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ABSTRACT

Hot-rolled structural steel rectangular tubing has, in recent years,
become an attractive and a structurally efficient construction material. Struc-
tural tubing, like other thin-walled materials, fails in bending with a collapse
of the cross-section before the ultimate bending capacity is achieved. This
investigation explores the pure bending characteristics of square structural steel
tubing. Importénce is placed on determining the maximum resisting moment of
the cross-section as well as the corresponding curvature. The experimental
investigation, in which experimental stress analysis techniques were chosen to
obtain specific measurement objectives, involved eighteen tests of six specimen
groups. Two theoretical approaches, found in the literature and adapted to the
square tube, were compared with the experimental results.

~ The experimental study revealed that a flange buckling failure mode,
characteristic of a thin-tube assumption, was applicable for a tube width-to-
thickness ratio as low as 25. The inelastic buckling theory adapted from that
proposed by Rhodes and Harvey was found to apply for thin tubes. For thicker
tubes, a valid comparison of the distortion theory developed by Ades was impos~
sible. Unexpected residual strains in excess of 0. 1% were found in the walls of

the mill-formed tubing.
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CHAPTER I
INTRODUCTION

Elementary beam theory is based on assumptions of linearly-elastic
material characteristics and negligible cross-sectional distortion. When thin-
walled, closed-section beams are subject to bending loads there can be a discern~
able distortion of the cross-section. As a result of this distortion, the beam is
much more flexible than one would predict by neglecting such an effect. Von
Ka.rman (1)'analyzed the case of the elastic bending of a circular tube, including
the distortion effects, in the early 1900's. Timoshenko (2) made a similar study
of a curved, rectangular tube in 1923.

In recent years there has been a distinct trend toward designing beams
based on their ultimate, or maximum bending capacity as contrasted with earlier
desigﬁs based on elastic £heoryn Such ultimate strength concepts were based on
minimum weight criteria for such structures as aircraft and spacecraft, where
excessive weight reduces the efficiency of the design. The search for more efficient
beams has created the need for analytical techniques for describing the bending
of thin-walled beams, including the effects of distortion of the cross-section,

where loads are in excess of the elastic capacity of the material.

*Numbers in parentheses refer to same numbered references in the

Bibliography.
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Ades (3) proposed a technique for analyzing round tubes assuming that the
cross-'section distorts in the form of an ellipse. In that his technique is simple
and in that results agree with experimental data, the Ades method satisfies the
need for analysis of the circular tube.

The problem of the inelastic bending of a rectangular tubular member,
accounting for distortion effects, has not been treated in the literature. There
is a need for such ran investigation because of fhe ever-increasing use of square
and rectangular tubing in the construction of a multplicity of structures. The
_increased use of rectangular tubing has been attributed to (a) the simplicity of
effecting a tube~-to-tube joint and (b) the desirability of having flat surfaces for
attaching covering materials, as compared with a circular tube section.

This investigation is addressed to the problem of analyzing the inelastic
bending characteristics of square structural steel tubing. Of particular interest
is the transition range where tubes can no longer be considered as being thin-
walled, and where the failure mode changes from one of inelastic buckling to one
of a material failure with an accompanying distortion of the cross-section.

In the case of the circular tube Ades (3) found that a smooth transition
from a buckling failure to a material failure with ovalization of the cross-section
occuxs in the vicinity of a tube width-to-wall-thickness ratio, D/t, of 50. For
a D/t above 50 the failure mode is primarily a buckling one, while below 50 the
mode is essentially a material one with ovalization.

The objectives of this investigation are as follows:

1. To experimentally identify the buckling-distortion transition range



for the specific case of mill-formed structural steel tubing having a square cross-
section and a uniform wall thickness.
2, To provide experimental data for verifying candidate theories for use

in the transition range.

3. To adapt theoretical techniques available in the literature to the solu-

tion of the square tube problem.



CHAPTER 1I
PREVIOUS WORK

The earliest published work on square or rectangular tubing is that of
Timoshenko (2) in 1923. He studied the elastic bending stresses in curved tubes
of rectangular cross~section. Timoshenko assumed a frame-type distortion
shape for the cross-section and obtained an approximate solution by calculating
the potential energy of deformation.

Referring to Figure 1, Timoshenko éssumed that the deflection of flange

elements "mn’ and "qt" could be written in the form

w=ur, Sin 25 4wy (7 - Cos 2r%) t2.1)

where
X = axis at the flange centerline
b = flange width, centerline dimensions
w = flange lateral deflection
W, W; = constants to be determined,
A relaton between these constants is found by considering a unit section as a
rigid frame such that the webs are axcs of a circle.
The potential energy of deformation of the cross-section "mnqt” then

consists of the potential energy of extension and compression normal to the

4
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cross-section, plus the potential energy of bending in the frame. The form of
the distortion of the cross-section must be that which will minimize the poten-
tial energy of deformation.

Timoshenko determined a "reduced” moment of inertia which takes into
account the distortion of the cross-section,

' =4I 2.2)

where

7’ = reduced moment of inertia

7 = second moment of the cross-sectional area

ﬁ's! is the reduction factor given by
/—)’_;“_/—f(/‘?,z‘,é,/g] (2.3)

where
R = beam radius
-Z' = tubular beam wall thickness
' b = tube wall width, centerline dimensions
M = Poisson's ratio.
This procedure leads to the following expz;“ession for in the case of a

curved, square-tube beam of constant cross-section,

. 49./8 + 1332\ (o)

-

T 4¥9./8 +3.232 A

where

N = bRt (2.5



For a tube with a given b/t, the smaller the radius of curvature, the
greater the effect of distortion will be. On the other hand, as the beam approaches
a straight configuration, R»%e, and the effect of distortion becomes negligible.

The present investigation differs from that of Timoshenko in that beams
considered here are straight. Timoshenko's analysis, as well, is an elastic
analysis while the present one accounts for inelastic material behavior.

A design method for the thin-gage square tube in bending is given by the
American Iron and Steel Institute (4). The technique generally accounts for the
fact that flat plate compression elements making up a beam cross~-section can
develop a local instability which is not.catastrophic in nature for the overall sec-
tion. Additional bending load increments are resisted by a redistribution of
stresses over the cross-section. This occurs since an unstable element cannot
resist additional increments of load with the same stress distribution as that
prior to the onset of instability. The reduced efficieacy of a buckled plate ele-
ment is accounted for analytically by substituting an "effective” width in place
of the actual width.

The strength of a single simply-supported plate element was first inves-
tigated by von Karman, et al (5) in 1932. He found that the effective width of a

flat plate element can be expressed by

b= /”//’2(1’”42)//6512 (z.6)



where

bo= effective flange width (bg<b)

E = Young's modulus

T = compressive stress

A = Poisson's ratio
b = plate width.
For a Poisson's ratio of 0.3 the former expression becomes
be = 1.9/Z" 2.7
The effective width at the ultimate loading condition is found by replacing T by
Jyid, which is the compressive yield strength. h

In 1940 Winter (6) published an experimental analysis of the effective
widths of flanges of wide, thin;walled steel beams.v Winter tésted beams made
up of flat plate elements and found that for most steel beams of this type the effec-
tlive width of the compressive flange could be approximated

be=1.9/E [1 - o.#75£%%] (2.8)
where
Tyax = compressive element edge stress
and the other symbols have been defined previously.

Cozzone (7) in 1943 published a method for determining the bending
strength of a beam in the inelastic range. This method can be utilized to determine
the maximum resisting moment of a given cross-section, such as a square tube,
provided tha£ distoxtion as well as local buckling is negligible. Assuming a stress

distribution as shown in Figure 2, the maximum resisting moment is



Figure 2. Stress Assumption for Determining the Maximum Resisting Moment.
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M=2d,. Q (29)

where

M = maximum resisting moment

oy = ultimate stress of the material

Q = maximum first moment of the cross-section. ‘
The assumptions involved in this analysis are that the tensile and compressive
stress-strain properties are identical, and that the cross-section is generally
rectangular.

The expression for the maximum resisting moment for a thick-walled
square-tube beam becomes expanding Equation 2.9,

M=, B2 [38z ~3t] (2.10)
where ’

B = outside width of the square tube
and where the other symbols have been previously defined.

Returning to the light-gage beam design method, Rhodes and Harvey (8)
proposed an alternative approach to that by Winter. They claimed that a failing
of Winter's method is that there is no direct relationship between the applied
moment and the effective width of the flange; consequently an iteration must be
~utilized. In the Rhodes-Harvey technique iteration is avoided. )
The approach involves describing the critical stress to cause buckling of

the ccmpressive flange

Kep
G:R = ?—z‘_ (.11
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where
en = buckling stress

K = buckling constant

b = flange width (centerline dimension)

7 =flange thickness

D = plate modulus of rigidity.

According to a more rigorous theoretical approach by Rhodes (9),
K= 539
approximately for the specific case of a square-ﬁbe beam.
Utilizing an empirical curve for the flange effective width from Harvey
b, = /0.7%_5;"; +03)b (212)
where
be: effective flange width
G;; = critical buckling stress
) g = applied stress.
one can then compute directly the effective square-tube section properties for a
given strness intensity.

Concerning the post-buckling collapse failure of a square-tube beam, it is
possible that a significant amount of inelastic activity can occur prior to the
complete collapse of the cross-section. This effect can be accounted for, accord-
ing to Khodes and Harvey (8), by substituting the following effective width relation

for that in Equation 2.12:

bo=(0.7€ 0 f€ +03) 5 (213)
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in which stresses are replaced by strains. Note that Equations 2.13 and 2. 12
are identical for the elastic case. This latter expression takes into account the

load-shedding in cases where CBOT,:J, since &

, decreases whiled still equals

Gyid.

The method of Rhodes and Harvey is believed to show promise for investi-
gating square-tube beams on the thin-walled side cf the transition range.

No work is reported in the literature which addresses the problem of the
inelastic bending of a square tube of a deformable cross-isection. Steele (10) and
Dwyer and Galambos (11) describe inelastic analyses of square tubes as torsional-
flexural members and as beam-.column members respectively, while Smith (12)
addresses the post-buckling behavior of a box beam using an intricate tensor
scheme. In all of these cases distortion of the cross-section is neglected.

Since circular tubes have historically received more analytical attention
than rectangular ones, the literature on the inelastic bending of circular tubes of
deformable cross-section was explored. It was expected that a technique for
analyzing circular tubes of deformable cross-section might be modified for the
square tube. Ades (3) in 1957 presented a method for calculating the total work
done on a bent and deformed circular tube in the inelastic range. The principle
of least work was used to determine the ovalization associated with the longitudi-
nal curvature of the beam. The major assgmption made in the analysis was that
the deformation of the cross-section could be approximated as an ellipse which is
constant along the beam length. A second assumptioﬁ is that the tensile_ and com-

pressive properties are identical. Thus, a simple tensile stress-strain curve can
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be utilized for determining the secant modulus in the inelastic range. The
method also included an empirical expression for an inelastic form of Poisson's

ratio.



CHAPTER III

THEORETICAL ANALYSES

Flange Buckling Analysis

Very light-gage square-tube sections show virtually no deformation of
the cross-section as a whole, but buckling waves are observed to occur on the
compressive flange along the beam. The Rhodes~Harvey (8) design procedure
utilizes the concept of effective flange width as does the Winter (6) analysis used
in the AISI design method (4). The benefit of the Rhodes~-Harvey method is that
a direct relation between the applied moment and the effective width is afforded.
A comparison of this method with the Winter method and with experimental
results supports its applicability.

_ A major change in the method developed here over the Rhodes-Harvey
scheme is that the Ramberg-Osgood (13) stress-strain relations are incorporated.
The calculation procedure is also changed in that the tube cross-section is broken
into elements as defined in terms of nodal points, and a numerical procedure is
employed allowing different material properties for each element depending on
the state of stress of each.

In the local flange buckling analysis the grid system is established, shown
in Figure 3. The nodal points for the numerical analysis as well as the corner
approximations are indicated there. The typical tensile flange element between

14
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16
two adjacent nodes has a thickness t and a length b. A typical web element has a
thickness (width) t and a width (height) of b/16. The entire compressive flange is
treated as a single element in keeping with the "effective-flange-width™ buckling
approach.
The first calculation determines the critical (elastic) local buckling strain
by using (from Rhodes-Harvey (8))
4\2
Ceny, =48 (£) (2.1)
where
€:,<{,E)= critical elastic buckling strain
2 = flange thickness
b = flange width, centerline dimensions.
Then the critical elastic strain is compared with the strain at which yielding
occurs. The definition of yield stress utilized in this investigation is the stress
magnitude at a yield strain of 0.5%. The smaller value of strain is used as the
local buckling strain, €c,, ,» in the analysis.
With a given value of curvature the longitudinal strain can be computed by
€, = 7/ CED
where
é; = longitudinal strain

—

Y
P

If the longitudinal strain is less than critical, then the entire flange is effective.

1l

distance from the neutral axis to the flange

radius of curvature.

If, however, the longitudinal strain is larger, then an effective width calculation
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is called for. Again, following Rhodes and Harvey (8), the effective width

equation is

€,
b, (0.7 S +03)p | (3.5)
where
q; = critical buckling strain (elastic or inelastic)
be = effective flange width (6eg b)

and other quantities are defined previously.

Once the effective width is used rather than the actual one, one must find
the new neutral axis which is different from the axis of symmetry. The effective
area is

S /.= 34 + b (3.4)

and the new centroidal distance becomes

Ve = %’ZH‘/ = 2452L/EF7€ (35)

&

where
gﬁe = effective area of the entire section
29q= first moment of the effective area

?e = flange zl: distance from the effective neutral axis.

The longitudinal strain for any nodal point is simply the signed distance
of the node from the neutral axis divided by the radius of curvature. The trans-
verse strain is the negative product of the variable Poisson's ratio and the long-
itudinal strain. The stresses are computed using the method of Ades (3) based
on the Ramberg-Osgood relations discussed more fully in the following section.

For each increment of curvature the stress distribution is computed and



18
the resisting moment is determined as the integral of the stresses over the
cross-sectional area. According to this theory the beam is said to collapse when
the corners of the compressive flange yield.

A computer program (Appendix A) was used to perform the buckling theory
computations. The program contains a subroutine used to perform the stress

calculations.

Distortion Analysis

General

The general approach in deriving the distortion theory for the square tube
is the same as that proposed by Ades (3). One must, however, develop new kine-
matic equations and make a different distorted shape assumption, since the prob-
lem is a square tube rather than a round one. The distortion assumption used in
this investigation is that which Timoshenko used in his investigation of elastic,
curved beams. Figure 1 shows Timoshenko's distortion assumption and Equation
2.1 is the governing transverse deflection relation. The accompanying assump-
ton, itis recalled, is that the adjacent webs have rigid joints and that they deflect
into the shape of an érc of a circle.

It is further assumed that the deformation of the cross-section is essentially
that of frame bending where there is no change in the perimeter of the deformed
shape when compared with the initial one. Other assumptions include negligible

end effects and isotropic material behavior.
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Internal Work

Ades (3) showed that the work of deformation can be calculated in both
the elastic and inelastic ranges from the area under a standard stress-strain

curve corresponding to an equivalent uniaxial strain

& =Vl u-ayjle,’ re/+zpe € 7 (26
where
€; = equivalent uniaxial strain
€, = biaxial longitudinal strain
€r = biaxial transverse strain
AL = inelastic form of Poisson's ratio.

The incremental work per unit area for the constant distortion beam

assumption is written as

IWw= L ae rds @
where
: oY/ = incremental work per unit area
d{ = stress corresponding to the equivalent strain, &,
< ¥ = increment of wall thickness
IS = increment of tube wall width.

It is recognized that %GZE,; is the area under the elastic portion of the stress-
strain curve for a given equivalent uniaxial strain. Ades (3) further shows that
the incremental work per unit area can be obtained in the elastic and inelastic
ranges by computing the area under the stress-strain curve. The total work can

then be obtained by computing the work per unit area at various points around the
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cross-section and through the tube wall and summing.

Principle of Least Work

The technique used is to assume that for a given curvature of the beam
there is a unique distortion intensity which will render the internal work a mini-
mum. This means that one can assume various magnitudes of distortion (using
Equation 2.1) such that when plotted as the abcissa against the internal work of
the cross-section, the curve so formed will contain a unique minimum point.
This minimum point is the desired deformed shape magnitude. The process is
then performed for each increment of curvature over the desired range of curva-

tures.

Numerical Integration

Knowledge of the deformed shape and its symmetry indicates that the
numerical integration scheme need only be carried out for one-half of the cross-
section: one quarter above tiie neutral axis and one quarter below. The section,
although doubly symmetric in its undeformed shape, is not when deformed because
of small changes in the state of stress and strain due to distortion. A grid network
of nodes around the tube as well as through the tube walls is defined for the numer-.

ical computation process.

Geometry of Deformation

It is convenient to treat the web separately from the flange. Figure 4 shows
the deformed geometry of the upper (compressive) half-web and Figure 5 shows

that for the upper half-flange. The following kinematic relations describe the
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geometric conditions of the two figures.

For the web,

Bz (&£ ~1)(b-2)/8p, (38)
Yi= R Sir (B:) (3.9)
Py = 'b/f//c?.//% =5 (3.10)

and for the flange

e sl (25) delieoc N o

=+t + (i ~1)(b-1)/8 (3.2)
B = (L), (3.13)
i = R Sin(Fs) ~ Wi (31%)

where the web-flange intersection slope is
- b+ ” 2 !M‘Zl ]
(g—df)5= ‘”—%3/33[5"5 -———/—27"; 2) 4 Sin 21 / 205 (3.15)

and the flange slope is
(dw' _ /3/83[’/‘f(3:/ﬂ il ] Sir (P”TX/..}] (3./6)
and the other symbols are defined in the corresponding figures.

Once the deformed geometry is defined, the longitudinal and transverse
strains may be determined. In the case of the web one must write an equation
to define the increment of thickness, using the inner nodal point as the origin in
each case

$i=(i-1) %~ " (317)
where

&': fractional wall thickness parameter

t = tube wall thickness



£ =nodal thickness index, i=1,2, . .. 5.

The web longitudinal strain becomes (from Equations 3.8 - 3.10 and 3.17):
€ij = (g7 625550/ e

where

€, = longitudinal strain

4 = thickness nodal index

4 = web width nodal index

/~ = longitudinal radius of curvature.

The corresponding transverse strain is

= &//% -4 &, joie (3.9
where

€r- = transverse strain

f7; = transverse curvature

A4 = inelastic form of Poisson's ratio
and where other symbols have been previously defined.

The relation for the inelastic form of Poissons ratio is, from Ades (3),

g={1-01rsctre5]% /e, (3.20)

where

€: = equivalent uniaxial strain

and the relation for d is given by

>
(L Ep )L~ Er D=1 ,E:>Ep

— 3.2
M= , E=E€pg -( )
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where
6,;‘, = strain at the proportional limit
M. = Poisson's ratio,

For the half-flange shown in Figure 5 the equations are similar to those

for the web:
J;. = (L -2 zz/41 - f/e s 451742 --5 (3.22)
é-lj,‘F (jd' 7 c(,_ (05,53')//0 (3.23)
2
- i ( Z/r”"‘—?;)q' (3.24)

where Equations 3. 12 through 3. 16 are utilized.

Distortion Calculations

The steps in determining the distortion of the cross-section with known
strains are as follows:
1. Assume a value the longitudinal curvatre
2. Assume a distortion magnitude as given in Equation 3. 11.
" 3. Compute the equivalent uniaxial strain for all nodal points.

4. Use the Ramberg-Osgood (13) three-parameter stress-strain rela-

tions:
&; = 0:/5/} + 3/7 /O:/@7)n"] (3.25)
g 7 -
U = T fos + [By (v DN %:.) f (3.26)
where
g. = equivalent uniaxial stress
e: =

.. = equivalent uniaxial strain

Ramberg-Osgood intercept parameter

S
e
f
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7 = Ramberg-Osgood slope parameter
U = Strain enexrgy density at e;.
Since U is also the incremental work per unit area for a nodal point, this value
must be integrated over the thickness and the perimeter to determine the total
work for the cross-section.

5. The total work is obtained in the following relation, using a half-flange

as an example:

sz/%~,;> JY s (3.27)

! . a - .
%?/)g = [Uss +Ups + #(Uje # Uj4)

+2Ups | Ve (3.28)
e () ), + (A,
L2 (%/)3 -/(62:; 2) (3.29)

where
W = total work of the half-flange
4 = thickness index

S = tube wall width coordinate

Y

tube wall thickness coordinate

.

2
U

IV

e derivitive of work with respect to s

width index

strain energy density

and the numerical process is carried out using Simpson's rule.
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This procedure is followed out for the quadrant above the neutral axis and
one below. The result is doubled to account for the other symmetrical half.

6. Since the desired value of distortion is that which renders dW a mini-
mum for a given curvature, one must repeat steps 2 through 5 until the distor-
tion affording the minimum work is found.

Finally this process, steps 1 through 6, must be repeated for each value

of curvature desired.

Moment Determination

The bending moment of the entire section can be computed in a similar
way to that used in determining the internal work. The longitudiﬁal stress is
given by :

T, =[Es/t1-a> ] +A &) (3.30)
where

£ s = secant modulus G:/é,{,)

" A{ =inelastic form of Poissons ratio

€, = longitudinal strain

€, = transverse strain
and where subscripts defining the nodal points are omitted for simplicity.

The resisting moment is obtained by numerically integrating

M = G: 7 C/J/O/S
where

M - resisting moment of the cross-section

JdY = increment of wall thickness

JS = increment of flange or web width
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and Simpson's rule is again used.

Iterative Techniques

Iterative schemes have been devised to accomplish the simultaneous solu-
tion of Equations 3. 18 through 3. 26 which deal with the determination of inelastic
stresses from strains. Although the techniques developed are perhaps of interest,
the details will not be discussed for sake of brevity. The reader is referred to
subroutine "CURVE" in Appendix A where comment cards are included to point

out details of the iterative schemes used.

Computations

Appendix B contains the computer program utilized to obtain theoretical

results for the distortion theory.



CHAPTER 1V
EXPERIMENTAL ANALYSIS
Introduction

A series of pure bending tests was conducted utilizing commercially
available mill-formed structural steel tubing of square éross—section. The test
specimens ranged in width from two to six inches (outside dimensions), having
B/t between 16.5 and 34.5. The initial tests served in part to provide qualita-
tive information on the deformation of the tube cross-section during bending.
All of the eighteen tests performed provided quantitative data for use in investi-
gating the validity of the two theoretical approaches. One particular result
desired from the test program was an indication of the lowest B/t for which a
square tube can still be considered as having a thin-tube flange buckling failure.
For lower B/t values, then, the failure would be more of a material natﬁre with

accompanying distortions of the cross-section, rather than a buckling one.

Experimental Procedure

Experiments on round steel tubes (3) have indicated that a moment-
curvature relation such as that shown in Figure 6 will be typical of the lower B/t
specimens in this analysis. Referring to line A in the figure it is seen that there
can be two values of curvature associated with a single moment value. If one
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were to apply increments of load to determine the maximum moment, one might
achieve a condition such as point 1. If, however, an additional load increment
were added, such as that indicated by line B, the specimen would rapidly fail in
a dynamic manner, giving no opportunity to measure the maximum moment and
the corresponding curvature.

In the conduct of these experiments the curvature is then treated as the
independent variable and the resisting moment as the dependent variable. Using
this controlled-curvature approach the resisting moment will always be single-
valued for curvature. The maximum moment as well as the critical curvature
at maximum moment can be determined by observing the initial increase, and
then the subsequent decrease in resisting moment as the curvature is increased.

Because of the relative flatness of the moment-curvature relation.in the
inelastic range, one can easily approximate the moment at which yielding of the
material occurs using elastic considerations. Using this result, it is expected
that one can conservatively predict the highly inelastic maximum moment.
Clearly a better indicator of the point at which maximum moment occurs is found
in the curvature magnitude, rather than in the moment magnitude. In this inves-
tigation at least equal emphasis was placed on curvature as a failure condition_

indicator.

Dimensionless Parameters

It is convenient to consolidate experimental results in the form of dimen-

sionless numbers. If the forms of the dimensionless quantities are caréfully
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derived utilizing the Buckingham Pi theorem or carefully devised by understand-
ing the nature of the variables involved, one can use them as scaling factors for
studying tubes not covered in this analysis. The validity of the dimensionless
parameters will become apparent as the diverse range of test data are corre-
lated.

One can make the resisting moment of the tube dimensionless by dividing
it by the yield moment. A convenient form of the yield moment is that of Equa-~
tion 2.10, replacing the ultimate stress by the yield stress (defined as the stress
corresponding to a strain of 0.5%). The reason for using the yield stress is that
the relatively thin—.walled tube will most likely collapse long before stresses in
the ultimate range occur. The dimensionless moment exbression is then

M— = M/MY/‘/ (4‘ 2)
where

M = resisting moment at a given curvature

_/M«,/J = yield moment based on a 0.5 percent strain value.

A convenient form for the dimensionless curvature is suggested in the
work by Timoshenko (2). It will be shown in the results that follow that an expres-
sion similar to the square root of A in Equation 2.5 is a useful dimensionless
curvature expression when defined as

C = BYpPE (%437
where

< = dimensionless curvature

B = tube outer width
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7 = tube wall thickness
/° = longitudinal radius of curvature.
Finally, a convenient form for indicating the amount of distortion of the

cross-section in width at the neutral axis is

A = 4B/8 (43)
where |
4 = dimensionless distortion
A B = change in tube width due to distortion

B

tube cuter width.

i

The tube outside width is used as a base for non-dimensional lengths because it

is a convenient quantity to measure in practice.

Measurement Techniques

It is evident that measurements of the resisting moment, the applied
curvature and the cross-sectional distortion are important. Aside from these
parameters, though, the applicability of the flange buckling theory must be
examined by measurement of buckling waves on the compressive flange. Also,
the assumption of the distortion theory regarding the constant nature of the dis-
tortion along the test span at a given curvature must be checked experimentally.
Finally, the assumption of a constant radius of curvature over the test span
must be confirmed, especially for tubes with lower B/t where the assumption
of constant curvature is more suspect. In the paragraphs that follow the tech-

niques that were utilized to obtain the data mentioned above will be described.
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Moment Measurement

Conventional tensile load cells were utilized to measure the resisting
moment associated with a given increment of curvature. In two of the three
bending fixtures utilized it was practically impossible to apply curvatures,
because the fixtures were force-controlled rather than deformation-controlled
devices. As explanation, a screw-type tensile testing machine is a deformation-~
controlled device, where a hydraulic-type machine (in which the load is applied
directly by a hydraulic cylinder) is a force-controlled device. One can, how-
ever, use force controls to continuously adjust the curvature, and with careful

control one can, in effect, ohtain control of curvature.

Curvature Measurement

The most apparent means of measuring curvature is that of the electric

resistance strain gage. The outer fiber strain is measured and the formula

L0 = s (+4)

where

N
It

curvature

A

measured strain

0]
i

outer tube width

longitudinal radius of curvature

D

is used to obtain curvature. Problems which occur experimentally in utilizing
the strain gage for this purpose are:
1. If the compressive flange is buckling, the wave will adversely effect

the curvature result.



2. [If the strains are inelastic and if the strain gages are short, the
presence of microscopic slip planes due to yielding will cause an erroneous
result.

3. Finally, inherent errors in using strain gages at high strain levels
might affect the desired result.

An alternate means for curvature measurement was found in utilizing
rigid frames and instrumenting them to read the center deflection with respect
to the frame ends. Such a curvature frame is shown in Figure 7. The center
deflection is converted into a curvature reading by treating the tube as having a
constant curvature, and then fitting the three points formed by the transducer

tip and the two ends with a circular arc. The appropriate curvature is

20 = if (4.5

where

radius of curvature

il

Vet
$

1l

transducer deflection reading

£ =half-length of the frame.
Any deflection measuring device, such as a dial gage or a linear potentiometer
used here can be utilized as a transducer for the curvature frame. A distinct
advantage of using the curvature frame is that the reading so obtained represents
an average curvature over the frame length, as contrasted with a point-type
result of the strain gage. A disadvantage is that the accuracy of the device is
affected wﬁen the curvature is not constant along the frame length as has been

found to be the case for lower B/t ratios. Both the strain gage and the curvature



Figure 7. Curvature

Measuring Frame.
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frame have been utilized for obtaining curvatures in this investigation, and in
cases where strain gage pairs and frames are employed on the same test, the

results were comparable.

Distortion-Wave Measurement

The change in width of a tube under load, compared with the initial width
(measured at the neutral axis) was obtained by using compliance gages as
depicted in Figure 8. The compliance gage is, in effect, a flexible "C" clamp,
instrumented with a pair of uniaxial strain gages to indicate changes in distance
between the tips of the spring-loaded clamp. The clamps, hand-crafted by cold~
bending quarter-inch aluminum bars, were calibrated by placing coupoas of
known thickness between the tube and one end of the clamp and recording the
resulting change in strain. The bend radius of the clamp was chosen such that
the change in strain caused by a given change in tube width was significant to
measure, while avoiding high contact pressures on the tube walls. In some
tests é:ompliance gages were used similarly to measure the change in height
vertically at the flange centerlines. The results from the vertical measure-
ments were suspect, however, because they indicated the total of the change in
height due to the constant distortion as well as a periodic one due to buckling.

It is more desirable to measure the total distortion field, but the author was
not able to develop a technique for obtaining such field data without an inordi-
nate amount of effort when compared with the scope of this investigation.

A simple means was devised, however, for using a point-type transducer



Figure 8.

Compliance Gages for Distortion Measurements.
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to measure the deflection of the center of the compressive flange with respect to
the tube corners as a function of tube span. The device shown in Figure 9 is not
unlike the longitudinal curvature measuring frame described previously. The
deflection of the flange centerline with respect to the frame ends in contact with
the flange corners is measured. An additional feature is that the device is con-
nected by a thin wire to a sheave on a ten-turn rotary potentiometer attached to
the base of the bending fixture near one end of the specimen. Using an X-Y
recorder, the deflection from the linear potentiometer is placed on the Y -axis,
and the distance along the span from the rotary potentiometer is placed on the
X-axis. If suitable scaling factors are applied, the resulting plots indicate the
relative deflection of the flange centerline as a function of distance along the tube
span. This device was found to not only display the buckling wave pattern for
the higher B/t, tubes, it also indicated whether the distortion of the compressive

flange is constant in the case of the lower B/t tubes.

Test Specimens

All of the square tubing test specimens were standard mill-formed, hot-
rolled steel structural tubing. The tubing is actually made from initially round
electric-resistance-welded pipe. Since the additional process of squaring the
round tube is involved, rectangular tubing is generally more expensive than
round pipe. Since the standard length of tubing of this kind is about twenty feet,
and since the test specimen length varied between 4 1/2 and 8 feet, several

specimens could be cut from one piece of stock. In the specimen descriptions



Figure 9. Buckling Wave Measuring Frame.
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that follow, pieces cut from the same stock are designated by a letter from A to F,
indicating the long-tube stock from which the speciman was cut. It was found
desirable to run several tests on specimens from the same group to check repeat-
ability of results.

Table I contains a summary of the specimens utilized in each of the 18 tests
on the six specimen groups. Every effort was made to obtain as wide a range of
B/t as possible. Although it was possible to obtain lower B/t tubes, it was not
experimentally practical to test them. Thicker specimens required load and
deformation measurement ranges outside the capability of the instrumentation.

Coupons of the tube specimens were sent to the Shilstone Testing Labora-
tory of Houston, Texas, for a determination of the stress-strain characteristics
of each specimen group. The table also contains yield and ultimate strength
properties as well as a description of the types of experimental stress analysis
techniques used in each test. Stress-strain data obtained from Shilstone are

included as Appendix C.

Bending Fixtures

Three different types of bending fixtures were employed during the test
program. The two types used for the two-inch to three-inch specimens are shown
in Figure 10. Fixture I, used ih tests 1, 2, 3 and 17, was designed to allow the
application of a pure bending moment without an accompanying transverse shear
at the support or load points. The balancing tensile and compressive loads

creating the bending moment act in a direction parallel to the undeformed bending



TABLE 1

Square Tube Bending Test Descriptions
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B t Specimen  Type  Type
Test (in) (in) B/t (psic))—j 005 (psi?“‘.Jlt Group Expts. Fi}Sc’ture
1 2.0 0.062 32.3 44,700 53, 500 C 1,2 I
2 2.0 0.121 16.5 57,100 63, 600 A 1,2,3 I
3 2.0 0.062 32.3 44,700 53,500 C 1,2 I
4 2.0 0.089 22,3 45,000 49, 700 E - 2 I
S 2.0 0.089 22.3 45,000 49,700 E 2,3 I
6 2.0 0.089 22.3 45,000 49, 700 E 2,3 II
7 2.0 0.089 22.3 45,000 49, 700 E 2,3 II
-8 2.0 0.121 16.5 57,100 63, 600 A 2,3 I
9 2.0 0.062 32.3 44,700 53, 500 C 2,3 I
10 2.0 0.121 16.5 57,100 63,600 A - 2,3 i
11 2.0 0.121 16.5 57,100 63,600 A 2,3,5 I
12 2.5 0.079 31.6 54,600 62,900 B 2,3 i
13 2.5 0.079 31.6 54,600 62,900 B 2,3 I
14 2.5 0.079 31.6 54,600 62, 960 B 2,3 II
15 2.0 G.121 16.5 57,100 63, 600 A 2,3 I
16 3.0 0.117 25.6 58,700 69, 600 D 2,3 II
17 2.0 0.062 32.3 44,700 53,500 C 4 1
60 6.0 0.174 34.5 57,650 67,050 F 2,4,5 I

U W N

VExperiment types:

strain gages (2)

~ longitudinal curvature frame
cross-section distortion collar
fully strain-gaged

wrinkle measurements using linear potentiometer



> Fixwire 11

Figure 10. Small Bending Fixwures.
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specimens. In using this type of fixture the failure would always occur near the
center span of the specimen length. The major disadvantage of using this fixture
was found in the load application difficulty. To minimize costs, loads were
applied by screwing threaded bars into sockets. The problem was that the exper-
imenter became increasingly exhausted as the test progressed, with the low B/t
tubes being the most demanding. Fixturel, however, provided the benefit of
having the upper compressive flange exposed for measurements.

Fixture II, shown also in Figure 10, is the standard four-point locading
fixture for constant moment determinations. The fixture containing the specimen
was placed in an Instron 10, 000-pound screw-type testing machine for loading.
The disadvantage with this type of frame, especially in cases where buckling is
involved, is that there is a high probability of failure near the load application
points. As long as stress concentrations were minimized by the use of external
pads and internal inserts, however, there was no discernable effect of the fixture
on the test results, Tests with this fixture were less demanding than those with
the former from a physical standpoint.

Fixture IlI, shown in Figure 11, was borrowed for use in testing the one
large six-inch specimen (Group F) from Shell Development Company. It was
designed by the author to test six~-inch round pipe specimens. This fixture is of
the same basic design as Fixture I, but it is much larger, having a 40, 000 -pound

direct load capacity in testing eight-foot-long specimens.



Figure 11.

Figture 11

Six-Inch Specimen Bending Fixture.
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Instrumentation

In the case of Fixtures I and Iil, loads were read from the strain-gaged
load cells using a Budd Model P-350 Strain Indicator. Load cells were calibrated
against a known reference after fabrication and prior to test use. When Fixture
II was used, the load cells associated with the Instron testing machine were uti-
lized, as was the built-in load-displacement plotting device. All strain readings
were made with a second Budd Indicator, utilizing a switching unit for channel
selection. Gages used on the tubing specimens were single Micro-Measurements
Type EA-06-500BH-120 uniaxial gages for high strain applications. For the
compliance gages two strain gages were active, providing a half-bridge setup.
The linear and rotary potentiometers were DC powered using a standard mea-
surement circuit. Readout of the results was accomplished with a Digitec Model

211 digital voltmeter or a Houston Instruments Model HR -96 plotter.

Test Procedure

The test specimens were loaded in increments of curvature, and load,
curvature and distortion data were recorded at each increment. Every attempt
was made to determine the maximum moment point, along with the corresponding

curvature.



CHAPTER V

RESULTS AND CONCLUSIONS

Summarized Results

Dimensionless moment~curvature results from the six specimen groups
studied experimentally are presented in Figure 12, The behavior of dimension-
less moment as a function of dimensionless curvature and B/t, given in Figure
12, justifies the choice of these parameters.

Dimensionless distortion-curvature results from the experiments, shown
in Figure 13, indicate that specimen groups having a B/t of 25 and greater yield
a nearly linear relation and are thin-walled, while those having lower B/t values
show a nonlinear distortion relation and are thus thick-walled.

. The experiments indicate that for the tubes investigated the maximum
moment can be approximated by
Mooy = 215 /Ty1g (5.0
where
M = maximum resisting moment of the cross-section

= yield moment,

£

and where the expression for the yield moment is given by

Myt = Toos B35 -3 ] (5.2)
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and

Jpos = stress at 0.5% yield strain

8

outer tube width
Z = wall thickness.

Similarly the critical curvature can be found by applying the results from

these experiments using the dimensionless curvature expression
B /2.t = /8 (5.3)
where

/6,‘ = longitudinal radius of curvature at maximum moment.

Both theories, the buckling one and the distortion one, predicted the max-
imum moment well. Poor agreement is found for the distortion-theory-predicted
critical curvatures for all B/t values and good agreement is found for the buck-
ling theory, provided that B/t > 25. Figure 14 contains the critical dimension-
less curvature comparisons as a function of B/t for the theories and experiments.

A comparison between the dist'ortion theory and the experiments was
seriously affected by residual longitudinal wall bending strains as high as 0. 13%
found in the tubing. This is apparently more serious in the case of the distortion
theory than it is in the buckling theory, as Figure 14 indicates. Oﬁe specimen
group, having a B/t of 31.5, exhibited smaller residual strains than the other
ones. As a result, the comparison between the distortion theory and the experi-

ments for that specific specimen group was good.
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Discussion of Experimental Results

The results from the 18 tests are summarized in Table II. Co'ntained in
the table are maximum resisting moment and critical curvature. A typical
failed specimen is shown in Figure 15.

The results are further consolidated by averaging the results for each
specimen group as shown in Table III. Shown for each specimen gioup (or B/t
ratio) are the average moment and curvature as well as the number of tests
upon which the average is based. It is seen from this table that all of the results
lie within a dimensionless yield moment range of 1.0 to 1.3 and have dimension-

less curvature from 0.3 to 0.5.

Moment-Curvature

Figure 12 shows a composite of the moment-curvature relations for each
of the specimen groups as determined by experiment. The points of maximum
moment and critical curvature are indicated for each specimen group by the dots
terminating that curve. It is instructive to note from the curve that:

1. The specimen groups with the steepest elastic slopes are the thickest
in terms of the B/t ratio.

2. Nondimensionalizing the moment does not remove all of the scatter
in moment magnitudes, although it does limit the range of scatter.

3. The curves for the specimen groups with approximately the same
B/t ratio of 32 to 35 are coincident through mdst of the curvature range. This

uniformity is important because the tube widths in this case were 2, 3 and 6



Square Tube Bending Test Results

TABLE I
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Specimen M M M M M 1 B2

Test BB/t g ey e/l MmexMic [ 7t
1 2.0 32.3 C 1275 1.14 0.82 0.052 0.28
2 2.0 16.5 A 2775 1.00 0.82 0.180 0.50
3 2.0 32.3 C 1080 0.96 0.69 0.042 Q.23
4 2.0 22.3 E 1965 1.26 0.98 0.102 0.38
) 2.0 22.3 E 1984 1.28 0.98 0.156 0.58
6 2.0 22.3 E 2085 1.34 1.03 0.097 0,36
7 2.0 22.3 E 2037 1.31 1.01 0.157 0.58
8 2.0 16.5 A 3441 1.35 1.02 0.235 0.65
9 2.0 32.3 C 1296 1.16 0.83 0.105 0.57
10 2.0 16.5 A 3450 1.35 1.02 0.169 0.46
11 2.0 16.5 A 3274 1.28 0.97 0.194 0.53
12 2.5 31.6 B 3161 1.12 0.87 0.048 0.32
13 2.5 31.6 B 3504 1.24 0.96 0.069 0.45
14 2.5 31.6 B 3547 1.25 0.98 0.070 0.46
15 2.0 16.5 A 3312 1.29 0.98 0.171 0.47
16 3.0 25.6 D 7679 1.26 0.91 0.053 0.34
17 2.0 32.3 C 1095 0.98 0.70 0.066 0.36
60 6.0 34.5 F 40425 1. 10 0.82 0.018 0.31




Figure 15. Typical Collapsed Tubing Specimen.
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TABLE III

Square Tube Bending Test Summary
By Specimen Group
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Specimen

2

Group B B/t Mmax/Myld Max/Myic %11 No. Tests

A 2 16.5 1.27 0.96  0.52 5

B 21/2 31.6 1.20 0.94 0.41 3

C 2 32.3 1.06 0.76 0. 36 4

D 3 25.6 1.26 0.91 0.34 1

E 2 22.3 1.30 1.00 0.48 4

F 6 34.5 1.1 0.82 0.31 1
where

B = outer width of tube
t = wall thickness
Mmax = maximum moment

My1d

Mult = ultimate moment

/2

yield moment (0.5% strain)

critical radius of curvature
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inches. This one result serves to verify the applicability of the dimensionless
curvature expression as an important scaling factor.

The close scatter range of the dimensionless curvature results is appeal -
ing from an experimental viewpoint because it is well known that it is difficult
to achieve a close scatter band on test results when buckling is the primary fail -A

ure mode.

Distortion-Curvature

Of equal importance is Figure 13 which is a composite of experimental
distortion-curvature relations for each of the specimen groups. Basically the
curves show thét the sections with higher B/t exhibit a moxre nearly linear dis-
tortion-curvature relation. In the case of Specimen Groups A and E, which have
the lower B/t ratios, the curves are quite nonlinear. In fact, the webs were.
found to deflect inward initially and then finally, at higher curvatures, deflect
outward.

" It was initially thought that the nonlinear distortion-curvature observa-
tions might be an indication of thicker-walled tube behavior. With this reasoning
it was tentatively concluded that the lower limit of the thin-walled tube applic-
ability might be at a B/t of about 25. As will be discussed later, it was then
learned that residual bending stresses in the tube walls caused by the tube fabri-
cation process might be affecting the results.

A significant result of the data contained in Figure 13 is that for B/t ratios

of 25 and above the distortion-curvature relation is approximately linear.
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Flange Displacement

Measurements were made of the compressive flange displacement rela-
tive to the fl-ange corners as a function of distance along the test span for two
different test specimens. In that this analysis was investigative in nature, it was
thought that it would be instructive to collect at least one set of data for a thick-
walled specimen and one for a thin-walled specimen. Displacement data from
Test 11 on Specimen Group A, having B/t of 16.5 are included in Figure 16,
Although some wave activity is seen in the shape of the curves, the more prom-
inent effect is that the relative displacement of the compressive flange is far from
constant along the test span. This surprising result does not necessarily mean
that end effects are likely the cause, since the span length to tube width ratio is
twelve. The more likely cause of the nonuniform displacement curve is that the
thicker tubes exhibit a non-uniform distortional failure mode along the constant
moment span. This same effect was observed by Yao (14), treating relatively
thick-walled round pipes subject to pure bending loads. Needless to say, these
findings are‘in direct conflict with the distortion theory of Ades (3), both for
round pipes and for square tubes.

Figure 17 contains displacement results from the test of the six-inch
specimen test, (Group.F), having a B/t ratio of 34.5. The span-width ratio is
the same as. that of Group A, discussed previously, but in this case there is
clearly no sign of end-effect. Furthermore, the failure mode is definitely flange
buckling. The half-wave length, averaged along the span, was 5. 65 inches.

Using von Karman's (5) assumption that the effective width at buckling is the
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half-wave length, this means that the corresponding (total) effective width is
5. 65 inches for the 6-inch wide flange.

In summary, Figures 16 and 17 indicate that a change in failure mode
from that of inelastic buckling to distortion occurs as the B/t ratio is decreased
from 34.5 to 16.5. In the buckling case the compressive flange wave pattern is
somewhat uniform along the span length, but in the distortion case the compres-

sive flange relative displacement is clearly not constant with length.

Tube Corner-Strength

It was suggested by the dissertation committee that a possible effect on
the experimental-theoretical comparison mighf be that of the increased strength
of the square tube corners caused by the fabrication process. To isolate this
effect, tensile coupons were cut from the center of the webs and flanges as well
as from the corners of a piece of Specimen Group B having a B/t ratio of 31.6 The
results of tensile tests on the side and corner specimens are contained in Table
Iv. I't is seen that the corner specimens, tested With a right angle cross-section
and flattened ends, had an average yield strength of 61, 750 psi while the center
specimens had a yield strength of 54,500 psi, a 13. 3 percent increase in strength
based on the strength of the sides. Since the corners are only a small percent-
age of the tube perimeter, it is felt that this effect would not be noticeable within
experimental erxor.

Unlike that done for the bending test stress-strain results, the author

prepared the tensile specimens for the corner effect tensile tests, rather than
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TABLE IV

Variation of Group B Material Properties Due to Forming
2 1/2" by 0.079" Square Tube

Specimen Taken From:

T 005 Tule
(psi) (psi)
A. Center of Web of Flange

No. 1 56, 200 64,400
- No. 2 52,800 63, 500
No. 3 54,600 62,900
Average 54,500 63, 600

B. Corner of Web-Flange Joint
No. 1 61,400 69, 200
No. 2 62,100 68, 900
Average 61,750 69,030

Notes:

1. Stress values are based on a standard tensile test, ASTM A370,
except that the widths of the coupon were reduced to 0.5 inches to isolate the
corner properties.

2. Thecorner specimens had an angular test cross~section which was not
flattened prior to tensile testing. The grip ends were flattened.
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having it done by the outside testing laboratory. It was during the tensile speci-
men preparation that large longitudinal residual bending strains were found. The
wall tensile specimens exhibited a distinct curvature after cutting. Additional

tests on this effect were conducted and the results follow.

Residual Forming Strains

After residual forming strains were found, longitudinal strips were cut
from each of the specimen groups. The spring-back of the specimen is illus-
trated in Figure 18. It is seen that when the tube is intact, tensile strains are
found on the outer surfaces of the tube and compressive strains on the inner.
These effects are summarized in Table V. Web strains were of the same order
of magnitude as the flange strains, and the strains adjacent to the welds were
slightly iarger, on the whole, than those on sides away from the longitudinal
weld. Surprisingly, the magnitudes of these tube wall bending strains were
quite large compared to the strains at the proportional limits of the materials.
In fact, these bending strains must have had an appreciable effect on the tensile
stress-strain tests run in conjunction with the bending tests. It is seen from
Table V that the residual strains, measured with a curvature frame, approached
0.13% for SpecimenGroups D, E, and F. An interesting discovery was that
Specimen Group C, having the lowest residual strains, is the same group for
which the only flat inelastic stress-strain curve was obtained. Specimen Group
C had a Ramberg-Osgood slope parameter of 52, indicating a flat curve, while

all of the other specimen groups had slope values of between 15 and 24. " The



o= 2/2€,

ﬁ‘? = RADIUS OF RESIDUAL
CURVATURE

€, = RESIDUAL STRAIN

COUPON

SQUARE TUBE

Figure 18. Spring-Back Due to Mill-Forming Residual Strains.

63



64
TABLE 'V

Residual Bending Strains Due to Mill-Forming

Bending = - = =
GTOUP Tegt Nos. (Refy B t B/t €, € &, €/,

A 2,8,10,11,15 2 0.121 16.5 874 801 983 1.05

B 12,13, 14 21/2 0.079 31.6 924 861 998 0.96

C 1,3,9,17 2 0.062 32.3 528 469 ---- 0.45

D 16 3 0.117 25.6 1368 1322 1461 1.52

E 4,5,6,7 2 0.089 22.3 1380 1380 1772 1.53

F 60 6 0.174 34.5 ---- 1303 1276 1.53
where

B = square tube width, outside to outside, inches
Z = tube thickness, inches
€ = longitudinal residual bending strain, micro~in.
- strain at proportional limit of the material
and where subscripts are
1 = top, or compressive flange of tube

S = side, or web of tube

W = adjacent to the longitudinal tube weld
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Ramberg-Osgood parameters for the specimen groups are found with the stress-
strain data in Appendix C. The residual strain specimens are shown in Figure

19.

Comparison of Theory and Experiment

A comparison of the maximum moments based on the two theories and
the experimentally determined ones in Table VI show very good agreement
between the theoretically predicted and the éxperimentally determined bending
moments. The maximum error is found for Specimen Group D, where the local
buckling theory is 13 percent lower than the experiment. This confirms the
previous observation that it i_s not difficult to predict the maximum>moment of
materials having flat inelastic stress-strain curves (see Appendix C).

A comparison of dimensionless curvature values in Figure 14 indicates
that for B/t > 25, good agreement is obtained between the buckling theory and
the experiments. (It is believed that agreement within 25% is acceptable for
such buckling results.) Detailed comparisons of significant experimental and
theoretical results for each specimen group are included in Appendix D.

Figure 14 also shows that the cross-sectional distortion theory is not
useful in determining the critical curvature. Itis in error by nearly a factor
of two on the high side of the experimental results, except foxr the single case of
Specimen Group C, for which case the residual forming strains were small and
for which the stress-strain curve was almost totally flat in the inelastic range.

Based on the data presented concerning Specimen Group C, it is concluded
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"

Figure 19. Spring-Back Coupons for All Specimen Groups. Note the Curvature
of the Specimens.



" TABLE VI

Comparison of Experimental and Theoretical Results

: Expefiment Local Buckling Distortion
Material B B/t 2 . 2

(I:f/i?iﬁg) %* (fe-1DS) fat (fe-Lbs) %z‘
A 2 16.5 3250. 0.52 2924. 0.17 3305. 0.97
B 21/2  31.6 3404, 0.41 3066. 0.33 3174. 0.86
C 2 32.3 1187. 0.36 1263. 0.31 1269. 0.44
D 3 25.6 7679. 0.34 6680. 0.26 7190. 0.82
E 2 22,3 2018. 0.48 1777. 0.22 1841. 0.95
F 6 34.5 40425, 0.31 40030. 0.31 42877. 0.90

L9
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that the residual longitudinal bending strains from the mill-forming caused the
tubing in the other specimen groups to behave differently from that predicted by
the distortion theory. In the sole case of Group C, where the residual strains
were lower, reasonable agreement between the distortion theory and the experi-
ments was found. This is apparently more serious in the case of the distortion
theory than it 'is in that of the buckling theory, since the latter compares more
favorably with the experimental results.

In summary, there are two possible reasons why the experimental curv-
ature results and the distortion theory results do not agree:

1. The residual strains adversely affect comparison with the theory, as
discussed above.

2. The assumption of a constant distortion configuration as a function of
length is invalid, particularly for low B/t. The measured low B/t case showed a
distinct maximum distortion at the center, decreasing on each side of center

span—in direct conflict with the constant curvature assumption.
Conclusions

General

The following conclusions are tendered, based on the results of this square
tube bending investigation:

1. The lower bound on the thin-gage behavior of the hot-rolled structural
steel square tubing considered in this analysis has been found to be defined by a

width~to-thickness ratio, B/t, of 25. Tubing with B/t ratios above this value fail
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due to the buckling instability of the compressive flange: tubing with ratios
below this value fail due to excessive distortion of the tube cross-section.

2, Residual tube wall bending strains in excess of one tenth of one per
cent were measured in some of the tubing tested. These strains, probably caused
by the process of squaring round, electric-resistance-welded tubing to make this
type of square tubing, should be accounted for in any analysis that is involved
with this type of structural tubing.

3. The inelastic flange buckling analysis proposed by Rhodes and Harvey
was found to be applicable to the analysis of this type of square tubing, provided ‘
that the width~to~thickness parameter, B/t is in excess of 25. The effect of the
residual strains was more appreciable in the case of the distortion theory-
experiment comparison than it was in the buckling theory-experiment one, because
the experimentally determined stress-strain results are also affected.

4. A correlation of the experimental results reveals that the maximum
resisting moment of a tube cross-section when subjected to increments’
of curvature can be approximated by the relation

M= 115 M,y

where

M ax = maximum resisting moment

Myld = yiéld moment at 0. 5% strain.

The critical curvature can be found from the experimentally determined
expression

52//4%21 =Yg
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where

Wy
1

tube outside width

N
Il

wall thickness

/2= = critical radius of curvature.

Design Implications

Since the AISI design method does not account for inelastic material
behavior, this work is of no direct consequence to it. The results, however,
might be utilized to extend the AISI specifications to cover inelastic behavior.
These results speak clearly for placement of a lower-bound on B/t in the defini-
tion of a light—-gage structural member. No such limit presently exists because
inelasticity is not considered.

This study has shown that as long as hot-rolled structural tubing is fab-
ricated in such a way that appreciable residual longitudinal bending strains are
produced, this material should not be included under the AISI light gage steel
specification. To include it would require that the specification be altered to

account for the residual strains from the tubing squaring process.

Recommendations for Further Studies

An obvious topic for further study is that of including the residual bending
strains in the theories and then making comparisons to the results of this investi-
gation, supplemented by additional test data of the type obtained in the experi-
mental part of this investigation. Clearly a new distortion assumption is called

for in the case of the distortion theory.
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A generalization of this study would be to investigate the behavior of
rectangular shapes and other ma.terials such as aluminum.

The results from this investigation will clearly bear consideration in
the analysis of hot-rolled structural steel tubing under many different combina-
tions of loads, both as a single member and as components of joint design.
Finally, the results herein should provide some basis for investigations of the

fatigue properties of square structural tubing.
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APPENDIX A

Computer Program for Buckling Analysis
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BUCKLING THEORY COMPUTER PROGRAM

Written in Fortran V for the Univac 1108, Exec II

SQUARE TUSBE BENDING ANALYSIS BASED ON THE
tLANGE SBUCKLING APPROIACH OF RHODES AND HARVEY

RAY K. AYERS CeEl e DEPARTMENTs UNIVERSITY OF HOQOUSTCN

UIMENSION Y{10) YTUIC)Yy YSU(ID)» OMTSC10)y DMTTLIO) o
pMCcsSi10)

CCMMON ROy SMAX» SPLe KNs SO07» E s AMU

NNJJ = THE NUMBER OF DIFFERENT SQUARE TURE CASSES TO RE RUN

READ(S5¢1111) NN JJ

FORMAT (15) .

uo 84 JJJI = 1 NNJJ

RE&D(S52100)  Hys Ty € v AMUs RN» SOT7» SPL SMAX +SYLDJEYLD

H = SQUARE TUBE WIDTH» CENTERLINE DIMENSIONS ¢ INCHES
T = TUBE WALL THICKNESSsy INCHES
E = MODULUS OF ELASTICITY, PSI

AMU = POISSONS RATIO» ELASTIC FORHM

RN = RAMBERG 05300D SLGP:L PARAMETER

SU7 = RAMHBERG OUSGUGD STwESS-INTERCEPT PARAMETERy PSI
SHAX UPPER STRESS LIMIT FOR STRESS ITERATIONSs PSI
SYLD YIELD STRESS AT A STRA&IN OF .00%. PSI

LYLD YIELD STRAIN CORRESPONDING TO SYLD+ IN/IN

tt Bt

FORMAT ( BF10.0 / 8F10.0 )
READ (S,400) ROH » ROL y XN

LL
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ROA 2 HIGH LIMIT ON RRDIUS OF CURVATUREs INCHES
ROL = LOW CLIMIT ON RADIUS OF CURVATUREr INCHES
XN = NUMBER OF CALCULATIONS BETWEEN RUL AND ROH

400 FORMATI 8F10.0)
WR1ITE (B 912 )
G512 FORMATL 1H] i
WRITE { 6¢111 )
111 FORMATU 1H1e11Xs *AN ANALYSIS OF THE BENDING CHARACTFRISTICS®
1 /7 &Xy 'OF SQUARE STRUCTURAL TURBING USING THE RAHODES APPROACH?®
2 177/ )
WRITE (B9222 ) H
222 FUORMATU(LIHO o 12Xe "MEAN WIOTH OF SQ. TUBE® » SX» FlDaeloe
1 2%y *INCHESY® }
WHITE1E 333 ) T
333 FURMAT( 1HUs 12Xe *AVERAGE WALL THICANESS® s SXs» F10.4s 2Xs
1 PINCHES™Y )
WHLITE(BrULY) £ AMU
b4y FORMATULHOS 12Xs 'MATERIAL PROPERTIESY 9 // 17X: *ELASTIC
1 »"MODULUS®* v SXe E10.3¢ 2Xs YPSI* /7 17X

2 "POISSONS RATIOT t 55Xy F7.3 )
ARITEL (L1666 SPLe SYLD» SMAX
bbbt FURMATULIHOs 16X "STRESS AT PROPORTIONAL LIMIT'y 2X» FlO.0s
1 2Xe *PSLY v /717Xy *YIELD STRESS? v SX» F10.09 2Xs 'PSI* 7/
5 17Xy YULTIMATE STRESS? v SXv F10.09 2Xs *PSTIt )

WRITE(BY 5855) SO07e RN
55% FORMATH 1HOY 12X+ *"RAMBERG-0SGO00 PARAMETERS® 7/

2 17Xy ¥STRESS AT MODe OF 0N97*F v FI1Ga0 2/

3 17X» *SHAPE FACTOR FOR STRESS-STRAIN FIT® ¢ S5X» F1l0.2 )
ROT = (H+T)/2.%5/SPL

IF{ROHLGE CROT) ROH = KkOT

LFIRUH JLEe 1o ) ROH = ROT

WRITE(BE+TTT7) ROHAs ROLs XN
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777 FORMAT(IHO»/ /78X THLIS RUN EXPLORES THE RADIUS RANGE BETWEEN®

7/ Xy F1lU0.0es 2X9» *INCHES AND® v F10.0 2%

YINCHES INT FlUe29s * INCREMENTS?® )
tPL = SPL/E
ETl = 0.
OR T(ROH~-ROL} / XN
NN = XN
Uug 88 J = 1NN
Xd = J
Ir ( xJ « LE U, ) XJd = 0«
RO = ROH - Dr * XJ
d0TTOM PLATE CRIPPLING ANALYSIS

RO IS THE RADIUS OF CURVATURE FOR WHICH CAtLCULATIONS ARE DESIRED
WRITEL B6e456 ) RO

4S6 FORMAT(IHDY **xsxxrsk kbsbkxxrnrnsx? //SYX s "MOMENT CALCULATIONS®

v ' FOR waDIUS OF CURVATURE OF* ¢ FlD.0s2Xs *INCHESY //

VRY kX kR ek ok Kk ek ko kk kn? )
1L =0
YC =Z-H/Z2.
tL = YC/RO
ET1 = 0.
EECR = 4.8%E*x(T/H)* 2 /E
IFtEECRSLELEYLD) ECR = ~-EECR
IF{eYtD.LTs EECR) ECrR = -EYLD

IFIEL.GELECR) GO T0 2%
LFFECTIVE WIDTH CALCULATIONS
WRLTEL(BS11)

Y1l FORMAT(1HOY //7/ 77Xy *THE COMPRESSIVE FLANGE EXCEEDS

Py *CRIPPLING LINMITY 2/ 7¥» TEFFECTIVE WIDTH CALCULATIONS®,
v arE 1IN ORDER® )

2Ub CONTINUE

He IS THE EFFECTIVE WIOTH OF THE COMPRESSIVE FLANGE

Y Ht = (Oe7=ECR/EL + 43 )} #*H

[Ft HE«GEe H ) AE = H
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SA T 3.¥H*T + HL*1

SAY = ZexHxx2xT

Yygar = SAY/SA

DU = - H/2,. + YBAR

YC = ~le*xiH/2a + DD )
el = YT/RO

ET = U

yuz yYC

CALL CURVE( ELy ESy O.v ETIy YO vETe POIS. )
SIGL = ES*x(EL  + POIS*ET)/(1. = POIS**Z )
IF(SIGL + SYLOD)Y 30930496 '
20 WRITE(E931 ) SIGIe SYLD
$1 FORMAT(IHOs °FLANGE YIELU EXCEEDED * y 2F10.0)
95 UM = SIGL*YC*TarE
WRITE (By 913) SIGLy EL DDy YC» HE :
914 FURMAT(1IHO»10Xs *STRESS ' v FlU.Ce 2X9 "STRAIN 'y F10.5e 7/
3 11Xs *No B¢ SHIFT TO TENSe 'eF10e49y //11Xs *FIBER DIST. TO °*

4 *FLANGE C. Lo * FlOW4//7 11Xy TEFFECTIVE WwIDTHsy CL TO CL?
5 22X FlU.4 ' i

WRITE (b9814 )

sU TO 18

25 CONTINMNUE
WRITE( €& 814 )

14 FORMAT( 1HD 177 2%y YELEMENT Le STRESS Le STRAIN !
2 y YTe STRAILIN FIBER DIST. ° /}
UM = SIGI*YC*T xH
CALCULATIONS FORP THE TENSILE WESB
18 DO 5 I = 1,4
X1 = 1
Yti) = (XI - 1. }/Bex¥H/Za -D0
kL = Y(I) /7 RO
£Tl = U.

CaLL CURVEt ELy ES» Dew ET1s YUI)s ETy POIS )

08
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S1IGIL = ES*(EL ¢ POIS*ET)/(1le - PCIS*%x7
UMTSEI) = SIGI=Y(I)

CONTINUE

CALCULATIONS FOR THE TENSILE FLANCGE

PO 7 I = 1+¢5

1 = [
YT(1}

L =

ET1 =

S H/Z2e + (XI-lel}*T/4. - T/2,.
YT(1) /7 rO
u

CALL CURVEL ELys ESe Dues ETly YTUI)2ETs PCIS )

SILL = ES*x(EL  + POIS*ET)/(1. - POISH*x2
LMTTOL) = SIGL*YT(I)

CONTINUE

CALCULATIONS FOR THE CUMPRESSIVE WD®

O 10 I = 1+9

X1 = I

YStl) T - XL - 1.1 /8. *xH/2. -0D
EL = YStI)/RO

£T1 - 0.

CALL CURVELC ELy ESe Dev ET1s YS(IIWET,
SIGI = ES*(EL + POIS*ET)/t]la - POIS**2
LF(S1GI+SYLD ) By 139189
WRITe(B6232) SIGIs SYLD
FUORMATUIHOY *WESB YIELD EXCEEODED ¥
UMCS(LY = SIGI*YS(L)

‘ CONTINUEL

TOTAL MOMENT CALCULATION

- D0

POIS

2F10.01)

+ DMTS(8))

XMTS = DMTS (1)  + DMTS{9)

XMTS = XMTS+ 4.x{DMTS(2) + DMTS(4) +« DMTSIB)

XMTS = XMTS + Z.%{ DMTSE3) + DMTS(S) + OMTSI(T) )
XMTS = XMTS*T#H/8.73.

XMTT = DMTT(1) + DMTT(S)

XMTT = XMTIT + o DMTT(2) « DMTT(4))

XMTT = XMTT + 2o (DMTTLI)

18
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XMTT #*H=T/4./3.

XMCS = DMCSI(1) + ' DMCSt3)
XMCS = XMCS + 4.x(0DMIS(2) + OMCS (4) + DMCS(6) + OMCS(8))
XMES = XMCS + Z2.#{0OMCS(3} + DMCS(S) + DMCS(T) )
XMCS = XMCS *T&«H/8e/34
TM = OM + XMTS + XMTT + XMCS
T™ = Tmrs12.
XRO = 1e/RCx*x12.
WRITE (6¢0667) TMs XRO
bo7 FURMATL IHDe ///7 10X+ *MOMENT OF RESISTANCE ' 9 E10e4y
3 FOOT*POUNDS? 77 10Xy *FOR & CURVATURE (1/R0) GF?
5 r v vy FlU.B1 * 1/FEET? }

38 CONTLINUE

ENU

Z8
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SUBROUTINE "CURVE"

Used in the Buckling and in the Distortion Theories

SUSRUOUTINE CURVE IS USED TO CALCULATE THE NODAL
STRESSES ONCE THE STRAIN IS ANOWN., THIS SUBROUTINE IS
USED 3Y BOTH THE BUCKLING AND THE DISTORTION THEQORIES.

HAY Ka AYERS CIVIL ENGINFERING DEPARTMENT UNIVERSITY OF HOUSTON

DR JAMES M. NASH » ADVISOR

SUAROUTINE CURVE(EL» ESy AREA» ET1ly Yo E€ETT#POIS)

COMMUN RO SMAXs SPLs WN» S070 E y AMU

bl = THE EQUIVALENT UNIAXTIaL STRAIN IN/IN
EL = LUNGITUDINAL STRAIN 2T A NODEs IN/JIN

LS = THE SECANT MOOULUS PSI

axfA IS THE AREA UNDER THE STRESS STRAIN CURVE AT €1

£T1 = THE UISTORTIUN COMPGNENT OF TRANSVERSE STrkaIn. THE
POISSON EFFECT IS A0DEUL IN THE SUWROUTINE

Y = THE *Y* CUORODINATE OF THE NODE

ETT = THE TOTAL TRANSVERSE STRAIN CALCULATED IN THE SURROUTINE
POLS = THE VARLIABLE POISSONS RATIO, ENELASTIC FORM

l':( RUILEO Ol' ). Y : (.‘.

UPFLR AND LOWER LIMITS ON EI 2RF CALCULATED USING THE
tLASTIC PROPORTIONAL LIMIT AS ONE BCUND (ESZ Fo
AND USING TOTAL PLASTICITY ( POIS = 0a.5) AS THE OTHER
LEPLZ SPL/E
DEL = (1.+EPL)»(1e~ AMUEPL)*x2 - 1,

LTT ETY - AMU=*Y/RO '

EIL = EL*%2+ ETT*s2 + 2., *AMUXEL*ETT
tIb = (EILZ()a—- AMU*¥x2)}) *+0 .5

JF(ELL LB EPL) GO TO 2¢

€8
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ETT = ETY - Y/RU /2.
EIP = EL*x2 + ETFx*r2 + EL*ETT

Llp (EIP/4T75 )*+0.5
L1HI = EIpP
EILO = EPL

£l IS FOUND BY ITERATION TO STATEMENT 3D
bl =  EILO + E£IHI Y}/ 2

20 POLS = (1e = ((1la+ DELJI/(1le+ EI))*%0.5)/EX

ETT ET1 - POIS *xY/ROQ
E1C = EL**2 + ETT*xx2 + 2.#POISeEL*ETT
EIC = (EIC/(1. - POIS**2))%%0.5
B = (£IC - EI )
C = a8sS(8)
IF { C «» LT. «000001) GO 70O 30
300 FORMAT(IX » BEL1D.5 )
LF(EIC - EL ) 1U5s 105, 11C
10% & - EIHI - E1
8 - EIC - E£ILOC
IFC & ¢« LTe 8 ) FIL0 = £ILYD + 8
LFE( 8 o LT. A ) EIHTI = EIHTI - &
LO TO 115
110 B = LIHL - EIC
& - il - EILO
Irtas GT. B) ELLO = EILO + A
fF0 4 o GT. & )} EIHL = EIHI - 2
11 CONTINUE
tf = (EIHI + ELlLU)/2.
GO TU0 20
STATEMENT 25 IS THE THE ELASTIC BRANCHe
NEEDED
2% POILS = AMU
£l = tIL
20 CONTINUE .
SIGL ANU AREA UNDER CURVE ARE DETERMINED
BY TRIAL USING EI KNOWN TO STATEMENT

WHERE ITERATION IS NOT

40

FOLLOWING ARE CALCULATIUNS OF THE ITERATION LIMITS

78
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RO
555

e € £l <LE« EPL ) SIGI = g£=*¢£1
IFC £l «LE. EPL ) AREA = SIGI *£1/2.
P £l «LE. EPL 1} ES = SIGI /&1
IFC LYl JLE. EPL ) G0 TO 40
SHI = SMAX
SLO = SPL
SIGL = S07
NUW THE ITERATION BEGINS
ELC = SIGI#(1la+ 3./770#(SIGI/SO7)Ix#(RN=- 1. ))/E
g = ( EIC - EI )
C = A¥sty]
IF € « LE. .000B0OL1) GO TO 37
IF € B «G7le. G¢) SHI = SIGI

1F o B «LEes Ua) SLO = SI6GI
SISL = o SHI + SLO )} / 2.
Lo TU 33

AREA = o5  +0 Jo*RN/T./7C(RN+* 1.)3)*({SIGI/SO7)»x(RN
AREA = AREA *» SIULUI*=*2/C

ES = SI6IL 7 el

CONTINUE

FORMAT Y 1Xe 1UE10.5)

RETURN

LEND

1.)

S8
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DISTORTION THEORY COMPUTER PROGRAM

Written in Fortran V for the Univac 1108, Exec II

SHOUARE TUSE BENDING ANALYSIS RASED ON THE

UISTORTION OF THE CRCSS - SECTION METAOD GF aRES

RAY K. AYERS CIVIL ENGINECIRING DEPLRTHUENT

UNIVERSITY £F A40USTON

UR« JAMES M. NOSH » ADVISOR

DIMENSTION BETV(IO)Yy YVII0)Ye BETH{IC)y YHOIC)y ELVUIIO1IT)
1 s TV 101G ) s SIGVI1IDs10) s AVIIDe10) s
2 ELHULO210)y ETHOL1U91G ) SIGHIIO«1C)y AH(IO,10)
S DAV E10)y OMHILD Yoo o
4 PDRVLIG) Twl2) DUHI0) v TM(2)
3 y SYHOIG)E ¢ SYV(1Q)

COMMON RO SMaXes SPLye RNy S07e £ + AMU

PL = Z.14159

NNJJ = MNUMBER UF DIFFERECNT S@uart TUBE CASES

Re aglse 30100 NNJJ

Tyl FORMATIHIS )

vo 216 Jddd 2 1 NNJJ

EE a0 (Sel100) Hay Te E ¢ AMUy BNy SO07s» SPL o SHLY
1 v SYLDe XXXX» RR

A2 SOUAKE TUBE WIDTHe CENTERLINE DIMENSIONS v INCHES

T = TUBE WALL THICKNESSy INCHES

L = MODULUS OF ELASTICITY, PSI

AMYU T PCISSONS RATIOe ELASTIC FQORRM

RN = RAMBERG O5GULOD SLOPE PARAMETER

SO07 = RAMHERG 0SG030 STHESS INTERCEPT PARAMETERy PST

L8
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SMaX = UPFPER STRESS LIMIT FOR STRESS ITERATIONSy PSI
SYLU = YIELD SIRESS AT A STrRaIN OF 005y PSI

YLD = YIELD STRAIN CORKESPONDING TO SYLOs IN/ZIN

XXXX = DUMMY YARIABLE ' DISRECGARD

RrR = RESIUDUAL BENDING STRAIN TU Bt ADOED TU PROGRAM

&T A LATER DATE

100 FURMAT { 8Flu.O / 8F10.0 }
Re AU (5,400) ROH » ROL 1 XN ALH v ALL
ROH = HIGH LIMIT ON RaDIUS OF CURVATURE: INCHES

RUL = LOWw LIMIT ON RADIUS OF CURVATURE» INCHES:

XN = NUMBER OF CALCULATIONS BETWEEN ROL AND ROH

ALK = HIGAEST DISTORTION M4GNITUDE EXPECTED. THIS IS

THe INWARD DEFLECTION OF THE CENTER OF THE COMPRESSIVE FLANGEs IN
LOWEST ODISTORTION MAGNITUDE DEPECTED. MUST BE .GT. ZERU o« IN INCHES

GO0 FURMAT( 8F10.0)
WRITE (6 312 )
912 FORMAT( 1H1 }
WRITE ( 6:¢111 )
111 FORMATI( 1H1+11Xse *AN ANALYSIS OF THE BENDING CHARACTERISTICS!
1 // Xy *OF SUUARE STRUCTURAL TUBING USING THE ADES RPPRUACH®
2 77/ )
WrITE (690222 ) H
222 FOxMAT(LIHD o 12Xy *MEAN WIOTH OF S8 TUBE' ¢ SXe FlD el
1 2Xo» *INCHES? )
WRITE(BY333 ) T
533 FORMATLE 1HUY 12Xy YAVERAGE wWALL THICKNESSY » SX» FlO0.84s 2X»
1 FINCHES? )
WRITE(Br4YY) Ev AMU
44 FORMATULIHO» 12Xy *MATERIAL PROPERTIES® o /7 17Xy *ELASTIC *
1 o *MODULUSY v 5X+ EIlUL3s 22Xy YPSTIY /7 17X
2 *POISSONS RATIQ® 1 SX» F7.3 )
WRITE (6eb66) SPLy SYLDs 5MAX
F6b FURMAT(1HOYy 16X YSTRESS 4T PROPORTIONAL LIMIT®'e 2X+ F1C.0v»

88
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1 22Xy *PSL* ¢ //17Xe °SYIELD STRESS? v S¥» F1lB.0s 2X9 *PSIY //
3 17% YULTIMATE - STRESS?® v SXv F1lO0e0s 2Xs 'OSI? )
WRITE (B 555) S07y RN

555 FORMATL 1HOs 12X» *RAMBERG-0SGOOD PARAMETERS® //

2 17Xy *STRESS AT MUD. OF G97xF *y F10.0 7/

3 17Xy *SHAPE FACTOR FOR STRESS-STRAIN FIT* » S5X» Fl0.2 )
ROT = (H+T}/2.»E£/7SPL

LF{ROHGE aROT) ROH = ROT

IF{ROH oLE. 1. ) ROH = ROT

WRITE(B»T7T77) ROHs ROLe XN

777 FORMAT(LIHOS/ 774Xy *THIS RUN EXPLORES THE RADIUS RANGE BETWEEN?

1 /7 7Xe FlUU+ 2Xs *INCHES AND® vy F10.09 2X

2 YINCHES IN® Fl0.2+ °* INCREMENTS® )
U = (ROH=- ROL)
XXN = XN

RO IS THE RADIUS OF CURVATURE FOR WHICH CALCULATIONS ARE DESIRED
KO = ROH + D/XXN

NN = XN

KJdd = NN + ]

UO 216 KJd = 1eKJJ

RU = RO =3/ XXN

WAL = U.

WRITEC e85 ) RO

456 FORMATULIHDY Y#xskrdkk sk kikkxrxxxxx? //5Xy "MOMENT CALCULATI ONS?

1 s ' FUR RADIUS OF CURVATURE OF?* F10.0e2Xe *INCHES?® //
Z Pk ok ok ok k KR KRR KK Nk kR kk kY )

S ALT = (ALH-ALL)/10C.

WAL CORRESPONDS TO THE VALUE OF *W* o+ WHICH IS TIMUSHENKO'S
SUUARE TUBE DISTORTION RELATION

Wwal T ALL=-ALT

CONTINUE

DO 215 KJK = 1911

WAL ZWaL + ALY

THIS 00 LOOP ON K ALLOWS CALCULATIONS TO0 BE MADE

FOR TrE COMPRESSIVE FLANGE AND WE8y AND THEN TO REPEAT (£=2)
FOR THE TENSILE FLANGE AND WEB. ¥ IS USED TO CHANGE SIGNS

68
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UN THt EWUATIONS WAEREVER THEY CHANGE BETWEEN THE UPPER
AND LOWER HALVES 'OF THE TURE

uo 20% K 2 1+¢2

TwiK} 0,

T™M(RK) U

ARG = PI*x(H+ T/24)/08+1)

UWXZ ~WAL*(COSLARG) + SIN(Z2.r4RGI/PI)=xPI/{H+T) /1.3183
UWX 1S DW/DXe THE FLANGE SLOPE AT THE FLANGE- WES JOINT

RT = THE TRANSVERSE WEB RADIUS OF CURVATURE DUE TO DISTORTION
RT = H/2./0UX

THLIS DO LOQP IS USED TO CALCULATE THE *Y* COORDINATES OF
THE NOODES FOR THE HALF: WEB AND HALF FLANGE

THE FINAL LETTER OF *V*'s OR 'H's ON ANY VARIABLE REFERS
TO THEZ *VERTICAL® (WEB) OR THE HORIZONTAL (FLANGE).

TUu TRE *VERTICAL® (WEB} CR THEY HORIZONTAL*{FLANGE).

DO 10 Nz 1.5

XN = N

BETVINIZ (XN-lad*(H-T)/8. /T

lF{walelE, 20UC00L } BETVINY = [.

YVINY = RT*SIN(SETVIND] )

IF(wALeLE e 00031 ) YVINY = (XN=T1 ) *{H=-T}/Bax{~1s)exlK+1l )
XX = (H+T)/2« + (XN=-1a3%{H+T)/35.

ARGG T PLeXX/UH+T)

B THINIZ ~Pl*WAL/IH+T )*(COS{ARGG) + SINIZ2.*ARGGI/PTII/1.3183
WX = WAL *{SINUARGG)+ (l.- COS(Z2.*4RGOII/2./PT1) /1.31383
YAIN) = (RT*SIN(DWX) - uX Irl=1.0*x{K+1]}

IFrtwal.LEe -LOS8OL) YHINY = H/2 r(~-1.l»e(K+1)

10 CONTINUE
101U FORMATC 1HOe ///1HOs YVERTICAL ELEMENT STRESS AND STRAINT//

1 1HC s 33X *NODCE 4 v 3Xe *THK ELEM® » 3X» *L STRESS® 3IX»
2 YL STRAINY ¢ 3Xe *7T STRAIN' ///)

WEB (VERTICAL) STRAINS AND STRESSES ARE CALCULATED WITH
THIS DO LOUP :

U0 2U N = 145

DU 20 L = 145

xI = 1

a6
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702

1005
20
61U

701

6L0S
60

bet = (XI-1.1xT/4, - T172.

ELVINGI)Z (YVIN)+ DEL*SIN(ZETVI(N})} /RO

YVNS = ELVIN+I) = RO

IF(RRJLED- ) GO TQ 702

ELVINSL) = ELVINeI) + (DEL/RRI*(~1,.)%*(K+1 )

ET = (DEL /RT)*x{~1.)%%(K+1)

IF(waL LE. 00001 ) ET = 0.

CALL CURVE( ELV(NeIY+ ESs AVINeI}s ETe YVUNS o ETVINeI) +sPOIS}
SIGVINeL)Z ES*(ELVINe I}+POIS*ETVINSI))/(1a ~— POIS*%2)
FORMAT( 1HOs 2I109F1040 » 2F10.6 )

CONTINUE

FORMATL 1HQOe //7/71H0s *HORIZ. ELEMENT STRESS AND STRAIN'//
1 1HOs 3Xs ¥YNODE ' v 3Xe *THK ELEM®* ¢ 3X» 'L STRESS® 3Xy
2 YL STRAINY » 3Xy *T STRAIN® //77)

FLANGE s

FLANGE ( HORIZONTAL) STRAINS AND STRESSES ARE CALCULATED
WITH THIS DO LOOP

00 60 N= 145

U0 o0 I = 1+5

xI = [

UL = (XL-1.)3*T/4. -T72.

ELHIN2L)Y = (YH(N) + DEL*COS(BETH(NI)}}/RO

YHNS = ELH(NeI)*RO

IF{RR.LE.C. ) GO TO0 701

ELHINSI) = ELH(NesI) + (DEL/RR)*(~1.)*x(K+1}

XX = (H+T)/2¢ + {XI-le)*{H+T)/8.

ARH = PI*XX/(H+T})

U2Z2W = PI*WAL/(H+T ) ¥ x2x(2e2C0S{2.%ARH) ~ PI*SIN(ARH)) /1.2183
el = DEL*DZWx(=1.)w*X

CaLlL CURVEL ELH(NsI)s ESy aH(NsI)s ETs YHNS ¢ ETHIN+sI)s POIS)
SIGHINWIIT ES*{ELHINs I1}+POIS*+ETHINeIL))FAlle - POIS*x2)
FORMATU 1HGy 2110+F13.0 ¢ 2F1046 }

CONTINUE

THIS DO LOOP IS USED TO CALCULATE THE TOTAL MOMENT (TM)
ANU THE TOTAL %ORK (TW) OF THE SECTION

DO 6L7 N = 1145

16
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607

203

15

500
215
21t

&9

UO B I = 145

SYVII) = SIGVINSI)*RO*ELVINI)

SYH(I) = SIGHINSII*RO*ELHINSI)

DMV IN]} = SYV( 1)+ SYVIS ) +4 ¥ (SYV(2)+SYVIY))+ Z2.xSYV(Z)
UMVING = DMVINI=xT/4./3.

UMHIN]ZSYHU1 )+ SYHUS)+ Lox(SYH{2)+SYH{G)) +2.#SYH(3)

UMHIN) = UDMH(N)*T/4./3. :

UWVIN) = AVINSL)I+AVINGS) +4 ¥ (AVINIZ2)I+AVINIG) ) +2.44VINs 3)
DWVIN) = DUVINI®T/4a/3,

DWHIN)Z QH(Ne¢l) +aH{NE) v Lox(AHINI2) +AHINIG)) +2,%AHINy3)
UWHIN) = DWH(NI*T/4./3.

XMVZ OMVLL) +DMVIST + 4.x(0OMVI2)+0MVIY)) +2.%DMVI3)

XMy = XMV*(H"T)/S- /3'

AMH = DMHUOL)+UMHLIS) + 4ox(DUMH{Z2)+ DMHIY) ) +2.%DMHI(3)

XMH XMHe{H+T) /8. /3.

WH = CWHU1) + UWHUS) +4.%(DWHI2) +DWHIG)) +2.xDUH(3)

WH = WH *(H+T)/83.,. /3.

WV = DWV(1l) + DWvi5) + o (DWVIZ2) + DUVI4)) + Z.xDUV(3)
WV T WYSs(H-T}/5. /3.

TWiK) = WV + W o+ TWil)

TMLK) = XMV + XMH +TM (1)

CONTINUE

THE FACTOR OF TWO ADDS THE CONTRIBUTION OF THE

OTHER HALF QUE TO SYMMETRY PERPINDICULAR TO THE N. A,
TWLZ2) = TWi2)*2.
TMLZ2)Y = TM(2)*2. f1z2.

XRO = 1./7R0%*12,.

WRITE(B500) TWEZ) o TMI2) »WAL ¢ XRO

EORMATC(L1HOD Y YWy XMeWALSY RO 'y £15.8+5E1045 )

CUONTINUE

CONTINUE

L ND
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STRESS-STRAIN RESULTS

Tensile Tests

Coupons from all of the specimen groups were tensile tested in accord-
ance with ASTM Standard A370. Stress-strain curves were recorded, as repro-

duced in Figure C-1.

Ramberg-Osgood Curve Fit

Experimentally determined stress-strain results were subjected to curve
fitting using the Ramberg-Osgood expression listed in Equation 3.25. The
results from the curve fitting process, the stress intercept parameter,q;_,, and
the slope parameter, # , shown in Figure C-1 were used to describe analytically

the stress-strain curves, as required in the theoretical approaches.
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APPENDIX D

Detailed Comparisons of Experiment with Theories
1. Moment-Curvature Curves

2. Distortion-Curvature Curves
(Experiment only)
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Figure D-10. Distortion-Curvature Plots for Specimen Group D.
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