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ABSTRACT 

Immunotherapy by harnessing patients’ the immune system has changed the 

landscape of cancer therapeutics and shown promising and remarkable clinical responses. 

However, not all the patients would be beneficial from the treatment. Lymphocytes are a 

significant target in anti-tumor immunotherapy, and the functional assessment of 

lymphocytes will provide insights on their functional biology and will provide a direct path 

to the improvement of the treatment efficacy. 

In the first part of this dissertation, we developed and implemented a methodology 

based on Timelapse Imaging Microscopy in Nanowell Grids (TIMING) platform that 

integrates phenotypic profiling and dynamic cytokine secretion with single-cell resolution. 

Analysis of hundreds of human peripheral nature killer cells (NK cells) suggested that 

CD56dimCD16+ NK cells are immediate interferon gamma (IFN-γ) secretor upon activation 

by phorbol 12-myristate 13-acetate (PMA) and ionomycin (< 3 h), and no evidence of 

cooperation between NK cells to synergistic activation or faster IFN-γ secretion. These 

results establish our technology as an investigational tool for cellular phenotyping and real-

time protein secretion of individual cells in a high-throughput manner and demonstrate that 

the conventional phenotypic based functional annotation of NK cells might be overly 

simplistic. 

In the second part of this dissertation, we performed whole transcriptomic profiling 

on T cells from acute myeloid leukemia patients (responders and non-responders) who 

were treated with combination therapy of a hypomethylating agent (5-azacytidine) and an 

immune checkpoint inhibitor (nivolumab, programmed cell death protein 1/PD-1 inhibitor). 

Sixty-four patient-derived T cells from peripheral blood or bone marrow (site of disease), 
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which were collected before the initiation of the therapy (baseline, T0) and after the first 

round of treatment (end of cycle one, EC1), were evaluated. Our results demonstrate (1) 

treatment-induced gene expression changes on circulating CD8 T cells,  and (2) the ratios 

of effector and exhausted CD8 T cells has the potential to serve as a biomarker for patient 

stratification.  
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Chapter 1 

Single-cell technologies for profiling T cells to enable monitoring of 

immunotherapies 

 

Note: This is a reformatted version of a paper published at Current Opinion 

in Chemical Engineering 

 

An, Xingyue, and Navin Varadarajan. “Single-Cell Technologies for Profiling T 

Cells to Enable Monitoring of Immunotherapies.” Current Opinion in Chemical 

Engineering 19 (2018): 142–52.  

 

1.1. Introduction 

Immunotherapy has revolutionized the treatment of cancer and relies on utilizing 

the patients’ immune system and its anti-cancer properties for therapeutic benefit (Khalil 

et al., 2016; Lim,Wendell A. and June, 2017). This approach is fundamentally different 

from chemotherapy and even targeted therapy, both of which depend on the ability of the 

drug to kill the tumor cell directly (Zitvogel et al., 2013). Immunotherapeutic treatment is 

based on the recognition that there is a failure of the host immune system to control the 

tumor adequately, and that the goal of treatment is to facilitate resetting the dysregulated 

balance to enable eradication of the tumors via the host immune system (Shore, 2015; Tsai 

and Hsu, 2017; Zarour, 2016). In other words, the treatment does not work to kill the tumor 

cells directly but instead tries to reinvigorate the immune system to get rid of the tumors. 

One of the primary objectives of this approach, akin to vaccination, is the ability to 
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establish immunological memory of the tumor, thereby enabling the immune system to 

seek and destroy metastases anywhere in the body and enable long-term control (Sharma 

et al., 2017). 

Although utilizing the immune system for therapeutic benefit has been around for 

quite some time, and proteins such as cytokines (e.g., interleukin-2) (Jiang, Zhou, and Ren, 

2016; Rosenberg, 2014) and a suite of monoclonal antibodies (such as anti-CD20, anti-

EGFR) (Lim,Sean H. et al., 2010; Nakai, Hung, and Yamaguchi, 2016) have been used 

clinically over the last two decades, two newer approaches to treatment — the inhibitors 

of checkpoint molecules (Topalian, Drake, and Pardoll, 2015), and the adoptive transfer of 

genetically modified T cells (Restifo, Dudley, and Rosenberg, 2012), have made 

substantial advances in the clinic. After decades of frustration with the 5-year survival rates 

of chemotherapy, these newer forms of immunotherapeutic treatment have altered the 

treatment landscape and have facilitated durable and lasting remissions in subsets of 

patients (Sharma and Allison, 2015b). Both classes of treatment, immune checkpoint 

inhibitors (ICI) and adoptive cell transfer (ACT), critically rely on the functionality of a 

particular subset of lymphocytes within the immune system — the T cells. ICI aims to 

reinvigorate T cells and activate them to attack tumor cells and has shown clinical efficacy 

in various tumors, albeit in only 20% of patients (Hodi et al., 2010; Weber et al., 2015). 

ACT, on the other hand, delivers ex vivo expanded (and/or genetically modified) T cells as 

the therapeutic and has shown complete responses in leukemias (response rate can be more 

than 70%) (Maude et al., 2014; Kalos et al., 2011; Turtle et al., 2016; Brentjens et al., 2013). 

The introduction of immunotherapeutic molecules as drugs has facilitated new 

challenges and opportunities for engineers. While the potency of small-molecule-based 
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therapies can be mapped to their mechanism of action (binding/inhibiting appropriate 

proteins) facilitating tumor cell killing (Wu, Nielsen, and Clausen, 2015; Zhang et al., 

2012), understanding the efficacy of ICI or ACT is a significant challenge since the 

mechanism of action is neither simple nor wholly defined (Topalian, Drake, and Pardoll, 

2015; Sharma and Allison, 2015a; Wei,Spencer C. et al., 2017; Yu,Shengnan et al., 2017). 

The origin of this challenge can be mapped to our inability, to define comprehensively, all 

of the different T-cell functionalities that can contribute to their efficacy. T cells are 

essential players in the adaptive immune systems and can recognize cognate antigen 

through their T cell receptor (TCR) (Kuang et al., 2017). T cells bearing TCR specific for 

foreign or non-native peptides displayed in the context of human leukocyte antigens (HLA) 

get activated and can undergo a process of programmed differentiation depending on the 

availability of other accessory molecules including cytokines within the activating 

environment. Unlike antibodies, the TCR itself does not undergo somatic hypermutation 

subsequently, and hence can be considered a barcode to identify populations of clonally 

related T cells (Qi et al., 2014; Gong et al., 2017; Tirosh et al., 2016). T cells are capable 

of many different functions, including cytotoxicity, cytokine secretion, proliferation, and 

migration, which are determined by multiple cues from intrinsic properties of T cells and 

its environmental factors. The relative importance of these functions in defining clinical 

benefit is only partially understood and confounded by the differentiation status of the T 

cell (naïve, stem-cell-like central memory, central memory, effector memory, and effector)  

(Restifo and Gattinoni, 2013; Ahmed et al., 2016), or by their functional status 

(polyfunctional, anergic, or exhausted). It is thus apparent that the availability of methods 

that can map all of these properties onto the same T cell will advance our understanding of 
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the efficacy of immunotherapeutic treatments. From the perspective of the ACT, the 

availability of precise definitions on the properties that need to be engineered into the T-

cell infusion product will facilitate consistent biomanufacturing of therapeutic products 

(Maus and June, 2016). It is thus clear that immunotherapeutic treatments stand to benefit 

from single-cell technologies that can map the complexity of T cells. While the vast 

majority of advances in immunotherapeutic treatment have focused on oncology, the 

principles of modulating the immune system are likely to find broad applicability in other 

infectious diseases and autoimmunity, as well. 

Single-cell technologies have attracted researchers’ attention for several decades, 

and there is an increasing trend to develop more accurate and sensitive, higher-throughput, 

and automated single-cell characterization tools. These approaches allow the detection of 

details that cannot be revealed using traditional population-level assays (Proserpio and 

Mahata, 2016). Generally, these single-cell technologies are designed to capture cellular 

information from either the genome, transcriptome, or more recently, the proteome level 

(Heath, Ribas, and Mischel, 2016). While some assays like flow cytometry (FC) have been 

standardized and used even in clinical settings (Barlogie et al., 1983), some of the more 

recent single-cell technologies like mass cytometry (MC) (Spitzer and Nolan, 2016), and 

single-cell RNA sequencing (scRNA-seq) (Haque et al., 2017) have been recently 

commercialized. Despite this, however, the vast majority of tools are designed in the 

research setting, and recent advances have enabled the integration of approaches from 

different omic dimensions to be able to quantify cell features simultaneously (Bock, Farlik, 

and Sheffield, 2016). 
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In this review, we briefly highlight several types of emerging single-cell 

technologies, mainly focusing on technologies that monitor multiple features (function, 

transcripts, phenotype, etc.) in the context of T-cell characterization (Table 1-1). We 

believe that analyzing T cells at single-cell resolution will provide valuable insights on 

both experimental and clinical investigations, and has the potential to improve the clinical 

outcomes of T-cell based therapy. Furthermore, the development of multiplexed single-

cell interrogations tools to explore the phenotypical and functional correlations within 

heterogeneous T cells populations can reveal the underlying biological networks, 

eventually paving the way for both a better understanding of T cells and delivering 

surrogate T-cell biomarkers for immunotherapy. 

Table 1-1 Summary of versatile single-cell technologies which allowing multi-feature 
characterization 

 Technology Throughput Highlight Reference 

FC/ 
Microscopy 
& protein 

scWB 
Up to 
thousands of 
single cells 

Combination of microwells and PAGE gel 
for protein detection based on mass or/and 
pI 
Can detect up to 11 proteins on the same 
cells by antibody stripping/re-probing 
Compatible with FACS sorting or cell 
imaging as pre-characterization 
Re-probing archival sample is possible 

(Duncomb
e et al. 
2016; 
Kang et 
al. 2014, 
2016; J. J. 
Kim, 
Sinkala, 
and Herr 
2017; 
Tentori, 
Yamauchi
, and Herr 
2016; 
Hughes et 
al. 2014) 

Protein 
&mRNA FC Millions 

Fusion of Flow-FISH & ICS 
Quantification of mRNA + protein of three 
cytokines simultaneously (IFN-γ, IL-2, and 
TNF-α) 

(Nicolet, 
Guislain, 
and 
Wolkers, 
2016) 
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Table 1-1 Summary of versatile single-cell technologies which allowing multi-feature  
                characterization (continued) 

 Technology Throughput Highlight Reference 

 MC Millions 

PLAYR 
Relies on MC (mass tag) or FC 
(fluorophore) for protein (antibody) and 
transcript (oligonucleotides) read-out 
The multiplexing capacity is determined 
by the available tags (~40 MC) 

(Frei et 
al., 2016) 

 Single-cell  
PCR 

96 (using 
FluidigmTM 
C1) 

Leverages the DNA polymerase activity of 
reverse transcriptase to simultaneously 
perform proximity extension assays and 
complementary DNA synthesis in the same 
reaction 
Compatible with scRNA-seq platform 
Demonstrated detection of  96 RNA + 38 
proteins 

(Genshaft 
et al., 
2016) 

scRNA-seq  
& TCR-seq 

TraCeR, 
scTCRseq, 
VDJPuzzle, 
TRAPeS 

Depends on 
the 
throughput 
of scRNA-
seq 

Extract TCR information from scRNA-seq 
results 
Provide both transcriptional profiling and 
clonality of single T-cell 

(Stubbingt
on et al., 
2016; 
Redmond, 
Poran, and 
Elemento, 
2016; 
Eltahla et 
al., 2016; 
Afik et al., 
2017) 

 scRNA-seq 
Thousands 
of single 
cells 

CITE-seq (10 surface proteins), REAP-seq 
(82 proteins) 
Oligonucleotide with poly A tail as unique 
antibody barcode 
Use reverse transcriptase as DNA 
polymerase to extend antibody barcode 
and reverse transcription of mRNA 
simultaneously 
Compatible with current scRNA-seq 
platform 

(Peterson 
et al., 
2017; 
Stoeckius 
et al., 
2017) 

 Abseq >10,000 
cells 

Detection protein via DNA-labeled 
antibody to increase multiplexing capacity 
Each antibody also has UMI sequence for 
PCR-bias correction 
Compatible with current scRNA-seq 
platform 
Theoretical limit of detected protein is 
determined by the sequencing depth and 
availability of antibody 

(Shahi et 
al., 2017) 

 Seq-Well ~15,000 
cells 

Co-capture cells and transcripts-capture 
beads within individual microwells 
On-chip lysis, reverse transcription in bulk 
Compatible with on-chip imaging 
cytometry 
Transcriptomic profiling is done by 
scRNA-seq 

(Gierahn 
et al., 
2017) 
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Table 1-1 Summary of versatile single-cell technologies which allowing multi-feature  
                characterization (continued) 

 Technology Throughput Highlight Reference 

Integration:  
cell-cell 
interaction, 
protein, etc 

TIMING 20,000 cells 

Co-culture lymphocyte and target cell on 
the same individual microwell 
Time-lapse microscopy live cell imaging 
Integrated with real-time cytokine 
secretion and cell retrieval for gene 
expression profiling 

(Romain 
et al., 
2014; 
Haymaker 
et al., 
2015; 
Liadi et 
al., 2015; 
Sendra et 
al., 2013) 

 Droplet ~1,000 
events 

Similar to TIMING 
Co-encapsulate two types of cells within a 
droplet 
Droplet docking into individual microwells 

(Martinell
i et al., 
2009) 

 SCBC 

Up to 
several 
thousands of 
cells 

Single cells or cell pairs are isolated in 
individual microchambers 
Cell-cell interaction can be investigated 
Detection antibody-coated surface is 
detachable for analysis 
Up to 45-plex protein detection including 
secreted proteins 

(Kravchen
ko-
Balasha et 
al., 2016; 
Wei et al., 
2016; 
Zhou et 
al., 2017) 

 BOBarray 
Several 
thousands of 
cells 

Similar to SCBC, but use antibody-coated 
beads as a protein sensor 
Miniaturized device achieved by a 
combination of bead size and fluorophore 
combination: 4 bead size x 3 color =12-
plex 

(Yang et 
al., 2016) 

 
1.2. Protein detection from single-cell  

1.2.1. Single-cell western blotting (scWB) 

Similar to the standard western blotting methodology, this approach includes 

protein separation based on both the affinity between the antibody and the target protein, 

and the relative size of protein thus minimizing concerns about antibody-cross reactivity 

(Figure 1-1, adapted from reference (Duncombe et al., 2016). Closed-up false-color 

fluorescent images represent part of arrays (over 400 lanes)). By the application of open 

microwells on a polyacrylamide gel-coated glass slide, single cells were deposited into 

individual wells, subsequently lysed, subjected to gel electrophoresis, immobilized by UV-

light, and the protein detected by immune-probing. By repetition of antibody-stripping and 
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re-probing, it could detect up to eleven different proteins across thousands of single cells 

in the same experiment (Duncombe et al., 2016; Kang et al., 2014, 2016). By utilizing a 

combination of lab-on-a-disk cell device and the scWB analysis, it was possible to quantify 

protein from less than one hundred cells (Kim, Sinkala, and Herr, 2017). The same group 

further developed an approach termed single-cell isoelectric focusing (scIEF) using 

isoelectric point (pI) difference to separate protein isoforms (Tentori, Yamauchi, and Herr, 

2016). In this work, they reported ten cells were analyzed in the same chip as a proof-of-

concept; however, the throughput can theoretically be scaled up. ScWB can be combined 

with flow sorting (Hughes et al., 2014) or on-chip cell phenotyping (Kang et al., 2014). 

This approach can be beneficial for direct measurement of proteins in a single cell, 

especially when the number of available cells is limited, allowing the validation of known 

biomarkers in a multiplexed fashion while maintaining single-cell resolution. 

 
 

Figure 1-1 Workflow of scWB 
 
1.3. Integration of protein detection and transcriptional profiling of single cell  

1.3.1. Flow cytometry  

FC has been widely adopted for several decades to characterize the phenotype of 

cells and the intracellular molecules across millions of cells. It can detect up to around 17 

parameters simultaneously, which is determined by the availability of fluorescent dyes 

(Perfetto, Chattopadhyay, and Roederer, 2004). Recently, Nicolet et al. were able to 
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simultaneously profile the expression of primary human T-cell cytokines (IFN-g, IL-2, and 

TNF-a) at both the protein and mRNA transcript level via integration of fluorescence in 

situ hybridization (FISH) and flow cytometry-based platform (Nicolet, Guislain, and 

Wolkers, 2016). This work paved a road for finding the correlation between cytokine 

secretion and mRNA transcripts within the same single cell. 

1.3.2. Mass cytometry 

To improve the multiplexing capacity of cytometry, heavy-metal tagged antibodies 

are used in mass cytometry (MC). This strategy enables the quantification of more targets 

on a single cell simultaneously, including surface phenotypic marker characterization, 

intracellular protein detection, cytokine secretion, transcription factor expression, and 

mRNA transcripts expression (Wei et al., 2017; Bengsch et al., 2017; Chevrier et al., 2017; 

Frei et al., 2016; Huang et al., 2017; Lavin et al., 2017; Matos, Liu, and Ritz, 2017; Spitzer 

et al., 2017). Frei et al. developed a method called PLAYR (proximity ligation assay for 

RNA) and demonstrated that this approach was able to quantify multiplexed mRNA 

transcripts and protein via flow cytometry or mass cytometry simultaneously (Frei et al., 

2016). The oligonucleotide labeled with fluorescence or metal tags were used to detect 

target transcripts. The authors validated this method by detection of 8 different mRNA 

transcripts and 18 proteins (cytokine + surface molecules) in LPS-stimulated PBMC for 

various stimulation times, and the results suggested the most LPS-responding cells were 

likely to be a CD14+ phenotype. Frei and colleagues expected the theoretical upper limit in 

the number of detected targets could be as high as 40 if combined with MC. The 

disadvantage of MC is that unlike FC, it is sample destructive, and thus, it is not possible 

to sort single cells for downstream analyses like RNA-seq. 
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Both FC and MC are well-developed technologies and can directly detect proteins 

from millions of single cells but are restricted to providing snapshots since it is not possible 

to track the same cell longitudinally using these methods. Despite these disadvantages, 

however, FC and MC are robust knowledge-based methods to identify subsets of T cells 

directly from tumors and hence will play an essential role in tracking the efficacy of 

immunotherapies. 

1.3.3. Single-cell PCR 

Unlike the PLAYR method that utilized the mass tag or fluorescent tag to capture 

transcript or protein abundances, other studies relied on the usage of DNA as a label to 

detect proteins. Although initially the profiling of mRNA and protein was achieved by 

splitting the cell lysate to multiple parts and characterizing each of them separately (Bichsel 

et al., 2016; Darmanis et al., 2016), Genshaft et al. presented an approach that combined 

the detection of protein and mRNA from same mammalian cells in a single reaction 

chamber in a parallel manner (Genshaft et al., 2016). Modified proximity extension assays 

(PEA) method was used in this technology for protein detection. For each protein of interest, 

there were two different single-stranded oligonucleotides-labeled antibodies to detect the 

target protein. The 3’ end of DNA labels of this antibody pair were complementary to each 

other; as a result, DNA labels would hybridize once both antibodies co-localized on the 

target protein. The extension of DNA label complex and reverse transcription of RNA from 

the same cell happened simultaneously by taking advantage of the DNA polymerase 

activity of the reverse transcriptase. qPCR (FluidigmTM C1 system) was used to quantify 

protein expression and RNA abundance. By applying this approach to study protein and 

mRNA abundances in the PMA-stimulated MCF7 cells, they found that the correlation of 
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mRNA and protein was variable among genes or time points: highly-expressed genes were 

more correlated with the corresponding protein expression in untreated cells, but after 

simulation the lowly-expressed genes with high cell-cell variance showed the most 

substantial correlation. 

1.3.4. ScRNA-seq 

ScRNA-seq, a rapidly-growing technology can provide unbiased, high-dimensional 

genome-wide transcriptomic profiling of individual cells, and has emerged as a robust 

method to facilitate the discovery of novel cellular status (Mahata et al., 2014), and provide 

biological insights (Tirosh et al., 2016; Kakaradov et al., 2017; Zheng et al., 2017). 

ScRNAseq has been extensively reviewed elsewhere, and we will only highlight 

combinations of scRNA-seq with other kinds of single-cell assays. Researchers have 

developed several algorithms to utilize scRNA-seq data to reconstitute T cell receptor 

information. One advantage of obtaining TCR information at the single-cell level is that 

the possibility to acquire the pairing detail of TCR chains (ab, gd). Computation approaches, 

such as TraCeR (Stubbington et al., 2016), scTCRseq (Redmond, Poran, and Elemento, 

2016), VDJPuzzle (Eltahla et al., 2016), work quite well with transcriptomic profiling 

results obtained from full-length mRNA transcripts. More recently, the TRAPeS pipeline 

was reported to enable extraction of TCR sequence information from short-read (25–30 bp) 

sequencing data (Afik et al., 2017). Combining transcriptomic profiling and TCR profiling 

at single-cell resolution, the clonal expansion of exhausted or dysfunctional T cells was 

found in tumor sites, indicating the reinvigoration of T cell function may recover its anti-

cancer functionality (Tirosh et al., 2016; Zheng et al., 2017). Owing to these emerging 

computational pipelines, developmental trajectories of diverse T cell population can be 
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deciphered, holding the promise of investigating the antigen-specific T cells functions in 

response to diseases, and also to identify the diversity of T-cell responses within the tumor 

microenvironment. Stoeckius et al. and Peterson et al. recently reported two closely related 

methods (CITE-seq and REAP-seq) for simultaneous detection of mRNA and protein 

(Peterson et al., 2017; Stoeckius et al., 2017) (Figure 1-2, adapted from reference (Peterson 

et al., 2017)). A droplet containing Ab-Barcodes (AbBCs) coated cells fuse to another 

discreet droplet which contains cell-barcode beads with primers. The cell is lysed once two 

droplets fuse, and polyadenylated mRNA and AbBC hybridize with poly(dT) primer, and 

the extension of AbBC and complementary synthesis of transcripts can be achieved by 

reverse transcriptase in the same reaction. AbBC sequences (~ 155 bp) and cDNA from 

mRNA (~> 500 bp) are separated based on the size difference, and protein and transcript 

libraries are constructed and sequenced. Both methods utilized a combination of unique 

oligonucleotide barcodes and poly (dA) sequence for indexing antibody (but using different 

linkers) thus enabling the detection of multiple proteins along with transcripts. Extension 

of DNA labels of antibodies and reverse transcription of mRNA transcripts could be 

achieved in the same reaction by taking advantage of the DNA polymerase function of 

reverse transcriptase. These two methods can be readily adapted to different high-

throughput scRNA-seq platforms. Another similar technique that can be expanded to 

demonstrate the same capability is called Abseq (Figure 1-3, adapted from reference 

(Shahi et al., 2017)), which utilizes a combination of DNA-labeled antibody and droplet 

microfluidics (Shahi et al., 2017). Cells stained with DNA-conjugated antibodies are 

isolated in a droplet with unique cell barcoding information, and the linkage of antibody 

barcode and cell barcode is achieved via overextension PCR. The chimeric DNA products 



13 
 

from over 10,000 single cells can be pooled and sequenced in parallel. The single-cell 

protein information will be sorted by the cell barcoding. Unique molecular identifiers are 

utilized for PCR-bias correction. One disadvantage of all these approaches is that the 

information about the spatial distribution of proteins is lost. An orthogonal method, Seq-

Well (Figure 1-4, adapted from reference (Gierahn et al., 2017)), takes advantage of arrays 

of microwells instead of droplets. The complex tissue is dissociated to single-cell 

suspension first, and then barcoded mRNA capture beads and cells are loaded onto 

microwell array by gravity. The device is sealed by a semipermeable membrane to allow 

lysis buffer change but confine mRNA within the well. Once the beads (contained poly(dT) 

primers, which including cell-specific barcodes and unique molecular identifiers for each 

transcript) capture liberated transcripts from an individual cell, the beads are recovered 

from the array. Reverse transcription of bead-bound transcripts is performed in bulk, 

followed by library preparation, sequencing, and in silico analysis. The cell lysis and 

reverse transcriptions of mRNA are accomplished on-chip by sealing single cells and 

individual barcoded capture beads (Gierahn et al., 2017). This assay is compatible with on-

array imaging cytometry for resolving the phenotype of cells from complex samples and 

has the potential to obtain more information from a limited amount of samples using a 

single platform. 
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Figure 1-2 Workflow of REAP-seq. 
 

 
 

Figure 1-3 Abseq workflow. 
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Figure 1-4 Workflow of Seq-Well 
 

Unquestionably, the integration of transcriptomic and proteomic profiling on the 

same single cells can characterize cellular response to perturbations in a more accurate, 

unbiased way. However, these approaches require cell fixation or cell lysates, which 

exclude the possibility for tracking the dynamic transcriptomic and proteomic changes in 

the same cell. Although it has the advantage of being able to profile the complete 

transcriptome, the abundance of lowly expressed transcripts like transcription factors 

remains a challenge and requires pooling of data when the magnitude of change is also 

small. Recent reports have aimed to improve the analysis algorithms and to extract more 

information out of the data (Bacher et al., 2017; Bacher and Kendziorski, 2016; Poirion et 

al., 2016; Wu et al., 2017; Lee et al., 2017). Since the cells are lysed to retrieve the mRNA, 

scRNA-seq ideally provides a snapshot of the cell state, inferred by the transcript profile. 

Immune gene signatures could be obtained from sequencing results without prior 

knowledge, making it ideal for the discovery of candidate biomarkers in an unbiased 

manner. There are disadvantages of this approach, including the lack of correlation 

between mRNA and protein for some genes (Genshaft et al., 2016), the inability to directly 
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detect post-translational modification of proteins, and a complete lack of protein 

localization information. Thus, an ideal implementation of scRNA-seq would be in 

combination with another method that directly profiles biological function. 

1.4. Integrated platforms to monitor dynamic T cell behavior and 

polyfunctionality 

Immune cells, specifically T cells, demonstrate a variety of dynamic behaviors. 

From the standpoint of studying the therapeutic potential of T cells for adoptive transfer, 

or for identifying biomarkers of ICI, quantifying the functional status of the T cells will be 

essential. 

1.4.1. Time-lapse imaging microscopy in nanowell grids (TIMING) 

The characterization of the interaction between pairs of cells would benefit the 

understanding of how cells interact or cooperate with other cells, and help the discovery of 

underlying mechanisms of dynamic cell behavior. Microfluidic devices have the potential 

to dynamically monitor cell-cell interaction in a high-throughput manner in combination 

with live-cell microscopy. TIMING (Figure 1-5, adapted from reference (Romain et al., 

2014)), a microwell-based platform, was reported to able to dynamically monitor cell-cell 

interaction, cytotoxicity, cell motility, and cell survival simultaneously (Lee,Chang-Han H. 

et al., 2017; Aschenbrenner et al., 2017; Liadi et al., 2015). Additionally, it can integrate 

real-time cytokine profiling by bead-based cytokine sensors (Romain et al., 2014) or gene 

expression profiling by single-cell retrieval via micromanipulator (Sendra et al., 2013) due 

to the non-destructive feature of this assay. Similarly, it has also been reported that droplets 

can be used to co-encapsulate the two types of cells before docking to the microwells 

(Walsh, Dodd, and Hautbergue, 2013); Martinelli et al., 2009). This microwell-based 
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device was compatible with live-cell imaging analysis, allowing the dynamic monitoring 

of cell morphology, behavior, and fate. Another new technology, DropMap, utilized 

droplets to dynamically profile antibody secretion from antibody-secreting cells (ASCs) 

(Eyer et al., 2017). Although the rate of secretion of cytokines is much lower than 

immunoglobulin secretion from ASCs, in principle, the DropMap technology can be 

adapted to monitoring cytokine secretion from T cells. 

 
 

Figure 1-5 Workflow of TIMING (Time-lapse imaging in nanowell grids) 
 
1.4.2. Single-cell barcoding chip (SCBC) 

Single-cell barcoding chip, pioneered by the Heath and Fan groups, can quantify 

multiple proteins from the same cell, based on the fluorescence readout and on-chip 

calibration (Figure 1-6, adapted from reference (Kravchenko-Balasha et al., 2016)). Top 
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left of Figure 1-6 is a schematic of an SCBC microchamber with valve and DEAL (DNA-

encoded antibody library) barcodes. The bottom left panel of Figure 1-6 is the schematic 

of immune sandwich formation that indicates protein detection. The top right is a 

representative time-lapse images of an SCBC microchamber containing two cells over 8 

hours (scale bar = 100 μm). The bottom right is fluorescent images of patterned barcodes 

of 5 detected proteins, SCBC consists of a collection of microchambers on the microfluidic 

chip (from several hundred to several thousand) to confine single cell or two cells, and one 

of the surfaces of the microchamber contains barcode-like patterned antibody arrays for 

protein capture and further detection (Kravchenko-Balasha et al., 2016; Wei et al., 2016; 

Zhou et al., 2017). Apart from protein detection, this approach entitled the monitoring cell 

movement of the single-cell pair along with the protein secretion (Kravchenko-Balasha et 

al., 2016). Built on a similar concept, beads-on-barcode antibody microarray (BOBarray) 

was developed to quantify released proteins from a single cell confined in the individual 

well, but with modification of protein detection strategy: color-coded and size-coded 

functionalized microbeads were coated on the glass slide instead of patterned antibody 

arrays to minimize the size of the microfluidic device (Yang et al., 2016). SCBC 

technology is amenable of up to around 40-plex protein detection from a single cell and 

only need a small sample amount as an input; however, due to its intrinsic design, it was 

not designed to study dynamic or real-time protein secretion. The advantage of these 

function-based single-cell assays like TIMING and SCBC is that they have the potential to 

reveal heterogeneity of complex biologies like motility (reflection of the homing ability of 

T-cell to find tumor), cytotoxicity (representative of tumor-killing functionality) or 

cytokine secretion (communication with other immune cells), which are potential 
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predictive biomarker candidates of T cells-based immunotherapy, especially combined 

biomarkers that require simultaneous measurement of different perspectives of T-cell 

functionalities. One of the disadvantages of these approaches is that unlike FC/ MC that 

are available as part of core facilities, microfluidics often requires unique expertise and 

infrastructure to be able to execute these assays. As mentioned above, since the ability to 

retrieve cells of interest has been demonstrated for at least the TIMING assay, the ability 

to integrate functional and transcriptional profiling at single-cell resolution might provide 

the in-depth insight required for defining the efficacy of immunotherapies.  

 

Figure 1-6 Schematic of a single-cell barcode chip (SCBC) and representative time-lapse    
                  images of an SCBC microchamber containing two cells.  
 
1.5. Challenges  

1.5.1. Identification and validation of biomarkers  

A lot of effort has been devoted to obtaining the predictive biomarkers for ICI and 

ACT, and candidate biomarkers are showing promising results in multiple clinical trials. 

Biomarkers could be in various and different formats: tumor infiltrating lymphocyte 

density at tumor sites, immune checkpoint expression on tumor cells, neoantigen/mutation 

load of tumor cells, serum protein/antibodies, circulating tumor cells, lymphocyte counts, 

T cell clonality, etc (Maleki Vareki, Garrigós, and Duran, 2017; Rosenberg et al., 2016; 
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Vasaturo et al., 2016; Butterfield, 2018; Axelrod, Johnson, and Balko, 2018; Diggs and 

Hsueh, 2017). However, validated clinically actionable biomarkers for predicting the 

clinical outcomes of ICI/ACT are still lacking. The ligand of immune checkpoint 

expression of certain tumor samples is considered as one of the promising biomarkers for 

ICI; for instance, PD-L1 qualitative immunohistochemical assays were FDA-approved but 

with suboptimal sensitivity and specificity (Diggs and Hsueh, 2017). Many factors may 

contribute to the inconsistent performance of candidate biomarkers including the 

complexity of the anti-tumor response, the heterogeneity of tumor or/and patients, the 

inducible and non-static property of biomarkers, the suboptimal specificity, and accuracy 

of assays. It is evident that the discovery of biomarkers with high accuracy and sensitivity 

will enable better patient selection into the 3000+ immunotherapy clinical trials currently 

underway. Since T cells are considered as the primary effector cells in ICI and ACT, it is 

not surprising that some T-cell based predictive biomarkers have been discovered (Huang 

et al., 2017; Kamphorst, Pillai, et al., 2017). Although profiling T cells directly from the 

tumor site are more indicative of T-cell functional status within the tumor, peripheral blood 

is a more accessible compartment with limited inconvenience to the patients. For this 

reason, parallel efforts are devoted to studying T cell within the blood to determine if the 

changes within these T cells can be used to infer changes in T-cell functionality as a result 

of treatment (Huang et al., 2017; Kamphorst, Pillai, et al., 2017). Unfortunately, however, 

T cells demonstrate a variety of dynamic behaviors, and thus mapping these to the same T 

cells, at single-cell resolution is a challenging problem (Figure 1-7). T cells are capable of 

many different functions and integrate cues from both the cells and soluble factors from 

the microenvironment to facilitate decision-making. A complete understanding of T cells 
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can be only accomplished by tracking cell-cell interactions dynamically (e.g., synapse 

formation, cytotoxicity), intrinsic and chemokine guided motility, cytokine secretion, 

bioenergetics, transcriptome, morphology, differentiation status, and proliferation or 

survival. Assays that can provide insights into one or more of these features on the same 

cells, at single-cell resolution, can provide a deeper understanding of the underlying 

biology.  

 

Figure 1-7 Integrated and dynamic profiling of T cells Integrated and dynamic profiling of 
T cells 

 
1.5.2. Choice of assay  

The choice of the appropriate assay to define T-cell functionality is defined by a 

combination of multiple factors including the number of T cells available, the depth of 

information being sought, ease of assay standardization, and cost. ScRNA-seq is an 

excellent choice for the discovery of biomarkers but is still rather expensive for routine 

implementation. At the other end of the spectrum, FC is considered standard, but it requires 

that the biomarkers have already been discovered using another assay. Presently, at least 

for monitoring ICI trials, there is no unique way to converge to a single assay, and the 

choice is often determined by one or more of factors listed above. ACT, on the other hand, 

should not be limited by cell numbers for at least the infusion product, and not surprisingly 
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more complex assays and dynamic assays have been used to evaluate T-cell functionality 

(Ma et al., 2013; Liadi et al., 2015). Spatial information All the techniques we have 

described work with homogenized single cells or single cells in suspension. These methods 

are ideal and relevant in tumor immunotherapy when profiling single T cells in peripheral 

blood. Thus, while the comprehensive documentation of the molecular profiles revealed 

by scRNA-seq is useful for identifying compositional frequencies of immune cell subsets, 

they cannot, however, reveal the link between the molecular profile and functional capacity, 

and how this impacted by space and time. The tumor microenvironment is a three-

dimensional structure composed of different kinds of cells, and it is essential to document 

the spatial localization of immune cells within the tumor microenvironment (TME). A few 

in situ sequencing, proof-of-concept technologies have been demonstrated that can directly 

map spatial information and transcript profiles (Larsson et al., 2010; Ke et al., 2013; Lee,Je 

Hyuk et al., 2014), but it remains to be seen if they can match the depth of transcript 

profiling afforded by even scRNA-seq. Similarly, FISH-based methods that can preserve 

the spatial information and directly count RNA molecules down to the single-molecule 

level have been reported (Mellis et al., 2017; Shah et al., 2016; Moffitt et al., 2016). The 

drawbacks, however, are that even with repetitive cycles of probing different mRNA 

molecules, the total number of unique mRNA molecules that can be detected is smaller 

than scRNA-seq and that researchers have to pre-determine the transcripts that are being 

studied.  

1.5.3. Bioinformatics  

One of the significant and central challenges for realizing the potential and benefit 

of the next generation of single-cell technologies is matching advances in bioinformatics. 
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As outlined above, the low number of reads per single cell, the ability to differentiate 

technical and biological variation, amplification biases, batch-effect, all present significant 

challenges to systematic data analyses. Besides, the ability to integrate single-cell data 

acquired across different platforms analyzing different kinds of biomolecules and functions 

is a complex problem, which requires adequate normalization methods and the capability 

to investigate the correlation among different dimensions of single-cell data (Bacher et al., 

2017; Tricot et al., 2015; Vallejos et al., 2017; Wang et al., 2017). The identification of 

conserved signatures of genes and dimension-reduction-based visualization are the most 

common methods to extract information from single-cell datasets with high-dimensionality 

(Wang et al., 2017; Kiselev et al., 2017). However, the algorithms for prediction of single-

cell responses within heterogeneous cell populations, to perturbation is not well-defined 

(Su, Shi, and Wei, 2017). In other words, while the currently available analytic approaches 

are mainly focusing on descriptive analyses at single-cell resolution in vitro, it remains 

unclear how to utilize and integrate these single-cell data to accurately predict the behavior 

and fate of diverse cell populations in vivo, especially within TME, eventually serving as 

biomarkers to predict the clinical outcomes of cell-based therapeutics. 
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Chapter 2  

Single-cell profiling of dynamic cytokine secretion and the phenotype of 

immune cells 

Note: this is a reformatted manuscript, which was published in PLOS One. 

 

Xingyue An, Victor G Sendra, Ivan Liadi, Balakrishnan Ramesh, Gabrielle Romain, 

Cara Haymaker, Melisa Marinez-Paniagua, Yanbin Lu, Laszlo G Radvanyi, Badrinath 

Roysam, and Navin Varadarajan, “Single-Cell Profiling of Dynamic Cytokine Secretion 

and the Phenotype of Immune Cells,” ed. Golo Ahlenstiel, PLOS ONE 12, no. 8 (August 

24, 2017): e0181904. 

 

2.1. Introduction 

Although natural killer (NK) cells were classically defined as pre-activated effector 

lymphocytes empowered with innate cytolytic functionality, more recent data suggest that 

NK cells are also endowed with complex functionalities including cytokine secretion and 

activation of antigen-presenting cells, and can thus act as a bridge between innate and 

adaptive immunity (Vivier et al., 2011). NK cells are of pivotal importance in the execution 

of antiviral and anti-tumor responses (Long et al., 2013). Human NK cells are identified as 

CD3-CD56+ cells and are typically classified into different subsets based on the relative 

expression of the cell surface markers CD56 (adhesion marker) and CD16 (FcγRIIIA, low-

affinity Fc receptor) (Decocq et al., 2011; Poli et al., 2009). The majority of NK cells in 

peripheral blood (> 90%) are the CD56dimCD16+ phenotype, which is primarily believed 

to be responsible for cytolytic functionality including antibody-dependent cell-mediated 
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cytotoxicity (ADCC) mediated by CD16. By contrast, the CD56brightCD16- phenotype is 

the minor population in peripheral blood and is described as primarily responsible for the 

secretion of cytokines like interferon gamma (IFN-γ) (Decocq et al., 2011; Poli et al., 2009). 

The secretion of the pro-inflammatory cytokine IFN-γ is an essential mechanism of 

defense mediated by lymphocytes. Unlike cytotoxicity that only influences the target cell 

that is directly conjugated to the lymphocyte, IFN-γ secretion has a more profound 

influence on all cells within the microenvironment via multiple mechanisms including 

elevated expression of HLA-class I molecules (Zaidi and Merlino, 2011), induction of 

chemokines that can promote immune cell infiltration (Hu, Chakravarty, and Ivashkiv, 

2008), mediation of angiostasis (Qin et al., 2003), and prevention of the outgrowth of 

antigen-loss variants (Gerbitz et al., 2012). From a clinical perspective, the secretion of 

IFN-γ by immune cells is likely an important contributor to the efficacy of 

immunotherapies, including treatment with antibodies against PD-1 and CTLA-4 (Zaretsky 

et al., 2016; Gao et al., 2016). Direct measurement of NK cell (or lymphocyte) functions 

at the single-cell level requires the simultaneous monitoring of multiple parameters 

including the cell’s phenotype, its migration, and interaction with other cells, secretion of 

proteins, and its survival. These challenges have been tackled by measuring just a subset 

of these effector functions and relying on correlative studies to establish links among 

cellular functionalities. While multiphoton microscopy is useful for studying lymphocyte 

motility and cytotoxicity in situ or in vivo (Mempel, 2010; Breart et al., 2008; Roysam et 

al., 2008), the number of immune cells that can be simultaneously tracked is small and 

limited to the field-of-view, potentially leading to sampling bias. In contrast, in vitro 

dynamic imaging systems (Liadi et al., 2013; Romain et al., 2014; Zaretsky,Irina et al., 
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2012; Liadi et al., 2015) may be better suited for studying the longitudinal interactions 

between lymphocytes and target cells at single-cell resolution and in a high-throughput 

manner. Microfabricated nanowell arrays are ideal for tracking both the motility and 

interaction between cells (Liadi et al., 2013; Zaretsky,Irina et al., 2012; Liadi et al., 2015). 

While elegant methods like microengraving (Varadarajan et al., 2012; Han et al., 2012) 

and the single-cell barcode chip (SCBC) (Ma,Chao et al., 2011; Lu et al., 2015; Son et al., 

2016) have been reported for the analysis of cytokines secreted by single cells confined in 

such nanowell arrays, these systems require the capture of the secreted cytokine on a 

separate glass substrate via encapsulation thus precluding real-time dynamic measurements 

of cytokine secretion (Son et al., 2016). 

Here, we have developed and validated an integrated methodology that combines 

nanowell arrays (Romain et al., 2014; Liadi et al., 2015) and bead-based molecular sensors 

(Son et al., 2016; Chokkalingam et al., 2013; Konry, Golberg, and Yarmush, 2013) for 

detecting cytokine secretion dynamically without the need for encapsulation of single T 

cells/NK cells. We used this methodology to link the phenotype of peripheral blood human 

NK cells with their dynamic cytokine secretion profiles. Our results demonstrate that 

contrary to the long-term secretion that has been routinely profiled, human NK cells 

bearing the CD56dimCD16+ phenotype are immediate secretors (< 3 h) of IFN-γ upon 

stimulation. Surprisingly, both the rate and total amount of IFN-γ secretion from individual 

NK cells were donor-dependent parameters. 
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2.2. Methods 

2.2.1. Human subjects statement 

All work outlined in this report was performed according to protocols approved by 

the Institutional Review Boards at the University of Houston and the University of Texas 

M.D. Anderson Cancer Center (IRB# LAB06-0755). 

2.2.2. TILs, PBMCs, primary T cells, NK cells, and reagents 

Tumor infiltrating lymphocytes (TILs) from melanoma patients were isolated and 

expanded as previously described (Haymaker et al., 2015). Briefly, initial TIL expansion 

was performed in 24-well plates from either small 3-5 mm2 tumor fragments or from 

enzymatic digestion, followed by centrifugation with Ficoll-Paque PLUS (GE Healthcare 

Life Sciences, USA). TILs were then allowed to propagate for 3-5 weeks in TIL-complete 

media containing 6000 IU/ml human recombinant IL-2 (Nestlé Health Science, 

Switzerland). Once the desired number of TILs was achieved, Rapid Expansion Protocol 

(REP) was performed in which TIL was cultured together with PBMC feeder cells (1 TIL: 

200 feeders) preloaded with anti-CD3 (OKT3, eBioscience) in a G-REX 100M flask until 

the desired number of cells was achieved and harvested. PBMC isolation from buffy coat 

was performed by density gradient centrifugation using either Ficoll-Paque PLUS or 

Lymphoprep™ density gradient medium (Stemcell Technologies, Canada). 

Immunomagnetic isolation of T cells from PBMC was then conducted using the EasySep™ 

Human T Cell Enrichment Kit (Stemcell Technologies, Canada). NK cell isolation from 

PBMC was accomplished using the RosetteSep™ Human NK Cell Enrichment Cocktail 

(Stemcell Technologies, Canada), as described previously (Somanchi et al., 2011). Table 

2-1 provides a complete listing of important reagents used in this study. 
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Table 2-1 List of reagents described in this manuscript. 
Reagents Manufacturer Reference 
Alexa Fluor® 488 NHS Ester 
(A-20000) 

Thermo Fisher 
Scientific Inc. 

https://tools.thermofisher.com/content/sfs/manual
s/mp10168.pdf 

Brilliant Violet 421™ mouse 
anti-human CD4 (317433) 

BioLegend http://www.biolegend.com/pop_pdf.php?id=7775 

Brilliant Violet 421™ 
streptavidin (405226) 

BioLegend http://www.biolegend.com/pop_pdf.php?id=7297 

BCIP/NBT substrate Sigma-Aldrich http://www.sigmaaldrich.com/catalog/product/sig
ma/b1911?lang=en&region=US 

CEF-MHC Class I Control 
Peptide Pool “Classic” (CTL-
CEF-001) 

Cellular 
Technology 
Limited 

http://www.immunospot.com/includes/pdfs/PDSs
/PDS_CEF-MHC-Class-I-Control-Peptide-Pool-
Classic.pdf 

ExtrAvidin-alkaline 
phosphatase 

Sigma-Aldrich http://www.sigmaaldrich.com/catalog/product/sig
ma/e2636?lang=en&region=US 

LumAvdin® microsphere 115 
(L100-L115-01) 

Luminex N/A 

Mouse anti-human CD56 
HCD56 biotinylated (318319) 

BioLegend http://www.biolegend.com/pop_pdf.php?id=4076 

Mouse anti-human IFNγ mAb 
1-D1K (3420-3-250) 

Mabtech https://www.mabtech.com/sites/default/files/datas
heets/3420-3-250.pdf 

Mouse anti-human IFNγ mAB 
7-B6-1 biotinylated (3420-6-
250) 

Mabtech https://www.mabtech.com/sites/default/files/datas
heets/3420-6-250.pdf 

PE Mouse anti-human CD16 
3G8 (560995) 

BD 
Pharmingen™ 

http://www.bdbiosciences.com/ds/pm/tds/560995
.pdf 

Poly(L-lysine) grafted with 
poly(ethylene glycol) 
[PLL(20)-g[3.5]- PEG(2)] 

Susos AG N/A 

ProMag™ 3 Series • Goat anti-
Mouse IgG (Fc) beads 
(PMM3N) 

Bangs 
Laboratories, 
Inc. 

http://www.bangslabs.com/sites/default/files/imc
e/docs/PDS%20723%20Web.pdf 

R-Phycoerythrin Streptavidin 
(Strep – PE) (016-110-084) 

Jackson 
ImmunoResearc
h Laboratories, 
Inc. 

https://www.jacksonimmuno.com/catalog/produc
ts/016-110-084 

SU-8 3050 MicroChem 
Corp. 

http://microchem.com/pdf/SU-
8%203000%20Data%20Sheet.pdf 

SU-8 developer MicroChem 
Corp. 

N/A 

Sylgard® 184 silicone 
elastomer kit 

Dow Corning, 
Corp. 

http://www.dowcorning.com/DataFiles/090276fe
80190b08.pdf 

Tridecafluoro-1, 1, 2, 2-
Tetrahydrooctyl)-1-
Trichlorosilane 

UCT Specialties N/A 

 

https://tools.thermofisher.com/content/sfs/manuals/mp10168.pdf
https://tools.thermofisher.com/content/sfs/manuals/mp10168.pdf
http://www.biolegend.com/pop_pdf.php?id=7775
http://www.biolegend.com/pop_pdf.php?id=7297
http://www.sigmaaldrich.com/catalog/product/sigma/b1911?lang=en&region=US
http://www.sigmaaldrich.com/catalog/product/sigma/b1911?lang=en&region=US
http://www.immunospot.com/includes/pdfs/PDSs/PDS_CEF-MHC-Class-I-Control-Peptide-Pool-Classic.pdf
http://www.immunospot.com/includes/pdfs/PDSs/PDS_CEF-MHC-Class-I-Control-Peptide-Pool-Classic.pdf
http://www.immunospot.com/includes/pdfs/PDSs/PDS_CEF-MHC-Class-I-Control-Peptide-Pool-Classic.pdf
http://www.sigmaaldrich.com/catalog/product/sigma/e2636?lang=en&region=US
http://www.sigmaaldrich.com/catalog/product/sigma/e2636?lang=en&region=US
http://www.biolegend.com/pop_pdf.php?id=4076
https://www.mabtech.com/sites/default/files/datasheets/3420-3-250.pdf
https://www.mabtech.com/sites/default/files/datasheets/3420-3-250.pdf
https://www.mabtech.com/sites/default/files/datasheets/3420-6-250.pdf
https://www.mabtech.com/sites/default/files/datasheets/3420-6-250.pdf
http://www.bdbiosciences.com/ds/pm/tds/560995.pdf
http://www.bdbiosciences.com/ds/pm/tds/560995.pdf
http://www.bangslabs.com/sites/default/files/imce/docs/PDS%20723%20Web.pdf
http://www.bangslabs.com/sites/default/files/imce/docs/PDS%20723%20Web.pdf
https://www.jacksonimmuno.com/catalog/products/016-110-084
https://www.jacksonimmuno.com/catalog/products/016-110-084
http://microchem.com/pdf/SU-8%203000%20Data%20Sheet.pdf
http://microchem.com/pdf/SU-8%203000%20Data%20Sheet.pdf
http://www.dowcorning.com/DataFiles/090276fe80190b08.pdf
http://www.dowcorning.com/DataFiles/090276fe80190b08.pdf
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2.2.3. Functionalization of beads 

One microliter of ProMag™ 3 Series goat anti-mouse IgG-Fc beads (Bangs 

Laboratories, Inc., USA) (~2.3×105 beads) in solution was washed with 10 μl of PBS and 

resuspended in 19.6 μl PBS (~0.05% solids). Mouse anti-human IFN-γ (1-D1K, Mabtech) 

was added to the beads at a final concentration of 10 μg/ml, followed by incubation for 30 

min at room temperature (RT), and then washed and resuspended in 100 μl PBS. 

Forty microliters of LumAvidin® 115 microspheres (Luminex Corp., USA) (~105 

microspheres) in solution was washed with the same volume of PBS and resuspended in 

80 μl of PBS. Biotinylated mouse anti-human IFN-γ (7-B6-1, Mabtech) was added to the 

microspheres at a final concentration of 10 μg/ml, followed by incubation for one hour at 

RT, and was subsequently washed and resuspended in 40 μl PBS. 

2.2.4. PLL-g-PEG solution preparation 

Poly(L-lysine) (20 kDa) grafted with poly(ethylene glycol) (2 kDa) (PLL-g-PEG)  

(SuSoS, Switzerland) was dissolved in 10 mM HEPES buffer at RT (final PLL-g-PEG 

concentration is 0.1 mg/ml). The PLL-g-PEG solution was filtered using a 0.2 µm pore 

size syringe filter, kept at 4 oC for use within two weeks of dissolution.  

2.2.5. ELISPOT assays 

ELISPOT assays were performed with fresh PBMC and TIL as previously 

described (Varadarajan et al., 2012; Martinon et al., 2009). Briefly, microwell plates 

(Merck Millipore, USA) were coated with capture antibody anti-human IFN-γ (1-D1K, 

Mabtech) at 10 µg/ml overnight at 4 °C. The next day, the plates were washed twice with 

PBS and blocked with complete culture medium RPMI + 10% FBS (R10) for 45 min at 

37 °C. Cells were prepared as follows in triplicates: (1) 4,000 PBMCs stimulated with 10 
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ng/ml phorbol 12-myristate 13-acetate (PMA) and 1 µg/ml ionomycin per well; (2) 4,000 

TILs derived from a melanoma patient stimulated with 10 ng/ml PMA and 1 µg/ml 

ionomycin per well; (3) 200,000 PBMCs stimulated with 2 µg/ml CEF peptide (CEF 

peptide is a peptide pool consisting of 23 MHC I-restricted 8-11 mer epitopes from 

influenza virus, cytomegalovirus, and Epstein-Barr virus; it has been shown to elicit IFN-

γ release from CD8+ T cells in human PBMCs of the majority of randomly selected healthy 

donors); and (4) 200,000 corresponding non-stimulated cells. Next, cells were incubated at 

37 °C/5% CO2 for 18 h, followed by successive washes and incubation with biotinylated 

anti-human IFN-γ (7-B6-1, Mabtech), extravidin-alkaline phosphatase (Sigma-Aldrich, 

USA) and BCIP/NBT (Sigma-Aldrich, USA) substrate. The plate was subsequently read 

with an ELISPOT reader (C.T.L. counter) while taking into account background 

measurement. 

2.2.6. Thin bottom nanowell array fabrication 

Standard soft lithography techniques were applied for fabrication of PDMS 

nanowell arrays. The nanowell pattern was designed using AutoCAD (Autodesk, USA), as 

described previously (Liadi et al., 2013; Romain et al., 2014; Liadi et al., 2015). The 

dimensions of the square well were 50 µm×50 µm, while the pitch between two adjacent 

wells was set to 100 µm.  

The master template of the nanowell array was fabricated by standard 

photolithography, using SU-8 3050 (MicroChem Corp., USA) spin-coated on a 4-inch 

silicon wafer (WRS Materials, USA) to yield 60 µm thickness, according to manufacturer’s 

directions. Silanization was achieved by vapor deposition of (Tridecafluoro-1, 1, 2, 2-
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Tetrahydrooctyl)-1-Trichlorosilane (UCT Specialties, USA) in a vacuum desiccator 

chamber overnight. 

PDMS (Sylgard 184, Dow Corning, USA) was mixed in 10:1 (base-to-curing agent, 

weight ratio), then degassed in a vacuum desiccator chamber for 1 h. 10 ml degassed PDMS 

mixture was poured onto the master and spun at 1000 rpm for 30 s with an acceleration of 

500 rpm/s. The silicon master with PDMS thin layer was baked in a convection oven at 80 

oC for 3 hours. After curing, the nanowell arrays in PDMS were peeled and cut to fit 

standard 50 mm Petri dishes.  

The nanowell array was air plasma-oxidized and bonded to the bottom of 50 mm 

Petri dish (Ted Pella Inc., USA). Immediately before use, the nanowell array was re-

oxidized with air plasma and then incubated with 1.5 ml PLL-g-PEG solution for 20 min 

at 37 oC. The PLL-g-PEG solution was aspirated from the nanowell array, and the array 

was subsequently rinsed with R10 before use in cell-based assays. 

2.2.7. Finite element simulations 

The system of partial differential equations to model the variation of analyte 

concentrations, C (in liquid media) and Cs (on bead surface), with time, was solved using 

the Transport of diluted species interface, Chemical reaction engineering module in 

COMSOL Multiphysics 4.1. The mass balance equation involving Cs was solved using its 

weak form. The relative distance between the bead and the cell within the nanowell was 

varied systematically across simulations. Changes in cell and bead positions, convective 

transport, surface diffusion on the bead (Ds = 10-25 m2/s), non-specific adsorption on walls 

and analyte degradation were neglected to simplify numerical simulations.  
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2.2.8. TIMING assays for the study of NK cells phenotypes and IFN-γ secretion 

Functionalized beads and pre-stained NK cells (anti-CD16-PE, 3G8, BD 

Pharmingen™; anti-CD56-biotin, HCD56, BioLegend; streptavidin-Brillant Violet™ 421, 

BioLegend) were loaded sequentially onto a nanowell array. The nanowell array was 

incubated in 1.5 ml R10 that contained one microgram per microliter detection antibody 

against IFN-γ (1-D1K, Mabtech) conjugated with Alexa Fluor® 488 (AF488), 10 ng/ml 

PMA and one microgram per microliter ionomycin. The nanowell array was imaged using 

a Zeiss fluorescent microscope with 20× 0.8 NA objectives and a scientific CMOS camera 

(Orca Flash 4.0). The phenotype of the cells was imaged with three channels (brightfield, 

CD16, CD56) at the initial time point and all beads-related channels (brightfield, AF488, 

beads) were imaged at subsequent time points for the duration of 6 h with 10 min intervals.  

2.2.9. Automated image segmentation.  

Images at the initial time point were analyzed through in-house algorithms to 

acquire fluorescent intensities (FIs) of all channels (brightfield, CD16, CD56, beads) and 

the frequencies of cells and beads within each well. Nanowells containing single beads 

were chosen for further analysis. Analysis of time-lapse for beads was processed by a 

modified pipeline for FIs from IFN-γ channel at each time point (Liadi et al., 2015). Access 

and Excel (Microsoft, USA) were used for matching data between cell phenotyping and FI 

change of beads.  

As time increased, the beads FI (IFN-γ channel) followed a sigmoidal trend. Thus, 

we plotted and fit FI versus time using GraphPad Prism 6 (GraphPad Software Inc., USA) 

using a four-parameter logistic curve fit model (log [agonist] – the concentration model 

[variable slope]) whose formula was rewritten in order to include all the available data 
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points for fitting, allowing quantification of the EC50 that reflected the critical secretion 

time:  

                                    MFI = Bottom + (Top−Bottom)×𝑡𝑡ℎ

𝑡𝑡ℎ+EC50ℎ
.                                     (2-1) 

Bottom and Top are the corresponding values of the low plateau and high plateau, 

respectively; t is the time when the imaging was recorded during the time-lapse experiment 

(t = 0 min represents the first time point); EC50 is the time when the MFI reaches halfway 

between Bottom and Top; h is the Hill slope. 

2.3. Results 

2.3.1. Thin bottom nanowell arrays. 

As we and others have previously reported, nanowell arrays fabricated in PDMS 

offer a convenient route to track the dynamic functional behavior of immune cells but 

might not be amenable to high-resolution imaging due to the thickness of the bottom of the 

PDMS array (Romain et al., 2014; Liadi et al., 2015). In order to overcome this limitation, 

we fabricated nanowell arrays in PDMS by spin-coating that enabled control over the 

thickness of the bottom of the PDMS nanowells (Zaretsky et al., 2012; Schneider et al., 

2009).  

 
Figure 2-1 Thin bottom nanowell arrays fabricated by spin-coating. 
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Figure 2-1A shows SEM top-view images of the nanowell array obtained by spin-

coating (scale bar = 100 µm). The depth of the well was measured across multiple regions 

of a 10 mm×2 mm chip and confirmed by optical microscopy to be 63±2 μm (N = 136, 

Figure 2-1B, scale bar = 100 µm). Similarly, the bottom thickness of the PDMS was 

uniform across the chip (84±2 µm, N = 205, Figure 2-1C) and this facilitated adaptation 

of the nanowell array to high-resolution microscopy.  

To demonstrate proof-of-principle that the thin bottom nanowell arrays were 

compatible with high-resolution imaging, human NK cells were isolated from peripheral 

blood by immunodensity separation, stained with antibodies directed against the 

phenotypic markers CD16 and CD56, and then ~50,000 of these cells were loaded onto the 

nanowell array. Imaging was accomplished using a Nikon confocal microscope using a 

100× objective (Figure 2-2).  

 

Figure 2-2 Fluorescence microscopy images of a labeled human NK cell (CD56 and CD16) 
were recorded using a 100× objective.  

 
Despite the fact that PDMS is widely adopted for the fabrication of microfluidic 

devices, PDMS tends to display a high level of non-specific protein adsorption. Although 

a partial reduction in this effect can be accomplished by the oxidation with air plasma that 

renders PDMS hydrophilic, a better strategy had to be implemented since we were 

interested in the dynamic secretion of proteins from single cells in PDMS nanowell arrays. 



35 
 

In order to reduce the non-specific adsorption of proteins, we explored the utility of PEG 

treatment of PDMS. The ability of PEG and its derivatives to passivate surfaces is well 

described, and a graft copolymer of PEG with poly-L-lysine (PLL-g-PEG) has been 

previously reported for use in PDMS microchannels (Marie et al., 2006).  

PDMS nanowell arrays were oxidized using air plasma to render the surface 

hydrophilic with silanol groups and incubated with a 100 μg/ml solution of PLL-g-PEG in 

HEPES. Subsequent to washing, human T cells isolated by immunomagnetic separation 

from PBMCs were loaded onto two separate nanowell arrays and stained with mouse anti-

human CD4 antibody conjugated to Brilliant Violet™ 421 (OKT4, BioLegend). In the 

absence of surface modification, the signal from the cells was obscured by the background 

fluorescence from the nanowell edges (Figure 2-3A, scale bar = 50 µm, exposure time = 

500 ms). By contrast, even a short 20 min treatment with PLL-g-PEG demonstrated 

excellent surface passivation leading to clearly distinguishable cells and very little 

background staining of the nanowell edges (Figure 2-3B, scale bar = 50 µm, exposure time 

= 500 ms). In order to quantify the differences arising from the signal against the 

background, the background-corrected mean fluorescence intensities (MFI) were 

computed for at least 30 single cells using ImageJ (NIH, USA). Regardless of the exposure 

time used (100–500 ms), PLL-g-PEG-treated nanowell arrays showed consistently 

enhanced cell-specific labeling, and an increase in the signal with increasing exposure 

times, confirming effective surface passivation (Figure 2-4, p-value < 0.0001. Each dot 

represents a single T cell. Non-parametric tests were performed for comparison of 

populations corrected fluorescent intensities of CD4+ T cells. ****: p-value < 0.0001; ns: 

not significant; mean±SEM is shown). 



36 
 

These results confirmed that even a short treatment with PLL-g-PEG was sufficient 

to reduce non-specific adsorption and thus all our nanowell arrays were passivated using 

this method. 

 
 
Figure 2-3 PLL-g-PEG treatment of PDMS nanowell arrays reduce non-specific binding.  

 

Figure 2-4 Background corrected mean fluorescent intensities of individual cells in either 
PLL-g-PEG or R10 passivated nanowell arrays.  

 
2.3.2. The frequency of IFN-γ-secreting T cells enumerated by functionalized beads 

within nanowell arrays is correlated to the same responses determined using 

ELISPOT.  

We first tested the ability of functionalized beads to efficiently capture proteins 

secreted by single cells after incubation in individual nanowells by measuring the limit of 

detection (LoD) of functionalized beads at different analyte concentrations. Antibody-

coated beads were incubated with varying concentrations of IFN-γ (0.25–5 ng/ml) for a 



37 
 

period of 2 h at 37 °C, loaded onto glass-bottom Petri dish, and subsequently detected with 

a fluorescently labeled secondary antibody. The background-corrected mean fluorescent 

intensity (MFI) quantified across a minimum of 30 beads confirmed that IFN-γ was 

detectable at a concentration of 2.5 ng/ml (Figure 2-5, error bar: standard deviation). Next, 

the correlation between the nanowell-encapsulated bead assay and ELISPOT for 

quantifying frequencies of single immune cells secreting IFN-γ upon activation was 

determined. To account for variations in stimulus and the diversity of T cell populations, 

the frequency of IFN-γ secreting single T cells was enumerated under three sets of 

conditions: (1) stimulation of PBMCs with PMA/ionomycin; (2) stimulation of in vitro 

expanded, melanoma TILs with PMA/ionomycin; and (3) incubation of PBMCs with 

HLA-class I peptide pools derived from common viral antigens (CEF peptide pool). An 

aliquot of 106 cells was stimulated for a period of 3–5 h, from which an aliquot of ~100,000 

cells was loaded onto a nanowell array. A suspension of 200,000 beads pre-coated with 

anti-IFN-γ (1-D1K, Mabtech) was subsequently loaded onto the nanowell array and 

incubated for a period of 2 h at 37 °C. By analyzing an average of 10,182±8,589 (mean±SD) 

nanowells containing single cells matched to one or more beads, the frequency of the 

activated T cell IFN-γ response was determined to be 0.40–7.8%. The magnitude of these 

responses was similar to those recorded by ELISPOT [0.20–11.2%], and results of both 

assays were significantly correlated (R2 = 0.87, p-value = 0.0008), demonstrating that beads 

can be utilized to capture cytokine secretion from single cells (Figure 2-6, p-value = 

0.0008). In the absence of stimulation, the frequency of IFN-γ beads detected when 

incubated with immune cells was < 1 in 10,000, and this result sets the limit of detection 

of our assay at 0.01%. In summary, these results established that functionalized beads 
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within nanowell arrays were capable of detecting IFN-γ secretion from single immune cells 

at frequencies correlated with those from conventional ELISPOT assays. 

 

Figure 2-5 Background-corrected mean fluorescence intensity (MFI) detected from a  
                  minimum of 30 IFN-γ-positive beads, as a function of IFN-γ analyte 

concentration with functionalized LumAvidin® beads.  
 

 

 

Figure 2-6 Linear regressions show that bead assay and ELISOPT for detection of single 
effector cells secreting IFN-γ at varying level of antigenic stimulation are 
significantly correlated.  

 
2.3.3. In open-well systems, analyte capture density increases linearly with time.  

As opposed to encapsulated systems, open-well configurations can be 

advantageous for the long term monitoring of cell fate and function since they allow a 
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continuous exchange of gases and nutrients. Furthermore, they avoid potential alterations 

of cellular behavior that can arise from the artificially high local concentrations of analytes 

commonly found in closed systems (Torres, Hill, and Love, 2014). A disadvantage of open-

well systems is that the analyte secreted by an individual cell within a nanowell is subjected 

to persistent diffusion into the bulk medium, potentially lowering the sensitivity. Therefore, 

we sought to quantify the efficiency of analyte capture on beads by modeling a simplified 

open-well system using finite element simulations (Figure 2-7). The concentration of the 

analyte in liquid media (C) can be described using Fick’s 2nd law, 

                                                      𝜕𝜕𝜕𝜕
𝜕𝜕𝑡𝑡

=  𝐷𝐷∇2𝐶𝐶,                                                     (2-2) 

where D represents the diffusion coefficient of the analyte. Since the walls of the PDMS 

can be assumed to be largely impermeable to proteins (Han et al., 2010), the flux at these 

boundaries was set to zero. At a constant rate of analyte secretion from the cell (10 

molecules/sec), the mass balance of analyte concentration on bead surface (Cs) was 

determined by the equation 

                             𝜕𝜕𝜕𝜕s
𝜕𝜕𝑡𝑡

=  𝐷𝐷s∇2𝐶𝐶s + 𝑘𝑘on𝐶𝐶(𝜃𝜃0 −  𝐶𝐶s) −  𝑘𝑘off𝐶𝐶s,                              (2-3) 

where Ds represents diffusivity of the analyte on the bead surface, kon and koff represent 

kinetic binding constants determined by the strength of capture antibody-analyte 

interaction, and θ0 represents the number of capture antibodies available per unit surface 

area of the bead. The choice of values for the parameters (Figure 2-7) was based on 

commercially available antibody binding affinities, the known rates of cytokine secretion 

from lymphocytes, and previously reported numerical simulations of closed systems (Han 

et al., 2010). Initial concentrations of analyte in liquid media and bead surface were set to 

zero and the increase in fractional occupancy (∯𝜕𝜕s
𝜃𝜃0

) on the bead with time as the cell 



40 
 

secretes the analyte was modeled. Upon validating the model with previously published 

data (Han et al., 2010), we sought to optimize the density of capture antibody molecules, 

one tunable variable to maximize captured cytokine density (and therefore the fluorescent 

pixel intensity). For a set bead diameter, the simulations showed that the fractional 

occupancy (fraction of antibodies bound by cytokines) increased when the total number of 

binding sites was decreased (Figure 2-8, mean±SEM is shown. Error bars are shown only 

if SEM is higher than 2.5%), which is consistent with ambient analyte theory that predicts 

that higher sensitivity can be achieved by lowering the number of antibodies used to 

capture the analyte (Ekins, 1998). Ultimately however, the overall fluorescent signal is 

proportional to the density of antibody-cytokine pairs. This density is determined by both 

the fractional occupancy of captured cytokine and binding site density of capture antibodies. 

As expected, captured cytokine density increased with time (0–6 h) regardless of the 

density of capture antibody molecules (1×10-9–1×10-7 mol/m2); during short-term assays 

(≤ 2 h), there was not a significant difference in the various cytokine capture densities 

profiled. During longer assays (2–6 h), as expected, beads with a smaller density of capture 

antibody molecules (1×10-9 mol/m2) tend to saturate cytokine capture quicker. This 

saturation was only observed at the lowest density of antibody molecules and subsequent 

increases in antibody density (1×10-8– 1×10-7 mol/m2), did not significantly increase the 

density of cytokines being captured (Figure 2-9, mean±SEM is shown. Error bars are 

showen if SEM is lower than 1800 molecules/µm2). In summary, the results of these 

simulations suggested that within the short window of experimental interrogation (0–6 h), 

the captured cytokine density (and hence fluorescence intensity on the beads) increased 

linearly as a function of time. Furthermore, since the captured cytokine density was not 
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significantly altered by increasing the antibody density on the bead, we chose to 

experimentally utilize beads with binding site capacities in this density range (1×10-8–

1×10-7 mol/m2). 

 

Figure 2-7 Snapshot of heat maps showing analyte concentration in the liquid phase across  
                  the well and on the bead surface after five hours of secretion in a 40 μm     
                  nanowell. 
 

 

Figure 2-8 Fractional occupancy of 5 μm beads as a function of incubation time when the   
                  binding site density was varied across three orders of magnitude.  
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Figure 2-9 The variation in captured cytokine density obtained by varying the density of  
                  capture antibodies on the surface of the bead.  
 
2.3.4. An open-well system can be used to profile the dynamic secretion of cytokine 

molecules from individual NK cells.  

Since the end-point experiments confirmed the ability to detect IFN-γ from single 

immune cells upon activation, and the modeling suggested that the beads should work well 

in an open-well system, we next wanted to investigate if dynamic secretion of IFN-γ could 

be detected from individual NK cells upon activation. Human NK cells isolated ex vivo 

were stained and loaded into individual wells of a nanowell array and were incubated in 

R10 containing the mitogenic activators PMA/ionomycin; cytokine secretion was 

quantified by the formation of immuno-sandwiches on beads (Figures 2-10 and 2-11). We 

modified our previously-reported image analysis algorithms to not only enable the 

automated segmentation and tracking of cells but also to facilitate the identification of 

fluorescence intensity on the beads monitoring the secretion of IFN-γ (Liadi et al., 2015). 

Dynamic tracking of the AF488 fluorescence demonstrated that these bead-based sensors 

could report IFN-γ secretion from individual NK cells incubated within the same nanowell 

(Figure 2-12, tSecrete is 90 min. Scale bar = 10 µm). Individual NK cells could be identified 
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as secretors and non-secretors based on simple thresholding, and the fluorescence intensity 

of beads incubated with secretors showed a characteristic sigmoidal response that could 

readily be fit to a standard dose-response curve to identify the characteristic time of 

secretion (tSecrete, Figure 2-13). The best-fitting response curve is overlaid on top of the 

raw data (triangles). The tSecrete (red), Hill slope and MFI ratio are shown. 

 

Figure 2-10 Schematic of immuno-sandwich design for detecting IFN-γ secretion from  
                    single NK cells using nanowell arrays. 
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Figure 2-11 Distribution of functionalized beads and pre-stained NK cells in individual  
                    nanowell.  
 
 

 
 
Figure 2-12 Dynamic tracking of the IFN-γ secretory activity of an NK cell within the same  
                    nanowell. 
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Figure 2-13 Four representative examples of dynamic fluorescence intensity (MFI) of the  
                    beads upon activation of individual NK cells.  
 
2.3.5. CD56dim CD16+ NK cells are immediate secretors of IFN-γ.  

Having established the feasibility of our method to detect both the phenotype and 

the dynamic cytokine secretion profile of individual NK cells, we next sought to define the 

subset of human NK cells that were immediate secretors of IFN-γ upon stimulation. 

Towards this objective, NK cells isolated ex vivo from fresh blood were enriched by 

immunodensity sorting, labeled with antibodies against CD16 and CD56, and loaded onto 

a PDMS nanowell array along with pre-functionalized beads coated with IFN-γ capture 

antibodies as cytokine sensors. Our phenotypic classification of NK cell subsets 

determined by imaging cytometry was consistent with known NK cell subsets determined 

by flow cytometry as previously reported (Figure 2-14) (Poli et al., 2009). Control 

nanowell arrays were set up with stained NK cells and IFN-γ sensor beads, which were 
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imaged dynamically for a period of 6 h to confirm that the CD16 and CD56 antibodies used 

for immunostaining did not enable NK cells activation. 

 

Figure 2-14 Representative phenotypic classification determined by imaging cytometry of  
                    NK cells based on CD16 and CD56 staining. 
 

Immediately subsequent to recording the phenotype of the NK cells, the entire 

nanowell array was immersed in cell culture media R10 containing PMA/ionomycin to 

enable mitogenic stimulation. As anticipated, individual NK cells demonstrated a 

heterogeneous dynamic IFN-γ secretion profile, as reflected by the distributions of tSecrete 

(Figure 2-15). IFN-γ secretion was detected as early as 30 min from a small subset of NK 

cells, and the peak of the distribution of tSecrete for individual IFN-γ secreting NK cells was 

around 50–60 min; this behavior was conserved across at least two separate donors (Figure 

2-15).  
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Figure 2-15 Histograms of tSecrete showed a conserved pattern of distribution across two  
                   different donors. 
 

Comparison of the phenotype of single NK cells that were immediate secretors 

(tSecrete ≤ 180 min) to the entire parent population showed a significant enrichment of the 

CD16+ population (p-value < 0.0001 for donor 1 and p-value = 0.0034 for donor 2, Figure 

2-16, p-value < 0.0001). Since the distribution of tSecrete (Figure 2-17, the distribution is in 

black and the corresponding normal distributions (same mean and standard deviation of 

tSecrete of single-NK cells. Left: donor 1, right: donor 2) suggested the potential existence 

of early secretors subpopulations within the immediate secretors, we defined early 

secretors and late secretors based on the mean of tSecrete (donor 1: 62 min; donor 2: 70 min), 

and further investigated the differences in CD16 and CD56 expression of these two 

subpopulations. There was a trend that early secretors NK cells from both donors tended 

to express a higher level of CD16 on the surface (Figure 2-18. (Left): CD16 expression;  

(right): CD56 expression. Error bar: mean±95% CI. Mann-Whitney test was performed, ns: 

not significant, ***: p-value < 0.001, ****: p-value < 0.0001); while no similar trend was 

found in the comparison of expression of CD56 of early secretors and late secretors (Figure 

2-18). 
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Figure 2-16 In comparison to the parent population, NK cells that were immediate secretors  
                   of IFN-γ were predominantly the CD16+ phenotype. 
 

 
 

Figure 2-17 The distributions of tSecrete of single-NK cells. 
 

 

Figure 2-18 The relative comparison of CD16 or CD56 surface expression of early 
                    secretors and late secretors.  
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To investigate other parameters besides tSecrete, we also compared the total amount 

and the rate of IFN-γ secretion from individual NK cells. Consistent with the tSecrete, NK 

cell populations from a single donor tended to have individual NK cells with heterogeneous 

amounts and rates of secreted IFN-γ. Surprisingly, the donor with the collective population 

of NK cells secreting higher amounts of IFN-γ also had individual NK cells with lower 

rates of IFN-γ secretion (Figure 2-19. Error bar: mean±95% CI. Mann-Whitney test, ns: 

not significant, ***: p-value < 0.001, ****: p-value < 0.0001). Collectively, these results 

suggest that human NK cells isolated from different donors display differences in both the 

rate of IFN-γ secretion, likely reflective of their activation/memory state; and the total 

amount of IFN-γ secreted, likely reflective of the number of preformed granules containing 

the cytokine. 

 

Figure 2-19 The amount of IFN-γ secreted and the relative IFN-γ secretion rate by NK cells  
                   during the six hours period.  
 

Next, the frequencies of IFN-γ secretion in nanowells that contained one, two, or 

three NK cells were quantified to determine whether increasing NK cells density could 

lead to synergistic activation and faster IFN-γ secretion. Not surprisingly, increasing the 

number of NK cells within the nanowell increased the frequency of nanowells with IFN-

γ+ beads (Table 2-2). In order to investigate evidence of cooperation, we utilized the 
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probability of single IFN-γ secreting NK cells upon activation (regardless of tSecrete), based 

on the nanowells containing exactly one NK cell. The experimentally computed 

frequencies for nanowells containing both 2 and 3 NK cells were lower than the 

theoretically computed frequencies, indicating that there was no significant evidence of 

cooperation or synergistic activation (Table 2-2). As the cell density in the nanowell 

increased, frequencies of IFN-γ secreting NK cells also increased as expected; however, 

there was no evidence for significant cooperation or synergistic effect. 

Table 2-2 The frequency of IFN-γ secreting NK cells under various cell density conditions.  

Donor Number of cells 
per well 

Number of 
single beads 

Number of cells 
that were IFN-γ 

positive 

IFN-γ secretion 
frequency 

(experimental) 

IFN- γ secretion 
frequency 
(expected) 

Donor 1 
1 cell 732 246 0.34 0.34 
2 cells 369 159 0.43 0.56 
3 cells 131 71 0.54 0.71 

Donor 2 
1 cell 420 153 0.36 0.36 
2 cells 490 204 0.42 0.59 
3 cells 231 106 0.46 0.74 

 
In summary, these results obtained by tracking the phenotype and dynamic 

secretion of IFN-γ from individual NK cells demonstrated that the NK cells classically 

defined as cytolytic (CD16+) were also immediate secretors of IFN-γ, at least upon 

mitogenic stimulation.  

2.4. Discussion 

We have demonstrated a high-throughput assay for profiling the dynamic secretion 

of cytokines from individual immune cells while preserving high imaging resolution that 

was made possible by the fabrication of thin-bottom (<100 μm) PDMS-based nanowell 

arrays. This single-cell assay uses nanowell arrays for co-incubating cells with 

functionalized beads and thus can be readily integrated with our reported TIMING 
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platforms to enable tracking of the key functional attributes of immune cells including 

phenotype, motility, cytotoxicity, and cytokine secretion; it can also serve as a front-end 

screen for identifying functional attributes that can be interrogated at the molecular level 

using multiplexed transcriptional profiling (Romain et al., 2014; Liadi et al., 2015). 

Although we have demonstrated the application of this method in the context of NK cell 

IFN-γ secretion, the method can be adapted to other immune cells as well as other cell 

types for monitoring combined cellular behaviors, protein secretion, and transcriptional 

profiling. Furthermore, since the multiplexing of beads based on the Luminex platform 

(Elshal and McCoy, 2006; Cao et al., 2015) is extensively documented, it should be 

straightforward to expand the number of analytes secreted by individual cells 

simultaneously.  

PDMS is widely used in microfluidics primarily because it is low-cost, optically 

transparent, biocompatible, and gas permeant. Despite these advantages, one of the major 

drawbacks of PDMS is the non-specific adsorption (NSA) of proteins onto its surface  (Yu, 

Xiao, and Dang, 2015; Dundua, Franzka, and Ulbricht, 2016; Liu et al., 2016). In dynamic 

imaging applications akin to what we have outlined, the NSA of both the secreted proteins 

and the labeled detection antibodies severely impacts both the detection limit and assay 

reliability/reproducibility. PEG, likely because of hydration, behaves as a hydrogel that is 

effective in preventing NSA  (Heyes et al., 2007; Nie et al., 2014; Wong and Ho, 2009). 

We sought to take advantage of this property of PEG by employing a simple protocol that 

enables the rapid modification (20 min) of oxidized PDMS by commercially available 

PLL-g-PEG, in aqueous environments. We demonstrate that this simple step dramatically 

decreases the NSA of antibody-dye conjugates onto the surface of PDMS. Furthermore, 
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since biotin-derivatized PEG (PLL-g-PEG-biotin) is also commercially available, this 

provides an avenue for surface modifying the PDMS to introduce adhesion molecules like 

biotinylated ICAM-1, or antibodies against the natural cytotoxicity receptors (NCRs) or 

CD3 to study lymphocyte activation. We have utilized our platform to profile the 

phenotype of human NK cells that respond quickest to stimulation. Although NK cells have 

been divided into two separate subsets with reciprocal functionalities — CD56dimCD16+ 

associated with cytotoxicity and CD56brightCD16- with cytokine secretion — our data 

(tracking individual cell phenotypes with their ability to secrete IFN-γ) demonstrate that 

the CD16+ NK cells are the early secretors of IFN-γ upon activation. Our results are 

consistent with other correlative studies that have also suggested that the CD56dim 

population might, in fact, be the early cytokine secretors upon activation through natural 

cytotoxicity receptors (NCRs) (Maria et al., 2011). Since it has also been shown that the 

secretion pathway for cytokines, like tumor necrosis factor (TNF) and IFN-γ in NK cells, 

is distinct from the pathway used for the secretion of perforin (Reefman et al., 2010), the 

existence of an elite population of CD16+ NK cells capable of both lytic and rapid cytokine 

secretion fits with the pivotal role of NK cells in innate immunity.  

NK cells also present a clinically appealing avenue for the treatment of tumors. 

Since the activation of NK cells is mediated by a panel of activating and inhibitory 

receptors, they offer clear translational advantages. First, unlike T cells, NK cells do not 

require HLA typing or peptide-epitope presentation. Second, NK cells directly recognize 

and lyse transformed cells either due to missing HLA expression or due to the elevated 

expression of stress ligands (Lanier, 2008). Third, the translation of NK cells as drugs does 

not require a priori identification of tumor-associated antigens (Becker et al., 2016). 
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Additionally, the infusion of NK cells has been proven to be largely safe with no significant 

toxicity concerns (Becker et al., 2016; Rezvani and Rouce, 2015). The biggest 

disadvantage of NK cell therapies, however, has been the disappointing persistence of NK 

cells. With newer methods of expansion ex vivo (Romee et al., 2016; Sakamoto et al., 2015), 

and the ability to propagate cytokine-induced memory NK cells, these cells are poised to 

join the immunotherapeutic arsenal in our fight against cancers. As our work suggests, the 

existence of subpopulations of NK cells that are polyfunctional (CD16+ [cytotoxic] and 

IFN-γ secreting) are likely to be of keen interest in immunotherapy.
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Chapter 3 

T-cell correlates of response to PD-1 blockade treatment in AML 

3.1. Introduction 

Immunotherapy, utilizing the immune system to eliminate cancer cells, has 

revolutionized the landscape of cancer treatment and contributed to a durable, long-lasting 

response in the clinic. Unlike traditional cancer treatment, immunotherapy is based on the 

understanding of how and where the immune system fails to control tumor growth and 

facilitate the reinvigoration of the immune system to attack tumor cells (An and 

Varadarajan, 2018). T cells are considered as the central players in the anti-tumor army 

(Galon and Bruni, 2019). The classical paradigm of T cell activation and development 

depends on the engagement of dual signals: (1) antigen presented by major 

histocompatibility complex (MHC) on antigen-presenting cells (APC) to the T cell receptor 

(TCR), and (2) the interaction between positive regulator molecule (CD80 or CD86) on 

APC and CD28 expressed on T cells. The second signal can be either co-stimulatory or co-

inhibitory signaling receptors that positively or negatively modulate the TCR signaling, 

thus determines the fate of the T cells (Chen and Flies, 2013). This regulatory mechanism 

of T cells usually maintains the immune balance between mounting T cell-mediated 

immune response and attenuating T cell activity; however, the malignantly transformed 

cells can take advantage of this mechanism to escape from immune surveillance by 

presentation of ligand of co-inhibitory receptors or immune checkpoint molecules thus 

providing immunosuppressive environment and attenuation of T cell activity. Physically 

blocking immune checkpoint molecules can prevent the interaction between immune 

checkpoint molecules and their ligands, resulting in suppression of the negative signal of 
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T cells received from cancer cells and initiation of an immune response against tumor cells. 

Immune checkpoint inhibition via monoclonal antibody has been translated to clinical 

setting and demonstrated successful, promising, durable clinical responses as monotherapy 

or combination cancer therapy, and FDA has approved multiple immune checkpoint 

inhibitors for treating in various types of cancers (such as melanoma, non-small-cell lung 

cancer, renal cell carcinoma, and bladder cancer) (Topalian, Drake, and Pardoll, 2015; 

Sharpe and Pauken, 2018; Wei, Duffy, and Allison, 2018). 

The programmed cell death protein-1(PD-1)-PD-1 ligand (PD-L1)-axis is one of 

the dominant immune checkpoint pathways associated with the tumor microenvironment 

(Topalian et al., 2016). PD-1 (encoded by PDCD1) is a surface protein expressed on 

multiple cells, including activated and exhausted T cells (Simon and Labarriere, 2017). 

PD-L1 is found on a broad range of cells, including T cells, B cells, dendritic cells, 

macrophages, endothelial cells, and also cancer cells (Sharpe and Pauken, 2018). Upon the 

interaction of PD-1 and PD-L1, tyrosine residue of PD-1 cytoplasm region gets 

phosphorylated and recruits SHP-2 (a protein tyrosine phosphatase, Src homology 2 

domain-containing tyrosine phosphatase 2), which suppresses the TCR signaling via 

dephosphorylation of proximal signaling molecules, eventually attenuating the function of 

T cells and dampening the immune response. Recent studies have indicated that the CD28 

rather TCR might be the preferable target subjected to SHP-2 induced-dephosphorylation 

resulted from PD-1-PD-L1 interaction (Krueger and Rudd, 2017; Mellman et al., 2017), 

and CD28 costimulatory signal was necessary for effective PD-1 blockade therapy in a 

mouse model and lung cancer patients (Kamphorst, Wieland, et al., 2017). Mechanistically, 

the antibody against PD-1 invigorates T cell function and reverse T exhaustion to restore 
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anti-tumor response. Currently, there are five FDA-approved PD-1 or PD-L1 inhibitors for 

the treatment of certain cancer patients (Gong et al., 2018), and a large number of clinical 

trials underway involve anti-PD-1 or anti-PD-L1 drugs (Tang,Jun et al., 2018; Tang,J., 

Shalabi, and Hubbard-Lucey, 2018); nevertheless, only a fraction of cancer patients benefit 

from such treatments (Hellmann, Friedman, and Wolchok, 2016; Singh et al., 2019). Many 

studies focus on the exploration of prognosis or predictive biomarkers to help patient 

stratification, maximize the patient benefit, and help avoid unnecessary toxicity and cost 

to patients (Topalian et al., 2016). Previous studies showed that the PD-L1-expression in 

baseline tumor specimen was associated with response to PD-1 blockade treatment, and 

FDA has approved four immunohistochemistry-based tests for detection of PD-L1 

expressions in solid tumors, such as non-small cell lung cancer (NSCLC) and melanoma 

(Ancevski Hunter, Socinski, and Villaruz, 2018; Garon et al., 2015; Borghaei et al., 2015; 

Larkin et al., 2015; Brahmer et al., 2015), as a guide for patient selection. However, this 

method comes with biological and technical variables (e.g., the intra-tumoral or inter-

tumoral heterogeneity (Phillips et al., 2015), and the difference in protocols (Ancevski 

Hunter, Socinski, and Villaruz, 2018)) which can hinder the accurate evaluation of PD-L1 

expression. It was reported that a fraction of PD-L1 negative patients with squamous-

NSCLC and metastatic melanoma response to the treatment, which suggested PD-L1 

expression in tumor tissue could not serve as a general biomarker regardless of the cancer 

type (Ancevski Hunter, Socinski, and Villaruz, 2018; Motzer et al., 2015; McDermott et 

al., 2016; Ma,Weijie et al., 2016; Gandini, Massi, and Mandalà, 2016; Larkin et al., 2015). 

Other parameters have been investigated as potential predictive and prognostic biomarkers, 

including tumor-related factors (tumor mutational burden (Yarchoan, Hopkins, and Jaffee, 
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2017), neoantigen (Yi et al., 2018), micro-satellite instability of tumor cells (Le et al., 

2015)), and immune system related components, mainly associated to T cell (immune cell 

infiltration (Hamid et al., 2011; Tumeh et al., 2014; Chen et al., 2016; Gide et al., 2019), 

peripheral immune cell frequency (Manjarrez-Orduño et al., 2018; Krieg et al., 2018), 

circulating T cells cytotoxicity (Iwahori et al., 2019), treatment-induced certain subset 

peripheral T cell proliferation (Kim,Kyung Hwan et al., 2019; Kamphorst, Pillai, et al., 

2017), TCR clonality (Hogan et al., 2018; Sade-Feldman et al., 2018), combination of T 

cell proliferation and tumor burden (‘reinvigoration score) (Huang et al., 2017), integration 

of tumor mutation burden and T cell-related genes (Cristescu et al., 2018)), and gut 

microbiome composition (Matson et al., 2018; Gopalakrishnan et al., 2018; Routy et al., 

2018).  

Acute myeloid leukemia (AML) is a type of cancer, which involves the 

uncontrolled growth of myeloid progenitor cells, and is the most common leukemia in 

adults. This aggressive disease is with a higher incidence in elderly patients, who show 

very poor clinical outcomes: less than 10% elder patients (≥ 60 years old) survive more 

than five years since diagnosis (Alibhai et al., 2009; Menzin et al., 2002). Hypomethylating 

agents (HMA) is often used as a frontline treatment for senior AML patients and is also 

considered as one of the potential therapies for relapsed/refractory AML patients (Stahl et 

al., 2018). It was reported that HMA demonstrates dual but antagonistic effects on anti-

tumor response (Daver, Boddu, et al., 2018): (1) increasing the expression of cancer-related 

antigen to improve the immunogenicity of tumor (Goodyear et al., 2010), activation of 

tumor suppressor genes (Bewersdorf, Stahl, and Zeidan, 2019), upregulation of the MHC-

I and co-stimulatory receptors (Chiappinelli et al., 2015; Coral et al., 1999); (2) 
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upregulation of PD-1 on T cells and PD-L1 on tumor cells which promote T cell exhaustion 

(Daver, Boddu, et al., 2018). Thus, not surprisingly, recent data suggested that HMA and 

PD-1 inhibitor have synergistic effects by providing additional stimulation and reverse the 

immune-suppressive environment to T cells (Daver, Boddu, et al., 2018; Bewersdorf, Stahl, 

and Zeidan, 2019). However, only a fraction of patients showed favorable clinical response 

(overall response rate = 33%) (Daver, Garcia-Manero, et al., 2018), which suggests the 

urgent need for predictive biomarkers to stratify the patient before the initiation of the 

treatment. There is no doubt that tumor biopsy is the gold standard to assess the progress 

of the disease and provide a spatial resolution of the tumor microenvironment, nevertheless, 

it is less convenient to acquire tumor biopsy multiple time for the longitudinal study. 

Peripheral blood is a highly accessible biological material allowing repeated sampling and 

long-term follow-up due to its non-invasive property (Quandt et al., 2017; Kamphorst, 

Pillai, et al., 2017; Huang et al., 2019). Although tumor-infiltrating T cells (T cells in bone 

marrow, in the context of AML) can reflect the status of the disease more accurately and 

appropriately, recent studies indicated that circulating T cells might correlate with response 

to checkpoint blockade therapy in solid tumor (Hogan et al., 2018; Huang et al., 2017, 2019; 

Manjarrez-Orduño et al., 2018). Additionally, more evidence indicated that tumor-reacting 

T cells were also found in peripheral blood of melanoma patients even without metastasis, 

suggesting peripheral blood T cell holds the promise to reflect T cells at tumor sites (Gros 

et al., 2016; Cohen et al., 2015; Huang et al., 2017; Baitsch et al., 2011). 

To explore predictive biomarkers and to quantify the impact of treatment-induced 

immune response at both the site of disease and the peripheral compartment, we evaluated 

gene expression profile of 64 AML patient-derived T cell populations (bone marrow and 
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peripheral blood) by RNA-sequencing (RNA-seq) which were collected before the 

initiation of treatment (baseline, T0) and after the first round of treatment (end of cycle one, 

EC1). We hypothesized that the comprehensive profiling gene expression signature of T 

cells would provide insights on the treatment-induced effects on T cells and enable the 

identification of putative biomarkers for immune checkpoint blockade therapy. 

3.2. Methods 

3.1.1. Human subjects statement 

All work outlined in these documents was performed according to protocols 

approved by the Institutional Review Board at the University of Houston and the University 

of Texas M.D. Anderson Cancer Center. 

3.1.2. Clinical trial 

All patients were enrolled in phase II clinical trial (NCT02397720), which was 

designed for older patients (>65 years) with newly diagnosed AML or relapsed/refractory 

AML patients using a combination treatment of 5-azacitidine (AZA) and Nivolumab (anti-

PD-1 monoclonal Ab). Figure 3-1 illustrated the design of this clinical trial and the sample 

collection time. 

 

Figure 3-1 Design of the clinical trial 
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Peripheral blood mononuclear cell (PBMC) and bone marrow aspirate (BMA) 

samples from AML patients were collected, either before the beginning of treatment or 

after the 1st cycle of treatment.   

3.1.3. Cells and antibodies 

The peripheral mononuclear blood (PBMC) and bone marrow aspirate (BMA) from 

patients were collected as previously described (Daver, Garcia-Manero, et al., 2018). 

Briefly, PBMCs or BMAs isolated the blood or bone marrow from patients by density 

centrifugation, washed with PBS+10% fetal bovine serum (FBS), then froze in 

FBS+10%DMSO and stored in the vapor phase of liquid nitrogen.  

All antibodies used were purchased from BioLegend (San Diego, CA): mouse anti-

human CD3-FITC (catalog #: 300306, clone: HIT3a), mouse anti-human CD4-APC 

(catalog #: 317415, clone: OKT4) and mouse anti-human CD8a-PE (catalog #: 301008, 

clone: RPA-T8). 

3.1.4. Fluorescence-activated cell sorting (FACS) 

Thawed cryopreserved PBMC or BMA rapidly at 37 oC till the ice was about 5 mm 

in diameter, then transferred the cells to pre-warmed media (RPMI1640 media 

supplemented with 10% FBS; R10) to wash away cryopreserved reagent. Washed PBMC 

or BMA with 20 ml pre-warmed R10 at 400 × g for 5 min. Re-suspended cells at 1 

million/ml in a T25 flask and kept it in a 37oC incubator with 5% CO2 overnight. On the 

next day, collected cells from T25 flask and pelleted down cells at 400 × g for 5 min. Cells 

were kept on the ice for the following steps. Washed cells pellet with 2 ml ice-cold PBS+2% 

FBS at 4 oC, then re-suspended in 0.5 ml PBS+2% FBS. PBMC or BMA cells were stained 

for T cell surface markers with fluorochrome-labeled antibodies: CD3, CD4 and CD8 (15 



61 
 

uL antibody per 10 million cells), followed by incubation for 20 min at 4 oC in the dark. 

Washed cells with 2 ml PBS+2%FBS twice at 400 x g for 5 min, and re-suspended cell at 

10 million/ml in PBS+2%FBS. Sytox Blue, as the live/dead cell marker, was added at 1 uL 

per 10 million cells. 

All sortings were done at flow cytometry and cellular imaging core facility at the 

University of Texas MD Anderson Cancer Center, on FACSAria Fusion, or FACSAria IIIu. 

Single live (Sytox Blue negative) CD3+CD4+CD8- cells (CD4 T cell) or CD3+CD4-CD8+ 

cells (CD8 T cell) were sorted directly to lysis buffer (100 uL Buffer RA1 and 2 uL TCEP 

from MACHEREY-NAGEL NucleoSpin® RNA XS kit). The targeted number was set as 

100,000 for both CD4 and CD8 populations. 

3.1.5. Total RNA extraction from sorted cells 

The cell lysate was snap-frozen using liquid nitrogen and kept at -80 oC until 

processed. RNA isolation was achieved using the NucleoSpin® RNA XS kit 

(MACHEREY-NAGEL, 740902) (Mahendra et al., 2019). Briefly, chaotropic ions and 

RNase-inhibitor containing lysis buffer lysed cells, inactivated RNases, and adjusted 

condition for silica membrane-based RNA binding. The membrane-bound DNA was 

removed by on membrane DNase treatment. Unwanted molecules, such as salt, metabolites, 

and macromolecular cellular components were removed by washing. RNA was eluted in 

RNase-free water. To further eliminate the potential remaining DNA contamination in 

RNA samples, another round of DNase treatment using NucleoSpin® RNA Clean-up XS 

kit (MACHEREY-NAGEL, 740903) was performed, and DNA-free RNA was eluted 

RNase-free water and stored at -80 oC. 
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3.1.6. Quantification and quality assessment of RNA/cDNA 

Agilent 2100 BioAnalyzer with Agilent RNA 6000 Pico chip was used for 

quantification and integrity check of RNA samples. Qubit 2.0 Fluorometer with Qubit 

dsDNA HS assay kit, Agilent 2100 BioAnalyzer with Agilent High Sensitivity kit was 

applied for measurement of concentration of cDNA library and library size distribution 

evaluation. All quality control experiments were performed at UH Seq-N-Edit Core 

(SNEC). 

3.1.7. Preparation of cDNA library 

SMART-Seq® v4 Ultra® Low Input RNA Kit for Sequencing (Takara, 634891) 

was used for cDNA library preparation per manufacturer protocol, and the PCR cycle 

number depends on total RNA quantity (one nanogram of total RNA was used if 

applicable). One nanogram cDNA was used as input for tagmentation and barcoding, using 

Nextera XT DNA Library Preparation Kit (Illumina, FC-131-1096) and Nextera XT Index 

Kit v2 Set A (Illumina, FC-131-2001). The cDNA library was kept at -20 oC.  

3.1.8. RNA-sequencing and gene expression analyses 

75-bp paired-end RNA-sequencing (RNA-seq) was done through Illumina NextSeq 

500 sequencer using a High output flow cell at UH SNEC. RNA-seq data (fastq.gz format) 

of CD4 T cells and CD8 T cells from healthy donors were obtained from GSE74310 

(Corces et al., 2016) and GSE60424 (Linsley et al., 2014). Sequencing data quality was 

checked using FastQC tool (“Babraham Bioinformatics - FastQC A Quality Control Tool 

for High Throughput Sequence Data,” 2019), followed 5’ and 3’ trimming and transcript 

alignment to reference genome using HISAT2 package (Kim,Daehwan, Langmead, and 

Salzberg, 2015). The annotation of the mapped gene was obtained using R package 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE60424
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“GenomicAlignments” and “TxDb.Hsapiens,USCS.hg38,knownGene”. Differentially 

expressed genes (DEGs) were recognized using DEseq2 (Love, Huber, and Anders, 2014), 

and the differential expressed pathways were identified using Gene Set Enrichment 

Analysis (GSEA) software provided by Board Institute (Subramanian et al., 2005; Mootha 

et al., 2003). Pathway enrichment analyses were done in Cytoscape (Shannon et al., 2003) 

using Enrichment Map (Merico et al., 2010; Reimand et al., 2019). 

3.1.9. Deconvolution of bulk RNA-sequencing 

The bulk RNA-seq data of T cells from healthy donors and AML patients were 

processed using kallisto package (Bray et al., 2016) to acquire transcript per million reads 

(TPM). Prebuilt indices (Homo-sapiens.GRCh38.cdna.all.release-94.k31.idx.gz) was 

downloaded from kallisto transcriptome indices sites. The transcripts (ensemble transcript 

ID with version) were converted to gene symbol using the biomaRt package in R (Durinck 

et al., 2005), and for multiple transcripts mapped to the same gene, only the transcript with 

maximum TPM of the same gene was kept. We use bseq-sc packages (Baron et al., 2016) 

to deconvolute bulk RNA-sequencing data to estimate the cell type composition (Newman 

et al., 2015). This method utilized sc-RNA sequencing data to build up a matrix containing 

cell type-specific gene expression as the signature, which will be used as a reference for 

estimation of the subpopulations in bulk RNA-seq samples mathematically. We used 

previously published T cell subset-specific signature from colorectal cancer patient as our 

reference matrix, which including 20 identified T cell subsets (CD4: 12 subsets, CD8: 8 

subsets) (Zhang, Lei et al., 2018). 



64 
 

3.3. Results  

3.3.1. Quality control of sorted CD4 T cells and CD8 T cells 

Stained PBMC or BMA were sorted using the simple strategy indicating by Figure 

3-2. Single live CD3+CD4+CD8- cells (CD4 T cells) or single live CD3+CD4-CD8+ cells 

(CD8 T cells) were collected into lysis buffer for RNA-isolation. 

 
 

Figure 3-2 Density plot and gating strategy of a representative example. 
 

We examined the frequency of T cells (single, live, CD3+ cells), CD4 T cells, CD8 

T cells, and also the ratio of CD4 T cells frequency and CD8 T cells frequency to see if (1) 

there was a conserved pattern in responder or non-responder samples and (2) if the 

treatment led to T-cell frequency changes.  

For both baseline or post-treatment PBMC samples, there was no significant 

difference between the responder and non-responders in terms of the T cell frequency, CD4 

T cells frequency, CD8 T cells frequency and the ratio of CD4 and CD8 (Figures 3-3 and 

3-4. Wilcoxon matched pairs test, n.s.: not significant). Comparison paired baseline and 

post-treatment sample did not show a significantly consistent change in the T cell 
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frequency, CD4 T cells frequency, CD8 T cells frequency and the ratio of CD4 and CD8, 

due to the treatment effect (Figures 3-3 and 3-4).  

 
 

Figure 3-3 Cell frequency change after treatment in PBMC (CD3, CD4). 
 

 

Figure 3-4 Cell frequency change after treatment in PBMC (CD8, CD4/CD8). 
 

For bone marrow T cells, similar trends were observed: (1) no significantly 

difference between the T cells, CD4 T cells, CD8 T cells frequency, and CD4/CD8 cell 

ratio in comparison of responder and non-responder; (2) no consistent and very significant 

change of cell frequency due to the treatment (Figures 3-5 and 3-6. Wilcoxon matched 

pairs test, n.s.: not significant).  
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Figure 3-5 Cell frequency change after treatment in BMA (CD3, CD4). 
 

 

Figure 3-6 Cell frequency change after treatment in BMA (CD8, CD4/CD8). 
 

After sorting, a total of 2000-100,000 CD4 (median cell number 72,000) or CD8 

(median cell number 70,000) T cells from 64 peripheral blood or bone marrow patient-

derived samples were used directly for the cDNA library preparation ex vivo to minimize 

perturbations to transcriptomic profiles of these cells. The cDNA library of 63 samples was 

constructed ex vivo successfully, followed by barcoding, pooling, and sequencing using 

75-bp paired-end, and yield a minimal of 17 million reads per BM T cell library and 2.6 

million reads per PBMC T cell library. Tables 3-1 describes the reads depth of each sample. 
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Table 3-1 RNA-sequencing reads depth of CD4 T cell samples 

Source Response Patient Sampling  
time 

Reads/million 
CD4 CD8 

BM 

NR 

NR_1 T0 17.6 19.7 
NR_1 EC1 19.2 17.9 
NR_2 T0 19.4 20.1 
NR_2 EC1 19.3 20.1 
NR_3 T0 18.9 19.0 
NR_3 EC1 17.7 20.0 
NR_4 T0 19.5 18.7 
NR_4 EC1 22.1 21.5 
NR_5 T0 19.7 22.5 
NR_5 EC1 22.5 22.0 

R 

R_1 T0 19.9 17.7 
R_1 EC1 21.5 22.9 
R_2 T0 23.8 19.1 
R_2 EC1 20.5 22.4 
R_3 T0 19.4 17.2 
R_3 EC1 22.8 21.1 

PBMC 

NR 

NR_1 T0 14.5 5.2 
NR_1 EC1 4.5 7.8 
NR_2 T0 4.9 5.8 
NR_2 EC1 5.0 8.4 
NR_3 T0 4.6 4.6 
NR_3 EC1 5.1 4.5 
NR_4 T0 6.4 6.3 
NR_4 EC1 7.0 6.0 
NR_5 T0 7.8 8.5 
NR_5 EC1 5.8 7.8 

R 

R_1 T0 4.9 5.6 
R_1 EC1 2.6 N/A 
R_2 T0 6.0 6.0 
R_2 EC1 8.1 5.7 
R_3 T0 5.9 6.3 
R_3 EC1 6.6 6.4 

 

We compared the normalized gene counts to confirm the purity of sorted T cells. 

The majority of sorted CD4 T cells from PBMC or BMA (Figure 3-7) were 
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CD3+CD4+CD8- cells, and the majority of sorted CD8 T cells from PBMC or BMA 

(Figure 3-8) were CD3+CD4-CD8+ cells. These results suggested that our sorting strategy 

worked as expected.  

 
 

Figure 3-7 Quality control of RNA sequencing (CD4). 
 

 
 

Figure 3-8 Quality control of RNA sequencing (CD8). 
 
3.3.2. AML circulating T cells were more activated and differentiated compared to 

healthy donor peripheral blood T cells 

First, we explored the difference between peripheral T cells from healthy donors 

and AML patients to see if the circulating AML T cells were more activated and exhausted 

due to the potential long-term exposure to tumor cells. RNA-seq data of healthy donor (HD) 
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circulating T cells were obtained from previously published studies (Corces et al., 2016; 

Linsley et al., 2014). Table 3-2 depicts the T cells information from healthy donors.  

Table 3-2 Information on healthy donor T cells (peripheral) 

Donor Donor Sex Age Reads/million 

CD4 CD8 

HD_A 

HD_1 Female 32 15.8 13.4 
HD_2 Female 29 25.4 18.2 
HD_3 Female 22 21.3 17.8 
HD_4 Female 30 19.1 21.0 

HD_B 

HD_5 Male 28 22.8 18.0 
HD_6 Female 53 36.2 33.5 
HD_7 Female 27 65.6 60.3 
HD_8 Male 28 25.6 21.8 

 
All the samples involving the downstream analyses are summarized as Figure 3-9. 

In this work, we profiled CD4 T cells and CD8 T cells in PBMC and BMA samples from 

four responder patients (R) and four non-responder (NR) patients. Although there might be 

multiple cycles of treatments, we only included samples collected at two of early time 

points: before the initiation of the treatment (baseline, T0), and after the first round of 

treatment (end of cycle one, EC1),  because we would like to focus on the early-stage 

predictive marker. The cDNA libraries were constructed successfully for 63 out of 64 

samples (one PBMC CD8 T cell sample from a responder at the end of cycle one was failed, 

Table 3-1 and Figure 3-9). Considering the functional differences, CD4 T cells and CD8 

T cells were analyzed separately. 
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Figure 3-9 Samples used in the RNA-sequencing analyses 
 

To get a better sense of the high-dimensional RNA-seq data, we implemented 

principal component analysis (PCA), a statistical method to reduce the dimensionality by 

transform potentially correlated variables into a smaller set of uncorrelated principal 

components and maintain the majority of variance information from the original dataset. 

We used using DEGs (Table 3-3) as the input of PCA to plot the differential gene profiles 

for each comparison. In the PCA plots (Figure 3-10), each dot stands for a T cell sample: 

the T cells from HD were labeled in green, T cells from NR were labeled in red, and T cells 

from R were labeled in blue. As expected, all AML T cells populations (red and blue) 

clustered away from peripheral blood T cells from healthy donors. We observed two 

separate clusters of HD T cells; this might because two cohorts (HD_A and HD_B) were 

independent, and the sample processing protocol was not the same. The distance on the 

PCA plot indicates the similarity of gene expression profiles of samples. As shown in the 
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PCA plot (Figure 3-10), the gene expression profile of AML T cells was more similar, no 

matter for CD4 or CD8 T cells, compared to any of the HD T cell clusters; thus we included 

both HD cohorts for the further analyses to avoid bias.  

Table 3-3 DEGs list (T cells from AML against T cells from healthy donors). 
T cells  

(FDR =0.05) AML PBMC against HD PBMC 

Subset CD4 CD8 
DEGs 9054 8707 

 

 
 

Figure 3-10 PCA plot for AML PBMC T cells and HD PBMC T cells. 
 

 To discover what might cause the separation, we performed the pathway 

enrichment analysis using established gene sets (c7 curated gene sets) related to T cells 

phenotype and functions (Figures 3-11 and 3-12), and we plotted the enrichment pathway 

using the Enrichment Map application in Cytoscape using a cutoff q-value = 0.10. Nodes 

(circles colored red or blue) represent pathways, and the edges (red or blue connecting lines) 

represents the overlapping gene among pathways. The size of nodes represents the number 

of genes enriched within the pathway, and the thickness of edges represents the number of 

the overlapping gene. The shades of the color indicated the normalized enrichment score 
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(NES) from GSEA result, and the higher the NES/darker the color was, the more 

enrichment of the pathway was observed. Red/blue indicated pathways were enriched in 

the AML PBMC/HD PBMC. AML T cells were more differentiated and more active 

compared to the healthy donor T cell while HD T cells displayed more naïve-like 

phenotype, for both CD4 T cells and CD8 T cells.  

 
 
Figure 3-11 The GSEA-derived enriched c7 curated pathways of enriched by PBMC CD4  
                    T cells were plotted using the enrichment map application in Cytoscape. 
 

 
 
Figure 3-12 The GSEA-derived enriched c7 curated pathways of enriched by PBMC CD8  
                    T cells were plotted using the enrichment map application in Cytoscape. 
 

The GSEA results of the comparison of AML peripheral T cells and HD peripheral 

T cells suggested the transcriptomic profile difference might due to the phenotype and 
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differentiated status of the T cells. Thus we deconvoluted T cell subset composition from 

the bulk RNA-seq data using benchmark gene derived from scRNA-sequencing results 

mentioned earlier. Not surprisingly, CD4 T cells from HD had a higher percentage of naïve 

T cells and a lower percentage of differentiated subsets (TCM: central memory T cell, TH1: 

type 1 T helper cell, and Treg: regulatory T cell), comparing to PBMC  CD4 T cells from 

AML patients (Figure 3-13. Mann-Whitney test. ****: p-value ≤ 0.0001, ***: p-value ≤ 

0.001, **: p-value ≤ 0.01). Previous studies showed that the frequency of Treg in CD4 T 

cells from AML patient peripheral blood were higher than the healthy donor (Wang, 

Xingbing et al., 2005; Williams et al., 2018; Shenghui et al., 2011; Szczepanski et al., 2009). 

We found a similar trend for CD8 T cells as well: HD CD8 T cells contained more naïve 

phenotype but less effector (TEFF) and exhausted (Tex) phenotypes (Figure 3-14, Mann-

Whitney test. ****: p-value ≤ 0.0001, ***: p-value ≤ 0.001, **: p-value ≤ 0.01.).  

 
 

Figure 3-13 Cell subset composition of peripheral CD4 T cells. 
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Figure 3-14 Cell subset composition of peripheral CD8 T cells. 

 
Collectively, our pathway enrichment analysis and T cell phenotype composition 

data consistently revealed that T cells from AML patients were more active and 

differentiated compared to HD PBMC T cells, in line with the previous study, suggesting 

the pre-existing immune response of peripheral T cells towards to tumor cell (Dieu,Le et 

al., 2009).   

3.3.3. BM marrow CD8 T cells might contain more TEFF compared to peripheral T 

cells in pre-treatment samples 

We compared the gene expression profile of AML T cells from PBMC or BM 

compartments and found little DEGs between two groups (BM vs. PBMC, CD4 or CD8, 

T0 or EC1; DEGs <5, FDR < 0.25). The GSEA-derived analysis results indicated that the 

CD8 T cells from BM were more activated/differentiated compared to the cells in the 

PBMC compartment before the start of treatment (Kaech et al., 2002) (Figure 3-15: 

enrichment pathways cluster, cutoff q-value = 0.10).   
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Figure 3-15 The GSEA-derived enriched c7 curated pathways of enriched by CD8 T cells  
                    from PBMC and BM were plotted using the enrichment map application in  
                    Cytoscape. 
 

Then we examined the T cell composition from the deconvolution result and found 

for CD8 T cells sampled at baseline and found that the BM compartment might have a 

higher percentage of Tex compared to PBMC CD8 T cells regardless of the clinical response 

(Figure 3-16, Mann-Whitney test. N.s.: not significant, p-value > 0.05).  

 
Figure 3-16 Fraction of Tex subset in CD8 T cells from PBMC and BM of AML patients  
                    at different time points.  
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3.3.4. PBMC CD8 T cells showed treatment-induced activation and proliferation 

after one cycle of treatment 

To investigate the treatment effect on T cells, we compared the gene expression 

profile of T cells (PBMC CD4, PBMC CD8, BM CD4, and BM CD8) collected before the 

treatment and after the first cycle of treatment. The DEG analysis only yielded with few 

genes, indicating the possible changes in the individual genes were not able to resolve the 

difference due to the treatment. Figure 3-17 represented one of the enriched pathways 

(Agarwal et al., 2009) in the post-treatment PBMC CD8 sample, comparing the pre-ranked 

gene list of gene signatures of the baseline against after one cycle of treatment, which 

suggested treatment-induced activation of circulating CD8 T cells.  

 

Figure 3-17 GSEA enrichment plot derived from the pre-ranked gene list comparing 
                     PBMC CD8 T cells collected at the baseline and after one cycle of treatment. 
 

Considering the integration of the subtle gene expression change from a set of genes 

rather than individual genes, GSEA facilitated the discovery of systematic and subtle 

changes. Our GSEA result implied the noticeable treatment-induced 

activation/differentiation/proliferation of PBMC CD8 T cells, regardless of the patients’ 

response to the treatment (Figures 3-18, 3-19, cutoff q-value = 0.10). 
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Figure 3-18 The GSEA-derived enriched c7 curated pathways of enriched by CD8 T cells  
                    from PBMC collected at baseline were plotted using the enrichment map                     
                    application in Cytoscape. 

 

 
 

Figure 3-19 The GSEA-derived enriched c2 curated pathways of enriched by CD8 T cells  
                    from PBMC collected at baseline were plotted using the enrichment map  
                    application in Cytoscape. 
 
3.3.5. Exhausted CD8 T cells frequency in PBMC and BM is a potential actionable 

biomarker of favorable clinical outcome to PD-1 inhibitor treatment 

To explore the potential biomarker to predict the response to the treatment, we 

compare CD8 T cells from R and NR at the different time point (T0, EC1) and from 

different compartments (PBMC, BM). The number of DEGs indicated that the difference 
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of gene expression profile existed between T cells from R and NR (Table 3-4), and the 

PCA plots showed clear separation of T cell cluster from R and NR (Figure 3-20), 

indicating the distinct transcriptomic expression pattern between T cells of responder and 

non-responder. 

Table 3-4 DEGs list (T cells from NR against R).  
T cells (FDR = 0.25) PBMC BM 

Sampling time T0 EC1 T0 EC1 
DEGs 1655 14 32 7 

 

 

 
 
Figure 3-20 The PCA plots demonstrated identified DEGs from CD8 T cells were able to  
                    resolve two distinct populations. 
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The enriched pathway analysis result showed that before the initiation of the 

therapy, PBMC CD8 T cells from NR tended to be more PD-1hi CD8 T cells-like phenotype, 

while circulating CD8 T cells from R were more similar to naïve CD8 T cells (Duraiswamy 

et al., 2011) (Figure 3-21).  

 

 
Figure 3-21 GSEA enrichment plot derived from the pre-ranked gene list comparing     
                    PBMC CD8 T cells from NR and R collected before the treatment. 
 

We further inspected the relative abundance of exhausted CD8 T cells (TEFF) to the 

functional CD8 T cells (Tex) of circulating T cells and bone marrow T cells. CD8 T cells 

from non-responders showed a higher ratio of effector-like/exhausted-like CD8 T cells 

(Figures 3-22, 3-23. Paired sample: Wilcoxon matched pairs test; unpaired sample: Mann-

Whitney test. N.s.: not significant, p-value < 0.05). This finding suggested the relative 

abundance of effector and exhausted CD8 T cells (plasticity) could serve as subpopulations 

relevant for clinical response and patient stratification of PD-1 blockade therapy. 
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Figure 3-22 PBMC of NR has a higher ratio of Tex/TEFF in comparison to R. 

 

 
Figure 3-23 BM of NR has a higher ratio of Tex/TEFF in comparison to R. 

 
3.4. Discussion and future direction 

3.4.1. Discussion 

In this work, we leveraged RNA-sequencing on patients’ CD4 and CD8 T cells 

from blood and bone marrow to understand the biological process changes induced by 

HMA-PD-1 inhibitor treatment and explore the potential predictive biomarker to clinical 

outcome. By comparing the gene expression profile of peripheral CD4 and CD8 T cells 
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from AML patients against to circulating T cells from healthy donors, it was not surprising 

to observe that the gene expression patterns of T cells from patients were different from 

healthy control, indicating by the DEGs number and the PCA plots (Dieu, Le et al., 2009). 

The pathway enrichment analysis revealed that the T cells from HD were more naïve-like 

and less activated/differentiated, and this finding was in line with our deconvolution data, 

which suggested that AML peripheral T cells had a significantly higher percentage of CD4 

TCM, TH1, Treg, CD8 TEFF and CD8 Tex, compared to healthy controls (Knaus et al., 2018). 

A recent study showed that peripheral T cells from new-diagnosed AML patients contained 

an increased percentage of terminated differentiated effector CD8 cells and a lower 

percentage of naïve CD8 T cells (Knaus et al., 2018). A limitation of this study is the size 

of the patient and healthy donor cohort (no age-matched elder healthy donor), and the 

findings should be tested on a larger cohort in the future. 

Then we compared the patients T cells from peripheral blood and bone marrow, 

and our results indicated that the bulk gene expression profile of T cells from peripheral 

blood and bone marrow were not very different to each other, applicable for both CD4 and 

CD8 compartments. However, the pathway enrichment analysis of bulk RNA-sequencing 

data implied that for BM CD8 T cells were more activated than PBMC CD8 T cells. The 

deconvolution data revealed that the BM CD8 T cells might have a higher fraction of CD8 

Tex subpopulation compared to PBMC compartment. Before the start of treatment, bone 

marrow T cells seems like to be with more differentiated/activated that might be due to 

they were in closer proximity to malignant cells and exposed to chronic, long-term antigen 

stimulation, likely indicating an ongoing immune response against AML.  
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However, we did not find that this difference between bone marrow and circulating 

CD8 T cells was conserved after the one round of treatment, and we speculated the 

underlying reason might be that PBMC CD8 T became activated after the treatment, 

leading to less difference compared with already activated BM CD8 T cells. In order to test 

our hypothesis, we further examined the gene expression changes of PBMC CD8 T cells, 

and the pathway enrichment analysis indicated that PBMC CD8 T cells displayed a more 

activated phenotype, including the higher degree of differentiation, cell proliferation, and 

more active metabolism after one round of treatment. This result was consistent with the 

previous study, which showed that the proliferation of PBMC CD8 T cells was noticeable 

as early as seven days or three weeks in circulating CD8 T cells after the initiation of the 

anti-PD-1 treatment in solid cancers (Kamphorst, Pillai, et al., 2017; Huang et al., 2017, 

2019; Kim,Kyung Hwan et al., 2019). Collectively, although the BM CD8 T cells 

suggested more differentiated and activated phenotype than paired peripheral CD8 T cells 

at baseline, this difference was not apparent at EC1, which indicated activation of PBMC 

CD8 T cells induced by treatment might be more profound than BM T cells at the end of 

cycle one. Inspired by the previous melanoma study (Huang et al., 2019), we cannot 

exclude the possibility that the treatment could induced gene expression profile change of 

bone marrow T cells, but the change might happen early and rapid and faded away when 

the samples were collected at the end of cycle one. Unlike the relatively more durable 

systematic T cell activation of circulating T cells, the treatment-induced immune response 

at bone marrow was transient and less sustainable.  

Lastly, we found the upregulated or downregulated genes between T cells from 

responders and non-responders were able to clearly distinguish two groups, cell collected 
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at baseline or after one cycle of treatment. Our GSEA analysis revealed that at the pre-

therapy stage, the gene expression pattern of circulating CD8 T cells from non-responders 

was more close to the PD-1hi CD8 T cells than to naïve phenotype. Further investigation is 

required for a comprehensive understanding of the PD-1hi CD8 T cells, especially how to 

distinguish PD-1+ activated or PD-1+ exhausted T-cell subsets, which may requires 

including co-expressing markers for more accurate subset definition. It was reported that 

the relative abundance of CTLAhiPD-1hi CD8+ TILs from melanoma patient was associated 

with PD-1 inhibitor therapy (Daud et al., 2016) and the relative abundance of PD-1 

expression on T cells was associated with the response to PD-1 blockade therapy. However, 

the PD-1 expression level should be lower than a certain threshold, or in other words, the 

T cells were partially exhausted and could be restored (Singh et al., 2019). The Tex 

phenotype we defined here might be different from the phenotype characterized by the 

previous study (Zhang, Lei et al., 2018). The deconvolution of T cell subset distribution 

results indicated that the non-responders seemed to have a high ratio of TEFF/Tex compared 

to the responders CD8 Tex cells, no matter circulating T cells or bone marrow T cells, 

indicating the relative abundance of two phenotypes could serve as sub-populations 

relevant for patient stratification, predicting the favorable clinical outcome of HMA-PD-1 

combination therapy in AML patients. The bone marrow T cell will be the more accurate 

reflection of the interplay between the immune system and leukemia cells, but peripheral 

blood is more accessible material compared to the bone marrow aspirate. The peripheral 

blood-based biomarker is preferable, and further verification is required to validate if 

circulating Tex or Tex/TEFF can be reflective of the tumor-resident Tex cells without loss of 

prediction power.  
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Collectively, the analyses of RNA-seq of CD8 T cells from AML patients on the 

azacytidine with nivolumab trial revealed that (1) the PD-1 blockade-based treatment-

induced gene expression profiling changes (increased cell proliferation and metabolism) of 

CD8 T cells are detectable as early as the end of cycle one in the peripheral blood; (2) 

specific subpopulations of plastic CD8 T cells (relative abundance of TEFF and Tex) 

identified may have the potential to serve as an actionable biomarker to select AML 

patients most likely to benefit from such immune checkpoint therapies. These findings need 

to be confirmed in larger studies, planned or currently being conducted, with αPD-1 based 

therapies in AML. 

3.4.2. Future direction 

RNA-sequencing is a useful tool to for exploratory study at gene-level, and 

independently test should be performed to validate the findings. Since our findings were 

mainly focusing on the proliferation and difference in  the subset distribution of CD8 T 

cells, we want to validate: (1) if the treatment-induced proliferation of circulating CD8 T 

cells is detectable after one cycle of treatment in AML patients who underwent anti-PD-1-

based treatment; (2) if TEFF/Tex CD8 ratio difference between responders and non-

responders are consistent with the independent assay, also if this parameter can be an 

actionable marker to predict the patient response towards to this HMA-PD-1 combination 

immunotherapy at the protein level.  

Based on the questions we would like to study, we plan to study a list of protein 

markers related to cell proliferation (Ki-67) and T-cell phenotype and differentiation status 

of T cells (Table 3-5). 

  



85 
 

Table 3-5 Candidate markers to define the Tex CD8 T cells (CD3+CD8+ cells) 
Phenotype Protein Gene Description 

Tex 

PD-1 PDCD1 Co-inhibitory molecule (Chen, Lieping and 
Flies, 2013) 

TIM-3 HAVCR2 Co-inhibitory molecule (Chen,Lieping and 
Flies, 2013) 

CTLA4 CTLA4 Co-inhibitory molecule (Chen,Lieping and 
Flies, 2013) 

Granzyme B GZMB Secreted protein involving in T cell 
cytotoxicity (Barry and Bleackley, 2018) 

Interferon-
gamma IFNG Cytokine involving in anti-cancer response 

(Zaidi and Merlino, 2011) 

CCL4 CCL4 Chemokine involving in inflammation 
process (Mortarini et al., 2003) 

CXCL13 CXCL13 Chemokine, recruiting immune cells 
(Mertz et al., 2018) 

CXCR6 CXCR6 Chemokine receptor, upregulated on 
activated T cells (Sato et al., 2005) 

TEFF 

CX3CR1 CX3CR1 Chemokine receptor (Yan et al., 2018; Imai 
et al., 1997) 

KLRG1 KLRG1 Co-inhibitory receptor (Henson and Akbar, 
2009) 

Granzyme H GZMH Immune effector protein, serine proteases 
(Chowdhury and Lieberman, 2008) 

Perforin PRF1 
Responsible for pore formation in cell 
membranes of target cells (Osińska, Popko, 
and Demkow, 2014) 

T-bet TBX21 Transcription factor controls T-cell 
differentiation (Huang et al., 2017)  

Granulysin GNLY Antimicrobial protein (Zheng et al., 2017) 

Granzyme M GZMM Immune effector protein, serine proteases 
(Chowdhury and Lieberman, 2008) 

Eomesodermin EOMES Transcription factor controls T-cell 
differentiation (Huang et al., 2017) 

 

Ki-67 protein is an intracellular protein maker associated with cell proliferation, 

and Ki-67 staining has been applied in previous studies to evaluate T cell proliferation upon 

treatment-induced activation (Huang et al., 2017; Kim, Kyung Hwan et al., 2019). Since 

the definition of CD8 TEFF and Tex cells was obtained from scRNA-seq data (Zhang,Lei et 

al., 2018) at transcript-level, which includes more than several hundreds of genes as cell-
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type-specific gene signature, we propose to validate our finding using flow cytometry or 

mass cytometry (which allows higher multiplexity of detection protein at single-cell level) 

on a small set of highly-upregulated gene/protein in this phenotype for the sake of 

convenience. Although mass cytometry (CyTOF) enables high-dimensional 

characterization of targeted protein simultaneously with a single-cell resolution, the flow 

cytometry may be more advantageous: it can provide higher throughput capability and 

better cost-effective than mass cytometry, and it has been widely used in the clinical setting 

for decades as a more mature technology.  

Furthermore, we hypothesize that TEFF/Tex can be a candidate biomarker to predict 

the clinical outcome, and there is redundancy of these candidate markers to define the TEFF 

and Tex phenotypes; thus it is possible to shrink the number of required protein markers for 

prediction while also maintain the predictive power.  

Apart from phenotype and transcriptomic profiling, the TCR clonality and diversity 

is another crucial factor that should be considered for a comprehensive study of T cells 

anti-tumor effect. Previously published data suggested that PD-1 blockade might induce 

decreasing TCR clonality of tumor-infiltrating T cells from responders, which indicated 

the possible selective propagation of tumor-specific T cells after reinvigoration by PD-1 

inhibitor (Cloughesy et al., 2019; Tumeh et al., 2014). A separate study demonstrated that 

lack of TCR diversity in peripheral blood T cells correlated to a better response in 

melanoma patients treated with anti-PD-1 (Hogan et al., 2018). The reason for the 

responder had lower TCR diversity might be that only a restricted number of TCRs 

contributed to the anti-tumor response (Hogan et al., 2018; Manne et al., 2002; Willhauck 

et al., 2003). Profiling of TCR repertoire of T cells from tumor site or peripheral blood can 
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provide insights on T cell developmental trajectories and migratory behaviors (Zhang, Lei 

et al., 2018). Harmonizing multifaceted characterizations of T cells will yield a more 

accurate assessment of T cell landscape in cancer patients.  

Given the modest success of potential predictive and prognostic biomarkers have 

been proposed, a combination of multiple perspectives of immune system-tumor interplay 

may be helpful for improved predictive profiles (Singh et al., 2019). The interplay between 

the T cells or the immune system and tumor cells is complicated, and the study of tumor 

cells is a necessary part of drawing a comprehensive picture of the tumor 

microenvironment (Nishino et al., 2017). The immune checkpoint blockade therapy also 

strongly relies on how suppressive the tumor microenvironment is (Galon and Bruni, 2019). 

Except for PD-1, overexpression of other immune checkpoint molecules such as T cell 

immunoglobulin and mucin domain-3 (TIM-3), Cytotoxic T lymphocyte antigen-4 

(CTLA-4), and Lymphocyte-activation gene 3 (LAG-3), also facilitate the tumor escape 

from immune surveillance (Blank et al., 2016; Anderson, Joller, and Kuchroo, 2016). The 

unfavorable clinical outcome may be overcome by combination therapy rather than 

monotherapy (Wei, Spencer C. et al., 2017; Sharma and Allison, 2015b). A previous 

preclinical study suggested the combination of PD-1/PD-L1 and TIM-3/galectin-9 

blockade showed synergistic anti-tumor effects compared to individual blockade in AML 

mouse model (Zhou,Qing et al., 2011). The immunosuppression may also result from the 

genetic alteration in tumor cells to overexpression multiple oncogenic signaling pathways, 

eventually, lead to suppression T cells recruitment to the TME (Spranger, Bao, and 

Gajewski, 2015; Kato et al., 2017) and dysfunction of T cells and failure in tumor growth 

control (Thommen and Schumacher, 2018). Tumor mutational burden (Zhao et al., 2019; 
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Le et al., 2015; Rizvi et al., 2015), immunosuppressive molecule expression (e.g., PD-L1 

(Topalian et al., 2012)), neoantigen burden (McGranahan et al., 2016), and the ratio of T-

cell reinvigoration and tumor burden (Huang et al., 2017) were showed that have an impact 

on the performance of immune-modulating drugs.  
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