
MACHINE LEARNING METHODS FOR SOFTWARE

VULNERABILITY DETECTION

A Thesis Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Boris Chernis

August 2017

MACHINE LEARNING METHODS FOR SOFTWARE

VULNERABILITY DETECTION

Boris Chernis

APPROVED:

Dr. Rakesh Verma, Chairman
Dept. of Computer Science

Dr. Weidong Shi
Dept. of Computer Science

Dr. William Arthur Conklin
Dept. of Information System Security

Dean, College of Natural Sciences and Mathematics

ii

Acknowledgements

First and foremost, I would like to thank my advisor, Dr. Rakesh Verma, of the

Department Computer Science at the University of Houston. Dr. Verma spent many

office hours with me, providing guidance, numerous insights, valuable suggestions,

and motivation. He also examined my report very thoroughly and helped me polish

it. Without Dr. Vermas help, the timely and satisfactory completion of this project

would have been completely impossible.

Next, I would like to thank Dr. William Arthur Conklin of the Department of

Information System Security. Dr. Conklin spent several hours helping me polish

my defense presentation and its delivery, and he also gave me valuable information

pertaining to my topic.

Next, I would like to thank Dr. Weidong Shi of the Department Computer

Science. He generously volunteered his time to be on my defense committee.

Finally, I would like to thank Ayushman Dutta, a former classmate of mine. He

helped me understand some of the concepts related to my topic and also provided a

few useful suggestions related to my project.

iii

MACHINE LEARNING METHODS FOR SOFTWARE

VULNERABILITY DETECTION

An Abstract of a Thesis Presented to

the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

By

Boris Chernis

August 2017

iv

Abstract

Software vulnerabilities are a primary concern in the IT security industry, as mali-

cious hackers who discover these vulnerabilities can often exploit them for nefarious

purposes. Numerous countermeasures, such as canaries, data execution prevention,

and address space layout randomization, have been implemented to deter attackers

from gaining full control over systems, but thus far, most of these techniques are

only minor hurdles for a determined adversary. Currently, the only way to prevent

systems from being exploited is by writing secure code. However, complex programs,

particularly those written in a relatively low-level language like C, are difficult to fully

scan for bugs, even when both manual and automated techniques are used. Because

analyzing code and making sure it is securely written is proven to be a non-trivial

task, improving the existing techniques for automated bug detection is an important

area of research. Both static analysis and dynamic analysis techniques have been

heavily investigated, and this work focuses on the former.

The contribution of this paper is a demonstration of how it is possible to catch

a large percentage of bugs by extracting features from C source code and analyzing

them with a machine learning classifier. Both simple and complex features were

extracted from these functions, and the simple features unexpectedly performed bet-

ter than the complex features. This suggests that simple features might be worth

researching further, because they are very cheap to analyze and seem to have a lot

of potential for vulnerability detection.

v

Contents

Acknowledgements . iii

1 Introduction 1

2 Background 4

2.1 Software Vulnerabilities . 4

2.1.1 Integer Overflow Attack . 5

2.1.2 Format String Attack . 6

2.1.3 Heap-Based Buffer Overflow Attack 7

2.1.4 Stack-Based Buffer Overflow Attack 7

2.2 Features used for classification . 10

2.2.1 Entropy . 10

2.2.2 N-grams . 12

2.2.3 Suffix Trees . 12

2.3 Machine learning classifiers . 14

2.3.1 Naive Bayes . 14

2.3.2 K Nearest Neighbors . 15

2.3.3 K-Means Clustering . 16

2.3.4 Neural Network . 17

2.3.5 Support Vector Machine . 17

2.3.6 Decision Tree . 18

vi

2.3.7 Random Forest . 18

2.4 Principal Component Analysis . 19

2.5 Result evaluation . 19

3 Previous Work 21

4 Experiment Overview 40

4.1 Sanity check . 40

4.2 Data Collection . 43

4.3 Dataset creation . 44

4.3.1 Parsing and Randomization 44

4.3.2 The “mixed” dataset . 44

4.4 Preprocessing . 47

4.5 Feature extraction . 49

4.6 Feature selection . 49

4.7 Classification . 50

5 Results and Analysis 51

5.1 Trivial feature tests . 52

5.2 N-grams tests . 55

5.2.1 Cross-validation and combining with trivial features 66

5.3 Suffix Trees . 66

5.4 Principal Component Analysis . 67

5.5 Test results with other classifiers . 68

5.6 Testing the “mixed” dataset . 69

5.7 Unbalanced Datasets . 70

5.8 Error analysis . 71

vii

6 Conclusions and Recommendations 74

Bibliography 76

A The call stack 81

B Creating a shellcode 87

C Metasploit 98

D Default classifier parameters in SciKit 103

D.1 Gaussian Naive Bayes . 103

D.2 K Nearest Neighbors . 103

D.3 K means clustering . 104

D.4 Neural network . 105

D.5 Support vector machine . 107

D.6 Decision tree . 109

D.7 Random forest . 111

viii

List of Figures

2.1 Integer overflow vulnerability example 6

2.2 Format string vulnerability example 6

2.3 Heap overflow vulnerability example 7

2.4 Maximum entropy in coin toss occurs if the coin is fair. 11

2.5 Suffix tree for “good” and “hood” . 13

2.6 K Nearest Neighbors Classifier . 16

2.7 Neural network example . 17

2.8 Decision tree example . 18

2.9 Confusion matrix example . 20

3.1 False positive rates with different tools 23

3.2 Example of annotation . 24

3.3 Example of annotation . 25

3.4 Rewritten instruction . 27

3.5 Potentially dangerous instructions . 29

3.6 Potentially dangerous instructions after unsound static analysis . . . 30

3.7 Why symbolic execution is needed . 32

3.8 Why symbolic execution is needed . 33

3.9 Generation tests with SAGE fuzzer 34

3.10 Data flow graph and analysis group 36

ix

3.11 Taint analysis . 37

3.12 Dowser performance comparison . 38

3.13 Dowser static analysis performance comparison 39

4.1 The Iris dataset . 41

4.2 Classifier results using Iris dataset . 42

5.1 Trivial features that were extracted for classification 52

5.2 Feature selection method performance comparison 56

5.3 Feature selection method performance comparison 57

5.4 Four confusion matrices . 58

5.5 Character 1-grams (e-mails vs functions) 59

5.6 Character 2-grams (e-mails vs functions) 60

5.7 Word 1-grams (e-mails vs functions) 60

5.8 Word 2-grams (e-mails vs functions) 61

5.9 Suffix tree result: e-mails vs functions 67

5.10 Error Analysis: True Negatives . 71

5.11 Error Analysis: False Positives . 72

5.12 Error Analysis: True Positives . 72

5.13 Error Analysis: False Negatives . 73

A.1 Process memory layout . 81

A.2 ”Call” instruction . 83

A.3 Prologue . 84

A.4 Epilogue . 85

A.5 Return instruction . 86

B.1 Stack layout before and after shellcode injection 88

B.2 Memory layout needed for shellcode 89

x

B.3 Non-injectable shellcode . 90

B.4 Injectable shellcode . 91

B.5 A segmentation fault occurred, because we overwrote the return ad-
dress with an invalid value. 92

B.6 We can get the stack frame size by measurein the distance from the
beginning of the input buffer to the return address. 94

B.7 We made the return address point to a function that would have oth-
erwise been inaccessible in the control flow. 95

B.8 We used a shellcode to gain root access. 97

C.1 We enumerate all running services with nmap. 99

C.2 We find an exploit and launch it. 101

C.3 We have a shell!! . 102

xi

List of Tables

4.1 Linux utilities with vulnerabilities . 46

4.2 Top 20 C keywords . 48

5.1 Trivial feature classification (No preprocessing) 53

5.2 Trivial feature classification (Preprocessing Method 1) 53

5.3 Trivial feature classification (Preprocessing Method 2) 53

5.4 Top 5 trivial feature combinations . 55

5.5 Character n-grams of several different lengths 62

5.6 Word n-grams of several different lengths 63

5.7 Combinations of n-grams . 64

5.8 Number of n-grams selected for each type/length 65

5.9 Results for each combination of n-grams 65

5.10 Results for different classifiers . 68

5.11 Mixed dataset results . 69

5.12 Unbalanced dataset results . 70

A.1 Three pointer registers . 82

xii

Chapter 1

Introduction

In the IT industry, software bugs are a big concern especially in security-sensitive

programs. Some of these bugs are exploitable vulnerabilities, and malicious hackers

who discover these vulnerabilities can sometimes exploit them for nefarious purposes.

A malicious attacker can do a wide variety of things to vulnerable running services.

In some cases, he can crash an important running program, leading to a DoS (denial

of service). In other cases, the attacker can escalate his privileges or even achieve

full control over the machine. Even though numerous countermeasures have been

implemented in both compilers and operating system to mitigate this, they have

proven to be little more than a nuisance to determined adversaries.

Thus far, the only way to prevent hackers from successfully completing a vulnera-

bility is to write secure code. However, complex programs, particularly those written

in a relatively low-level language like C, are difficult to scan for bugs, even when both

manual and automated techniques are used. Microsoft spends roughly 100 machine

1

years per year using automated techniques to detect bugs in their code [31], but

their products often contain numerous bugs, because complex pointer arithmetic can

sometimes be difficult to follow, especially when the developers are under constant

time pressure to meet their deadlines. Since black hat hackers use software to uncover

security holes in programs, it is important for developers and security professionals

to keep up with the latest automated vulnerability detection technologies.

Because analyzing code and making sure it is securely written has proven to be

a non-trivial task, improving the existing techniques for automated bug detection

is an important area of research. Both static analysis (analyzing the code without

running it) and dynamic analysis (running the code with many different inputs)

techniques have been heavily investigated, and some of them are discussed in the

“Previous Work” chapter. Some of the basic static analysis techniques mentioned

include grep, format string issue checking, and annotations embedded in C com-

ments. More advanced static analysis techniques are also discussed, such as control

flow graph analysis, abstract syntax trees, and constraint extraction from pointer

arithmetic. Additionally, some papers have found ways to measure how “scattered”

source code modifications are, using metrics like “entropy” and “churn”. All of these

techniques are covered in more detail in Chapter 3.

The main issue with static analysis techniques is the large number of false posi-

tives that they generate, so modern state-of-the-art vulnerability detection systems

rarely rely on static analyis alone. Therefore, Chapter 3 also mentions a few papers

that discuss dynamic analysis techniques. The first paper talks about a tool that

uses symbolic execution and “generational search”. The second dynamic anlaysis

2

paper mentioned in Chapter 3 talks about a tool that also uses symbolic execution,

but it speeds up the search by first running a static analysis on the code to determine

the most interesting loops that should be symbolically executed first.

The contribution of this paper is a method for analyzing features from C source

code to classify functions as vulnerable or non-vulnerable. After finding 100 programs

on GitHub, we parsed out all functions from these programs. We then extracted

trivial features (function length, nesting depth, string entropy, etc) n-grams, and

suffix trees from these functions. The statistics for these features were arranged in a

table, which was split into training data and test data. Several different classifiers,

including Naive Bayes, k nearest neighbors, k means, neural network, support vector

machine, decision tree, and random forest, were used to classify the test samples.

The trivial features produced the best classification result, with an accuracy of 75%,

while the best n-grams result was 69%, and the best suffix trees result was 60%.

These results are discussed in more detail in Chapter 5. Chapter 2 discusses some

background concepts, Chapter 3 discusses previous work, Chapter 4 outlines the

details of the testing method, and Chapter 6 contains the conclusions.

3

Chapter 2

Background

2.1 Software Vulnerabilities

An interesting example of a software vulnerability can seen in a well-known YouTube

video: https://www.youtube.com/watch?v=FkQdwUns7H8. In this video clip, the

target application is “Super Mario World” a classic Super Nintendo Entertainment

System game that was very popular back in the early 1990’s. A series of very spe-

cific moves gets executed with the Mario character, using nothing but a standard

Super Nintendo controller. These moves result in some carefully-crafted values be-

ing written to target memory locations, and in the end, arbitrary code execution is

achieved. Normally, beating Super Mario World (even using the normal shortcut ex-

its built into the game) requires passing several levels and takes around 10 minutes,

assuming perfect play. In the video, the player glitches the program out and makes

the credits appear (signifying that the game is beaten) after roughly 40 seconds,

4

and without beating a single level. Other variants of this glitch exist, where the

game is turned into “Mario Snake” or “Mario Pong”. These are all demonstrations

that a hacker was able to gain full control over the system. Arguably, this is not a

security-sensitive application where real damage can be done, but just like a lot of

security exploits, it was accomplished via a stack-based buffer overflow attack. A

hacker reverse-engineered the game and figured out the series of steps necessary to

accomplish this, and a gamer simply followed this procedure.

Many types of vulnerabilities exist, and a list can be found on the NIST web-

site https://nvd.nist.gov/vuln/categories. The rest of this chapter discusses four

important classes of vulnerabilities (stack-based buffer overflow, heap-based buffer

overflow, integer overflow, and format string attack), some OS- and compiler-based

countermeasure techniques, and machine learning methods used in this study to

classify vulnerable vs non-vulnerable programs based on extracted features.

2.1.1 Integer Overflow Attack

An integer overflow [7], also known as a “wraparound” is when a program attempts

to assign to an integer a larger value than it can represent. In this case, the integer

can become a very small and/or negative number. A potential issue arises if this can

be triggered by a carefully-crafted user input and if the value of the affected integer

is critical in controlling a memory allocation or a security-sensitive loop.

In the code below, we see that num imgs is an integer that determines the size

of a buffer. If this integer wraps around, the allocated buffer can potentially end up

5

a much smaller size than expected.

Figure 2.1: Integer overflow vulnerability example

2.1.2 Format String Attack

A format string vulnerability can be present if the user is allowed to enter a format

string. In the example below, a hacker can simply input a long string of “%x”s,

which would cause the program to dump the contents of the memory, in hex format,

starting from the location of “string”. The secure way to write the printf function

would be “printf(%s,string)” [10].

Figure 2.2: Format string vulnerability example

6

2.1.3 Heap-Based Buffer Overflow Attack

The “heap” is a region of dynamically allocated memory, and if it can be overwritten,

this can sometimes lead to a security vulnerability. A simple example of this is in

the code below. Here, the user inputs a string as a command line parameter. This

string is then copied to “buf”, which is a heap memory region allocated with malloc.

There is no guarantee that the input will not be too long to fit into “buf”, so memory

corruption is possible here, potentially leading to DoS and, in some cases, arbitrary

code execution [6].

Figure 2.3: Heap overflow vulnerability example

2.1.4 Stack-Based Buffer Overflow Attack

A stack-based buffer overflow attack is very similar to the heap-based buffer overflow

attack, the only difference being that the buffer being overflowed is located in the

stack [5]. For more details on how a call stack works, how to exploit a buffer over-

flow vulnerability, and how to use a framework to automatically find exploits and

attack target systems, please refer to Appendices A, B, and C, respectively. Buffer

overflow attacks, as well as mitigations for these attacks, have become increasingly

sophisticated over the years, and this “tug-of-war” is summarized below.

7

2.1.4.1 Progression of buffer overflow attacks and countermeasures

• Basic buffer overflow attack (with code injection) was invented.

• Canaries were invented to mitigate buffer overflows [25].

– A “canary” is an integer with a secret, randomly-chosen value placed

inside of every new stack frame, and its value gets copied to a secret

location. Its integrity gets checked whenever the function returns, and if

the new value does not match the original value, the program crashes.

• Hackers figured out how to extract/guess the canary value [45].

• WˆX (also known as DEP) prevented hackers from executing injected code.

– DEP, which stands for “Data Execution Prevention”, makes the stack

non-executable, so a hacker can potentially inject code, but he will not be

able to execute it. This was started in Windows XP Service Pack 2 [22].

• Hackers invented the “return-to-libc” attack (set return address to libc loca-

tion).

– Libc is a standard C library that contains many built-in functions, includ-

ing one that spawns a shell.

• Some of libc’s functions were removed.

• Hackers invented ROP (return-oriented programming).

8

– Here, short pieces of code from the target program (called “gadgets”) are

chained together using return addresses [47].

• The “shadow stack” was invented to prevent ROP from working [27].

– Here, return addresses from the stack are copied to a secret location with

each legitimate call/return instruction. If a hacker attempts to “return”

to a location which the program never went to in the first place, this will

result in a discrepancy between the stack and shadow stack, causing the

program to crash.

• Hackers invented COP and JOP (call- and jump-oriented programming). This

is more difficult than ROP, but still feasible [27].

• “Landing points” were invented to make COP and JOP much more difficult.

When this technique is implented, all call, jump, and return instructions must

land on “landing points” (locations that correspond to actual calls, jumps,

and returns), or else the program crashes. This forces hackers to use much

longer gadgets than they normally would with COP, ROP, and JOP. This

technique has been tested using instrumented binaries, but not yet implemented

in practice [1].

9

2.2 Features used for classification

In order to run a machine learning classifier, it is essential to extract features from the

data that is being analyzed. In this case, functions were extracted from C programs,

and features were then extracted from these functions. Most of these features are

self-explanatory and discussed in the “Results and Analysis” chapter, but a few are

explained below.

2.2.1 Entropy

In the field of information theory, Shannon Entropy is the expected amount of in-

formation contained in a message. It is a dimensionless quanity, computed by the

formula in Equation 2.2 below. Here, X is our message, n is the number of distinct

values that appear in the message (in a string, this would be the number of distinct

characters). Each value xi appears with a probability of p(xi), and since we are

calculating a relative metric, we can use any base for our logarithm, as long as we

stay consistent. Finally, probabilities are always less than or equal to 1, so H(X) will

always be greater than or equal to 0.

H(x) =
n∑

i=1

p(xi)log(p(xi)) (2.1)

If our message consists of the outcomes of several coin tosses, then it will contain the

most information if the coin is fair, as seen in Figure 1 below. As the coin becomes

increasingly unfair, the amount of information in these coin tosses approaches zero.

This is intuitive enough, because if we have a hypothetical coin that always lands on

10

heads or always lands on tails, then we can very easily memorize the outcomes of any

number of coin tosses. It is also intuitive that if a particular C function gives us a

relatively high string entropy, this can be indicative of a high character diversity and,

therefore, high function complexity. A web-based tool for calculating the entropy of

a string is available at the following URL: http://www.shannonentropy.netmark.pl/

Figure 2.4: Maximum entropy in coin toss occurs if the coin is fair.

In this study, entropy was used not only as a trivial feature, but also for calcu-

lating the “information gain” for each feature. A feature’s information gain is the

amount by which classification based strictly on that feature decreases the entropy

associated with sample classification.

11

2.2.2 N-grams

An n-gram is a “file substring of length” n [52]. Typically, this means either n words

or n characters. Each n-gram has a frequency (number of times it appears in the

file), and these n-gram frequencies can be extracted for any n-value(s) and analyzed

with a machine learning classifier. N-grams are used in many different fields, such

as malware detection, intrusion detection, and spam e-mail detection.

2.2.3 Suffix Trees

An important data structure for storing highly redundant text is called the “suffix

tree” [43]. Let us consider the strings “good” and “hood”. We start with the word

“good” and extract all suffixes, which would be 1) “good”, 2) “ood”, 3) “od”, and

4) “d”. Next, we add each suffix to the tree (which initially consists of only the

“root” node). When adding “good”, we start by looking for a “g” attached to

the root node. Since no “g” is found, we attach it, along with all the letters that

follow. The same happens with the “ood” suffix. However, for the “od” suffix, we

see an “o” attached to the root, so instead of creating a new “o”, we follow the

one that already exists. No “d” is attached to the “o”, so we must attach a “d”,

and the “o” now has two branches. The final suffix is a “d”, which we attach to

the root. We continue the procedure with the four suffixes of “hood” and end up

with the suffix tree shown in the figure below. We observe that each node has a

blue number and a red number associated with it. The blue number is the “child

frequency” (number of times it was traversed, including the time it was created), and

12

the red number is the “parent frequency” (summation of the child frequencies of its

children). A web-based tool for suffix tree visualization is available at the following

URL: http://brenden.github.io/ukkonen-animation/

Figure 2.5: Suffix tree for “good” and “hood”

Research has shown that spam e-mail classification based on suffix trees can be

robust. Here, we construct two suffix trees from the training e-mails: one for ham,

and one for spam. Then, to classify a test e-mail as ham or spam, we score it against

both trees and check whether the spam score is higher than the ham score multiplied

by some pre-set threshold. Let us consider an e-mail consisting of the word “hog”

that we are trying to score against the tree in the above figure. Its score is the

13

summation of all the scores of its suffixes. To score a suffix, we traverse it as far

down the tree as it will go. At each node in the traversal, we divide that node’s child

score by its parent’s parent score. The summation of these ratios is the score for the

suffix. The suffix “hog” would score 1/8 (“h” node)+1/1(“ho” node)=1.25. Next,

the suffix “og” would score 4/8 (“o” node)=.5. Finally, the “g” suffix would score

1/8=.125. Summing these together, we get 1.875 as the total score for “hog”.

2.3 Machine learning classifiers

There are two main types of machine learning classification: supervised and unsuper-

vised. In supervised classification, we have a test dataset and a training dataset. We

use the training dataset to “train” the classifier and then see how well it can classify

the samples in the test dataset. Since the correct class of each sample is known in

advance, we can compare it against what the classifier predicts to get performance

metrics like accuracy, precision, information gain, etc. In unsupervised classification,

the algorithm classifies data using any class label information.

2.3.1 Naive Bayes

The Naive Bayes classifier is an example of supervised learning, and it is based on

Equation 2.2 below. Here, X is the set of feature values pertaining to a sample, and

C is the class. The reason it is called “naive” is because it is based on the (often

incorrect) assumption that for any class, all features are conditionally independent

14

of each other [38]. This is not always true. For example, n-grams, which are heavily

investigated in this study, have a lot of overlap with each other, so they cannot be

independent.

P (Ci|X) =
P (X|Ci)P (Ci)

P (X)
(2.2)

2.3.2 K Nearest Neighbors

For each point in the test data, the KNN classifier examines the k nearest neighbors

from the training data and checks which of the classes these k neighbors are most

frequently associated with [15]. This is a supervised classification method, and Figure

2.6 illustrates it1.

1http://en.proft.me/2017/01/22/classification-using-k-nearest-neighbors-r/ (accessed 11 July
2017)

15

Figure 2.6: K Nearest Neighbors Classifier

2.3.3 K-Means Clustering

K-Means clustering is an unsupervised learning method. Consider data samples that

have n features. K random points (not necessarily corresponding to samples) are

initially selected in the k-dimensional space. Each sample is then classified based on

which of the points it is closest to. Then, each of the k points is re-calculated based

on the average coordinates of the samples pertaining to it. The process is repeated

until convergence [36].

16

2.3.4 Neural Network

Neural networks are a supervised learning method, and they are an attempt to mimic

biological neural networks. Neurons are connected by weights, and each neuron sums

together all the inputs and then applies an “activation function” to the result before

outputting. There is an “input” layer, one or more “hidden” layers, and an “output

layer,” as shown in Figure 2.7.2 The weights are adjusted by back-propagating the

differences between the outputs and the desired outputs [32].

Figure 2.7: Neural network example

2.3.5 Support Vector Machine

A support vector machine is a supervised learning method that attempts to separate

classes by using n-minus-one-dimensional hyperplanes to separate the training sam-

ples in n-dimensional space (where n is the number of features). In some cases, the

data points are first transformed via a “kernel” function to improve the separation.

2http://neuralnetworksanddeeplearning.com/chap1.html (accessed 11 July 2017) below

17

Once the hyperplanes are constructed, the test samples are classified based on their

location relative to the hyperplanes [48].

2.3.6 Decision Tree

A decision tree is just what it sounds like. An example of one is shown below [46].

Training data is used to construct the tree, so this is a supervised learning method3.

Figure 2.8: Decision tree example

2.3.7 Random Forest

Decision trees are sometimes prone to overfitting data, and one solution to this is

the random forest classifier. Here, several subsets of training samples are randomly

3http://help.prognoz.com/en/mergedProjects/Lib/06 datamining/lib decisiontree.htm (ac-
cessed 11 July 2017)

18

selected, with replacement. A decision tree is trained for each subset, and each of

these decision trees is then used to classify the test data. The final classification

result for each sample is the mode (most frequent) prediction [41].

2.4 Principal Component Analysis

Sometimes, the data contains so many features that using all of them in the classifica-

tion is either too expensive or does not give the best result. Therefore, dimensionality

reduction can be important. One way to do this is by using PCA. As mentioned ear-

lier, features are not always linearly independent of each other. Therefore, via a

series of matrix operations, it is possible to determine the top m features (out of n

total features) that are associated with the most variability in the data. As a result,

the features that have the most linear dependence on other features are eliminated

[29].

2.5 Result evaluation

A very common way to evaluate a result is by using a “confusion matrix”. This

matrix is n by n, where n is the number of classes. The rows represent the actual

classes, and the columns represent the predicted classes. A 2x2 confusion matrix is

shown below 4.

4http://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/ (accessed 11 July
2017)

19

Figure 2.9: Confusion matrix example

TP, TN, FP, and FN stand for “true positive”, “true negative”, “false positive”,

and “false negative”, respectively. Several metrics can be derived from the confusion

matrix, and they are summarized below:

accuracy =
TP + TN

TP + TN + FP + FN
(2.3)

precision =
TP

TP + FP
(2.4)

recall =
TP

TP + FN
(2.5)

accuracy =
2 ∗ precision ∗ recall
precision + recall

(2.6)

20

Chapter 3

Previous Work

Thus far, we have seen that many countermeasures can be made against the buffer

overflow attack to ensure that if an attack succeeds, the program simply terminates in

a relatively fail-safe manner, resulting in a DoS in the worst-case scenario. However,

since these countermeasures do not always work against determined hackers, it is

necessary to do other things. Any security-sensitive program with vulnerabilities is

likely to be exploited by hackers, so the only theoretical way to prevent this is for code

to simply not have vulnerabilities. Since manual vulnerability detection is difficult,

many automated methods have been developed to assist programmers with this task.

These methods fall into two main categories: static analysis (inspecting the code)

and dynamic analysis (actually running the code with many different inputs). Both

are used in the industry, oftentimes concurrently. Obviously enough, yet important

to note, both sets of techniques result in zero runtime performance penalty on the

user end.

21

Because static analysis is usually cheaper than dynamic analysis, it was originally

the primary method for bug detection. There are many different types of static

analysis, as well as many different levels, ranging from type checking and other simple

analysis performed by compilers to “formal specifications analyzed by a theorem

prover” [30]. Since simple analysis only catches the most obvious bugs and formal

proofs quickly become prohibitively expensive for large programs, most static analysis

tools are somewhere in between.

A popular static analysis method in the relatively early days of security-sensitive

computing was the grep utility. Grep was by no means a comprehensive solution,

but it was better than having no tool at all. Using grep, programmers identified

locations in the code that raised red flags, such as standard library functions with

well-known issues. For example, programmers searched for functions like strcpy and

sprintf, which often result in format string vulnerabilities [49]. The issue with grep

is its lack of flexibility, inability to detect features beyond regular expressions, and

too many false positives.

One of the early popular static analysis tools for scanning security-sensitive source

code was called ITS4 (“It’s the Software, Stupid! Security Scanner”), and it was able

to offer real-time feedback during the development process [49]. ITS4 is designed for

C and C++ source code and works by breaking the code up into tokens. It takes

the resultant stream of tokens and compares it against a “vulnerability database”

of “suspects”, which was constructed by tokenizing programs from archives such

as Bugtraq, as well as the authors’ personal experience. In addition to the lexical

tokenization, ITS4 is able to do two more things for additional analysis: 1) Checking

22

for “unsafe” string function calls and 2) Using heuristics to check for race conditions.

ITS4 was tested against grep on several programs, and the results are shown in the

table below. The table lists how many “false positives” were found by grep, ITS4

with analysis turned off, and ITS4 with analysis turned on. The columns on the far

right show the reduction of less false positives compared grep, as a percentage.

Figure 3.1: False positive rates with different tools

A nice feature of ITS4 is that is supports user commands, embedded in C com-

ments (so that they do not affect the C compiler). One of ITS4’s weaknesses is that

the tokenization is not the same as “real” compiler-like parsing, so for example, a

variable name can be mistaken for a vulnerable library. The authors concluded that

although their tool was better than grep, it was far from perfect and would take

several years of development to make it do an “excellent” job using static analysis.

Another early static analysis tool is discussed in [39]. Just like ITS4, they also

use annotations (special user comments noticed by the tool but not the compiler).

For example, /*@notnull@*/ indicates that the pointer is not a null pointer. This

was actually based on a previous tool, called LCLint, but they extended their set of

23

annotations. For example, it allows users to state function preconditions and post-

conditions using “requires” and “ensures” statements. Within these statements, the

following four constraints can be specified for any buffer: minSet, maxSet, minRead,

and maxRead. These refer to the lowest and highest indices of a buffer that can be

written to or read. The example in the figure below shows how the library function

strcpy() would be annotated. The precondition is that s1 holds at least as many

characters as are readable in s2, and the postcondition is that the entire string s2

was copied into s1. The “result” clause at the bottom simply denotes the value re-

turned by the function. If any of these annotations are violated, the tool gives the

programmer an error message.

Figure 3.2: Example of annotation

In addition to annotations, this tool uses “loop heuristics” by “taking advantage of

the idioms used by typical C programmers”. This is done as an attempt to determine

how many times a loop will run, which measn that a loop need not be treated as

an “if” statement. For example, if a loop follows the pattern “for (i = 0; buffer[i];

i++) body”, the tool assumes that the number of loop iterations will be equal to

the number of elements in “buffer”, and if a loop follows the pattern “for (index

= 0; expr; index++) body”, the tool assumes that the number of loop iterations

will be based on “expr”. An obvious issue with tools that are based on annotations

24

within comments is that they require programmers to write these annotations during

the development process. This not only places a burden on programmers, but also

renders the tool useless for analyzing legacy code.

Another tool, presented in [50], focuses on string-related bugs and attempts to

trade off precision (avoiding false positives and false negatives) for scalability (ability

to analyze large programs). Their approach involves two key insights: 1) treating C

strings as an abstract data types (defined by behavior as opposed to the data they

represent) and 2) representing buffers as pairs of integer ranges (bytes allocated for

the string and bytes currently in use). They were able to detect buffer overflows by

checking, for each string buffer, whether the allocated size was at least as large as

the maximum possible length (otherwise, a buffer overflow occurs by definition).

The authors manually examined the code pertaining to the false alarms and

concluded that if the analysis contained certain features, it would decrease the false

positive rate, according to the table below. In this table “linear invariants” refers to

situations where there is a simple linear relationship between two variables, regardless

of execution path. For example, this would be the case if variable y were set equal

to 2 * x + 5 no matter what.

Figure 3.3: Example of annotation

25

Later, a tool called CSSV was developed and presented in [28]. CSSV detects

overflows (updates to memory beyond buffer bounds), unsafe pointer arithmetic,

references beyond null termination, unsafe library calls, and even multi-level pointers.

First, it translates the code from C to a language called “CoreC”, which is a subset

of C and simpler to analyze. A few things CoreC is missing from C include 1) control

flow statements other than “if”, “goto”, “break” or “continue”, 2) initializations in

declarations, and 3) nested expressions. Next, it extracts the pre- and post-conditions

for each function (called “procedure contracts”) from the programmer’s annotations

(similar to the ones in [39]). Finally, it does a pointer analysis to collect a set

of constraints (in the form of equations and inequalities) that relate the different

pointers. These are fed into a tool called “Polyhedra”. Polyhedra analyzes this

system of constraints to determine if there are any potential violations, which it

outputs as warnings.

Another old tool, called “Splint” [30], also uses annotations. The authors claim

it to be lightweight, trading off classification accuracy for performance. In addition

to annotations, it also uses loop heuristics [39] to determine whether a warning is to

be issued. Splint was a very popular tool, and two years after Splint was developed,

it was compared against four other static analysis tools. It scored second place for

probability of bug detection and had the lowest false alarm probability [53].

Later on (2007), a static analysis tool called RICH (Runtime Integer CHecking)

was developed to statically detect integer overflows [24]. Integer overflow vulnerabil-

ities have been known to indirectly result in buffer overflow vulnerabilities, so they

are also important to detect. RICH focuses on integer sub-types (8-bit, 16-bit, etc),

26

and flags potentially unsafe operations, such as downcast (conversion to an integer

type with less bits). In a downcast, the most significant bits get discarded, which can

result in a smaller value than expected. Part of RICH’s functionality is suggesting

safer alternatives to unsafe instructions. Consider the following unsafe instructions

below. Here, error() is some sort of handler that stops the program and tells the

programmer to fix the potential bug. The second instruction would be rewritten as:

if (b > 2ˆ16-1) error(); a=b;

Figure 3.4: Rewritten instruction

In 2009, a static analysis tool was developed that analyzes code changes between

versions instead of the code itself [34]. The idea is that if a program undergoes

modifications in numerous places (as opposed to a similar number of modifications

limited to a few places), it becomes relatively difficult for programmers to maintain a

good grasp on what the program is doing. Also, a highly scattered code modification

pattern might indicate that many developers are working on the code simultaneously,

which also complicates things. How scattered the modifications to a program are can

be measured in terms of Shannon Entropy. This is calculated by applying 2.2 to the

frequencies of source code segments (files or functions) getting changed over a pre-

defined time period. Since it is possible to calculate the entropy of code changes as a

function of time, we can predict that segments of code modified during a high-entropy

period will tend to have more issues, including security vulnerability issues.

27

In 2010, another static analysis tool that applies the entropy concept, but in a

different way, was published in [26]. Since the source code being analyzed is written in

Java, they subdivide the code into classes and extract features for each class (such as

number of lines of code, number of methods, number of attributes, number of classes

that reference the class, etc). This is done for several regularly-spaced versions of

the program (for example, with 1-month time intervals). They generate an n by

m matrix for the feature, where the rows are classes and the columns are times.

Then, they compute an element-by-element absolute value difference between every

two neighboring columns, which results in an n by m-1 matrix, with each column

representing a time interval. For each column of this matrix (time interval), they

compute the entropy, relative to the column total. The higher the entropy for a time

interval, the higher the probability of a bug during that time interval. In addition

to entropy, they compute a metric called ”churn”, which is almost the same thing as

entropy, except the final step in the calculation is a simple column summation.

Static analysis remains to be a popular vulnerability detection technique, so other

static analysis tools were developed in the last three years. One of them, called

“Stacy”, uses control flow analysis [40]. It constructs a CFG (“control flow graph”)

from the program, where blocks of code are represented as nodes and dependencies

are represented as edges. In the case of an “if” statement, the CFG branches. Stacy

traverses all nodes of the CFG (representing all possible execution paths) and verifies

that no variable is initialized using the value from an uninitialized variable. Another

issue that Stacy detects using the CFG is memory leaks, which often occur during

dynamic memory allocation operations, such as malloc. To do this, it traverses the

28

CFG and ensures that for all possible execution paths, any dynamically allocated

memory gets deallocated by the developer at some point. Finally, Stacy uses the

CFG to detect buffer overflows by ensuring that for all possible execution paths,

array accesses do not exceed buffer limits.

A static analysis tool, addressed in [35], attempts to use both “sound analysis”

(which has a low FPR and high FNR) and “unsound analysis” (high FRP, low FNR).

As an example, we consider the program in the figure below. It contains two buffer

accesses, the second of which is potentially dangerous.

Figure 3.5: Potentially dangerous instructions

Since unsound static analysis involves unrolling loops to a fixed number of iter-

ations, an example of this would be converting each loop to an “if” statement, as

shown below.

29

Figure 3.6: Potentially dangerous instructions after unsound static analysis

In this case, neither of the two buffer accesses gets flagged, and we end up with a

false negative. On the other hand, if “sound analysis” is used, first “i” and then “size”

are approximated as [0,infinity], and both buffer accesses end up getting flagged, so

we get a false positive. The proposed tool attempts to mitigate this by “selectively”

applying unsoundness, only in cases where sound analysis is likely to yield a false

positive. This is done by analyzing all “harmless” loops in the code base (extract-

ing “syntactic” and “semantic” features and then running them through a machine

learning classifier). Here, a “harmless” loop is defined as one that makes the number

of true positives stay the same and number of false positives decrease when it is

replaced with an “if” statement.

Another tool, presented in [42], extracts the “abstract syntax tree”, using the

GCC compiler. It then compares this AST to AST’s extracted from well-known

buffer overflows. If there is enough similarity, it then investigates the function in

30

question in more detail by actually following its data flow. A different tool that uses

a similar approach is called CppCheck [44].

Despite many authors’ optimism for eventually having static analysis detect “all”

vulnerabilities, we clearly have software vulnerabilities to this day. We also see

that regardless of which features are added to a static analysis tool, static analysis

tools will always have limitations. If a program’s behavior could be thoroughly

understood without running the program, then we would often not have to run

programs in the first place. Although static analysis has proven itself to be a useful

tool, supplementing it with a robust dynamic analysis will always generate a more

reliable result. Dynamic analysis (also known as “fuzzing”), has two types: “blackbox

fuzzing” and “whitebox fuzzing” [31]. Blackbox fuzzing is when we start with well-

formed inputs and then add random mutations to these inputs. Randomness is

important here, because testing all possible bit combinations for a large input is not

computationally feasible. As the code example in the figure below [31] illustrates,

this can be an issue. Namely, we see that even a simple “if” block can be difficult to

enter if we simply keep giving it random values. Feeding values systematically (say,

0, -1, 1, 2, -2, etc) might work in the below example, but not in the case where y

== 1,000,000,000.

31

Figure 3.7: Why symbolic execution is needed

This requires the introduction of whitebox fuzzing, which uses symbolic execution.

Symbolic execution, unlike concrete execution, does not involve giving the program

actual inputs. In the above example, we would set x equal to lambda and extract

“constraints” from commands on the way to the “if” block. Here, they would be

“y=x+3” and “y=13”. We easily put these two constraints together and see that

lambda must be 10. We can quickly see how useful whitebox fuzzing can be for

reverse engineering and discovering “corner cases”, such as buffer overflow bugs.

Obviously, the more complicated the code, the less likely whitebox fuzzing is to give

us complete code coverage.

A whitebox fuzzer used extensively at Microsoft is called SAGE (“Scalable Au-

tomated Guided Execution”) [31]. The novelty of SAGE over traditional whitebox

fuzzers is that it performs its symbolic execution with so-called “generational search”.

In the code below, we see that the “abort()” statement will only get executed if cnt

gets incremented all four times. This is immediately obvious to the human eye, but

not to a fuzzer.

32

Figure 3.8: Why symbolic execution is needed

The figure below illustrates a tree of paths, and only one of these paths (far right)

leads to the “abort()” statement. We quickly see that a blackbox fuzzer would run

into problems, since testing 2ˆ32 inputs would be a daunting task. However, SAGE’s

“generational search” algorithm quickly converges on a solution, even if it starts with

an input that does not match at all. For example, if it starts with “good”, it marks

“good” as the Generation 0 tests and sees that the constraints of this initial path are:

i0 b, i1 a, i2 d, and i3 !. It then forms the Generation 1 tests by negating these

constraints, one by one. During each Generation 1 test, it negates other constraints,

leading to Generation 2 tests, and so on.

33

Figure 3.9: Generation tests with SAGE fuzzer

The SAGE tool has been very popular at Microsoft since 2007, when the SAGE

fuzzer discovered one third of all Windows 7 vulnerabilities discovered by Microsoft’s

fuzzers (despite being run last). SAGE has been running full-time at Microsoft since

2008, averaging roughly 100 machine years per year. It is slower and less lightweight

than Microsoft’s blackbox fuzzers, but it is “smarter” and, consequently, provides

better code coverage.

Even though whitebox fuzzing generally results in better code coverage than

blackbox fuzzing, it has no way of testing for all possible user inputs. This is an

issue, because programmers generally debug their code at least to some extent during

the development process, so only very carefully crafted inputs will generally result in

undesirable behavior. One way to mitigate the weakness is by using static analysis

as an initial step, in order to highlight the areas of the code that need to be looked

34

at more closely. Although static analysis is known to generate a lot of false positives,

we do not necessarily have to classify the lines of code in a binary fashionbuggy or

non-buggy. Instead, we can assign a likelihood score to each line of code that we

analyze. This method was presented at a Usenix conference, in the form of a tool

called Dowser [33]. Dowser focuses on buffer overflows, and unlike other fuzzers,

it only considers code that accesses arrays in a loop, since this is characteristic of

most buffer overflow vulnerabilities. Another thing that differentiates Dowser from

traditional fuzzers is that it attempts to achieve “pointer value coverage”, rather

than overall code coverage. In other words, instead of attempting to cover as many

branches of code as possible, it focuses only on those branches that contain interesting

pointer dereferences. Also, Dowser attempts to limit the number of bytes that it is

fuzzing (since the computational complexity of fuzzing increases exponentially with

the number of bytes) by first performing “taint analysis” to determine which input

bytes are affecting the sections of the output that are of interest to us. Overall,

Dowser consists of three phases: 1) static analysis, 2) taint analysis, and 3) concolic

(a portmanteau of “concrete” and “symbolic”)execution. In the first phase, Dowser

performs static analysis to identify array accesses in loops, and it identifies the set

of instructions in the data flow graph of each of the relevant pointers, called the

“analysis group”. The figure below illustrates an example of a data flow graph and the

corresponding analysis group for the pointer “u”. It shows a schematic representation

of branches and loops by which the instructions are connected. Each instruction is

given a “score”, based on what type of instruction it is, and the summation of all

scores in an analysis group is the score of that analysis group. The score of an

35

array-accessing loop is the maximum score of its analysis groups.

Figure 3.10: Data flow graph and analysis group

In the second phase, taint analysis is performed on each analysis group, in order

to narrow the range of bytes to fuzz. In many cases, the inputs consists of several

parts, which are not required to be entered in any particular order (for example, a

Linux command with multiple flags). In this case, if taint analysis reveals that the

nth input field has an affect on the output, we have no way of knowing whether the

preceding input fields affect the output as well. Dowser has a solution for this, as

is shown in the figure below [33]. In this example, we first give the program input

ABCDE and notice that input D is the last part of the input that affects the output,

36

so we eliminate E (leave it at the end) and move D to the front. Next, we input

DABCE and notice that C has no effect, but B has an affect, so we can eliminate C

and move B to the front. Finally, we input BDACE and see that A has no effect on

the output, so only B and D are left for fuzzing, which is the next step. We see that

Dowser is able to avoid “overtainting”, which would have occurred if it saw an effect

at D and concluded that A, B, C, and D are all involved.

Figure 3.11: Taint analysis

In the third phase, Dowser performs concolic execution. The concrete executions

(normal executions with actual input) are used to come up with the constraints

that are used for the symbolic execution. This symbolic execution, in turn, consists

of two phases. In the first phase, called the “learning phase”, each branch in the

loop is assigned a weight (probability that following this path will produce pointer

dereferences). This is estimated by fuzzing a short subset of the input. In the second

phase, called the “bug finding phase”, the branches with the highest weights are

executed.

As a result, they were able to find previous undocumented vulnerabilities in

the ffmpeg program and poppler library. Also, they were able to detect bugs in real

utilities (such as the nginx web server and inspircd IRC server). The screenshot from

37

the paper shows some of their results when it came to detecting some of the well-

known vulnerabilities (documented by MITRE as CVEs). The table lists important

statistical information about each bug that was found. For instance, the first entry in

the table (CVE-2009-2629 heap overflow) had 66,000 lines of code and 517 loops. 140

of these loops accessed arrays, and 62 of these 140 loops were classified as interesting

enough for further examination. The 4th highest-scoring loop scored 630 points

and turned out to have the CVE vulnerability. Next, we see that Dowser took 253

seconds to find the bug, while the S2E fuzzer took over 8 hours. With an input field

size of 50 bytes (400 bits), these other fuzzers obviously had to employ some sort

of semi-intelligent brute-forcing as well, because 2ˆ400 (approximately 10ˆ120) test

runs would be computationally infeasible to execute when we consider that there are

only 10ˆ80 atoms in the known universe.

Figure 3.12: Dowser performance comparison

Just like other static analysis tools, the static analysis features in Dowser clearly

generate a lot of false positives. In the same first example, 62 candidate loops

38

accessing arrays were deemed “interesting”, but only one of them actually contained

a bug. However, 1) testing 62 loops was much better than it would have been to test

all 517 and 2) the fuzzing was prioritized by testing loops with the highest scores

first. Compared with simply using the instruction count to prioritize the fuzzing of

array-access loops, the Dowser scoring function performs much better, as we can see

in the figure below.

Figure 3.13: Dowser static analysis performance comparison

As we can see, state-of-the-art methods tend to use both static and dynamic

analysis, so static analysis is a very important area of research which cannot be

neglected. The more information we can collect about a program before we begin

fuzzing it, the more focused and efficient our fuzzing can potentially be, and the

more likely we are to uncover the bugs in a time-efficient manner. A thorough static

analysis can save the fuzzer numerous machine hours, and increase the likelihood

that the bugs will be found.

39

Chapter 4

Experiment Overview

In this study, machine learning techniques were used to classify C language sub-

routines as “vulnerable” or “not vulnerable”. This was done in seven major steps,

corresponding to the sections of this chapter: 1) sanity check, 2) parsing and ran-

domization, 3) data collection, 4) preprocessing, 5) feature extraction, 6) feature

selection, and 7) classification

4.1 Sanity check

Before the function classification could be tested with confidence, it was impor-

tant to do a “sanity check” on the classifiers used in this study to make sure that

they are being run correctly and give reasonable results. For this step, a popu-

lar three-class benchmarking dataset called “Iris” was used. This is a relatively

40

small table which can be downloaded from https://archive.ics.uci.edu/ml/machine-

learning-databases/iris/iris.data, and it consists of recorded petal and sepal length

and width measurements (four features) for three types of flowers, with 50 samples

in each type. This is a 150x5 matrix, with four columns being X (the features) and

the last column being Y (the class). The first few rows can be seen in the screenshot

below.

Figure 4.1: The Iris dataset

The three flower types are “setosa”, “versicolor”, and “verginica”, and in a classi-

fication test, they are typically replaced with numbers 0, 1, and 2. For the benchmark

test, 75 of the 150 samples were used for training, and 75 were used for testing. Con-

fusion matrices for this benchmark result are shown below.

41

Figure 4.2: Classifier results using Iris dataset

First of all, we see that for the most part, all classifiers in the table above give

us reasonable results. Secondly, we notice that class 0 is never misclassified as class

1 or 2, and vice-versa, which clearly means that classes 1 and 2 are much closer to

each other than either is to class 0. Finally, we observe that for k-means clustering

(an unsupervised learning method), the large numbers in the confusion matrix stray

from the main diagonal. This is simply because the classifier is simply told that

there are three classes, but not which samples belong to which class, so it will make

up its own classes (0, 1, and 2), which will not necessarily match up with the actual

classes in the data that were labeled 0, 1, and 2.

42

Overall, the Iris benchmark test yielded a satisfactory result for all classifiers, so

we can now proceed to classifying functions as vulnerable or non-vulnerable. At first,

all tests were run using the Naive Bayes classifier, mainly because it was the cheapest

(in terms of runtime) of all the classifiers that were used in this study. Therefore,

other classifiers were not tested until after feature selection. Unless noted otherwise,

each result from here on was generated using Naive Bayes.

4.2 Data Collection

GitHub is a widely-known code repository website containing numerous open-source

utilities, and one feature of GitHub that has been particularly useful for this study is

that all commits are accessible by default (and changes between every two consecutive

commits are highlighted). However, initial attempts at finding vulnerable software

on GitHub were unsuccessful, both from Google and from GitHub’s search engine.

These searches normally brought up exploits, not vulnerabilities. To find data for this

project, it was necessary to go to the NVD (National Vulnerability Database) search

engine and use “github” as a keyword. 100 programs with documented vulnerabilities

were collected in this manner.

43

4.3 Dataset creation

4.3.1 Parsing and Randomization

Next, we had to extract the functions from each program. First, gcc was used to

remove comments. Then, a python script was used to parse each subroutine into a

separate file. 100 vulnerable functions (one from each program) and roughly 5000

“non-vulnerable” functions were extracted. In order to create the dataset, all 100

vulnerable functions and 100 randomly selected functions were used from the non-

vulnerable set.

4.3.2 The “mixed” dataset

The next important question that had to be answered was: Is it enough to use

functions from GitHub? While we can be confident that the vulnerable functions are

truly vulnerable, we are less confident about the functions from GitHub that were

marked as non-vulnerable. The only thing we can say about our “non-vulnerable”

functions is that they have not been identified as vulnerable YET. Obviously, our

current level of sophistication in software security is not sufficient to look at a program

and definitively state whether it contains additional bugs that have not yet been

uncovered. If this were the case, all studies on software vulnerabilities, including this

one, would be rendered useless at this point. On the contrary, new zero-day exploits

are constantly being discovered. In the absolute worst-case scenario, we can imagine

that a significant part of the functions in the “non-vulnerable” dataset actually have

44

vulnerabilities. This could, to some extent, corrupt our experimental results by

generating false negatives (not flagging some fraction of the vulnerabilities).

Therefore, we cannot, technically, take a set of functions and state with certainty

that they are not vulnerable. However, we can try our best to come close to this.

Instead of using GitHub utilities that potentially have numerous bugs, we can at least

attempt to extract our non-vulnerable functions from widely-used open-source Linux

utilities like ls, cp, etc. We can make the argument that because these utilities are so

ubiquitous in most Unix and Linux systems, they are primary targets for hackers. As

we demonstrated earlier, a vulnerable program can result in a shell spawning attack,

which could enable a low-privilege user with limited access to become “root” and

take full control over the machine, possibly by giving a program like “ls” a carefully-

crafted file or set of flags. These widely-used Linux utilities have withstood the test

of time, and this can give us reasonable confidence in their security. For purposes

of sound experimental design, the top 20 most familiar-sounding Linux utilities were

selected after filtering out utilities that had vulnerabilities show up in a Google or

NVD search (summarized in the table below).

45

Table 4.1: Linux utilities with vulnerabilities

Utility Vulnerability Description Year

pwd Remote buffer overflow in FTPShell [11] 2010

mv Create directory with world-writable permissions [3] 2003

rmdir Directory Traversal Vulnerability [21] 2011

df Buffer overflow in df command on SGI IRIX systems [2] 1999

chmod DoS possiblity in Serv-U FTP Server 4.1 [4] 2004

head Remote buffer overflow Vulnerability in file sharing wizard [9] 2010

ls Command injection vulnerability [13] 2010

mkdir Unauthenticated local attacker can achieve privilege escalation [14] 2006

We clearly see that all of these vulnerabilities are at least seven years old, and

some only work under very specific conditions. However, these utilities were elimi-

nated from the dataset, and the following list of 20 utilities was used: cat, cp, du,

echo, head, kill, mkdir, nl, paste, rm, seq, shuf, sleep, sort, tail, touch, tr, uniq,

wc, and whoami. They were downloaded using the link http://ftp.gnu.org/gnu/

coreutils/coreutils-8.27.tar.xz.

All initial tests were run on the non-mixed dataset, but the next chapter shows

test results for the mixed dataset as well.

46

4.4 Preprocessing

It is sometimes the case that code contains a lot of information (such as constant

literals and variable names) that might not benefit the classification at all (and could

possibly even hurt it). Therefore, we can attempt to discard this information before

extracting these statistics. Intuitively enough, we would not want to discard special

characters, because special characters can often tell us a lot about what is going

on. For example, square brackets are often associated with array operations, which,

according to [33], are almost always present in buffer overflow vulnerabilities. One

idea is to simply discard all alphanumeric characters (referred to from now on as

Method 1), but since keywords of the C language consist of letters and potentially

give us a lot of useful information, we can attempt to preserve this information by

following a more sophisticated procedure (Method 2): 1) Discard all numbers except

for 1 and 0 (1 and 0 often have significance). 2) Replace the top 8 most frequent

keywords with numbers 2-9. The frequencies of these keywords were extracted using

a shell script that grepped the input data for every keyword (taken from [37]), and

these keywords were reverse-sorted by frequency of occurrence, as shown in the table

below. 3) Discard alphabetic characters.

47

Table 4.2: Top 20 C keywords

Keyword Frequency Keyword Frequency

if 2006 static 114

int 994 long 96

case 667 switch 63

return 652 while 53

break 604 default 52

struct 347 register 33

char 338 continue 31

else 321 short 29

for 269 double 28

signed 267 enum 5

unsigned 263 float 4

sizeof 218 auto 4

void 210 union 2

goto 131 typedef 1

do 126 volatile 0

const 115 extern 0

The next chapter details tests results pertaining to data with no preprocessing,

after Method 1 preprocessing, and after Method 2 preprocessing.

48

4.5 Feature extraction

Various features were extracted, including trivial features (function length, nesting

depth, string entropy, etc) n-grams, and suffix trees.

4.6 Feature selection

N-grams and suffix trees are not trivial features. The suffix tree classifier was im-

plemented as a “stand-alone” classifier (no statistics need to be fed into a separate

classifier after feature extraction). N-gram statistics, on the other hand, need to

be fed into a separate classifier, and the sheer number of n-grams is overwhelming,

especially for word n-grams of size greater than two. Therefore, one of the first

things we must determine is how we are going to select n-grams (often, using all

n-grams does not yield the best classification result). We can extract all n-grams (of

a given length) from the text, but potentially, we might want to keep only the most

useful ones. This means that we should sort the extracted n-grams by a metric and

then keep only some number that end up at the top of the list. We can then plot

performance metrics versus number of n-grams used. In the figure below, we plot

the accuracy result of character 1-grams (after 3-step character removal) vs number

of 1-grams selected, via seven different metrics: information gain, precision, recall,

accuracy, f1, frequency (number of times each n-gram appeared), and random (sort

n-grams randomly without a metric). Each metric was calculated by applying a deci-

sion tree classifier using each individual n-gram and looking at the confusion matrix

49

of the result. In order to avoid overfitting, these metrics were calculated strictly from

the “test” dataset, and in order to increase sample size, 2-fold cross-validation was

used.

4.7 Classification

After extracting feature statistics and selecting the appropriate features, the data

was split into “training” data and “test” data. Naive Bayes was used as the default

classifier, and other classifiers were tested later.

50

Chapter 5

Results and Analysis

Classification test results were generated in the eight steps, and each step corresponds

to a section of this chapter:

1. Run initial classification tests using trivial features with Naive Bayes classifier.

2. Decide how to select n-grams, and test them with the Naive Bayes classifier.

3. Test suffix trees.

4. See if additional feature selection via PCA improves the result.

5. Compare the results of using different classifiers (other than Naive Bayes).

6. Run a classification test on a “mixed” dataset.

7. Test unbalanced datasets.

8. Perform an error analysis.

51

5.1 Trivial feature tests

Several trivial features were extracted from the functions, and they are listed in the

table below.

Figure 5.1: Trivial features that were extracted for classification

We first test each trivial feature individually and compare the performance met-

rics. The results are in the three tables below, and each test was run with 5-fold

cross-validation. Features 1, 2, and 3 have suffixes “a”, “b”, or “c”, which mean

“no preprocessing”, “Method 1 preprocessing”, and “Method 2 preprocessing”, re-

spectively. Results from other features are not reported with pre-processing, because

pre-processing would either have no effect on them or eliminate the information per-

taining to those features. For example, both pre-processing methods remove all “if”

substrings.

52

Table 5.1: Trivial feature classification (No preprocessing)

FeatureID Feature Accuracy TN FN TP FP

1a Character Count 0.63 94 69 31 6

2a Entropy 0.65 96 67 33 4

3a Character Diversity 0.74 68 20 80 32

4 Maximum Nesting Depth 0.55 80 70 30 20

5 Arrow Count 0.60 93 74 26 7

6 If Count 0.50 78 78 22 22

7 If Complexity 0.63 93 68 32 7

8 While Count 0.65 92 63 37 8

9 For Count 0.57 96 82 18 4

Table 5.2: Trivial feature classification (Preprocessing Method 1)

FeatureID Feature Accuracy TN FN TP FP

1b Character Count 0.67 96 63 37 4

2b Entropy 0.70 64 24 76 36

3b Character Diversity 0.60 45 25 75 55

Table 5.3: Trivial feature classification (Preprocessing Method 2)

FeatureID Feature Accuracy TN FN TP FP

1c Character Count 0.65 96 67 33 4

2c Entropy 0.74 67 19 81 33

3c Character Diversity 0.55 81 72 28 19

53

Because the number of performance metrics can sometimes be overwhelming, it

is important to specify which performance metrics are of particular importance for

result evaluation. Obviously, false negatives are bad, because we do not want to

miss bugs. However, false positives are not good, either. In real life, only a small

percentage of functions have bugs, so a high false positive rate would mean that most

flagged functions would be false positives. Since there are advantages to both low

false positive rate and low false negative rate, it is hard to tell which one is better,

so we will use accuracy as the primary performance metric in this study. From the

results above, we notice that both character diversity (no character removal) and

entropy (character removal Method 2) have an accuracy of 74%, which is higher

than what we see for all the other trivial features.

Now that we have an idea of how useful the individual features are, we can com-

bine them. Since there are only 9+3+3=15 features in total, we can run the classifier

with all possible (215-1=32767) combinations. Of all possible 32767 combinations,

the top five results (sorted by accuracy) had accuracies of 75-77%. All of them used

both features mentioned above (3a and 2c), and they are summarized in the table

below. This is a good indication that entropy and character diversity are at least

somewhat independent and that they can complement each other. Also, it is im-

portant to note that complex combinations can lead to overfitting, so it is probably

better to stick to one or, at most, two features, unless adding more features results

in a very significant benefit.

54

Table 5.4: Top 5 trivial feature combinations

Features Accuracy F1 TN FN TP FP

2b, 3a, 3b 0.77 0.74 45 18 32 5

2b, 3a, 5, 6 0.76 0.76 39 13 37 11

2b, 3a, 4, 6, 9 0.76 0.76 39 13 37 11

2b, 3a, 6, 9 0.76 0.75 40 14 36 10

2b, 3a 0.75 0.74 42 16 34 8

5.2 N-grams tests

The top character 1-grams were selected based on several different performance met-

rics, as explained in the previous chapter. The classification accuracy vs number

of n-grams selected was plotted in the table below for each metric. The results for

selection using various performance metrics are shown in the two tables below, and

random selection and selection by highest frequency are also included.

55

Figure 5.2: Feature selection method performance comparison

56

Figure 5.3: Feature selection method performance comparison

As mentioned earlier, accuracy was used as the primary evaluation metric. How-

ever, we see in the above figure that selecting n-grams by information gain tends to

give us the best overall accuracy. The question is, how does this work? In other

words, why does selecting features by accuracy not yield the best overall accuracy?

We can attempt to explain this by considering the following four confusion matrices,

each corresponding to a 1-feature classification result via decision tree:

57

Figure 5.4: Four confusion matrices

Although all four confusion matrices correspond to an accuracy of 80%, matrices 3

and 4 have a lower Shannon entropy (hence, a higher information gain) than matrices

1 and 2 (see Chapter 2 for more details on information gain). We also see that matrix

3 has no false positives and matrix 4 has no false negatives. In other words, we can

imagine that features 2 and 4 “complement” each other: one is good at avoiding false

positives, and the other is good at avoiding false negatives. However, neither feature

1 nor feature 2 is particularly good at avoiding false positives or false negatives, so

features 1 and 2 might not work together as efficiently.

There was, however, a problem: the n-gram classification result was not very

good (see next four figures). We saw earlier that a single trivial feature (character

diversity) gave us a classification accuracy of 74%. Therefore, when n-grams, which

contain a lot more information than a single number like character diversity, gave us

a worse result, this immediately raised a red flag. Since n-grams are a well-known

classification technique, the immediate question that arises is whether the apparent

58

problem stems from the classification method or from a faulty implementation. To

answer this, we ran an implementation verification test. Namely, 100 ham and 100

spam e-mails that were randomly selected from the publicly-available Enron dataset

[37]. Both word and character 1-grams and 2-grams were tested for e-mails and

functions. The results are displayed in the figures below, where we plot accuracy (as

a proportion ranging from 0 to 1) versus the number of n-grams used.

Figure 5.5: Character 1-grams (e-mails vs functions)

59

Figure 5.6: Character 2-grams (e-mails vs functions)

Figure 5.7: Word 1-grams (e-mails vs functions)

60

Figure 5.8: Word 2-grams (e-mails vs functions)

As we see in the figures above, the problem was not with the implementation, but

with the nature of the data itself. We can scientifically conclude that n-grams are

much less successful at classifying functions for bugs than they are at classifying e-

mails. As a final test, we extract all word and character n-grams for several different

lengths (that do not result in crashing the machine) and present the results in the

three tables below (characgter n-grams, word n-grams, and combinations). Note

that the “preprocessing” column denotes no preprocessing, Method 1 preprocessing,

and Method 2 preprocessing as 0, 1, and 2, respectively. We see that we are unable

to get an accuracy of higher than 66% and that combining these top four features

(bottom row of table) did not produce a better result. The rows with “X”s signify

that the machine crashed during the classification. We can argue that in earlier

tests, we saw a few results that were slightly better. For example, 2-word n-grams

selected by information gain, gave a 68% accuracy. However, this is still far below

61

the 75% accuracy produced by character diversity, not to mention the potential for

overfitting.

Table 5.5: Character n-grams of several different lengths

Type n Pre-processing Accuracy TN FN TP FP

Character 1 0 0.64 34 20 30 16

Character 1 1 0.62 22 10 40 28

Character 1 2 0.62 25 13 37 25

Character 2 0 0.53 9 6 44 41

Character 2 1 0.62 22 10 40 28

Character 2 2 0.59 19 10 40 31

Character 3 0 X X X X X

Character 3 1 0.60 14 4 46 36

Character 3 2 0.56 9 3 47 41

Character 4 0 X X X X X

Character 4 1 0.56 9 3 47 41

Character 4 2 0.58 10 2 48 40

Character 5 0 X X X X X

Character 5 1 0.55 8 3 47 42

Character 5 2 0.59 11 2 48 39

62

Table 5.6: Word n-grams of several different lengths

Type n Pre-processing Accuracy TN FN TP FP

Word 1 0 0.59 19 10 40 31

Word 1 1 0.64 19 5 45 31

Word 1 2 0.62 17 5 45 33

Word 2 0 0.66 23 7 43 27

Word 2 1 0.60 15 5 45 35

Word 2 2 0.59 12 3 47 38

Word 3 0 X X X X X

Word 3 1 0.60 15 5 45 35

Word 3 2 0.61 15 4 46 35

Word 4 0 X X X X X

Word 4 1 0.64 25 11 39 25

Word 4 2 0.63 23 10 40 27

Word 5 0 X X X X X

Word 5 1 X X X X X

Word 5 2 X X X X X

63

Table 5.7: Combinations of n-grams

Type n Pre-processing Accuracy TN FN TP FP

Character 1-4 1 0.56 8 2 48 42

Character 1-4 2 0.55 7 2 48 43

Word 1-3 1 0.59 11 2 48 39

Word 1-3 2 0.59 11 2 48 39

Char+word 1-3 1 0.57 9 2 48 41

Char+word 1-3 2 0.54 6 2 48 44

Top 4 combo N/A N/A 0.60 15 5 45 35

Another test result, shown below, is for the combination of a relatively small

number of n-grams of several types. This was done via the following procedure:

1. Word and character n-gram statistics (n=1 through 5) were extracted, from all

three types of data (no preprocessing, Method 1 preprocessing, and Method 2

preprocessing). This was 2x5x3=30 data tables in total. Since the Linux VM

had a somewhat limited processing capacity, only the top 10,000 most frequent

n-grams were extracted for each combination.

2. An accuracy vs number of n-grams plot (similar to the ones before) was gen-

erated for each data table.

3. Each plot was manually analyzed, and the minimum number of n-grams yield-

ing the maximum classification accuracy was determined. Relatively spiky

regions in the plots were avoided. The preprocessing method and number of

64

features chosen for each n-gram length/type is listed in Table 5.8.

4. Finally, combinations were tested, as shown in Figure 5.9

Table 5.8: Number of n-grams selected for each type/length

N-gram type Preprocessing # Features

1c Method 2 20

2c Method 1 75

3c Method 1 200

4c Method 1 175

5c Method 1 250

1w No preprocessing 100

2w No preprocessing 140

3w Method 1 95

4w Method 1 60

5w Method 1 60

Table 5.9: Results for each combination of n-grams

Accuracy TN FN TP FP

Character combos n = 1 through 5 0.69 23 4 46 27

Word combos n = 1 through 5 0.51 40 39 11 10

Character+word combos n = 1 through 5 0.68 25 7 43 25

We see that while character combinations showed some level of marginal improvement

over using only one n value, word combinations showed a significant decrease in

65

performance (51% accuracy is essentially a coin flip). Not surprisingly, adding the

word combos to the character combos did not improve the result.

5.2.1 Cross-validation and combining with trivial features

When we ran the character combos test with 2-fold cross-validation, the accuracy

dropped to 63.5%. This was because the features were carefully selected to accurately

classify the second half of the data, so it makes complete sense for them to not have

worked as well on the first half of the data. This is why a closer look at the results

shows a 69% accuracy for the second half of the samples and 58% accuracy for the

first half.

5.3 Suffix Trees

Another non-trivial feature that was tested for software vulnerability classification

was suffix trees. As described in the Chapter 2, the suffix tree classifier was imple-

mented in a standalone fashion (meaning that none of the extracted features had

to be run through a separate classifier). Unfortunately, the suffix tree classifier pro-

duced an even worse classification result than the n-grams classifier. Even with ideal

parametrization, it only gave a 60% accuracy. As with the n-grams, it is important

to show that the implementation was not the issue, so we once again compared func-

tion classification to e-mail classification. Just like n-grams, suffix trees are much

66

better at classifying e-mails than they are at classifying functions. In the figure be-

low, we plot accuracy (as a proportion) versus score threshold, for both e-mails and

functions.

Figure 5.9: Suffix tree result: e-mails vs functions

5.4 Principal Component Analysis

Since the character n-gram combination gave a much better result than the word

n-gram combination, it made sense to run a PCA test on it and determine whether

the result could be improved further. When we ran PCA on the word n-grams

combo, our accuracy dropped from 69% to 66%, but we are able to decrease the

number of features from 718 to 195. This not only made the classification cheaper,

but potentially prevented overfitting.

67

5.5 Test results with other classifiers

Next, we took the PCA result and checked how the classifiers performed relative to

each other. Since the Random forest classifier gives a slightly different result each

time it is run, the Random Forest result shown below is an average of 10 runs. We see

that the K Means classifier performed as well as Naive Bayes for character diversity,

and the SVM classifier performed as well as Naive Bayes for character n-grams. Since

SVM gave a poor result for character diversity, this might indicate that it well-suited

for handling numerous features. Importantly to note, these classifiers are part of

the SciKit library, and they were all run with their default parameters (except for K

Means, where the number of clusters was set to 2). Some of the default parameters

for each classifier are described in Appendix D.

Table 5.10: Results for different classifiers

Classifier Character Diversity Character n-grams combo

Naive Bayes 0.74 0.66

K Nearest Neighbors 0.67 0.54

K Means 0.75 0.55

Neural Network X 0.57

Support Vector Machine 0.6 0.67

Decision Tree 0.72 0.59

Random Forest 0.72 0.58

68

5.6 Testing the “mixed” dataset

Since we can reasonably assume that the Linux utilities are relatively bug-free, we

tested the mixed dataset with a) trivial features 3a and 2c and b) our character

n-grams combo and present the results below. We see that for the character n-grams

combos, the accuracy is comparable (67% instead of 69%). For the trivial features,

however, the accuracy is significantly lower (63.5% instead of 75%). Closer examina-

tion of the trivial features test result showed that the GitHub buggy functions were

easier to tell apart from the Linux functions (69% accuracy) than the GitHub “no

bug” functions (58% accuracy). Finally, when the trivial features 3a and 2c were

combined with character n-gram combos, we had a very slight increase in accuracy

(69% compared to 67%).

Table 5.11: Mixed dataset results

Accuracy TN FN TP FP

Trivial features 3a and 2c 0.635 45 18 82 55

Character n-gram combos 0.67 54 20 80 46

Trival features 3a and 2c plus character n-grams 0.69 70 32 68 30

69

5.7 Unbalanced Datasets

Since we do not know the relative distribution of vulnerable versus non-vulnerable

functions, it is important to show results for unbalanced datasets as well. Up un-

til this point, every test involved analyzing 100 vulnerable functions and 100 non-

vulnerable functions, so the ratio of non-vulnerable to vulnerable functions was 1:1.

The unbalanced dataset results are summarized in the table below (“Ratio” column

indicates vulnerable:non-vulnerable functions.) For unbalanced datasets, it is best

to focus on the classification of the minority class (in this case, the vulnerable func-

tions). For both the trivial features and the character n-gram combos, we see that

the “false negatives” increase as we increase the ratio of non-vulnerable to vulnera-

ble functions, so we conclude that our classifier does not handle unbalanced datasets

well.

Table 5.12: Unbalanced dataset results

Ratio Features Accuracy TN FN TP FP

100:100 Char diversity and entropy 0.635 45 18 82 55

100:200 Char diversity and entropy 0.65 24 30 170 76

100:400 Char diversity and entropy 0.8 0 0 400 100

100:100 Character n-gram combos 0.67 54 20 80 46

100:200 Character n-gram combos 0.5 41 90 110 59

100:400 Character n-gram combos 0.52 20 160 240 80

70

5.8 Error analysis

In this section, we attempt to find patterns pertaining to misclassified samples (false

positives and false negatives). In order to perform error analysis, n-gram statistics

from the best n-grams combination we found (69% accuracy) were analyzed. For each

feature, we calculated its mean value over all samples. This was done separately for

true negatives, false positives, true positives, and false negatives. When the mean

values were plotted for all samples (next four figures), we noticed that the points

plotted for false positives had far more “zero” values (points touching the x-axis)

than those plotted for true positives. This pattern can potentially be exploited in a

further study. Namely, we can run an n-grams classifier and follow it up with another

classifier that attempts to reduce false positives by re-classifying samples marked as

positives based on the number of zero-frequency n-grams that these samples have.

Figure 5.10: Error Analysis: True Negatives

71

Figure 5.11: Error Analysis: False Positives

Figure 5.12: Error Analysis: True Positives

72

Figure 5.13: Error Analysis: False Negatives

73

Chapter 6

Conclusions and Recommendations

Research has shown that many aspects of a program can be analyzed for static

vulnerability detection. Some of these include programmer annotations embedded in

comments, idioms, unsafe function calls, downcast operations, abstract syntax trees,

control flow graphs, metrics extracted from source code (like number of lines of code,

number of methods, number of attributes, etc), and differences in these metrics

between different versions of the program. Various dynamic analysis techniques,

some of which are supplemented by static analysis methods, can also be performed

to decrease false positives.

This work contributes to research in static analysis based on code metrics. After

extensively testing function vulnerability classification using trivial features, n-grams,

and suffix trees, we can draw several conclusions. First of all, we see that extracting

numerous n-grams does not, thus far, seem to give good classification results, espe-

cially if we consider the 74% accuracy that we got from ”character diversity“ to be a

74

baseline requirement. We also noticed that even when combinations of n-grams were

carefully selected (in a manner that would normally be illegal and lead to overfitting),

the overall result does not improve. However, this study is a good proof-of-concept

of a very important point: trivial features can tell us a lot about whether a function

is vulnerable or not.

There are a few directions in which this research can be taken to improve the

results further. First of all, it might be possible to think of more trivial features to

investigate. Secondly, it might also make sense to test some other n-gram selection

techniques, as well as some of SciKit’s classification parameters (other than default).

Finally, it is possible to test whether the techniques presented in this paper can be

used to efficiently detect vulnerabilities in other programming languages as well.

75

Bibliography

[1] Control flow integrity. https://github.com/iadgov/

Control-Flow-Integrity. Accessed: 2017-07-01.

[2] Cve-1999-0025 detail. https://nvd.nist.gov/vuln/detail/CVE-1999-0025.
Accessed: 2017-07-24.

[3] Cve-2002-1518 detail. https://nvd.nist.gov/vuln/detail/CVE-2002-1518.
Accessed: 2017-07-24.

[4] Cve-2004-2533 detail. https://nvd.nist.gov/vuln/detail/CVE-2004-2533.
Accessed: 2017-07-24.

[5] Cwe-121: Stack-based buffer overflow. https://cwe.mitre.org/data/

definitions/121.html. Accessed: 2017-07-01.

[6] Cwe-122: Heap-based buffer overflow. https://cwe.mitre.org/data/

definitions/122.html. Accessed: 2017-07-01.

[7] Cwe-190: Integer overflow or wraparound. https://cwe.mitre.org/data/

definitions/190.html. Accessed: 2017-07-01.

[8] Decisiontreeclassifier. http://scikit-learn.org/stable/modules/

generated/sklearn.tree.DecisionTreeClassifier.html. Accessed:
2017-07-24.

[9] File sharing wizard ’head’ command remote buffer overflow vulnerability. http:
//www.securityfocus.com/bid/40928/info. Accessed: 2017-07-24.

[10] Format string attack. https://www.owasp.org/index.php/Format_string_

attack. Accessed: 2017-07-01.

[11] Ftpshell client ’pwd’ command remote buffer overflow vulnerability. http://

www.securityfocus.com/bid/44084/info. Accessed: 2017-07-24.

76

[12] Gaussiannb. http://scikit-learn.org/stable/modules/generated/

sklearn.naive_bayes.GaussianNB.html. Accessed: 2017-07-24.

[13] Gnu bash 4.0 - ’ls’ control character command injection. https://www.

exploit-db.com/exploits/33508/. Accessed: 2017-07-24.

[14] Hp-ux mkdir local unauthorized access vulnerability. http://www.

securityfocus.com/bid/18748/info. Accessed: 2017-07-24.

[15] K-nearest neighbor. http://scholarpedia.org/article/K-nearest_

neighbor. Accessed: 2017-07-01.

[16] Kmeans. http://scikit-learn.org/stable/modules/generated/sklearn.

cluster.KMeans.html. Accessed: 2017-07-24.

[17] Kneighborsclassifier. http://scikit-learn.org/stable/modules/

generated/sklearn.neighbors.KNeighborsClassifier.html. Accessed:
2017-07-24.

[18] Mlpclassifier. http://scikit-learn.org/stable/modules/generated/

sklearn.neural_network.MLPClassifier.html. Accessed: 2017-07-24.

[19] Randomforestregressor. http://scikit-learn.org/stable/modules/

generated/sklearn.ensemble.RandomForestRegressor.html. Accessed:
2017-07-24.

[20] Svc. http://scikit-learn.org/stable/modules/generated/sklearn.svm.

SVC.html. Accessed: 2017-07-24.

[21] zftpserver ’rmdir’ command directory traversal vulnerability. http://www.

securityfocus.com/bid/51018/info. Accessed: 2017-07-24.

[22] S. Andersen and V. Abella. Data execution prevention. changes to functionality
in microsoft windows xp service pack 2, part 3: Memory protection technologies,
2004.

[23] C. Anley, J. Heasman, F. Lindner, and G. Richarte. The shellcoder’s handbook:
discovering and exploiting security holes. John Wiley & Sons, 2011.

[24] D. Brumley, T.-c. Chiueh, R. Johnson, H. Lin, and D. Song. Rich: Automatically
protecting against integer-based vulnerabilities. Department of Electrical and
Computing Engineering, page 28, 2007.

77

[25] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang. Stackguard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In Proceedings of the 7th Conference
on USENIX Security Symposium - Volume 7, SSYM’98, pages 5–5, Berkeley,
CA, USA, 1998. USENIX Association.

[26] M. D’Ambros, M. Lanza, and R. Robbes. An extensive comparison of bug
prediction approaches. In Mining Software Repositories (MSR), 2010 7th IEEE
Working Conference on, pages 31–41. IEEE, 2010.

[27] T. H. Dang, P. Maniatis, and D. Wagner. The performance cost of shadow stacks
and stack canaries. In Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS ’15, pages 555–566, New
York, NY, USA, 2015. ACM.

[28] N. Dor, M. Rodeh, and M. Sagiv. Cssv: Towards a realistic tool for statically
detecting all buffer overflows in c. In ACM Sigplan Notices, volume 38, pages
155–167. ACM, 2003.

[29] G. H. Dunteman. Principal components analysis. Number 69. Sage, 1989.

[30] D. Evans and D. Larochelle. Improving security using extensible lightweight
static analysis. IEEE software, 19(1):42–51, 2002.

[31] P. Godefroid, M. Y. Levin, and D. Molnar. Sage: whitebox fuzzing for security
testing. Queue, 10(1):20, 2012.

[32] M. Hagan, H. Demuth, M. Beale, and O. De Jesús. Neural network design.
Martin Hagan, 2014.

[33] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos. Dowsing for over-
flows: A guided fuzzer to find buffer boundary violations. In USENIX Security
Symposium, pages 49–64, 2013.

[34] A. E. Hassan. Predicting faults using the complexity of code changes. In Pro-
ceedings of the 31st International Conference on Software Engineering, pages
78–88. IEEE Computer Society, 2009.

[35] K. Heo, H. Oh, and K. Yi. Machine-learning-guided selectively unsound static
analysis. In Proceedings of the 39th International Conference on Software En-
gineering, pages 519–529. IEEE Press, 2017.

78

[36] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, A. Y.
Wu, S. Member, and S. Member. An efficient k-means clustering algorithm:
Analysis and implementation. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 24:881–892, 2002.

[37] B. W. Kernighan and D. M. Ritchie. The C programming language. 2006.

[38] A. Kumari. A suffix tree approach to anti-spam email filtering. International
Journal on Recent and Innovation Trends in Computing and Communication,
2:601–603, 2014.

[39] D. Larochelle, D. Evans, et al. Statically detecting likely buffer overflow vulner-
abilities. In USENIX Security Symposium, volume 32. Washington DC, 2001.

[40] P. Lathar, R. Shah, and K. Srinivasa. Stacy-static code analysis for enhanced
vulnerability detection. Cogent Engineering, 4(1):1335470, 2017.

[41] A. Liaw, M. Wiener, et al. Classification and regression by randomforest. R
news, 2(3):18–22, 2002.

[42] R. Ma, Y. Yan, L. Wang, C. Hu, and J. Xue. Static buffer overflow detection for
c/c++ source code based on abstract syntax tree. Journal of Residuals Science
& Technology, 13(6), 2016.

[43] R. M. Pampapathi, B. G. Mirkin, and M. Levene. A suffix tree approach to
anti-spam email filtering. Machine Learning, 65(1):309–338, 2006.

[44] E. Penttilä et al. Improving c++ software quality with static code analysis.
2014.

[45] G. Richarte. Four different tricks to bypass stackshield and stackguard protec-
tion. World Wide Web, 1, 2002.

[46] S. R. Safavian and D. Landgrebe. A survey of decision tree classifier methodol-
ogy, 1991.

[47] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In Proceedings of the 14th ACM Conference
on Computer and Communications Security, CCS ’07, pages 552–561, New York,
NY, USA, 2007. ACM.

[48] J. A. K. Suykens and J. Vandewalle. Least squares support vector machine
classifiers. Neural Process. Lett., 9(3):293–300, June 1999.

79

[49] J. Viega, J.-T. Bloch, Y. Kohno, and G. McGraw. Its4: A static vulnerability
scanner for c and c++ code. In Computer Security Applications, 2000. AC-
SAC’00. 16th Annual Conference, pages 257–267. IEEE, 2000.

[50] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first step towards
automated detection of buffer overrun vulnerabilities. In NDSS, pages 2000–02,
2000.

[51] G. Weidman. Penetration Testing: A Hands-On Introduction to Hacking. No
Starch Press, San Francisco, CA, USA, 1st edition, 2014.

[52] C. Wressnegger, G. Schwenk, D. Arp, and K. Rieck. A close look on n-grams in
intrusion detection: anomaly detection vs. classification. In AISec, 2013.

[53] M. Zitser, R. Lippmann, and T. Leek. Testing static analysis tools using ex-
ploitable buffer overflows from open source code. In ACM SIGSOFT Software
Engineering Notes, volume 29, pages 97–106. ACM, 2004.

80

Appendix A

The call stack

If we look closely at the virtual memory space occupied by a running process, we see

in the figure below that it is divided into several sections [51].

Figure A.1: Process memory layout

The stack is used to store local variables and return addresses of functions. As

81

we all know, the stack is a FIFO (first in first out) data structure. Every time a

function gets called, a stack frame gets ”pushed” onto the stack, and every time a

”return” statement is encountered, a stack frame is popped. Before we take a closer

look at how this works, it is necessary to note three important registers, listed in

the table below. These registers correspond to a 32-bit architecture, and their 64-bit

counterparts are RIP, RSP, and RBP, respectively.

Table A.1: Three pointer registers

Register

Name

Also called

the
Summary

EIP
instruction

pointer

Stores the address of the next instruction

to be executed.

ESP stack pointer
Stores the top (lowest) address of the top

stack frame.

EBP base pointer
Stores the bottom (highest) address of

the top stack frame.

Consider a program with subroutines f1 and f2, where f1 calls f2 at some point.

When a ”call” assembly instruction is executed, the address of the next instruction

in f1 (after the call) gets pushed onto the stack, EIP changes to the address of the

first instruction in f2, and the value of ESP decreases to become the address of the

new top of the stack. This is shown in Figure A.2.

82

Figure A.2: ”Call” instruction

The first 3 instructions of a subroutine (in this case f2), called the ”prologue”,

make ESP and EBP point to the top and bottom of the next stack frame. The size

of the new stack frame depends on the arguments and local variables that it must

hold, and the bottom of the stack frame, pointed to by EBP, holds the previous EBP

value (bottom of previous stack frame). We can see what this looks like in Figure

A.3.

83

Figure A.3: Prologue

F2, like all functions, has an ”epilogue” (last 3 instructions before its return

statement). Here, EBP is copied to ESP (this leaves only the bottom 4 bytes of the

old stack frame, containing previous EBP value) and the top value of the stack is

then popped into EBP. We see that the epilogue essentially reverses the actions of

the prologue (Figure A.4).

84

Figure A.4: Epilogue

Finally, the ”return” instruction reverses the actions of the ”call” instruction,

and the values in the stack and the three registers return to what they were before

f2 was called (Figure A.5).

85

Figure A.5: Return instruction

86

Appendix B

Creating a shellcode

Whenever a function calls for an input (whether it be command line, protocol mes-

sage, or anything else), this input will normally get stored in the stack as local

variable(s). Instead of providing a normal input (which would accomplish nothing

from a hacking perspective), the hacker can give the function his nefarious machine

code (also known as a ”shellcode”). And, he can get this machine code to actually

be executed by making the input long enough to overwrite the return address (and

make it point to his shellcode). The length of the input can easily be adjusted by

simply inserting any data (green section in Figure B.1) between the machine code

and the new return address. The exact length of this memory buffer is important

for the hacker to get exactly right, or else the new return address will not overwrite

the old return address. This length and often be determined by running the target

software through a debugger.

87

Figure B.1: Stack layout before and after shellcode injection

B.0.0.1 Exploiting a buffer overflow vulnerability with GDB

Here, we present a short demo on how a buffer overflow vulnerability can be exploited

with GDB (GNU debugger). The first point to note is that spawning a root shell in

Linux requires very few assembly instructions. They need to simply set a few key

registers and memory locations to the appropriate values and then execute a system

call (which will use these values as arguments). The target memory/register layout

is shown in Figure B.2.

88

Figure B.2: Memory layout needed for shellcode

We note that the registers in Figure B.2 are for 64-bit Linux (32-bit registers

would have slightly different names). The rax register stores the system call ID 0x3b

(corresponding to the ”execve” system call), and the arguments to execve, passed

through the rdi, rsi, and rdx registers, are ”/bin/sh”, 0, and 0.

In the next two figures, we see two working shellcodes. For each shellcode, we see

the assembly code (in a text editor window) and the machine code (in the terminal

window below). The issue with the shellcode in Figure B.3 is that it cannot be

injected as input, due to all the null bytes (which would be interpreted as null

terminators for the input string), but the shellcode in Figure B.4 does not have null

bytes, so it can potentially be injected into a vulnerable program, after the hacker

89

properly pads and attaches a return address to the end.

Figure B.3: Non-injectable shellcode

90

Figure B.4: Injectable shellcode

As we see in the two figures above, we can easily assemble the assembly code with

nasm and gcc and then extract the binary using objdump. The only remaining task

is to determine the 1) required input length and 2) return address. To demonstrate

how this is done, we consider a very simple program in B.5, a textbook example from

[23].

91

Figure B.5: A segmentation fault occurred, because we overwrote the return address

with an invalid value.

We see that main passes a character array to f1, and f1 copies that character

array to another character array. Under normal conditions, f1 is supposed to return

to main, and main is supposed to print ”Executed normally”. If we provide an

92

input that is too long for the buffer, it will overwrite the return address (most likely

with garbage) and cause a ”segmentation fault”. However, with a carefully-crafted

input, we can make f1 go to f2 instead, and the printed message will be ”Execution

Hijacked”. In order to determine the parameters of this carefully-crafted input, we

must reverse-engineer the program, so we load it into GDB and give it a string of

capital ”A”s (ASCII code 0x41). We then set a breakpoint and do a memory dump

to determine the location of the string of ”A”s (signifying the top of the stack frame)

and the location of the return address (circled in yellow and positioned immediately

below the bottom of the stack frame). From these two pieces of information, we can

deduce the size of the stack frame.

93

Figure B.6: We can get the stack frame size by measurein the distance from the

beginning of the input buffer to the return address.

94

Finally, we need to know the starting address of f2, so we simply disassemble f2

and check the address of the first instruction.

Figure B.7: We made the return address point to a function that would have other-

wise been inaccessible in the control flow.

At this point, we know enough to construct our shellcode. Since not all bytes in

the shellcode will necessarily correspond to keyboard characters, we can use python

95

command to input a string of hexadecimal ASCII values. The example above is,

technically, not a shellcode, because it simply redirects to another function without

ever spawning a shell. However, instead of a long string of 40 ”A”s followed by a

return address, we can supply an actual shellcode padded with ”A”s, and instead of

overwriting the return address with the starting address of f2, we can overwrite the

return address with the starting address of our shellcode. As we see in the figure

below, this spawns a shell.

96

Figure B.8: We used a shellcode to gain root access.

97

Appendix C

Metasploit

While the ability to develop new exploits is an important characteristic distinguishing

so-called ”leet” hackers from ”script kiddies”, it is often very easy for script kiddies

to reuse well-known, pre-written exploits. One way to use an exploit is to simply

download it from the internet and launch it as a standalone program, but a tool that

has been gaining popularity in recent years, called ”Metasploit”, is a framework that

almost completely automates this process [51]. First, it is important to enumerate

the services that a machine is running, and a very popular tool for this is nmap

(Figure C.1).

98

Figure C.1: We enumerate all running services with nmap.

After running an nmap scan and pinpointing a vulnerable service (either from

99

a Google search or with a vulnerability scanner such as Nessus), we are ready to

run Metaploit and attempt to exploit that service. In the screenshot above, we

can identify vsftpd 2.3.4 as an outdated (and vulnerable) ftp service, so we use the

Metasploit built-in search engine to find the corresponding exploit. We then simply

select that exploit, set the target IP address, and type ”exploit” to get a root shell

(Figure C.2).

100

Figure C.2: We find an exploit and launch it.

101

As we see in Figure C.3, our ”ls” command gives us a file listing.

Figure C.3: We have a shell!!

102

Appendix D

Default classifier parameters in

SciKit

This section describes the default parameter values for each classifier that was tested.

The descriptions were copied from scikit-learn.org.

D.1 Gaussian Naive Bayes

This classifier does not have non-optional default parameters [12].

D.2 K Nearest Neighbors

The following parameters are documented in [17]:

103

• n neighbors: The is the number of nearest neighbors used for classification.

The default value is 5.

• weights: This is how the classifier weight neighboring points. The default value

is ”uniform”, where all points are weighted equally.

• metric: This is the metric specifying how distance between points is calculated.

The default is ”Minkowski”, which is a generalization of Euclidean distance.

• p: This is the ”power parameter” for the Minkowski distance. The default

value is p=2, which gives us the Euclidean distance.

• n jobs: This is the number of parallel jobs, for multicore platforms. The default

value is 1.

D.3 K means clustering

The following parameters are documented in [16]:

• n clusters: This is the number of clusters. The default is 8.

• max iter: This is the maximum number of iterations the classifier will perform,

unless convergence is reached beforehand. The default is 300.

• n init: This is the number of times the cluster will be run. The best result of

all iterations will be chosen. The default value is 10.

104

• algorithm: This signifies the type of k means algorithm to use. The default is

”auto”.

• random state: Specifies which algorithm is used to generate the initial cluster

centers. The default is numpy, a popular python library.

D.4 Neural network

The following parameters are documented in [18]:

• hidden layer sizes: Specify how many hidden layers you want and how many

perceptrons are in each. The default is one hidden layer with 100 perceptrons.

• activation: The activation function used by the perceptrons. Default is ”relu”,

which returns max(0,x).

• solver: Solver used for weight adjustment. Default is ”adam”, which is a

stochastic gradient-based optimizer.

• learning rate: Default is ”constant”.

• max iter: Maximum number of iterations without convergence. Default is 200.

• random state: State or seed for random number generator. Default: none

• shuffle: Whether to shuffle samples in each iteration. Only used when solver=“sgd”

or “adam”. Default is true.

105

• tol: Tolerance for the optimization. When the loss or score is not improving

by at least tol for two consecutive iterations, unless learning rate is set to

“adaptive”, convergence is considered to be reached and training stops. Default

is 1e-4

• learning rate init: The initial learning rate used. It controls the step-size in

updating the weights. Only used when solver=“sgd” or “adam”. Default is

.001.

• power t: The exponent for inverse scaling learning rate. It is used in updating

effective learning rate when the learning rate is set to “invscaling”. Only used

when solver=“sgd”. Default is .5.

• verbose: Whether to print progress messages to stdout. Default is false.

• warm start: When set to True, reuse the solution of the previous call to fit as

initialization, otherwise, just erase the previous solution. Default is false.

• momentum: Momentum for gradient descent update. Should be between 0 and

1. Only used when solver=“sgd”. Default is .9.

• nesterovs momentum: Whether to use Nesterov’s momentum. Only used when

solver=“sgd” and momentum ¿ 0. Default is true.

• early stopping: Whether to use early stopping to terminate training when vali-

dation score is not improving. If set to true, it will automatically set aside 10%

of training data as validation and terminate training when validation score is

106

not improving by at least tol for two consecutive epochs. Only effective when

solver=“sgd” or “adam”. Default is false.

• validation fraction: The proportion of training data to set aside as validation

set for early stopping. Must be between 0 and 1. Only used if early stopping

is True. Default is .1.

• beta 1: Exponential decay rate for estimates of first moment vector in adam,

should be in [0, 1). Only used when solver=“adam”. Default is .9.

• beta 2: Exponential decay rate for estimates of second moment vector in adam,

should be in [0, 1). Only used when solver=“adam”. Default is .999.

• epsilon: Value for numerical stability in adam. Only used when solver=“adam”.

Default is 1e-8.

D.5 Support vector machine

The following parameters are documented in [20]:

• C: Penalty parameter C of the error term. Default is 1.0.

• kernel: Specifies the kernel type to be used in the algorithm. It must be one

of “linear”, “poly”, “rbf”, “sigmoid”, “precomputed” or a callable. If none is

given, “rbf” will be used. If a callable is given it is used to pre-compute the

kernel matrix from data matrices; that matrix should be an array of shape.

Default is “rbf”.

107

• degree: Degree of the polynomial kernel function (“poly”). Ignored by all other

kernels. Default is 3.

• gamma: Kernel coefficient for “rbf”, “poly” and “sigmoid”. If gamma is “auto”

then 1/n features will be used instead. Default is “auto”.

• coef0: Independent term in kernel function. It is only significant in “poly” and

“sigmoid”. Default is 0.0.

• probability: Whether to enable probability estimates. This must be enabled

prior to calling fit, and will slow down that method. Default is false.

• shrinking: Whether to use the shrinking heuristic. default is true.

• tol: Tolerance for stopping criterion. Default is 1e-3.

• verbose: Enable verbose output. Note that this setting takes advantage of a

per-process runtime setting in libsvm that, if enabled, may not work properly

in a multithreaded context. Default is false.

• max iter: Hard limit on iterations within solver, or -1 for no limit. Default is

-1.

• decision function shape: Whether to return a one-vs-rest (“ovr”) decision func-

tion of shape (n samples, n classes) as all other classifiers, or the original one-vs-

one (“ovo”) decision function of libsvm which has shape (n samples, n classes

* (n classes - 1) / 2). The default of None will currently behave as “ovo” for

backward compatibility and raise a deprecation warning, but will change “ovr”

in 0.19. Default is none.

108

• random state: The seed of the pseudo random number generator to use when

shuffling the data for probability estimation. Default is none.

D.6 Decision tree

The following parameters are documented in [8]:

• criteria: The function to measure the quality of a split. Supported criteria are

“gini” for the Gini impurity and “entropy” for the information gain. Default

is “gini”.

• splitter: The strategy used to choose the split at each node. Supported strate-

gies are “best” to choose the best split and “random” to choose the best random

split. Default is “best”.

• max features: The number of features to consider when looking for the best

split. If int, then consider max features features at each split. If float, then

max features is a percentage and int(max features * n features) features are

considered at each split. If “auto”, then max features=sqrt(n features). If

“sqrt”, then max features=sqrt(n features). If “log2”, then max features=log2(n features).

If None, then max features=n features. Default is none.

• max depth: The maximum depth of the tree. If None, then nodes are expanded

until all leaves are pure or until all leaves contain less than min samples split

samples. Default is none.

109

• min samples split: The minimum number of samples required to split an in-

ternal node. If int, then consider min samples split as the minimum number.

If float, then min samples split is a percentage and ceil(min samples split *

n samples) are the minimum number of samples for each split. Default is 2.

• min samples leaf: The minimum number of samples required to be at a leaf

node. If int, then consider min samples leaf as the minimum number. If float,

then min samples leaf is a percentage and ceil(min samples leaf * n samples)

are the minimum number of samples for each node. Default is 1.

• min weight fraction leaf: The minimum weighted fraction of the sum total of

weights (of all the input samples) required to be at a leaf node. Samples have

equal weight when sample weight is not provided. Default is 0.

• max leaf nodes: Grow a tree with max leaf nodes in best-first fashion. Best

nodes are defined as relative reduction in impurity. If None then unlimited

number of leaf nodes. Default is none.

• random state: If int, random state is the seed used by the random number

generator; If RandomState instance, random state is the random number gen-

erator; If None, the random number generator is the RandomState instance

used by np.random. Default is none.

• min impurity split: Threshold for early stopping in tree growth. A node will

split if its impurity is above the threshold, otherwise it is a leaf. Default is

1e-7.

110

• presort: Whether to presort the data to speed up the finding of best splits in

fitting. For the default settings of a decision tree on large datasets, setting

this to true may slow down the training process. When using either a smaller

dataset or a restricted depth, this may speed up the training. Default is false.

D.7 Random forest

The following parameters are documented in [19]:

• n estimators: The number of trees in the forest. Default is 10.

• criterion: The function to measure the quality of a split. Supported criteria

are “mse” for the mean squared error, which is equal to variance reduction as

feature selection criterion, and “mae” for the mean absolute error. Default is

mse.

• max depth: The maximum depth of the tree. If None, then nodes are expanded

until all leaves are pure or until all leaves contain less than min samples split

samples. Default is none.

• min weight fraction leaf: The minimum weighted fraction of the sum total of

weights (of all the input samples) required to be at a leaf node. Samples have

equal weight when sample weight is not provided. Default is 0.

• max leaf nodes: Grow trees with max leaf nodes in best-first fashion. Best

nodes are defined as relative reduction in impurity. If None then unlimited

111

number of leaf nodes. Default is none.

• min impurity split: Threshold for early stopping in tree growth. A node will

split if its impurity is above the threshold, otherwise it is a leaf. Default is

1e-7.

• bootstrap: Whether bootstrap samples are used when building trees. Default

is true.

• oob score: Whether to use out-of-bag samples to estimate the R2̂ on unseen

data. Default is false.

• n jobs: The number of jobs to run in parallel for both fit and predict. If -1,

then the number of jobs is set to the number of cores. Default is 1.

• random state: If int, random state is the seed used by the random number

generator; If RandomState instance, random state is the random number gen-

erator; If None, the random number generator is the RandomState instance

used by np.random. Default is none.

• verbose: Controls the verbosity of the tree building process. Default is false.

• warm start: When set to True, reuse the solution of the previous call to fit and

add more estimators to the ensemble, otherwise, just fit a whole new forest.

Default is false.

112

