96.173876 29.762193 -0.299 -0.569 0.991 CORS 

SPBH -95.515036 29.801905 0.115 -0.063 1.090 CORS 

TDAM -94.816952 29.314057 -0.087 -1.029 -0.361 CORS 

THSU -95.339906 29.714008 -0.002 0.648 0.901 CORS 

TSFT -95.479964 29.806286 -0.105 -0.726 0.820 CORS 

TXHS -95.555509 29.716078 -0.017 1.085 0.178 CORS 

TXLQ -94.952851 29.357965 0.299 -0.751 -0.778 CORS 

TXMG -95.963553 28.982896 0.007 0.836 -0.720 CORS 

TXTG -95.297383 29.897517 -0.015 -1.098 0.068 CORS 

TXWN -96.092053 29.328757 0.026 -0.365 1.043 CORS 

UH01 -95.345395 29.722465 0.147 0.569 -0.930 CORS 

UHC0 -95.04385247 29.39037472 -0.271 1.100 0.035 CORS 

UHC1 -95.04396558 29.39036642 -0.306 1.089 0.076 CORS 

UHC2 -95.04392908 29.39036864 -0.295 1.093 0.061 CORS 

UHC3 -95.04389056 29.39037147 -0.283 1.096 0.049 CORS 

UHCL -95.104165 29.577737 -0.143 1.065 0.271 CORS 

UHCR -95.75677 29.728071 -0.113 1.077 -0.197 CORS 

UHDT -95.359441 29.76596 -0.264 -0.198 1.068 CORS 

UHEB -96.066039 29.526312 0.041 0.950 -0.574 CORS 

UHEP -95.327123 29.719465 0.082 0.487 -0.984 CORS 

UHF1 -95.483098 30.23625 -0.250 0.447 -0.989 CORS 

UHJF -95.48307 30.236273 -0.268 0.495 -0.966 CORS 

UHL1 -94.978463 30.057646 -0.094 0.650 0.877 CORS 

UHRI -95.402517 29.719227 0.105 0.800 0.744 CORS 

UHSL -95.651539 29.574673 0.035 1.026 0.406 CORS 

UHWL -94.978434 30.057639 -0.095 0.653 0.873 CORS 

UTEX -95.567817 29.785887 0.083 -0.880 -0.652 CORS 

WDVW -95.533073 29.790389 -0.009 0.512 -0.973 CORS 

WEPT -95.22873319 29.68773042 -0.293 -1.082 -0.032 CORS 

WHCR -95.505396 30.194322 0.025 1.021 0.439 CORS 
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Figure I: Surfaces in sub-figures a-d are generated using a 20-point ordinary Kriging interpolation. GPS data 
consists of both CORS and PAM stations from 1990 to September of 2017 which were independently 
processed using least-squares fit. Ground water data changes were calculated using a time-series analysis 
approach between 2006 to 2017.  a) Plotted rotated GPS total velocity vectors over the Houston area; 
vectors highlight southern salt dome movement and fault motion. b) GPS Total Velocity Vector Surface 
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(cm/yr) with plotted GPS stations and GPS vectors. c) GPS Horizontal Velocity Vector Surface (cm/yr); area 
of low horizontal motion is concentrated in northern Harris County which corresponds to a decrease in the 
water table from 2006-2017. Areas of high horizontal motion are concentrated over salt domes, particularly 
in the south over the Hasting salt dome/League City. Here horizontal motion is ~10 mm/yr along a Southern 
track. d) GPS Vertical Velocity Vector Surface (cm/yr); it shows the best water level change correlation,  uplift 
over salt domes of up to 5 mm/yr, and increasing vertical displacement over the Long Point-Eureka Heights 
faults system of ~2.5 mm/yr associated with an increase in the water level. Rather than causing increased 
subsidence, the added water is likely acting as a lubricant to the fault zone and aiding rocks slip past one 
another as differential pressure is decreased.  
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Figure II: GPS Vertical Velocity Vector Surface (cm/yr) generated though independent processing along with 
Water Level Change contours (m); X over Hasting salt dome/oil field, gray star over Woodlands area. a) 
Average rain from 2011-2016 showing less rain/smaller loading capacity over northern Harris County (blue 
circle) and more rain/higher loading capacity over League City/Hastings salt dome (red circle). b) Ground 
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water level change contours from 2006-2017 show uplifting area in League City/Hastings salt dome (red 
circle) where salt dome movement ranges from 2.6-5 mm/yr. Area between Addick’s Conroe and Long-Point-
Eureka-Heights Fault systems is likely showing positive uplift due to faults, but uplift is hard to quantify. 
Northern Harris County (blue circle) is undergoing non-reversible deformation and subsiding at ~3.7mm/yr. 
The Woodlands (gray star) is similar to League City and also affected by salt domes whose uplift of up to 
5mm/yr is counteracting the 1mm/yr subsidence. In the future this area may resemble northern Harris 
County. 

 

 

Figure III: Predicted surface deformation using GPS data independently processed  and groundwater level 
change from 2017-2021, where H is over Hastings Salt Dome/Oil Field, star over Woodland area, cross-hair 
over damaged area in southwest Harris County, and three main fault systems: 1) Hockley-Conroe Fault 
System, 2) Addick’s Fault System, and 3) the Long Point-Eureka Heights Fault System. The 4-year prediction 
shows a continued decrease in the water level over the Woodlands area and various parts of Harris County. 
Deformation is predicted to increase significantly over the damaged areas in southwest Harris County. 
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