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ABSTRACT

Hot-rolled structural steel rectangular tubing has, in recent years, 

become an attractive and a structurally efficient construction material. Struc­

tural tubing, like other thin-walled materials, fails in bending with a collapse 

of the cross-section before the ultimate bending capacity is achieved. This 

investigation explores the pure bending characteristics of square structural steel 

tubing. Importance is placed on determining the maximum resisting moment of 

the cross-section as well as the corresponding curvature. The experimental 

investigation, in which experimental stress analysis techniques were chosen to 

obtain specific measurement objectives, involved eighteen tests of six specimen 

groups. Two theoretical approaches, found in the literature and adapted to the 

square tube, were compared with the experimental results.

The experimental study revealed that a flange buckling failure mode, 

characteristic of a thin-tube assumption, was applicable for a tube width-to- 

thickness ratio as low as 25. The inelastic buckling theory adapted from that 

proposed by Rhodes and Harvey was found to apply for thin tubes. For thicker 

tubes, a valid comparison of the distortion theory developed by Ades was impos­

sible. Unexpected residual strains in excess of 0.1% were found in the walls of 

the mill-formed tubing.
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CHAPTER I

INTRODUCTION

Elementary beam theory is based on assumptions of linearly-elastic 

material characteristics and negligible cross-sectional distortion. When thin­

walled, closed-section beams are subject to bending loads there can be a discern­

able distortion of the cross-section. As a result of this distortion, the beam is 

much more flexible than one would predict by neglecting such an effect. Von 

Karman (1/analyzed the case of the elastic bending of a circular tube, including 

the distortion effects, in the early 1900’s. Timoshenko (2) made a similar study 

of a curved, rectangular tube in 1923.

In recent years there has been a distinct trend toward designing beams 

based on their ultimate, or maximum bending capacity as contrasted with earlier 

designs based on elastic theory. Such ultimate strength concepts were based on 

minimum weight criteria for such structures as aircraft and spacecraft, where 

excessive weight reduces the efficiency of the design. The search for more efficient 

beams has created the need for analytical techniques for describing the bending 

of thin-walled beams, including the effects of distortion of the cross-section, 

where loads are in excess of the elastic capacity of the material.

*Numbers in parentheses refer to same numbered references in the 

Bibliography.
1
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Ades (3) proposed a technique for analyzing round tubes assuming that the 

cross-section distorts in the form of an ellipse. In that his technique is simple 

and in that results agree with experimental data, the Ades method satisfies the 

need for analysis of the circular tube.

The problem of the inelastic bending of a rectangular tubular member, 

accounting for distortion effects, has not been treated in the literature. There 

is a need for such an investigation because of the ever-increasing use of square 

and rectangular tubing in the construction of a multiplicity of structures. The 

increased use of rectangular tubing has been attributed to (a) the simplicity of 

effecting a tube-to-tube joint and (b) the desirability of having flat surfaces for 

attaching covering materials, as compared with a circular tube section,

This investigation is addressed to the problem of analyzing the inelastic 

bending characteristics of square structural steel tubing. Of particular interest 

is the transition range where tubes can no longer be considered as being thin­

walled, and where the failure mode changes from one of inelastic buckling to one 

of a material failure with an accompanying distortion of the cross-section.

In the case of the circular tube Ades (3) found that a smooth transition 

from a buckling failure to a material failure with ovalization of the cross-section 

occurs in the vicinity of a tube width-to-wall-thickness ratio, D/t, of 50. For 

a D/t above 50 the failure mode is primarily a buckling one, while below 50 the 

mode is essentially a material one with ovalization.

The objectives of this investigation are as follows:

1. To experimentally identify the buckling-distortion transition range 
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for the specific case of mill-formed structural steel tubing having a square cross- 

section and a uniform wall thickness.

2. To provide experimental data for verifying candidate theories for use 

in the transition range.

3. To adapt theoretical techniques available in the literature to the solu­

tion of the square tube problem.



CHAPTER II

PREVIOUS WORK

The earliest published work on square or rectangular tubing is that of 

Timoshenko (2) in 1923. He studied the elastic bending stresses in curved tubes 

of rectangular cross-section. Timoshenko assumed a frame-type distortion 

shape for the cross-section and obtained an approximate solution by calculating 

the potential energy of deformation.

Referring to Figure 1, Timoshenko assumed that the deflection of flange 

elements "mn" and "qt” could be written in the form

ur = ar,, Sin 21X. + ur, (j - Cos ap.) (z.i)
b fc>

where

X = axis at the flange centerline

jb = flange width, centerline dimensions

or = flange lateral deflection

UTOJ cU7 = constants to be determined.

A relation between these constants is found by considering a unit section as a 

rigid frame such that the webs are arcs of a circle.

The potential energy of deformation of the cross-section "mnqt" then 

consists of the potential energy of extension and compression normal to the

4
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WEB

CROSS- SECTION

Figure 1. Geometry of the Timoshenko Square Tube Beam.
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cross-section, plus the potential energy of bending in the frame. The form of 

the distortion of the cross-section must be that which will minimize the poten­

tial energy of deformation.

Timoshenko determined a "reduced" moment of inertia which takes into 

account the distortion of the cross-section, 

where

T' = reduced moment of inertia

T = second moment of the cross-sectional area

'<1 is the reduction factor given by

(2.3)

where

R = beam radius

( = tubular beam wall thickness

U = tube wall width, centerline dimensions

= Poisson’s ratio.

This procedure leads to the following expression for in the case of a 

curved, square-tube beam of constant cross-section.

+ L332X
±3.232 >v

where

C2-S)
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For a tube with a given b/t, the smaller the radius of curvature, the 

greater the effect of distortion will be. On the other hand, as the beam approaches 

a straight configuration, R-*00, and the effect of distortion becomes negligible.

The present investigation differs from that of Timoshenko in that beams 

considered here are straight. Timoshenko's analysis, as well, is an elastic 

analysis while the present one accounts for inelastic material behavior.

A design method for the thin-gage square tube in bending is given by the 

American Iron and Steel Institute (4). The technique generally accounts for the 

fact that flat plate compression elements making up a beam cross-section can 

develop a local instability which is not catastrophic in nature for the overall sec­

tion. Additional bending load increments are resisted by a redistribution of 

stresses over the cross-section. This occurs since an unstable element cannot 

resist additional increments of load with the same stress distribution as that 

prior to the onset of instability. The reduced efficiency of a buckled plate ele­

ment is accounted for analytically by substituting an "effective" width in place 

of the actual width.

The strength of a single simply-supported plate element was first inves­

tigated by von Karman, et al (5) in 1932. He found that the effective width of a 

flat plate element can be expressed by
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where

be= effective flange width (be< b)

E = Young's modulus

= compressive stress

A = Poisson's ratio

b = plate width.

For a Poisson's ratio of 0.3 the former expression becomes 

be = <2. 72

The effective width at the ultimate loading condition is found by replacing^" by 

vzhich is the compressive yield strength.

In 1940 'Winter (6) published an experimental analysis of the effective 

widths of flanges of wide, thin-walled steel beams. Winter tested beams made 

up of flat plate elements and found that for most steel beams of this type the effec­

tive width of the compressive flange could be approximated
be = /• Sl/y / Z2.8?

where

= compressive element edge stress 

and the other symbols have been defined previously.

Cozzone (7) in 1943 published a method for determining the bending 

strength of a beam in the inelastic range. This method can be utilized to determine 

the maximum resisting moment of a given cross-section, such as a square tube, 

provided that distortion as well as local buckling is negligible. Assuming a stress 

distribution as shown in Figure 2, the maximum resisting moment is
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Figure 2. Stress Assumption for Determining the Maximum Resisting Moment.
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(2^)

where

M = maximum resisting moment

= ultimate stress of the material

Q = maximum first moment of the cross-section.

The assumptions involved in this analysis are that the tensile and compressive 

stress-strain properties are identical, and that the cross-section is generally 

rectangular.

The expression for the maximum resisting moment for a thick-walled 

square-tube beam becomes expanding Equation 2. 9,

where

B = outside width of the square tube 

and where the other symbols have been previously defined.

Returning to the light-gage beam design method, Rhodes and Harvey (8) 

proposed an alternative approach to that by Winter. They claimed that a failing 

of Winter's method is that there is no direct relationship between the applied 

moment and the effective width of the flange; consequently an iteration must be 

utilized. In the Rhodes-Harvey technique iteration is avoided.

The approach involves describing the critical stress to cause buckling of 

the compressive flange

'CR
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where

Oca = buckling stress

= buckling constant

k> = flange width (centerline dimension)

= flange thickness

P = plate modulus of rigidity.

According to a more rigorous theoretical approach by Rhodes (9),

5.3=?

approximately for the specific case of a square-tube beam.

Utilizing an empirical curve for the flange effective width from Harvey

t 0.3)b 

where

be= effective flange width

- critical buckling stress

<3" = applied stress.

one can then compute directly the effective square-tube section properties for a 

given stress intensity.

Concerning the post-buckling collapse failure of a square-lube beam, it is 

possible that a significant amount of inelastic activity can occur prior to the 

complete collapse of the cross-section. This effect can be accounted for, accord­

ing to Rhodes and Harvey (8), by substituting the following effective width relation 

for that in Equation 2.12:

be=(°-7€CR/c -f-O.3)b <SJ3)
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in which stresses are replaced by strains. Note that Equations 2.13 and 2. 12 

are identical for the elastic case. This latter expression takes into account the 

load-shedding in cases where CTx^id, since be decreases whiletT still equals

The method of Rhodes and Harvey is believed to show promise for investi­

gating square-tube beams on the thin-walled side of the transition range.

No work is reported in the literature which addresses the problem of the 

inelastic bending of a square tube of a deformable cross-section. Steele (10) and 

Dwyer and Galambos (11) describe inelastic analyses of square tubes as torsional- 

flexural members and as beam-column members respectively, while Smith (12) 

addresses the post-buckling behavior of a box beam using an intricate tensor 

scheme. In all of these cases distortion of the cross-section is neglected.

Since circular tubes have historically received more analytical attention 

than rectangular ones, the literature on the inelastic bending of circular tubes of 

deformable cross-section was explored. It was expected that a technique for 

analyzing circular tubes of deformable cross-section might be modified for the 

square tube. Ades (3) in 1957 presented a method for calculating the total work 

done on a bent and deformed circular tube in the inelastic range. The principle 

of least work was used to determine the ovalization associated with the longitudi­

nal curvature of the beam. The major assumption made in the analysis was that 

the deformation of the cross-section could be approximated as an ellipse which is 

constant along the beam length. A second assumption is that the tensile and com­

pressive properties are identical. Thus, a simple tensile stress-strain curve can 
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be utilized for determining the secant modulus in the inelastic range. The 

method also included an empirical expression for an inelastic form of Poisson's 

ratio.



CHAPTER IE

THEORETICAL ANALYSES

Flange Buckling Analysis

Very light-gage square-tube sections show virtually no deformation of 

the cross-section as a whole, but buckling waves are observed to occur on the 

compressive flange along die beam. The Rhodes-Harvey (8) design procedure 

utilizes the concept of effective flange width as does the Winter (6) analysis used 

in the AISI design method (4). The benefit of the Rhodes-Harvey method is that 

a direct relation between the applied moment and the effective width is afforded. 

A comparison of this method with the Winter method and with experimental 

results supports its applicability.

A major change in the method developed here over the Rhodes-Harvey 

scheme is that the Ramberg-Osgood (13) stress-strain relations are incorporated. 

The calculation procedure is also changed in that the tube cross-section is broken 

into elements as defined in terms of nodal points, and a numerical procedure is 

employed allowing different material properties for each element depending on 

the state of stress of each.

In the local flange buckling analysis the grid system is established, shown 

in Figure 3. The nodal points for the numerical analysis as well as the corner 

approximations are indicated there. The typical tensile flange element between

14
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Figure 3. Grid System for the Flange Buckling Analysis.
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two adjacent nodes has a thickness t and a length b. A typical web element has a 

thickness (width) t and a width (height) of b/16. The entire compressive flange is 

treated as a single element in keeping with the "effective-flange-width” buckling 

approach.

The first calculation determines the critical (elastic) local buckling strain 

by using (from Rhodes-Harvey (8))

/j <2=*.8 (I) (3a)

where

critical elastic buckling strain

= flange thickness

= flange width, centerline dimensions.

Then the critical elastic strain is compared with the strain at which yielding 

occurs. The definition of yield stress utilized in this investigation is the stress 

magnitude at a yield strain of 0. 5%. The smaller value of strain is used as the 

local buckling strain, €CR , in the analysis.

With a given value of curvature the longitudinal strain can be computed by

€l = ?//= (3.Z>

where

^2. = longitudinal strain

V = distance from the neutral axis to the flange 

Z3 = radius of curvature.

If the longitudinal strain is less than critical, then the entire flange is effective. 

If, however, the longitudinal strain is larger, then an effective width calculation 
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is called for. Again, following Rhodes and Harvey (8), the effective width 

equation is

be = 7 + O13)k <3.39

where

= critical buckling strain (elastic or inelastic)

$De = effective flange width (^<6)

and other quantities are defined previously.

Once the effective width is used rather than the actual one, one must find 

the new neutral axis which is different from the axis of symmetry. The effective 

area is
2Re~ 3(3A)

and the new centroidal distance becomes

Ve = = 2fc>t/E.Ae (S'5)

where

- effective area of the entire section

first moment of the effective area

Vs = flange^ distance from die effective neutral axis.

The longitudinal strain for any nodal point is simply the signed distance 

of the node from the neutral axis divided by the radius of curvature. The trans­

verse strain is the negative product of the variable Poisson's ratio and the long­

itudinal strain. The stresses are computed using the method of Ades (3) based 

on the Ramberg-Osgood relations discussed more fully in the following section.

For each increment of curvature the stress distribution is computed and 
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the resisting moment is determined as the integral of the stresses over the 

cross-sectional area. According to this theory the beam is said to collapse when 

the corners of the compressive flange yield.

A computer program (Appendix A) was used to perform the buckling theory 

computations. The program contains a subroutine used to perform the stress 

calculations.

Distortion Analysis

General

The general approach in deriving the distortion theory for the square tube 

is the same as that proposed by Ades (3). One must, however, develop new kine­

matic equations and make a different distorted shape assumption, since the prob­

lem is a square tube rather than a round one. The distortion assumption used in 

this investigation is that which Timoshenko used in his investigation of elastic, 

curved beams. Figure 1 shows Timoshenko's distortion assumption and Equation 

2.1 is the governing transverse deflection relation. The accompanying assump­

tion, it is recalled, is that the adjacent webs have rigid joints and that they deflect 

into the shape of an arc of a circle.

It is further assumed that the deformation of the cross-section is essentially 

that of frame bending where there is no change in the perimeter of the deformed 

shape when compared with the initial one. Other assumptions include negligible 

end effects and isotropic material behavior.
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Internal Work

Ades (3) showed that the work of deformation can be calculated in both 

the elastic and inelastic ranges from the area under a standard stress-strain 

curve corresponding to an equivalent uniaxial strain

= VLiAic,.2 2ae, 3 (3.q

where

Cj. = equivalent uniaxial strain

€.l = biaxial longitudinal strain

= biaxial transverse strain

M. = inelastic form of Poisson's ratio.

The incremental work per unit area for the constant distortion beam 

assumption is written as

d W= (3. 7)

where

d'Af = incremental work per unit area

07. = stress corresponding to the equivalent strain ,

d Y = increment of wall thickness

Js - increment of tube wall width.

It is recognized that is the area under the elastic portion of the stress- 

strain curve for a given equivalent uniaxial strain. Ades (3) further shows that 

the incremental work per unit area can be obtained in the elastic and inelastic 

ranges by computing the area under the stress-strain curve. The total work can 

then be obtained by computing the work per unit area at various points around the
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cross-section and through the tube wall and summing.

Principle of Least Work

The technique used is to assume that for a given curvature of the beam 

there is a unique distortion intensity which will render the internal work a mini­

mum. This means that one can assume various magnitudes of distortion (using 

Equation 2.1) such that when plotted as the abcissa against the internal vzork of 

the cross-section, the curve so formed will contain a unique minimum point. 

This minimum point is the desired deformed shape magnitude. The process is 

then performed for each increment of curvature over the desired range of curva­

tures.

Numerical Integration

Knowledge of the deformed shape and its symmetry indicates that the 

numerical integration scheme need only be carried out for one-half of the cross­

section: one quarter above the neutral axis and one quarter below. The section, 

although doubly symmetric in its undeformed shape, is not when deformed because 

of small changes in the state of stress and strain due to distortion. A grid network 

of nodes around the tube as well as through the tube walls is defined for the numer­

ical computation process.

Geometry of Deformation

It is convenient to treat the web separately from the flange. Figure 4 shows 

the deformed geometry of the upper (compressive) half-web and Figure 5 shows 

that for the upper half-flange. The following kinematic relations describe the



Figure 4. Grid System and Deformed Shape for the Web, Distortion Analysis.



UPPER HALF FLANGE

Figure 5. Grid System and Deformed Shape for the Flange, Distortion Analysis. ND bJ



geometric conditions of the two figures.

For the web,

= (^ - 1) (b-

F?i S/rzf/Sx.)

Rt= b/t/f^X-s

23

(3.3)

(33)

(3.10)

and for the flange
txr^ uJ-./h3j83['Srnf/'Cos/<3. H)

X^ = (k>f-t)/2 f- (X -Of/D-O/S (3.(2)

(3J3)

” R*t 'Sm ((.3./^) 

where the web-flange intersection slope is

/dur \ _ - UToz 3 a Q jCos '(r('^> + (/z) -f Srn 27f (kt ■2/2))^. .
Vaxjs" A3I331- 3,^- T -Jbff (3.13)

and the flange slope is

/^2- = +i s-" (^)J (3J6)

and the other symbols are defined in the corresponding figures.

Once the deformed geometry is defined, the longitudinal and transverse 

strains may be determined. In the case of the web one must write an equation 

to define the increment of thickness, using the inner nodal point as the origin in 

each case

= (Z. - t) Vd. - 4/3 <3'7)

where

fractional wall thickness parameter

= tube wall thickness



24

A = nodal thickness index, i = 1, 2, . . . 5.

The web longitudinal strain becomes (from Equations 3.8 -3.10 and 3.17):

where

= longitudinal strain

x- = thickness nodal index

J = web width nodal index

= longitudinal radius of curvature.

The corresponding transverse strain is

where

^7 = transverse strain

= transverse curvature

/X. = inelastic form of Poisson's ratio

and where other symbols have been previously defined.

The relation for the inelastic form of Poissons ratio is, from Ades (3),

(320)

where

= equivalent uniaxial strain

and the relation for d is given by
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where

^02, = strain at the proportional limit

= Poisson’s ratio.

For the half-flange shown in Figure 5 the equations are similar to those 

for the web:

Jz = CX- -1) % - /^> , 4 = /,2, -.5- (3.22)

where Equations 3.12 through 3. 16 are utilized.

(3.23)

(3.2t)

Distortion Calculations

The steps in determining the distortion of the cross-section with known 

strains are as follows:

1. Assume a value the longitudinal curvature

2. Assume a distortion magnitude as given in Equation 3. 11.

3. Compute the equivalent uniaxial strain for all nodal points.

4. Use the Ramberg-Osgood (13) three-parameter stress-strain rela­

tions:
3/7 'J (3.25)

U = ^/eI0-5 '} <226)
where

= equivalent uniaxial stress

= equivalent uniaxial strain

= Ramberg-Osgood intercept parameter
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H = Ramberg-Osgood slope parameter

U = Strain energy density at ep

Since IT is also the incremental work per unit area for a nodal point, this value 

must be integrated over the thickness and the perimeter to determine the total 

work for the cross-section.

5. The total work is obtained in the following relation, using a half-flange

as an example:
(3.21')

(3.28)

(3.2?)

where

total work of the half-flange

a = thickness index

•S’ = tube wall width coordinate

= tube wall thickness coordinate

= width index

XJ = strain energy density

= derivitive of work with respect to s

and the numerical process is carried out using Simpson's rule.
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This procedure is followed out for the quadrant above the neutral axis and 

one below. The result is doubled to account for the other symmetrical half.

6. Since the desired value of distortion is that which renders dW a mini­

mum for a given curvature, one must repeat steps 2 through 5 until the distor­

tion affording the minimum work is found.

Finally this process, steps 1 through 6, must be repeated for each value 

of curvature desired.

Moment Determination

The bending moment of the entire section can be computed in a similar 

way to that used in determining the internal work. The longitudinal stress is 

given by

where

£-$= secant modulus )

Xt = inelastic form of Poissons ratio

= longitudinal strain

<=7r = transverse strain

and where subscripts defining the nodal points are omitted for simplicity.

The resisting moment is obtained by numerically integrating

where

resisting moment of the cross-section

increment of wall thickness

= increment of flange or web width 
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and Simpson's rule is again used.

Iterative Techniques

Iterative schemes have been devised to accomplish the simultaneous solu­

tion of Equations 3.18 through 3.26 which deal with the determination of inelastic 

stresses from strains. Although the techniques developed are perhaps of interest, 

the details will not be discussed for sake of brevity. The reader is referred to 

subroutine "CURVE" in Appendix A where comment cards are included to point 

out details of the iterative schemes used.

Computations

Appendix B contains the computer program utilized to obtain theoretical 

results for the distortion theory.



CHAPTER IV

EXPERIMENTAL ANALYSIS

Introduction

A series of pure bending tests was conducted utilizing commercially 

available mill-formed structural steel tubing of square cross-section. The test 

specimens ranged in width from two to six inches (outside dimensions), having 

B/t between 16. 5 and 34.5. The initial tests served in part to provide qualita­

tive information on the deformation of the tube cross-section during bending. 

All of the eighteen tests performed provided quantitative data for use in investi­

gating the validity of the tw'o theoretical approaches. One particular result 

desired from the test program was an indication of the lowest B/t for which a 

square tube can still be considered as having a thin-tube flange buckling failure. 

For lower B/t values, then, the failure would be more of a material nature with 

accompanying distortions of the cross-section, rather than a buckling one.

Experimental Procedure

Experiments on round steel tubes (3) have indicated that a moment­

curvature relation such as that shown in Figure 6 will be typical of the lower B/t 

specimens in this analysis. Referring to line A in the figure it is seen that there 

can be two values of curvature associated with a single moment value. If one

29
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Figure 6. Typical Moment-Curvature Relation for a Low B/t Tube.
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were to apply increments of load to determine the maximum moment, one might 

achieve a condition such as point 1. If, however, an additional load increment 

were added, such as that indicated by line B, the specimen would rapidly fail in 

a dynamic manner, giving no opportunity to measure the maximum moment and 

the corresponding curvature.

In the conduct of these experiments the curvature is then treated as the 

independent variable and the resisting moment as the dependent variable. Using 

this controlled-curvature approach the resisting moment will always be single­

valued for curvature. The maximum moment as well as the critical curvature 

at maximum moment can be determined by observing the initial increase, and 

then the subsequent decrease in resisting moment as the curvature is increased.

Because of the relative flatness of the moment-curvature relation in the 

inelastic range, one can easily approximate the moment at which yielding of the 

material occurs using elastic considerations. Using this result, it is expected 

that one can conservatively predict the highly inelastic maximum moment. 

Clearly a better indicator of the point at which maximum moment occurs is found 

in the curvature magnitude, rather than in the moment magnitude. In this inves­

tigation at least equal emphasis was placed on curvature as a failure condition 

indicator.

Dimensionless Parameters

It is convenient to consolidate experimental results in the form of dimen­

sionless numbers. If the forms of the dimensionless quantities are carefully 
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derived utilizing the Buckingham Pi theorem or carefully devised by understand­

ing the nature of the variables involved, one can use them as scaling factors for 

studying tubes not covered in this analysis. The validity of the dimensionless 

parameters will become apparent as the diverse range of test data are corre­

lated.

One can make the resisting moment of the tube dimensionless by dividing 

it by the yield moment. A convenient form of the yield moment is that of Equa­

tion 2.10, replacing the ultimate stress by the yield stress (defined as the stress 

corresponding to a strain of 0.5%). The reason for using the yield stress is that 

the relatively thin-walled tube will most likely collapse long before stresses in 

the ultimate range occur. The dimensionless moment expression is then

/y = M (%2)

where

M = resisting moment at a given curvature

= yield moment based on a 0. 5 percent strain value.

A convenient form for the dimensionless curvature is suggested in the 

work by Timoshenko (2). It will be shown in the results that follow that an expres­

sion similar to the square root of /) in Equation 2.5 is a useful dimensionless 

curvature expression when defined as

where

= dimensionless curvature

S = tube outer width
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7? = tube wall thickness

- longitudinal radius of curvature.

Finally, a convenient form for indicating the amount of distortion of the 

cross-section in width at the neutral axis is

A = Z\B/B (^.3)

where

21 = dimensionless distortion

A B = change in tube width due to distortion

B = tube outer width.

The tube outside vddth is used as a base for non-dimensional lengths because it 

is a convenient quantity to measure in practice.

Measurement Techniques

It is evident that measurements of the resisting moment, the applied 

curvature and the cross-sectional distortion are important. Aside from these 

parameters, though, the applicability of the flange buckling theory must be 

examined by measurement of buckling waves on the compressive flange. Also, 

the assumption of the distortion theory regarding the constant nature of the dis­

tortion along the test span at a given curvature must be checked experimentally. 

Finally, the assumption of a constant radius of curvature over the test span 

must be confirmed, especially for tubes with lower B/t where the assumption 

of constant curvature is more suspect. In the paragraphs that follow the tech­

niques that were utilized to obtain the data mentioned above will be described.
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Moment Measurement

Conventional tensile load cells were utilized to measure the resisting 

moment associated with a given increment of curvature. In two of the three 

bending fixtures utilized it was practically impossible to apply curvatures, 

because the fixtures were force-controlled rather than deformation-controlled 

devices. As explanation, a screw-type tensile testing machine is a deformation- 

controlled device, where a hydraulic-type machine (in which the load is applied 

directly by a hydraulic cylinder) is a force-controlled device. One can, how­

ever, use force controls to continuously adjust the curvature, and with careful 

control one can, in effect, obtain control of curvature.

Curvature Measurement

The most apparent means of measuring cuiwature is that of the electric 

resistance strain gage. The outer fiber strain is measured and the formula

-^3 = 2^/B (9-.^)

wrhere

= curvature

^2 = measured strain

B = outer tube width

P = longitudinal radius of curvature

is used to obtain curvature. Problems which occur experimentally in utilizing 

the strain gage for this purpose are:

1. If the compressive flange is buckling, the wave will adversely effect 

the curvature result.
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2. If the strains are inelastic and if the strain gages are short, the 

presence of microscopic slip planes due to yielding will cause an erroneous 

result.

3. Finally, inherent errors in using strain gages at high strain levels 

might affect the desired result.

An alternate means for curvature measurement was found in utilizing 

rigid frames and instrumenting them to read the center deflection with respect 

to the frame ends. Such a curvature frame is shown in Figure 7. The center 

deflection is converted into a curvature reading by treating the tube as having a 

constant curvature, and then fitting the three points formed by the transducer 

tip and the two ends with a circular arc. The appropriate curvature is

V/5 =

where

P - radius of curvature

= transducer deflection reading

J? = half-length of the frame.

Any deflection measuring device, such as a dial gage or a linear potentiometer 

used here can be utilized as a transducer for the curvature frame. A distinct 

advantage of using the curvature frame is that the reading so obtained represents 

an average curvature over the frame length, as contrasted with a point-type 

result of the strain gage. A disadvantage is that the accuracy of the device is 

affected when the curvature is not constant along the frame length as has been 

found to be the case for lower B/t ratios. Both the strain gage and the curvature
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Figure 7. Curvature Measuring Frame.
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frame have been utilized for obtaining curvatures in this investigation, and in 

cases where strain gage pairs and frames are employed on the same test, the 

results were comparable.

Distortion- Wave Measurement

The change in width of a tube under load, compared with the initial width 

(measured at the neutral axis) was obtained by using compliance gages as 

depicted in Figure 8. The compliance gage is, in effect, a flexible "C" clamp, 

instrumented with a pair of uniaxial strain gages to indicate changes in distance 

between the tips of the spring-loaded clamp. The clamps, hand-crafted by cold- 

bending quarter-inch aluminum bars, were calibrated by placing coupons of 

known thickness between the tube and one end of the clamp and recording the 

resulting change in strain. The bend radius of the clamp was chosen such that 

the change in strain caused by a given change in tube width was significant to 

measure, while avoiding high contact pressures on the tube walls. In some 

tests compliance gages were used similarly to measure the change in height 

vertically at the flange centerlines. The results from the vertical measure­

ments were suspect, however, because they indicated the total of the change in 

height due to the constant distortion as well as a periodic one due to buckling. 

It is more desirable to measure the total distortion field, but the author was 

not able to develop a technique for obtaining such field data without an inordi­

nate amount of effort when compared with the scope of this investigation.

A simple means was devised, however, for using a point-type transducer
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Figure 8. Compliance Gages for Distortion Measurements.
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to measure the deflection of the center of the compressive flange with respect to 

the tube corners as a function of tube span. The device shown in Figure 9 is not 

unlike the longitudinal curvature measuring frame described previously. The 

deflection of the flange centerline with respect to the frame ends in contact with 

the flange corners is measured. An additional feature is that the device is con­

nected by a thin wire to a sheave on a ten-turn rotary potentiometer attached to 

the base of the bending fixture near one end of the specimen. Using an X-Y 

recorder, the deflection from the linear potentiometer is placed on the Y-axis, 

and the distance along the span from the rotary potentiometer is placed on the 

X-axis. If suitable scaling factors are applied, the resulting plots indicate the 

relative deflection of the flange centerline as a function of distance along the tube 

span. This device was found to not only display the buckling wave pattern for 

the higher B/t, tubes, it also indicated whether the distortion of the compressive 

flange is constant in the case of the lower B/t tubes.

Test Specimens

All of the square tubing test specimens were standard mill-formed, hot- 

rolled steel structural tubing. The tubing is actually made from initially round 

electric-resistance-welded pipe. Since the additional process of squaring the 

round tube is involved, rectangular tubing is generally more expensive than 

round pipe. Since the standard length of tubing of this kind is about twenty feet, 

and since the test specimen length varied between 4 1/2 and 8 feet, several 

specimens could be cut from one piece of stock. In the specimen descriptions
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Figure 9. Buckling Wave Measuring Frame.
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that follow, pieces cut from the same stock are designated by a letter from A to F, 

indicating the long-tube stock from which the speciman was cut. It was found 

desirable to run several tests on specimens from the same group to check repeat­

ability of results.

Table I contains a summary of the specimens utilized in each of the 18 tests 

on the six specimen groups. Every effort was made to obtain as wide a range of 

B/t as possible. Although it was possible to obtain lower B/t tubes, it was not 

experimentally practical to test them. Thicker specimens required load and 

deformation measurement ranges outside the capability of the instrumentation.

Coupons of the tube specimens were sent to the Shilstone Testing Labora­

tory of Houston, Texas, for a determination of the stress-strain characteristics 

of each specimen group. The table also contains yield and ultimate strength 

properties as well as a description of the types of experimental stress analysis 

techniques used in each test. Stress-strain data obtained from Shilstone are 

included as Appendix C.

Bending Fixtures

Three different types of bending fixtures were employed during the test 

program. The two types used for the two-inch to three-inch specimens are shown 

in Figure 10. Fixture I, used in tests 1, 2, 3 and 17, was designed to allow the 

application of a pure bending moment without an accompanying transverse shear 

at the support or load points. The balancing tensile and compressive loads 

creating the bending moment act in a direction parallel to the undeformed bending
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TABLE I

Square Tube Bending Test Descriptions

Test B 
(in)

t 
(in)

B/t (psip005 (psif"ult Specimen 
Group

Type 
Expts.

Type
Fixture

1 2.0 0.062 32.3 44,700 53,500 C 1,2 I
2 2.0 0.121 16.5 57,100 63,600 A 1,2,3 I
3 2.0 0.062 32.3 44,700 53,500 C 1,2 I
4 2.0 0.089 22.3 45,000 49,700 E 2 n
5 2.0 0.089 22.3 45,000 49,700 E 2,3 II

6 2.0 0.089 22.3 45,000 49, 700 E 2,3 II
7 2.0 0.089 22.3 45,000 49,700 E 2,3 II
8 2.0 0.121 16.5 57,100 63,600 A 2,3 n
9 2.0 0.062 32.3 44, 700 53,500 C 2,3 H

10 2.0 0.121 16.5 57,100 63,600 A 2,3 II

11 2.0 0.121 16.5 57,100 63,600 A 2,3,5 n
12 2.5 0.079 31.6 54, 600 62,900 B 2,3 ii
13 2.5 0.079 31.6 54,600 62,900 B 2,3 ii
14 2.5 0.079 31.6 54,600 62,900 B 2,3 ii
15 2.0 0.121 16.5 57,100 63,600 A 2,3 n

16 3.0 0.117 25.6 58, 700 69,600 D 2,3 ii
17 2.0 0.062 32.3 44,700 53,500 C 4 i
60 6.0 0.174 34.5 57, 650 67,050 F 2,4,5 m

Experiment types:

1 strain gages (2)
2 longitudinal curvature frame
3 cross-section distortion collar
4 fully strain-gaged
5 wrinkle measurements using linear potentiometer
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Fixture I

Fixture II

Figure 10. Small Bending Fixtures
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specimens. In using this type of fixture the failure would always occur near the 

center span of the specimen length. The major disadvantage of using this fixture 

was found in the load application difficulty. To minimize costs, loads were 

applied by screwing threaded bars into sockets. The problem was that the exper­

imenter became increasingly exhausted as the test progressed, with the low B/t 

tubes being the most demanding. Fixture I, however, provided the benefit of 

having the upper compressive flange exposed for measurements.

Fixture II, shown also in Figure 10, is the standard four-point loading 

fixture for constant moment determinations. The fixture containing the specimen 

was placed in an Instron 10,000-pound screw-type testing machine for loading. 

The disadvantage with this type of frame, especially in cases where buckling is 

involved, is that there is a high probability of failure near the load application 

points. As long as stress concentrations were minimized by the use of external 

pads and internal inserts, however, there was no discernable effect of the fixture 

on the test results. Tests with this fixture were less demanding than those with 

the former from a physical standpoint.

Fixture III, shown in Figure 11, was borrowed for use in testing the one 

large six-inch specimen (Group F) from Shell Development Company. It was 

designed by the author to test six-inch round pipe specimens. This fixture is of 

the same basic design as Fixture I, but it is much larger, having a 40,000-pound 

direct load capacity in testing eight-foot-long specimens.
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Fixture III

Figure 11. Six-Inch Specimen Bending Fixture.
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Instrumentation

In the case of Fixtures I and III, loads were read from the strain-gaged 

load cells using a Budd Model P-350 Strain Indicator. Load cells were calibrated 

against a known reference after fabrication and prior to test use. When Fixture 

II was used, the load cells associated with the Instron testing machine were uti­

lized, as was the built-in load-displacement plotting device. All strain readings 

were made with a second Budd Indicator, utilizing a switching unit for channel 

selection. Gages used on the tubing specimens were single Micro-Measurements 

Type EA-06-500BH-120 uniaxial gages for high strain applications. For the 

compliance gages two strain gages were active, providing a half-bridge setup. 

The linear and rotary potentiometers were DC powered using a standard mea­

surement circuit. Readout of the results was accomplished with a Digitec Model 

211 digital voltmeter or a Houston Instruments Model HR-96 plotter.

Test Procedure

The test specimens were loaded in increments of curvature, and load, 

curvature and distortion data were recorded at each increment. Every attempt 

was made to determine the maximum moment point, along with the corresponding 

curvature.



CHAPTER V

RESULTS AND CONCLUSIONS

Summarized Results

Dimensionless moment-curvature results from the six specimen groups 

studied experimentally are presented in Figure 12. The behavior of dimension­

less moment as a function of dimensionless curvature and B/t, given in Figure 

12, justifies the choice of these parameters.

Dimensionless distortion-curvature results from the experiments, shown 

in Figure 13, indicate that specimen groups having a B/t of 25 and greater yield 

a nearly linear relation and are thin-walled, while those having lower B/t values 

show a nonlinear distortion relation and are thus thick-walled.

The experiments indicate that for the tubes investigated the maximum 

moment can be approximated by

115 (5.,)

where

Mmax = maximum resisting moment of the cross-section 

Myid - yield moment.

and where the expression for the yield moment is given by

— OTooS r3s/a ~s± J <5.2)
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Figure 13. Experimentally Determined Distortion-Curvature Relations.
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and

Notts' = stress at 0. 5% yield strain

8 = outer tube width

= wall thickness.

Similarly the critical curvature can be found by applying the results from 

these experiments using the dimensionless curvature expression

= Vs (5.3)

where

= longitudinal radius of curvature at maximum moment.

Both theories, the buckling one and the distortion one, predicted the max­

imum moment well. Poor agreement is found for the distortion-theory-predicted 

critical curvatures for all B/t values and good agreement is found for the buck­

ling theory, provided that B/t > 25. Figure 14 contains the critical dimension­

less curvature comparisons as a function of B/t for the theories and experiments.

A comparison between the distortion theory and the experiments was 

seriously affected by residual longitudinal wall bending strains as high as 0.13% 

found in the tubing. This is apparently more serious in the case of the distortion 

theory than it is in the buckling theory, as Figure 14 indicates. One specimen 

group, having a B/t of 31.5, exhibited smaller residual strains than the other 

ones. As a result, the comparison between the distortion theory and the experi­

ments for that specific specimen group was good.
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Figure 14. Critical Curvature versus B/t for Experiments and Theories.
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Discussion of Experimental Results

The results from the 18 tests are summarized in Table II. Contained in 

the table are maximum resisting moment and critical curvature. A typical 

failed specimen is shown in Figure 15.

The results are further consolidated by averaging the results for each 

specimen group as shown in Table III. Shown for each specimen group (or B/t 

ratio) are the average moment and curvature as well as the number of tests 

upon which the average is based. It is seen from this table that all of the results 

lie within a dimensionless yield moment range of 1.0 to 1.3 and have dimension­

less curvature from 0. 3 to 0. 5.

Moment-Curvature

Figure 12 shows a composite of the moment-curvature relations for each 

of the specimen groups as determined by experiment. The points of maximum 

moment and critical curvature are indicated for each specimen group by the dots 

terminating that curve. It is instructive to note from the curve that:

1. The specimen groups with the steepest elastic slopes are the thickest 

in terms of the B/t ratio.

2. Nondimensionalizing the moment does not remove all of the scatter 

in moment magnitudes, although it does limit the range of scatter.

3. The curves for the specimen groups with approximately the same 

B/t ratio of 32 to 35 are coincident through most of the curvature range. This 

uniformity is important because the tube widths in this case were 2, 3 and 6
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TABLE II

Square Tube Bending Test Results

Test B B/t
Specimen 

Group
M max 
(ft-lbs)

^max/Myld Mmax/Muit
(1/ft)

5^ 
'(cR *

1 2.0 32.3 C 1275 1. 14 0.82 0.052 0.28
2 2.0 16.5 A 2775 I.00 0.82 0.180 0.50
3 2.0 32.3 C 1080 0.96 0.69 0.042 0.23
4 2.0 22.3 E 1965 1.26 0.98 0.102 0.38
5 2.0 22.3 E 1984 1.28 0.98 0.156 0.58

6 2.0 22.3 E 2085 1.34 1.03 0.097 0.36
7 2.0 22.3 E 2037 1.31 1.01 0.157 0.58
8 2.0 16.5 A 3441 1.35 1.02 0.235 0.65
9 2.0 32.3 C 1296 1.16 0.83 0.105 0.57

10 2.0 16. 5 A 3450 1.35 1.02 0. 169 0.46

11 2.0 16.5 A 3274 1.28 0.97 0.194 0.53
12 2.5 31.6 B 3161 1. 12 0.87 0.048 0.32
13 2.5 31.6 B 3504 1.24 0.96 0.069 0.45
14 2.5 31.6 B 3547 1.25 0.98 0.070 0.46
15 2.0 16.5 A 3312 1.29 0.98 0.171 0.47

16 3.0 25. 6 D 7679 1.26 0.91 0.053 0.34
17 2.0 32.3 C 1095 0.98 0.70 0.066 0.36
60 6.0 34.5 F 40425 1.10 0.82 0.018 0.31



54

*

Figure 15. Typical Collapsed Tubing Specimen.
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TABLE III

Square Tube Bending Test Summary 
By Specimen Group

Specimen 
Group B B/t Mmax/Myld ^max/^ult No. Tests

A 2 16.5 1.27 0.96 0.52 5

B 21/2 31.6 1.20 0.94 0.41 3

C 2 32.3 1.06 0.76 0.36 4

D 3 25.6 1.26 0.91 0.34 1

E 2 22.3 1.30 1.00 0.48 4

F 6 34.5 1.1 0.82 0.31 1

where

B = outer width of tube

t = wall thickness

Mmax = maximum moment

Myjd = yield moment (0. 5% strain)

Muit ~ ultimate moment

= critical radius of curvature 
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inches. This one result serves to verify the applicability of the dimensionless 

curvature expression as an important scaling factor.

The close scatter range of the dimensionless curvature results is appeal­

ing from an experimental viewpoint because it is well known that it is difficult 

to achieve a close scatter band on test results when buckling is the primary fail­

ure mode.

Distortion-Curvature

Of equal importance is Figure 13 which is a composite of experimental 

distortion-cur vatu re relations for each of the specimen groups. Basically the 

curves show that the sections with higher B/t exhibit a more nearly linear dis­

tortion-curvature relation. In the case of Specimen Groups A and E, which have 

the lower B/t ratios, the curves are quite nonlinear. In fact, the webs were- 

found to deflect inward initially and then finally, at higher curvatures, deflect 

outward.

It was initially thought that the nonlinear distortion-curvature observa­

tions might be an indication of thicker-walled tube behavior. With this reasoning 

it was tentatively concluded that the lower limit of the thin-walled tube applic­

ability might be at a B/t of about 25. As will be discussed later, it was then 

learned that residual bending stresses in the tube walls caused by the tube fabri­

cation process might be affecting the results.

A significant result of the data contained in Figure 13 is that for B/t ratios 

of 25 and above the distortion-curvature relation is approximately linear.
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Flange Displacement

Measurements were made of the compressive flange displacement rela­

tive to the flange corners as a function of distance along the test span for two 

different test specimens. In that this analysis was investigative in nature, it was 

thought that it would be instructive to collect at least one set of data for a thick- 

walled specimen and one for a thin-walled specimen. Displacement data from 

Test 11 on Specimen Group A, having B/t of 16. 5 are included in Figure 16, 

Although some wave activity is seen in the shape of the curves, the more prom­

inent effect is that the relative displacement of the compressive flange is far from 

constant along the test span. This surprising result does not necessarily mean 

that end effects are likely the cause, since the span length to tube width ratio is 

twelve. The more likely cause of the nonuniform displacement curve is that the 

thicker tubes exhibit a non-uniform distortional failure mode along the constant 

moment span. This same effect was observed by Yao (14), treating relatively 

thick-walled round pipes subject to pure bending loads. Needless to say, these 

findings are in direct conflict with the distortion theory of Ades (3), both for 

round pipes and for square tubes.

Figure 17 contains displacement results from the test of the six-inch 

specimen test, (Group F), having a B/t ratio of 34.5. The span-width ratio is 

the same as that of Group A, discussed previously, but in this case there is 

clearly no sign of end-effect. Furthermore, the failure mode is definitely flange 

buckling. The half-wave length, averaged along the span, vzas 5.65 inches. 

Using von Karman's (5) assumption that the effective width at buckling is the
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Figure 17. Relative Displacement of Compressive Flange versus Span Length for Specimen Group F, Test
No. 60. Displacement is of the Compressive Flange Centerline Relative to the Flange Edges.
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half-wave length, this means that the corresponding (total) effective width is 

5. 65 inches for the 6-inch wide flange.

In summary, Figures 16 and 17 indicate that a change in failure mode 

from that of inelastic buckling to distortion occurs as the B/t ratio is decreased 

from 34. 5 to 16. 5. In the buckling case the compressive flange wave pattern is 

somewhat uniform along the span length, but in the distortion case the compres­

sive flange relative displacement is clearly not constant with length.

Tube Corner-Strength

It was suggested by the dissertation committee that a possible effect on 

the experimental-theoretical comparison might be that of the increased strength 

of the square tube corners caused by the fabrication process. To isolate this 

effect, tensile coupons were cut from the center of the webs and flanges as well 

as from the corners of a piece of Specimen Group B having a B/t ratio of 31. 6 The 

results of tensile tests on the side and corner specimens are contained in Table 

IV. It is seen that the corner specimens, tested with a right angle cross-section 

and flattened ends, had an average yield strength of 61, 750 psi while the center 

specimens had a yield strength of 54, 500 psi, a 13. 3 percent increase in strength 

based on the strength of the sides. Since the corners are only a small percent­

age of the tube perimeter, it is felt that this effect would not be noticeable within 

experimental error.

Unlike that done for the bending test stress-strain results, the author 

prepared the tensile specimens for the corner effect tensile tests, rather than
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TABLE IV

Variation of Group B Material Properties Due to Forming 
2 1/2" by 0. 079" Square Tube

Specimen Taken From:
^005 ^ult

(psi) (psi)
A. Center of Web of Flange

No. 1 56,200 64,400
No. 2 52,800 63,500
No. 3 54,600 62,900

Average 54,500 63,600

B. Corner of Web-Flange Joint

No. 1 61,400 69,200
No. 2 62,100 68,900

Average 61,750 69,050

Notes:

1. Stress values are based on a standard tensile test, ASTM A370, 
except that the widths of the coupon were reduced to 0. 5 inches to isolate the 
corner properties.

2. The corner specimens had an angular test cross-section which was not 
flattened prior to tensile testing. The grip ends were flattened.
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having it done by the outside testing laboratory. It was during the tensile speci­

men preparation that large longitudinal residual bending strains were found. The 

wall tensile specimens exhibited a distinct curvature after cutting. Additional 

tests on this effect were conducted and the results follow.

Residual Forming Strains

After residual forming strains were found, longitudinal strips were cut 

from each of the specimen groups. The spring-back of the specimen is illus­

trated in Figure 18. It is seen that when the tube is intact, tensile strains are 

found on the outer surfaces of the tube and compressive strains on the inner. 

These effects are summarized in Table V. Web strains were of the same order 

of magnitude as the flange strains, and the strains adjacent to the welds were 

slightly larger, on the whole, than those on sides away from the longitudinal 

weld. Surprisingly, the magnitudes of these tube wall bending strains were 

quite large compared to the strains at the proportional limits of the materials. 

In fact, these bending strains must have had an appreciable effect on the tensile 

stress-strain tests run in conjunction with the bending tests. It is seen from 

Table V that the residual strains, measured with a curvature frame, approached 

0.13% for Specimen Groups D, E, and F. An interesting discovery was that 

Specimen Group C, having the lowest residual strains, is the same group for 

which the only flat inelastic stress-strain curve was obtained. Specimen Group 

C had a Ramberg-Osgood slope parameter of 52, indicating a flat curve, while 

all of the other specimen groups had slope values of between 15 and 24. The
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Figure 18. Spring-Back Due to Mill-Forming Residual Strains.
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TABLE V

Residual Bending Strains Due to Mill-Forming

Group
Bending
Test Nos. (Ref) B t B/t €s

A 2,8,10,11,15 2 0.121 16.5 874 801 983 1.05

B 12, 13,14 21/2 0.079 31.6 924 861 998 0.96

C 1,3,9,17 2 0.062 32.3 528 469 — 0.45

D 16 3 0.117 25.6 1368 1322 1461 1.52

E 4, 5, 6, 7 2 0.089 22.3 1380 1380 1772 1.53

F 60 6 0.174 34.5 ---- 1303 1276 1.53

where

B - square tube width, outside to outside, inches

? = tube thickness, inches

€ = longitudinal residual bending strain, micro-in.

= strain at proportional limit of the material

and where subscripts are

= top, or compressive flange of tube

5 = side, or web of tube

tv = adjacent to the longitudinal tube weld
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Ramberg-Osgood parameters for the specimen groups are found with the stress- 

strain data in Appendix C. The residual strain specimens are shown in Figure 

19.

Comparison of Theory and Experiment

A comparison of the maximum moments based on the two theories and 

the experimentally determined ones in Table VI show very good agreement 

between the theoretically predicted and the experimentally determined bending 

moments. The maximum error is found for Specimen Group D, where the local 

buckling theory is 13 percent lower than the experiment. This confirms the 

previous observation that it is not difficult to predict the maximum moment of 

materials having flat inelastic stress-strain curves (see Appendix C).

A comparison of dimensionless curvature values in Figure 14 indicates 

that for B/t > 25, good agreement is obtained between the buckling theory and 

the experiments. (It is believed that agreement within 25% is acceptable for 

such buckling results.) Detailed comparisons of significant experimental and 

theoretical results for each specimen group are included in Appendix D.

Figure 14 also shows that the cross-sectional distortion theory is not 

useful in determining the critical curvature. It is in error by nearly a factor 

of two on the high side of the experimental results, except for the single case of 

Specimen Group C, for which case the residual forming strains were small and 

for which the stress-strain curve was almost totally flat in the inelastic.range.

Based on the data presented concerning Specimen Group C, it is concluded
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Figure 19. Spring-Back Coupons for All Specimen Groups. Note the Curvature 
of the Specimens.



TABLE VI

Comparison of Experimental and Theoretical Results

--- - -..... ........ ..... .
Experiment Local Buckling Distortion

Material B B/t ^max 
(ft-lbs)

y^max 
(ft-lbs) 'fcR?-

Mmax 
(ft-lbs) Z/<:R 77

A 2 16.5 3250. 0.52 2924. 0.17 3305. 0.97

B 2 1/2 31.6 3404. 0.41 3066. 0.33 3174. 0.86

C 2 32.3 1187. 0.36 1263. 0.31 1269. 0.44

D 3 25.6 7679. 0.34 6680. 0.26 7190. 0.82

E 2 22.3 2018. 0.48 1777. 0.22 1841. 0.95

F 6 34.5 40425. 0.31 40030. 0.31 42877. 0.90

Os
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that the residual longitudinal bending strains from the mill-forming caused the 

tubing in the other specimen groups to behave differently from that predicted by 

the distortion theory. In the sole case of Group C, where the residual strains 

were lower, reasonable agreement between the distortion theory and the experi­

ments was found. This is apparently more serious in the case of the distortion 

theory than it is in that of the buckling theory, since the latter compares more 

favorably with the experimental results.

In summary, there are two possible reasons why the experimental curv­

ature results and the distortion theory results do not agree:

1. The residual strains adversely affect comparison with the theory, as 

discussed above.

2. The assumption of a constant distortion configuration as a function of 

length is invalid, particularly for low B/t. The measured low B/t case showed a 

distinct maximum distortion at the center, decreasing on each side of center 

span-rin direct conflict with the constant curvature assumption.

Conclusions

General

The following conclusions are tendered, based on the results of this square 

tube bending investigation:

1. The lower bound on the thin-gage behavior of the hot-rolled structural 

steel square tubing considered in this analysis has been found to be defined by a 

width-to-thickness ratio, B/t, of 25. Tubing with B/t ratios above this value fail 
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due to the buckling instability of the compressive flange: tubing with ratios 

below this value fail due to excessive distortion of the tube cross-section.

2. Residual tube wall bending strains in excess of one tenth of one per 

cent were measured in some of the tubing tested. These strains, probably caused 

by the process of squaring round, electric-resistance-welded tubing to make this 

type of square tubing, should be accounted for in any analysis that is involved 

with this type of structural tubing.

3. The inelastic flange buckling analysis proposed by Rhodes and Harvey 

was found to be applicable to the analysis of this type of square tubing, provided 

that the width-to-thickness parameter, B/t is in excess of 25. The effect of the 

residual strains was more appreciable in the case of the distortion theory­

experiment comparison than it was in the buckling theory-experiment one, because 

the experimentally determined stress-strain results are also affected.

4. A correlation of the experimental results reveals that the maximum 

resisting moment of a tube cross-section when subjected to increments

of curvature can be approximated by the relation

= 1.15- Mr,j

where

Mmax = maximum resisting moment

My= yield moment at 0. 5% strain.

The critical curvature can be found from the experimentally determined 

expression
B i = 3/8
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where

B = tube outside width

1 = wall thickness

= critical radius of curvature.

Design Implications

Since the AISI design method does not account for inelastic material 

behavior, this work is of no direct consequence to it. The results, however, 

might be utilized to extend the AISI specifications to cover inelastic behavior. 

These results speak clearly for placement of a lower-bound on B/t in the defini­

tion of a light-gage structural member. No such limit presently exists because 

inelasticity is not considered.

This study has shown that as long as hot-rolled structural tubing is fab­

ricated in such a way that appreciable residual longitudinal bending strains are 

produced, this material should not be included under the AISI light gage steel 

specification. To include it would require that the specification be altered to 

account for the residual strains from the tubing squaring process.

Recommendations for Further Studies

An obvious topic for further study is that of including the residual bending 

strains in the theories and then making comparisons to the results of this investi­

gation, supplemented by additional test data of the type obtained in the experi­

mental part of this investigation. Clearly a new distortion assumption is called 

for in the case of the distortion theory.
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A generalization of this study would be to investigate the behavior of 

rectangular shapes and other materials such as aluminum.

The results from this investigation will clearly bear consideration in 

the analysis of hot-rolled structural steel tubing under many different combina­

tions of loads, both as a single member and as components of joint design. 

Finally, the results herein should provide some basis for investigations of the 

fatigue properties of square structural tubing.
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APPENDIX A

Computer Program for Buckling Analysis



BUCKLING THEORY COMPUTER PROGRAM

Written in Fortran V for the Univac 1108, Exec II

c
C StiUARE TUBE BENDING ANALYSIS BASED ON THE
C hLANGE BUCKLING APPROA'CH OF RHODES AND HARVEY
C 
C RAY R. AYERS. C.E. DEPARTMENT. UNIVERSITY OF HOUSTON 
C DR. JAMES M. NASH. ADVISOR 
C 

DIMENSION Y(1O) . YT110). YS(IO), DMTS(IO), DMTT(IO).
1 DMCS(ID) 

COMMON RO, SMAX, SPL. kN, SO7, E .AMU
L NNJJ - THE NUMBER OF DIFFERENT SQUARE TUBE CASSES TO RE RUN 

READ(5illll) NNJJ
1111 FORMAT (15) 

DO SB JJJI r 1. NNJJ 
RLADIS.IUU) H, T, E AMU, RN, S07» SPL . SMAX .SYLD.EYLD

C
L H - SQUARE TUBE WIDTH, CENTERLINE DIMENSIONS , INCHES
C T = TUBE WALL THICKNESS, INCHES
L E 2 MODULUS OF EL AS TI CIT Y, PSI
C AMU 2 POISSONS RATIO, ELASTIC FORM
C RN 2 RAMBERG OSGOOD SLOPE PARAMETER
C SO? 2 RAMBERG OSGOOD SIRESS• INTERCEPT PARAMETER, PSI
C SMAX 2 UPPER STRESS LIMIT FOR STRESS ITERATIONS, PSI
L SYLD 2 YIELD STRESS AT A STRAIN OF .005, PSI
C LYLD 2 YIELD STRAIN CORRESPONDING TO SYLD. IN/IN

1UU FORMAT ( 8F1D.D / 8F10.0 )
READ (5,ADD) ROH , ROL ,XN



I 
c 
c 
c 
c

RUH * HIGH LIMIT ON HS.DIUS OF CURVATURE. INCHES
ROL - LOW LIMIT ON RADIUS OF CURVATURE. INCHES 
XN z NUMBER OF CALCULATIONS BETWEEN ROL ANO ROH

4 00 FOR MAK 8F10.U)
WRITE (6. 912 )

9 12 FORM ATI IHj )
WRITE ( 6.111 )

111 F OR MA T( 1H1.11X. * A N ANALYSIS OF THE BENDING CHARACTERISTICS*
1 // EX, ’OF SQUARE STRUCTURAL TUBING USING THE RHODES APPROACH*
2 /// )

WRITE (6,222 ) H
222 F0RMAK1HD . I2X, ’MEAN WIDTH OF SO. TUBE* , 5X, FID.4, 

1 2X, ‘INCHES’ )
WHITL(6,333 ) T

333 hORMATt 1HU, 12X, ’AVERAGE WALL THICKNESS* , 5X. FID.4. 2X, 
1 'INCHES’ )

WHITE 16,444) E» A MU
4 44 F OR MA T( 1H0, 12 X, ’MATERIAL PROPERTIES’ , // 17X, ’ELASTIC ’

1 .’MODULUS’ » 5X. LIO.3, 2X. ’PSI' // 17X ,
2 'POISSONS RATIO* , 5X, F7.3 )

WRITE (6.666) iPLr SYLD. SMAX
bfob FURMAKIHO. 16X, 'STRESS AT PROPORTIONAL LIMIT’, 2X, F10.0,

1 2X, ’PSI’ , //17X. ’YIELD STRESS’ , 5X , F1D.0, 2X. ’PSI' //
3 17X, ’ULTIMATE STRESS' , 5X, FID.D, 2X, ’PSI* )

WRITE( 6, 5 55 ) SOT , RN
555 FORMAT) 1HD, I2X, *RAM3ERG-0SGOO0 PARAMETERS’ //

2 17X, ’STRESS AT MOD. OF 097*E ’, F1G.0 //
3 17X, ’SHAPE FACTOR FOR STRESS-STRAIN FIT’ r 5X, FID.2 )

ROT - (H+T)/2.*E/SPL
IF(ROH.GE.ROT) ROH z ROT
IF ( ROH ,LE. 1. ) ROH z RO T
WRITE(6,777) ROH, ROL, XN

Oo



777 hORMflK1HO,///4X.’TH1S RUM EXPLORES THE RADIUS RANGE BETWEEN*
1 // 7X» F1U«U# 2X. ’INCHES ANO* » FID-Of 2X«
2 'INCHES IN * F 1U.2 . ’ INCREMENTS’ )

LPL = SPL/E
LT1 - D. 
DR -(ROH-ROL) / XN
NN - XN 
DO 88 J - liNN 
XJ - J 
IF ( XJ . LE* 0. ) XJ - 0*

1 RO - ROH - DR *XJ
L BOTTOM PLATE CRIPPLING ANALYSIS
C RO IS THE RADIUS OF CURVATURE FOR WHICH CALCULATIONS ARE DESIRED 

WRITE( 6»<+56 ) RO
45G FORMATtlHDi ********************** //5X, ’MOMENT CALCULATIONS*

1 » ’ FUR RADIUS OF CURVATURE OF’ » F10*0,2X» 'INCHES’ //
2 •♦♦*»♦»»«»#»♦»»»»»♦♦♦• )
I = 0
YC z-H/2.
IL = YC/RO 
LT1 = 0.
E E C R = A.8*E*(T/H)**2 / E
IF (EECR.LE .EYED ) ECR - -EECR 
IFIEYLD.LT. EECR) ECR = -EYLD 
IF(EL.GE.ECR) GO TO 25

C EFFECTIVE WIDTH CALCULATIONS
WRITHE. » 91 1 ) 

911 FORMAT(1HO» /// 7Xt ’THE COMPRESSIVE FLANGE EXCEEDS ’
1 .’CRIPPLING LIMIT’ // 7X> 'EFFECTIVE WIDTH CALCULATIONS’.
2 'ARE IN ORDER* )

2U5 CONTINUE
C HL IS THE EFFECTIVE WIDTH OF THE COMPRESSIVE FLANGE

y HL = tO.7*ECR/EL + .3 )*H 
IF t HE *uE. H ) HE = H



SA 2 3.*H * T + HL *1
SAY t 2.*H**2*T
Y B A R = S A Y / S A
DD 2 - H/2. ♦ YBAR
YC 2 -l.*(H/2. + DD )
lL 2 YC/RU
LT1 2 U.
YU2 YC
CALL CURVEt LL» ES» O.t ETI, YQ .ET, POIS. )
SIGI - ES*(E.L + POIS*ET)/(1. - POIS**2 ) 
IF(SIGI + S Y L D) 3 U » 3 0 »9 fe

30 URITL(&»31 ) SISI. SYLD
31 FORMAKIHOr ’FLANGE YIElU EXCEEDED ’ > 2F1D.0) 
9E. DM 2 S I G I * YC * T» HE

WRITE (b, 913) SIGI, EL, DD, YC, HE
913 FORMAT( 1HD,1OX, ’STRESS ’ , F1U-0, 2X, ’STRAIN FID.5, //

з 11X, *N. A. SHIFT TO TENS. //UX, ’FIBER DIST. TO *
и , ’Flange c. l. ’ fid.u//iix,’effective width, cl to cl*
5 2X , F ID.4 )
WRITL(b,814 )
GO TO 18

25 CONTINUE
WRITE! G, 814 )

“14 FORMAT! 1HC, /// ZX, ’ELEMENT L. STRESS L. STRAIN '
2 r ’T. STRAIN FIBER DIST. ’ /)

UM 2 SIGI*YC*T*H 
UD 2 C.
CALCULATIONS FOP THE TENSILE WEB

13 D 0 5 12 1,9
XI 2 1 
Y(I) 2 (XI - 1. )/8.*H/2. -DD 
EL 2 Y(I) / RO 
LT1 2 U.
CALL CURVE! LL, ES, 0., ET1, Y!I), ET, POIS )

oo o



Slbl r £S*(EL * POIS*ET)/(1. - P0IS**2 ) 
DMTS(I) r SIGI»Y(I) 

5 CONTINUE 
C CALCULftTIONS FOR THE TENSILE FLANGE 

DO 7 131,5
XL - 1
YT(1) - H/2, * (XI-1.)*T/Q. - T/2. -DO
LL 3 Y T(I ) / RO
LT1 = U.
CALL CURVE( EL, E5, D., ET1, YT(I),ET, P0I5 )
SIGI = ES*(EL + POI5*ET)/(1. - POIS**2 )
DMTTII) 3 SIG1*YT(I)

7 CONTINUE 
C CALCULATIONS FOR THE COMPRESSIVE WE8 

DU ID I 3 1,9 
XI 2 I 
YS(1) 3 - (XI - l.)/B. *H/2. -OD
LL 3 YStI)/RO 
LT1 3 0. 
CALL CURVEC EL, ES, D.i ET1, YSdl.ET, POIS ) 
Slbl z ES*(EL * POIS*ET)/(1. - P0IS**2 )
IF (SibI + SYLD ) 8 , 19,19

ti WRITl(6,32) SIGI, S YLD
32 FORMAKIHO, •WEB YIELD EXCEEDED • » 2F10.D)
19 UMC S(1) - SIGI*YS (I )
ID CONTINUE

C TOTAL MOMENT CALCULATION
XMTS 2 DMTS (I> + DMTS(9)
XMTS 2 XMFS* Q.*(DMTS(2) + DMTS(4) ♦ 0MTS(6) + DMTS(R))
XMTS 2 XMTS * 2.*( DMTS(3) * DMTS(5) * DMTSC7) )
XMTS 3 XMTS* T*H/8./3.
XMTT 3 DMTT(1) + DMTT(5>
XMTT 3 XMTT * <4 ( DMTT12) *■ DMTT(4))
XMTT 3 XMTT * 2.*(DMT T(31 )

Qo



X MI T r x M T T * H « T / 4 . / 3 .
XMCS - OMCS(l) *'DMCS(9)
XMCS - XMCS + 4.*(DMCS(2) * DMCS(4) + DMCS(6) + DMCS(8))
XMCS t XMCS + 2.*(DMCS(3) * DMCS(5) * DMCS(7) )
XMCS = XMCS *T*H/8./3.
TM r DM + XMTS + XMTT * XMCS 
TM  TM/12.
XKO r l./RC*12.
WHITS (6»667 ) TM» XR0

887 FURMATt IHU» HU lOXt *MOMEMT OF RESISTANCE ’ » E10.4.
3 * FOOTPOUNDS’ // 1UX. ’FOR A CURVATURE (1/RO) OF*
5 . • *. F1U.6. * 1/FEET’ )

83 CONTINUE
END

CO



SUBROUTINE "CURVE

Used in the Buckling and in the Distortion Theories

c 
c 
c 
L 
C

L

C 
c 
c

c 
c 
c 
c

L 
L 
C

SUBROUTINE CURVE IS USED T3 CALCULATE THE NODAL 
STRESSES ONCE THE STRAIN IS KNO kN . THIS SUBROUTINE IS 
USED BY BOTH THE BUCKLING AND THE DISTORTION THEORIES.

NAY R. AYERS CIVIL ENGINEERING DEPARTMENT UNIVERSITY OF HOUSTON 
DR. JAMES M. NASH , ADVISOR

SUBROUTINE CURVElELf ES» AREA, ET1, Y, ETTtPOIS)
COMMON RO, SMAX, SPL, RN, S07, E »AMU
Ii = THE EQUIVALENT UNIAXIAL STRAIN 1N/IN
EL 2 LONGITUDINAL STRAIN AT A NODE, IN/IN
LS 2 THE SECANT MODULUS PSI
AREA IS THE AREA UNDER THE STRESS STRAIN CURVE AT El
ET1 2 THE DISTORTION COMPONENT OF TRANSVERSE STRAIN. THE 
POISSON EFFECT IS ADDED IN THE SUBROUTINE
Y 2 THE 'Y* COORDINATE OF THE NODE
ETT 2 THE TOTAL TRANSVERSE STRAIN CALCULATED IN THE SUBROUTINE 
PUIS 2 THE VARIABLE POISSONS RATIO, ENELA.STIC FORM

IF( RO.LE. 0. ) Y 2 U.
UPPER AND LOWER LIMITS ON El ARE CALCULATED USING THE

ELASTIC PROPORTIONAL LIMIT AS ONE BOUND (ES2 F), 
ANU USING TOTAL PLASTICITY ( POIS 2 0.5) AS THE OTHER 
LPL2 SPL/E
DEL 2 (1.+£PL)»( 1.- AMU»EPL)**2 - 1.
ETT 2 ET1 - AMU*Y/RO
EIL 2 £L**2+ ETT*»2 * 2. *AMU*EL*ETT

IIL 2 (E1L/(1.- AMU**2J) ♦*0.5
IF(EIL .LE. EPL) GO TO ?5 co



LIT t £ri - y/RU Z2. ■
EIP = EL**2 * ETT**2 + EL*ETT
LIP t (EIP/.75 )v*0.5
L1HI - EIP
E1L0 t EPL

C LI IS FOUND BY ITERATION TO STATEMENT 3C 
El z ( EILO + EIHI )/2.

20 POIS z (1. - ((}.♦ OEL)/(1.+ El))**0.5)/EI
ETT z ET1 - POIS *Y/RO

LIC z EL**2 -» ETT**2 ♦ 2 . *P 01 S ♦ EL *E T T
LIC z (E1C/11. - POIS**2))**□.5 •
Hz (tlC -El )
C z ABS(B )
IF ( C . LT. .000001) GO TO 30 

jud format(ix , flEra.s )
1F ( EIC - El ) 1U 5 » 10 5, 1 1 G

105 A z EIHI - El
B z EIC - EILO
1F< A . LT. B ) EILO z EILO +B 
IF ( B . LT. A ) EIHI z EIHI - A 
bO TO 115

1 1U b z EIHI - EIC
A z cl - EILO
IF ( A . GT. B ) EILO z EILO + A
IF ( H . bl. A ) EIHI : EIHI - B 

lib CONTINUE
LI z (EIHI + ELLOJ/2.
GO TO 20

C STATEMENT 25 IS THE THE ELASTIC BRANCH, WHERE ITERATION IS NOT 
C NEEDED

25 POIS z AMU
LI Z LIL

3U CONTINUE
C SIGI ANU AREA UNDER CURVE ARE DETERMINED
C BY TRIAL USING El KNOWN TO STATEMENT HD
C FOLLOWING ARE CALCULATIONS OF THE ITERATION LIMITS 00 4^



lb ( LI .LE. EPL ) SIGI - E *EI
lb I LI .LE. EPL ) AREA = SIGI *EI/?.
Lb ( LI .LE. EPL J ES - SIGI /El
IF ( LI .LE . EPL ) GO TO AO

SHI 2 SMAX 
SLO : SPL 
SIGI z SO? 

L NOW THE ITERATION BEGINS
33 L1C z SIGI»(1.+ 3./7.*(SIGI/SO7)»*(RN- 1. ))/£ 

d : I EIC - El 1 
C z AriS(B) 
IF ( C . LE. .OOODU1) GO TO 37 
IF ( ti .GT. 0. ) SHI z SIGI 
IF ( 8 .LE. 0.) SLO z SIGI
SIGI z ( SHI + SLO ) / 2. 
GO TO 33

37 AREA z .5 +( 3.*RN/7./(RN* 1.>)*(SIGI/SO 7)* *(RN - 1.)
AREA z AREA * SIGI**2/E 
ES z SIGI / El 

AO CONTINUE 
555 FORMAT! IX, 1UE10.5) 

RET URN 
END

oo> cn



APPENDIX B

Computer Program for Distortion Analysis



DISTORTION THEORY COMPUTER PROGRAM

Written in Fortran V for the Univac 1108, Exec II

SQUARt TU3E BENDING ANALYSIS RASED ON THE
C DISTORTION OF THE CROSS - SECTION METHOD OF ADES

L RAY X. AYERS CIVIL ENGINEERING DEPARTMENT
C UNIVERSITY OF HOUSTON
C UR» JAMES M. NASH » ADVISOR

DIMENSION BETV(1D)» YV(10)» BETH(IC), YH(1G), ELVdGflO)
1 ♦ETV(lutlD), SIGVCID.IO}. AV ( 1 0,1 0 ) r
2 ELH(1D,1G), ETHdDrlC). SIGH(lOrlC). AH(ID.IO)
$ i DMV( 10) , DMH(IB ) »

<4 DWVtlG), T'J(2) « DOH (10) t TM(2)
:i » SYHl 1G ) t SYV( 101

COMMON H0» SMAXt SPL, RN» S07» E » AMU
Pl = 3.14159

L NNJJ : NUMBER UF DIFFERENT SQUARE TUBE CAGES 
RE AD 15 » 30 10) NnJj

T ul J FORMAT (IS )
DO 2 IF JJJJ : b NNJJ 
READ(StlUO) ri» T» E » AMU, RN, S07» SPL « SHAY

1 r SYLDi XXXX, RR

C Hr SOUARE TUBE WIDTH, CENTERLINE DIMENSIONS » INCHES
C T = TUBE WALL THICKNESS. INCHES
C E - MODULUS OF ELASTICITY, PSI
C AMU r POISSONS RATIO, ELASTIC FORM
L RN - RAM3ERG OSGOOD SLOPE PARAMETER
C SO? 2 RAMBERG OSGOOD STRESS INTERCEPT PARAMETER, PSI



L SMAX = UPPER STRESS LIMIT FOR STRESS ITERATIONS, PSI
C SYLD - YIELD SJRESS AT A STRAIN OF .005, PSI
I LYLD 3 YIELD STRAIN CORRESPONDING TO SYLD, IN/IN
C XXXX - DUMMY VARIABLE DISREGARD
L RR z RESIDUAL BENDING STRAIN TO BE ADDED TO PROGRAM 
C AT A LATER DATE 
L 

1UU FORMAT ( 8F1U.0 / 8F1D.0 )
READ (5,400) ROHt'ROL ,XN, ALH , ALL

L 
C ROH 3 HIGH LIMIT ON RADIUS OF CURVATURE, INCHES 
C RUL 3 LOW LIMIT ON RADIUS OF CURVATURE, INCHES-
L XN 3 NUMBER OF CALCULATIONS BETWEEN ROL AND ROH
C ALH 3 HIGHEST DISTORTION MAGNITUDE EXPECTED. THIS IS 
C THt INWARD DEFLECTION OF THE CENTER OF THE COMPRESSIVE FLANGE, IN.
C LOWEST DISTORTION MAGNITUDE DEPECTED. MUST BE .GT. ZERO . IN INCHES
C 

4 OU FORMAT( 8F1D.U)
WRITE (6, 912 ) 

912 FORMAT( 1H1 )
WRITE ( 6,111 ) 

111 FORMAK IHltllX, ’AN ANALYSIS OF THE BENDING CHARACTERISTICS’
1 // 6X, ’OF SQUARE STRUCTURAL TUBING USING THE ADES APPROACH*
2 /// )

WRITE (6,222 ) H
222 F0RMAK1HD , 12X, ’MEAN WIDTH OF" SO. TUBE* , 5X, FID.4,

1 2X, ’INCHES’ ) 
WRITL(6,333 ) T 

333 FORMAT! 1HU, 12X, ’AVERAGE WALL THICKNESS’ , 5Xt FID.4, 2X, 
1 ’INCHES* )
WRITE(6,444) E, AMU 

444 FORMATtlHO, 12X, ’MATERIAL PROPERTIES’ , // 17X, ’ELASTIC *
1 , ’MODULUS* , 5X, E1U.3, 2X, ’PSI’ // 17X ,
2 ’POISSONS RATIO’ , 5X, F7.3 )

WRITE 16,666) SPL, SYLD, SMAX
66b FORMATIIHO, 16X, ’STRESS AT PROPORTIONAL LIMIT*, 2X , F1C.0, «



1 2X. «PS1» » //17X» ‘YIELD STRESS* » FX» F1D.D# 2X« *PSI* // 
5 17X» ‘ULTIMATE• STRESS * » 5X» F1D.O» 2X» *PSI‘ )
WRITtlbt 555) S07. RN

555 FORMAT! 1HO. 12X» *RAMBERG-0SGOOD PARAMETERS* //
2 17Xf ‘STRESS AT MOD. -OF 097*F *» F1D. D //
3 17Xf ‘SHAPE FACTOR FOR ST RESS-STRAIN FIT’ » 5X. FID.2 )

ROT z (H+T)/2.»E/SPL
IF (ROH.GE.POT ) ROH z ROT
IF ( ROH ,LE. 1* ) ROH = ROT
WRITE(6»777) ROH« ROLt XN 

777 FORMAT(lH0t///4X,•THIS RUN EXPLORES THE RADIUS RANGE BETWEEN’
1 // 7X» FID.Of 2Xf ’INCHES AND* . FID.Of 2Xt
2 ’INCHES IN* F10.2f * INCREMENTS* )

U - (ROH- ROL) 
XXN - XN

L RO IS THE RADIUS OF CURVATURE FOR WHICH CALCULATIONS ARE DESIRED
RO z ROH + D/XXN
NN z XN 
KJJ Z NN + 1 
UO 215 KJ z 1 ,KJ J

2 RO z RO -D/XXN
WAl z D.
WRITLt ) RO

Abb FORMATdHOf ********************** Z/5X, ‘MOMENT CALCULATIONS*
1 » ’ FUR RADIUS OF CURVATURE OF* , FlD.QtDXt ‘INCHES* //
2 ************* .♦******♦ )

3 ALT z (ALH-ALL)/IO.
L WAL CORRESPONDS TO THE VALUE OF *W’ t WHICH IS TIMOSHENKO’S

SUUARE TUBE DISTORTION RELATION 
WAL z ALL-ALT 

8 CONTINUE
00 215 KJK z 1 ,1 1 

o WAL Z W A L ♦ ALT 
C THIS DO LOOP ON K ALLOWS CALCULATIONS TO BE MADE 
C FOR TnE COMPRESSIVE FLANGE AND WEB* AND THEN TO REPEAT (Kz2)
C FOR THE TENSILE FLANGE ANO WEB. K IS USED TO CHANGE SIGNS CoXO



L UN THt EUUATIONS WHEREVER THEY CHANGE BETWEEN THE UPPER 
C AND LOWER HALVES 'OF THE TUBE 

UO 203 K = 1t 2 
T W(K) 3 0. 
T M ( K ) 3 U . 
ARG 3 PI* ( H+ T/2. )/ (H + U 
DWX3 -WAL *(COS(ARG) + SIN(2.♦ARG)/PI)*PI/(H+T) /I. 3183

C UWX IS DW/DX» THE FLANGE SLOPE AT THE FLANGE- WEB JOINT
L RT 3 THE TRANSVERSE WEB RADIUS OF CURVATURE DUE TO DISTORTION

H T 3 H / 2 . / D W X 
C THIS DO LOOP IS USED TO CALCULATE THE *Y* COORDINATES OF 
C THE NODES FOR THE HALF, WEB AND HALF FLANGE 
C THE FINAL LETTER OF *V’» OR ’H’» ON ANY VARIABLE REFERS 
u TO THE ’VERTICAL* (WEB) OR THE HORIZONTAL (FLANGE).
C TO THE ’VERTICAL’ (WEB) OR THE* HOR IZONTAL *(FLANGE).

7 UO 1U N3 1,5
X N 3 N
BETV(N)3 (XN-1. )*(H-T )/3. /RT 
LFtWAL.LE. .UCDDl ) B£TV(N) 3 G. 
YV(N) 3 RT*SIN(BE TV(N) ) 
IFCWAL.LE. .00001 ) YV(N) 3 (XN-I . ) *(H-TJ/8.*<-1.)* *(K* 1 ) 
XX 3 (H*T)/2. * (XN-1.)*(H*T)/8.
ARGG 3 PI*XX/(H+T) 
BETH(N)3 -PI *WAL/(H*T ) *(COS(ARGG)* SIN(2.* AR5G)/P I)/1.3133 
U'X - WAL *(S1N(ARGG)+ (1.- CO S ( 2 . * A R G G ) )/2 . / P I ) /I.3183 
YH(N) 3 (RT*SIN(DWX) - WX ) *(- 1 . ) * *(K* 1) 
IFtWAL.LE. .00001 ) YH(N) - H/2. *(-1 . ) **<X * I)

1U CONTINUE 
1L1U FORMAT! IHOi ///IHUf ’VERTICAL ELEMENT STRESS AND STRAIN’//

1 IHUt 3X, ’NODE ’ • 3X, ’THK ELEM’ , 3X, ’L STRESS’ 3Xi
2 ’L STRAIN’ , 3X» *T STRAIN’ ///)

L WEB (VERTICAL) STRAINS ANO STRESSES ARE CALCULATED WITH 
C THIS DO LOUP 

UO 2U N 3 1,5 
DU 20 I 3 1,5
XI 3 1



DLL 2 (XI-1.)*T/q. - T/2.
LLV(N.I)z (YVtNJ*. DEL *SIN (8ETV( N) ) ) /RO
YVNS = £LV(NfI) * RO 
lEtRR.LE.O. ) GO TO 702 
LLVINfl) = ELV(N.I) + (DEL/RR)*(-1. )* *<K*1 ) 

702 ET 2 (DEL ZRT ) *(- 1 . ) * *(K +1) 
IF(WftL .LE. .OUOD1 ) ET 2 0.
CALL CURVE! ELV(NtI)» ESr AV(N»I)» ET» YVNS ♦ ETV(NfI)«P01S) 
S1GV(N,I)2 ES* ( EL V( Nw I ) + POI.S*ET V( N, I) ) / ( 1. - P0IS**2) 

1U05 FORMATt 1HO» 2I1U»F1D.O t 2F10.6 )
20 CONTINUE 

bOlU FORMATt 1H0. ///1HO» »H0RIZ« ELEMENT STRESS AND STRAIN*//
1 IHDi 3X» 'NODE • t 3X, • THK ELEM* f 3X» 'L STRESS' 3X»
2 *L STRAIN* » 3X» *T STRAIN* ///)

L FLANGE i
C FLANGE ( HORIZONTAL) STRAINS AND STRESSES ARE CALCULATED
C WITH THIS DO LOOP

DO GO N2 1,5 
DO 60 I 2 1 ,5 
XI 2 1 
DLL 2 (XI-1.)*T/A. -T/2.
ELH(Ntl) 2 (YH(N) + 0 EL*COS(BETH(N) ) )/R0 
YHNS 2 ELK IN,I) *R0 
IFIRR.LE.O. ) GO TO 701 
LLHtN.I) 2 ELH(N»I) + (DEL/RR)*(-1. )* *<K*1 ) 

701 XX 2 (H + T)/2. * (XI- 1.)*(H + T )/8.
ARH 2 PI* XX/<H+T) 
D2W = PI*WAL/(H+T)**2*(2.*C0S(2.*ARH) - PI*SIN(ARH)) /I.3183 
lT 2 DEL*D2W*(-1. )**K
CALL CURVE! ElHIN.I), ES, AH(N»I)» ET, YHNS f ETH(Ntl), POIS) 
S1GH(N,I)2 ES*(ELHtN»I)+P0IS*ETH(N♦I))/(I. - P0IS**2)

6005
60

F ORMAT ( 
CONTINUE

1HO» 2IlDiF10.0 ♦ 2F10.6 )

C THIS DO LOOP IS USED TO CALCULATE THE TOTAL MOMENT (TM)
C ANU THE TOTAL WORK (TW) OF THE SECTION

DU 6C7 N 2 1,5



UO bC6 I t 1,5
SYV(I)=SlGV(NfI)*RO*ELV(N,I)

bGb SYH(I) - SIGH(N»I)*R3*LLHtN,I)
DMVtN) - SYV(1)+ SYV(5)*^.*(SYV(2)*SYVm))♦ 2.*SYV(3)
UMV(N) - DMV(N)*T/U./3.
UMH ( N ) rSYH ( 1 ) * SYH(5)+ . * ( S Y H ( 2 ) + S Y H ( U ) ) +2.*SYH(3)
UMH(N) = UMH(N)*1/4./3.
UWV (IM ) - AV(Ntl)*AV(N,5)-*4.*(AV<N,2)*AV(N,ti)) * 2 . * A V ( N , 3 ) 

DWV(N) = DWVfN)*T/4.Z3.
DWHIN)- AH(N,1) + AHIM ,5) + 4.♦(AH(N,2) +AH(N♦4) ) +2.*AH( N, 3 )

50 7 Dk'H(N) = OWH (N ) *T/4 «/ 3.
XMV- DMVtl) +DMV(5) + 4.♦(DMV(2)* DM V(4) ) +2.*0MV(3)
XMV r XMV*(H-T)/8. /3.
XMH r MH(1 ) *DMH(5) + 4.*(DMH(2)* DMH(4) ) *?.*DMH(3)
XMH ~ XMH*(H*T)/&« /3«
WH z DWHll) * UWH(5) *4.*(0WH(2) *DWH(4)) +2.*DWH(3)
WH t WH *(H*T)/8. /3.
WV - DWV(l) * DWV(5) -I- 4.*(DWV(2) + 0WV(4)) + 2,*DWV(3) 
W V 2 W V * ( H - T ) / b . / 3 .
T W ( K ) z W V ♦ W H * T h ( 1 )
TM(K} z XMV + XMH +TM ( 1 )

2L'3 CONTINUE
C THE FACTOR OF TWO ADDS THE CONTRIBUTION OF THE
C OTHER half DUE TO SYMMETRY ,DE RP IN DI CUE A R TO THE N. A,

TW12) - TW(2)*2.
TM(2> t TM(2)*2« /12.

15 XRO z l./R0*12.
WRITE (6,50i)) TWtZJ » TM ( 2 1 »WAL » XRO

500 FORMAT(1HU, ’ W, XMtWALr RO ’« E15.8,5E10.5 )
215 CONTINUE 
21fc CONTINUE 

55 END

vo 
to



APPENDIX C

Stress-Strain Data
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STRESS-STRAIN RESULTS

Tensile Tests

Coupons from all of the specimen groups were tensile tested in accord­

ance with ASTM Standard A370. Stress-strain curves were recorded, as repro­

duced in Figure C-l.

Ramberg-Osgood Curve Fit

Experimentally determined stress-strain results were subjected to curve 

fitting using the Ramberg-Osgood expression listed in Equation 3. 25. The 

results from the curve fitting process, the stress intercept parameter, CT?, and 

the slope parameter, n , shown in Figure C-l were used to describe analytically 

the stress-strain curves, as required in the theoretical approaches.



95

.002 .004 .006 .008 .010
STRAIN, IN./IN.

Figure C-l. Stress-Strain Curves for All Specimen Groups.



APPENDIX D

Detailed Comparisons of Experiment with Theories

1. Moment-Curvature Curves

2. Distortion-Curvature Curves
(Experiment only)
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Figure D-2. Moment-Curvature Plots for Specimen Group B.
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Figure D-3. Moment-Curvature Plots for Specimen Group C.
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CURVATURE, 1^0, IN FT."1

Figure D-4. Moment-Curvature Plots for Specimen Group D.
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Figure D-6. Moment-Curvature Plots for Specimen Group F.
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