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ABSTRACT

Central nervous system (CNS) disorders cause over 1 billion people to live with a

life-altering handicap. Some CNS disorders, such as cerebral palsy and spina bifida,

affect one-four per 1000 and one per 2758 children respectively, according to the

Centers for Disease Control. These pediatric CNS disorders leave patients with many

years of living with partial or complete motor impairment. Brain-computer interfaces

(BCIs) have been researched as tools for rehabilitation for adults with disabilities due

to neurological disease, brain injury or amputation; however, research on the design of

BCI systems for children has not received the same level of attention by the scientific

community. This is unfortunate as the developing brain is very plastic, thus, children

may be the best candidates for BCIs for neurorehabilitation.

The primary aim of this project was to adapt a system, developed in the Labora-

tory for Non-Invasive Brain-Machine Interface Systems at the University of Houston,

that can be used for BCI system development for children. Such a system will pro-

vide real-time data capture from two types of sensors (scalp electroencephalography

or EEG, and joint angle data from the lower limbs) during treadmill walking while

providing real-time visual feedback of the child’s gait pattern via a digital avatar. To

achieve this aim, a system was created in the MATLAB programming environment

that initializes, acquires and synchronizes EEG and joint angles, and then, filters and

sends joint angles to control the digital avatar and in parallel, stores time-locked un-

processed EEG and joint angle data for offline processing - the first step in designing

a BCI system.

Applications of the system include, but are not limited to, investigating the neural

representations for motor control in children, and extracting neural and kinematic

features for diagnostic purposes and for the design of closed-loop BCI systems for

children.
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1 Introduction

1.1 Pediatric Neuromotor Disorders

Central nervous system (CNS) disorders are responsible for causing over 1 billion

people worldwide to live with some type of life-altering handicap [5]. Some CNS dis-

orders cause degradation of the motor system, such as Parkinson’s disease, and begin

during an individual’s middle or late years of life. Other disorders, such as cere-

bral palsy and spina bifida begin before, during, or closely after childbirth, resulting

in many more years of living with partial or complete motor impairment. Cerebral

palsy and spina bifida affect one-four per 1000 and one per 2758 children respectively,

leaving many of those affected with limited or no walking ability [6, 7].

There are no cures for diseases such as cerebral palsy, but research suggests that

early therapeutic interventions could improve the quality of life for children suffering

from these disorders [8]. Early neuromotor interventions can take the most advantage

of the developing brain’s plasticity and mitigate adverse effects to muscle and bone

development that may accrue from disuse [9, 10]. Consequently, aiming to improve

living conditions for children with mobility-limiting disorders is a necessary goal for

rehabilitation research.

Traditional therapies to improve motor capabilities for children with cerebral palsy

include occupational and physical therapy, home visits and the use of assistive tech-

nology devices. Newer interventions are incorporating the use of robotics and neural

engineering into rehabilitation [11, 12]. Interventions could include the use of robotic

assistive devices, brain-computer interfaces, as well as combinations of the two.
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1.2 Brain-Computer Interfaces

A brain-computer interface (BCI) is defined as a system that acquires brain signals

to command interactions between the brain and its internal or external environments

[13]. In the external environment, BCIs can be used to control computer cursors,

keyboards, robotic devices, and even virtual prostheses [14, 15, 16]. In the internal

environment, BCIs can be effective in helping individuals modulate their neuronal

oscillations; this is currently explored as a potential therapy for attention deficit

hyperactivity disorder (ADHD) [17].

BCI components include the signal acquisition system, processing and translation

(decoding) algorithms, and the end effector device or computer program [1]. Some

brain-computer interfaces include feedback for the user, these are characterized as

closed-loop BCIs. An overview of a brain-computer interface is shown in Fig 1.

Figure 1: BCI overview. Brain signals are recorded and processed through a neural
decoding algorithm that executes device commands based on specific pat-
terns of neural activity, and provides feedback for the user [1].

Brain-computer interfaces provide opportunities for mobility-impaired popula-

tions to interact with the world without having to engage the peripheral nervous

system or musculature which may be weak or damaged [16]. BCIs provide an avenue
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for enhancing independence in individuals that are heavily dependent on caregivers

and family members, and research shows that improvements in self efficacy can lead

to better rehabilitation outcomes [18].

Studies on the use of brain-computer interfaces for motor rehabilitation have

shown improved outcomes [19]. Although mobility-impaired individuals of all age

groups could benefit from BCI-based neurorehabilitation, research has mostly fo-

cused on applications for adults. The use of BCIs in pediatric populations, especially

for motor rehabilitation, has not been widely studied.

1.2.1 Brain Signal Acquisition

Brain-computer interfaces can be characterized as invasive and noninvasive, and

this distinction is dependent on how the brain signal is acquired.

Any recording method that requires implantation is invasive or semi-invasive,

such as electrocorticography (ECoG), where electrodes are placed on the surface of

the brain to record electrical activity [20]. Invasive signals have high signal-to-noise

ratios and location specificity compared to noninvasive signals, as they are located

closer to the electrical activity that the neurons generate. Recording methods that

do not require implantation are noninvasive, such as electroencephalography (EEG)

where electrodes are placed on the scalp [21].

1.2.2 Processing and Translation

There are various methods for processing the acquired brain signal and executing

commands based on those signals. Typically, processing techniques involve filtering

the raw data to remove noise and the extraction of features that are used to drive com-

mands. The extraction of important features from the raw data can be accomplished

by decoders.
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The nature of the extracted features depends on the experimental and command

protocols. For a speller BCI, where brain signals are used to spell words on a com-

puter, an experimental protocol may involve the use of visual evoked potentials

(VEPs), whereby various stimuli are flashed at different frequencies, and the user

is asked to focus on a specific target stimulus. Based on the brain signals acquired,

researchers can predict the target based on the frequency of the VEPs [22]. For a

BCI to control a robotic arm, the brain signal may be recorded from the user’s motor

cortex as the user imagines moving an arm [23].

1.2.3 Feedback

Closed loop BCIs provide the brain with feedback; Fig 1 shows an example of a

closed-loop BCI wherein commands from the cortex are translated into device com-

mands, and information about command execution is given to the user as feedback

[1]. Feedback is typically sensory, and can include visual and tactile representations

of the executed command, and auditory tones that indicate success/failure.

Feedback is also the basis of neuromodulation, whereby individuals receive feed-

back on their neural oscillations, and are asked to perform specific tasks that will

affect those oscillations [17]. Feedback can be especially important in creating ex-

perimental protocols for pediatric BCIs as the use of feedback lends itself to the

gamification of the experimental experience, which can aid in keeping the attention

of a young subject [24].

1.3 Pediatric Brain-Computer Interfaces

To establish neurorehabilitative options for children with motor disorders, it is es-

sential to understand sensorimotor development determine whether children’s devel-

oping neural circuitry can control BCIs, thereby producing adequate decoder accuracy
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for practical use. King et al. suggest that improvements in sensorimotor behavior

during the course of childhood could be attributed to the development of static and

dynamic state estimation, and it is important to determine whether these improve-

ments in state estimation translate into an improved ability to control a noninvasive

BCI [25].

Recently, researchers conducted a pilot study testing sensorimotor (SMR) modu-

lations during an imagined hand motion task and exploring whether typically devel-

oping children from the ages of 12-17 could control noninvasive BCIs for various P300

tasks [26]. They achieved an accuracy of 61% for the SMR task which is comparable

to findings in similar studies conducted with adults [26, 27]. Although this study

explores older children’s ability to control BCIs, it is not clear whether this finding

will be replicable in younger children, or for the lower limbs of the body, a necessary

component for using BCIs in gait rehabilitation.

Of interest is exploring whether pediatric lower limb joint angles during walking

can be predicted from EEG data while providing the subject with visual feedback.

Using existing experimental paradigms for adults to explore noninvasive BCIs for gait

rehabilitation can provide a standard for assessing decoder capability and BCI perfor-

mance when testing with children of different ages. He et al. conducted experiments

in which lower limb joint angles and EEG data were collected from adults, and a

decoder was trained to predict the joint angles from the EEG data [27]. Subjects

received visual feedback during the trial through the form of a walking avatar where

the joints were controlled by the subject’s recorded and predicted joint angles [27].

Performing a similar experiment with children and assessing decoder accuracy would

inform how effectively children of this age range can use noninvasive BCIs, and would

expand the discussion concerning whether BCIs are a viable rehabilitation option

for children with movement disorders and to determine whether there are certain
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neurological benchmarks that children must meet before they can effectively use an

EEG-based BCI.

1.4 Research Aims and Objectives

The objective of this thesis was to build a system that performs the following

functions:

1. collect time-locked EEG and lower limb joint angle data for offline analysis

during trials where a child is walking on a treadmill

2. provide the subject with visual feedback using an avatar whose gait is controlled

by the joint angles of the user

This is a system that collects data for offline analysis and in parallel provides visual

feedback of gait. The deliverable of this thesis is a system that can be used to collect

multi-modal brain-body imaging data that will contribute to the understanding of

pediatric neuromotor development based on EEG and lower limb kinematic data,

and ultimately, to the design of BCI systems for children.
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2 Current State of Research of BCI Systems

Literature on the use of pediatric closed-loop brain-computer interfaces is lim-

ited, and this systematic review of the literature attempts to address the following

questions: what types of BCIs and brain signals are being used to explore the imple-

mentation of pediatric closed-loop BCIs? Which tasks are used to train the BCIs?

What kinds of de-noising techniques and decoders are being used? What levels of

accuracies can be achieved from these systems?

2.1 Methods

2.1.1 Search Methods for Study Identification

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)

is a systematic review and meta-analysis protocol [28], which was used to identify

studies for this review. The search was conducted on March 16, 2022 with the PubMed

database using the following search criteria: (’Pediatric’ OR ’Children’) AND (’Brain

Computer Interface’ OR ’Brain Machine Interface’ OR ’Human Robotic Interface’

OR ’Human Robot Interface’ OR ’BCI’ OR ’BMI’). Studies that were not within

the inclusion criteria were excluded and the remaining studies were screened to find

studies using brain-computer interfaces with feedback where at least some of the

subjects were children (< 18 yrs old). Some of the studies excluded were literature

reviews and meta-analyses, and their citations were searched for studies that matched

the inclusion criteria. An overview of this process is shown in Fig 2.

The following criteria were used to determine whether to exclude search results:

• Experimental studies only - Literature reviews and meta-analyses were ex-

cluded.

• Brain signals only - Studies that incorporated the use of signals from other parts
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of the body, such as muscle activation recorded by electromyography (EMG)

were excluded.

• Subjects - Studies containing at least one pediatric subject were included.

Figure 2: PRISMA study selection diagram. The stages of study selection include
identification, screening, eligibility, and included studies. This process led
to a total of 14 included studies.

2.1.2 Data Extraction

The following categories of data were collected and presented in Table 1.

• Brain-computer interface type

• Signal type: signal use for feature extraction

• Task information: task executed during BCI training and online trials

• Results: mean accuracy or other reported performance metric
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• Number of channels used

• De-noising technique

• Decoder used for classification

2.2 Results

2.2.1 What kinds of brain-computer interfaces and brain signals were

used?

Except for a study using electrocorticography (ECoG) involving pediatric subjects

with intractable epilepsy [29], all of the studies used electroencephalography (EEG)-

based BCIs. This is expected, since many of the studies involved healthy pediatric

populations as well as populations with ADHD - a disorder where treatment does not

involve surgery.

There were three main signals used for feature extraction from the BCIs:

• Event related potentials (ERPs)

• Visual evoked potentials (VEPs)

• Attention measurements from the Neurosky MindWave headset [30]

• Frequency-band power

Event related potentials (ERPs) are characteristic waveforms or potentials that can

be evoked by specific events. In the analyzed studies, the ERPs include P300, P100,

N200, and slow cortical potentials. In an oddball paradigm, where there are some

target and many non-target stimuli, the P300, P100, and N200 peaks can be used

to differentiate between target/non-target stimulation [31]. The amplitude of the

peaks is dependent on user-engagement; thus, P300 is a convenient signal to analyze
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for applications associated with attention-training for children with attention deficit

hyperactive disorder (ADHD). Slow cortical potentials are indications of negative

shifts in the cortical cell network, which reduces the activation threshold [32]. A

dearth of slow cortical potentials is implicated in attention deficits, as children with

attention issues were shown to have less slow cortical potential activity [33].

Visual evoked potentials are apparent in brain signals when stimuli are flashed

at various frequencies, and the user is asked to focus on a target. These VEPs can

be evoked through continuous flashing at certain frequencies in the case of steady-

state visual evoked potentials (SSVEPs), or through the perception of movement in

movement-visual evoked potentials (mVEPs). SSVEPs are commonly used for target

selection; however, the continuous flickering can lead to eyestrain [34], so Beveridge

et al. focused on the use of mVEPs to control car position in a video-game [35].

The Neurosky MindWave device is a commercially available EEG system that

provides the user with EEG recordings as well as metrics (0-100) for attention and

meditation states [30]. The attention metric was used to control the efficiency with

which avatars moved in attention-training games [29, 36, 17, 37].

The frequency band-based BCIs are more heterogeneous and can involve different

tasks. Breshears et al. used the γ band (36-90 Hz) for the ECoG-based BCI, as

increases in the γ band over the sensorimotor area are associated with motor imagery

[38]. Huang et al. [39] focused on the use of α (8-13 Hz), β (13-30 Hz), and θ (4-8 Hz)

wave amplitudes from the O1 and O2 electrodes to calculate an engagement metric

as

Engagement =
β

α + θ
. (1)

since an increase in β band power and simultaneous decrease in α and θ band

power is associated with an increase in user engagement.
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2.2.2 Which tasks were used to train BCIs?

Most studies which focused on training for ADHD incorporated the use of games

including Connect4, Tetris, Pac-Man, a racing game, etc [36, 40, 41, 35, 42, 43, 29].

When developing BCIs for children, it is important to take their reduced attention

span into consideration when designing the tasks or virtual environments, especially

since features in the EEG and ECoG signals are more distinct as the user pays

attention. Thus, the gamification of BCIs for ADHD therapy can enhance attention

in a population that suffers from attention deficits. Two studies created BCIs for

children with ADHD to enhance reading capabilities and to encourage users to engage

with stories, and Huang et al. created a contextual training session to bring the

subject’s attention back if they were losing focus [39, 44].

In some studies, target selection was used for command execution, such as spelling

[45]. In Beraldo et al., a robot was steered through selection direction and orientation

commands such as ”go forward”, ”turn left” etc. through a P300-based BCI [46].

Furthermore, in Breshears et al. γ band activity is used to control a robotic arm [29].

One study did not provide an explicit task to the subjects; rather, by providing

them with feedback on the shift in their slow-cortical potentials, Strehl et al. asked

the subjects to try different strategies to regulate their SCPs and adjust their strategy

according to the feedback [17]. This approach, called neurofeedback, is interesting

since it is less stimulating than the other studies; however, it showed significant

improvement [17].

2.2.3 What levels of accuracies were achieved by these systems?

Studies reported two main metrics: mean decoder accuracy and/or qualitative

measures of performance. The main qualitative measure of performance the ADHD
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Rating Scale (ADHD-RS), which is a measurement of the behavioral symptoms as-

sociated with ADHD [47]. Another qualitative measure was a comparison of quiz

and recall scores before and after the training. In studies that created and tested

therapies for ADHD where the attention metric was the signal, significant changes to

the ADHD-RS were indicators of the potential success of the therapy. Those studies

all reported significant improvements in behavior and the ADHD-RS scale.

One study reported that slow cortical potential training was effective since SCP

amplitude changed over time. Another study reported that adults had greater accu-

racies than children, except at higher frequencies for an SSVEP trial [45]. For target

selection-based BCIs, the more non-targets for every-target, the better the decoder

accuracy is. Fouillen et al. created a P300 template for use in a P300 game, and

found that the template accuracy was lower than the accuracy from individual data

[41].

Quantitative metrics were used in studies where a decoder was executing com-

mands based on features from the brain signals. The mean accuracy achieved was

76.5% [46, 36, 48, 40, 37, 35, 29]. The accuracies are variable for the same signal type

because of different tasks, thus, the only conclusion which can be generalized is that

the decoder accuracies for children are comparable to accuracies achieved by adults

from non-invasive closed-loop BCIs [27].

2.2.4 What De-noising Techniques and Decoders Were Used?

De-noising techniques are generally used to help with decoding since the artifacts

and noise in unprocessed EEG signals can impede feature extraction. Many studies

used bandpass or lowpass filters for de-noising with the upper cutoff frequency around

30 Hz (the upper limit of the β frequency). One study used a lowpass filter with a

cutoff frequency of 552.96 Hz to account for the flashing frequencies used in an SSVEP

12



task [45]. Some studies also used common average referencing and other baseline

correction methods.

Some studies used linear decoders such as Bayesian and Fisher linear discriminant

analysis [46, 35, 41, 36]. Other studies used machine learning and neural network

classifiers [43, 42, 40, 48]. Another set of studies used frequency band power for

classification [29, 39, 17]. Finally, the studies using the MindWave device used the

’attention’ metric provided from the device, so no classification was described [49, 44].

2.3 Discussion

As part of this literature review, 14 papers were included in the analysis, and the

studies had a total of 428 pediatric subjects. The information collected in this re-

view includes BCI type, signal type, task, results, de-noising technique, and decoder

used for classification. The EEG-based BCIs are the most common of the studies

analyzed due to their non-invasive nature. Of the signals used for EEG-based BCIs,

SSVEPs and P300 tasks have the potential to cause the user fatigue and can be time-

consuming; however, the pediatric decoder accuracies were generally comparable to

studies in adults. The use of mVEPs was suggested as a potential signal to use for

BCI control that might not fatigue the subject [35]. Another signal type that does

not involve user fatigue is using specific frequency bands for feature extraction during

a task. The most common de-noising technique was bandpass filtering the signals to

remove noise. Of the studies analyzed, linear decoders were used most often; however,

some studies also used machine learning and neural network-based classification. This

is probably due to the low computational power required for linear decoders, making

their implementation for online-BCIs simpler. However, there are advancements in

machine learning and neural network decoders that are enabling online implementa-

tion. Overall, for developing pediatric BCIs and choosing the signal, de-noising, and

13



decoder type, the accuracy expected, user fatigue, and available computational power

should be considered.
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3 Methods

The goal of this thesis was to adapt a system developed in the Laboratory for

Non-invasive Brain-Machine Interface Systems at the University of Houston, that

can be used for BCI system development for children by providing real-time data

capture from EEG and joint angle sensors during treadmill walking while providing

real-time visual feedback of the child’s gait pattern via a digital avatar. To achieve

this, a system was in MATLAB that initializes, acquires and synchronizes EEG and

joint angles, and then, filters and sends joint angles to control the digital avatar

and in parallel stores time-locked unprocessed EEG and joint angle data for offline

processing.

During the trial, the subject would be walking at a slow, comfortable pace (1

mph) on a treadmill and facing a TV screen showing an avatar that is driven by

goniometer sensors placed on the hip, knee, and ankle joints of the participants, thus,

modeling their walking pattern. The EEG and joint angle data would be stored for

offline analysis.

An online version of this system was built first by our group eight years ago and

was used in experiments with healthy adults and adult stroke patients [27, 50, 51, 52,

53, 54, 55]. The avatar was built in Unity 3D, the system was built in C++, and the

interface between the avatar and the system was written in C# . The avatar built

for this system, shown in Fig 3, is representative of an adult.

Since many computer environment specifications, including operating systems,

have changed since the C++ system was built, the decision was made to create a

system for data collection in MATLAB that can interface with an avatar for visual

feedback.
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Figure 3: Virtual avatar mid-step.

3.1 Participant

Data collection was conducted with a pediatric subject (female, aged 12) with no

history of neurological disease or lower limb pathology. The subject and her parents

provided assent and informed consent respectively, for the subject’s participation

in the experiment. All experimental protocols and informed consent/assent were

approved by the Institutional Review Board (IRB) at the University of Houston. All

experiments were performed in accordance with the 45 Code of Federal Regulations

(CFR) part 46 (“The Common Rule”), specifically addressing the protection of human

study subjects as promulgated by the U.S. Department of Health and Human Services

(DHHS).

3.2 System Specifications

3.2.1 Equipment Specifications

The two main sets of equipment for running this system are the EEG and goniome-

ter hardware. To build and test the system, 64-channel EEG and six-channel joint
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angle data from six goniometers were used. EEG (ActiCap system, Brain Products

GmbH, Germany) was sampled at 100Hz and transmitted to BrainVision Recorder,

a recording software application from Brain Vision [56]. The EEG cap was set to use

the extended 10-20 system with four channels (sensors originally at FT9, FT10, TP9,

and TP10) used for electrooculography (EOG) recordings of eye movements and eye

blinks. TP9 was placed above the left eye, TP10 was placed below the left eye, FT9

was placed to the left of the eye, and FT10 was placed to the right of the right eye.

The EEG montage is shown in diagram of this setup is shown in Fig 10.

Figure 4: 60-channel EEG montage and 4 channel EOG montage outlining changes
to 10-20 system.

The six goniometers (SG150 & SG110/A Gonio electrodes, Biometrics Ltd, UK),

shown in Fig 5, were sampled at 1000Hz and transmitted to the Biometrics Analysis

Application, a recording software application from Biometrics.
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Figure 5: (A) Sagittal and (B) frontal view of the goniometers (Biometrics Ltd, UK)
placed on the subject’s hip, knee, and ankle joints. The joint centers were
found through palpitation, and held in place through tape.

3.2.2 Software Specifications

For this system, a computer running Windows 11 OS and MATLAB 2021b (Math-

Works, Natick, MA) were used. BrainVision Recorder (version 1.24.0101) and the

Biometrics Analysis Application (version 10) are the applications used to interface

with the EEG and goniometer hardware respectively. To bring the EEG and joint

angle data to MATLAB, the Remote Data Access (RDA) and OnLine Interface (OLI)
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protocols were used. Version 2 (2013) of the RDA protocol and version 1 (2018) of

the OLI protocol were used respectively [3, 2].

Figure 6: The Remote Data Access protocol utilizes the TCP/IP connection to send
data between the BrainVision Recorder application and MATLAB, the
RDA client [2].

The RDA protocol for BrainVision sets MATLAB as a client and allows MAT-

LAB to access data from BrainVision Recorder through the Transmission Control

Protocol/Internet Protocol (TCP/IP) toolbox (version 2.0.6) in MATLAB as shown

in Fig 6 [57]. BrainVision Recorder sends MATLAB data packets every 20ms, and the

amount of data sent depends on the sampling rate of the EEG. For a 100Hz sampling

rate, 2 samples for each of the 64 channels are sent to MATLAB every 20ms.

The OnLine Interface utilizes a Dynamic Link Library (DLL) file to create a

shared memory block between the Biometrics Analysis Application and MATLAB

[3]. A representation of this relationship is shown in Fig 7.

3.3 System Components

The main components of the system are the processes used for raw data storage in

parallel with avatar control for visual feedback. An overview of this system is shown

in Fig 8.
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Figure 7: The OnLineInterface.dll creates a shared memory block between the Bio-
metrics Analysis Application and MATLAB [3].

Figure 8: Flowchart of avatar system. Raw EEG and joint angles are sent to MAT-
LAB from BrainVision Recorder and Biometrics Analysis Application re-
spectively. In parallel, filtered joint angle data control the virtual avatar.

3.3.1 Visual Feedback Component

For the visual feedback component, raw joint angle data was stored in 100-sample

windows to filter. Due to the slow walking speed, previous work shows that 0-3Hz
23



covers the most power for the joint angle signals [58, 50]. Thus, a 3 Hz low pass filter

was applied to the 100-sample bins, and this data was sent to the avatar using the

’judp’ function. The ’judp’ function uses MATLAB to call Java code to send/receive

User Datagram Protocol (UDP) packets [59]. The avatar is an executable Unity 3D

game, which can receive joint angle inputs through UDP packets. The avatar midstep

is shown in Fig 3.

3.3.2 Data Storage Component

For the data storage component, MATLAB stored raw EEG and goniometer data

as they enter the system as shown in Fig 8. Whenever MATLAB received data from

BrainVision Recorder through the RDA protocol, the OLI protocol was executed to

retrieve joint angle data from the Biometrics Analysis Application. The OLI protocol

was executed within the RDA protocol, and raw EEG and goniometer data were

stored through the same script. Once a new data packet arrives into the system, it is

concatenated to the existing data array. This script was executed through MATLAB’s

’batch’ function (Parallel Processing Toolbox); it is used to run scripts or functions

in parallel using a separate cluster worker [60]. The data storage component was

executed in parallel with the visual feedback component. The data stored through

this script would be used for offline analysis.

3.4 System Validation

To validate the system, the system components were tested separately before

testing the system as a whole with a child. The data storage component was run for

25 minutes to check whether there would be any buffer overflow from concatenating

incoming data with stored data; however, this was not an issue. The resulting data

variables were of the size 64x149976 (EEG) and 6x149976 (joint angle). Both signals
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were sampled at 100Hz, so this was a 24.996 min run. This validation step is shown

in Fig 9.

The visual feedback component was tested with each of the six goniometers to

check that the filter was removing the power line and background noise, and that the

goniometers were controlling the joints of the avatar. This was done by moving each

goniometer individually and observing that the movement of the avatar joint followed

the movement of the goniometer. Erratic movement would indicate incomplete noise

removal; thus, it was also determined whether the avatar was moving smoothly. The

avatar midstep is shown in Fig 3.
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.

3.5 Data Collection with a Pediatric Subject

The subject (female, aged 12) was fitted with 60-channel EEG, four-channel

EOG, and six goniometers on the hips, knees, and ankles. Channel impedances were

recorded before and after the data collection, impedances were maintained below 60

kΩ. Customized 3D printed applicators were used to place the goniometers on the

subject, which were attached with double-sided medical tape and held in place with

surgical tape. The goniometers were placed such that the center of the goniometer

spring was at the center of the joint, which was found via palpitation.

Prior to starting the trial, the goniometer measurements were zeroed when the

subject stood upright. During the trial, the subject walked on a treadmill for 10 min

at a slow pace (1 mph) while watching the avatar follow her gait pattern.
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4 Results

To validate the system, one child (female, 12 years old) was recruited and par-

ticipated in the study after providing assent (the parent provided informed consent).

After setting up the EEG and placing the goniometers on the child and explaining

the task to child, the system captured 10 min of raw EEG (60 channels), EOG (4

channels), and joint angle (6 channels) data, sampled at 100Hz. A 20s window of the

raw EEG and EOG data is shown in Fig 10.

The raw joint angle data was (1) scaled according to the calibration protocol and

(2) low-passed filtered with a 5th-order butterworth filter with a cutoff frequency of

3Hz. A representation of the joint angles for each joint through the course of a gait

cycle is shown in Fig 11. The gait trajectory follows the range for joint angles as

described by Campbell et al. [4]. The ranges for the joints are: hip (-15 to 30◦), knee

(-20 to 70◦), and ankle (-10 to 10◦).
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Figure 10: Unprocessed EOG (A) and EEG (B) data collected from subject. Data
shown in a 20s window. Placement of EEG and EOG channels are shown
in Fig 4.

5 Discussion and Conclusion

The objective of this thesis was to adapt a system that can be used for BCI

system development for children that would provide real-time data capture from scalp

electroencephalography (EEG) and joint angle sensors during treadmill walking while

providing real-time visual feedback of the subject’s gait pattern via a digital avatar.
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Figure 11: Gait trajectory profiles. Representation of one gait cycle (A) from Camp-
bell et al. [4]. Right (B) and left (C) leg gait trajectories of subject from
present study for hip, knee and ankle joints for 1 gait cycle.

For this goal, a system was created in the MATLAB programming environment that

initializes, acquires and synchronizes EEG and joint angles, and then, filters and sends

joint angles to control the digital avatar and in parallel store time-locked unprocessed

EEG and joint angle data for offline processing.

5.1 Challenges

There were certain challenges that needed to be overcome in the development of

the system described in this thesis. When using the original system (built in C++)

described in He et al. [27], there were some issues with software versioning. Since

the system was built almost eight years ago, many of the toolboxes and software

application versions that were used as part of the program were transitioned out of

use. This made recreating the programming environment necessary to successfully

run the program was challenging. Thus, the decision was made to transition to a

MATLAB-based version of the system since MATLAB toolboxes generally retain

backwards and forwards compatibility between MATLAB versions.
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Once the decision was made to build the system in MATLAB, the main challenge

was the inter-operability between the various applications. Interfacing options such

as the Remote Data Access Protocol (RDA) and OnLineInterface Protocol (OLI)

exist for BrainVision Recorder and the Biometrics Analysis Application respectively;

however, integrating them in an effective way proved to be a challenge since their

internal mechanisms are different. The RDA protocol sends packets of data from

BrainVision Recorder every 20ms, whereas the OLI protocol requires MATLAB to

retrieve joint angle data by accessing the shared memory between the Biometrics

Analysis Application and MATLAB.

There were also some challenges in learning how to properly use the EEG and

goniometer hardware. It took many trials with lab members to learn how to effi-

ciently set up the EEG system and how to check that all of the hardware components

are functional. In addition, it was noted that the previous palpitation methods to

determine the center of joints may be uncomfortable for the pediatric subject, so the

suggestion of a prosthetist/orthotist was used for locating joint centers to place the

goniometers.

Furthermore, the joint angles enter the MATLAB system with signs that are

dependent on calibration; however, the signs associated with the original C++ system

differ from the signs required for the MATLAB system. When conducting the trial

with the pediatric subject, it was noted that the knee joints pf the digital avatar were

moving in the opposite direction to the child’s gait. This issue was fixed after the

trial by testing the signs for the joint angles that send to the avatar.

5.2 Limitations of the System

There are multiple limitations to the system, including the sample size, sampling

rate, and lack of decoder calibration post-trial. The validation of the system only
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involved a trial with a single subject and for one 10 min session only. The validation

was in collecting and storing the data; however, this data was not analyzed for feature

extraction or decoder calibration after the conclusion of the trial. Feature extraction

and decoder calibration could use one of the methods described in Section 2, such as

the use of support vector machine learning.

The sampling rate used for this system was 100Hz. This was due to hardware

limitations that only allowed the collection of 200,000 samples for each of the EEG,

EOG, and joint angle sensors. As a result, a sampling rate of 1000Hz (as is conven-

tionally used for EEG data collection) would have only allowed for the collection of

3.5 min of data. Thus, the decision was made to use a sampling rate of 100Hz, which

is usually used for closed-loop BCIs.

A closed-loop BCI was not implemented in this system, since it was used for data

collection. Closed-loop BCI implementation would involve training a decoder after a

data collection trial, and in a subsequent trial using the decoder to predict the joint

angles from the EEG data in real-time and using those predicted angles to control

the digital avatar.

5.3 Future Work

Future work would involve using this system to collect data from a larger sample

size of typically developing children. Another aspect of improvement would include

building a pediatric virtual avatar in a more engaging environment to keep the at-

tention of the young subjects, and to interface this system with the pediatric avatar.

This system would also be used for data collection with the pediatric population

to determine the neural representations of motor control in children and use those

features to design closed-loop BCI systems for rehabilitation.
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M. Sadegh Rezai, C. Miguel Rios González, N. L. S. Roberts, L. Roever, L. Ron-

fani, E. Merdassa Roro, G. Roshandel, A. Rostami, P. Sabbagh, R. L. Sacco, P. S.

Sachdev, B. Saddik, R. Safari, Hosein Safari-Faramani, S. Safi, S. Safiri, R. Sagar,

R. Sahathevan, A. Sahebkar, M. Ali Sahraian, P. Salamati, S. Salehi Zahabi,

Y. Salimi, A. M. Samy, J. Sanabria, I. S. Santos, N. Santric Milicevic, Milena

M Sarrafzadegan, B. Sartorius, S. Sarvi, B. Sathian, M. Satpathy, A. R. Sawant,

M. Sawhney, I. J. C. Schneider, D. C. Schöttker, Ben Schwebel, S. Seedat,
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