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ABSTRACT

Genotypes, phenotypes, and fitness are the ultimate determinants of evolution.

The relationship between these three components is collectively referred to as the

fitness landscape. Evolutionary biologists have been working to understand the

mechanisms and processes governing the fitness landscape since the early 20th

century. However, it has proved difficult to unravel due to the tremendous com-

binatorics of genotypes, and the complex relationships between all components of

the landscape. Here I study evolution on the fitness landscape through a combina-

tion of modeling and experiments. I identify a paradox within Fisher’s Geometric

Model of Adaptation, and relax the model’s assumptions in an effort to solve this

problem. I find that restricting the level of pleiotropy and restricting the number of

maladapted traits simultaneously solves the paradox, and maintains fits to other

experimental data. To complement this modeling, I spend the second two results

chapters discussing experimental results. I focus on a case study of genetic diver-

gence in the E. coli lac operon repressor (lacI), and aim to understand the under-

lying processes and mechanisms that cause divergence. Divergence at this site is

due to the historical contingency of mutation fitness effect on epistatic interactions

with other substitutions. I then examine the underlying mechanism of change in

lacI mutation fitness effects. I find that the cost of lac expression has decreased

in evolved strains, due to an increase in translational capacity. The major benefit

of lacI mutations is rendered obsolete, by other mutations that provide a similar

growth benefit, and they do not fix.
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Chapter 1

Evolution on the Fitness Landscape

1.1 The Genotype-Phenotype-Fitness Map

The genotype-phenotype-fitness (g-p-f) map is a key determinant of evolution [68,

188,199,234]. For example, the complex relationship between genotype and pheno-

type has constrained evolution of the vertebrate glucocorticoid receptor specificity

over the past 40 million years [37]. Evolutionary biologists aim to understand

the evolutionary causes and consequences of the g-p-f map [68, 172, 232, 312]. It

plays a role in many theories of evolution, from reproductive isolation and speci-

ation [111, 144, 270] to genetic robustness [126, 186] and evolvability [68, 111, 232].

At a fundamental level, the relationship is direct: an organism’s genes contribute

to its phenotypes, and those phenotypes contribute to evolutionary success. How-

ever, as I will discuss, elucidating the g-p-f map has proved to be a complicated

endeavor.

1



Chapter 1. Evolution on the Fitness Landscape

1.1.1 Fitness Landscape Metaphor

Part of what makes the g-p-f map difficult to unravel is its tremendous complexity.

One-hundred genes, each with 2 alleles, represent 2100 (1.3× 1030) possible com-

binations. Each of these combinations maps to a vast array of phenotypes, which

all contribute to fitness (Fig. 1.1). Given the difficulty of capturing the relationship

between all three components simultaneously, evolutionary biologists typically fo-

cus on one aspect of the g-p-f map. Here I break the map down into three distinct

relationships, genotype-fitness, genotype-phenotype, and phenotype-fitness, and

explain each using a brief case study.

FIGURE 1.1: Example of genotype-phenotype-fitness map.The large
matrix represents genotype space, and the smaller phenotype space.
Red lines connect genotypes to the phenotypes they produce. Blue

lines connect phenotypes to fitness values. Redrawn after [286].

Genotype-Fitness. First introduced by Sewall Wright in 1932, the genotype-

fitness landscape is a simple visualization of the high-dimensional genotype-fitness

space [333]. Wright’s iconic figure shows three dimensions: an x-y plane where

genotypes are distributed, and a z dimension that represents fitness. Mutations

2



Chapter 1. Evolution on the Fitness Landscape

move the genotypes on the landscape, and when combined with effective selec-

tion, populations adapt to progressively higher fitness genotypes. Wright hy-

pothesized that the relationship between genes and fitness is very complex, due

to epistasis (see Section 1.5) [333]. Despite its appeal, the relationship between

genotype and fitness proved difficult to test until the development of modern ge-

netic methods. Recently, many local mutation landscapes have been constructed

[1, 36–38, 49, 57, 63, 72, 103, 128, 154, 179, 182, 189, 202, 214, 297, 319, 323]. Indeed, as

Wright suspected, epistasis is common.

Genotype-Phenotype. The relationship between genotype and phenotype can

be even more complex, as it relies on cellular biophysical and biochemical prop-

erties. RNA folding is one case where significant progress has been made to map

genotypes to phenotypes. RNA folding has been extensively studied at the chem-

ical and physical level [58, 97, 290, 293, 296]. This system contains a close link

between genotype and phenotype, as the RNA structure is dictated by thermo-

dynamics. Using the thermodynamic information, computer models can directly

predict the secondary structure of a given nucleotide sequence. One emergent

property from this work is that small movements in genotypic space need not cor-

respond to similarly small movements in phenotypic space [293]. Such biologically

realistic genotype-phenotype maps have great utility for testing evolutionary the-

ory [144].

Phenotype-Fitness. Experiments testing phenotype-fitness relationships often

focus on functional pathways where the relationship between genotype and phe-

notype is known. Perfeito et al. (2014) mapped expression of the lac operon to

3



Chapter 1. Evolution on the Fitness Landscape

fitness effects. The lac operon is well-described and the phenotypes of each gene

in the system have been tested [4,74,137,159,160,212,269,291,327,337]. Using this

metabolic network, they found a nonlinear relationship between fitness and ex-

pression [229]. Because the entire metabolic system is subject to selection as a unit,

the results can be applied to other similar pathways [336]. Models focusing on this

relationship often assume that genotypes contribute additively to phenotypes [99],

in order to isolate the relationship between phenotypes and fitness. They range

from models of specific biological systems [5,302] to more abstract approaches like

Fisher’s Geometric Model of Adaptation [99].

Because populations adapt in complex g-p-f space, fitness landscapes serve as

a useful metaphor to explore my two questions of interest here:

1. What are the underlying biological processes that govern adaptation?

2. To what extent is evolution repeatable, and what are the mechanisms that

cause divergence?

1.2 The Utility of Experimental Evolution

Lineages of natural populations are only one realization of all evolutionary possi-

bilities from an ancestor. Stephen J. Gould famously hypothesized that replaying

the ‘tape of life’ would yield different results, than what actually occurred, due to

the inherent contingency and stochasticity of evolution [124]. Experimental evo-

lution allows us to infer principles of evolution by replaying the tape many times.

The essence of experimental evolution is relatively straightforward. A group of

4



Chapter 1. Evolution on the Fitness Landscape

replicate populations is allowed to evolve in a novel environment for many gen-

erations. The new environment may be changed in any number of ways, however

usually only a small number of variables are altered to keep the experiment as

simple as possible. The new selective conditions reward novel adaptations. After

some number of generations, these evolved populations can be compared to one

another or to the common ancestor (if possible).

The strengths of experimental evolution lies in its replication and control. It

is often used to examine characteristics of mutations, such as spectrum, fitness

effects, and interactions [18, 94, 194]. It also provides a mechanism for studying

genetic and environmental interactions (G× E) [314], social interactions [220], the

evolution of multicellularity [240], and the evolution and persistence of sexual re-

production [8, 118, 130, 152, 227, 249].

Within experimental evolution, there are multiple methodologies that are uti-

lized depending on the question of interest. For those investigators interested in

the role of de novo genetic variation (mutations) in adaptation, long-term evo-

lution experiments with microbes are most common. Escherichia coli and Saccha-

romyces cerevisiae are common choices for such work [120, 154, 174, 240, 338], as

they can be maintained at large populations sizes, have short generations times,

and have extensive genetic manipulation toolkits. Experimental evolution allows

the freedom for evolutionary response across all levels of biological organization.

However, there are some drawbacks to this approach. It is difficult to conduct

experimental evolution outside the laboratory due to the difficulty of control and

5



Chapter 1. Evolution on the Fitness Landscape

replication in nature (but see [104, 242, 243]). Additionally, laboratory environ-

ments lack the complexity of natural environments. This limits the ability to make

robust inferences about environmental effects. Nonetheless, experimental evolu-

tion allows us to "isolate and analyze the adaptive response to specific environ-

mental factors" [110]. In my work, I employ the bacterium Escherichia coli to ad-

dress questions about evolution driven by de novo mutations.

1.3 Mechanisms of Adaptation

“Natural Selection is the only means known to biology by which complex adaptations of

structure to function can be brought about” – R.A. Fisher (1930)

Evolution can be defined as a change in allele frequency across generations.

We say that adaptation has occurred when a population’s “intrinsic rate of natural

increase” [282] improves as a result of changes in allele frequencies. This adap-

tation can be measured through the phenotype of fitness. Fitness is a combina-

tion of many biological components of the life cycle. For example, in bacteria the

three stages of growth: lag phase, exponential phase, stationary phase. In practice,

and in this thesis, fitness is often estimated through "a biological contest between

genotypes" [282]. The ratio of rates of reproduction is an effective measure of fit-

ness difference between two competitors [13, 99, 114, 257]. To further understand

the factors contributing to evolution, it is useful to explore the scenario in which

fitness does not change over time. G.H. Hardy and Wilhelm Weinberg (1908) did

6



Chapter 1. Evolution on the Fitness Landscape

this exactly [129]. Their equilibrium principle, for diploid sexually reproducing or-

ganisms, contains 5 critical assumptions: no mutation, no selection, no gene flow,

random mating, large population size.

Here I study only the case of a single haploid asexual population. As such, the

assumptions about gene flow and random mating are not pertinent to this situa-

tion. In my work (both theory and experiment) I employ population sizes greater

than 105. While genetic drift certainly plays a role, I assume here that 105 is rea-

sonably high to minimize its in these experiments. Remaining are mutation and

selection - the core processes of adaptation. I now describe selection and mutation

in some detail, so as to provide context for my theoretical work on these processes.

1.3.1 Selection

As Darwin first explained in On the Origin of Species, some individuals are more

successful at surviving and reproducing than others – and this success is not ran-

dom with respect to genotype [66]. Natural selection in novel environments is in

involved in various phenomena, from the evolution of drug resistance to the radia-

tion of mammals after the Cretaceous-Paleogene extinction event. One of the most

best studied examples of natural selection is Darwin’s Finches. Fourteen species

of Finches evolved on the Galapagos Islands, all sharing a common ancestor from

Central or South America over 2 million years ago [256]. These species, primarily

characterized by their beak size and shape, diverged due to type of food available

on the different islands [125].

7



Chapter 1. Evolution on the Fitness Landscape

Natural selection acts on both new and existing variation. Here I am interested

in the impact of new variation on evolution, and only further discuss selection on

de novo mutations. Broadly, there are three types of selective forces on phenotypes:

directional, disruptive, and stabilizing.

Directional Selection. The situation in which selection favors one extreme of a

phenotypic distribution such that a population’s phenotypic distribution changes

in a consistent pattern until the peak (or plateau) is reached. An example of direc-

tional selection is laboratory selection in a single sugar medium [257].

Disruptive Selection. The situation in which selection favors two extremes

of a phenotypic distribution, such that the proportion of intermediates decreases.

For example, three-spined Stickleback morphology diverges more in lakes with

balanced amounts of prey-type [32].

Stabilizing Selection. The situation in which selection favors the mean of the

phenotypic distribution, such that the population’s phenotypic variance decreases

over time. A classic example of stabilizing selection is birth weight in humans.

Both high and low birth weights, compared to the mean, are correlated with higher

mortality for both males and females [145].

In many environments there are likely multiple solutions to achieve high fit-

ness [67,162,192]. Depending on where a population is on the fitness landscape, it

may experience different selective pressures. For example, if there are two nearby

fitness peaks the population would experience disruptive selection towards those

two fitness maxima. Alternatively, if the population has reached a local fitness

peak, it would experience stabilizing selection. Directional selection would occur

8



Chapter 1. Evolution on the Fitness Landscape

FIGURE 1.2: Types of Selection. The fitness function across an arbi-
trary phenotype for A) Stabilizing Selection B) Disruptive Selection

C) Directional Selection

if there was only one nearby fitness peak. Here I study the situation in which

organisms are maladapted in a single-niche environment. As such, I model popu-

lations adapting to a single fitness peak under directional selection.

1.3.2 Mutation

In the absence of genetic variation, natural selection will not modify population

phenotypes. Mutations are the ultimate source of all genetic variation. However,

mutation are a rare occurrence, arising on the order of 10−10 to 10−9 per nucleotide

per generation in unicellular eukaryotes and bacteria [184]. Furthermore, there are

restrictions, imposed by the biological system in question, on phenotypes that can

be produced via mutation. As H.J. Muller noted, “the organism cannot be consid-

ered as infinitely plastic . . . as the effects of mutations are, of course, conditioned

by the entire developmental and physiological system resulting from the action of

9
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all other genes already present" [207]. At face value, it may seem that mutations

occur so infrequently and sporadically (at most loci) that mutations are too rare to

have an effect on population fitness.

Darwin explored the effect of phenotypic changes on the evolution of complex

traits in On the Origin of Species [66], with regards to the vertebrate eye. He theo-

rized that such complex adaptations must be due to a series of successive beneficial

changes (mutations) from a simpler ancestral structure. This specific hypothesis is

indeed supported by more recent studies [210, 211]. More broadly, we now know

that mutations are the driving force behind evolution when paired with natural

selection in large populations. There are many efforts to understand the charac-

teristics of mutations [18, 94, 194]. Here I focus on two mutation characteristics

that are particularly important for evolutionary dynamics: fitness effect size and

pleiotropy.

Fitness Effect Size. Fisher proposed that the adaptation of complex structures

(e.g., the vertebrate eye) occurred as a result of movements in multi-dimensional

space. He studied changes in mutation fitness effect size during adaptation [99].

He concluded that adaptation likely proceeds through many very small beneficial

mutations because mutations with smaller effect sizes have a greater probability

of being beneficial in his model. However, Kimura (1983) noticed that Fisher ne-

glected an important factor in this calculation – the fixation probability of ben-

eficial mutations [156]. Each arising mutation has some probability of reaching

a frequency of 100% in the population. For deleterious and neutral mutations,

10



Chapter 1. Evolution on the Fitness Landscape

this probability is very small in large populations, while fixation is driven by ge-

netic drift in small populations. For beneficial mutations, Haldane derived that the

probability of fixation for a beneficial mutation is ∼ 2s (for large population size),

where s is the fitness effect [127]. Kimura showed that mutations of intermediate

size likely contribute most to adaptation, as they strike a balance between high

probability of being beneficial and fixation probability [156]. Orr further extended

this work to show that the effect size of mutations is expected to be exponentially

distributed along successive adaptive mutational steps. That is, the mean size of

a fixed beneficial mutation tends to decrease over time [216]. The fitness effects of

all occurring mutations dictate the distribution of fixed effects studied by Fisher,

Kimura, and Orr. This distribution of fitness effects (DFE, Fig. 1.3) is a key deter-

minant of evolution [19, 20, 51, 87, 93, 94, 233], and a focus of this thesis.

-0.2 -0.1 0 0.1 0.2

Fitness Effect

Fr
eq

ue
nc

y

FIGURE 1.3: Sample Distribution of Fitness Effects (DFE).
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Pleiotropy. This is the phenomenon of a single mutation (or gene) affecting

multiple phenotypes. Pleiotropy is implicated in many fields of biology, includ-

ing evolution [99, 110, 218, 221, 305, 317], development [42, 136], aging [176, 247,

324], and human disease [27, 28, 245]. A mutation to a single gene in humans

causes the disease phenylketonuria (PKU), which has effects across multiple seem-

ingly unrelated phenotypes — mental acuity, hair, and skin pigment. Antagonis-

tic pleiotropy, where a mutation/gene has beneficial effects on some trait(s) and

deleterious effects on other trait(s), is implicated in theories of aging and senes-

cence [326]. For example, genes in the mTOR (mammalian target of rapamycin)

pathway are critical for early development, but also contribute to age-related dis-

eases such as neurodegeneration and cancer [27, 28, 245].

1.4 Models as a Tool to Study Evolutionary Processes

Models play a significant role in the study of evolution. They can be used to de-

velop hypotheses and testable predictions, offer a way to further explore biologi-

cal patterns, and serve as a method to test verbal arguments mathematically [272].

Since the emergence of adaptive landscape theory [99, 333], biologists have em-

ployed models in an attempt to better characterized g-p-f map properties relevant

to underlying principles of adaptive processes (e.g., selection and mutation).

12



Chapter 1. Evolution on the Fitness Landscape

1.4.1 Types of Models

There are many types of adaptive landscape models, which vary in their underly-

ing biological reality. I’ve outlined a few categories below to provide perspective

for my work with Fisher’s Geometric Model of Adaptation (FGM).

Random Field Models. This approach creates fitness landscapes through a

random probabilistic process that assigns fitness values to genotypes [285]. These

models often employ tunable epistasis, which allows one to test the impact of epis-

tasis strength on landscape characteristics. The simplest version of a random field

model is the House-of-Cards (HOC) model, which assigns fitness independently

from a fixed probability distribution [146]. A more sophisticated model is the NK

model, created by Kauffman and Weinberger [147]. In this model, each of L loci

interacts with K other loci, where K can be any value be between 0 and L − 1.

This allows the model to be modified from additive (K = 0) to maximally epistatic

(K = L− 1, i.e., HOC). The identity of a locus’ interaction partners creates varying

genotypic architectures.

Sequence-Structure Maps. These models employ an explicit genotype-phenotype

map, which must be known a priori. Perhaps the most commonly used case is the

RNA secondary structure map. Here the genotype-phenotype map, the secondary

structure of RNA, can be predicted directly from the thermodynamic properties of

base-pairing. These structures are then mapped to a fitness landscape defined by

RNA structure [58, 97, 290, 293, 296]. Similar models can be used for protein struc-

ture [169]. Complex proteins are reduced to a model where each amino acid is a
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vertex of a lattice [175, 335]. This limits the number of potential folding configura-

tions and allows for computationally feasible simulations [62].

Phenotype-Fitness Maps. I use FGM in this work, as it has shown remarkable

fits to complex bacterial evolution data [194, 229, 289]. FGM is based on a contin-

uous multidimensional landscape, much as Wright initially imagined. However

Fisher instead defined this space as phenotypic space, as opposed to genotypic.

Despite its simplicity, with just a few parameters, FGM is a full model of selec-

tion, mutation, pleiotropy and epistatic interactions. An organism is a set of phe-

notypic traits, each represented by an axis in n-dimensional Euclidean space. A

genotype creates a single phenotype, which is a point in this multidimensional

space. Mutations displace phenotypes in this space and selection moves the pop-

ulation closer to the phenotypic optimum. R.A. Fisher made some simplifying

assumptions, about nature of mutation and selection, which have continued to be

used when modeling with FGM. However, these assumptions lead to inconsisten-

cies with empirical data. In this work I modify mutation and selection in FGM to

improve fits with empirical data.

1.4.2 Evolutionary Repeatability and Historical Contingency

Evolution proceeds through a combination of deterministic (selection) and stochas-

tic (mutation) processes. This tension between genotypic and phenotypic evolu-

tionary repeatability underlies some of the debate regarding whether evolution is

predictable. Stephen J. Gould argued that evolution is dominated by specific con-

tingencies, such that replaying the ‘tape of life’ would result in a different world
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FIGURE 1.4: Fisher’s Geometric Model with 2 Dimensions. The 2-
D landscape is depicted underneath, with concentric circles showing
fitness decline as distance from the optimum increases. Fitness can be
visualized a mountain with the peak at the phenotypic optimum. On

top, warmer colors indicate higher fitness.

than that which exists today [124]. He used the Burgess Shale, a rich deposit of

fossils from the Cambrian explosion 500 million years ago, as an example. De-

spite the tremendous diversity of animal phyla evident in the Burgess Shale fossil

record, very few of those species left modern descendants. Gould hypothesized

that the evolutionary fate of populations is contingent on chance historical oc-

currences (e.g., environmental changes, rare mutations). Simon Conway Morris
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disputed Gould’s claim, suggesting that environmental pressures (natural selec-

tion) would cause populations to converge to the same (or few) outcome(s) each

time [203]. An example of this is thylacine, or Tasmanian wolf, which was morpho-

logically and behaviorally similar to the ancestral North American wolf, despite

no recent shared ancestry. Morris’ hypothesis requires historical contingency to be

minimal, such that evolution will arrive at similar phenotypic outcomes, even if by

different genetic paths. Testing these hypotheses is not possible on the scale that

Morris and Gould considered, however experimental evolution in the laboratory

allow us to test these hypotheses.

1.4.3 Evidence for Historical Contingency

Evidence for historical contingency has been found across multiple organisms and

time scales. Bedhomme et al. (2013) evolved 60 lineages of Tobacco etch potyvirus,

each with a different evolutionary history, to the host Nicotiana tabacum for 15

rounds of transfer. They found that the different evolutionary history had a strong

influence on evolved genotype. In a similar experiment, Dickinson et al. (2013)

evolved T7 RNA polymerase genes to different environments for 200 generations,

then evolved all genes in a common environment. Initial adaptation to alternate

environments created strong contingencies during adaptation to the common en-

vironment. This path dependence, at the protein level, resulted in unique phe-

notypic outcomes [78]. In an experiment with E. coli, only 1/12 replicate popula-

tions evolved the ability to utilize citrate after 31, 500 generations [31]. Blount et

al. (2008) found that a prior mutation, of marginal benefit, was required for the
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subsequent citrate metabolism mutation to be beneficial [30, 239]. Bridgham et al.

(2009) tested for contingency in the ancestral protein of the vertebrate glucocorti-

coid receptor [37]. The ancestral receptor is five, specificity-optimizing, steps away

from the evolved protein. They reverted the substitutions and tested the effect on

protein and fitness. Reverting any single substitution to its ancestral state yields

a non-functional protein because each substitution is contingent on prior adapta-

tions for its benefit [37].

1.4.4 Long-Term Evolution

Bacterial long-term evolution (LTE) has proven particularly useful to test the hy-

potheses of Gould and Morris. Bacteria have long been used to study the evolu-

tionary processes of mutation and selection [7, 183]. Large population sizes and

short generation times allow experimenters to observe adaptation over just a few

months (hundreds) or years (thousands) of generations. Furthermore, bacteria can

be stored in a non-evolving state and revived. This allows experimenters to ‘travel

back in time’ to conduct experiments with population samples from different time

steps in evolution.

Bacterial long-term evolution experiments typically consist of replicate popu-

lations that are founded from a common ancestral clone and propagated for many

generations in a laboratory environment. The common ancestor ensures that all

replicate populations begin from the same genotypic and phenotypic location on

the fitness landscape. Populations can then be tracked in a variety of ways, includ-

ing fitness (phenotype) and mutations (genotype). Richard Lenski identified that
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even simple environments can lead to different outcomes [173,174]. Replicate pop-

ulations can adapt to the same phenotypic fitness peak, with similar or different

genotypes [164]. Alternatively, populations may adapt to different fitness peaks

due to a rugged fitness landscape [67, 192, 251].

LTE, which was initially performed with E. coli in a minimal glucose environ-

ment, has now been carried out with multiple organisms and in many different en-

vironments [148]. It has yielded insights into evolutionary parallelism [54,173,332],

pleiotropy [56, 201, 299], evolvability [174], causes of aging [247], reproductive

isolation [276, 277], the evolution of mutation rates [71, 279]. Multiple experi-

ments have found that replicate populations do indeed adapt to multiple fitness

peaks [67, 192, 251]. This is in part due to a phenomenon known as epistasis.

1.5 Epistasis

Genes interact in a complex, non-additive manner to produce phenotypes – a phe-

nomenon known as epistasis. Bateson first described epistasis as the effect of

a modifier allele on an allele at another locus [21]. In an evolutionary context,

Fisher’s later definition is used more frequently [99]. He defined epistasis as a

statistical deviation from the expected effects of genotypes on phenotypes. These

expected effects are often calculated from an additive or multiplicative (used here)

model [141]. Epistasis is implicated in many aspects of evolution, including or-

ganismal robustness [69], speciation [76, 113, 237], dominance [9, 98] and adaptive
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landscape ruggedness [39, 167, 251]. Using this definition, epistasis can be catego-

rized in a variety of ways. I focus here on a few that are useful for understanding

the work to follow.

No Epistasis. An interaction between mutations that matches the fitness ex-

pected under the null model (Fig. 1.5).

Positive. An interaction between mutations that results in a higher fitness

than expected under the null model. Positive epistasis between two beneficial mu-

tations causes a greater benefit than expected (Fig. 1.5).

Negative. An interaction between mutations that results in lower fitness than

expected under the null model. Negative epistasis between two beneficial muta-

tions causes a lower benefit than expected (Fig. 1.5).

Sign. An interaction between two mutations where the effect of one (or both)

mutation(s) switches sign in the presence of the other. Sign epistasis may cause

a mutation that is beneficial in one background to be costly in another (Fig. 1.5).

When both mutations in a pairwise interaction have this relationship, it is called

reciprocal sign epistasis.

Epistasis can also be separated, based on their interaction-locale, into two cate-

gories: local and global.

Local. These are interactions which depend on a specific genetic background.

For example, a mutation which enabled citrate metabolism in Escherichia coli be-

came beneficial only after a previous mutation increased the activity of the citrate

synthase enzyme [30, 31, 239]. Local interactions are instrumental in evolutionary
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FIGURE 1.5: Types of Epistasis. Independent fitness effects of arbi-
trary mutations A and B are shown in blue and orange respectively.
The expected fitness, shown as an additive model (for visual simplic-
ity) ,is in grey. Example effects of A and B together (AB) are shown
from left to right as: positive epistasis, negative epistasis, and sign

epistasis (here sign is also reciprocal sign).

genetics [34, 198, 288, 303, 319], however recent work suggests that global interac-

tions also play a key role [159, 164].

Global. Global interactions are those that depend on general characteristics of

the background, such as fitness. Kryazhimskiy et al. (2014) evolved 64 closely re-

lated genotypes of Saccharomyces cerevisiae for 500 generations [164]. They found

that the initial fitness, not genotype, of strains determined subsequent fitness im-

provements. Sequence evolution was also not contingent on the initial genotype.

Reconstructed mutational combinations showed a trend of diminishing returns

epistasis; the fitness of mutation combinations decreased as background fitness

increased, regardless of the genetic background. Although specific epistatic in-

teractions certainly exist, it is striking that knowledge of interaction mechanisms

is not always necessary for predicting the fitness trajectory of evolving popula-

tions [330]. This diminishing returns has been observed in a number of other stud-

ies as well [49, 154, 319]. Kryazhimskiy et al. (2014) suggest that this phenomenon
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may be due to a global mechanism that creates indirect interactions between mu-

tations, regardless of their specific biological effect [164].

Local epistatic interactions are likely to be idiosyncratic, reflecting specific bi-

ological mechanisms within genome modules [48, 271]. In contrast, global epis-

tasis may be mediated by common cell-wide physiological processes. Kacser and

Burns, in a foundational paper of systems biology, note that "in principle, variation

anywhere in the genome affects every character" [142]. Although this may not be

entirely true [2,153,331], they intuit that all genes must draw from a common pool

of cellular resources, such as ribosomes, nucleotides, or polymerases. Any muta-

tions which modify gene expression affect this resource pool, and thus indirectly

affect other genes [222]. One candidate for a global epistasis mechanism is trans-

lational capacity [269]. All gene expression requires the translation of RNA into

proteins. As such, limitation to a cell’s translational capacity would directly im-

pact gene expression throughout the genome. This may, in turn, modify the fitness

effect of any expression-changing mutant.

1.5.1 Epistasis Experiments

Recent experiments have attempted to quantify epistasis between beneficial mu-

tations in evolving populations. Both Khan et al. (2011) and Chou et al. (2011)

explored the interactions between the first few substitutions in evolved bacte-

rial populations [49, 154]. They each constructed the full set of possible muta-

tion combinations in order to determine the effect of background genotype on

mutation fitness effect. Both studies found primarily negative epistasis between
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beneficial mutations. This decreases the rate of adaptation observed in LTE ex-

periments [49, 261, 330]. Khan et al. showed that the effects of most mutations

were consistent with the diminishing returns hypothesis. Interestingly, the find-

ing of negative epistasis in bacterial adaptation (E. coli [154] and Methylobacterium

extorquens [49]), is in contrast with patterns of interactions between mutations in

single proteins, which show a high proportion of sign epistasis [37,319]. For exam-

ple, Weinreich et al. found that only 18 out of 120 (15%) possible adaptive paths

were accessible in the antibiotic resistance gene β-lactamase [319] (75% accessible

in Khan et al. (2011) [154]).

There has been an increased effort in recent years to decipher the impact of

epistasis on fitness landscapes and adaptation. Constructions are starting to be-

come feasible at larger scales. A recent experiment tested > 45, 000 interactions be-

tween 87 mutation-pairs in yeast tRNA [82]. Another study synthesized 410 DNA

oligomers and tested for affinity to one protein [248]. However, it remains techni-

cally challenging to study interactions between genes. As such, it is important to

continue analysis of inter-gene fitness landscapes on a case-study basis. I present

one such case study in this thesis.

1.6 Structure and Principal Findings

In this thesis I study the fitness landscape through both theory and experiment.

In Chapter 2, I use Fisher’s Geometric Model of Adaptation to investigate the
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core evolutionary processes of mutation and selection. I identify a statistical in-

consistency in the original FGM and explore model variants that relax Fisher’s

assumptions about mutation and selection. I find that FGM supports experimen-

tal evidence for restricted mutational pleiotropy, but only in the case of restricted

maladaptation. In Chapter 3, I test the role of historical contingency in divergent

evolution using a case study of genetic divergence in the E. coli lac operon. I find

that the evolutionary fate of the lac repressor is contingent on other occurring sub-

stitutions, through negative epistatic interactions. In Chapter 4, I explore the basis

of changes in the effect of a lac repressor mutation. I find that the effect decreased

over time in some populations because those populations likely fixed phenotypic

alternatives.
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Chapter 2

The Realism of Fisher’s Geometric

Model

2.1 Introduction

Mutations provide the ultimate source of all evolution. The distribution of fitness

effects of mutations (DFE) plays a crucial role in many evolutionary processes,

including the rate of adaptation [3,114], the accumulation of deleterious mutations

[41, 108, 123, 185], the maintenance of genetic [44] and trait variation [135], and the

evolution of sex and recombination [122, 131, 226, 227]. Traditionally, the DFE has

been modeled using standard probability distributions, such as the exponential

[246] and gamma [150]. These distributions describe the DFE but provide little

insight into its causes.

Fisher [99] proposed a model of the fitness landscape that, when coupled with

additional assumptions, provides a theoretical framework for studying the DFE
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[193]. Fisher’s geometric model (FGM) considers n quantitative traits under sta-

bilizing selection, each with a single optimum. The phenotype of an organism

corresponds to a single point in the n-dimensional trait space, and its fitness de-

creases with the distance to the optimum. Mutations are represented by vectors

that displace the phenotype, and every mutation affects all traits simultaneously

(universal pleiotropy).

Some predictions from FGM have received empirical support. FGM predicts

that mutations of larger beneficial effects are more likely to occur in genotypes

of lower fitness—i.e., at a greater distance from the optimum [216]. This predic-

tion has been confirmed experimentally in Escherichia coli [229, 281] and Arabidop-

sis [289]. A variant of FGM, modified to incorporate arbitrary phenotypic correla-

tions, provided good fits to DFE data from mutation accumulation experiments on

multiple organisms [193]. The same model also accurately predicted the distribu-

tion of pairwise epistasis in E. coli and an RNA virus [194].

Despite these successes, FGM has been criticized for its unrealistic assumptions

about mutation and selection [50,193,215,218]. The assumption that mutations are

universally pleiotropic has been challenged by experimental evidence that each

mutation can only affect a subset of all possible traits [2, 52, 153, 200, 292, 310, 315,

340], and that these subsets form distinct modules [310–312]. Two ways of incorpo-

rating restricted pleiotropy into FGM have been proposed: one implements non–

modular pleiotropy where mutations affect random subsets of traits [178], whereas

the other implements modular pleiotropy where mutations affect fixed subsets of

traits [321].
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Two additional problematic assumptions of FGM are that both mutation and se-

lection operate equally and independently on all phenotypes. These assumptions

have been relaxed through the incorporation of mutational [193] and selective cor-

relations [193, 321]. Lastly, the assumptions that there is a single, stationary opti-

mum are unlikely to be met in natural environments, which are both spatially and

temporally heterogeneous. These concerns have been addressed by incorporating

a moving optimum [51, 121, 196], genotype-by-environment interactions [51], and

multiple optima [195] into the FGM framework. Although it is clear that the FGM

can be extended to make it more realistic in specific ways, the extent to which any

particular FGM variant is broadly realistic remains an open question.

Here I explore variants of FGM to determine the extent to which relaxing Fisher’s

simplifying assumptions about mutation and selection can make both the DFE and

the rate of adaptation more realistic. I find that the original version of FGM cannot

simultaneously generate a realistic DFE and realistic rate of adaptation. I go on

to show that restricting both pleiotropy and the proportion of maladapted traits

simultaneously improves FGM realism in both regards.

2.2 Methods

2.2.1 Model

Selection: I consider a generalized version of FGM introduced in earlier stud-

ies [298]. I model an organism as a set of n quantitative phenotypes, represented

as continuous orthogonal axes in n-dimensional space. The dimensionality, n, is
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also known as the complexity. The phenotype of an individual is described by a

vector z = {z1, z2, . . . , zn}. Organisms experience stabilizing selection with a sin-

gle optimal phenotype zopt. The fitness of an individual with phenotype z is given

by [298]

W(z) = e−αD(z)ε
(2.1)

where, α and ε are robustness and epistasis parameters, respectively, and

D(z) =
√
(z− zopt)T S−1 (z− zopt) (2.2)

is the Mahalanobis distance to the optimum, where T indicates the transpose, and

S is a n × n variance-covariance matrix, whose diagonal elements Sii are pro-

portional to the strength of selection on phenotype i, and off-diagonal elements

Sij = Sji represent the selective interaction (covariance) between phenotypes i and

j (i, j = 1, 2, . . . , n) [193,316,318]. Following Martin and Lenormand [193], I assume

S to be positive semidefinite.

Mutation: Mutation changes an organism’s phenotype. I model a mutation as

a vector u such that the phenotype of an organism changes from z to z′ = z +

u. I draw mutation vectors from a multivariate normal distribution with mean

0 and variance-covariance matrix M, whose diagonal elements Mii represent the

variance of mutational effects on phenotype i, and off-diagonal elements Mij = Mji

represent the covariance between the effects of mutations on phenotypes i and j

(i, j = 1, 2, . . . n) [193]. Like S, I assume that M is positive semidefinite [193].
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2.2.2 Model Variants

Isotropic selection: Selection acts independently and equally strongly on each

phenotype: S = βI, where I is the identity matrix and β > 0. D(z)/
√

β is the

Euclidean distance to the optimum.

Isotropic mutation: Mutation acts independently and equally strongly on each

phenotype: M = (σ2/n) I, where σ2/n is the variance of mutational effects on

each trait. Dividing by n gives an approximately constant mean mutational dis-

placement across dimensions for a given value of σ2. This is a standard normal-

ization in FGM studies [196, 216, 218, 321, 329]. When the level of pleiotropy b is

altered, I divide σ2/b such that mean mutational displacement is constant across

levels of pleiotropy.

Universal pleiotropy: Every mutation can potentially affect every one of the n

phenotypes. Isotropic mutation is a special case of universal pleiotropy.

Original model: This assumes α = 1/2, ε = 2, isotropic selection with β = 1,

and isotropic mutation with parameters σ and n [218, 321].

Random matrices: To evaluate the effect of changes to the M and S variance-

covariance matrices, I generated random Wishart matrices [193] of the form XXT,

where X is a n × m matrix with elements drawn independently from a normal

distribution with mean 0 and variance λ [193]. Correlation strength (c) can then be

expressed as ≈ 1/
√

m. Following Martin and Lenormand (2006), I slightly modify
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our fitness function under this model, such that it is calculated using S, instead of

S−1.

Fitness ridge: Sign epistasis can create narrow ridges in a fitness landscape that

restrict the paths along which populations adapt. Here I implement a fitness ridge,

such that the fitness corresponding to a given phenotypic value for one trait de-

pends on the values for other traits. For simplicity, all covariance (i.e., off-diagonal)

values in the selection matrix S are set to a single value, p. This ensures that each

phenotype correlates with all others to the same degree. The original model has

p = 0. As p increases the ridge becomes narrower. Mutation occurs in the same

fashion as in the original isotropic model.

Restricted pleiotropy: Every mutation affects a subset, b, of the total n pheno-

types. This is implemented in one of two ways:

Non-modular pleiotropy: The b traits affected by a given mutation are selected at

random; all traits have equal probability of being picked. Also known as partial

pleiotropy [178].

Modular pleiotropy: The n traits are initially placed into n/b modules, each with b

traits. Each mutation is selected to affect a single module, chosen at random. Also

known as parcellated pleiotropy [321].

Maladaptation: I define nmal as the number of traits that are not at the optimum

(i.e., for which zi 6= 0). Typically, I assume that any genotype with fitness W < 1

has nmal = n, and that it is equally maladapted in all phenotypes. I also consider

29



Chapter 2. The Realism of Fisher’s Geometric Model

cases where 1 ≤ nmal < n. Note, however, that mutations can affect initially well-

adapted phenotypes.

2.2.3 Distribution of fitness effects (DFE)

I estimate the probability density function (pdf), f (s), of the effect of a mutation, s,

on a genotype with fitness W, using numerical simulations.

I consider two summary statistics of the DFE. First, the mean effect of a muta-

tion:

s =
∫ 1−W

−W
s f (s) ds , (2.3)

where −W and 1 −W are the largest possible deleterious and beneficial effects

of mutations, respectively. Note that this mean effect is expressed with respect to

absolute fitness, W. Typically, I express it in terms of relative fitness: s/W.

Second, the proportion of beneficial mutations:

Pb =
∫ 1−W

0
f (s) ds . (2.4)

2.2.4 Evolutionary simulations

I simulate evolution under FGM using an individual-based Wright-Fisher model,

a model with constant, finite population size N, and discrete, non-overlapping

generations. I assume that individuals reproduce asexually. Mutations are drawn

from the multivariate normal distribution with variance-covariance matrix M, and

occur with a genome-wide rate of U = 7× 10−4 per generation [171, 325].
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2.2.5 Realism

DFE: I evaluate the realism of a DFE in relation to empirical estimates of muta-

tional parameters in E. coli. The mean effect of all mutations, s, is slightly dele-

terious, ranging from –3% to –1.2% (based on four independent estimates [88,

155, 177, 301]). The mutation rate is U ≈ 7× 10−4 per genome per cell division

(average of two independent estimates [171, 325]). The beneficial mutation rate,

Ub, has been estimated to range from 4× 10−9 to 4.5× 10−5 (based on five stud-

ies [134,140,228,281,339]). Thus, I estimate that the proportion of beneficial muta-

tions, Pb = Ub/U, ranges from 5.7× 10−6 to 0.064. Hereafter, I classify the DFE as

realistic if its summary statistics fall within these ranges.

Author Rate Method

Lee et al. (2012) 10−3 Mutation Accumulation
Wielgoss et al. (2011) 4.1× 10−4 Adaptive Evolution
Long et al. (2018) 1.1× 10−3 Mutation Accumulation
Observed Range 4.1× 10−4 , 1.1× 10−3 N/A

TABLE 2.1: Mutation rate per genome per generation estimates for
E. coli.

For all analyses to follow, I adjust σ such that s̄ is realistic (−0.03 ≤ s̄ ≤ −0.025),

and plot Pb only. This allows a simple visualization in which a realistic Pb indicates

a realistic DFE.
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Author Rate Method

Perfeito et al. (2007) 2.0× 10−5 Adaptive Evolution
Hegreness et al. (2006) 1× 10−5 ∗ ∗ Marker divergence
Sousa, Magalhães, & Gordo (2012) 4.5× 10−5∗ Marker divergence
de Sousa et al. (2017) 6.8× 10−6∗ Adaptive Evolution
Wünsche et al. (2017) 1.9× 10−5*** Marker divergence
Woods et al. (2011) 1.8× 10−8**** Marker divergence
Observed Range 1.8× 10−8 to 4.5× 10−5

TABLE 2.2: Beneficial mutation rate estimates for E. coli. We calcu-
late an estimate of the upper bound for Pb as 0.064 by dividing the ob-
served range of beneficial mutation rate by the mean of the genomic
mutation rate (Table 2.1). * = average of 2 estimates given. ** = mean
estimate assuming an exponential distribution of mutation effects. ***
= mean estimate based on 16 replicates (8 at high effective population
size, and 8 at low). **** = estimated based on Woods et al. (2011) Fig.

2C.

Author s̄ Method

Trindade, Perfeito, & Gordo (2010) −0.030 Mutation Accumulation
Elena & Lenski (1997) −0.028 Adaptive Evolution
Kibota & Lynch (1996) −0.012 Mutation Accumulation
Loewe, Textor, & Scherer (2003) −0.030 Mutation Accumulation
Observed Range −0.030 to −0.012

TABLE 2.3: Mean effect of mutations estimates for E. coli.
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Marker Divergence: To investigate the evolutionary consequences of a partic-

ular DFE, I simulate neutral marker divergence experiments (Fig. 2.1). These ex-

periments consist of an asexual population that initially contains a neutral marker

at 50% frequency The marker will either fix by hitchhiking with a beneficial muta-

tion, or be lost if an unlinked beneficial mutation sweeps to fixation. This method

is often used to estimate evolutionary parameters of experimental populations

[13, 43, 134, 250]. Here I use the time to fixation or loss, Tfix, as a proxy for rate

of adaptation, as it depends critically on both Pb and the effect sizes of beneficial

mutations. I consider a marker to be fixed or lost when it reaches 90% or 10% of

the population, respectively.

Eleven populations of E. coli were evolved for up to 1,000 generations in a min-

imal glucose environment. These populations contained a neutral GFP marker at

50% frequency initially. Effective population size was Ne = 3.8× 105. The pro-

portion of fluorescent cells was measured each day (∼7.64 generations) until sen-

sitivity was lost (entire sample was fluorescent or not, due to fixation or loss). I

use these experimental times to fixation as a benchmark for comparing simulation

data (Fig. 2.1) [334].

For a given variant and parameter combination, I simulated 103 replicate pop-

ulations and recorded the values of Tfix for each run. I then used the Tfix histogram

and a Voronoi parition function to calculate the model likelihood for each exper-

imental data point. The total ln L of the model is the product of those individual

likelihoods.
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FIGURE 2.1: Experimental marker divergence trajectories for E. coli.
Black lines show the log10 marker ratio over time. Once a marker
reaches ≥ 90% of the population (dashed line) I deem it to be fixed.

2.2.6 Measures of Epistasis

A unique strength of FGM is its ability to capture non-additive genetic interac-

tions (epistasis) [194], with complex underlying mechanisms, despite making few

explicit assumptions. After exploring model variants for realism, I use multiple

measures of epistasis to confirm that realistic model variants (for DFE and rate of

adaptation) also maintains fits to empirical epistasis data.

Epistasis Coefficients: Epistasis can occur at multiple levels of interaction. The

lowest, and most commonly measured, is a pairwise interaction between two mu-

tations. However, epistasis is also present in higher order interactions as well. I
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calculate coefficients of epistasis for each order of interaction in a 5-mutation adap-

tive landscape [320]. This method, which uses a Walsh Transform of the fitness

landscape, is described in detail by Weinreich et al. (2013).

Proportion Accessible Paths: The proportion of accessible adaptive paths is a

measure of landscape ruggedness (epistasis). I recreate all potential adaptive paths

for the original 5-mutation adaptive walk (25 = 120) and calculate the fitness of

each mutation-combination along each path. Those paths that increase monotoni-

cally from ancestor to the 5-mutant are considered accessible as they do not have

to traverse any fitness valleys.

Roughness to Slope: The ratio of landscape roughness to slope measures how

closely the data fit to an additive landscape. I fit E. coli data and simulation results

to a multidimensional linear model (no epistasis), using least-squares fitting [295].

A higher ratio indicates a worse fit to the linear model, and thus a more rough

landscape. Rougher landscapes, by definition, contain more epistasis. This method

is described in detail by Szendro et al. (2013).

Proportion of Epistasis: The proportion of epistasis types provides information

about the shape of the fitness landscape. Here I define epistasis multiplicatively,

as

ε = W12 −W1W2 (2.5)
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where fitness is calculated relative to the ancestor (no mutations, W = 1), W12 is

the fitness of mutations 1 and 2 together, and W1 and W2 are the fitness of muta-

tions 1 and 2 independently. Using this epistasis definition, positive epistasis is

ε > 0, negative is ε < 0 and no epistasis is ε = 0. Sign epistasis is the scenario

in which a mutation is beneficial independently (W1 − 1 > 0), yet deleterious in

combination with the other mutation (W12 < W2). Reciprocal sign epistasis occurs

when both mutations are beneficial independently (W1 − 1 > 0 and W2 − 1 > 0),

yet deleterious together (W12 − 1 < 0). These five measures of epistasis provide a

comprehensive view of interaction types on the landscape.

2.2.7 Epistasis Fits

I compare model epistasis statistics to empirical data from an E. coli landscape

[154]. Measures of epistasis will inherently contain correlations if they are calcu-

lated from the same set of mutations in the same environment. I use principal com-

ponents analysis (PCA) on the correlation matrix to convert 17 epistasis statistics

into a set of uncorrelated variables. This allows us to visualize how the simulation

data cluster, with respect to the experimental data, on orthogonal axes.
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2.3 Results

2.3.1 Conditions for a Realistic DFE

The DFE in the original FGM is defined by the dimensionality, n, the fitness of

the genotype, W, and the mutational variance, σ2/n. Figure 2.2 shows Pb, for a

realistic s̄, across n (Fig. 2.2A) and W (Fig. 2.2B) in the original FGM. At W = 0.5,

a realistic DFE only occurs if dimensionality is high (n & 250, Fig. 2.2A). If the

dimensionality is lower, say n = 100, only genotypes with higher fitness can show

a realistic DFE (W & 0.75, Fig. 2.2B).

FIGURE 2.2: A) Increasing dimensionality makes the DFE more re-
alistic under the original FGM. Proportion of beneficial mutations
and model dimensions in the original FGM, for genotypes with W =
0.5, α = 1/2, ε = 2, and a σ that gives realistic s̄ (−0.03 ≤ s̄ ≤ −0.025).
B) Increasing fitness makes the DFE more realistic under the origi-
nal FGM. Proportion of beneficial mutations and fitness in the origi-
nal FGM, for genotypes with n = 100, α = 1/2, ε = 2, and a σ that
gives realistic s̄ (−0.03 ≤ s̄ ≤ −0.025). For both panels, each point
is the mean of 100 simulations of 1, 000 mutations, with one standard
deviation shown. The dashed line is the upper bound for realistic Pb.
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When 12 populations derived from a single genotype of E. coli were subjected

to 50, 000 generations of evolution in a simple, constant environment, their mean

fitness increased by ∼ 70% [330]. If the evolved genotypes have reached the opti-

mum (W = 1), the ancestral genotype must have had a fitness of W ≈ 0.59. If, as

seems more likely, the populations have not yet reached the optimum, the ancestor

must have had W < 0.59. Under this restriction, FGM can only generate a realistic

DFE when n is high (Fig. 2.2)

The original FGM makes specific assumptions about the shape of the fitness

landscape through its robustness (α) and epistasis (ε) parameters. Changing the

robustness parameter, α, has no effect on the shape of the curves in Figures 2.2A

and 2.2B, regardless of the value of ε. For any value of α, setting σ = σ̃/(2α)1/ε

will yield the same DFE as the original FGM with σ = σ̃ (Fig. 2.3). Modifying

the epistasis parameter, ε, however, can change the DFE. Figure 2.4 shows that a

genotype with a fitness of W = 0.5 and a dimensionality of n = 100 can show

a realistic DFE if ε . 0.75. A value of ε < 1 corresponds to positive epistasis

among mutations. However, a detailed study of the first five adaptive mutations

fixed during the evolution of an E. coli population revealed diminishing-returns

epistasis—i.e., negative epistasis—between them [154]. With poorly adapted geno-

types (W < 0.59), and negative epistasis between beneficial mutations (ε > 1), an

isotropic FGM can only generate a realistic DFE when dimensionality is high (Fig.

2.2).
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FIGURE 2.3: Constant Pb across α in isotropic FGM. Proportion of
beneficial mutations and α in isotropic FGM for n = 100, with W =
0.5, ε = 2, and a σ that gives realistic s̄ (−0.03 ≤ s̄ ≤ −0.025). Each
point is the mean of 100 simulations of 1, 000 mutations, with one
standard deviation shown. The dashed line is the upper bound for

realistic Pb. The isotropic case is α = 0.5.
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FIGURE 2.4: Decreasing Pb across ε in isotropic FGM. Proportion of
beneficial mutations and ε in isotropic FGM for n = 100, with W =
0.5, α = 2, and a σ that gives realistic s̄ (−0.03 ≤ s̄ ≤ −0.025). Each
point is the mean of 100 simulations of 1, 000 mutations, with one
standard deviation shown. The dashed line is the upper bound for

realistic Pb. The isotropic case is ε = 2.
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2.3.2 The Isotropy Paradox

In the previous section, I showed that an isotropic FGM can only generate a real-

istic DFE when complexity is high. Given this result, I now explore whether this

DFE will lead to a realistic rate of adaptation. The rate of adaptation is expected to

be influenced by other properties of the DFE [19], such as the mean and variance

in beneficial effects.

To measure the rate of adaptation, I compare simulations to neutral marker

divergence experiments in E. coli (Fig. 2.1). Time to fixation (Tfix) of a neutral

marker (via hitchhiking) serves as a proxy for the rate of adaptation as it depends

on both Pb and s̄. Specifically, the rate of adaptation should be proportional to

1/Tfix. I simulated populations in FGM across n, with realistic s̄ (−0.03 ≤ s̄ ≤

−0.025) for ease of comparison, and then calculated log-likelihood given the E.

coli data. The minimum dimensionality (n = 250) that can generate a realistic

DFE (Fig. 2.2) under the original FGM has a log-likelihood of ln L = −84.9 given

the E. coli data. A dimensionality of n = 150 leads to a dramatic increase in log-

likelihood of ∆ ln L = 9.6. Approximating the relationship between ln L and n by

a polynomial leads to a maximum likelihood estimate of n = 150.2 (95% CI: 107.9

to 192.7). However, recall that n = 150 produces a DFE that lies outside of the

realistic range (Fig. 2.2).

Herein lies the isotropy paradox. Increasing organismal complexity (n) im-

proves DFE realism, however it reduces the likelihood of rate of adaptation [218].

High complexity (n = 250), with a realistic DFE (Fig. 2.2A), causes populations
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FIGURE 2.5: Maximum likelihood of marker divergence simula-
tions occurs at n = 150. Each point represents the maximum likeli-
hood of E. coli marker divergence data given a distribution of fixation
times generated from 1,000 individual-based simulations in FGM.
The dashed line is a best-fit polynomial whose maximum occurs is

n ∼ 150 (95% CI: 107.9 to 192.7).

to adapt slower than experimental observations [218] (Fig. 2.6B). At a complex-

ity (n = 150) where populations can realistically adapt to their environment (Fig.

2.1A), there is an unrealistic DFE (Fig. 2.2A). This pattern for n is not affected by

other parameters in the original version of FGM.

2.3.3 Analyzing Variants

FGM makes two major, simplifying assumptions: spherical symmetry and univer-

sal pleiotropy. I now explore conditions for a realistic FGM by analyzing model

variants that relax these assumptions. Given the isotropy paradox, there are two

approaches to analyze the realism of FGM variants. First, use the model with a re-

alistic DFE (n = 250) and relax model assumptions in an effort to improve the rate
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FIGURE 2.6: Histograms of Tfix for simulations under the isotropic
FGM. Shown are 1, 000 replicate simulations for n = 150 (A) and
n = 250 (B), with an initial fitness of W = 0.5, α = 1/2, ε = 2, and
a σ that gives realistic s̄ (−0.03 ≤ s̄ ≤ −0.025). The log-likelihoods
of these distributions are −75.3 and −84.9 for n = 150 and n = 250
respectively. Black stars on the x-axis show fixation times calculated

for experimental marker divergence data (Fig. 2.1).

of adaptation likelihood (ln L). Second, use the model with highest ln L (n = 150)

and relax assumptions in an effort to improve the DFE. I present both of these

approaches for all model variants tested.

2.3.4 Random Phenotypic Correlations

One major assumption of FGM is spherical symmetry. The original model assumes

that traits are affected equally (strength) and independently (no covariance) by

both mutation and selection. Such spherical symmetry seems unlikely to be true

in nature, as empirical studies support the existence of asymmetry in both selection

[157] and mutation [92, 139].
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Given this evidence, a model variant that relaxes its symmetry may be more

realistic and applicable [193]. Martin and Lenormand (2006) incorporated selec-

tion (S) and mutation (M) matrices to account for covariance and non-uniform

strength of selection and mutation on phenotypes. Using random matrix theory,

they showed that FGM fits DFE data from mutation accumulation (MA) experi-

ments. Note that MA experiments have limited power to detect beneficial muta-

tions, and thus Martin and Lenormand did not consider Pb in their analysis. Here I

use their framework to examine if random M and S matrices can fit a realistic DFE

(as defined by Pb and s̄).

The DFE becomes less realistic when trait correlations are introduced for both

mutation and selection (Fig. 2.7). Increasing correlation strength (1/
√

m) further

worsens DFE realism. This result is due to a decrease in effective dimensionality

(ne) [193]. Random matrices in FGM create trait heterogeneity, which can be dis-

solved by reducing the model to a set of ne isotropic orthogonal axes [318]. This ne

is the value of n at which the isotropic model produces the same DFE as the ran-

dom correlations model. As 1/
√

m increases, the model can be reduced to a lower

ne, and thus creates a less realistic DFE. This explains why Pb quickly converges to

a similar trajectory for both n = 150 and n = 250; both complexities are reduced to

similar ne as 1/
√

m increases. Independently, random mutational (M) or selective

(S) correlations increase Pb to a lesser degree. However, the realism of the DFE still

declines as 1/
√

m increases. Because random correlations do not create a realistic

DFE, for either n = 150 or n = 250, I do not evaluate the likelihood of adaptation.
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FIGURE 2.7: Increasing correlation strength decreases DFE realism
for random M and S matrices. Proportion of beneficial mutations and
correlation strength (1/

√
m) in the original FGM for n = 150 (open cir-

cles) and n = 250 (closed circles), with W = 0.5, α = 1/2, ε = 2, and
a σ that gives realistic s̄ (−0.03 ≤ s̄ ≤ −0.025). Each point is the mean
of 100 simulations of 1, 000 mutations, with one standard deviation

shown. The dashed line indicates the upper bound for realistic Pb.

2.3.5 Fitness Ridge

Recent empirical studies have shown genotypic fitness landscapes to be rugged,

due to the prevalence of epistatic interactions [101, 154, 295]. Sign epistasis, when

an allele is beneficial in one genetic background and costly in another, creates fit-

ness ridges in genotypic space [112]. Given support for genotypic fitness ridges

[319], I posit that phenotypic fitness ridges, where the fitness of a trait depends

on the state of another trait, exist as well [181, 322]. Rugged fitness landscapes are

likely to have multiple paths to the optimum [208,262,319], and may even contain
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multiple peaks [67,192,263]. However here I aim to test if adaptation along a ridge

is realistic, which is independent of the number of fitness ridges in the landscape.

As such, I test the realism of the DFE and adaptation along a single phenotypic

fitness ridge towards the optimum.

Low pairwise correlations are necessary to create a ridge at high dimensions. A

fitness ridge with p & 0.01 produces a realistic DFE for n = 150 (Fig. 2.8A). For n =

250, the DFE remains realistic, with a lower Pb, as p increases. As the ridge becomes

steeper (higher p), more mutations become deleterious (Pb decreases) and the DFE

becomes more realistic. Despite a realistic DFE, populations adapt unrealistically

on fitness ridges (Fig. 2.8B). The likelihood of adaptation, given the E. coli marker

divergence data, drops drastically when p > 0. For n = 150, when p = 0.005

(realistic DFE), ∆ ln L = −13.7 from the isotropic model. For n = 250 the decrease

in likelihood from isotropy is even greater (∆ ln L = −30.0). Mutations must be of

very small magnitude in order to maintain a realistic s̄ and Pb on a fitness ridge.

This causes longer fixation times for neutral markers (Fig. 2.9). Despite empirical

motivation [101, 112, 154, 295, 319], the fitness ridge variant fails to produce both a

realistic DFE and rate of adaptation.
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FIGURE 2.8: Steeper fitness ridges create a more realistic DFE but
decrease the likelihood of rate of adaptation. Both panels show
n = 150 (open circles) and n = 250 (closed circles), with W = 0.5,
α = 1/2, ε = 2, and a σ that gives realistic s̄ (−0.03 ≤ s̄ ≤ −0.025).
A) Proportion of beneficial mutations and p. Each point is the mean
of 100 simulations of 1, 000 mutations, with one standard deviation
shown. The dashed line indicates the upper bound for realistic Pb.
B) ln L and p. Each point is the mean for 1, 000 calculations, each
bootstrapped from the distribution of Tfix for 1, 000 simulations. The
dashed lines show the isotropic ln L for n = 150 (grey) and n = 250

(black) for comparison.
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FIGURE 2.9: Fitness ridges result in longer fixation times for neutral
markers. Tfix for 1, 000 marker divergence simulations for n = 150
(A) and n = 250 (B) with p = 0 (red) or p = 0.01 (blue), and W = 0.5,

α = 1/2, ε = 2, and a σ that gives realistic s̄ (−0.03 ≤ s̄ ≤ −0.025).

2.3.6 Restricted Pleiotropy

The other major simplifying assumption of FGM is universal pleiotropy — ev-

ery mutation is expected to affect every trait equally. This assumption is biologi-

cally unrealistic, as empirical work shows that mutations affect a limited subset of

traits [2,200,278,292,310,315,340]. Here I explore whether restricted pleiotropy, in
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modular [225, 311, 321] or non—modular [47, 178] form, can produce a realistic DFE

and rate of adaptation. Decreasing the level of nonmodular pleiotropy (b) worsens

realism of the DFE (Figure 2.10). Pb increases for a given s̄ because mutations only

affect b < n traits, and thus the chance that D(z + z¯) < D(z) is higher. This re-

sult holds for modular pleiotropy as well. Because restricted pleiotropy does not

create a realistic DFE, for either n = 150 or n = 250, I do not evaluate the rate of

adaptation.

2.3.7 Restricted Pleiotropy and Restricted Maladaptation

Despite empirical evidence for low levels of mutational pleiotropy [2,200,278,292,

310, 315, 340], implementing it in FGM decreases the realism of the DFE (Figure

2.10). It is important to recognize that these results are under the assumption that

all traits are equally maladapted (z[1] = z[2]... = z[n]). This is not the scenario in

which pleiotropy is expected to evolve [46, 309]. Restricted pleiotropy is advan-

tageous when some traits are maladapted and others are well adapted because it

allows adaptation to proceed without undoing previous adaptation [309, 321]. I

tested the realism of restricted pleiotropy variants in these conditions by modify-

ing the number of maladapted traits (nmal) in the ancestor. Low levels of pleiotropy

combined with few traits maladapted produces a realistic DFE for n = 150 and

improves DFE realism for n = 250 (Fig. 2.11). Unlike the previous restricted

pleiotropy variant, here Pb does not increase as b decreases. Due to low nmal, mu-

tations are less likely to improve the maladapted phenotypes. As such, most mu-

tations are deleterious, resulting in a realistic Pb. This is robust to our scaling of σ,
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FIGURE 2.10: Decreasing pleiotropy worsens DFE realism. Propor-
tion of beneficial mutations and pleiotropy (as a proportion of total
traits, b/n) in the original FGM for n = 150 (open circles) and n = 250
(closed circles), with W = 0.5, α = 1/2, ε = 2, and a σ that gives
realistic s̄ (−0.03 ≤ s̄ ≤ −0.025). Each point is the mean of 100 simu-
lations of 1, 000 mutations, with one standard deviation shown. The

dashed line indicates the upper bound for realistic Pb.

and reliably results in a realistic DFE when both b/n and nmal/n are small.

Given a realistic DFE, I simulated adaptation to test if restricted pleiotropy

(b < n) with restricted maladapatation (nmal < n) improves the likelihood of

adaptation. The likelihood of n = 150 is unchanged for most combinations of

b and nmal, but decreases at values where the DFE becomes realistic (low b, low

nmal) (Fig. 2.12). The likelihood decreases because low values of b and nmal result

49



Chapter 2. The Realism of Fisher’s Geometric Model

0 0.1
b/n

0

0.1

n
m

al
/n

n= 150

0 0.1
b/n

n= 250

Pb

FIGURE 2.11: DFE realism increases for n = 150 and n = 250 as
b/n and nmal/n decrease. Each square shows Pb for 100 replicate
simulations testing 1, 000 mutations each. Red indicates DFE realism

(Pb < 0.064) and blue shows an unrealistic DFE (Pb > 0.064).

in faster fixation times (Fig. 2.6), and cause the model to miss high experimental

Tfix observations (Fig. 2.13). The n = 250 isotropic model had low ln L due to long

fixation times (Fig. 2.13). Low b and nmal create faster Tfix and make the n = 250

model more likely, given experimental data. The highest likelihood here occurs at

b/n = 0.2 and nmal/n = 0.1 (ln L = −75.3). It is ∆ ln L = +9.6 greater than the

likelihood of isotropic n = 250 and has the same likelihood as the best isotropic

model (n = 150). The DFE of the realistic restricted model is narrower than that

of the highest likelihood isotropic model, and is realistic due to fewer beneficial

mutations (Fig. 2.14) This model variant - with high complexity, low pleiotropy

and low maladaptation - results in a realistic DFE and lnL. The fitness effects of
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mutations are subject to high n, yet adaptation proceeds in a low dimension subset

of phenotypic space (nmal).
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lnL

FIGURE 2.12: Rate of adaptation realism (ln L) decreases for n = 150
and increases for n = 250 as b/n and nmal/n decrease. Each square
shows ln L calculated using 1, 000 replicate simulations, given E. coli
experimental marker divergence data. Warmer colors indicate a more

realistic ln L while cooler colors show a less realistic ln L.
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FIGURE 2.13: Histograms of Tfix for simulations under FGM with
restricted pleiotropy and restricted maladaptation. Shown are 1, 000
replicate simulations for n = 150 (A) and n = 250 (B), with an ini-
tial fitness of W = 0.5, α = 1/2, ε = 2, and a σ that gives realis-
tic s̄ (−0.03 ≤ s̄ ≤ −0.025). Black stars on the x-axis show fixation
times calculated for experimental marker divergence data (Fig. 2.1).
Red shows the isotropic model. Blue shows the restricted model with

nmal/n = 0.1 and b/n = 0.1.
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FIGURE 2.14: DFE for the isotropic and restricted models. Shown
are histograms for the fitness effects of 1, 000, 000 sampled mutations
for isotropic n = 150 and restricted n = 250 (b/n = 0.2, nmal =
0.1). Blue indicates deleterious mutations (s < 0) and green indicates
beneficial mutations (s > 0). These simulations were done with W =
0.5, α = 1/2, ε = 2, and a σ that gives realistic s̄ (−0.03 ≤ s̄ ≤ −0.025).
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2.4 Discussion

Fisher’s Geometric Model of Adaptation (FGM) is commonly used to fit empir-

ical data on experimental evolution and epistatic gene interactions [39, 194, 229],

and draw insights about the underlying fitness landscape. I identified a mismatch

between model fits to the distribution of mutation fitness effects (DFE) and the

rate of adaptation. The isotropic model with the highest likelihood (n = 150, Fig.

2.5), given E. coli marker divergence data, generates an unrealistically high pro-

portion of beneficial mutations (Pb) (Fig. 2.2A). Yet, when the DFE is realistic in

the isotropic model (n & 250), adaptation proceeds slowly in comparison to em-

pirical findings (Fig. 2.13) and lnL decreases (Fig. 2.5). Lacking information on

the genetic basis of adaptation, Fisher made two simplifying assumptions in his

model: spherical symmetry and universal pleiotropy. Others have since created

new model variants by relaxing these assumptions [178, 193, 318, 321]. Here I ex-

amined if relaxing Fisher’s assumptions about selection and mutation improve the

fit both the DFE and rate of adaptation.

I first tested if relaxing spherical symmetry improved the DFE and likelihood

of adaptation. Random correlations in mutation and selection create trait hetero-

geneity, which reduces the effective dimensionality (ne) of the model and makes

the DFE less realistic. I next tested if a fitness ridge, a specific case of selective cor-

relations, could satisfy a realistic DFE. This exploration was motivated by empiri-

cal evidence for sign epistatic interactions which create fitness ridges in genotypic

space [101, 112, 154, 295, 319]. This variant produces a realistic DFE as p increases.

55



Chapter 2. The Realism of Fisher’s Geometric Model

However, this resulted in a decreased rate of adaptation and low model likelihood,

given marker divergence data (Fig. 2.8).

Fisher’s other major assumption was universal pleiotropy. Understanding and

modeling pleiotropy is key for comparing mutation-selection models with empir-

ical data [141]. Universal pleiotropy assumes a single genotype network where

all nodes are connected. This concept stems from cellular architecture; every gene

uses the same metabolic pool of ribosomes, nucleotides, and polymerase, and any

mutation that affects gene activity may affect the competition for those molecules

[142]. Critics of universal pleiotropy argue that the fitness effects of a metabolite

pool may be minimal and biologically meaningless [222], and that pleiotropy is

restricted and highly structured [311].

Both theoretical and experimental work support the existence and evolution of

restricted pleiotropy. Early support came from Gibson, who used a statistical ther-

modynamic model of transcriptional regulation to show that inevitable trade-offs

during evolution naturally lead to pleiotropic effects [115]. Using the NK model,

which accounts for both epistasis and pleiotropy, Østman et al. (2009) showed that

populations of asexual haploids reach the highest fitness with intermediate levels

of pleiotropy [219]. Another locus-based model found high levels of sign epistasis,

an indicator of adaptive gene modules [225].

Experimental evidence for restricted pleiotropy is rapidly accumulating. A sys-

tematic study of pleiotropic effects in yeast, worms (C. elegans), and mice, found

a low proportion of genes to affect multiple traits, with an average of 6.8% (95%

CI: 5.1% to 8.5%) [315]. Other such studies have found similarly low levels of
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pleiotropy [292, 340]. A QTL analysis mapped 70 skeletal traits in mice and found

an average pleiotropic effect of 7.8, with a maximum of 30 [153]. A similar study in

sticklebacks also supports low levels of pleiotropy [2]. Recent work using > 11, 000

gene expression traits in MA experiments with Drosophila serrata found that only

mutations affect 2.1% of variable traits measured [200]. Comparing these studies

proves difficult because both the organisms and number of traits measured vary.

This makes interpreting the ‘level’ of pleiotropy non-trivial. Nonetheless, the em-

pirical literature across multiple organisms supports an ‘L-shaped’ distribution of

pleiotropic effects, with most genes affecting few phenotypes and few genes affect-

ing many [222].

Our work with FGM corroborates previous theoretical and empirical studies of

pleiotropy [2, 200, 278, 292, 310, 315, 340]. I find that restricted pleiotropy variants,

with a low percentage of maladapted traits, satisfy a realistic DFE (Fig. 2.11) while

simultaneously producing a realistic rate of adaptation (Fig. 2.12). The results of

these variants makes sense if I consider the situation where restricted pleiotropy

is favorable [309, 321]. It provides a benefit when some traits are maladapted but

others are not because it allows improvements to parts that require adaptation

without disrupting the entire system [16].

Beyond fitting the DFE and rate of adaptation, FGM has proven to be a useful

model for capturing the fitness of complex mutation interactions (epistasis) [194]. I

compared epistasis fits of our realistic variant (restricted pleiotropy and restricted

maladaptation) to the original isotropic model, using multiple measures of epista-

sis (2.2.6).
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FIGURE 2.15: Isotropic and Restricted FGM produce similar fits to
epistasis data.f Shown are kernel density estimates (kde) of princi-
pal components analysis for 25 5-mutation landscape constructions in
FGM (red and blue) and the experimental data (black star). Isotropic
n = 150 is in blue, and restricted n = 250 with b/n = 0.2 and

nmal = 0.1 is in red.

Given that the original FGM has repeatedly produced good fits to epistasis data

[194], it is not surprising that simulations under the isotropic model (n = 150)

cluster near the Khan et al. (2011) data (Fig. 2.15). The most realistic restricted

variant (n = 250, b/n = 0.2, nmal = 0.1) produces a similar fit to the experimental

data (Fig 2.15). Here principal components 1 and 2 explain 61.4% of the data,

providing assurance that the models are indeed similar across the statistics. Not

only does restricted pleiotropy and restricted maladaptation improve the DFE and

likelihood of adaptation, it also maintains fits to epistasis data.

FGM is not applicable to all experimental data. For example, some organisms
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have a substantial proportion of lethal mutations [45, 77, 253]. Due to the fitness

function, lethal mutations are not possible in FGM. More broadly, recent work sug-

gests that the DFEs of some organisms may be multi-modal [163]. Many systems

also show strong genetic incompatibilities [15], a phenomenon that does not occur

in the original FGM (but see [102]). FGM is particularly useful for fitting evolu-

tionary trajectories [229], epistasis data [193], and uni-modal DFEs. However, it is

certainly not a universal framework for modeling experimental data.

Overall, I take our results to be encouraging support for restricted pleiotropy,

particularly because I did not intend to test it directly. I aimed to alleviate a para-

dox between the DFE and likelihood of adaptation, and ultimately found the most

realistic model to contain a mutational regime with ample support in the litera-

ture. Our results presented here depend critically on the estimates of realistic Pb

and s. Some work suggests that Pb may be higher than 0.064 for populations with

low fitness [128]. In FGM, increasing the upper bound for realistic Pb increases the

parameter space of nmal and b in which the DFE is realistic. Future experimental

work may test how nmal correlates with Pb using a knockdown gene expression

framework.
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Chapter 3

The Role of Historical Contingency in

Divergent Evolution

A case study in the Escherichia coli lac operon

3.1 Introduction

The relationship between genotypes and fitness often deviates from expectations

based on independent effects - a phenomenon known as epistasis (1.5). These

epistatic interactions can cause evolutionary trajectories to be contingent upon

prior adaptations (1.4.2). For example, in a ligand-binding protein, the evolution-

ary fate of a newly arising mutation depends on epistasis with the genotype in

which it occurs [275]. Such contingencies may alter the set of potential evolu-

tionary outcomes (1.4.3), resulting in divergent evolution from a common ances-

tor [53, 174]. This chapter examines the role of historical contingency in a case

study of divergent evolution in the E. coli lac operon.
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Experimental evolution offers a method with which to test the role of histori-

cal contingency in divergent evolution. However, it has yielded mixed findings to

date. One experiment showed that historical contingency plays a large role in the

adaptation of pathogens to antibiotics [264, 265]. Reducing the use of antibiotics

had been proposed as a measure to curb antibiotic resistance. However, when the

antibiotic is removed, fitness of evolving populations increases quickly via com-

pensatory mutations, such that resistance is maintained when antibiotic is added

back [264, 265]. These compensatory mutations are contingent on the cost of the

resistance mutation for their benefit. In another evolution experiment, the adap-

tation of multiple E. coli phenotypes was dependent on prior evolutionary history

(across four environments) [235]. These examples show that evolution can be con-

tingent on prior adaptations. However, some recent experiments suggest that not

all epistatic interactions rely on specific contingencies (1.5). In fact, in E. coli and

M. extorquens beneficial mutation effects can be predicted based on background

fitness alone [49, 154]. Other work shows similar trends of convergent phenotypic

evolution [13, 229, 330], even when genotypes diverge [23, 164].

Here I focus on a case study of divergent evolution in the E. coli lac operon.

For populations evolved in a lactose-containing environment, less regulation of

the lac operon is beneficial. In particular, a mutation to the lac operon repressor

(lacI) increases fitness in the common ancestor [238]. In the absence of lactose, the

functional ancestral repressor (lacI+) produces the LacI protein, which binds to the

lac operon operator to inhibit transcription by RNA polymerase. In the presence

of lactose, allolactose binds to LacI and the operon is transcribed at high levels.
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Most mutations to lacI result in a non-functional repressor (lacI–) that does not

produce the LacI protein [259, 260]. As a result, transcription is independent of

lactose availability and the lac operon is constitutively expressed.

The lac operon is a useful model for testing the influence of historical contin-

gency on adaptation for a few reasons. First, the lac operon has been shown to be

under selective pressure across multiple experiments [74, 238]. Second, fitness ef-

fects of mutations to the lac operon depend on the environment [238]. This allows

an analysis of the effect of environment on contingency. Lastly, underlying mech-

anisms of contingency can be elucidated as the regulatory and molecular compo-

nents of the lac operon are well-understood [4,74,137,159,160,212,269,291,327,337].

FIGURE 3.1: lacI status in 8, 000-generation evolved populations.
Squares represent populations for 6 populations each of four evolu-
tion environments (Lac, G/L, GL, LG). Dark blue indicates fixation,
white indicates absence, and light blue indicates a mixed population

with lacI– still segregating.
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Despite a large fitness benefit in the ancestor [238], only 50% (12/24) of popu-

lations evolved in selective environments containing lactose fixed a lacI– mutation

after 8,000-generations of evolution (Fig. 3.1). Here I first confirm the fitness bene-

fit of lacI– mutations in the ancestor. I then use simulation to show that observed

experimental divergence in the lacI gene cannot be attributed to stochasticity. Mu-

tation rates have also not changed in most evolved populations. I find that fitness

effects of lacI– deviate from the ancestor in most populations, suggesting that the

observed divergent evolution is driven by negative epistasis with previous sub-

stitutions. Lastly, I identify a candidate epistatic interaction for an evolved pop-

ulation that had a dramatic decrease in fitness within the first 500-generations of

adaptation. In total, my results demonstrate that divergent adaptation in the lac

operon is due to historical contingency on previous adaptations.

3.2 Materials and Methods

3.2.1 Bacterial Strains and Growth Conditions

Bacterial clones used for this experiment were selected from populations in a long-

term evolution experiment in 7 environments (4/7 used here) [53]. Strains that

fixed a lacI- mutation are denoted as lacI–ev and those that maintained the ancestral

allele are lacI+ev. Evolution environments comprised a simple base medium (Davis

Minimal) supplemented with: Lactose only (Lac), daily alternating between glu-

cose and lactose (G/L), or 2,000-generation alternating starting with glucose (GL)
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or starting with lactose (LG). Sugars were added to the DM medium in concen-

trations as follows: glucose = 175 µM/mL, lactose = 210 µM/mL. These concen-

trations support approximately equal concentrations of stationary phase bacteria

( 3.5× 108 cfu/mL) [53]. Lysogeny broth (LB) was used for non-selective cultur-

ing, while the respective evolution environment of each clone was used for fitness

assays and growth measurements.

Populations were propagated in 1 mL in 96-well blocks for 8,000 generations,

using a daily 1:100 serial transfer. Each population was initially homogeneous,

such that de novo mutation was the only source of genetic variation. Samples were

frozen at –80◦C, with glycerol as a cryoprotectant, every 500 generations. Six repli-

cate populations were evolved in each environment, with three from each ancestor

(REL606,REL607). These ancestors are isogenic with the exception of a neutral

marker (ara+/-) which indicates ability to utilize the sugar arabinose [174]. The ara

marker can be differentiated by plating on tetrazolium-arabinose (TA) plates, on

which ara+ strains form white colonies and ara– are red. Arabinose is not used as

growth media in my experiments, and thus does not affect fitness measurements.

3.2.2 Identification of lac operon mutations

To determine fixation or absence of a lacI mutation, I plated 8, 000-generation pop-

ulation samples (1, 000 to 3, 000 cells) on TGX indicator medium. This medium

consists of agar plates with 0.5% glucose and 30 mg/ml of the lacZ substrate 5-

bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-gal). Colony color on this

medium indicates the level of lacZ activity, and thus distinguishes between the
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ancestral lacI+ allele (no expression, white) and lacI– mutations (constitutive ex-

pression, dark blue). Any populations that showed a mix of blue and white were

not used here, as I am interested in divergent adaptive paths; if a lacI mutation is

currently segregating then the adaptive path has not yet been chosen.

For this work I did not use mutations which occurred in the lacI repressor bind-

ing site of the lac promoter (lacO1). Previous work has shown that lacO1 mutations

reduce binding efficiency of lacI, and thus increase expression via reduced repres-

sion (intermediate expression, light blue) [26, 95, 190, 204, 238]. I did not consider

these mutations, as the aim was to evaluate epistatic interactions with a single par-

allel evolved mutant gene.

3.2.3 Strain Constructions

lacI–ev: I replaced evolved lacI– alleles with ancestral lacI+ using the suicide

plasmid pDS132 [231, 238]. This vector contained the the ancestral lacI gene (+),

along with chloramphenicol resistance (CmR) and sacB, which confers suscepti-

bility to sucrose. The plasmid was conjugated into recipient cells and CmR cells

(formed by chromosomal integration of the plasmid) were selected. Resistant

clones were streaked onto LB + sucrose agar to select cells which lost the plas-

mid. These cells were then screened for lacI+ using X-gal agar and phenyl-β-D-

galactoside (P-gal) agar. White color on X-gal indicates no lacZ activity (lacI+, full

repression). To confirm this, I screened white colonies on P-gal agar to ensure they

could not grow. P-gal is a substrate for β-galactosidase (lacZ product) but does

not induce the lac operon. Therefore only cells that express the lac operon without
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induction (lacI–) can survive on P-gal. After white color on X-gal and no growth

on P-gal, I sequenced these cells to ensure that the lacI gene was identical to the

ancestor.

lacI+ev: Mutants (lacI–) of lacI+ev were selected by plating a population sample,

grown in a non-selective medium (here LB), onto P-Gal plates. Only constitutive

mutants can grow on P-Gal. Colonies were re-streaked onto fresh P-Gal plates 2–3

times to ensure lac constitutive expression. I then used PCR and sequenced the

lacI gene and used only those mutants with the same mutation that was present in

evolved clones (4 base-pair insertion or deletion).

3.2.4 Mutation Rate Estimates

The rate of mutation to the constitutive lac expression phenotype, most of which

reflect lacI mutations [259, 260], was estimated using a fluctuation test [183] for

lacI+ populations, to determine whether lacI– mutations were absent due to a lower

evolved mutation rate. For each clone, the freezer stock was grown overnight at

37◦C in LB and diluted 1:1000 independently into 10 fresh LB cultures (1 mL each).

After overnight growth, 100µL sample from each replicate population was plated

onto DM agar supplemented with X-gal and P-gal. A diluted sample was also

plated onto LB agar plates to estimate total cell density in the culture. After 48-hr

incubation at 37◦C I counted blue colonies on the X-gal/P-gal plates (lacI– mutants)

and colonies on the LB plates.
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Plating Efficiency: Here, the plating efficiency of a given strain represents the

ability to accurately identify lacI– mutants in a culture. This was measured by

combining a known number of lacI– mutants with a lac operon deletion strain and

plating on P-Gal. The deletion strain is not capable of acquiring a lacI– mutation,

since the entire operon is deleted. The plating efficiency can then be calculated as

peff =
mc

me
(3.1)

where mc is the number of mutants counted when plated in combination with

the deletion strain, and me is the number of mutants counted when plated alone.

Colony counts were multiplied by (1/peff) to obtain corrected mutation counts.

Calculation: Mutation rate analysis was carried out using the bz-rates estimator

(http://www.lcqb.upmc.fr/bzrates) [116].

3.2.5 Individual Based Simulations

The frequency of substitution ( fs) for a lacI– mutant is a function of mutation rate,

population size, and mutation dynamics. These dynamics, such as clonal inter-

ference and hitchhiking, can cause significantly faster or slower fixation times. To

estimate the expected fixation time (Tfix) for lacI– mutants in the long-term evolu-

tion experiment, I conducted individual based simulations.

These simulations were done under a Wright-Fisher regime with a genome-

wide mutation rate of U = 7× 10−4 (estimated in Chapter 2) and lacI mutation rate
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of 1.72× 10−7 (measured in the ancestor). Background mutations were subdivided

into 6 classes (3 deleterious, 3 beneficial), each comprising a different proportion

of occurring mutations (Table 3.1). This maintains a realistic DFE (as defined in

2.2.5). Mutations to lacI contributed the measured benefit (8.31% in Lac, 4.05% in

G/L) The effective population size (N = 3.3× 107) [287] is too large to reasonably

simulate. As such, I simulated population sizes from 1× 101 to 1× 105, and use fs

for N = 1× 105 as a conservative estimate for N = 3.3× 107.

Effect Proportion

−10% 4.75%
−5% 23.5%
−2.5% 70%
+2.5% 1%
+5% 0.5%
+10% 0.25%

TABLE 3.1: The Distribution of Fitness Effects (DFE) for simula-
tions. Background mutations were segmented into 6 classes, with
fitness effects from −10% to +10% (Table 3.1). Proportions for each
class satisfy the realistic mean effect (s̄) and proportion of beneficial
mutations (Pben) defined in 2.2.5. Background mutations occur at a
genome-wide rate of 7× 10−4 (Table 2.1). Mutations to lacI occur at a

rate of 1.72× 10−7 (Fig 3.4).

Here I classify a mutation as fixed when it is present in 95% of the population.

Populations were allowed to evolve until a lacI mutation fixed, or they reached

8,000 generations. For each population I simulated 100 replicate populations and

recorded the proportion of populations that fixed a lacI mutation. I then boot-

strapped the simulation results 1, 000 times to estimate the 95% confidence interval
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for fs. For the 2, 000-generation fluctuating environment, I simulated only 2, 000

generations of evolution in lactose, and calculated fs as

fs = f2k + f2k(1− f2k) (3.2)

where f2k is the frequency of substitution for 2, 000-generations of evolution. The

second term represents the number of remaining populations that have not fixed

lacI– after 2, 000-generations (1− f2k) multiplied by the proportion of those popu-

lations expected to fix lacI– in the second bout of lactose evolution ( f2k).

3.2.6 Fitness Assays

The relative fitness of a given strain was assayed relative to its opposite marker

construct (e.g., lacI+ vs lacI–). Fitness assays were carried out in identical condi-

tions to the strain’s evolution environment. Prior to each assay, the two strains

were independently preconditioned to the competition environment. Precondi-

tioning and competitions lasted for 1 day, except for the G/L environment, which

lasted 2 days. For the G/L environment, the growth medium was switched from

glucose to lactose for day 2 (for both precondition and competition). Following

preconditioning, strains were mixed at a 1:1 volume ratio (200-fold dilution) and

immediately plated on the indicator agar (TGX or TA). Competition proceeded

for 1 or 2 days, with a transfer to fresh media (100-fold dilution) between days.

Samples were again plated on the indicator agar at the end of the competition.
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Absolute fitness of a given strain a is calculated as

Wa = ln
(

100d × Na( f )
Na(i)

)
(3.3)

where d is the number of competition days, and N is the number of colony forming

units at the initial (i) and final ( f ) time points. Fitness of a relative to strain b is then

W a
b
= Wa/Wb, and the selective advantage of a over b is sa = W a

b
− 1.

3.2.7 Sequencing

lacI: Constructed lacI+ strains (from lacI– evolved clones) were confirmed via

their inability to grow on P-gal agar. It is more difficult to select lacI– mutants,

as any lac operon mutant that increases expression may grow on P-gal agar [238].

Following the selection of blue colonies (constitutive lac expression) on P-gal, I

confirmed the identity of mutants through PCR and sequencing. Beyond confirm-

ing the presence of a lacI mutant, I chose only 4 base-pair deletions or insertions

for my work. The reasoning is as follows:

1. 8/12 lacI–ev evolved populations contain a 4 base-pair insertion or deletion

2. 4 base-pair insertions and deletions make up 70% of lacI mutants [259, 260]

and thus provide an accurate representation of lacI mutant effects.

Whole Genome: Genomic DNA was isolated and purified using the Wizard

Genomic DNA Purification Kit (Promega) following the protocol for Gram neg-

ative bacteria at one-third volume. Double stranded DNA was then quantified
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using SYBR Green I Nucleic Acid Stain (Invitrogen) in a SpectraMax M5 Fluo-

rescence Microplate Reader (Molecular Devices). Libraries were created follow-

ing the Nextera XT DNA Library Prep Kit protocol, at one-quarter volume, with

Nextera XT Index Kit v2 adapters (Illumina). Libraries were individually quanti-

fied using the Qubit dsDNA High Sensitivity Assay with a Qubit 2.0 Flourometer

(ThermoFisher). DNA fragment size was confirmed using the Agilent 2100 BioAn-

alyzer with a High Sensitivity DNA Analysis Kits (Agilent). Libraries were pooled

and sequenced using a 300 cycle mid-output run on an Illumina NextSeq, pro-

ducing 150 base-pair, paired-end reads (at the University of Houston Seq-N-Edit

Core]. Breseq, a computational pipeline, was used to align reads to the reference

sequence and identify mutations [73]. The whole genome sequencing was carried

out by Rachel Staples, a fellow PhD candidate in the Cooper lab.

3.3 Results

3.3.1 Mutations to lacI are beneficial in the ancestor

Mutations to lacI in the ancestor (REL606) increase relative fitness by 8.31% in lac-

tose (95% CI: 6.50% to 10.1%, 2-tailed t-test: p < 0.001). The same mutation is

costly in the absence of lactose, as the operon is unnecessarily expressed; there is

a −3.83% effect in glucose (95% CI: −6.05% to −1.61%, 2-tailed t-test: p = 0.07).

In the daily switching evolution environment (G/L), lacI– increases relative fitness

by 4.05% over two days (95% CI: 2.54% to 5.55%, 2-tailed t-test: p < 0.01). These

fitness results are similar to previous work in the same strain [238].
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FIGURE 3.2: Effect of lacI mutations on fitness in the ancestor. Fit-
ness of ancestor lacI- mutants in the three evolution environments.
Competitions were performed for lacI– versus the ancestor (lacI+). As
a control, I tested the ancestor versus itself (data not shown). The
dashed line indicates a relative fitness of 1 (no fitness difference). 95%

confidence intervals are shown for each competition (n ≥ 3).

3.3.2 Simulations predict more lacI– substitutions than observed

The frequency of lacI– substitution depends not only on its benefit (Fig. 3.2), but

also on dynamics with other occurring mutations. Clonal interference and hitch-

hiking, along with the stochasticity of mutation occurrence makes lacI– fixation dif-

ficult to predict analytically. Furthermore, it is computationally infeasible to sim-

ulate populations at the experimental size (Ne = 3.3× 107). To test the frequency

of lacI– substitution ( fs) in populations in which other mutations are occurring, I

simulated populations at various sizes between N = 10 and N = 1 × 105, and

used fs at N = 1× 105 as a conservative estimate for N = 3.3× 107. Simulations
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predict that 95.1% of populations in Lac are expected to fix a lacI– mutation. In ex-

perimentally Lac-evolved populations, only 4/6 (67%) populations fixed lacI– (Bi-

nomial test: p = 0.03). For 2, 000-generation fluctuating environments, fs = 0.879.

In this environmental regime, 3/12 (25%) populations fixed lacI– (Binomial test:

p < 1× 10−6). I did not simulate G/L, as this would require data for the effects

of all occurring mutations in both glucose and lactose. If the effect of lacI– lies in

the right tail of the distribution for G/L, as it does for Lac, I expect fs to be sim-

ilar between G/L and Lac. Five out of six (83%) experimental G/L populations

fixed lacI– (Binomial test using simulated fs for Lac: p = 0.26). This is indeed

more similar to Lac than to the 2000-generation fluctuating environments. In total,

simulations predict lacI– to fix in most populations (91.5% overall). However, only

12/24 fixed lacI– in the evolution experiment (Binomial test: p < 1× 10−6).
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FIGURE 3.3: Simulated frequency of substitution ( fs) for lacI–
in Lactose (A) and 2, 000-generation fluctuating environments (B).
Points represent the proportion of replicate simulations (n = 100) in
which lacI– fixed. Error bars are one standard deviation. Means and
errors were calculated using 1, 000 boot-strapped samples. For Lac
(A), populations were simulated for 8, 000 generations. For 2, 000-
generation fluctuating environments, populations were simulated for

2, 000 generations and fs shown was calculated using Eq. 3.2.
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3.3.3 Evolved clones have similar mutation rates to ancestor

The ancestor has a mutation rate of 1.72× 10−7 (95% CI: 1.01 to 2.43× 10−7). This

is very similar to foundational lacI work by Schaaper and Dunn, which found a

rate of 2× 10−7 (1-sample two-tailed t-test: p = 0.39) [259]. Note that the per-site

rate for lacI (1.56× 10−10) is near the upper bound of estimated per-site mutation

rate for this strain (1.6× 10−10) [14]. This is because the lacI gene contains a known

mutational hot-spot [96].
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FIGURE 3.4: Constitutive mutation rate to lacI for 8, 000-generation
lacI+ev populations. Open circles are evolved populations and the
filled in circle is the mutation rate in the ancestor. Mean per locus
mutation rates are calculated from n >= 10 replicates, and errors are
the 95% confidence interval (n ≥ 10). Stars are those populations
with a significantly different lacI constitutive mutation rate, based on

a two-tailed t-test.
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Mutations to lacI are expected to have fixed in all populations, given the ances-

tral mutation rate (Fig. 3.3). If lacI+ev populations evolved lower mutation rates,

this could explain the lack of lacI–. However, most populations have similar lacI–

mutation rates compared to the ancestor (5/8). Three out of eight lacI+ popula-

tions have a significantly different lacI mutation rate than the ancestor (Fig. 3.4).

All three have an elevated mutation rate, making the fixation of lacI more likely.

LG1 is the only population with a >10-fold difference from the ancestral mutation

rate. This clone is a known hypermutator, which is the likely cause of the high lacI

mutation rate observed here. In total, most populations have similar lacI mutation

rates to the ancestor while a few have higher rates.

3.3.4 Fitness effect of lacI– is lower in lacI+ev populations

Epistatic interactions, which create historical contingency, can either increase or

decrease the fitness effects of newly occurring mutations, and potentially cause

populations to diverge. I measured the fitness effect of lacI mutations in 8,000-

generation evolved populations. Deviations in fitness effect from the ancestor in-

dicate the existence of epistatic interactions. Given that lacI– is beneficial in the

ancestor (Fig. 3.2), I hypothesized that lacI– mutations exhibit negative epistasis

with previous adaptations, lowering the fitness effect and decreasing probability

of fixation.

I compared the fitness of lacI+ constructs to lacI–ev clones to test the fitness effect

of lacI– in lacI–ev populations. The fitness benefit of lacI– remains beneficial after

8, 000-generations in all 12 populations where it fixed (lacI–ev). For populations
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where fitness was measured in lactose (evolution environments = Lac, GL, LG), the

grand mean fitness effect of lacI– (9.66%) is not significantly different from the ef-

fect in the ancestor (8.31%, two-tailed t-test: p = 0.53). However, 4/12 populations

are themselves significantly different, three of which are higher (Lac6,G/L6,GL3)

and one is lower (Lac1). The only environment that showed a significantly higher

lacI– fitness than the ancestor was G/L (8.50% vs 4.05%, two-tailed t-test: p = 0.02).

This increase in fitness effect may be due to the compensation of lacI– costs of ex-

pression in glucose. The fitness benefit of lacI– has decreased in all 8 lacI+ev popula-

tions after 8,000-generations (Fig. 3.5). The grand mean fitness of lacI– (0.93) is 0.15

lower than lacI– in the ancestor (two-tailed t-test: p < 0.001). This indicates neg-

ative epistatic interactions between lacI- and the 8, 000-generation lacI+)ev genetic

backgrounds. The genetic divergence at lacI is contingent on other adaptations, as

the fitness effect of lacI– becomes costly in lacI+ev populations and remains benefi-

cial in lacI+ev populations.

3.3.5 Long-term environmental fluctuation promotes divergence

Natural environments are unlikely to be constant, but rather change at some fre-

quency [24,53]. Here, fluctuating between glucose and lactose mimics natural envi-

ronmental changes. I compared the impact of environmental fluctuation (G/L,GL,LG)

on lacI fixation and fitness effect. Briefly, environmental change appears to drive

historical contingency by exposing or increasing mutational costs. However, this

rate of change must be slow enough to select for adaptations which interact nega-

tively with beneficial mutations in another environment.

76



Chapter 3. The Role of Historical Contingency in Divergent Evolution

Ancestor lacI-ev lacI+ev

0.8

0.9

1

1.1

1.2

R
el

at
iv

e 
Fi

tn
es

s

FIGURE 3.5: Fitness of lacI– in 8, 000-evolved populations. Ances-
tral fitness is in black for Lac (circle) and G/L (triangle). Errors shown
are 95% confidence intervals. Blue points are the grand mean for
each population subgroup (lacI+ev and lacI–ev) and open shapes are
individual populations. Circles represent populations evolved in Lac,
squares represent populations evolved in GL or LG, and triangles are

populations evolved in G/L.

In the long-term fluctuating environment (every 2,000-generations), a lacI– mu-

tation was absent in 7 out of 12 populations, and fixed in 3. The ratio of absence

to fixation (7/3) is substantially higher than the other two environmental condi-

tions (see below). If lacI– did fix (3/12), its fitness effect increased in comparison to

the ancestor (mean = 1.13, 2-sample two-tailed t-test: p = 0.03). Alternatively, for

populations in which lacI– did not fix (7/12), its fitness effect is significantly lower

than the ancestor (mean = 0.93, 1-sample two-tailed t-test: p = 0.02). In the daily

switching environment (G/L), populations are exposed to the benefits and costs of

lacI– in rapid succession. In this environmental regime, lacI– fixed in 5 populations
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and was absent in none. For the 5 populations that fixed lacI–, mean fitness of lacI–

(1.085) increased compared to the ancestor (2-sample two-tailed t-test: p = 0.03).

In the constant lactose environment (Lac), cells reap the benefits of constitutive

expression without interruption. Mean fitness effect of lacI– (1.073) is not signif-

icantly different from the ancestor (2-sample two-tailed t-test: p = 0.71). This is

because fitness effect increased in two populations (Lac4, Lac6) and decreased in

the other two (Lac1, Lac3). Interestingly, one population entirely lacked lacI– indi-

viduals. This is surprising given that this environment never exposes costs of con-

stitutive expression. The fitness effect of lacI– in this population (Lac5) decreased

to −0.01% (SD: 0.02) within the first 500 generations of evolution (Fig. 3.6).

3.3.6 Identifying a candidate negative epistatic interaction

In the only 8, 000-generation lactose-evolved lacI+ev population (Lac5), the effect

of lacI– rapidly declined within the first 500 generations (Fig 3.6). I sequenced 4

clones from this lacI+ev population to elucidate the nature of this negative epistatic

interaction. All four clones shared the same mutation, while 3/4 were mutated

at another common site (Table. 3.2). All four selected clones contained a 3 base-

pair insertion in the intergenic region (← I →) between yhiO and uspA, which is

a universal stress global response regulator. Previous work in this strain found a

similar mutation at this site [304]. Three out of four clones have a large deletion

of the rbs operon, which confers the ability to catabolize ribose. A rbs deletion also

occurred in long-term evolved E. coli in glucose only medium [55, 154].
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Gene Clone 1 Clone 2 Clone 3 Clone 4

yhiO← I → uspA +3bp +3bp +3bp +3bp
∆rbs ∆5, 943bp ∆7, 590bp ∆7, 590bp

TABLE 3.2: Shared mutations in 500-generation clones of the Lac5
population.

Ancestor 1 2 3,4
500-Generation Clones

1
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FIGURE 3.6: Fitness effect of lacI– in sequenced 500-generation Lac5
clones. The black point is effect in the ancestor, and blue points are
the effect in evolved clones. The dashed line shows a relative fitness

of 1. All unique genotypes have a significantly lower lacI– effect.

Both of these mutations are indeed present in 4, 000- and 8, 000-generation clones

(previously sequenced [334]), indicating that sequenced clones are representative

of the long-term evolutionary path of this population. However, yhiO← I → uspA

is present only in lacI+ev Lac-evolved populations (Lac2 = mixed, Lac5 = lacI+ev),

one of which is the population of interest here. In contrast, ∆rbs is present in all

six evolved populations, including both lacI+ev and lacI–ev. As such, yhiO ← I →

uspA is a candidate mutation for the negative epistatic interaction with lacI. Future

79



Chapter 3. The Role of Historical Contingency in Divergent Evolution

work will test this relationship directly through genetic constructions.

3.4 Discussion

Epistasis can cause the fitness effects of arising mutations to be contingent on prior

substitutions. These historical contingencies can change available fitness peaks

and thus result in divergent evolution. The degree to which epistasis and contin-

gency shape evolution remain unclear. Large scale landscape reconstructions are

ideal for understanding the principles governing adaptation on the fitness land-

scape. Some recent studies have constructed large numbers of constructs for single

genes [82,248]. However, large inter-gene constructions remain technically infeasi-

ble (32, 768 constructions required for 15 mutations), thus case studies are our best

path forward.

In the ancestor of a long-term evolution experiment with E. coli, mutations to

the lac operon repressor, lacI, causing constitutive expression, increase fitness. Evo-

lutionary simulations predict that ∼ 90% of 8, 000-generation evolved populations

are expected to have fixed a lacI– mutation. Yet, only 50% of evolved popula-

tions are lacI-ev, suggesting the presence of historical contingency. To test the null

expectation of fixation probability I used individual based simulations. Even a sig-

nificantly lower population size (1 × 105) than the true effective population size

(3.3× 107) resulted in nearly all replicates (95.1%) fixing a lacI- mutation. Given

this finding, I then tested the if evolved populations lacked lacI- due to a lower
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evolved mutation rates to lacI. Most populations did not have a significantly dif-

ferent mutation rate than the ancestor after 8, 000-generations of evolution. In fact,

there were a few populations with a higher mutation rate, which may cause even

faster fixation of lacI-.

An alternative hypothesis is that the effect of lacI- on fitness has changed dur-

ing evolution, due to other fixed mutations in the genetic background. I tested this

hypothesis by creating lacI- mutants of the lacI+ev clones and conducting fitness

competitions. I found that the fitness effect of lacI- mutations has become neutral

or deleterious in all lacI-ev populations at 8, 000-generations. This is strong evi-

dence that negative epistasis with the genetic background prevented the fixation

of lacI-. For one population in particular (Lac5), the fitness effect of lacI- decreased

rapidly within the first 500 generations of evolution. I sequenced four clones from

this population to identify a candidate negative epistatic interaction. There were

only two mutated sites common among the clones. One of these sites was also

mutated in most lacI-ev clones. As such, I hypothesized that the alternate mutation

(yhiO ← I → uspA) interacts negatively with lacI-. Future work will confirm this

hypothesis.

This example of historical contingency is due to the stochastic occurrences of

alternative adaptive mutations. It is important to note that the occurrence of such

mutations is environmentally dependent. It is plausible that historical contingency

may be dependent on the environmental regime. In fact, 2, 000-generation switch-

ing environments in this experiment have the highest frequency of lacI+ev pop-

ulations. This suggests that mutations that are adaptive in glucose may interact
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negatively with the lacI- mutation, which is beneficial in lactose. Another inter-

esting implication of this work is that it is evidence against the ‘use it or lose it’

theory of gene regulation control [258]. The theory states that regulatory systems

controlling genes that are not needed should act as negative regulators. This is

because the loss of regulation will provide a selective disadvantage (unnecessary

gene expression). For example, lacI regulates lac operon expression. However, lac-

tose is perhaps not often present in the E. coli natural environment. As such, it

may be advantageous to negatively regulate, so that loss of regulation is selected

against. If such an uncommonly used operon was positively regulated, the loss of

regulation during absence of the inducer may go unnoticed. Yet, when the organ-

ism required the operon products it would not be able to positively induce. The

loss of lacI- in an artificial, high demand environment is consistent with this idea.

Here I observed such loss in only 50% of evolved populations. It is then interesting

that there appears to be an alternative path to negative regulator loss. In Chapter

4, I further explore this study to determine if the maintenance of lacI- is indeed an

’equivalent alternative’ adaptive path to loss of regulation.

82



Chapter 4

Alternate genotypic solutions cause

divergent evolution in E. coli

4.1 Introduction

Interactions with the genetic background can alter mutation effects [187, 198, 237,

249]. For example, a mutation may be beneficial in one genetic background and

costly in another. This epistasis, a statistical deviation from a null model (here

multiplicative) in the fitness effects of genes, is implicated in many parts of evolu-

tionary biology. For example, metabolic networks contain inherent negative epis-

tasis due to the relationship between enzyme activity and fitness, which is linear at

first but levels off as activity increases [17, 84, 142, 149, 151, 294]. Starting from low

flux, the first mutation has a large effect, while a second mutation causing the same

change in flux has a smaller fitness effect. At a larger scale, epistasis can lead to

speciation. An allele that fixes in one population may interact negatively with an
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allele at a different locus in a diverging population [81, 206]. These Dobzhansky-

Muller Incompatibilities (DMIs) have been found in both theoretical models [144]

and laboratory experiments [168, 205, 313]. Despite the complicated physiological

nature of epistasis, recent studies point to general trends that may help predict

mutation fitness effects [49, 154, 164].

One useful categorization of epistasis is the distinction between local and global

interactions [164]. Local interactions are those that depend on specific genetic

background. For example, a mutation which enabled citrate metabolism in E. coli

became beneficial only after a previous mutation increased the activity of the cit-

rate synthase enzyme [30, 31, 239]. Local interactions certainly play a role in evo-

lution [37, 319], however recent work suggests that global interactions also play a

key role [164]. Global interactions are those that depend on general characteristics

of the background, such as fitness. Several studies have found a significant portion

of the variation in the effect of mutations on fitness can be explained by the fitness

of the background [49, 154, 164, 319]. This effect, known as diminishing returns

epistasis, where mutations confer less benefit as background fitness increases, also

explains the trajectories of experimentally evolved populations [330].

Global epistasis may be mediated by common cell-wide physiological processes

[164]. In principle "variation anywhere in the genome affects every character"

[142]. While this is not completely true [2, 153, 331], all gene expression does draw

from the same pool of cellular resources. Gene expression requires a significant

amount of a cell’s energy and nutrients [35] and occupies shared cellular machiner-

ies such as polymerases and ribosomes. As such, the efficiency of gene expression
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is directly linked to growth rate and fitness [143].

Studies in E. coli have typically found that the cost of gene expression is primar-

ily incurred during translation [4,89,191,268,269,306] (but see [85]). The availabil-

ity of ribosomes (i.e., translational capacity), which translate mRNA to proteins,

is a primary cause of this expression cost [54, 255, 306]. Ribosomes are a growth-

limiting factor for rapidly growing bacteria [75, 89, 158, 191, 252, 267, 269, 306]. The

use of ribosomes in translating unnecessary proteins confers a cost by reducing the

capacity to translate necessary proteins that do contribute to growth. For example,

unnecessary expression of the lac operon, in the absence of lactose, can reduce cell

growth [74, 83, 85, 138, 209, 212, 212, 269] (Fig 4.4).

Here I investigate the basis of changes in the fitness effect of a constitutive ex-

pression mutant (lacI-) in the lac operon. After a long-term evolution experiment

(8,000-generations), replicate populations of E. coli show divergence in the lacI

gene. This divergence is due to epistasis with other substitutions, which caused

lacI- to become neutral or costly in populations that did not fix a lacI- mutation

(lacI+ev) (Chapter 3).

In this chapter, I examine various global phenotypes to better understand the

mechanism of epistasis. I find that lacI- mutations no longer provide the same

growth benefit in lacI+ev strains as they do in the ancestor. This cannot be ex-

plained by a greater cost of lac expression, as costs have decreased in lacI+ev strains.

To understand why cost of expression has decreased, despite higher maximum ex-

pression, I tested for a change in the translational capacity of lacI+ev strains. A

selected lacI+ev strain has a higher translational capacity than the ancestor, likely
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due to mutations in the spoT gene. The decrease in cost of expression indicates

that the benefit of lac expression has also decreased, resulting in a net neutral or

deleterious fitness effect (Chapter 3). The lac operon in lacI+ev populations is more

sensitive to induction, indicating that these populations may be able to express lac

proteins more quickly in lactose. This may cause the observed lack of lacI- growth

curve benefit. I find that lacI+ev populations and lacI-ev populations have similar

evolved fitness, which is consistent with the hypothesis that lacI+ev strains substi-

tuted an equivalent alternative to lacI-. In total, the decrease in fitness effect of lacI-

mutations in lacI+ev populations appears to be a result of alternate mutations that

provide a similar benefit and render the benefits of lacI- obsolete.
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4.2 Materials and Methods

4.2.1 Bacterial Strains and Growth Conditions

Bacterial clones used for this experiment were selected from populations in a long-

term evolution experiment in 7 environments (4/7 used here) [53]. Strains that

fixed a lacI- mutation are denoted as lacI–ev and those that maintained the ancestral

allele are lacI+ev. Media used are identical to those described in Chapter 3 (details

in 3.2.1). One addition is the use of glycerol as a growth medium. Here I use a DM

+ 0.2% glycerol environment to measure costs of expression.

4.2.2 Growth Curves

Measurement: For a given clone, growth curves were collected as follows. The

clone was first inoculated from a freezer stock into 1 mL of LB media and grown

overnight. The following day, cells were preconditioned to the desired growth

media (DM supplemented with glycerol, lactose, or glucose) by transferring 1 µL

into 1mL of said growth media and incubated at 37 ◦C for 24 hours. On day three,

2 µL of the preconditioned culture was transferred into 198 µL of the same media

in a 96-well polystyrene plate. This plate was incubated in the microplate reader

(VersaMax) and grown at 37 ◦C until cells reached stationary phase. The culture’s

optical density at 450nm (OD450) was measured every 5 minutes during growth.

Analysis. Growth curves were analyzed using an extension of the standard

logistic model, as presented by Baranyi and Roberts [10, 11, 241]. The model is
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defined as the differential equation

dN
dt

= rα(t)N
(

1−
(

N
K

)v)
(4.1)

where N is optical density, r is growth rate, t is time, K is the maximum density, v is

the deceleration parameter, and α(t) is an adjustment function which determines

lag phase time.

Parameter Biological Meaning

N0 Initial OD
K Final OD
r Growth Rate
q0 Initial state of population
m Rate of sugar accumulation in cell
v Deceleration of growth

TABLE 4.1: Parameters of the Growth Curve Model.

The adjustment function

α(t) =
q0

q0 + e−mt (4.2)

accounts for the adjustment period of a population to new growth conditions af-

ter a transfer to new media. After 24 hours of preconditioning, cultures are in the

stationary phase of the growth cycle and thus do not immediately begin growth

when transferred to fresh media. This equation is useful as it is biologically de-

rived [11, 241]. The variable q0 denotes the starting amount of a given molecule

(e.g., lactose) necessary for growth. The variable m is the rate of accumulation of
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that molecule in the cell. Here I set m = r in order to achieve more stable model fit-

ting [10]. This simplification is biologically reasonable, as the growth rate is likely

determined by the rate of nutrient accumulation in the cell.

The single-strain Baranyi-Roberts equation (Eq. 4.1) has a closed analytical so-

lution

N(t) =
K(

1−
(

1−
(

K
N0

)v)
e−rvA(t)

) 1
v

(4.3)

A(t) =
∫ t

0
α(s) ds = t +

1
m

ln
e−mt + q0

1 + q0
(4.4)

where A(t) is the adjustment equation.

4.2.3 Measuring Expression

The lac operon can be induced both naturally and artificially. Here I employ both

methods, as noted in the text. Natural induction occurs in a lactose-containing

media. The LacZ protein acts on lactose to produce the isomer allolactose, which

binds to lacI and stops repression. Artificial induction can be used to regulate

the level of expression. Here I use it primarily to measure the induction-response

of the lac operon. Isopropyl-β-D-thiogalactoside (IPTG) is a molecular analog of

allolactose, and thus induces the lac operon. However, IPTG is not hydrolyzable

by LacZ and thus confers no fitness benefit and remains at a constant concentration

throughout the experiment.
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Promoter Activity. The use of promoter activity as a measure of expression

is motivated by cell growth diluting effects on LacZ. The activity of LacZ is stable

during exponential growth, such that changes in activity level are primarily due

to the diluting effect of growth [165]. Fitter cells (faster growth) may then appear

to have lower expression levels, if only the standard Miller assay is used, due to

dilution of LacZ. Following Kuhlman et al. (2007), I calculate promoter activity (α)

as

α = MU × dt (4.5)

where MU stands for Miller units (4.2.3) and dt is the rate of cell-doubling (hr−1).

The units of α are thus MU/hr.

LacZ Measurement and Calculation. I measured the activity of LacZ (in Miller

Units) by measuring the amount of β-galactosidase protein (lacZ product). This is

done by using a lactose analog (ONPG), which creates a yellow color after cleav-

age by LacZ. The solution absorbance is then used to calculate β-galactosidase

content. I used the same inoculation and precondition described in Section 4.2.2.

Following preconditioning, 2 µL culture was added to 200 µL fresh DM + 0.2%

glycerol, with a concentration of IPTG as noted in the text. Cells were grown in

a spectrophotometer at 37◦C until mid-log phase (0.15 < OD450 < 0.2, typically

3-5 hours). At this point, cells were lysed by adding 4 µL SDS (0.1%) followed

by 8 µL chloroform. The plate was immediately shaken for 1-2 minutes as solu-

tions for the next step were prepared (this minimizes the effect of the chloroform
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on the polystyrene plate). Thirty µL of the sample was transferred to a new 96-

well polystyrene plate and 120µL of Z-buffer was added. The solution was mixed

using a pipette, and 30µL of o-nitrophenyl β-D-galactosidase (ONPG) (4 mg/mL)

was added. The plate was shaken for 30 seconds, before placing in the spec-

trophotometer. Absorbance (A) was then measured at 405nm (A405) and 490nm

(A490) every 45 seconds for 15 minutes. The activity of lacZ was then calculated as

described below.

First, the background reading of control wells (those with only Z-buffer and

ONPG) was subtracted from all experimental replicates for both A405 and A490.

Next, β-galactosidase content was calculated as

(A405 − r)× A490

OD450 × v
(4.6)

where OD450 is the cell culture density measured directly prior to the assay and

v is the volume of cell culture (in mL) used (here v = 0.2 for all assays). The ratio

of cell absorbency (r) at 405nm to 490nm is r = 0.8 [273].

Cell-Doubling Rate. The LacZ activity assays described above were con-

ducted during exponential growth. To determine the rate of growth, cells were

monitored using a spectrophotometer until they grew exponentially. The doubling

time was calculated using the OD450 from the 10 minutes of growth immediately

prior to removing cells for the assay. Doubling time is then calculated as

dt = log2

(
OD2
OD1

)
/
(

10
60

)
(4.7)
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where OD2 is the OD450 at time of removal and OD1 is the OD450 from 10 minutes

prior.

Model Fitting. I fit a modified Hill function to IPTG induction-response data

data to quantify various features of promoter activity (Table 4.2) [165].

Parameter Meaning

b (MU/hr) Basal expression
f Fold-change
c (µM) Dissociation constant
m Hill coefficient

TABLE 4.2: Parameters and Meaning for the Hill function (Eq. 4.8).

α = b×
1 + f [IPTG]

c
m

1 + [IPTG]
c

m (4.8)

4.2.4 Costs of Expression

Virtual Competitions.

Costs of expression are measured in a 0.2% glycerol environment, such that expres-

sion does not confer any benefits. It is not possible to compete strains at different

expression levels (i.e., different concentrations of IPTG) in a standard fitness as-

say due to the shared environment. Here I use simulated competitions to estimate

relative costs of expression between different expression levels.

I implement a double-strain Baranyi-Roberts [11, 241] to simulate fitness com-

petitions. I first measure growth curves under two different IPTG concentrations

and fit those curves using the single-strain model (Eqs. 4.1, 4.3). These parameters
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are then used in the double-strain model to conduct a virtual competition. The

model is

dN1

dt
= r1α1(t)N1(1− (

N1

K1

v1

)− (
N2

K2

v2

))

dN2

dt
= r2α2(t)N2(1− (

N1

K1

v1

)− (
N2

K2

v2

))

αi(t) =
q0,i

q0,i +e( −mit)

(4.9)

such that i denotes the parameter for a given strain. Critical assumptions of this

model are that the strains occupy independent niches, and all competition occurs

only through resource competition [241]. Costs of expression have previously been

measured as change in maximum growth rate [74, 85]. However, this measure

does not consider all phases of bacterial growth (lag, log, stationary). Moreover,

costs can also change throughout the growth cycle [274]. Here I measure cost as a

decrease in relative fitness (i.e., selection coefficient) over the entire growth cycle.

4.2.5 Translational Capacity

I calculate translational capacity (Kt) by measuring growth rate, and RNA and pro-

tein levels in environments with varying nutritional quality. This is similar to the

approach used by Scott et al. (2010) [269]. I grow cells in multiple concentrations

of lactose (70 µM, 140 µM, 210 µM, 280 µM). These concentrations result in multi-

ple data points (r, λ), to which I use non-linear least-squares fitting to determine

r0 and Kt (Eq. 4.13). I use this approach to compare the translational capacity of an

evolved clone to the ancestor.
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RNA Extraction.

Following overnight growth in LB, cells were transferred to the desired media for

a preconditioning period of 24 hours. On day three, the assay was done using

1 mL of exponentially growing culture (this same sample was used for protein

extraction). I first added 2 mL of RNAprotect Bacteria Reagent into the sample, to

ensure RNA stabilization prior to purification. The sample was then pelleted and

resuspended with 20 µL Qiagen Proteinase K and 200 µL of TE buffer. Following

10 minutes of room temperature incubation, 350 µL of Buffer RLT and 250 µL of

100% ethanol were added to the tube and mixed by vortexing. I then followed

the exact protocol from the RNeasy Mini Kit (Qiagen: 74104) and measured RNA

amount using a NanoDrop spectrophotometer.

Protein Extraction.

Following overnight growth in LB, cells were transfered to the desired concen-

tration of lactose media for a precondition period of 24 hours. On day three, the

assay was done with 1mL of exponentially growing culture (from the same culture

as used for RNA extraction). Total protein content was measured with the Total

Protein Kit (Sigma, TP0300) using the micro Lowry method (Peterson’s modifica-

tion). Bovine serum albumin (BSA) was used to calculate the standard curve. Cell

culture and standard tubes were diluted to 1 mL in micro-centrifuge tubes. 100

µl of deoxycholate (0.15%) and 100 µl trichloroacetic acid (TCA, 72%) were added

to each tube. After incubating at room temperature for 10 minutes, the samples

were centrifuged at maximum speed. Supernatant was removed such that only
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the protein pellet remained in the tube. This pellet was resuspended in 1mL of

50% Lowry Reagent (in water). After a 20 minute room-temperature incubation,

0.5mL of Folin and Ciocalteu’s Phenol Reagent was added. The blue color was

allowed to develop for 30 minutes. The OD750 was measured in comparison to the

blank using a standard cuvette spectrophotometer. The BSA standard curve was

then used to calculate the amount of protein in each experimental sample.

4.3 Results

4.3.1 lacI- mutations lack growth curve benefits in lacI+ev

The fitness effect of lacI- mutations became neutral or costly in all lacI+ev popula-

tions (Chapter 3). To determine the basis of this change in effect, I first compared

the growth curves, in lactose, of lacI+ev clones to their lacI- mutants (Fig. 4.2).

Previously fixed mutations in these strains may modify lacI- fitness effect through

effects on growth dynamics.

I found a significant difference in final density, with the ancestor reaching a

slightly higher OD450 (Table 4.3). This alone suggests that the ancestor has a higher

fitness, however mixed culture competition between strains depends on additional

factors (Fig. 4.1). Cells that constitutively express the lac operon are not hindered

by expression regulation which occurs in the ancestor. The time required to adjust

to new growth conditions (lag phase) strongly affects competition results. A slower

growing strain with a shorter lag phase may out-compete a faster growing strain
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with a longer lag phase. Here, the parameter q0 characterizes the initial physiolog-

ical state of the population. Because both the ancestor and its lacI- mutants were

preconditioned in lactose media, I expected no difference in this parameter. How-

ever, lacI- mutants have q0 = 0.0088, more than two-fold higher than the ancestor

(q0 = 0.0038). Mutations to lacI- in the ancestor also increase the growth rate (r),

from 0.85 to 0.89. The lack of expression regulation likely contributes to both of

these parameter differences. The only parameter with a non-significant difference

between the ancestor and lacI- is growth deceleration (v). In total, lacI- mutations

in the ancestor have a significant effect on growth dynamics, with the largest effect

on q0 and r/m.
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FIGURE 4.1: Growth curves of the ancestor and lacI- mutant. The
ancestor is in orange and the lacI- mutant in blue. Mean OD450 is
plotted as a line, with shaded region representing the 95% confidence
interval. Points shown are model fits, whose parameters are in Table

4.3.

Previous work using these populations has found that mutations in the lac

operon increase fitness by decreasing time in lag phase [238]. The adjustment
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Parameter Ancestor (lacI+) Ancestor Mutant (lacI-)

N0 0.088 (0.00015) 0.088 (0.00005) ∗

K 0.26 (0.0002) 0.25 (0.0003) ∗

r 0.85 (0.008) 0.91 (0.02) ∗

q0 0.0038 (0.0002) 0.0086 (0.0009) ∗

m 0.85 (0.008) 0.89 (0.0009) ∗

v 8.2 (0.86) 8.6 (1.8)

TABLE 4.3: Fitted growth curve model parameters for ancestor and
lacI- mutant. Parameters were calculated by bootstrapping the data
1, 000 times, and fitting Equation 4.3 using a non-linear least-squares
approach. Shown are the mean bootstrapped fits with one standard
deviation in parentheses. Stars indicate p < 0.05 under a two-tailed
t-test. Parameters N0, K, r are all significantly different between the

ancestor and lacI- mutant. Only v is not different.

function controls the acceleration of growth. I estimated when the acceleration

of growth exceeds linear by solving

t
24

=
q0

q0 + (e−m∗t])
(4.10)

for t, using the fitted parameters q0 and m. This approach is consistent with the

expectation that lag time approaches zero as 1/m increases [241]. In lactose, the

ancestor spends 4.98 hours in lag phase, while the lacI- mutants exit lag phase

after only 3.23 hours. This decrease in lag time is due to a more ‘ready’ initial state

(q0) and a faster rate of lactose accumulation in the cell (m) (Table 4.3, Eq 4.10).

On average, lacI+ev clones grow at rate r = 1.17. In the ancestor, constitutive ex-

pression increases the growth rate. However, introducing lacI- into these evolved

clones causes growth rate to decrease by−0.16 (SD: 0.09) to an average of r = 1.01.
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Population lacI+ev Mutants (lacI-)

Lac5 0.74 (0.02) 1.86 (0.01)∗

GL2 0.95 (0.01) 1.68 (0.21)∗

GL5 1.16 (0.02) 1.73 (0.02)∗

GL6 0.86 (0.01) 1.22 (0.02)∗

LG1 0.83 (0.01) 1.99 (0.02)∗

LG2 0.70 (0.01) 1.37 (0.02)∗

LG4 1.41 (0.02) 2.04 (0.01)∗

LG5 1.83 (0.02) 1.75 (0.02)∗

TABLE 4.4: Lag times (in hours) for lacI+ev and their lacI- mutants.
Calculated by bootstrapping data 1, 000 times and using Eq. 4.10 for

model fits. Stars indicate p < 0.05 under a two-tailed t-test.

In this model, growth rate (r) and rate of cellular lactose accumulation (m) are

equal. This implies that constitutive expression in lacI+ev clones cause lactose to

be imported more slowly. lacI+ev clones have a more prepared physiological state

(q0 = 0.012) than the ancestor and its lacI- mutant. Mutations to lacI in lacI+ev

clones cause little change in q0; lacI- constructs have q0 = 0.013 on average, which

represents a 0.001 change (SD: 0.003) from the evolved clones. The primary benefit

of lacI- in the ancestor is a shorter lag phase [238]. On average, lacI+ev clones exit

lag phase after 1.06 hours. Selected lacI- mutants no longer provide the benefit of

shorter lag time as seen in the ancestor (Fig. 4.2). In fact, lacI- mutants in lacI+ev

populations have a longer lag time (mean: 1.70 hours). Constitutive expression

causes lag time to increase by 0.64 hours on average (SD: 0.40 hours, Paired t-test:

p < 0.01).
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FIGURE 4.2: Growth curves for lacI+ev clones and their lacI- mu-
tants. lacI+ev are shown in orange, with lacI- mutants in blue. Lines

are the mean, with shaded regions as the 95% confidence interval.

4.3.2 The cost of expression is lower in lacI+ev

Expression of the lac operon confers both a growth cost and a potential growth

benefit. The benefit occurs only in the presence of lactose, as expressed lac proteins

allow cells to metabolize lactose. The cost occurs from expression and activity of

gene products [74, 85, 291], and is independent of lactose. Changes in cost, benefit,

or both, may drive the observed changes in growth (Fig. 4.2) and fitness effect
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FIGURE 4.3: Virtual competitions predict a similar lacI- fitness ef-
fect to measurements in lactose for lacI+ev strains. Filled circles
show experimental measured fitness effect of mutating lacI+ev strains
to lacI-. Open circles show predicted fitness of lacI- vs lacI+ev based on
independent growth curves in lactose. Errors are the 95% confidence
intervals for both sets of points. Note that due to noise in the growth
curve data, model fitting was unstable and some virtual competitions
resulted in no growth (or even a decrease in OD) for one strain. I

excluded such outliers from the virtual competition predictions.

(Chapter 3). I first tested if the relationship between lac expression and cost has

changed from the ancestor to lacI+ev clones, using a virtual competition approach

(Fig. 4.4) [11, 11, 241].

In the ancestor, the relative fitness cost of the lac operon increases with expres-

sion. Cost (C) increases quickly at first, and then more slowly as relative expression

reaches a maximum (L = 1, Fig. 4.5). This relationship is in contrast to early work

on the expression cost of the lac operon [74], but is consistent with a recent study

that found the cost of lac expression to be the lac permease [85]. The relationship
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between L and C can be fit using a logarithmic function of form

C = a× ln L + b (4.11)

where a affects the curvature (lower a = faster plateau) and b the maximum (ex-

pression at L = 1) of the function respectively. For the ancestor, best fit parameters

are a = 0.13 (SD: 0.01) and b = 0.87 (SD: 0.03). Measured over an entire growth

cycle, maximum expression (L = 1) incurs a relative fitness cost of 0.95. This large

cost is due to a later exit from lag phase and a slower growth rate (Fig. 4.4).

For most lacI+ev populations, the shape of the expression-cost curve is also well

fit by the logarithmic function. However, compared to the ancestor, cost plateaus

more rapidly on average (a = 0.06, 2-tailed Welch’s t-test: p < 1 × 10−4) and

reaches a lower maximum than in the ancestor (b = 0.44, 2-tailed Welch’s t-test:

p < 0.005). There is an average difference of 0.53 between the cost at L = 1 in the

ancestor (0.95) and lacI+ev clones (0.42). Given that the fitness conferred by the lacI-

mutation has decreased in lacI+ev populations (Chapter 3), it is somewhat surpris-

ing that the cost of expression has decreased in these clones. This decrease become

more striking when expression is scaled to the ancestor maximum. Evolved pop-

ulations not only have a lower cost of expression, but also have higher maximum

expression capacity (Fig. 4.5).

There is one exception to the ln-relationship between expression and cost. This

is the Lac5 population, where cost increases exponentially with expression. For

this population, I find that the relationship fits a polynomial function proposed by
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Dekel & Alon (2005)

C = n0× L + n0′ × L2 (4.12)

with parameters n0 = 0.003 and n0′ = 0.08. This difference in the cost function

is interesting, considering that this is also the only population that had a drastic

decrease in lacI- effect within the first 500 generations of evolution (Chapter 3). In

Chapter 3 I identified two candidate mutations for a negative interaction with lacI-

in this population. Future work will determine if this change in the expression-cost

curve may be due to the same interaction.
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FIGURE 4.4: Growth curves, model fit, and virtual competition for
the ancestor in glycerol. A) Growth curves for the ancestor with 0 µM
(orange) and 100 µM IPTG (blue). Lines are the mean, with shaded
regions as the standard deviation. Plotted points are model fits. B)
One-hundred independent virtual competitions between each growth
curve in panel A. Growth in competition is shown by orange (0 µM)
and blue (100 µM) lines. Fitness is calculated using the same equation

as experiments (3.2.6).
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FIGURE 4.5: Cost-expression curves for the ancestor and lacI+ev
populations. Blue points are calculated from independent growth
curves and a virtual competition between model fits. Expression is
scaled to the ancestor. Error bars are standard errors. The red line is
the best fit logarithmic function, with shaded region representing the
95% confidence interval. For comparison, the ancestor best fit func-
tion is plotted as a grey dashed line on each panel. Arrows under the

x-axis show the evolved expression level in Lac (Fig. 4.6)

4.3.3 lacI+ev lac expression is similar to the ancestor in evolution

environments

Higher levels of maximum expression (Fig. 4.5) in lacI+ev strains may be a result of

regulatory changes. I measured natural expression in Lac and Glu to test if lacI+ev

clones have evolved different levels of expression in the evolution environments
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Population a b

Ancestor 0.13 0.87
GL2 0.05∗ 0.48∗

GL5 0.08∗ 0.82
GL6 0.04∗ 0.30∗

LG1 0.08∗ 0.45∗

LG2 0.06∗ 0.36∗

LG4 0.02∗ 0.15∗

LG5 0.07∗ 0.54∗

lacI+ev Average 0.06∗ 0.44∗

TABLE 4.5: Cost-expression model fit parameters for the ancestor
and lacI+ev populations. Parameters are calculated using expres-
sion normalized independently for each clone to its maximum. Stars
represent a significant difference from the ancestor (1-sample 2-tailed

Welch’s t-test, p < 0.05).

Population Cost

Ancestor 0.95
Lac5 0.30∗

GL2 0.48∗

GL5 0.82∗

GL6 0.30∗

LG1 0.45∗

LG2 0.36∗

LG4 0.15∗

LG5 0.54∗

lacI+ev Avg 0.42 (SD: 0.20) ∗

TABLE 4.6: Relative fitness costs of maximum expression (L = 1) for
the ancestor and lacI+ev populations. Stars represent a significant

difference from the ancestor (2-tailed Welch’s t-test, p < 0.05).
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(Fig. 4.6). In Glu, where lac expression is unnecessary, expression is minimal in

the ancestor (0.74 MU/hr, 95% CI: −0.34 to 1.82). In Lac, expression increases

to 27.0 MU/hr (95% CI: 15.87 to 38.19). This is significantly below the 114 MU/hr

expressed by the ancestor lacI- mutant in Lac (two-tailed t-test: p<0.001). However,

this is consistent with work that finds that the benefit of lac expression plateaus at

30% of maximum expression (here 24%) [85, 328]. Expression of the lacI- mutant is

similar in both Lac and Glu (two-tailed t-test: p=0.08).

On average, lacI+ev populations have similar evolved lac expression to the an-

cestor in both Lac (26.9 vs 27.0 MU/hr, two-tailed t-test: p=0.99) and Glu (2.65 vs

0.74 MU/hr, two-tailed t-test: p=0.49). The lacI- mutants, of these lacI+ev clones,

also show no significant difference with the lacI- ancestor mutant in Lac (104 vs

114 MU/hr, p=0.49) and Glu (63.3 vs 78.8 MU/hr, p=0.45). Evolved lacI+ev clones

have higher maximum induced expression than the ancestor in glycerol (Fig. 4.5),

but do not naturally express higher levels of lac than the ancestor in either of the

evolution environments (Fig. 4.6).

4.3.4 Changes in cost of expression are not explained by back-

ground fitness

There is not a significant change in mean expression of lacI+ev in the evolution

environments. Yet, the costs of that expression have decreased. To explore the

cause of decreased cost, I tested the relationship between lac expression and the

fitness of lacI+ev populations (Fig. 4.7). Changes in cost of expression may result
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Anc Lac GL LG Anc Lac GL LG
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FIGURE 4.6: Natural lac expression of lacI+ev populations in Lac (A)
and Glu (B). The ancestor is shown as an open black circle, with its
lacI- mutant as a filled in black circle. Error bars are the 95% confi-
dence intervals. lacI+ populations are shown, by environment, with
number indicating the population number. Black numbers are lacI+ev

clones and blue numbers are their lacI- mutants.

from increases in evolved strain fitness. If the cost of expression is absolute, it may

have a smaller proportional effect on higher fitness strains. Alternatively, faster

growing strains may actually have more to lose from the expression of unneeded

proteins [269]. Costs are lower for evolved strains in comparison to the ancestor

(Table. 4.6, Fig. 4.5). However, there is no significant monotonic relationship for

relative fitness in Lac (Spearman’s ρ = −0.03, p = 0.93) or Glu (Spearman’s ρ =

−0.17, p = 0.67). Because evolved fitness alone does not explain the change in

cost of lac expression, I tested a proposed determinant of growth rate and fitness
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in bacteria - translational capacity [269].
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FIGURE 4.7: Relationship between cost relative fitness in evolution
environments. The relationship was non-significant for both lactose

(A) and glucose (B), based on a Spearman’s rank correlation test.

4.3.5 Evolved cells have a higher translational capacity

This growth rate of bacterial cells is directly related to protein synthesis, as proteins

are necessary for growth. The rate of protein synthesis, which depends on ribo-

some content, can be captured using the RNA/protein ratio (R). Scott et al. (2010)

found that the RNA/protein ratio is linearly correlated with growth rate. This is

because faster growing cells require more ribosomes which themselves have a high

RNA/protein ratio. They propose a phenomenological parameter — translational

capacity (Kt), calculated as

Kt =
λ

R− r0
(4.13)
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where R is the RNA/protein ratio, λ is the growth rate (ln(2)/dt), r0 is the vertical

intercept, Kt is the translational capacity.

I compared the selected lacI+ev population, LG2, to the ancestor, as an indica-

tion of evolved translational strain capacity (Fig. 4.8). The range of R is similar

between LG2 and the ancestor, indicating that they have similar ribosome avail-

ability. However, R increases with λ more slowly in LG2 than in the ancestor. This

means that the lacI+ev clone has a greater translational capacity (Kt = 0.20, 95%

CI = 0.05) than the ancestor (Fig. 4.8) (Kt = 0.12, 95% CI = 0.02, 2-tailed t-test:

p = 0.03). In other words, cells improve their rate of protein synthesis as they

evolve.
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FIGURE 4.8: Translational capacity measurements in the ancestor
and LG2. RNA, protein, and growth rate were measured in lactose
with increasing concentration from 70 to 210 µM. Kt is calculated as
the inverse of the slope for each linear regression. Error bars represent

95% confidence intervals.
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Given this finding, I examined whole-genome sequences of lacI+ev populations

to identify the genetic basis of this increase in Kt. Ribosome synthesis is regulated

by multiple mechanisms in response to external (environmental) and internal (cel-

lular) conditions [40]. One of these mechanisms is the alarmone ppGpp (guanosine

5’-diphosphate 3’-diphosphate), which activates the "stringent response" [236]. Un-

der stressful conditions, ppGpp down-regulates ribosome synthesis and increases

the transcription of biosynthetic genes [284,300]. In E. coli, the RelA and SpoT pro-

teins regulate ppGpp concentration in response to a variety of stresses, including

temperature [90, 109], growth cycle phase [170], nutrient availability [22, 100, 283,

307], and amino acid levels [133].

Population spoT

Lac5 M330I
GL2 G207D
GL5 R701Q
GL6 G207V
LG1 -
LG2 V593E
LG4 I446M
LG5 R209L∗

TABLE 4.7: Mutations in spoT in lacI+ev populations.

Seven out of eight lacI+ev populations have a mutation in spoT (Table. 4.7).

The lone population without a mutation to spoT is LG1, which is a hypermutator

and may have other ribosome-affecting mutations. These mutations are thought

to cause a decrease in ppGpp concentration [54], which in turn increases the tran-

scription rate of tRNA and rRNA genes [12]. Higher levels of ribosome synthesis
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could then drive an increase in translation rate [280] and growth rate [255]. In fact,

19 of 25 evolved populations (both lacI+ev and lacI-ev), in environments used here,

have a mutation in spoT, suggesting that increasing ribosome synthesis (i.e., Kt)

may be a key mechanism for fitness improvements in this experiment [54]. Future

work will test if spoT mutations are the cause of this increase in Kt and decrease in

expression cost.

4.3.6 lacI+ev appear to have substituted lacI- alternatives

Expression of the lac operon confers lower expression costs lacI+ev strains (Fig. 4.5,

Fig 4.5). As such, the cause of decreased fitness effect (Chapter 3) must be a de-

crease in the benefit conferred in Lac. This may be because lacI+ev populations

have substituted alternative mutations that provide an equivalent growth advan-

tage. This appears to be the case for the effect of lacI- on the growth curve (Fig.

4.2). However, it is difficult to address the basis of this effect directly because of

the large number of other mutations present in these 8, 000-generation evolved

clones (≥ 15). If lacI+ev populations have substituted mutations with equivalent

demographic effects to lacI-, I expect them to have similar evolved fitness (in Lac)

to lacI-ev strains.

There is no significant difference between the mean evolved fitness of lacI+ev

populations (W = 1.35) and lacI-ev populations (W = 1.37, two-tailed t-test: p =

0.60) (Fig. 4.9). This holds within evolution environments as well. In the Lac envi-

ronment, the only lacI+ev population has a fitness of 1.43 while the mean fitness of
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lacI-ev populations is 1.42 (p = 0.77). In the 2, 000-generation fluctuating environ-

ments, lac+ev have a mean fitness of 1.33, which is not significantly different from

lacI-ev populations (1.32, p = 0.85).
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FIGURE 4.9: lacI+ev and lacI-ev populations have similar fitness in
Lac at 6, 000-generations. Filled circles indicate lacI-ev and open cir-
cles indicate lacI+ev. The mean for all populations is shown on the
left, followed by evolved population fitness each environmental treat-
ment. Error bars are 95% confidence intervals. This data was collected
by Rebecca Satterwhite, a previous student in the Cooper lab [257].

4.3.7 lac induction is more sensitive in lacI+ev

To determine the basis of the effect of alternative substitutions in lacI+ev strains,

I tested the induction-response of the lac operon (Fig. 4.10). If lacI+ev strains are

more sensitive to induction, this would indicate that they are able to induce the
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lac operon more quickly in Lac. Faster induction in Lac may result in the shorter

observed lag time.
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FIGURE 4.10: Induction-response curves for the ancestor and
lacI+ev populations. Blue points represent experimental measure-
ments, with standard deviations shown. Model fits are shown as
red lines in each panel. For comparison, ancestor induction-response

curve is shown as a grey dashed line in panels of evolved clones.

With glycerol as the sole carbon source and in the absence of IPTG, the ancestor

still produces b = 0.90 MU/hr (Fig. 4.11. This is similar to the level of expression

seen in glucose (Fig. 4.6B). In the ancestor, fold change in lac expression when

IPTG is added ( f = 120) is significantly lower than in other studies [86, 165, 213].

This is likely due to b > 0. Even a small increase in b may in fact be a multiple-fold

change in the denominator of the fold-change equation (maximum/basal). The
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FIGURE 4.11: Model parameters of induction-response curves for
the ancestor and lacI+ev populations. Shown are three parameters of
interest: maximum expression (b × f ), dissociation constant (c), and

sensitivity (m).

Hill Coefficient (m), which describes the cooperativity of ligand-binding, and can

be visualized as the rate of increase during the transition region of the sigmoidal

repsonse curve, is comparable to previous findings (m = 4.4) [165]. The high

sensitivity is a result of positive feedback with lacY, which codes for the permease

that imports lactose (here IPTG) into the cell [165].

In populations that maintained the functional ancestral gene (lacI+), the basal
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expression rate of the lac operon is not significantly different than that of the ances-

tor (two-tailed t-test: p = 0.71). Mean fold change is much higher than the ancestor

( f = 532 vs f = 120), however this is driven by a few outliers with very low basal

expression. LacI proteins are inferred to dissociate less frequently from IPTG in

lacI+ev clones (c = 90.5 µM) in comparison to the ancestor (c = 146 µM, 2-tailed

t-test: p < 0.001). During lactose evolution there was likely selective pressure for

less repression by LacI. Lower c results in less repression by LacI (i.e., more lac ex-

pression) because LacI dissociates less frequently from IPTG. The mean sensitivity

of response (m) is higher in lacI+ev clones than the ancestor (m = 7.8 vs m = 4.4).

This more sensitive response to induction may cause metabolism to occur sooner

after exposure to lactose, and could potentially explain the shorter lag phase in

lacI+ev strains (Fig. 4.2).
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4.4 Discussion

In Chapter 3, I showed that fitness effect of lacI- mutations is neutral or delete-

rious in all 8, 000-generation evolved lacI+ev populations. I interpreted this to be

negative epistasis with the preexisting genotype. This negative epistasis could be

a result of multiple mechanisms. First, it could be due to local interactions with

other mutations in the lac system (1.5). This is likely the case for the Lac5 popu-

lation, where the decrease in lacI- fitness occurs within the first 500 generations of

evolution (Fig. 3.6). Alternatively, mutation interactions may be mediated glob-

ally [164], perhaps through competition for a common resource pool necessary for

expression [142]. I hypothesized that this is the case for most lacI+ev populations.

To investigate the basis of changes in lacI– fitness effect, I measured various

phenotypes affected by lac expression. Constitutive expression provides a growth

benefit in the ancestor by decreasing the length of lag phase [238]. This benefit

no longer occurs in lacI+ev strains (Fig. 4.2). One possible explanation for this

is that lactose transport has changed during evolution, such that expression can

occur quickly after lactose exposure without lacI–. Cells growing in a very low

nutrient medium are predicted to have up-regulated nutrient uptake [302]. For

yeast evolving in a glucose limited environment, multiple glycolysis enzymes and

proteins, and a hexose transporter were significantly up-regulated [161]. One way

to investigate if another lactose transporter exists is to delete lac permease (LacY).

If lac induction still occurs, this would support an alternative mechanism of lactose

transport. If lac induction does not occur, a regulatory change is likely driving the
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observed growth benefit.

Regulatory changes are a common mechanism of evolution [59, 197, 238]. A

study by Dekel and Alon (2005) found that lac operon expression can be optimized

over just a few hundred generations of evolution [74]. Interestingly, lacI+ev strains

here do not evolve different levels of lac expression in the evolution environments

(Fig. 4.6). They do, however, evolve a more sensitive induction-response to IPTG

(Figure 4.10). This change likely causes sooner metabolism following lactose expo-

sure, and may explain why the lag phase benefit of lacI- mutations is nonexistent

in lacI+ev strains; the lag phase phenotype is already near its fitness optimum. To

check if this is the case, I plan to compare the length of lag phase in these 8, 000-

generation evolved strains to 50, 000-generation glucose evolved strains from a

similar experiment [174]. If the length of lag phase is similar, this would indicate

that lacI+ev strains used here are indeed near the lag phase fitness optimum.

In addition to greater sensitivity, lacI+ev strains have higher maximum lac ex-

pression levels under IPTG induction. One explanation for these regulatory changes

may be changes in DNA toplogy. DNA supercoiling modulates both transcription

and translation. Greater negative supercoiling increases the binding affinity be-

tween LacI and the lac operator [107], and has been shown to improve the sensi-

tivity of genetic switches [79]. In a similar long-term evolution experiment, there

was parallel evolution for greater negative DNA supercoiling [60, 61]. None of

the lacI+ev populations have mutations to the genes affecting supercoiling identi-

fied by Crozat et al. (2010) [61], however it may have increased via an alternative

mechanism in this experiment.
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In spite of higher expression potential, lacI+ev strains have lower costs of lac

expression. This is in contrast to a prediction that faster growing strains have more

to lose from the expression of unnecessary proteins [83, 269]. Two studies have

found a higher cost of protein synthesis for cells with higher growth rates [83,

269]. These studies manipulated growth rate using nutrient quality, as opposed to

evolved strains with different growth rates in the same medium. It’s possible that

expression is more costly in those studies because cells are not previously adapted

to the environments used. In contrast, cells that are well-adapted to a minimal

sugar environment may have optimized gene expression during their evolution,

and thus suffer lower costs. This hypothesis is supported by the finding that highly

expressed genes in natural bacteria are optimized to minimize protein production

cost [105].

The basis for expression costs may be that unnecessary expression diverts cel-

lular resources from necessary gene expression that contributes to growth [117].

Ribosomes are a necessary resource for translation and have been shown to be

growth-limiting in both slow and fast growing E. coli [269]. If evolved costs have

decreased due to greater ribosome synthesis, this would be evident by higher a

RNA/protein ratio (R) in evolved cells. However, I do not find higher R in a lacI+ev

strain. Instead, I find that this evolved strain can grow faster than the ancestor at

similar R (i.e., they have a higher translational capacity, Fig. 4.8). This higher trans-

lational capacity is potentially a result of improved translation efficiency, which

could occur at the multiple levels of translation, including initiation, elongation,

or protein folding [244].
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Improvements in translation efficiency may occur at the level of mRNA [244].

In E. coli, there are ∼ 500 times as many proteins as mRNA [180, 266]. As such,

costs of expression may occur from mRNA scarcity. Resources may be allocated to

transcription and translation, but protein synthesis delayed due to limited mRNA

availability. An increase in mRNA would alleviate this issue, however its synthe-

sis is costly [308]. Alternatively, mRNA half life may have increased. The typical

mRNA half life is ∼ 5 minutes in E. coli, while protein half-lives are 180 minutes

on average [244]. Even a small increase in half-life would create a significant im-

provement in the proteins produced per mRNA. This hypothesis is also consistent

with the finding of higher maximum inducible expression levels for lacI+ev (Fig.

4.10).

Beyond changes in the magnitude of cost, the shape of the expression-cost re-

lationship is a departure from the exponential cost curve predicted by Dekel and

Alon (2005) [74]. They model lac expression cost based on the intuition that cost

is a result of constrained cellular resources. They predicted that cost increases ex-

ponentially as those resources become rarer. A more recent study found that, in

genetically engineered strains, the cost of lac expression was due to the toxicity

of the lac permease (lacY) [85]. They found that cost increases quickly with LacZ

concentration and then slows as the cell reaches maximum lac expression. My find-

ings are consistent with this cost function, suggesting that costs of expression are

a result of protein toxicity.

If cost is due to protein toxicity, there may be a simple explanation for lower

costs in evolved strains. In a separate, but similar, long-term evolution experiment
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with E. coli, cell size increased significantly in evolved strains [173]. If costs are

indeed due to protein-toxicity, it is plausible that dilution effects may cause costs

to decrease as cell size increases. Because we do not have cell size data for the

experiment used here, I used the Lenski long-term experiment for a brief analysis

[174]. In that experiment, cells increased from the ancestral size of 0.37 fL (10−15 L)

to an average size of 0.82 fL (SD: 0.13) after 8, 000-generations of evolution [173]. In

this Chapter, I found that the relative fitness cost of lac expression decreased from

0.95 in the ancestor to an average of 0.42 in 8, 000-generation lacI+ev strains (Table

4.6). Remarkably, this is a very similar fold-change (2.24x) to the Lenski experiment

increase cell size (2.21x). If cells in this experiment evolved similar increases in cell

size to those in the Lenski experiment, then the dilution-effect on protein toxicity

seems a likely candidate to explain decreases in cost of expression. Future work

will determine if lacY protein toxicity is indeed the cause of expression costs in this

experiment, and if the evolution of cell size explains decreases in lac expression

cost.

In total, I found that lacI+ev populations have likely substituted alternative mu-

tations to lacI– that provide an equivalent (or similar) growth benefit in lactose. I

found changes in lac regulation, cost of expression, and translational capacity —

all of which merit further work to elucidate the underlying causes.
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Chapter 5

The Imperfections of Evolution

Experiments

Perhaps the first laboratory evolution experiment was done by W.H. Dallinger in

the nineteenth century [64]. He subjected unidentified protists to progressively

increasing temperatures over the course of seven years. The ancestral popula-

tion was sensitive to temperatures above 140 ◦F, yet adapted individuals were

able to survive at 158 ◦F. Over the past 100+ years, laboratory experimental evo-

lution has improved our understanding of mutation characteristics [18, 94, 194],

genotype × environment effects [314], social evolution [220], the evolution of sex

[8, 118, 130, 152, 227, 249], and many other concepts [110]. In Chapters 2 and 3, I

used experimental evolution to investigate the influence of historical contingency

on divergent evolution, and the cause of changes in mutation fitness effect. One

complication to generalizing my findings is the applicability of evolution experi-

ments to natural environments.
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Experimental evolution provides a unique balance between strength of infer-

ence and technical feasibility. Experiments are relatively easy to maintain over

many months or years. Population size, environment, and replication can be eas-

ily manipulated. For example, the Lenski evolution experiment is at ∼ 70, 000

generations [174]. However, despite its appeal, laboratory experimental evolution

does have some limitations. The most obvious, perhaps, is the difference between

laboratory and natural environment.

Laboratory environments tend to be much simpler than those in nature. Benign

environments likely impose selection on many fewer traits than natural environ-

ments, and the strength of selection is likely weaker as well. For example, I find

that genetic divergence in E. coli is a result of multiple genotypic solutions to the

same phenotypic problem (Chapter 4). This may not be possible in harsher, natu-

ral environments. Natural environments tend to be more complex and the fitness

landscapes are more rugged [192]. If there are fewer accessible paths to higher

fitness, I expect negative epistasis, due to benefit redundancies, to drive less ge-

netic divergence than in the laboratory. Of course, divergence could still occur

for other reasons, such as adaptation to alternate peaks. Some studies have found

that genome architecture is quite different between natural and laboratory E. coli

strains [80, 106]. Even among natural isolates, there can be significant variation in

genome size [25, 91, 230]. Such discrepancies should caution biologists from ap-

plying inferences from laboratory experimental evolution to natural populations.

Of course, one solution to this problem is to make laboratory environments more

similar to natural environments. For example, Bradshaw and Holzapfel (2001)

122



Chapter 5. The Imperfections of Evolution Experiments

used the natural plant habitat of a mosquito species as a micro-habitat in the lab,

and used natural photo- and thermo-periods to simulate sunlight [33]. A second

complication is that inferences based on laboratory-evolved populations cannot be

directly applied to natural populations. The way in which laboratory organisms

respond to selection can be fundamentally different from those in nature [223,254].

Transferring organisms directly from the field is an ideal solution for this issue.

However, such populations must then adapt to both the laboratory environment

in general, as well as the specific medium that they are subjected to. For example,

microbes that are transferred into the laboratory quickly evolve changes in colony

morphology [166]. Starting with natural populations allows for more direct infer-

ences. However, these inferences are confounded by the effects of domestication.

On the other hand, using laboratory-adapted populations isolates the effects of se-

lection, but limits the ability to extrapolate findings to natural populations. A so-

lution to both of these issues is to do experimental evolution in the field. This has

been successfully carried out in multiple cases [192, 289]. However, it tends to be

logistically challenging. Furthermore, it’s difficult to determine the exact cause of

observed changes due to the simultaneously presence of many variables. Despite

some drawbacks, laboratory experimental evolution offers one of the most appli-

cable and technically feasible approaches for studying the underlying processes

and mechanisms of adaptation.

A separate problem, specifically related to the study of fitness landscapes, is

‘the problem of scale’ [70]. Experimental landscape constructions to date provide
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only a local view of the fitness landscape. The information they provide is de-

pendent on the small set of mutations used. As a result, inferences from such ex-

periments are not necessarily indicative of characteristics of the entire landscape.

In order to understand general principles of the fitness landscape, it’s ideal to con-

duct experiments at a large scale. A recent experiment tested > 45, 000 interactions

between 87 mutation-pairs in yeast tRNA [82]. Modern genetic methods are mak-

ing it increasingly feasible to examine large numbers of genotypes within a given

gene. Another study synthesized 410 DNA oligomers and tested for affinity to one

protein [248]. It is technically more difficult to study interactions between genes.

Nonetheless, its important to continue analysis of the inter-gene fitness landscape

on a case-study basis, as presented in Chapters 3 and 4. Beyond the academic

pursuit of evolutionary principles, studying the fitness landscape has the poten-

tial to solve ‘real-world’ problems. For example, epistasis plays a critical role in

the evolution of the H5N1 influenza virus [119] and evolution of antibiotic resis-

tance [224].

Because fitness landscapes are difficult to study at large-scale, it’s important to

combine experiments with modeling approaches. Models play an integral role in

the study of evolutionary biology. However, their utility is often questioned [65].

Models are useful for a few reasons. First, they can be used to generate empiri-

cally testable, quantitative predictions [147]. Second, they can be used to improve

upon empirically observed patterns. Lastly, as Servedio et al.(2014) eloquently

explain, models have significant utility even as "proof-of-concepts" [272]. These

models test verbal arguments by specifying them mathematically and testing their
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validity. Some models have an obvious connection to empirical work. For exam-

ple, models of DNA substitution can take into account known biochemistry, GC

content variation, and the nucleotides themselves [6, 132]. However, the utility

of models is often questioned when they are of qualitative nature, as opposed to

quantitative. Evolutionary mechanisms, and the resulting biological patterns, are

complex and verbal models are nearly always flawed in some regard. I posit that

qualitative mathematical models, such as FGM, are in fact necessary to help de-

velop verbal models to the stage of empirical testing. Take FGM as an example.

R.A. Fisher explained his geometric model in ∼ 1 page in The Genetical Theory of

Natural Selection [99]. Yet, over the past 90 years, the model has proven useful to

study the effects of beneficial mutations during adaptation [217], genetic incompat-

ibilities and speciation [102], epistatic interactions [194], the DFE [20, 193], and the

core adaptive processes of mutation and selection [193] (Chapter 2). For adaptive

landscapes in particular, we should continue to develop methods for comparison

between models and experiments [29, 295].

My hope is that the work presented in this thesis, using both modeling (FGM)

and experiments (E. coli), improves our understanding of the processes and mech-

anisms underlying evolution. I have employed a combined approach of modeling

and experiments in an effort to better understand evolution on the fitness land-

scape.
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