
APPLIED MACHINE LEARNING WITH LATENT SPACE

REPRESENTATION AND MANIPULATION

by

Xunsheng Du

A dissertation submitted to the Electrical and Computer Engineering,

Cullen College of Engineering

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Electrical and Computer Engineering

Chair of Committee: Dr. Zhu Han

Committee Member: Dr. Hien Nguyen

Committee Member: Dr. Jiefu Chen

Committee Member: Dr. Xuqing Wu

Committee Member: Dr. Shuxing Cheng

University of Houston

August 2020

Copyright 2020, Xunsheng Du

Acknowledgements

I am so grateful for the fulfilling Ph.D. study experience which I have just gone

through. For those, who helped or accompanied me during this memorable period, words

are not enough to express my appreciation.

Firstly, I would like to thank my supervisor, Dr. Zhu Han, for his professional guid-

ance and considerate support throughout my Ph.D. study. I will never forget the moments

he had insightful conversations with me when I had trouble staying on the right track of my

research and life. He has always been the role model for me, which I believe will last for

the rest of my life.

Secondly, I would like to express my sincere appreciation to Dr. Jiefu Chen, Dr.

Xuqing Wu, Dr. Hien Nguyen, and Dr. Shuxing Cheng for being my committee member

who provided professional advice and insightful comments to help my research approach

perfection.

My thankfulness also goes to my dear friends and colleagues in Wireless Network-

ing, Signal Processing, and Security Lab. Dr. Kevin Tsai, Saeed Ahmadian, Mohamed

Elmossalamy, Dr. Reginald Banez, Dr. Neetu Raveendran, Jing Li, Kai-Chu Tsai, Eyad

Shtaiwi, Hao Gao, Wen Xie, Dawei Chen, Yuhan Kang, Dr. Hongliang Zhang, Dr. Yunan

Gu, Dr. Huaqing Zhang, Dr. Yanru Zhang, Dr. Hung Nguyen, Dr. Fahira Sangare, Dr.

Qiuyang Shen, Dr. Jingyi Wang, Dr. Mounika Sai, Xinyue Zhang, Jiaohao Ding, Dian Shi,

Debing Wei, Dr. Benedetta Picano, Ye Yu, Zhikun Wu, and many others for accompanying

me throughout this journey.

Last but not least, I would like to express my deepest appreciation to my wonderful

parents, who always offer me unconditional support and love. I will be in nowhere without

you.

iii

Abstract

Machine learning is one of the most promising fields of study nowadays. It is applied

to various types of industry including image classification, object detection, and time-series

signals prediction, etc. Latent space is a concept that is hidden but significant to machine

learning, which helps extract features of data from different dimensions. In this dissertation,

we try to apply machine learning with latent space representation and manipulation in real

industrial applications both with two studies, respectively.

We first apply machine learning with latent space representation to two works. First,

we study the vehicle-to-vehicle relay networks with latent space to represent the decision

of resource allocation in the reinforcement learning context. We propose a deep reinforce-

ment learning model to decide the vehicles to be the relay. With the proposed model, the

optimal decision is made and the largest overall data allocation is achieved. Then, we con-

duct a quantitative analysis of the cutting volume in real-time. This analysis is traditionally

accomplished by workers on the rig, which cannot guarantee real-time and consistent re-

ports of the cutting volume. With the proposed method, we are able to monitor the cutting

volume in a real-time manner while relieving human labor.

We then apply machine learning with latent space manipulation to another two works.

First, we monitor the distribution of buffelgrass, a type of invasive grass based on the re-

mote sensing images taken by unnamed aerial vehicles. By applying deep learning along

with the discrete latent space-assisted data augmentation, the buffelgrass patterns are ac-

curately located. Second, we solve a seismic inversion problem which is a workflow for

deriving the subsurface model from seismic measurements. We propose to utilize autoen-

coder deep networks with latent space-aligned domain adaptation to migrate the trained

model to unexploited data. With the proposed method, we prototype an inversion model

with generalization capability quickly in a similar scenario.

iv

Table of Contents

Acknowledgements iii

Abstract iv

Table of Contents v

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Machine Learning Basics . 1

1.1.1 Discriminative Models . 2

1.1.2 Generative Models . 3

1.2 Latent Space Basics . 4

1.2.1 The concept of latent space . 4

1.2.2 Latent Space Representation . 5

1.2.3 Latent Space Manipulation . 6

1.3 Dissertation Contributions and Organization 6

2 Virtual Relay Selection in LTE-V: A Deep Reinforcement Learning Approach

to Heterogeneous Data 10

2.1 Related Work . 13

2.2 System Model . 15

v

2.2.1 Traffic and V2V Communication Topology 16

2.2.2 Communication Model . 19

2.3 Problem Formulation . 22

2.4 Deep Q-Learning . 28

2.4.1 Data Preparation and Preprocessing 28

2.4.2 Q-Learning . 29

2.4.3 Deep Q-Networks . 30

2.4.4 Double DQNs and Cost Function 33

2.4.5 Exploration Policies . 35

2.5 Simulation Results and Discussions . 36

2.5.1 Simulation Settings . 36

2.5.2 Simulation Results . 38

2.6 Conclusion . 47

3 Classifying Cutting Volume at Shale Shakers in Real-Time Via Video Stream-

ing Using Deep Learning Techniques 48

3.1 Overview of the Real-Time Cutting Volume Monitoring System 52

3.2 Methodologies . 54

3.2.1 Video Frames Extraction . 55

3.2.2 Region of Interest Proposal . 56

3.2.3 Randomized Subsampling Inside Region of Interest 60

3.2.4 PCA Whitening Transformation 62

3.2.5 Instance Normalization . 63

vi

3.2.6 Adaptation of VGG-16 Networks 64

3.3 Experiment and Performance Evaluation 66

3.4 Conclusions . 69

4 Buffelgrass Detection by Unmanned Aerial Vehicle Monitoring with High-Fidelity

Data Augmentation by Vector Quantised Generative Model 71

4.1 Methods . 75

4.1.1 Data Description and Manual Augmentation 76

4.1.2 Generate Synthetic Buffelgrass Pattern 78

4.1.3 Inductive Transfer Learning . 85

4.1.4 Protocol for Buffelgrass Detection 87

4.2 Experimental Results and Discussion . 88

4.2.1 Results for Synthetic Buffelgrass and Augmented Data Set Gener-

ation . 89

4.2.2 Results for Buffelgrass Detection with Different Augmentation Schemes 93

4.3 Conclusions . 99

5 Unexploited Seismic Data Inversion by Joint Distribution Optimal Transport

with Deep Encoder-Decoder Networks 101

5.1 Related Works . 105

5.1.1 Deep Learning-Based FWI . 105

5.1.2 Autoencoder Network-Based Seismic Inversion 105

5.1.3 Optimal Transport with Machine Learning and Seismic Inversion . 106

5.2 Deep Networks Structure . 107

vii

5.2.1 Encoder . 108

5.2.2 Embedding Vector . 109

5.2.3 Decoder . 109

5.3 Optimal Transport for Domain Adaptation 110

5.3.1 Optimal Transport . 110

5.3.2 Joint Distribution Optimal Transport 111

5.4 Proposed Methods . 112

5.4.1 Encoder-Decoder Joint Distribution Optimal Transport (Enc-Dec

JDOT) . 113

5.4.2 Solving Enc-Dec-JDOT . 114

5.5 Experiments . 115

5.5.1 Data Set . 115

5.5.2 Experiment Settings . 116

5.5.3 Evaluation Methods . 117

5.5.4 Qualitative Comparison . 118

5.5.5 Quantitative Comparison . 121

5.5.6 Networks Mechanism Analysis 122

5.6 Conclusions . 123

6 Conclusion and Future Works 124

6.1 Conclusion Remarks . 124

6.2 Future Works . 126

References 129

viii

List of Tables

2.1 Hyperparameters of the DQNs . 37

3.1 Definition of Symbols and Abbreviation. 65

3.2 The inference time for the testing videos. 66

4.1 Networks Structure of Vanilla GAN. 89

4.2 Networks Structure of W-GAN. 89

4.3 Networks Structure of VQ-VAE (Encoder & Decoder). 90

4.4 The Comparison of Synthetic Buffelgrass Generation via Numeric Results . 92

4.5 Detection Results with Different Augmentation Schemes. 96

5.1 Networks Structure of Encoder and Decoder. 109

5.2 Numeric Results of the Source Model and Target Model Inversion. 121

ix

List of Figures

1.1 Discriminative Model vs Generative Model 2

2.1 Sample traffic heat maps generated by the transportation traffic simulations. 16

2.2 Transportation topology and communication topology. 18

2.3 The solution pipeline for the proposed virtual relay selection problem . . . 26

2.4 Deep Q-learning procedure for the proposed virtual relay selection problem 33

2.5 Double Q-network structure . 34

2.6 The number of action steps versus cumulative rewards 38

2.7 The number of action steps versus average rewards 39

2.8 The number of game iterations versus rewards collected in one game 40

2.9 The number of training iterations versus mean square error 41

2.10 The training behavior of the virtual relay node 42

2.11 The visualization of the testing fields and corresponding cumulated rewards 43

2.12 The number of validation iterations versus cumulative transmission rate . . 44

2.13 The number of validation iterations versus signal-to-noise ratio 45

2.14 The validation iterations versus the relative number of the connected end

users . 46

3.1 The overview of the real-time cuttings volume monitoring system 51

3.2 The workflow of the real-time video analysis system 52

3.3 The two-threads with buffer mechanism of writing and reading video frames 53

3.4 GUI of selecting region of interest according to different camera angles . . 54

x

3.5 The structure of Faster-RCNN based cutting flow detection 55

3.6 The structure and operation workflow of basic residual block 57

3.7 The loss convergence in training the Faster-RCNN 59

3.8 The visualization of inference result of cutting flow area detection 60

3.9 Randomized subsampling inside the ROI (the area covers the cutting flow) . 60

3.10 Batch Normalization vs. Instance Normalization 63

3.11 The training loss comparison of VGG netowrks and its adaptation 66

3.12 The evaluation comparison of VGG netowrks and its adaptation 67

3.13 The confusion matrices for three cutting volume classification testing cases 70

4.1 The system model of the UAV-based invasive vegetation monitoring. 74

4.2 A sample of raw image taken by UAV. 76

4.3 The overall workflow of the buffelgrass detection. 77

4.4 The structure of the vector quantised variational autoencoder. 81

4.5 Object detection framework for detecting the buffelgrass. 85

4.6 The training curves of three generative models. 91

4.7 The comparison of visualization sample results of three generative models. 93

4.8 Samples of synthetic images for buffelgrass detection. 94

4.9 Training curve of the detection with (w.o) transfer leanring. 95

4.10 The comparison of the convergence of different augmentation strategies. . . 96

4.11 The visualization of the testing results with different augmentation schemes. 97

4.12 The visualization of the testing result of an original sized image taken by

UAV. 98

xi

4.13 The comparison of the average precision for different synthetic data ratios. . 99

5.1 A general data-driven seismic inversion task definition. 102

5.2 Neural networks structure for learning the inversion function F−1. 108

5.3 The demonstration of the encoder and decoder network on which domain

adaptation is implemented. 108

5.4 The overall framework of Enc-Dec-JDOT. 113

5.5 The plain data set (top) and their corresponding subsurface models (bottom) 115

5.6 The noisy data set (top) and their corresponding subsurface models (bottom) 116

5.7 Groudtruth subsurface model and the inverted subsurface model generated

by the source model. 118

5.8 Qualitative comparison between the source model and target model on the

noisy data set. 120

5.9 The training loss of the source and target model. 121

xii

Chapter 1

Introduction

Machine learning is one of the most promising fields of study nowadays. It is applied

to various types of industry including image classification, object detection, and time-series

signals prediction, etc. Latent space is a concept that is hidden but significant to machine

learning, which helps extract features of data from different dimensions. In this dissertation,

we try to apply machine learning with latent space representation and manipulation in real

industrial applications both with two studies, respectively.

1.1 Machine Learning Basics

Machine Learning is a study of computer algorithms that can help the machine learn

automatically from prior knowledge without being explicitly programmed. In the past 50

years, there has been an explosion of data. Finding the patterns hidden within this mass of

data becomes significant for people to understand the world. Machine Learning techniques

are used to automatically find valuable underlying patterns within complex data that are

hard to discover with human labor. The hidden knowledge in latent space can be further

studied and utilized to predict future events and perform complicated decision making.

Machine Learning has already merged into our daily life. Whenever we watch an online

video, listen to a song, or do grocery shopping, the background machine learning algorithm

works consistently to “guess” your preference and recommends new things appealing to

you. The algorithm is even evolving after every interaction. Similar techniques include

cancer detection, autonomous car driving, and new drug creation, etc.

From the perspective of the application, Machine Learning-based models can be di-

vided into two categories: discriminative models and generative models. Taking a quiz as an

analog, the discriminative models solve a multi-choice problem. Every choice corresponds

1

Figure 1.1: Discriminative Model vs Generative Model

to every class in the data. On the other hand, the generative models solve a completion

problem. For a certain topic, students have to fill in the blank with their own answers. In

the context of math, the discriminative models model the decision boundary between differ-

ent classes. The training of the discriminative models adjusts the position of the boundary

so as to meet a certain objective. Generative models model the actual distribution of each

class. The training of the generative models changes the distribution in order to reduce the

distance between the generation and the true label.

1.1.1 Discriminative Models

Like learning a language, the discriminative approach is the first step: listening. Dis-

criminative models are used to determine the linguistic differences without speaking it first.

The discriminative method directly estimate posterior probabilities p(y|x) for which a func-

tional form is assumed. It has no attempt to model underlying probability distributions but

learn from the training data x directly. The goal of the discriminative models is to achieve

better performance by focusing on computational resources on the given task.

Popular discriminative models include logistic regression, support vector machine

(SVM) [1], traditional neural networks, nearest neighbor, and conditional random fields

2

(CRF) [2] [3], etc. All the above methods are trying to find a boundary that can separate

two classes or multiple classes. Take SVM as an example, SVM finds a hyperplane with

maximum distance from the nearest training patterns. The hyperplane here serves as a

boundary to separate two groups of data samples. Those samples on the hyperplane are

called support vectors. By re-defining the kernel, SVM can also generate a non-linear

boundary. The example of SVM shows how discriminative models build boundary and

finally discriminate different classes.

1.1.2 Generative Models

Taking the same analog, the generative approach is to learn the standard language

as much as it is able to. Generative models can learn multiple languages, but each time

it speaks one. The generative models model class-conditional pdfs and prior probabilities.

The working process of generative models is as follows. Firstly, we assume some functional

form for p(y) and p(x|y). Then, the parameters for p(y) and p(x|y) are estimated directly

from training data. Finally, the Bayes rule is used to calculate p(y|x). Generative models

are called “Generative” since sampling from p(y|x) can generate synthetic data points.

Popular generative models include Mixtures of Gaussians, Hidden Markov Models

(HMM), Bayesian Networks, Markov Random Fields, Autoencoder, and Generative Adver-

sarial Networks (GAN) [4], etc. All generative models try to learn feature representation

give a certain label. GAN is a neural networks-based generative model that employs the

idea of both discrimination and generation. Take the GAN as an example, we break down

the generative process step by step:

1. We create a random distribution and feed it into a generator G to produce the fake x

and get fake (x, y = 0) input-label pair.

2. We feed the fake pair (x, y = 0) and the real pair (x, y = 1) into the discriminator D,

alternatively.

3

3. The discriminatorD implements binary classification so it calculates the loss for both

fake x and real x.

4. The generator G also calculate the loss from the noise distribution.

5. Both losses are learned under two conditions. G generates fake x that is so close to

real x that D cannot tell the difference. D gains stronger discriminative capability

that fake x will be easily identified if not improved.

From the example of GAN, we know how generative models generate data samples from

the perspective of math.

1.2 Latent Space Basics

Latent space is a fundamental, yet “hidden” concept of machine learning, especially

for deep learning. The emergence of this concept comes from the manner people discover

patterns inside the data. Generally, human beings are able to find the rules of a group of 2D

or 3D data. When we plot those data on a 2D space or 3D space, the distribution of the data

is easy to observe. However, in this era of data explosion, not only the volume of the data

grows but so does the dimension. We have no explicit conception of the dimension higher

than 3, but we can project or convert a high-dimension into 3. In this example, 3D space is

the latent space of the original data space, which helps us understand the distribution of the

raw data. The more detailed concept of latent space, latent representation, and latent space

manipulation are introduced in the following subsections.

1.2.1 The concept of latent space

In short, latent space is the representation of compressed data. We can take hand-

written digits classification as an example. The digits with the same number have more

similarities than those with different numbers. The learning model tries to recognize the

4

similarity in order to classify different digits into different classes. By further investigation,

we find the model learns the structural difference between digits precisely. The structural

difference in this task (and in similar image classification tasks) is the latent feature. Space

where latent features lie in is named latent space. For deep learning, the utilization of latent

space is crucial since it leads to learning the features of data and simplifying data represen-

tations for the purpose of finding patterns. The reason for compressing data is obtaining

the most important features and getting rid of extraneous information. For instance, au-

toencoder [5] uses an encoder to compress data which can be restored by a decoder. The

compressed data contains the most important information for reconstruction.

1.2.2 Latent Space Representation

Latent space representation contains all important information needed to represent

the original data point. To represent original data, the features are represented. The learn-

ing model learns the data features and simplifies its representation to make it easier to

analyze. From the latent space representation idea, the concept of representation learning

is defined. Representation learning is a set of techniques that allow the system to discover

the representations needed for feature extraction or classification from raw data. By utiliz-

ing representation learning, a complex form of raw data can be transformed into a simpler

representation that is easier to process. The hidden layers for the deep networks aiming at

image classification/recognition can be regarded as representation learning since it trans-

forms the original data into another space for processing. Similarly, for deep reinforcement

learning (DRL) [6] [7], the deep networks model can also be categorized into representa-

tion learning since the hidden layers contain the information needed for transferring the

information of the environment state into actions.

5

1.2.3 Latent Space Manipulation

Besides data compression, the raw input can also be utilized, transformed, or incor-

porated into another component of the learning model, which is named latent space manip-

ulation. An innovation based on vanilla autoencoder is called variational autoencoder [8].

Unlike the traditional autoencoder that reconstructs the input, variational autoencoder is a

generative model that creates synthetic patterns that are in the same space as the training

input. The variance comes from the sampling of the embedding vector based on a certain

distribution (e.g., Gaussian distribution). The code in the latent space works as a loss mea-

surement for sampling an embedding vector which is close to the latent representation of

the input. Moreover, the code in the latent space can help generate a certain pattern, which

is directive. Assume two variational autoencoders are trained on two similar facial image

sets. One with the faces wearing glasses, while another without. In order to wear glasses

for images in the latter set, an operation named arithmetic calculation can be implemented

to append the pattern discrepancy onto a synthetic image. Apart from autoencoder, there is

an increasing number of studies focusing on latent space manipulation.

1.3 Dissertation Contributions and Organization

In the first work, we represent the latent space and map it into the action space in the

DRL scenario. In this work, we solve a resource allocation problem by combining Deep

Learning (DL) [9] and Reinforcement Learning (RL) [10]. The contributions of this work

can be summarized as follows:

• We propose a vehicular network topology with the highlighting features of LTE-V,

such as high bit rate, long transmission range, and high capacity. This topology

contains the two topologies: traffic topology and wireless communication topology.

• We extract features from the network topology to get a latent vector and map this

6

vector into the action space for decision making.

• Q-Learning as one branch of RL is utilized for measuring the value of a certain action

in order to perform the optimal resource allocation.

We further investigate the advantage of latent space representation by constructing

a space without extraneous information with proper pre-processing before feature extrac-

tion. In the second work, we implement multiple steps of pre-processing with video de-

coding/encoding in a real-time manner for accurately classifying the cutting volume in the

borehole cleaning scenario. We summarize the main contributions of this work as follows:

• A multi-thread video encoder/decoder is implemented to process the video stream in

real-time acquired by an uncelebrated camera.

• An object detection learning model is built to automatically detect the region of in-

terests (ROI, i.e., the region covered by cuttings).

• A few pre-processing techniques are implemented for better latent space represen-

tation, which includes subsampling, whitening transformation, and instance normal-

ization.

• A deep learning model adapted from the VGG networks is constructed for the classi-

fication work.

The latent space is not only able to be represented for the classification, but it can

also be manipulated for better performance in the downstream task. In the third work, we

convert the continuous latent space representation into a discrete one in the context of data

augmentation for a better detection performance in pinpointing the invasive grass.

• For detecting the distribution of buffelgrass on the far-flung pasture, we adopt the

deep learning-based object detection technology to pinpoint the buffelgrass.

7

• In order to increase the generalization capability of the detection model, we increase

the data volume by proposed data augmentation with another generative model.

• Inside the generative model, we convert the continuous latent space representation to

discrete representation in order to solve the posterior collapse problem and generate

high-fidelity synthetic grass pattern.

• To further improve the training of the detection model, we adopt the transfer learning

technique by learning from the checkpoint of the pre-trained model on other image

data sets.

Latent space manipulation can not only help improve the current task but can also

be utilized for domain adaptation. In the fourth work, we incorporate the latent vectors

into the final loss for learning the adaptation gap in order to adapt the learned model to an

unexploited but similar data set in the seismic inversion scenario. The contributions of this

work are summarized as follows:

• A deep network following an autoencoder structure is constructed for seismic data

inversion which is under the category of data-driven inversion method.

• We introduce optimal transport as a tool for the domain adaptation in the context of

measuring the geometric distance between the distributions in the source and target

domain.

• To avoid two-steps adaptation, the technique of joint distribution optimal transport is

utilized for jointly considering the feature space and the label space.

• Specifically for the deep learning problem, a deepJDOT [11] method is formulated

for learning the adaptation gap in mini-batch.

The rest of this dissertation is organized as follows. In Chapter 2, we solve the re-

source allocation problem in V2V networks by DRL with latent space representation. In

8

Chapter 3, we implement real-time cutting volume classification by proper pre-processing

for boosting the representation of the latent space. To manipulate the latent space for bet-

ter performance, we convert continuous latent space to the discrete representation for data

augmentation in order to detect the invasive grass more accurately, which is elaborated in

Chapter 4. In Chapter 5, we incorporate the latent space to align the adaptation gap to

solve an unexploited seismic data inversion problem. Finally, in Chapter 6, we conclude

our dissertation and propose some potential future works.

9

Chapter 2

Virtual Relay Selection in LTE-V: A Deep
Reinforcement Learning Approach to
Heterogeneous Data

Nowadays, vehicular network communication is a compelling technology to provide

wireless connectivity among vehicles, roadsides’ drivers, passengers, and pedestrians [12].

There exists a potentially promising market for vehicle-to-everything (V2X) [13], yet it has

not been put into large-scale inference [14]. A lot of applications are on their way to be im-

plemented in vehicle-to-vehicle (V2V) communication scenarios, such as road safety, traf-

fic efficiency, and infotainment types with different performance requirements [12]. Most

of those applications require low delay, high reliability, and high quality of service (QoS).

In order to meet the above service requirements, several wireless access technologies have

been conceived to provide radio interface including cellular systems, infrared communica-

tions, traditional Wi-Fi, and IEEE 802.11p [15].

Vehicular ad hoc network (VANET) is a part of the novel approach for intelligent

transportation system (ITS) with the aim to enhance driver’s safety, regulating traffic and

improving the whole driving experience [16]. In real-time traffic scenarios, VANET enables

inter-vehicle, vehicle-to-roadside, as well as inter-roadside communication. However, IEEE

802.11p suffers from the unbounded delay problem, scalability issue, and lack of high QoS

guarantees [17]. Moreover, the transmission range is limited when it comes to huge urban

traffic scenarios. Without pervasive roadside equipment, it is difficult for IEEE 802.11p to

provide consecutive and long-lived vehicle-to-infrastructure (V2I) connectivity. The dis-

advantages of IEEE 802.11p demonstrated above activate the emerging development of

LTE-V which is a potential solution supporting vehicular communications [18].

LTE has a wide coverage area, high penetration rate and also supports service of

10

high speed. Moreover, LTE enables high data rates and low latency, which can be bene-

ficial to vehicular safety. As a matter of fact, the safety problem on the road is more and

more severe nowadays. According to the National Highway Traffic Safety Administration

(NHTSA), there were 47,420 fatal crashed in 2016 [19]. These exiting features of LTE-V

give birth to a lot of applications to resolve the safety problem on the road. For example,

cooperative awareness message (CAM), which includes basic vehicle data such as speed,

position and accelerate speed, can be exchanged among vehicles. There are some user cases

for CAM including emergency vehicle warning, slow vehicle indication, intersection colli-

sion warning and so on. The other type of messages is called decentralized environmental

notification message (DENM), which includes information of emergency electronic brake

light and road-work zone warning, wrong-way driving warning, stationary vehicle accident,

traffic condition and signal violation warning, etc. Besides those emergency-related mes-

sages, LTE-V also delivers delay-tolerant information, such as news, entertaining shows,

weather forecast, etc. Apparently, there will be more and more demands for new applica-

tions emerging with the development of LTE-V technology. In the literature, there are many

works focusing on solving problems in the applications presented above. From the crash

warning point of view, in [20], an algorithm for the pre-crash control system was proposed

to provide all-round prewarning of a potential accident. For the use case for emergency

vehicles, comprehensive design of emergency vehicle warning system was proposed [21],

in which vehicles not only receive warning of approaching emergency vehicle, but also are

warned of detailed route information. Adaptive cruise control (ACC) is another interesting

topic. [22] presented design, development, implementation, and testing of a cooperative

adaptive cruise control (CACC) system, which consists of two controllers for managing

approaching maneuver to leading vehicles and regulating car-following, respectively. For

CACC, another work [23] proposed a RL approach for developing controllers for the secure

longitudinal following of a front vehicle.

Those aforementioned works considered the common use cases in the V2X scenario

11

and solve control problems in a relatively small scale. However, due to the development

of traffic monitoring technique and internet-of-thing (IoT), more data about the traffic are

available. For analyzing such a big amount of data, DL [9] is one of the promising options.

DL enables the analysis of global information to obtain the overall picture. Nowadays,

the development of DL makes the technique of pattern recognition more powerful. It’s

natural to use the power of the DL to analyze traffic and wireless communication patterns or

topologies in order to extract features inside traffic data. Although, DL provides insights in

data, it cannot offer decision making strategy in control-related tasks. RL [10], on the other

hand, helps agent interact with environment and make decision based on the supervision

of the feedback (measured as rewards) with only partial information known. DRL that

combines DL and RL can build a decision making framework, which interacts with ever-

changing and random environment. From the aspect of urban wireless data transmission

control, a big picture is rather important since the coverage of base station will not be

limited to just a few street blocks. Also, sometimes only partial information related to

decision making is available, which is impossible for pure optimization. In our work, we

consider a relay scenario based on V2V communication, in which a huge urban area is

taken into consideration.

The main contributions of our work can be summarized as follows:

• Based on the highlighted features of LTE-V, such as high bit rate, long range, high

capacity and ubiquitous coverage, a vehicular network topology is proposed, which

considers both traffic topology and wireless communication topology in the V2X

scenario.

• A bridge is built between traffic topology and delay-tolerant data allocation in V2X

communications. We design a scheme which takes traffic topology and wireless com-

munication topology as inputs and produces a data allocation strategy. This scheme

use DL as a function approximator to formulate mapping between inputs and outputs.

12

We use Python Streets4MPI toolbox [24] to simulate and generate traffic heat maps,

and use Tensorflow as platform to implement deep Q-learning framework.

• There is no explicit relationship between traffic topology and data allocation in wire-

less communications. Thus, a novel double deep Q-learning approach [25] is utilized

to tackle the formulated problem. The input to our deep Q-learning is heterogeneous

data containing traffic and wireless communication information. In order to achieve

a better training result, actor and critic networks as well as experience replay are uti-

lized to enhance the performance of traditional DRL. We use cumulative rewards to

measure the performance of the deep Q-learning framework and compare it with the

performance of other baselines. We also visualize the behavior of the deep Q-learning

agent to obtain insight of its intelligence.

The rest of this chapter is organized as follows. Section II will introduce more related

works concerning the control and optimization in the vehicle relay scenario. Then, our data

relay model based on LTE-V is proposed in Section III, and the problem is formulated in

Section IV. Based on the formulated problem, a novel DRL approach is introduced to tackle

the problem in Section V. In Section VI, we will show the effectiveness of our algorithm by

simulation results. Finally, some concluding remarks are given in Section VII.

2.1 Related Work

There exists some works focusing on the vehicular relay in V2X networks (either

vehicle-to-vehicle or vehicle-to-infrastructure) [26] [27] [28] [29] [30] [31] [32] [33]. In

[27], a vehicular relaying technique for enhanced connectivity in densely populated urban

areas was designed to investigate the performance of a transmission scheme over a Long-

Term Evolution-Advanced (LTE-A) network where vehicles act as relaying cooperating

terminals session between a base station and an end-user. Also in urban areas, [26] investi-

13

gated the impact of the greedy and selfish individual nodes on the cooperation dynamics in

vehicular ad-hoc networks. A decentralized self-organized relay selection algorithm based

on game theory was proposed in vehicular ad-hoc networks [26]. In cooperative networks

scenario, the cooperative secure transmissions in multiple-input signal-out (MISO) vehic-

ular relay networks is studied [29]. Seyfi et al. [30] investigates cooperative diversity with

relay selection over cascaded Rayleigh fading channels. In [30], the authors conducted a

specific analysis on the performance of a relay selection scheme for cooperative vehicular

networks with the decode-and-forward (DF) protocol.

From the data forwarding or packet delivering point of view, the assistance of re-

lay for packet delivering dramatically enlarges the coverage area and saves a huge amount

of power and energy in vehicular networks. Song et al. [28] proposed an analytical ap-

proach based on stochastic geometry to analyze the location-aware opportunistic V2V relay

scheme in terms of the transmission success probability for a target destination vehicle and

the connectivity probability when the scheme is applied to inter-connect adjacent RSUs.

In [34], the optimal relay station (RS) selection strategy for the vehicular subscriber station

(SS) was studied. By using a highway mobility model in IEEE 802.16j MR network, Ge

et al. formulated a nonlinear optimization problem and figured out the optimal locations of

RSs. However, LTE enables a much larger coverage area, which enables a source station to

communicate directly with some vehicular relays. In [35], performance evaluation of relay

vehicles was addressed. Chai et al. formulated an optimal matching problem in a bipartite

graph and solved it using the Kuhn-Munkres (K-M) algorithm. Similarly, [36] proposed a

game theory approach to tackle the relay vehicle selection problem by jointly considering

all the relay vehicles and source vehicles.

As we can tell from the review of previous works on vehicle relay in vehicular net-

works, most of the works are formulated as a joint optimization problem, for which the

non-linear programming or game theory related algorithm can be implemented. However,

in most cases in real traffic scenario, only partial information might be known. Meanwhile,

14

data we obtain may only contain implicit information, which is waiting for excavation.

Deep neural networks [9] is now a popular and powerful tool to extract features inside data.

By traffic monitoring, 2D or even higher dimension images can be generated. Using con-

volutional neural networks (CNNs) [37] is one of the best choices to analyze the spatial

relationship between different data samples. Since the traffic situation changes from time

to time, time-correlative data also can be obtained. In this case, recurrent neural networks

(RNNs) can show its prowess. In [38], a special type of RNNs, long short-term memory

(LSTM) neural networks are utilized to predict long term traffic.

Although DL is powerful in pattern recognition and prediction, it cannot directly help

decision making based on those patterns it observes. That is why RL [10] comes onto the

stage. RL is a type of machine learning that creates agents which are capable of taking

actions in an environment in order to maximize overall rewards. From the aspect of the

learning method, DL can be classified into supervised, unsupervised, or semi-supervised

learning. On the other hand, RL presents a form of supervision through reward without

explicitly tell the agent how to perform the task. DRL [6] [7], which combines DL and

RL, is now widely considered a technique that is close to artificial intelligence most. In

the traffic scenario, there exist some works utilizing DRL. In [39], a safety-based control

of vehicle driving is implemented by using DRL. The continuous control is achieved to let

vehicles implement self-driving. In [40], a traffic light control system is achieved by using

DRL in traffic simulator SUMO [41]. However, different from the solving control problems

in the pure traffic scenario, our work tries to combine wireless communication with traffic

in a DRL approach.

2.2 System Model

In this section, we introduce the system model in two subsections. In the first subsec-

tion, we introduce traffic and wireless communication topology. The representation of the

15

high density low density

Figure 2.1: Sample traffic heat maps generated by the transportation traffic simulations.

traffic situation and the virtual vehicle relay scheme is introduced. The combination of the

traffic and wireless communication topology information is fed into the deep Q-learning

framework, which makes the input data heterogeneous. In the second subsection, we go to

the details of the communication model we use in our virtual vehicle relay scenario.

2.2.1 Traffic and V2V Communication Topology

We consider both traffic topology and V2V communication topology. We analyze the

traffic topology by using the traffic density map, which also known as the traffic heat map.

In our model, we simulate a series of traffic heat maps of a certain district in a city. The

transportation traffic simulator we used in our work is named Streets4MPI [24], a python

based software that can simulate continuous transportation traffic heat maps. The workflow

of the transportation traffic simulation can be briefly summarized as follows:

16

• A street network of a real city in the world is imported into the canvas. The file

representing the structure of the street network is an XML file named OSM XML

[42].

• A number of drivers are initialized (this number can be customized). For each driver,

there is a corresponding pre-defined [origin, goal] pair, which indicates the location

of the departure and arrival.

• Each driver will drive his/her car along the shortest path between the departure and

arrival. While driving, each vehicle has a speed range. Between two cars, there is a

minimum distance to avoid the collision.

• All calculated shortest paths are then traversed and the traffic load is recorded for

each street.

• Those recorded traffic load can be visualized and represented as pixel values on the

traffic heat maps.

• The simulation can be conducted circularly. The traffic heat maps vary from time to

time. If one driver has finished its trip. It will start again from the departure. Thus,

the total number of vehicles on the road won’t change after it is set up before the

simulation begins.

The simulation generates one heat map at a time. We can set the simulation interval

so that a series of maps will be generated in sequence with a fixed time interval, which

demonstrates the variation of the traffic flow over time. Those sample maps show the traffic

in a small city. However, in the communication simulation, we will crop the map and only

use a small portion.

We assume that the cache data required by the vehicular end users come from the

roadside units, such as eNB, located at the suburb region of the city. The distance between

17

eNB

w. cache

server

“white pixel” denotes no traffic

RSU

“red arrow” denotes the direction of the virtual trace

transportation traffic topology communication topology

transportation traffic heat map

UAV

Figure 2.2: Transportation topology and communication topology.

the eNB and the center of our selected urban area is around 1.5 to 2 kilometers. A cache

data relay scheme is considered in our model. The eNB first distributes the cache data

to a vehicle on road, which is a mobile relay node. Then this vehicle, also known as the

helper, disseminates the cache data to the surrounding vehicles within its capability. This

kind of transmission schemes with vehicle relay has the advantage of saving unnecessary

power consumption and solving traffic scalability issue, while the scheme of distributing

cache data to each vehicle individually using cellular broadband access [43] is more energy-

consuming. This vehicle relay scheme will be widely made used of in the future LTE-V

network. The selection of the vehicle relay node relies on the topology of traffic, which

is changing all the time. Since we cannot control the trace of the vehicles, we come up

with a virtual relay node selection scheme. This scheme is under the assumption that every

vehicle on road can be a potential helper by installing both transmitter and receiver on

board, which is also going to be achieved in the near future. Under this assumption, every

vehicle on the road is ready to act as a helper. If it happens to pass by the spot where the

virtual relay node is placed, the real connection between it and the eNB at the suburb can

be built up, and the transmission begins. When this vehicle drives off the virtual relay node,

the transmission will be handed over to the next vehicle that drives in this node. Due to the

handover problem, we gradually move the virtual relay node from one spot to an adjacent

18

one instead of jumping from one spot to another faraway spot. In this paper, we have

no further consideration on the impact of handover on the quality of transmission. After

receiving the data from eNB, the helper will disseminate the data to other vehicular users

within its opportunistic range [44], which is a term that describes a contact opportunity

between the helper and the end user. The virtual relay node will be gradually moved to the

spot where the overall system transmission throughput can be achieved.

Along the movement of the virtual relay node, we can draw a trace, named virtual

relay trace. This trace is not explicitly related to the transportation traffic density since we

cannot control the movement of vehicles. However, as transportation traffic density is one

of the important factors which impact the transmission throughput (i.e., how many potential

helpers and end users around), it will implicitly influence and lead the virtual relay node

to a better spot, and for better transmission performance. It is not necessary for the virtual

relay trace to follow the trace of roads. If the virtual relay node is moved off the roads,

where there are no vehicles, we can hand over the transmission to roadside units (RSUs) or

unmanned aerial vehicles (UAVs), and let them act as the helpers. If the virtual relay trace

traverses a consecutive off-road area, the trace of virtual relay node works as an intended

path for the UAVs.

2.2.2 Communication Model

For LTE-V, there are two types of messages that are sent among vehicles, which

require low latency and high reliability [45]. CAM contains some basic vehicle-related

data such as speed, position and so on. On the other hand, DENM only works for some

emergency situation, e.g., emergency electronic brake light and road-work zone warning.

In our model, we consider all vehicles in traffic can work as a message relay, which

is capable of disseminating received data from eNB to nearby vehicles. We consider a con-

tact model that vehicles can communicate with each other only when they move to within

19

the transmission range [44], which is also called communication contact. The Poisson dis-

tributed contact rate has been observed in the real vehicular trace and has been implemented

in a lot of works, such as [46] [47], which enables analysis for resource allocation and con-

trol problems.

Here, we consider the problem in another way that the traffic density and transmis-

sion capacity of helpers are two key factors affecting the communication range. Since our

observation of the system is a static traffic map of a large region, the demonstration of traf-

fic status is in a more macro way compared to a dynamic vehicle-oriented system using

some traffic simulation software such as SUMO [41]. Since the density of every corner

in the map is known in an omnipotent view, we can denote the opportunistic contact as

Ove,u = α · Kve

Dxve ,yve
, where Kve is the transmission capacity of helper ve, and Dxve ,yve

denotes the traffic density at coordinate of the helper in map. α is a constant parameter

satisfying α > 0. Due to the limitation of the capacity of transmitter, we intuitively de-

fine the communication range Ove,u in a way that Ove,u ∝ Kve and Ove,u ∝ 1
Dxve ,yve

. This

definition can be comprehended in this way: Under a certain power constraint, the more

vehicles around the helper, the communication range will be shorter, since the helper will

first serve the vehicle end users which are closer to him. The distance between helper ve and

subscriber u which connected to the helper is denoted as dve,u. Then we have the constraint

as dve,u ≤ Ove,u.

We consider eNBs e located in the suburb area, transmitting in circular coverage

of star topology with radius re. The vehicle which receives the data transmission (also

known as the helper) from the eNB is denoted as ve. The distance between e and ve is

denoted as de,ve . Since our work considers the location of the eNB and the helper in a pixel

level, we assign the location of the eNB and the helper as coordinate (xe, ye) and (xve , yve),

respectively. We assume the transmission between the eNB and the helper has line of sight

without any block from building, trees or flying objects. And we also ignore the height

20

difference between the eNB and the helper, which can be extended. Then we can denote

the distance between the eNB and helper as de,ve =
√

(xe − xve)
2 + (ye − yve)

2. Since the

eNB can only cover the helpers within its communication range, we have the constraint

de,ve ≤ re.

According to the Shannon theorem and in the quasi-static scenario, the achievable

rate of helper ve when associating with transmitter e can be expressed as

reve = Bve log2

(
1 +

pe,ve|heve|
2

NoBve

)
, (2.1)

where Bve denotes the bandwidth allocated to helper ve, which we set to 10 MHz. pe,ve

is the transmitted power from eNB e to the receiver on ve, which is set to 30 dBm. heve is

the channel gain between helper ve and transmitter eNB e, which is Rayleigh distributed

with the mean 1. No is the noise spectral density. The relationship between the transmitted

power pe,ve and received power at vehicular relay pre,ve is denoted as pre,ve
pe,ve

=
[√

Glλ
4πde,ve

]2

.

√
Gl is the product of the transmit and receive antenna field radiation patterns in the line-

of-sight direction, which is set to 15 dB. λ is the wavelength of transmitted signal. For the

transmission rate between the helper and the subscriber rveu , we don’t consider the path loss

effect due to two reasons. First, the position of the virtual relay node changes gradually.

Thus, the distance dve,u changes little from time to time. Second, the distance dve,u is within

several meters. For different subscribers u, the path loss effect makes little difference. In

the experiment, we set the value of signal-to-noise ratio (SNR) from the relay ve to the

subscribers u as 40 dB.

The data transmitted from eNB e to helper ve is denoted as me,ve , which is counted

in bit. Then the time consumed during the transmission between e and ve can be denoted

as le,ve = me,ve

reve
. Similar to the latency between helper ve and subscriber u, le,ve also can

be seen as the latency of the transmission between e and ve, which is a factor affecting the

quality of service.

21

2.3 Problem Formulation

Nowadays, the technology of monitoring real-time traffic is really mature. The traf-

fic can be monitored based on moving vehicles under different weather and illumination

conditions [48]. In the industry application, a lot of software provide us with convenient

monitoring of real-time traffic every day. For example, when we drive on the highway,

we can check Google Map on our phone to get the latest traffic status miles ahead of our

scheduled route. Such information not only gives us the expectation of driving experience

beforehand but also offer the potential decision for drivers to alter their route if the current

one is not satisfying. The example above is a simple decision-making problem which we

may encounter in daily life.

The example above gives us the inspiration to build a connection between the obser-

vation of traffic flow and control action in wireless communication. In our problem, there

are several eNBs continuously transmitting data to a certain location. The location is rep-

resented by a certain pixel on our traffic topology (referring to Fig. 2.2). The value of the

pixel stands for the traffic density at that location. This value can be zero which means no

vehicle appears in that spot at that specific timestamp. If there is no vehicle on that spot, the

relay task cannot be accomplished, and no rewards received. Under the assumption of vol-

unteerism, if there exists at least one vehicle at that spot, any vehicle there can be chosen as

the helper (relay node) by receiving the signal from the eNB and disseminating it to nearby

vehicles. The goal of our work is to select the vehicle relay node in order to achieve the

best overall system throughput without controlling the movement of vehicles on road. The

core idea is that we generate a trace of the virtual relay on which potential real vehicular

relay can be selected. This trace crosses through the whole map and might not follow the

direction of streets.

At a certain timestamp t, we regard the current traffic heat map is one of our ob-

servations, which is denoted by the matrix Straffic with n rows and n columns, and each

22

entry represents the RGB value. Thus, Straffic has the shape (n, n, 3). After converted

to greyscale, Straffic has a shape of (n, n, 1). The other observation at timestamp t is the

topology of the wireless communication, which is denoted by the matrix Scomm with n

rows and n columns. For those spots containing the vehicular relay and connected end

users, we assign the corresponding entries with 1, and otherwise with 0. Scomm has the

shape of (n, n, 1). This design helps us highlight the current location of the vehicle relay

and the end-user vehicles which connect to it. We denote the observation at timestamp t as

st, where st = [Straffic, Scomm]. The state st has the shape of (n, n, 2). With the observa-

tions (or states), we assume that an agent is employed by us to accomplish the virtual relay

node selection task. In order to train the agent, we assume that all information regarding

the wireless communication between eNBs and connected helpers, as well as helpers and

connected subscribers (e.g., distance, transmission rate, the power consumed, the volume

of delivered data, etc.) are known to an operator. The operator acts as a supervisor to give

the feedback to the agent after any move it accomplishes. This supervision exists only dur-

ing the training phase. After the agent is well-trained, we can let the agent make decisions

without the instruction from the operator.

The decision of the agent relies on the observation we describe above. By feeding

the observation and location of the virtual relay at last timestamp, the agent can decide an

action at to take at time t. The action space is denoted as {0, 1, 2, ..., 8}, where 0 represents

“staying put”, and other numbers represent 8 possible directions in which the spot of vehicle

relay can move. The traffic heat maps are fed continuously and current packets allocation

topology is only related to the last action (Current action will result in another packets

allocation topology at next timestamp). We can easily find out that st follows a first-order

Markov chain as

P (st|s1, a1, s2, a2, ..., st−1, at−1) = P (st|st−1, at−1). (2.2)

23

Under state st, the execution of action at will invite an instant reward denoted as rt,

which can be expressed as

rt =βr(e,ve) · reve(t) + βr(ve,u) ·
∑
u

rveu (t)− βl(e,ve) · le,ve(t)

− βl(ve,u) · lve,u(t)− βf(ve) · fve − βP (e) · Pe,

(2.3)

where we define the instant reward at time t by taking the transmission rate reve(t) and rveu (t)

as revenue. The latency le,ve(t) and lve,u(t) during transmission, the fee fve charged by the

helper for providing service, and the energy Pe consumed by eNB e are counted as the cost.

The parameter β represents the weight assigned to each component contributing to the

reward. The larger the value of β, the more contribution it will make to the overall reward.

We set a constraint on β that βr(e,ve) +βr(ve,u)−βl(e,ve)−βl(e,ve)−βf(ve)−βP (e) = 1, where

βr(e,ve), βr(ve,u) ≥ 0 and βl(e,ve), βl(ve,u), βf(ve), βP (e) ≤ 0. Although, the reward we defined

above includes heterogenous components, it makes sense if we treat the revenue or cost

that every unit of component evokes the same. This reward can be regarded as the income

of the service provider. The weighted components in the equation consider all factors that

probably affect the reward, and at the same time enable the adaptation to different forms

of rewards according to different demands. For example, if we are only concerned about

the transmission rate, we can set βl(e,ve), βl(ve,u), βf(ve), βP (e) = 0. If there is no traffic at

the spot where we place the virtual relay node, it will incur a zero reward, since reve(t) and

rveu (t) will be zero in (2.3). We won’t choose a specific vehicle as the helper, and control its

trajectory, since it would be much more expensive.

To summarize, the definition of the state, action and instant reward at timestamp t

can be denoted as follows:

• State: st = [Straffic, Scomm], where Straffic and Scomm represent the matrices for

traffic topology and wireless communication topology respectively.

• Action: at = (at,0, at,1, ..., at,8), where at,0 represents that the virtual relay node stays

24

put. Other actions represent the virtual relay node to be moved towards 8 directions.

Every movement crosses one pixel in transportation traffic map.

• Reward: rt = βr(e,ve) · reve(t)+βr(ve,u) ·
∑
u

rveu (t)−βl(e,ve) · le,ve(t)−βl(ve,u) · lve,u(t)−

βf(ve) · fve − βP (e) · Pe. The instant reward rt here is a sum of weighted value of the

transmission rate, latency, service fee, and power consumption.

Since the action in our model is to select a spot in the map as a relay node and

virtually move the node (gradually move the spot to select another vehicle at another spot),

the current action taken under the current state will impact on the future reward. This

inspires us to consider both the current reward and future reward. Thus, we define the

long-term system reward as

wt =
∞∑
τ=t

χτ−t · rτ , (2.4)

where χ ∈ (0, 1) is a discounting rate, which yields a bounded objective for optimization.

It reflects the fact that a current action has a weaker impact on the future reward compared

with the current reward.

Notice that both current and future reward should be taken into consideration in our

problem. The goal of our work is converted to designing a policy π (a mapping from state

to action), denoted as π : st → at = (at,0, at,1, ..., at,8), to maximize the long-term reward,

V π(st) = rt + χ · V π(st+1) = rt + wt+1, (2.5)

where V π(st) is the long-term reward using policy π under the state st.

Then, the long-term system reward maximization problem can be formulated as,

max
π

V π(st) ∀st, (2.6)

25

Deep Neural Network Agent

Observation Predicted Q-Value

Global Information

Interpreter

Target Q-Value

Update Q-

Value

Execute action

Update environment

Deep Q-Learning

… …

input hidden output

Figure 2.3: The solution pipeline for the proposed virtual relay selection problem

with the recursion relation:

V π(st)← rt + χ · V π(st+1). (2.7)

By taking the observation st as input at time t, the agent will output a policy π that

indicates which action at should be taken. The operator will execute action at. After the

action is taken, value V π(st) for action at under current state at is evaluated by the operator

according to (2.3). The reward will be fed back to the agent, in order to let it “remember” the

experience and react better next time when facing the same state. The traffic and wireless

communication topology change from previous time t to current time t+ 1 after the action

executed. Then the agent should take a new observation st+1 and output a new policy, and

so on so forth. The final goal is to achieve the objective in (2.6).

There exist several challenges for this task listed as follows:

• Since the goal is to optimize the overall reward by the step-by-step control, the ob-

servation is discrete and consecutive, i.e., the agent only knows the state of the envi-

ronment at timestamp t. The action taken at timestamp t will affect the state of the

environment at time t + 1. The state of the environment cannot be obtained before-

hand. Therefore, a joint optimization approach considering current and future states

is not feasible.

26

• Only after the operator executes the action suggested by the agent that the reward of

this action is known. As we explained, the operator knows all parameters about the

connection between the eNBs and connected helpers, e.g., power consumption, trans-

mission rate, latency, and channel quality indicator. A new action taken will change

the connected helpers and also the value of those parameters contributing to the re-

ward. In other words, since location information of eNB is invisible to our agent,

the agent cannot know which action has the maximal reward by simply trying every

action via the brute-force approach. Once the action has been taken, the operator who

is responsible for collecting every information of transmitters will know all informa-

tion including the volume of transmitted data, latency, the power consumption of the

eNB, etc. By using the information from the operator, the expected reward can be

calculated. In short, a method of dynamic trial-and-error should be adopted.

• In our work, the virtual relay node moves gradually. Firstly, the transmission be-

tween the eNB and vehicle has a duration which continues for a few minutes or

more. Secondly, the handover problem exists that it consumes some time for one

vehicle switching link to another eNB or helper. Thus, in our model, the virtual relay

spot should move gradually, instead of jumping from one spot to another far-off spot.

In our model, the virtual relay node is controlled like a robot moving around the city.

Under this assumption, the action will have a long-term effect on the reward in the

future. Thus, the impact of current action on the future rewards should be considered.

To overcome the obstacles we mentioned above, we are going to propose a novel

DRL method in Section 2.4 to maximize the long-term reward with implicit and partial

information is provided.

27

2.4 Deep Q-Learning

RL is known as a sequential decision-making technique, which solves control prob-

lems in many fields. However, traditional RL is rather unstable during training. In addition,

the observation of the environment is complex for some traditional agents, such as shallow-

layer neural networks. With the development of novel algorithms, computation ability of

a computer, availability of big data, DL can provide a much better comprehension of the

environment. Thus, DRL combines DL and RL, which makes good use of this outstanding

property of DL and achieves good performance in robotics, game playing, and spoken di-

alogue system. Deep Q-Learning is one of the most popular types of DRL. The details of

how it works will be introduced in the following several subsections. In Section 2.4.1, we

introduce how we obtain our training data and the method for data preprocessing. In Sec-

tion 2.4.2, some concepts of Q-learning is introduced. Combining DL and Q-learning, the

technique of deep Q-networks is introduced in Section 2.4.3, and actor-critic Q-networks

scheme is described in Section 2.4.4. Finally, in Section 2.4.5, we explain the exploration

policy of the deep Q-networks (DQNs) agent.

2.4.1 Data Preparation and Preprocessing

The traffic simulator used in our work is named Streets4MPI [24], which is a soft-

ware that can simulate simple street traffic patterns based on street maps imported from

OpenStreetMap [42]. It is written in Python and supports parallel computation. Open-

StreetMap provides street maps from the countries all around world. We can set some

parameters in the simulator to obtain different simulation results. We can load different

street map by changing the parameter “osm file”. The parameter “number of residents” can

be set to assign the total number of trips calculated in one simulation round. We also can set

“max simulation steps” to change how many times the simulation execute. One simulation

step will output one static traffic heat map for the current time. Thus, we can attain a series

28

of traffic heat maps representing traffic topologies from time to time. After we get the traffic

map, we first downsize it to make it only contain the content we need. Then, we convert

the RGB traffic map to greyscale and improve the contrast of the image, which reduces the

amount of computation and also improves the training speed.

We use a matrix to represent the wireless communication topology. The size of the

matrix is the same as the traffic map. The spots of the helper and its surrounding connected

vehicles will be annotated with 1. Other spots are annotated with 0. We first normalize the

pixel value of traffic maps from 0 to 1. Then the normalized traffic topology (traffic heat

maps) will be stacked with wireless communication topology (sparse matrix), which serves

as the input to the first convolutional layer (shown in Fig. 2.4). Note that the traffic topol-

ogy comes from the real traffic simulation brought by Streets4MPI. The communication

topology is the result of the virtual relay selection at the previous time stamp.

2.4.2 Q-Learning

We utilize a category of model-free reinforcement learning algorithms named Q-

Learning. Compared with the value iteration in Section 2.3, Q-Learning will evaluate

Q-Values, which is a state-action values that explicitly tell agent how to react to the ob-

servation. Q∗(s, a) is denoted as the expected sum of discounted long-term rewards when

the agent takes action a under state s. The iteration function of Q-Learning can be denoted

as

Qk+1(s, a)← (1− η)Qk(s, a) + η(r + χ ·max
a′

Qk(s
′, a′)), (2.8)

where η is the learning rate. r is the instant reward agent can obtain when it leaves state s

with action a. After s and a, the agent would continuously act optimally with discount rate

χ.

There are a few techniques for solving the Q-Learning problem. If the states space

29

and action space are limited and discrete, we can utilize a tabular method, which generates

a matrix called the Q-Table. The entry of the Q-Table at row i and column j represents the

Q-Value Q(si, aj) for taking the jth action aj under the ith state si. At each iteration, the

value for one entry of the Q-Table will be updated. After enough iterations, every Q-Value

in the Q-Table will become the optimal value.

However, the tabular approach can only solve the Q-Learning problem with finite

state and action space. The state space in the real world is almost infinite and table cannot

represent all the states. Thus, neural networks are introduced to be used as a function

approximator, which maps the states to the Q-Values corresponding to certain actions.

2.4.3 Deep Q-Networks

As we have introduced in Section 2.4.2, the traditional Q-learning uses the table

based method to update the long-term reward for action under a certain state. However, the

table method cannot scale, which means it cannot handle the situation where the number of

states is nearly infinitely large. To tackle this problem, deep Q-Networks (DQN) replaces

the table as a new approach to obtain the approximation of Q-Values. Deep Q-Networks

can take high-dimension features as input. In our problem, the input is a concatenated 2D

image, which contains traffic and V2V communication topology. Both the traffic topology

(traffic density map) and wireless communication topology (data allocation map) evolve

over time. The traffic topology evolves independently, which obeys the rule of the physical

model of the traffic. The data allocation map at the current time step is determined by

the action agent takes at the previous timestamp and the traffic density around the current

location of the virtual relay node. After the input layer, we stack several convolutional

layers followed by several fully connected layers (totally 4 layers) as the structure of our

deep Q-networks, which is demonstrated in Fig. 2.4. For every convolutional layer, the

computation can be denoted as

30

zi,j,k = bk +

fh∑
u=1

fw∑
v=1

fn′∑
k′=1

xi′,j′,k′ · wu,v,k′,k, (2.9)

where i′ = u · sh + fh − 1 and j′ = v · sw + fw − 1. zi,j,k is the output of the neuron

located in row i, column j in feature map k of the convolutional layer (layer l). sh and sw

are the vertical and horizontal strides, respectively, fh and fw are the height and width of

the field, respectively, and fn′ is the number of feature maps in the previous layer. xi′,j′,k′ is

the output of the neuron located in layer l− 1, row i′, column j′, feature map k′ (or channel

k′ if the previous layer is the input layer). bk is the bias term for feature map k (in layer

l). You can think of it as a knob that tweaks the overall brightness of the feature map k.

wu,v,k′,k is the connection weight between any neuron in feature map k of the layer l and its

input located at row u, column v (relative to the neuron’s receptive field), and feature map

k′.

From one layer to another layer, including both convolutional layer and fully-connected

in our DQN model, we utilize Rectified Linear Units [49] as the activation function. In

short, we denote z as the output, and x′ as the input of the next layer. Then we have the

relationship as x′ = max(z, 0).

Generally, convolutional layers will help extract features from images and reduce the

dimension of the data. The output of the last convolutional layers, which is a 2D array,

should be converted to a vector and serve as the input of stacked fully-connected layers.

The fully-connected layers will select the features from high dimension data. The output

of the last fully-connected layer is a vector, which demonstrates the predicted Q-Value for

31

each corresponding action.

Algorithm 1: Deep Double Q-Learning algorithm.
1: Initialize:

• experience replay memory,

• training interval and copy interval, Tint and Tcop,

• boolean variable flag to indicate whether the game ends or not,

• the actor network with parameter θactor,

• the critic network with parameter θcritic = θactor.

2: for training steps n = 1, 2, ..., N do
3: Preprocess the initial observation s0 to get beginning input x0

for neural network.
4: for game episode t = 1, 2, ..., T do
5: Generate a random probability p.
6: if p ≤ ε then
7: randomly select an action at,
8: else
9: at = arg maxaQ(x, a, θactor).

10: end if
11: Execute action at, get reward rt , next observation st+1 and flag

as feedback.
12: Preprocess st+1 to get next state xt+1.
13: Store (xt, at, rt, xt+1, f lag) into experience replay memory.
14: if n mod Tint 6= 0 then
15: continue.
16: end if
17: Get a batch size of Mbatch samples (x(i), a(i), r(i), x(i+1), f lag)

from experience replay memory.
18: Calculate target Q-Value, y(i) = r(i) + χ ·max

a′
Q(x′(i), a′, θactor).

19: Update the critic network by minimizing the cost function J(θcritic),

J(θcritic)= 1
Mbatch

Mbatch∑
i=1

(y(i)−Q(x(i),a(i),θcritic))
2,

and perform the gradient descent method on J(θcritic)
with respect to θcritic.

20: if n mod Tcop = 0 then
21: θactor = θcritic.
22: end if
23: end for
24: end for

32

…
…
…
…
…
…
..

…
…
…
..

input ()

1st conv-net
2nd conv-net

3rd fully-connected
4th fully-connected

output

 Environment
execute action

target

update

instant reward

new observation

preprocessing

Traffic Density Map

over time

Data Allocation Map

over time

Figure 2.4: Deep Q-learning procedure for the proposed virtual relay selection problem

2.4.4 Double DQNs and Cost Function

We use two DQNs with the same architecture, but different trainable parameters, i.e.,

θ and θ′, respectively. One DQN (the actor) will be used to drive the movement of the relay

node, and the other DQN (the critic) will watch the actor’s trials and learn from its mistakes.

The critic, which is also known as the target Q-Network, will compute the loss for every

action actor takes during training. The reason for using a separate DQN to generate the

target Q-value is that the value of Q-Network will shift at every training step [25]. Using

only one network usually incurs uncontrolled estimation of value. Based on the feedback

loop structure of reinforcement learning, the network will become more and more unstable.

At regular and frequent intervals [50], the trainable variables in the critic network

will be completely copied to the actor network. The updated actor network will start to

take actions again, and critic will watch and learn from a new cognition level. This double

Q-network structure is shown in Fig. 2.5.

In order to let critic learn, all experience the actor obtains during playing will be

stored into a container called experience replay memory. Every unit in the experience

replay memory can be described as list of the current state st at time t, the action at taken

under the current observation st, the next observation st+1 and reward rt for taking at under

33

………

…

Actor

………

…

Critic

Replay Memory

Copy Trainable Variable

Figure 2.5: Double Q-network structure

st. Suppose the critic will fetch several units at once from replay memory for training. The

number of units fetched at one time is called the batch size, which is denoted as Mbatch.

The cost function used for training is

J(θcritic) =
1

Mbatch

Mbatch∑
i=1

(y(i) −Q(s(i), a(i), θcritic))
2
,

with y(i) = r(i) + χ ·max
a′

Q(s′
(i)
, a′, θactor),

(2.10)

where θcritic and θactor are the parameters for the critic network and actor network. s(i), a(i),

r(i) and s′(i) are the current state, action, reward and next state of the ith memory sampled

from the experience replay memory, respectively. Q(s′(i), a′, θactor) is the prediction of Q-

Value actor expects from the next state s′(i) if actor chooses action a′. Q(s(i), a(i), θcritic) is

the prediction of Q-Value of the ith memory from the expectation of critic network. yi is

the target Q-Value for the ith memory. J(θcritic) is a cost function, which is based on mean

squared error. By using mean squared error, we can easily derive the gradient, which saves

the computational resources. On the other hand, we don’t have outliers in the data set. The

RGB value of the traffic heat map is normalized (the value falls in (0,1)), and the value

34

function is a continuous function of the input data. So there are no outliers in the data set,

which is the main problem that we should consider when we use the mean squared error.

As we can see in (2.10), how the critic is trained depends on the experience which actor

learns.

The training procedure for deep double Q-learning is shown in Algorithm 1. Be-

fore the training start, we first initialize the trainable parameters for the actor and critic

networks, and the intervals for copying the critic’s parameters to the actor’s parameters.

Also, experience replay memory is initialized to store the experience from the playing of

the actor. In Algorithm 1, we set two loops of iterations. The outer loop is for training

iterations. The index for counting training steps will increase by one for every time training

occurs. The inner loop is for game iterations. For example, if we calculate the cumulative

rewards every time after the virtual relay node moves 100 steps, the 100 steps of the virtual

relay node movement are one game iteration. By doing so, we can periodically record the

performance of the DRL agent. In every training step, DRL agent will move the virtual

vehicle relay node T times to finish one complete game. In every game iteration, the deep

Q-networks will update its parameters in the way that cost function is minimized.

2.4.5 Exploration Policies

When the actor is making movement in the environment, it faces a dilemma of bal-

ancing exploration and exploitation of the environment. Exploitation means that the actor

should choose the action based on the best policy it currently knows. On the other hand,

exploration means that the actor should explore more about the environment in order to

gather more information. In other words, the best long-term strategy may involve short-

term sacrifices. In order to gather enough information to make the best overall decisions,

we intuitively expect the actor to explore the environment as thoroughly as possible. From

the MDP point of view, if every state and every transition can be visited enough times, we

35

can expect a better performance from the training, since we remember enough situations

in replay memory. However, to achieve that, it will be time-consuming if we let the actor

select actions by its own judgment every time since it might have preferences. It’s the same

as people who visit one restaurant many times, they know what are their favorite dishes and

they tend to order their preferences more than dishes they are not familiar with.

It might take a long time for the actor to go through every state and transition. For

simplicity, we utilize a technique called ε-greedy to artificially add interference. At each

step, the actor will acts randomly with probability ε, or greedily (choose the optimal action)

with probability 1 − ε. During training, we will gradually reduce the value of ε to let the

actor explore the environment more at the beginning and less when it already knows plenty

of good policies.

2.5 Simulation Results and Discussions

In this section, we evaluate the performance of our scheme by using Google Ten-

sorFlow platform. We implement the deep double Q-learning framework for our proposed

model and implement other two schemes as baselines. One is the random action scheme

and the other is the greedy action scheme. In the random action scheme, the action at ev-

ery step is chosen randomly. In the greedy action scheme, the agent decides to move the

virtual relay node to the one of the adjacent pixels which has the maximum traffic density

(pixel value is the largest). In Section 2.5.1, we set up parameters in the simulation. In

Section 2.5.2, we demonstrate some simulation results and analyze the performance of our

proposed model.

2.5.1 Simulation Settings

In this simulation, we consider the traffic density map, whose size is 100 × 100.

The original coordinate (0, 0) locates at upper left of the traffic map. We set x axis along

36

Table 2.1: Hyperparameters of the DQNs

Layer Name Parameters Dimensions Parameter Scale
Input – – (2,100,100) –

Layer 1 Convolution Filter (5,5,5,5) (5,100,100) 125
Layer 2 Convolution Filter (10,3,3,2) (10,20,20) 90
Layer 3 Convolution Filter (10,2,2,1) (10,10,10) 40
Layer 4 Data flatten – (1000,) 0
Layer 4 Fully-connected – (512,) 512,000
Output – – (9,) –

the vertical direction and y axis along the horizontal direction. The location of eNB is at

coordinate (−10,−10). The eNB transmits data to the helper, whose coordinate can be at

any of those 10, 000 coordinates. Each pixel of the map represents a squared area with the

size 10 meters × 10 meters. The whole squared training field has the size 1000 meters ×

1000 meters. In the simulation, we select an initial coordinate for the helper, and let it move

gradually. We set the bandwidth of the transmission as 10 MHz for eNB to the helper and

the helper to end users. The transmission power for the eNB to the helper and the helper to

the end users are set to 30 dBm. For the transmission from the helper to the subscribers, we

set the SNR to a fixed value as 40 dB. For every unit of data received by end user, we give

100 units of revenue. For every unit of power consumed for both eNB and the helper, we

give it 1 unit of cost. For every unit of latency of the service, we give it 1 unit of cost. In

this way, we unify the units of different components, and let the reward function (2.3) make

sense. Every component in the reward function shares the same value for weight β in our

experiments. The final reward is calculated by the revenue minus the cost.

For the structure of the proposed DQNs, we stack 3 convolutional layers followed

by 1 fully-connected layer. The detailed configuration of the DQNs structure are shown

in Table 2.1. The actor and critic Q-network have the same structure. The training occurs

after actor takes action every time, which means total training steps are equal to total action

steps. The size of experience replay memory is set to 5,000. The size of the minibatch is

10, and thus 10 samples will be randomly fetched from experience replay memory for every

37

Figure 2.6: The number of action steps versus cumulative rewards

training step. All the trainable variables in critic networks will be copied to actor networks

every 10 training steps. The discount rate χ is set to 0.95. The value ε is set to 0.95 at

the beginning of training. With the iterations of training increasing, ε will decay until it

reaches minimum value 0.05. 100 different traffic density maps will be fed into our model

iteratively. We define every 100 steps as one game.

2.5.2 Simulation Results

In Fig. 2.6, we compare the cumulative rewards gained by our deep double Q-network

(DDQN) with the greedy and random action scheme. As we can find out from the result,

during the beginning 2,000 steps, the cumulative rewards gained by DDQN are almost the

same with the random action approach. After that, the rewards gained by DDQN increase

exponentially until it reaches 5,000 steps. From step 5,000 to step 15,000, the rewards

gained by the agent take another exponential growth. After step 15,000, the rewards grow

linearly until step 25,000. On the contrary, the random action approach gains little over-

all rewards compared to DDQN during the whole training process. For the greedy ac-

38

Figure 2.7: The number of action steps versus average rewards

tion scheme, it performs better than DDQN during the first 5,000 steps at beginning, and

achieves an early advantage. From step 5,000 to step 10,000, the greedy action scheme ac-

cumulates approximately the same amount of rewards as the DDQN. After this period,

DDQN has a larger growth rate than the greedy action scheme, and the greedy action

scheme cannot catch up with the DDQN anymore. From this result, we demonstrate that the

rewards in this scenario not only depend on the traffic density at a single pixel on the traffic

density map, but also on the surrounding traffic patterns. The convolution operation in the

neural networks works due to the consideration of the relationship between the adjacent

pixels (potential location for virtual relay).

In Fig. 2.7, we evaluate the average rewards over iterations. The average rewards

are calculated as the cumulative rewards divided by the current number of steps. By doing

so, we burnish the cumulative rewards curves by removing variance of rewards from step

to step. The average rewards curve of the random action approach is mostly flat, which

indicates no growth in rewards harvesting from step to step. On the other hand, we observe

that at the first 2,000 steps, the average reward of the greedy action scheme is big, and after

that, it drops fast and converge at around 5,000 step. The curve for DDQN is flat and has a

39

Figure 2.8: The number of game iterations versus rewards collected in one game

slight growth afterward. After around 15,000 steps, all curves converge and DDQN has the

biggest average reward.

In Fig. 2.8, we collect rewards gained in every game, which contains consecutive 100

iterations. Since we implement the algorithm for 30,000 iterations, we have the rewards of

300 games counted. We find out some peaks and valleys between 100 game iterations and

250 game iterations, which corresponds to action steps (or training steps) from step 10,000

to 25,000. Compared with Fig. 2.6, we find out that these spikes correspond to the sudden

rewards growth after a small period of saturation. We observe that the values of rewards

in valleys during this period are almost the same with the rewards of the random action

approach. After those valleys, some peaks can be observed, which indicates that DDQN

learns how to deal with those circumstances and recover from those adversities. Compared

with DDQN, the greedy action and random action scheme have smaller variance from game

to game, which indicates that there is no such learning moments happen compared with

DDQN as we have discussed.

In Fig. 2.9, we evaluate the mean squared error (MSE) of our DDQN model, which

measures the squared value of the difference between the predicted Q-value and target Q-

40

max =33.12

min =1.22e-16

Figure 2.9: The number of training iterations versus mean square error

value. At the very beginning, the MSE is high, but drops dramatically and remains at a low

level after the step 2,000. This curve demonstrates that the agent went through a studying

period during the first 2,000 steps. Afterward, it handles the problem well and produces an

accurate prediction of the Q-value. In order to show the result clearly, we zoom in to the

first 100 steps and last 100 steps of the training, which is shown by the pink curves. The

maximum and minimum mean squared error of the whole training process are 33.12 and

1.22e-16, respectively.

According to the demonstration of the figures we have discussed, there is a period at

beginning of the training (the first 2,000 steps). After this period, the agent reduces errors

and collects positive rewards. The behavior of the agent is represented in Fig. 2.10. We

sample 6 traffic maps of the time stamps during that period. We can clearly observe in

those traffic maps that there are some eye-catching patterns in the maps. At each pixels, the

brighter the color is, the higher traffic density is. At step 5,000, the coordinate of the helper

(relay point, which is a red dot in the map) is at (38, 25) when the agent stays in an area

where there exists heavy traffic. From step 12,000 to 14,000, we discover that the virtual

41

(a) At step 2000 (b) At step 5000

(c) At step 12000 (d) At step 14000

(e) At step 22000 (f) At step 28000

(32,25) (38,25)

(28,15) (34,12)

(75,47) (90,72)

Figure 2.10: The training behavior of the virtual relay node

relay node hangs around the left corner of the map, which let it continuously and linearly

collect rewards, which we can refer to the Fig.2.7. From step 22,000 to step 28,000, the

virtual relay node gradually moves to the right bottom area, where the traffic density is low.

Referring to Fig. 2.8, we also observe some negative rewards collected during this period

accordingly. From Fig. 2.10, we demonstrate the behavior of the virtual relay node, and the

relationship between the behavior and the numeric training results we have discussed and

shown in previous figures.

The above results show the training performance of the DDQN agent in a 100× 100

42

(a) 1st testing field (b) Testing results in 1st testing field

(c) 2nd testing field (d) Testing results in 2nd testing field

(e) 3rd testing field (f) Testing results in 3rd testing field

(g) 4th testing field (h) Testing results in 4th testing field

start

end

start

end

end

start

start

end

Figure 2.11: The visualization of the testing fields and corresponding cumulated rewards

sized field. For validation, we also let the agent select virtual relay node in a squared field

with side length 100, however with 4 different traffic maps (thus different states or inputs).

Considering the starting point of the virtual relay might affect the performance of the agent,

we generate 4 traffic maps which are different with the training field. The testing process

goes through 100 steps for each testing traffic topologies.

In Fig. 2.11, we evaluate the cumulated reward through testing steps. We select 4

different traffic topologies in order to diminish the performance difference caused by the

43

- 1750 s • DDQN Scheme
..c - 15,00 • Greedy Sche·me
(])
~ H Random S~cheme ro
a::

1250 s::
0
Vl
Vl 1000
E
Ul
~

750 m
'-
~
(])

> 500
,.ji,J

ro
:::;J

E 250
:J
u

0 20 40 60 80

Validation Steps

Figure 2.12: The number of validation iterations versus cumulative transmission rate

variation of traffic condition. We should consider the agent scheme to be robust if the agent

is going to make wise decision no matter what traffic topology it deals with. In the left

column of the figure, we can see the 4 subgraphs showing the 4 different traffic topologies

we used for testing. On each traffic graph, we annotate the starting and ending spot of the

virtual relay node. In the right column of the figure, 4 subgraphs shows the corresponding

cumulated rewards collected through testing steps. We can observe from the results that

DDQN scheme has much better performance than the greedy and random scheme. In Fig.

2.11(a), (c) and (g), we can see that the position of the virtual relay node goes through a

significant change. Along these movements, the cumulated rewards gain some huge leaps,

which demonstrate the intelligence the agent gained. In Fig. 2.11(e), we can see that the

position of the virtual relay node barely changes. From Fig. 2.11(f), we observe that the

agent considers that the sweet spot is around the starting point. A relatively constant growth

of cumulated rewards is obtained by all of the three schemes. However, the DDQN scheme

has larger gradient than the other two schemes.

In Fig. 2.12, we compare the cumulative transmission rate through 100 testing steps

by three different schemes. There are a few saturation found in the curves, which means no

44

Figure 2.13: The number of validation iterations versus signal-to-noise ratio

transportation traffic found at that step, or in other words, no transmission connection built.

From the result, we observe that the greedy scheme has an edge over the other two schemes

at early steps. With the validation going on, the DDQN scheme catches up and surpasses the

greedy scheme, which shows that the proposed DDQN scheme is more powerful harvesting

the opportunity of transmission connection in the long term.

In Fig. 2.13, we use the signal-to-noise ratio (SNR) in log10 at the vehicle relay as

the channel quality indicator. There are a few zero values on the x-axis representing no

signal received at the vehicle relay instead of SNR = 1. We compare the result of the three

schemes. The random scheme has an unsteady and discontinuous transmission. It loses the

connection for a long period in the middle. The greedy scheme has a steady and continuous

connection with a concentrated distribution of the SNR. The DDQN scheme is able to find

better spots in order to achieve better SNR with the validation going on. The average value

of the SNR from DDQN scheme is also higher than the greedy and random scheme.

In Fig. 2.14, we use bar plot to demonstrate the relative number of the connected

end users which are served by the helper. This relative value is calculated based on the

opportunistic contactOve,u defined in Section 2.2.2, which shows the transmission coverage

45

Figure 2.14: The validation iterations versus the relative number of the connected end users

of the helper. We have three findings from this result: 1) Our proposed DDQN scheme and

the greedy scheme have more steady transmission coverage than the random scheme. 2)

By using the greedy scheme, we can ensure the transmission connection to some extent.

However, the average coverage of the end users is smaller than the DDQN scheme. 3)

Generally, once the DDQN scheme builds a connection, it covers more vehicles than the

greedy and random scheme.

The analysis above demonstrates that the agent in our model has achieved intriguing

intelligence. DRL makes it possible to let agent make wise decisions and overcome obsta-

cles in the environment. From the aspect of vehicle relay, our proposed model helps select

location for the virtual vehicle relay with only traffic information. Moreover, by utilizing

our scheme, the optimized action can be chosen for setting the position of vehicle relay at

the current time without knowing the traffic condition in the future. The long-term maxi-

mum utilities can be obtained and corresponding trajectory of the virtual vehicle relay node

can be produced by the agent in the proposed model. In this work, we only consider one

vehicle relay scenario. From MDP point of view, if we consider n relays, every relay has

9 actions, then the size of the action space becomes 9n. The state space in our problem is

generally infinite since the distribution of the traffic changes continuously. The more action

taken basically means more state encountered.

46

2.6 Conclusion

In this chapter, we proposed a deep reinforcement learning framework in the LTE-

V scenario for virtually selecting vehicle relay node. In the framework, we use deep Q-

networks as our agent, which contains two types of networks. Firstly, we use deep convo-

lutional neural networks to extract traffic patterns in the input. Then, fully-connected net-

works are utilized to flatten the high dimensional data and map to the Q-values as output.

Q-learning is used to obtain the target Q-values by interacting with the environment. The

target Q-values can be used as the labels for training deep Q-networks. Deep Q-networks

agent will move the virtual vehicle relay node gradually on the traffic map. Every move-

ment will arise rewards, the amount of which depends on the next observation. We train

our agent by letting it interact with environment iteratively and learn from trials and errors.

Simulation results show that agent has an excellent performance in rewards collection and

error correction. Compared with the greedy and random decision-making schemes, our

agent is able to improve utility performance dramatically.

47

Chapter 3

Classifying Cutting Volume at Shale Shakers in
Real-Time Via Video Streaming Using Deep
Learning Techniques

Oil and gas well drilling is a challenging task due to time-consuming, complex and

expensive operation. Proper management of the drilling process and risks will save cost for

the drilling operators both in the aspect of time and economy. Being able to conduct real-

time operational optimization ensures a low-cost drilling execution, and at the same time

safety is guaranteed. Hole cleaning is one of the major challenges and must-do operation.

A complete workflow has already been built to guide the maintenance and cleaning of the

borehole for many oil and gas companies. A well-formulated workflow helps support the

well integrity and reduce drilling risk and cost. One of the traditional methods needs hu-

man observation of cuttings at the shale shaker and a hydraulic and torque- and-drag model,

whose operation includes a number of clean-up cycles. This continuous manual monitoring

of cutting volume at shale shaker becomes the bottleneck of the current workflow and is un-

able to provide a consistent evaluation of the hole cleaning condition since the human labor

cannot be available consistently, and the torque- and-drag operation is discrete containing

break between two cycles. As a result, the current workflow cannot fully address the risk

of stuck pipe or casing due to the poor controllability of the hole-cleaning.

Some researches have already addressed the automated cuttings analysis, which is

employed by industry for monitoring the drilling process. Graves et al. [51] proposed an

automatic image processing system to quantify the shape, size distribution, or the volume of

the cuttings, which is a downhole cutting analysis patent application. The system consists

of some equipment, which includes multiple high definition CCD cameras, lighting equip-

ment for illuminating the surface of the shake, a series of energy modification devices,

48

coaxial or fiber optic cables for data transmission, and the local or remote data processing

software package. Parmeshwar et al. [52] proposed another shale shaker imaging system

which contains two cameras for capturing visual and infrared data, respectively. Apart

from the main camera module, the assembly of the system also includes a motion detec-

tor to coordinate the control of the lighting source. Torrione et al. [53] proposed a cutting

volumes analysis system using high- definition and calibrated camera. Stereo information

is obtained by using multiple cameras and devices. Multiple light sources are arranged

to illuminate the shaker table and normalize the brightness of the background. Besides

camera-based detection, a multitude of sensors has also been used to monitoring the cut-

tings in some researches. For example, Dahl et al. [54] proposed to use acoustic sensors to

produce information responsive to a reflection of an emitted wave from downhole cuttings

in the borehole, wherein the information is indicative of a parameter of interest relating

to the downhole cuttings. After studying all the previous works and existing systems, we

found one common shortcoming that the high standard is required for setting up the data

acquisition system. However, this high standard can hardly be achieved due to the tough

environment at the offshore rig. Besides, strict lighting and optical filters requirements raise

the cost and at the same time brings more safety concerns. From the data processing point

of view, only low-resolution video can be obtained due to the limitation of the bandwidth of

the data transmission for real-time video streaming. The low-resolution video needs more

experienced engineers for analysis.

Most of the previous work used image analysis techniques to perform the quantitative

analysis on cutting volume. Guilherme et al., [55] applied a support vector regression to

perform the cutting image analysis. A graph theory based optimal path forest approach was

proposed to analyze the cutting flow in real-time [56]. Particle image velocimetry is another

quantification method that has been used to estimate the flow rate (Mc- nutt et al., 2012).

Beyond the traditional machine learning techniques used in image processing, such as K-

means clustering [57], Support Vector Machine [58], and Random Forest [59], the deep

49

learning framework [60] dramatically changes the landscape of artificial intelligence in the

field of image processing and computer vision. The traditional image processing approach

requires significant work on feature engineering. Since the raw data is usually noisy with

missing components, preprocessing and augmenting the data play an important role in mak-

ing the learning model more efficient and productive. Routray et al. [61] summarized the

feature engineering in traditional learning frameworks. Scale- invariant feature transforma-

tion, the histogram of oriented gradients, and speeded up robust features are usually used

as the artificially synthesized features. The deep learning framework, on the other hand,

discovers the rep- resentations needed for feature detection or classification from raw data

automatically. By using deep learning framework, it can help to overcome the difficulties in

setup monitoring devices in a harsh environment and the data acquisition requirement for a

cutting volume monitoring system at the offshore rig might be relaxed.

The objective of this study to verify the feasibility of building a real-time automatic

cutting volumes monitoring system on a remote site with limited data transmission band-

width. The minimum data acquisition hardware requirement includes:

• Single uncalibrated CCD camera

• Inconsistent lighting sources

• Low bit rate transmission (e.g., 137Kbps)

• Image processing unit without GPU support (e.g., a laptop)

A Deep Neural Network (DNN) [62] is adopted to perform the image processing

and classification on cutting volumes from a shale shaker at a remote rig site. Specifically,

the CNNs [63], which is successfully deployed in image classification, segmentation, and

object detection etc., is implemented as the feature extractor and classifier in our model. In

our study, we adopt the VGG- Net [64] as the base model. The main contributions of this

study are summarized as follows:

50

Figure 3.1: The overview of the real-time cuttings volume monitoring system

• A deep learning framework that can classify the volume of cuttings in real-time.

• A real-time video analysis system that requires minimum hardware setup efforts.

The system is capable of processing low-resolution images acquired by uncelebrated

cameras.

• An object detection workflow is built to automatically detect the region covered by

cuttings.

• A multi-thread video encoder/decoder is implemented to improve the real-time video

streaming processing.

This chapter is organized as follows. In Section 3.1, an overview of our system model

is provided. Section 3.2 outlines detailed techniques for implementing the system, which

includes ROI detection, data pre-processing, and the adaptation of the VGG networks. In

Section 3.3, we introduce the experiment results and some performance discussions. Fi-

nally, we conclude the paper with future works in Section 3.4.

51

Figure 3.2: The workflow of the real-time video analysis system

3.1 Overview of the Real-Time Cutting Volume Monitor-
ing System

The overall workflow of our real-time cutting volume monitoring system is intro-

duced in this section (referred to Fig. 3.2). The workflow mainly consists of the following

child processes: 1) The real-time video processing (decoding and encoding); 2) region of

interest proposal (the region covered by cuttings); 3) data pre-processing and deep learn-

ing classification module. During the drilling process, cuttings with mud are transported

through the vibrating shale shaker. We develop an intelligent video processing engine to

analyze videos captured when the cuttings are transported to the shaker. The analysis re-

sults will be transported and presented on a monitor in the office in real-time, which is

convenient for the drilling engineer to get the information of cutting volume timely. The

continuous and real-time inference (classification) results can be used as the histogram for

further analysis in the future.

The real-time video processing module is designed for adapting to the dynamic drilling

environment. Monitoring cutting volume at shale shaker in real time is an important ap-

proach of overall drilling risk management for oil and gas well drilling. The advantages

of our proposed system over other previous machine learning-driven systems can be sum-

marized as follows: 1) Inference results can be delivered in real-time by interpreting live

streaming-video; 2) Generate reasonably good classification results; 3) The workflow can

be implemented with limited computing resources (e.g., a laptop GPU)

52

Figure 3.3: The two-threads with buffer mechanism of writing and reading video frames

There are several uncalibrated CCD cameras recording the shaker tables of several

shakers at the rig. The video captured by the cameras will be transmitted to a remote

workstation off the rig via a streaming service named Rig- Site Virtual Presence (RSVP).

The resolution of the video is comprised due to the limited network bandwidth. The raw

frames captured by the camera contains some useless information such as the main body of

the shale shaker which contributes little to the final inference results. In order to remove the

useless information, an automatic region proposal mechanism is proposed to successfully

get the attention of the model to the region which is covered by the flow of cuttings. This

mechanism is based on the Faster-RCNN [65], a highly-accurate object detection model. By

finding the region of interest, a fine-grained input with much lower dimension is generated.

After finding the region of interest and cropping the original input to one with a much

lower dimension, we feed the fine-grained data into the data pre-processing and deep clas-

sification model. In the phase of data pre-processing, subsampling and normalization are

implemented on every frame. Subsampling helps further removal of irrelevant information

on every frame, which is introduced in detail in Section 3.2.3.

Normalization reduces the noise and puts the features in the input into the same scale.

After preprocessing, every frame will be trained and tested through an adaptation of VGG-

16 networks. The networks are built upon a VGG-16 [64] with a customized number of

layers, normalization and regularization terms. For training the deep neural network, we

53

Figure 3.4: GUI of selecting region of interest according to different camera angles

collected about 10 hours of video and added labels to each frame of the video manually.

The trained model is then evaluated on the separate videos. The classification inference

will run with each frame, which produces the label of the frame, confidence factor of the

frame, and delivers the encoded results in real-time. The evaluation result is verified by our

developers as well as the experienced engineers.

3.2 Methodologies

In Fig. 3.2, we demonstrate the workflow of the real-time video analysis system for

classifying the cutting volume. There are several processes involved. At the beginning

and the end of the pipeline, decoding and encoding operations are implemented. The de-

coding operation decodes the raw video stream to several groups of frames. The encoding

operation collects the inference results and combines them with corresponding frames. In

this way, engineers can get real-time feedback on monitoring results. In the middle of the

pipeline, we implement ROI proposal and preprocessing of data in order to guarantee the

54

Figure 3.5: The structure of Faster-RCNN based cutting flow detection

conciseness and simplicity of the data. Before feeding data into deep classification model,

we implement all operations in a multi-threads way. Generally, one GOP will be processed

in one thread. The deep learning classification iteratively takes these GOPs as training batch

data. The inference results of the deep learning classification model can be saved either into

log files or video streaming if required by the engineers.

3.2.1 Video Frames Extraction

In Fig. 3.3, we demonstrate the two-threads mechanism for reading/writing the

source stream in real-time. The decoding process should be on the fly since the server

is pushing the video stream continuously. If the decoding process fails to catch up with

the speed of the video stream, there is a chance that we lose the synchronization and drop

frames. This problem fits the producer-consumer pattern. In order to overcome this obsta-

cle, a fast thread-safe circular buffer is implemented to avoid any race conditions.

The writer thread (or we call it producer thread here) continuously decodes the stream

without any interruption. It is called producer since it would write any newly-decoded

55

frames into a circular buffer shown in Fig. 3.3. The circular buffer is a common and

fixed-size buffer used as a queue and shared by both the producer and the consumer. The

reader thread (or we call it consumer thread here) moves its pointer to the beginning of the

circular buffer (In the example shown in Fig. 3.3, the buffer starts from the frame No. 3

and ends at frame No. 7) and starts extracting frames. Parallelly, the writer thread (the

producer), continuously to insert newly decoded frames into the buffer, though it is a few

frames (the size of the buffer) ahead of the reader thread (the consumer). Since the size

of the buffer is fixed and limited, the reader thread (the consumer) will move its pointer

back to the beginning frame of the buffer after it reaches the end. The buffer size is set to

an appropriate scale so that the consumer will not block the producer, or occupy too much

space in the memory.

3.2.2 Region of Interest Proposal

In order to guarantee steady inference results, the users (engineers or developers)

need to provide the ROI to indicate the area where cuttings are flowing on the shaker. Our

learning model will pay attention to this ROI and get the input data with much less variety.

We assume that the camera will not change its position and angle after we settle the ROI.

The ROI will filter out many noises interfering with the classifier. We can either use a

manual approach or an automatic approach to facilitate ROI selection. Before the decoding

of the video stream starts, the interactive GUI (shown in Fig. 3.4) will present one frame

to the user indicating the position of the shaker. The user can highlight the ROI by simply

selecting four corner-points from the very first frame demonstrated by the GUI. There are

options for users to change the scale and length-to-width ratio of the ROI to fit the input

dimension of the classifier.

However, the manual region selection requires repeated labor. For a certain shaker,

the camera angle might be changed slightly during the drilling operation purposely or ac-

56

Figure 3.6: The structure and operation workflow of basic residual block

cidently by the workers. For different shakers, the preset camera angle might be different.

If the manual region selection is going to be adopted, the same process, which is afore-

mentioned, should be implemented several times which is time-consuming. In order to

automate this procedure, we propose a Faster-RCNN [65] based ROI detection method to

detect the region that contains the cutting flow. The procedure can be described in the Fig.

3.5.

As shown in Fig. 3.5, we take the raw video frame as input which is manually la-

beled with the region of interest by using bounding box. Every raw frame is fed into a

feature extractor, which produces a feature map. The feature map is then fed into a much

smaller convolutional neural network that takes feature map as input and outputs the region

proposals. Those proposals are fed into a classifier which classifies those proposals to the

background class or ROI class. If a region proposal is classified into the ROI class, its

coordinate, width and height will be further adjusted by a region regressor.

Since this framework is neural networks based supervised learning, backpropagation

is used to train the model. The first-stage feature extractor is the residual networks. The

residual networks consists of a chain of residual blocks, which is shown in Fig. 3.6. In huge

amount of deep learning model experiments, increasing the number layers not necessarily

results in performance improvement, but sometimes opposite consequence, which is known

as the degradation in training deeper networks. The proposal of residual networks solves

57

the degradation problem in training. We take the first residual block as example, which is

shown in Fig. 3.6. If we use a single image d as input (assume feeding one image at a time),

αl0res = d. The output of the first layer αl1res = g(zl1res), where g(·) is the activation function

and zl1res = W l1
resα

l0
res +βl1res represents the linear transformation of the input αl1res. Similarly,

we have the output of the second layer αl2res = g(zl2res), where zl1res = W l1
resα

l0
res + βl1res. The

above in the mathematical representation of 2 layers transformation in the main path of

residual block. In addition, we add a short cut which transports the input αl0res = d directly

to the point right before the activation function of the second layer. Thus, we have the short

cut output to be expressed as αl2res = g(zl2res + αl0res). During training, the information will

automatically select to go through main path or the short cut, which helps the model to

deeper without the accuracy saturation and degradation.

The object function (loss function) considers class classifier and bounding box re-

gressor. The total loss is as follow:

J({qi}, {bi}) =
1

Ncls

∑
i
Jcls(qi, q

∗
i) + λ

1

Nreg

∑
i
q∗i Jreg(ci, c

∗
i). (3.1)

In (3.1), qi represents the predicted confidence of instance i to be an object, and q∗i is the

corresponding binary ground-truth value. If q∗i = 1, the corresponding region proposal is

the area containing cutting flow, otherwise it is the background. The first term in (3.1) is

the total classification loss normalized over the number of classes, Ncls. In our problem,

Ncls = 1, since we only consider one type of area that contains cuttings. Loss function Jcls

is the log loss over two classes (region of cuttings, region of background). In the second

term of (3.1), loss function Jreg is the smooth L1 function. Multiplied by q∗i , the second

term represents the regression loss over the number of proposals only when the positive

instance is activated. λ is the balancing parameter. Since Ncls = 1 as aforementioned, λ
Nreg

has to roughly equal to 1, if the classification loss and bounding box regression loss are

equally treated. However, in experiment, the detection result is stable when the value of

varies over a wide range [65]. For the bounding box regression, the parameterizations of 4

58

Figure 3.7: The loss convergence in training the Faster-RCNN

coordinates are adopted, which is shown as follows:


ca = a−aanc

wanc
, cb = b−banc

hanc
,

cw = log(w
wanc

), cw = log(h
hanc

),

c∗a = a∗−aanc

wanc
, c∗b = b∗−banc

hanc
,

c∗w = log(w∗

wanc
), c∗h = log(h∗

hanc
),

(3.2)

where a, b, w, and h denote the bounding box’s center coordinate and its width and height.

Variables a, aanc, and a∗ are for predicted box, anchor box, and ground-truth box respec-

tively (likewise for b, w, and h). The basic idea of this formulation is the regression of an

anchor box to a nearby ground-truth box.

We used 50 vidoe frames for training and 4 images for testing. In Fig. 3.7, we

show the results of training of cutting area detection. The loss of classification decreases

and converges after around 1800 training steps. The loss of localization undergoes growth

at very beginning of the training, but gradually decreases and converges at around 2000

training steps.

In Fig. 3.8, we show the results of region of interest detection. The bounding boxes

contain the predicted region that covers the flow of cuttings. From the results, we observe

that the machine predict the correct region with high confidence. The success of imple-

menting region of interest detection brings the following benefits to the project: 1) the

automation of the attention mechanism. For manual region selection, we have to develop

an interactive GUI for the engineers to select the region of interest. The development of

GUI is time-consuming, and engineers have to repeat the same operation every time they

59

Figure 3.8: The visualization of inference result of cutting flow area detection

Figure 3.9: Randomized subsampling inside the ROI (the area covers the cutting flow)

start to record a new video stream; 2) the adaptation to different camera angle and distance.

The environment of real operation on the rig can be rough and complex. The engineers

might need to move the camera occasionally for the convenience of other operations with

higher priority. The capability of adaptation to different camera angle and distance guaran-

tees the stability of the model in constant attention to the region of interest and stable result

inference.

3.2.3 Randomized Subsampling Inside Region of Interest

As mentioned in previous section, a ROI is selected either manually by the user at the

beginning of the video stream as shown in the left panel of Fig. 3.9, or automatically by the

cutting region detector based on Faster-RCNN framework. However, the vibration or the

wind may nudge the camera’s position and angle, which will compromise the classification

60

performance if the system is trained without proper motion compensations. In this study,

we propose a randomized subsampling strategy by using a stack of small image patches

to overcome this problem. Image patches are densely sampled from the ROI. Instead of

using the whole ROI as the input to the DNN, a stack of image patches is fed to the DNN.

Either too much or too little training data can be troublesome for learning problem since

meaningful model can only be learnt from sufficient large dataset yet these models tend to

be intractable when the size grows. Subsampling strategy can be divided into two main

paradigms: 1) active learning; 2) randomized subsampling [66]. Active learning can be

regarded as a strategy that data collection process is actively guided. The objective of

active learning is to bring a subset of the training dataset which is highly useful for the

training task with low cost and an automatic experimental design. The experimental design

consists of biological, physical, and social experiments, etc. Active learning can be used

for either creating a dataset or compressing a large dataset. However, active learning is

not always feasible in all scenarios. In our problem, data acquisition is through video

streaming. The adjustment of the quality of video, angle and distance of the camera, and

lightening quality in the environment is hard to be implemented timely, which makes the

data collection necessarily passive. In this scenario, randomized subsampling is adopted

as a degenerate form of active learning. On the contrary of active learning, randomized

subsampling samples the original data in a randomized and unsupervised way, however,

conserves the adequate properties of the dataset. In our implementation shown in Fig. 3.9,

we used a squared window with much smaller scale to randomly slide over the original

image and collect a fraction of the original dimensions. Intuitively, this approach increases

the percentage of useful information in the data as well as the robustness to the variation of

region selection either manually or automatically.

61

3.2.4 PCA Whitening Transformation

PCA whitening transformation is applied to video frames right before they are fed

into the DNN. The goal of whitening is to make the input less redundant. We denote each

video frame data as d. Since we obtain multiple frames in one second, we use Dt to denote

a series of frames at time t, where Dt = {d1, d2, ..., dI}. I is the total number of frames in

one second. Every frame of the video is an image and can be represented as d ∈ RW×H ,

whereW is the width, andH is the height. This whitening process consists of the following

steps:

• We transfer the raw data to zero mean as follows:

d← d− 1

WH
·
∑

d. (3.3)

• We calculate the covariance matrix as follows:

Σ = Cov(d) = E
[
ddT
]
. (3.4)

Then apply Eigen Decomposition to the covariance matrix as follows:

Σ = UΛU−T . (3.5)

Matrix U−T defines as rotation needed to de-correlate the data d. By multiplying

matrix U−T , we can map the original principal components.

• Altogether, the whitening process can be formulated as follows:

W (d) = Λ−
1
2UT (d− 1

WH
·
∑

d). (3.6)

The PCA whitening transformation removes the underlying correlations among adja-

cent frames. It potentially improves the convergence of the model.

62

Figure 3.10: Batch Normalization vs. Instance Normalization

3.2.5 Instance Normalization

We implemented instance normalization [67] instead of batch normalization in this

study. Normalization is a technique that will accelerate the training process and reduce

covariate shift [68]. The mathematic representation of batch normalization is as follows:



BNl(dxy) = dxy−µl√
σ2
l +ε

,

µl = 1
HWT

T∑
t=1

W∑
x=1

H∑
y=1

dtxyl,

σ2
l == 1

HWT

T∑
t=1

W∑
x=1

H∑
y=1

(dtxyl − µl)2.

(3.7)

In (3.7), dxy is the pixel value on the coordinate (x, y) of the frame d. l represents a spe-

cific channel dimension, where l ∈ C. T is the number of images in a batch. The batch

normalization transformation BNl(dxy) normalizes samples across multiple images as well

as the spatial locations. In most image classification tasks, the variance across the batch is

high, e.g., a training batch may contain both the images of flowers and birds, which have

different patterns. Without the batch normalization, the gradient from the small activations

will be suppressed by the high activations. However, in our case, we collect the same type

of training images (i.e., the cuttings) in the batch. The variance across the batch is low. By

using the batch normalization, we might spread more unexpected noises across the batch.

Instead, we adopt the instance normalization approach. The mathematic representation of

63

instance normalization is as follows:



INl(dxy) = dxy−µl√
σ2
l +ε

,

µl = 1
HW

H∑
y=1

W∑
x=1

dxyl,

σ2
l == 1

HW

H∑
y=1

W∑
x=1

(dxyl − µl)2.

(3.8)

Different from BNl(dxy) in (3.7), the instance normalization INl(dxy) in (3.8) normalizes

pixel values in each image independently. We add instance normalization to each layer

before the activation function.

3.2.6 Adaptation of VGG-16 Networks

Combined with the techniques introduced in Section 3.2.1, 3.2.2, and 3.2.3, the DNN

structure is shown in Fig. 3.4. The network takes whitened images W (d) as the input. The

input will go through two consecutive convolutional operations. Take the first convolutional

computation as an example, the computation is formulated as

Conv
(1)
x,y,l (W (d)) = bl +

fh∑
i=1

fw∑
j=1

f
C
′∑

l′=1

Wx′ ,y′ ,l′ (d) · θi,j,l′ ,l (3.9)

where x′ = i · sh + fh − 1 and y′ = j · sw + fw − 1. Conv(1)
x,y,l(W (d)) is the output of

the neuron located at row x, column y in feature map l. sh and sw are the vertical and

horizontal strides, respectively. fh and fw are the height and width of the field, respectively.

fC′ is the number of feature maps in the previous layer. Wx′ ,y′ ,l′ (d) is the output of the

neuron (at previous layer) located at row x
′ , column y′ , and feature map l′ . bl is the bias

term for feature map l. θi,j,l′ ,l is the connection weight between any neuron in feature map

l of current layer and its input located at row i, column j and feature map l′ .

An instance normalization is applied after the convolutional operation, which is repre-

sented as IN(Conv
(1)
x,y,l(W (d))). Then, the results goes through a nonlinear activation func-

64

Table 3.1: Definition of Symbols and Abbreviation.

Symbol or abbreviation Definition
d single frame of video fed into the neural networks
W the width of the video frame d
H the height of the video frame d
g(·) activation function in the neural networks
αlres the output of the l layer after the activation function
zlres the linear transformation of αlres
qi the predicted confidence of instance i to be an object
ci the coordinate related parameters for instance i
Ncls number of classes to be detected
Nreg number of regression boxes
BN(·) batch normalization
IN(·) instance normalization
Conv(·) convolutional operation in neural networks
pool(·) pooling operation in neural networks
CCD charge coupled device
RSVP rig-site virtual presence, the name for a video streaming service
GPU graphics processing unit

DNNs deep neural networks
CNNs convolutional neural networks
VGG a networks family developed by visual geometry group in University of Oxford
GOPs giga operations per second
ROI region of interest

tion. We utilize Rectified Linear Units (ReLu) [69] as the activation function. The output of

the convolution layer is then denoted as z(1)(W (d)) = max
(
IN
(
Conv

(1)
x,y,l(W (d))

)
, 0
)

.

Following the example of the VGG-16, in the proposed DNN, two consecutive con-

volutional layers are stacked together before a pooling layer. This structure helps the model

to extract a deeper feature before the dimension of the tensor shrinks too fast (the pooling

operation will exponentially reduce the dimension of tensors). We adopt max pooling af-

ter the two consecutive convolutional operations. The pooling operation is represented as

follows:

pool(1)(W (d)) = max
x,y∈K(1)

z(2)
(
z(1) (W (d)

)
. (3.10)

K represents the kernel. z(2) is the second convolutional operation, which is the same

process as z(1).

65

Table 3.2: The inference time for the testing videos.

Video ID Frame rate (fps) Video length (s) Time for label results (s) Time for video inference (s)
***431-UTC 0 5.95 3607 226.6 272.5
***903-UTC 2 5.94 3606 227.3 269.1
***036-UTC 6 5.95 3609 227.5 279.5
***903-UTC 9 5.93 3603 221.6 273.4
***887-CST 1 29.67 3604 440.0 728.5
***746-CST 0 29.52 3601 436.2 724.2

Figure 3.11: The training loss comparison of VGG netowrks and its adaptation

3.3 Experiment and Performance Evaluation

In this section, we evaluate the performance of our model according to the inference

time for the classification workflow and accuracy of the cutting flow classification. Con-

fusion matrix is used to quantitatively evaluate the classification accuracy for applying the

adapted VGG network to different testing videos. All classification performance metrics

are derived by comparing to manual annotations of domain experts.

In Table. 3.2, we list a portion of the testing videos, whose properties and time for

inference are also demon- strated. The table mainly contains two kinds of videos, high

resolution (frame rate around 30 fps) and low reso- lution (frame rate around 6 fps). The

66

Figure 3.12: The evaluation comparison of VGG netowrks and its adaptation

length of each video is around 1 hour (3600 seconds). For one-hour high resolution videos,

the time for obtaining classification result of all the frames is around 7 minutes (420 sec-

onds). In other words, if we implement parallel inference with our model, we can process

more than 8 video streams from 8 different cameras. The time for generating video files

with labeled results is around 700 seconds for an one-hour stream. Likewise, the inference

time for low resolution video is even less, since the frame rate is much lower compared to

high resolution one. The time for label result is around 220 seconds, and 270 seconds for

generating video inference.

In Fig. 3.11, we compare the training loss convergence between the plain VGG-16

networks and our proposed networks. The initial loss of the proposed networks is smaller

67

than the plain VGG-16. At around step 500, the loss of proposed DNN already converges

to a local minimum which is faster than the plain VGG-16.

To evaluate the performance, we test the proposed framework on a live video stream

and compare the real- time classification results to the manual annotation. Following the

criteria used by rig engineers monitoring the return cutting flow in real time, the cutting

volume is classified into four discrete levels: ”ExtraHeavy”, ”Heavy”, ”Light”, and ”None”.

Each video was labeled by four experts. And the ground truth labeling is the consensus

among all experts. The testing results show the system can handle the live stream video

without dropping frames. In order to visualize the quantitative results, we plot the confusion

matrices as shown in Fig. 3.12. The left panel is the confusion matrix obtained by the

proposed DNN. The right panel is the confusion matrix obtained by using the plain VGG-

16. Each row in the matrix represents the ground truth label and each column represents the

predicted label. Compared to the proposed DNN, the plain VGG-16 can recognize the case

of “Extra Heavy”. However, it fails to differentiate “Light” and “None”. As the comparison,

we observe that the proposed DNN successfully classify all classes. The testing result

shows that our proposed model achieves a significant performance boost compared to the

traditional VGG networks.

In Fig. 3.13, we demonstrate inference results from another three testing videos (each

with around one hour). Each video contains different lighting condition, shooting angles

and distances compared to others. Specifically, the first testing case shows a steady angle,

constant shooting (with little interruption), and evenly distributed inference classes (labels).

The second testing case shows that some videos might not contain a complete set of all the

classes. In this case, ”light” and ”none” volume don’t appear in the video. In the third

testing case, there is an uneven set of classes. The ”heavy” and ”light” classes appear very

shortly so that in the transition of the states, our model made some mistakes, e.g., the state

of ”none” lasts for several minutes while the state of ”light” appears several seconds in

between. Our model has not achieved that high sensitivity to handle this case. Even there

68

are some flaws in our model resulting some inaccuracy occasionally, the overall observation

from the evaluation results is that the proposed workflow can adapt to different varieties of

the input video, and achieve significantly good results.

3.4 Conclusions

In this chapter, a deep learning based workflow is proposed for classifying cutting

volume on the shale shaker in real-time. With the help of automatic ROI selection and

proper preprocessing, the system is able to analyze video streams captured from various

angles and distances by an uncalibrated CCD camera. Additionally, the system is trained

to accommodate different lighting sources as well as low-resolution video streams. The

evaluation results validate the capability of the system in meeting the objective and deliver-

ing promising results in a real-time manner. The current work can be extended to quantify

continuous cuttings volume after other auxiliary flow sensors are installed. For the future

work, we will focus on improving the domain adaptation of the system by introducing

transfer learning into the training stage so the system can be easily migrated to other video

stream analysis tasks.

69

Figure 3.13: The confusion matrices for three cutting volume classification testing cases

70

Chapter 4

Buffelgrass Detection by Unmanned Aerial
Vehicle Monitoring with High-Fidelity Data
Augmentation by Vector Quantised Generative
Model

Protecting the environment and minimizing the footprint of business have become

increasingly important for all the global corporations who strives to become a responsible

corporate citizen across the world. This becomes critical to the health of business not only

from the economic perspective but also from the viewpoint of safeguarding the sustainable

growth [70]. Among the diverse types of tasks in the field of environmental protection,

monitoring the invasive plants, e.g., trees or grasses, contributes to an integrated approach

for managing the Invasive Alien Species (IAS) for the natural environment where we live

and conduct our daily business. In practice, surveying the land or water for IAS heavily re-

lies on the field trip and manual labeling effort. This tends to be very costly and inefficient,

sometimes even expose surveying people to dangerous environments. The advancement of

computer vision and machine learning technologies, along with the availability of low-cost

image collection methods, i.e., unmanned aerial vehicles (UAVs) enable the construction of

an automatic invasive vegetation monitoring pipeline [71]. Specifically, as an invasive type

of vegetation, the community of buffelgrass is detected using UAV in this work. Buffelgrass

is an introduced, perennial pasture that is found across much of the Australian continent, in-

cluding arid and semi-arid regions. It has been widely planted for livestock production and

land rehabilitation. Meanwhile, it serves as an excellent pasture for the cattle industry for

the property of fast growth. However, the growth of buffelgrass is out of control and poses

a major threat to biodiversity in arid Australian areas such as Uluru-Kata Tjuta National

Park, Cape Range National Park (WA) and Barrow Island (WA). Besides the weakened

71

biodiversity, the invasion of buffelgrass also raises the economic costs through the potential

demand for controlling fire risks. Due to all the potential threats, an effective approach of

surveillance should be investigated. The high spatial and temporal variability of invasive

grass infestations make a comprehensive ground sampling of large-range lands impractical.

The utilization of unmanned aerial system (UAS) for weed and pest monitoring appears on

the scene.

In literature, a drone-based estimation of vegetation fraction cover is developed in

[72]. An efficient method of ground truth fractional vegetation cover (FVC) measurement

using drone image is developed, which is further used for the development of a sigmoid

model to measure FVC using Sentinel-2 data for a larger area. From the aspect of pic-

ture quality, the drone typically takes high-resolution images. The resolution can be up

to 1cm/pixel. In [73], the effects of shadow correction on the classification of vegetation

and land cover are investigated based on high-resolution aerial images. Authors prove that

shadow correction can significantly improve classification results in vegetation mapping.

Among different types of vegetation detection, weeds or grass detection is the most triv-

ial and challenging task. A certain community of weeds can cover a huge area and grow

rapidly, which leaves manual surveillance intractable. Apart from the target weeds, the

background involves other types of grass as a distraction, which requires a more robust

detection method. L. C. G. David et al. [74] propose a method to automatically map the

land use in a vegetable farm with a very high-resolution aerial image (5cm/pixel) taken at

an altitude of 100m. The soil is delineated from vegetation using the color index of vege-

tation extraction and Otsu’s thresholding. Then Support Vector Machine (SVM) is imple-

mented on various vegetation indices results for classification. More specifically, invasive

weeds detection is studied in [75]. An XGBoost based image segmentation method is im-

plemented to distinguish invasive weeds from other types of vegetation on high-resolution

images captured by UAV.

The above literature demonstrates that machine learning and computer vision can be

72

properly applied in the study of vegetation detection by UAV. In particular, the research

in Geographic Object-Based Image Analysis (GEOBIA) has been sharply increasing [76].

Numerous experiments prove that both supervised and unsupervised detection algorithms

are greatly influenced by the image quality, the spectral bands, the spatial resolution, the

complexity of the scene, as well as the the number of labeled/marked images specially in the

context of supervised learning. In [77], a task of localization of urban trees in multi-source

(optical, infrared, DSM) aerial images is solved by managing data from multiple sources

using CNNs. In [78], a large-scale and multi-class sample of oil palm tree data is collected.

The detection is implemented via AlexNet-based DCNN training and optimization, sliding

window-based label prediction, and post-processing. In order to detect small objects, deep

features are needed to be extracted using novel neural networks structure. In [79], the use of

deep features for the detection of small objects (cars and individual trees) in high-resolution

Pleiades imagery is investigated.

Comparing to the study mentioned in [71], current work focuses more on the adoption

of deep learning, one of the most promising recent developments in the field of machine

learning. Deep learning not only distinguishes itself in terms of the modeling capability but

also relieves the burden of extensive feature engineering required in the traditional machine

learning workflow, which usually requires a lot of domain knowledge and sometimes ad-

hoc analysis [80] [81]. This latter characteristic is especially useful when we try to build

an automatic IAS monitoring solution, which needs to process diverse types of vegetations.

Without using deep learning-based approaches, we may have to perform feature engineer-

ing for each single vegetation type, which significantly limits the generalization capability

of the solution.

In the context of the studied problem, the objective is to recognize and localize alien

vegetation plant from the vegetations which are natural to the monitored environment.

When the studied information medium is in the format of images, collected from UAVs,

manned vehicles (MAV) or satellite, the problem is referred to as object detection in the

73

dataset

Enc Dec

latent space
dictionary

conv layers

feature map
classification

regression

inference

analytics curves visualization results numeric results

processing server module

analytics/visualization/report module

Figure 4.1: The system model of the UAV-based invasive vegetation monitoring.

field of computer vision, which has experienced very active research efforts, partially due to

the resurgence of neural networks [82]. In an end-to-end object recognition pipeline, there

are two sequential steps: 1) localization, i.e., identify locations that contain the studied ob-

ject; 2) classification, i.e., categorize the localized object into appropriate class assuming

that there are multiple classes of objects in the studied images. The deep learning-based

object recognition has successfully combined these two steps into a single and trainable

framework [83] [84] [85]. Due to the satisfactory performance and wide applications in

multiple published studies [86] [87], we chose to use CNN-based detection framework [84]

as the building block for our study. We adopt deep residual networks [88] to achieve in-

sightful feature representation. Meanwhile, due to the limitation of the UAV payload, the

dataset we obtain is too small to train with state-of-the-art deep detection models. Thus, the

great necessity is that buffelgrass images should be well preprocessed and augmented. In

order to achieve a better detection performance, we propose a generative model based data

augmentation framework along with the inductive transfer learning. GAN [4] is regarded

as the first deep model being capable of generating data instead of only discrimination such

as classification and regression. The emerging of GAN prompts the development of data

augmentation by using GAN to generate synthetic data [89] [90].

74

In this chapter, we propose a variational version of the generative model for buffel-

grass pattern augmentation and show its effect on the performance of detection. The main

contributions of this chapter is summarized as follows:

We come up a deep learning based invasive vegetiation-montiroing workflow based

on UAS-collected images. The proposed workflow enables the automaic detection capabil-

ity.

• In order to detect the distribution of buffelgrass on the far-flung pasture, we adopt the

novel deep learning based object detection technique to draw bounding boxes on the

location where we infer the existence of the buffelgrass. In order to encourage the

convergence of training detection model, we adopt inductive transfer learning.

• In practice, the amount of collected buffelgrass patches is limited, which poses signif-

icant challenge to the adoption of deep learning or other supervised machine learning

technologies. In our proposed pipeline, we develop a model-driven data augmenta-

tion strategy to systematically boost the buffelgrass patterns.

The chapter structure is as follows. In Section 4.1, we describe the network architec-

ture as the background and explain the transfer learning data augmentation approach being

pursued in this research, which combines the theoretical foundation and engineering ap-

proach to address the practical issue of a limited number of labeled training data. We report

the simulation process and discuss the result observed along with the experimental study in

Section 4.2. We conclude this paper with discussion in Section 4.3.

4.1 Methods

In this study, we implement a CNN-based deep learning detection model to pick out

the buffelgrass patterns in the natural grasslands, which we are trying to monitor and pro-

tect. This section focuses on describing the model building pipeline. In Section 4.1.1, we

75

Figure 4.2: A sample of raw image taken by UAV.

discussed the step of data pre-processing and traditional manual data augmentation, used

for increasing the data size and the variances among the training data set. In Section 4.1.2,

we introduced a novel CNN-based generative model for high-fidelity buffelgrass pattern

synthesis instead of using traditional data augmentation approaches. As another corner

stone to compensate for the lack of training data and long training time, we utilized the

model initialization strategy, which is based on the theory of transfer learning [91], in Sec-

tion 4.1.3. Finally, in Section 4.1.4, we discuss the protocol and configuration adopted in

the context of the CNN-based detection [84].

4.1.1 Data Description and Manual Augmentation

In the study, the training set is created by sampling from raw images captured by

the UAVs (referring to Fig. 4.2). The raw images are of size 8, 000 × 5, 000. Due to the

76

2000 px

2000 px

conv_layers

feature map

proposals

ROI pooling

classification

regression

labeled buffelgrass

patterns (real patterns)

latent space

buffelgrass dataset augmentation with well-trained decoder

around 250 px

8000+

5000+

……

Annotation

XML file

CSV file

TF_Record

TrainSet EvalSet

embedding space (dictionary)

mapping

reconstruction with variation

Data Structuring/Preparation Genetic Detection Data Augmentation with VAE

Figure 4.3: The overall workflow of the buffelgrass detection.

GPU-related limitation on the size of images feed into the model, we draw image patches

of size 2, 000× 2, 000 from the raw image using a randomly sampling process. In practice,

the random sampling strategy can segment some existing buffelgrass patterns into different

image patches, which indirectly create new types of combinations of buffelgrass patterns

and the surrounding environment. This can result a more diverse training data set, and helps

to increase the model robustness [92].

The buffelgrass pattern augmentation involves two steps.

• we adopt a few manual augmentation techniques in order to increase the variance of

data samples before augmentation by machine.

• several generative models based on deep networks are utilized to create a more di-

versed training data set being able to capture more modes in the underlying distribu-

tion and creating much more trainable data from a random space.

First of all, on top of the sampled image patches, we adopt the following manual

77

data augmentation processes to enhance the diversity of training data set. This is not only

necessary for increasing the number of training samples for generative models in the next

step, but also increasing the variances among the training data set.

• Randomly flipping and rotation: In reality, buffelgrass may grow towards different

directions, the images taken from UAVs is not able to capture all of the possible

angle variances. We randomly choose some buffelgrass patterns within the bounding

boxes to flip or rotate, which implicitly simulate the UAV flight path from different

angles.

• Randomly alter the contrast of the patterns: The daylight condition varies for each

UAV flight. To let the model adapt to different lighting of the patterns, we randomly

choose some patterns and alter its contrast.

• Manual pattern augmentation: Compared with the vast grassland, the scale of the

buffelgrass flora is much smaller. This is referred to data set imbalance, where the

size of one class of the data set, i.e., the area of buffelgrass flora, is much smaller than

the size of background grassland. To boost the occurrence of the buffelgrass pattern

in the training data set, we manually crop some patterns from the raw images and

randomly sample them on the raw images which only have background.

4.1.2 Generate Synthetic Buffelgrass Pattern

As mentioned in the last subsection, in order to generate more buffelgrass patterns

with higher variance, we randomly flip, rotate, then copy and paste those patterns to some

existing backgrounds without buffelgrass. These methods are straight-forward and effec-

tive, but require significant human labor with only basic layout alternation. Motivated by

this drawback, we develop a model-driven approach that can generate a diverse typos for

grass patterns. Specifically, we leverage the generative neural network model.

78

Being one of the generative models, autoencoder can reconstruct data from encoded

prior learned from the existing data sets [93]. It suffers from lower variance [94], which

is the reason that autoencoder is rather used for compressing data into a lower dimension

form than utilized as a generator for synthetic data generation. To remedy this drawback,

a variational version of autoencoder (VAE) is proposed. The goal of this structure is to

construct a distribution of latent space rather than a fixed feature.

On the contrary, a GAN generates synthetic data from a random latent space. By

doing so, synthetic data with more variety is generated. Besides variety of the generation,

GAN provides an approach to measure the difference between the real and fake data. In-

stead of using conceived loss function, e.g., L2 loss, which is the most common case, the

critic is a neural network which works as a loss function to measure the difference between

two high-dimension signals. However, GAN tends to suffer from model collapse [95],

especially for generator. The visualization performance of the generator is thus limited.

Intuitively, more prior information (the perfect prior is the encoded real input) is needed

rather than a random space, which encourages us to combine the VAE and GAN.

The concept of variational autoencoder is first proposed by Anders et al. in [96].

Instead of a previous fixed latent space used in traditional autoencoder, variational version

of autoencoder imposes a prior (typically a normal distribution) to present a variational and

continuous distribution of latent code. However, this continuous type of latent code is static

(a certain distribution, e.g., normal distribution), which will probably arise the problem of

posterior collapse [97], where the latents are ignored when they are paired with a powerful

autoregressive decoder. Referring to the discrete representation of latent space which is

discussed in [98], we present a vector quantisation of latent space representation which is

learnt for synthetic buffelgrass data generation.

Starting from general autoencoder formulation, we denote the latent space z gener-

ated by buffelgrass sample which is denoted as xgrass. The encoder and decoder are denoted

79

as Enc(·) and Dec(·), respectively. The encoding and decoding process is denoted as

z ∼ Enc(xgrass) = q(z|xgrass),

x̃grass ∼ Dec(z) = p(xgrass|z).
(4.1)

Assume the dimensionality of the output of the encoder is D, which is denoted as

z ∈ RD. As the basic idea of variational autoencoder, there is a manipulation of latent

space required to obtain variance in representation. In vanilla variational autoencoder, the

prior of the latent space is assumed to follow normal distribution. The encoder (represented

as neural networks) will generate two internal layers representing the mean µ and variance

σ2, respectively. The variance of the latent space is achieved by sampling from a normal

distribution with mean µ and variance σ2. The challenge is that the sampling operation

is not derivable, which make the gradient decent not feasible in training the networks. To

overcome this challenge, [99] proposed a reparametrization method to sample from normal

distribution.

However, the vanilla variational autoencoder imposes an normal distributed prior

which is continuous and constant. In order to construct a discrete and learnt distribution for

latent space representation, we adopt the idea of quantisation of the latent vectors, which is

also a form of dictionary learning [100]. We define a latent space e ∈ RK×D, where K is

the size of the discrete latent space and D is the dimensionality of each embedding vector

ei. The latent space (dictionary) e is denoted as

e = [e1, e2, ..., eK]. (4.2)

The output of the encoder follows a continuous distribution. In order to convert the contin-

uous variables to a discrete representation in the dictionary e, a mapping strategy is defined

to find the nearest vector in the dictionary measured by Euclidean distance:

z → eK , K = arg min
j
‖z − ej‖2. (4.3)

80

Conv layers

codebook

Conv layers

reconstruction loss:

codebook loss:

Figure 4.4: The structure of the vector quantised variational autoencoder.

The first term in (4.1) can be replaced by

q(z = eK |xgrass) =

{
1, K = arg min

j
‖z − ej‖2

0, otherwise
. (4.4)

After mapping, we get the corresponding vector which is from the dictionary denoted as zq.

To preserve the location correlation in the image, we use convolutional neural networks to

extract a feature map. Thus, z and zq are two dimensional matrix instead of a vector, which

is denoted as

z =


z11 z12 · · · z1m

z21 z22 · · · z2m
...

...
zm1 zm2 · · · zmm

→

zq =


zq11 zq12 · · · zq1m
zq21 zq22 · · · zq2m
...

...
zqm1 zqm2 · · · zqmm

 ,

(4.5)

where m×m is the size of the latent space, and D = m×m.

In the last section, we mentioned the challenge of VAE-based generative model lies

81

in the non-differentiable property of the sampling layer. The vanilla VAE utilizes the

reparametrization strategy to overcome this obstacle by making using of the property of

normal distribution. In autoencoder or even vallina VAE, the loss can be simply denoted as

the following equation:

‖xgrass −Dec(z)‖2
2 , (4.6)

which directly measures the Euclidean distance between the real input grass pattern with the

reconstructed patterns (the output of the decoder). However, in vector quantisation VAE,

the output of the model is reconstructed from the vector zq in the dictionary e. Thus, the

actual loss we consider should be

‖xgrass −Dec(zq)‖2
2 , (4.7)

instead. However, in (4.7), the mapping z → zq is non-differentiable. In other words, ∇zq

cannot be propagated to∇z during training, and at the same time z = Enc(xgrass), which

means the encoder Enc(·) is untrainable. A quick alternative for (4.7) is its combination

with (4.6), which is represented as

‖xgrass −Dec(z)‖2
2 + ‖xgrass −Dec(zq)‖2

2 . (4.8)

In this way, the gradients can be propagated back into encoder, however an unnecessary

objective is included in the loss, which is not part of our training goal. To get rid of the

redundancy in the loss, and at the same time let the gradient pass through, we adopt the idea

of straight-through estimator, which is proposed in [101]. This idea can be considered as a

conditional propagation that gradients are counted during forward propagation but ignored

during backward propagation (or be designed to other form to meet the goal). We replace

the (4.8) with the following one:

‖xgrass −Dec(z + sg[zq − z])‖2
2 , (4.9)

where sg[·] is the stop gradient function. sg[zq − z] can be denoted as

sg[zq − z] =

{
zq − z, forward pass

0, back pass . (4.10)

82

By applying (4.10), (4.9) can be represented as conditional equation:

LV AE =

{
‖xgrass −Dec(zq)‖2

2, forward pass
‖xgrass −Dec(z)‖2

2, back pass
. (4.11)

In (4.11), we only consider the reconstruction loss. However, we also want to learn the

dictionary e, or in other words ‖z − zq‖2
2 should be small. (4.11) can be upgraded to

‖xgrass −Dec(z + sg[zq − z])‖2
2 + β ‖z − zq‖2

2 , (4.12)

where β determines the percentage of the similarity between z and zq counted in the total

loss. More specifically, z will determine the quality of the reconstruction, and zq is rela-

tively more adaptable since there are plenty of vectors in e which is potential candidate for

the discrete representation. Intuitively, we want a good generalization of the mapping in

(4.5) such that for any latent matrix z (from the same latent distribution), we can obtain a

discrete representation zq which is sufficiently good to reconstruct the input. Thus, to get

high-fidelity reconstruction, the latent space is relatively fixed while the embedding space

(discrete representation) is more adaptable. In order words, zq should be closer to z rather

than z closer to zq. Since the gradient of ‖z − zq‖2
2 equals to the gradient of z plus the

gradient of zq, ‖z − zq‖2
2 can be decomposed and transformed to the following equation

‖z − sg[zq]‖2
2 + ‖sg[z]− zq‖2

2 . (4.13)

We assign larger weight to ‖sg[z]− zq‖2
2 instead of ‖z − sg[zq]‖2

2 in (4.13). In this way, in

the phase of backpropagation, the training of zq will be put more emphasis on rather than

z. By replacing the term β ‖z − zq‖2
2 in (4.12), we get the final version of the loss equation

LV AE = ‖xgrass −Dec(z + sg[zq − z])‖2
2 + β ‖sg[z]− zq‖2

2

+ γ ‖z − sg[zq]‖2
2 ,

(4.14)

where 0<γ<β.

83

While training with the overall loss LV AE , the embedding space e is well-maintained

and encoder/decoder is trained for properly generating latent space z and reconstruction

p(xgrass|zq(xgrass)). In order to achieve the diversity of the latent space z, an autoregressive

model is used to model the entry distribution of the latent space. As aforementioned, latent

space z has the size of m×m, where m is much smaller than n. The latent space z can be

represented by a joint probability density p(z):

p(z) = p(z1, z2, ..., zm2). (4.15)

Assume we arbitrarily start from an entry in the set {z1, z2, ..., zm2} and regressively gen-

erate the next entry by using the chain model, the (4.15) can be converted to a conditional

density distribution:

p(z) = p(z1)p(z2|z1)...p(zm2|z1, z2, ..., zm2−1). (4.16)

In the experiment, the above autoregressive model is implemented by PixelCNN [102].

Since the latent space is relatively small, the kernel we use can be much smaller, and the

small kernel can cover all previous entries (probability density), which is shown in (4.16).

Meanwhile, latent space is the output of convolutional operation by the encoder. The local

correlation of different entry can be preserved. The advantage of fast training of PixelCNN,

long dependency of autoregressive model, and the preservation of the relative position of

entries can be achieved at the same time.

To summarize, the training and generation of the synthetic buffelgrass images can

be divided into two phases. In phase I, the VAE-related components will be trained. The

gradients of encoder, decoder, latent space and quantised space will be updated in each

iteration of training, which is shown in Alg. 2. In phase II, the prior to the latent space will

be learnt. The latent space would be depended on the input image set. The variance of the

latent space can be created by fitting an autoregressive model to learn the distribution and

sampling from the imitation distribution. The learnt latent space can be used to generate

84

CNN

region proposal network

region proposal function

or

ROI pool (or align)

ROIs

features

classification layers

classification

mask prediction

CNN

pretrained layers

inductive transfer
learning

bounding box regressor

feature extractor object classification

①

② ①

②
Note: feature maps can either be extracted by
① region proposal function from original image
or by ② region proposal network from internal
convolutional layer

Figure 4.5: Object detection framework for detecting the buffelgrass.

synthetic buffelgrass images through the learnt codebook ê. This phase is shown in Alg. 3.

Algorithm 2: Training of the Vector Quantised VAE.
1: Initialize: The encoder networks Enc(·), the decoder networks Dec(·), the input

image xgrass
2: Obtain the latent space z by encoder networks:
z ← Enc(xgrass)

3: Quantize the latent space z with the codebook (dictionary) e:
zq ← Quantize(z)

4: Obtain the reconstructed grass x̂grass:
x̂grass ← Dec(zq)

5: Compute overall loss according to (4.14), update gradients:
∇z, ∇zq, ∇θEnc,∇θDec

4.1.3 Inductive Transfer Learning

The deep learning-based object detection has achieved state-of-the-art performance

in multiple studies reported recently [103]. However, adopting these models in real indus-

try application have suffered from the lacking a sufficient number of labeled training data

set. In this study, we follow the inductive transfer learning approach, which enables us to

leverage the previous trained model as the foundation on which we fine tune with limited

85

Algorithm 3: Training of the prior and synthetic image inference
1: Initialize: The trained latent space ẑ and trained codebook ê
2: Quantize the latent space with the trained codebook ê:
zq = Quantize∗(ẑ)

3: Learn the quantized space using PixelCNN:
ẑq = TrainP ixelCNN(zq)

4: Sampling from the probability density ẑq
5: Generate synthetic buffelgrass image by the trained decoder Dec∗(·):
xfakegrass ← Dec∗(ẑq)

data set in our study [104] [105], as shown in Fig. 4.5.

In general learning scenario, we denote domain asD, feature space as χ and marginal

probability distribution P (I). I represents a data example from the domain χ and consists

of n feature dimensions, where I = {i1, i2, ..., in} ∈ χ.

For a given specific domain D = {χ, P (I)}, a task T = {O, f(·)} consists of two

components: a label space O and an objective predictive function f(·). The function f(·)

can be learnt by feeding the training data {ij, oj}, where ij ∈ I and oj ∈ O. The prediction

f(i) = P (o|i) is the output of the model by feeding a data sample i.

Based on the above definition of the general learning problem [91], we defined our

inductive transfer learning as follows: Given a source domain DS (we used the COCO

dataset [106] in our case study) and learning task TS (object detection or segmentation

tasks), a target domainDG (buffelgrass dataset)and learning task TG (object detection task),

the inductive transfer learning aims to help the learning process of the target predictive

function fT (·) in DG using the prior experience in DS and TS , where DS 6= DG and TS =

TG.

Basically, utilizing the pre-trained parameters as a model initialization strategy allows

faster convergence of the model and finds a better local minimum point which has a smaller

training loss.

86

4.1.4 Protocol for Buffelgrass Detection

A generic deep learning-based detection solution usually consists of three key links:

• CNN-based feature extraction layers;

• region proposal networks for mapping feature maps to ROIs;

• detection layers for both classifying an object into a certain class (in this problem,

only one class, i.e., buffelgrass) and adjusting the bounding boxes’ size and position.

The CNN structure adopted here (referring to the “CNN” box in Fig. 4.5) is ResNet

101 [88]. ResNet, as a feature extractor, can learn rich feature representations for a wide

range of images.

In order to learn a richer feature representation of buffelgrass, a common practice

is to stack as many layers as we can, intuitively. However, in large-scale experiments, the

more layers a plain CNN has, the more likely that it will suffer the degradation problem [88]

when the training curve starts converging. ResNet family solves the degradation problem

by simplifying several layers of networks processing and converting it to a direct mapping

of x → y with a function H(x) represented by a few stacked non-linear layers. ResNet

defines the residual function using F (x) = H(x)–x, which can be reframed into H(x) =

F (x) + x. F (x) denotes the stacked layers except for the input layer and x denotes the

identity function (the input equals to the output). The intuition of this design is that: if

the identity mapping is optimal, it is much easier to put the residual function F (x) = 0

than to fit an identity mapping x by a stack of non-linear layers. The testing of this design

proves to be effective when stacking a huge number of layers [88]. By adopting the ResNet

101 structure as the feature extractor, we stack enough number of layers in order to learn a

sufficient representation of buffelgrass patterns.

The extracted feature maps will be mapped to the ROIs by the region proposal net-

works. The ROIs mark the positions on the feature maps where we assume there is the

87

object we want to detect. There are two key concepts involved in this proposal process.

Firstly, we arbitrarily draw some proposal boxes around a centroid to assume it contains the

object, which is called the anchor. We use four scales and three ratios of aspect to generate

the anchor. Thus, for each centroid, we have 4×3 = 12 anchors. We set the centroid on the

feature maps with the stride of 16 both vertically and horizontally. Secondly, we want to

determine the ROIs by comparing the overlapping of the anchors and annotated bounding

boxes. In our experiment, we set the positive samples with IoU > 0.7 (intersection-over-

union [84]), while the negative samples with IoU < 0.3.

The output of the region proposal networks will be used as the input of a fully-

connected neural networks, which will predict object class (classification), adjust the posi-

tion and size of bounding boxes (regression) as well as generate mask for the object inside

each bounding box which covers the area of the object in pixel level (instance segmenta-

tion). For the final loss function of this fully-connected networks, we set the localization

loss weight larger than the objectness loss weight as we care more about the location of the

potential invasive grass than the correctness of the classification.

In the experiment, we find it costly to focus on judging the positivity or negativity

of potential vegetation since there are many similarities between the invasive grass and the

native grass. Thus, paying more attention to the location of the potential vegetation will

be more effective and meaningful to the inference of the model. Based on the property

observed in our experiment, we put more emphasis on tuning the location of the potential

vegetation (even some of the boxes may contain the negative object) while the impact of

detection missing is minor and constant over different detection configuration.

4.2 Experimental Results and Discussion

In this section, we are going to present the experimental results in two phases. Firstly,

the numeric and visualization results of synthetic buffelgrass pattern generation are pre-

88

Table 4.1: Networks Structure of Vanilla GAN.

Discriminator Networks Generator Networks
Layer Filter/Stride Output Size Layer Filter/Stride Output Size
Conv1 5× 5/2× 2 128× 128× 16 fully-connected1 — 8× 8× 256
Conv2 5× 5/2× 2 64× 64× 32 Conv-Trans1 3× 3/2× 2 16× 16× 128
Conv3 5× 5/2× 2 32× 32× 64 Conv-Trans2 3× 3/2× 2 32× 32× 64

fully-connected1 — 500 Conv-Trans3 3× 3/2× 2 64× 64× 32
fully-connected2 — 100 Conv-Trans4 3× 3/2× 2 128× 128× 16
fully-connected3 — 1 Conv-Trans5 3× 3/2× 2 256× 256× 3

Table 4.2: Networks Structure of W-GAN.

Critic Networks Generator Networks
Layer Filter/Stride Output Size Layer Filter/Stride Output Size
Conv1 5× 5/2× 2 128× 128× 128 fully-connected1 — 32× 32× 512
Conv2 5× 5/2× 2 64× 64× 256 Conv-Trans1 5× 5/2× 2 64× 64× 256
Conv3 5× 5/2× 2 32× 32× 512 Conv-Trans2 5× 5/2× 2 128× 128× 128
Conv4 4× 4/1× 1 32× 32× 1 Conv-Trans3 5× 5/2× 2 256× 256× 3

sented. In this part, we demonstrate how the discrete latent space model (VQ-VAE) is

superior over both implicit model (GAN family model) and explicit but continuous latent

space model (vanilla VAE). Secondly, we blend the synthetic buffelgrass patterns into the

background without buffelgrass so that we automatically “grow” it on widely spread grass-

land, which significantly increases the volume and quality of the available training data set.

Based on augmented data set, we evaluate how much it will help to enhance the detection

performance.

4.2.1 Results for Synthetic Buffelgrass and Augmented Data Set Gen-

eration

The training curves of different generative models on the buffelgrass data set are

shown in Fig. 4.6. Since the objectives of different models differ from each other, their

respective training loss is not comparable. However, the convergence of the training curves

demonstrate the progress of training. For Vanilla GAN, neither discriminator loss nor gen-

89

Table 4.3: Networks Structure of VQ-VAE (Encoder & Decoder).

Input Size 256× 256
Latent Layer 32× 32

β (commitment loss coefficient) 0.25
Batch Size 10

Hidden Units 128
Residual Units 64

Layers 2
Codebook Size 512

Codebook Dimension 64
Encoder Conv Filter Size 3

Upsampling Conv Filter Size 4

erator loss is close to convergence. The curves fluctuate strongly during the training. For

W-GAN, the discriminator loss fluctuates in a reasonable range, however the curve for gen-

erator loss is smooth yet hard to converge within a satisfying range. For VQ-VAE, two

curves are plotted:

• First, the training loss (reconstruction loss) has a smooth convergence and can be less

than 0.1 after convergence.

• Second, the average codebook usage (perplexity) is plotted.

As aforementioned, the objective of VQ-VAE contains the reconstruction performance and

the maintenance of the codebook. The more codebook usage, the higher the perplexity,

which is a term to indicate how easy the prediction can be made by the model. We can

observe that perplexity curve converge and reach a high level.

To validate the performance of different generative models, we adopt the Fréchet

inception distance [107] to measure the distance between the synthetic images with the real

images. For real image batch xgrass and fake image batch xfakegrass, we feed both into Inception

Networks [108] and obtain the activations of an intermediate layer, which are denoted as

Incep(xgrass) and Incep(xfakegrass), respectively. Both activations are modeled as multivariate

Gaussian distribution, where Incept(xgrass) ∼ N (µgrass,Σgrass) and Incept(xfake
grass

) ∼

90

Vanilla GAN Wasserstein GAN Hierarchical VQ-VAE

discriminator loss v.s. training steps discriminator loss v.s. training steps

generator loss v.s. training steps generator loss v.s. training steps

training loss

perplexity

Figure 4.6: The training curves of three generative models.

N (µfake
grass

,Σfake
grass

). The Fréchet inception distance between the real buffelgrass set and fake

buffelgrass set can be denoted as

FID(xgrass, x
fake
grass

) =
∥∥∥µgrass − µfakegrass

∥∥∥2

2

+ Tr(Σgrass + Σfake
grass
− 2(ΣgrassΣ

fake
grass

)
1
2),

(4.17)

where Tr(·) sums up all the diagonal elements. The smaller the FID, the more diverse gen-

erated images are, and more certain that an image belongs to a specific class. We validate

the diversity and quality of the generated buffelgrass patterns via FID, which is shown in

Table. 4.4. A huge boost is observed from employing W-GAN instead of vanilla GAN.

The vanilla GAN achieves FID score of 109.43 by comparing real image set and synthetic

image set. The deployment of W-GAN falls dramatically from 109.43 to 32.80. From Fig.

4.6(a), we can also clearly observe that the training curve of the generator is much stable

compared to the generator of vanilla GAN. The adoption of vector quantised VAE further

improves the performance by 1.95, which indicates a more diverse and high-quality set of

images are generated.

Apart from the numeric results indicating the difference between the real data set and

91

Table 4.4: The Comparison of Synthetic Buffelgrass Generation via Numeric Results

Metric Fréchet Inception Distance
Vanilla GAN 109.43

W-GAN 32.80
VQ-VAE 30.85

the generated data set, a visualization presentation is also adopted to provide human sensory

comparison. In Fig. 4.7, output samples from three generative models are compared. The

column (a), (b), and (c) correspond to the results from vanilla GAN, W-GAN, and vector

quantised VAE, respectively. Vanilla GAN generates results that can hardly be classified

into a kind of natural vegetation. The marks of artificial manipulation are evident. On

the contrary, W-GAN is capable of creating more realistic buffelgrass patterns, on which

the leaves can be clearly distinguished. However, the shortcome of the output from W-

GAN is that it lacks fidelity in the images. If we blend those images patterns back into

the background, the distinction between synthetic images and background is huge, and the

blurry patterns involve unnecessary noise. Vector quantised VAE solves this problem by

generating high-fidelity and high-diversity buffelgrass patterns shown in column (c). The

blending of the high-fidelity patterns make the synthetic training images for detection more

realistic.

In Fig. 4.8, we show the results of blending generated buffelgrass into a background

grassland. The “Real Data” and “Synthetic Data” are compared in the context of detection

result. The purple bounding boxes localize the synthetic buffelgrass patterns which are

generated by vector quantised VAE. The location for each synthetic buffelgrass is randomly

selected. Truncations and occlusions are included in order to ensure the robustness. The

blending results are close to the real data shown in Fig. 4.8. The close inception is needed

to distinguish them from real ones which makes them high-quality synthetic samples.

92

(a) (b) (c)

Figure 4.7: The comparison of visualization sample results of three generative models.

4.2.2 Results for Buffelgrass Detection with Different Augmentation

Schemes

In this work, three different augmentation schemes (mentioned in Section 4.2.1)

along with the manual augmentation are conducted on the raw data set. In the network

setup stage, the usage of transfer learning is also evaluated in order to evaluate its effects

on the training performance. The comparison of four augmentation schemes is presented in

Fig. 4.9. The upper graph shows the training loss of four different augmentation schemes

without transfer learning. All of the four schemes have shown intense fluctuation in the

first half of the training. Training curves converge gradually while in the second half of the

training, the fluctuation becomes smaller compared to the initial stage of the training. It is

obvious that the VQ-VAE augmentation scheme (represented by the dashed purple line) has

the smallest variance in the training loss when the curve is stable. The W-GAN augmen-

tation scheme can achieve similar convergence compared with the manual augmentation.

However, in the GAN augmentation scheme, training does not converge into a stable and

acceptable range without transfer learning. The distinction becomes even larger when com-

paring the GAN augmentation scheme with other three schemes under the condition that

93

Real Data

Synthetic Data

Figure 4.8: Samples of synthetic images for buffelgrass detection.

transfer learning is adopted (shown in the lower graph in Fig. 4.9). Our experiment and

observation indicates that GAN training is affected and limited by the scale of the output.

The larger the output, the harder to achieve a stable training and higher fidelity. On the

contrary, the training curves look similar for the other three schemes when the convergence

is achieved.

In Fig. 4.10, we include the training curves of different augmentation schemes inde-

pendently in order to clearly demonstrate the influence of transfer learning on the training

performance. It is clear that transfer learning brings better convergence performance to the

training of all augmentation schemes. Moreover, when we zoom into the first a few steps,

the initial loss of the training with transfer learning is significantly smaller than the ones

without transfer learning. The results demonstrate that transfer learning brings at least two

advantages in training a detection model: 1) The small initial loss (or better parameters

intialization) and fast convergence; 2) Better convergence performance after the training is

stable.

Apart from the numeric analysis of the testing performance, we show the visualiza-

94

Training Curves of Different Augmentation Methods without Transfer Learning

Training Curves of Different Augmentation Methods with Transfer Learning

Manual-Augmented

GAN-Augmented

W-GAN-Augmented

VQ-VAE-Augmented

Manual-Augmented

GAN-Augmented

W-GAN-Augmented

VQ-VAE-Augmented

Figure 4.9: Training curve of the detection with (w.o) transfer leanring.

tion results of a group of samples from the testing set. Different augmentation schemes are

validated on this group of samples shown in Fig. 4.11. Row (I), (II), (III), (IV), and (V)

represents the visualization results on different samples from the target (manual labeling

by expertise), manual augmentation, GAN augmentation scheme, W-GAN augmentation

scheme, and VQ-VAE augmentation scheme, respectively. Column (a)-(e) represents each

testing sample with different testing models. The testing samples shown in the figure in-

clude different growing conditions of the buffelgrass. Five samples (each with the size

95

w.o. transfer learning

with transfer learning

w.o. transfer learning

with transfer learning

w.o. transfer learning

with transfer learning

Manual Augmentation

W-GAN Augmentation VQ-VAE Augmentation

w.o. transfer learning

with transfer learning

GAN Augmentation

Figure 4.10: The comparison of the convergence of different augmentation strategies.

Table 4.5: Detection Results with Different Augmentation Schemes.

w.o. transfer learning with transfer learning
plain detection 2.522

Manual Augmentation 8.953 37.340
GAN Augmentation 7.198 31.580

W-GAN Augmentation 12.070 46.920
VQ-VAE Augmentation 29.120 54.150

2000 × 2000 in pixel) involve the buffelgrass growing either sparsely or densely, horizon-

tally or vertically. Column (a) and (b) contain two samples with sparsely distributed buffel-

grass. The results show that none of the augmentation schemes helps the detection model

much when buffelgrass is sparsely ditributed. Column (c)-(e) contain three samples where

buffelgrass patterns are closely and densely distributed. All of the four schemes have pre-

cise prediction to some extent. However, a performance boosting can be clearly observed

through row (III)-(V). It is hard to distinguish the difference between the results from row

(II) and (III), but the adoption of the Wasserstein distance in GAN and the utilization of

96

Figure 4.11: The visualization of the testing results with different augmentation schemes.

the vector quantised VAE dramatically improve the detection performance in terms of the

metric of confusion matrix (true/false positive/negative). Specifically, VQ-VAE, compared

to other schemes, can make more accurate prediction especially in the place where a large

population of buffelgrass grows closely.

We demonstrate a visualization image with the resolution of 8, 688 × 5, 792 in Fig.

4.12. The result in the Fig. 4.12 shows the detection model with the VQ-VAE augmentation

is capable of capturing all the annotated boxes with an accurate location prediction. Recall

the detection total loss design in the Section 4.1.4, we find this design work well with a

dramatic performance on the box regression. However, it sacrifices the accuracy of classi-

fication that some spots on the lower area of the image are misclassified into the invasive

97

Figure 4.12: The visualization of the testing result of an original sized image taken by UAV.

grass.

In order to investigate the impact of different synthetic data volume on the detec-

tion accuracy. In Fig. 4.13, We compare the average precision (AP@IOU0.6) for different

synthetic-to-real data ratios. Average precision is a metric that combines recall and preci-

sion for ranked retrieval results. For each evaluation, we fix the total volume of the training

data, but blend with different ratios of synthetic data. We can observe from this figure that

synthetic data helps increase the detection accuracy more when its volume is moderate. For

detection model without transfer learning, we get the highest precision when the synthetic

98

max=54.15

max=29.12

Figure 4.13: The comparison of the average precision for different synthetic data ratios.

data/real data ratio is around 1/4. For detection model with transfer learning, the highest

precision emerges when the synthetic data/real data ratio is around 1/3. In accordance with

this observation, we can derive that keeping a reasonable proportion of real data set is es-

sential to maintain the major distraction mode, on top of which a more advance synthetic

data augmentation scheme can help.

4.3 Conclusions

In this study, we aim to develop a set of technologies that supports the automatic

detection of invasive vegetations. Even our study was progressed in a specific vegetation

type, buffelgrass. The developed model and corresponding metholodies are well suited to

other types of tasks related to invasive vegeation monitoring, or the more wide community

with strong interests in automating the process of monitoring the natural environment.

In this study, we overcome a set of challenges thare are associated with real business

99

applications:

• The raw images taken by the UAVs are not suitable for processing directly.

• In practice, it can be difficult to obtain enough training data set desired by supervised

learning approaches. This poses the sharp contrast from some bench-mark studies

widely adopted in academia, the data labelling effort is not considered as a bottle-

neck. This universal challenge to most industry application in the domain of ma-

chine learning leads us to develop a novel approach based on probabilistic generative

model, i.e., VQ-VAE to automatically generate authentic buffelgrass image patches,

which can be implanted into the background image. This approach provide an auto-

matic approach to meet the real challenge of adopting deep learning models, and a

solution to the imbalanced data set, a common issue in the machine learning studies.

On top of this training data boosting process, we further utilize the transfer learning

technique to boost the training performance. This transfer learning scheme also pro-

vides a satisfactory performance in the evaluation. Compared with the model trained

from scratch, the transfer learning scheme brings a much better catch on the buffel-

grass pattern, typically on strong patterns. Meanwhile, the transfer learning scheme

consumes less training time to converge with a better convergence performance.

• In the context of detection model design, we adopt deep ResNet as feature extractor.

Constructing an automatic and intelligent mechanism for pattern augmentation is a

promising conception to make current work more solid, typically on strong patterns.

In this work, we implement the data augmentation by attaching those pattern images

on the background image manually. This process boosts the detection performance

well, but it is relatively time-consuming with little help on increasing the diversity of

the training set. Developing an automatic blending mechanism for appending small

patterns on the large background is a promising conception to make current work

more solid.

100

Chapter 5

Unexploited Seismic Data Inversion by Joint
Distribution Optimal Transport with Deep
Encoder-Decoder Networks

Seismic data is used to reveal the subsurface structure based on seismic wave propa-

gation. From the reflected seismic wave, geoscientists can estimate the physical properties

of the subsurface. Seismic exploration can be applied and utilized in many fields (e.g.,

hydrocarbon exploration and Earth’s crustal investigation) since its capability of detection

from small to large scale. To implement seismic exploration, a signal transmitter (e.g., an

air gun) and several receivers are required. The inversion of the seismic data generates the

reconstruction of the subsurface velocity model, based on which geoscientists are able to

estimate the target imaging bodies. There are several types of seismic inversion. Stochastic

inversion is one widely used method for seismic wave inversion [109] [110] [111]. Be-

sides, full-waveform inversion (FWI) is now appealing due to its high accuracy and resolu-

tion [112] [113].

Besides the subsurface imaging we have introduced and discussed in the last para-

graph, FWI is also applied to other fields such as breast cancer detection in medicine [114].

FWI can be calculated either in the time domain or the frequency domain. Either approach

involves non-linear computation which is computationally expensive to solve [115]. Sim-

ilar to most machine learning problems, the solution to inversion problems may include

many local minima making the technique less robust. To mitigate the ill-posedness of

the problem, many approaches have been proposed and developed in recent years includ-

ing preconditioning methods [116], prior information-based methods [117], and multiscale

methods [118], etc.

In recent years, DNN reveal the significant capability of generalizing non-linear map-

101

ℱ

Figure 5.1: A general data-driven seismic inversion task definition.

ping in the fields of natural language processing, image classification, object detection, and

even image-to-text transformation [119] [120] [121] [122] [123] [124] [125]. For the in-

version problem, DNNs-based image-to-image reconstruction brings new perspectives for

inversion to learn the mapping function F from the input image to output reconstruction.

Since the image transformation requires the ability of spatial information reservation, the

CNN is widely used for inversion problem processing. Jain and Seung [126] proposed a

vanilla CNN to denoise an image subjected to Gaussian noise. Eigen et al. [127] proposed

a CNN-based framework for denoising photographs which are covered with dirt and rain.

Specifically, for the seismic inversion problem, Araya-Polo et al. [128] proposed a CNN-

based model to reconstruct velocity maps from a semblance cube calculated from raw data.

CNN is able to be packaged into a residual structure that learns a residual between two or

more layers by skipping connection from the input of the residual block to its output. This

residual network structure is well suited to image restorations when there is adequate simi-

lar content between the input and output [129] [130]. By incorporating analytical solutions,

the inversion problem can also be solved. [131] proposed an idea to start with an analytical

approach and an associated inference algorithm and unfold the inference iterations as lay-

ers in a deep network. Zeng et al. [132] proposed the autoencoder method to learn useful

representations of low-resolution and high-resolution images. Autoencoder is one branch

of CNN based structure that is specifically employed for image reconstruction. Likewise,

Wu et al. [133] proposed a model named InversionNet to build the mapping from raw seis-

mic data to velocity maps by embedding the information in the raw seismic data into an

102

encoded space. As an improvement for [133] due to the information loss in the embedding

space, Li et al. [134] proposed a built-in component named SeisInvNet to learn a feature

map spatially aligned to the velocity model from each seismic trace. Afterward, velocity

maps are reconstructed from the feature maps.

After reviewing existing literature, we found that few researchers work on the topic

of domain adaptation in the deep networks based seismic inversion problem. However,

domain adaptation is a common and consistent demand from the real industry application.

Also, in [134], the authors mentioned they carried an experiment of their proposed model

on the noisy data set on which they attempted domain adaptation by finetuning their model

from the existing checkpoints. However, this approach suffers from a degradation problem

on the original data set. This degradation problem weakens the generalization property of

the model which makes the reusing of the original model difficult. In practice, practitioners

have to make space to store both the source and target model, and need time for maintaining

both models for different but similar data flow.

Inspired by the above demand and challenge, we propose to utilize the optimal trans-

port approach to assist the training of the deep network in order to let the model adapt to

the noisy data set while preserving the performance on the original data set. The proposed

model is named encoder-decoder joint distribution optimal transport (enc-dec JDOT). In

this study, we construct our model from a vanilla autoencoder. However, we investigate the

encoder and decoder separately. The output of the encoder is an embedding space which

contains the most significant information in the inputs. We also take this latent vector as an

output of the model. Thus, the networks will produce the latent vector as well as the final

reconstruction. By combining the latent vector distance and the final output distance, we

get a total distance function that can measure the difference between the original data set

(source domain) and the new noisy data set (target data set). This total distance function

works as a total cost for transferring the source distribution to target distribution. In this

way, we are able to solve an optimal transport problem by getting an optimal transport plan

103

γ. The dot product of γ and total distance will be backpropagated through the networks and

update the weights which can couple the performance on the source and target data set.

We carry out experiments on the self-proposed three-layers source data set and its

corresponding noisy target data set. From the visualization and analysis results, we demon-

strate our proposed enc-dec JDOT framework can adapt to the target data set without “look-

ing at” the target data label. Major contributions in this study are summarized as follow:

• We investigate the DNN-based seismic inversion in a specific background that the

deep learning model can immigrate to an unexploited data set. The study indicates

the promising potential that deep learning models can be reused on new data sets.

Thus, it saves time and economic costs.

• We demonstrate our proposed model can adapt to the new data set while preserving

the performance on the original data set to certain extent. This finding may lead

to a learning model that can generalize the patterns in several kinds of seismic and

velocity data, which shows there is a possibility that a universe model can be created

to implement inversion task on multiple types of seismic data.

• We generalize the deepJDOT method proposed in [11] from classification only to the

regression problem. The classification task has the advantage of certain data-label

correspondence which helps to put a similar source and the target data into the same

category. By the experiment, we show that the regression task can also work on the

well-designed source and target data couples.

The rest of this chapter is organzied as follows: Section 5.1 introduces more related

works on inversion solution using encoder-decoder structure as well as the optimal transport

in domain adaptation. The proposal of the deep networks is introduced in Section 5.2.

In Section 5.3, the basic knowledge of optimal transport and its extended version, joint

distribution optimal transport will be elaborated. In Section 5.4, we propose enc-dec JDOT

104

to solve the domain adaptation problem in the field of seismic inversion. The corresponding

experiment results will be demonstrated in Section 5.5. Finally, a conclusion will be drawn

in Section 5.6.

5.1 Related Works

This study covers several key fields of research. First of all, a deep learning based

approach is utilized to solve the FWI problem. Specifically, an encoder-decoder network is

used to learn the seismic inversion mapping end to end. Furthermore, the optimal transport

based method is used for domain adaptation. In this section, we will introduce some related

works categorized into the above topics.

5.1.1 Deep Learning-Based FWI

In [135], Lewis et al. did not implement an end-to-end generalization of FWI using

deep learning. Instead, they utilize neural networks to generate some prior knowledge. This

prior information will assist FWI for a reconstruction. Considering seismic measurement

is time-series data, Richardson et al. [136] proposed using RNNs to solve the forward wave

propagation modeling.

5.1.2 Autoencoder Network-Based Seismic Inversion

The autoencoder concept is first proposed in [5], which is originally and widely used

for data compression. The autoencoder consists of two components: the encoder and the

decoder. The encoder extracts the principal components and information in the input and

transfers them into a 1-D embedding vector. The decoder translates the embedded informa-

tion inside the embedded space into a reconstruction of the input. Normally, the input can

be an image, a group of texts, or a series of well-organized signals. For the data which

105

has specific structures or patterns, autoencoder can reconstruct them without providing

low-level information and without losing much information. Due to the property of the

autoencoder, it is widely applied to high-fidelity images generation [137] [138] [8]. For

the autoencoder applications, the embedding vectors contain the high-level portrait of the

input. If low-level features are needed due to the high complexity of the information inside

the input, the low-level features can also be aligned by other networks layers [139] [140].

For the seismic inversion problem, the basic autoencoder structure can work. This structure

is adopted in [133] which is named InversionNet. The InversionNet can handle the horizon-

tal interfaces and dipping faults and be enhanced after applying conditional random field

(CRF) [2] [3]. There is performance limitation in [133] when investigating the details of

some seismic inputs. To address this challenge, Li et al. [134] proposed a novel component

named seismic inversion network (SeisInvNet) to first learn a feature map spatially aligned

to the velocity model from seismic traces.

5.1.3 Optimal Transport with Machine Learning and Seismic Inver-

sion

Optimal Transport (OT) [141] is a theory to compare the probability distribution

in terms of geometrical distance. In the traditional Monge [142] or Kantorovich prob-

lem [143] [141], optimal transport is used to solve a transport plan γ. With the rise of ma-

chine learning, the optimal transport is widely applied as a distance measurement which can

re-define the traditional loss function by injecting some geological property, which is known

as the Wasserstein distance [144] for aligning two distributions in a more smooth and effec-

tive way. OT also has been applied to learn the transformation between [145] [146] [147]

domains in order to accomplish domain adaptation with associated theoretical guaran-

tees [142] [143] [141]. In the domain adaptation, γ is used to transport data samples through

an estimated mapping called barycentric mapping [148]. A new classification model then

is learned on the transported source data representation.

106

There are several works focusing on solving seismic inversion using the optimal

transport approach. In [149], Yang et al. proposed to use the Wasserstein distance as a

replacement of the least-squares norm as a misfit function to avoid cycle-skipping issues.

This issue can increase the risk of computing a local rather than the global minimum of

the misfit. Similarly, [150] proposed to use optimal transport distance to measure the misfit

between the seismograms. In [151], L Métivier et al. used optimal transport to imple-

ment 3D full FWI. To our best knowledge, there are few studies focusing on the optimal

transport-based domain adoption for seismic inversion, which encourages us to focus on

this field.

5.2 Deep Networks Structure

As aforementioned, this study intends to derive the inversion mapping F−1 so that

velocity models can be produced from corresponding seismic input data. In general, we

denote seismic measurement as m, and corresponding velocity model as v. The forward

and inverse process can be illustrated as

{
m = F(v),
v = F−1(m).

(5.1)

In this study, we construct deep networks to directly obtain an approximation of F−1 map-

ping from seismic data m to velocity model v. The autoencoder based structure is utilized

as an approximator. Unlike the traditional autoencoder that learns the input itself, the au-

toencoder in this study first learns the embedding of the input seismic data by the encoder,

and then decodes the embedding and translates into the velocity model domain. The en-

coder extracts the high-level features from the seismic input and obtains the embedding

vector which has a much lower dimension. The decoder translates the embedding into the

velocity model domain. The detailed implementation of the network structure is indicated

in Fig. 5.3. In the problem we are going to solve, both source and target model adopt the

107

Seismic Data Velocity Maps

layer 2 layer 3 layer n

… …

layer 1

Figure 5.2: Neural networks structure for learning the inversion function F−1.

40

40

20

kernel_size=4

kernel_size=2

10

5

kernel_size=2

residual block

flatten

400

…
…

10

kernel_size=2

residual block

20

kernel_size=2

40

40

40

kernel_size=4

latent vector

when construct target model,

works as another output

seismic

velocity

Figure 5.3: The demonstration of the encoder and decoder network on which domain adap-
tation is implemented.

same network structure.

5.2.1 Encoder

The overall approximation of the encoder can be denoted as an encoding function

z = e(m), (5.2)

where the output of the encoding is a latent embedding vector z. The components of en-

coder include convolutional layers, a residual layer, and ReLu or Sigmoid function. The

convolutional layers are crucial for feature extraction while reserving the spatial correlation

among different locations. The residual layer is stacked after a few convolutional layers

since we want to build a deeper network while avoiding the vanishing gradient problem.

The residual layer is nothing but adding a shortcut to the next layer directly from the output

of the current layer. The main path can be stacked with several convolutional layers as well.

108

Table 5.1: Networks Structure of Encoder and Decoder.

Encoder Networks Decoder Networks
Layer Filter/Stride Output Size Layer Filter/Stride Output Size
Conv1 4× 4/2× 2 20× 20× 8 Conv-Trans1 2× 2/2× 2 10× 10× 16
Conv2 2× 2/2× 2 10× 10× 16

Residual Stack

3× 3/1× 1 10× 10× 16
Conv3 2× 2/2× 2 5× 5× 16 1× 1/1× 1 10× 10× 16

Residual Stack
3× 3/1× 1 5× 5× 16 3× 3/1× 1 10× 10× 16
1× 1/1× 1 5× 5× 16 1× 1/1× 1 10× 10× 16
3× 3/1× 1 5× 5× 16 Conv-Trans2 2× 2/2× 2 20× 20× 16
1× 1/1× 1 5× 5× 16 Conv-Trans3 4× 4/2× 2 40× 40× 3

The output of the residual layer is the addition of the main path and the shortcut. Typically,

ReLu activation is applied after every convolutional layer. However, we utilize the Sigmoid

function after the last layer instead of ReLu since the output range of the Sigmoid function

can be easily mapped to the normalized image.

5.2.2 Embedding Vector

The embedding vector z is the output of the encoder network. Generally, the em-

bedding vector acts as a latent representation only. In this study, it is also manipulated and

contributes to the final loss function. By narrowing the difference in the latent space be-

tween the source domain and target domain, the model is able to learn similar patterns from

similar inputs. Moreover, comparing the latent space is more efficient than comparing it

in the input space. The comparison makes sense since the embedding vector contains the

principal information in the input.

5.2.3 Decoder

The embedding vector z is translated into the velocity model domain by the decoder

networks, whose mapping can be denoted as

v = g(z). (5.3)

109

The decoder networks work as an inverse process of the encoder networks. The compo-

nents of the decoder are almost the same with the encoder except all convolutional layers

are replaced by the deconvolutional layers. Deconvolution operation (a.k.a. convolution

transpose) enlarges the dimension of the current tensors, which help translate the embed-

ding vector to the final output. In the residual layer, convolutional layer also works since

we put the stride (1, 1) which reserves the size. The detailed implementation can be found

in Fig. 5.3 and Table. 5.1.

5.3 Optimal Transport for Domain Adaptation

The proposed method is based on optimal transport, which is introduced first in this

section. After grasping the basic knowledge of the optimal transport, we move on to joint

distribution optimal transport (JDOT) to explore the domain adaptation. In Section 5.3.1,

we introduce the basic concept of optimal transport. In Section 5.3.2, we introduce the

formulation optimal transport-based domain adaptation technique named joint distribution

optimal transport.

5.3.1 Optimal Transport

Optimal transport [141] (OT) is the symmetrical measurement of probability distri-

bution in a geometrical manner. In the standard OT formulation, it searches a probabilistic

parameter γ ∈
∏

(µ1, µ2) to couple two distributions µ1 and µ2. This coupling (or trans-

port plan) arises a transport cost, which consists of the dot product of the distance between

two data samples with the cost to bring two samples together. Mathematically, it can be

formulated as

OTc(µ1, µ2) = inf
γ∈

∏
(µ1,µ2)

�
R2

c(x1, x2)dγ(x1, x2), (5.4)

110

where c(x1, x2) is the cost function measuring the workload to bring sample x1 and sample

x2 together. The space of joint probability distributions is described as
∏

(µ1, µ2), which in

the discrete setting can be formulated as

OTc(µ1, µ2) = min
γ∈

∏
(µ1,µ2)

〈γ,C〉F , (5.5)

where 〈·, ·〉F is the Frobenius dot product, C ≥ 0 is a cost matrix ∈ Rn1×n2 representing

the pairwise costs c(x1, x2), and γ is a matrix of size n1×n2 with prescribed marginal. The

objective in (5.5) in the machine learning context typically utilized to measure the distance

between two distributions. This distance is named Wasserstein distance when the distance

is L1 or L2 norm. When on a small scale, solving (5.5) is a simple linear programming

problem with equality constraints.

5.3.2 Joint Distribution Optimal Transport

JDOT is proposed by Courty et al. [152]. The main contribution is the proposal of

learning a classifier embedded in the cost function c directly by jointly considering the

source data set and target data set. The traditional solution is to adapt the representation (in

the raw data space or latent space) first and learn the classifier on the adapted features. The

basic idea in [152] is to jointly consider the source/target data and features/labels. µs (for

source domain) and µt (for target domain) are used to measure the product space X × Y .

The cost associated with space X × Y is denoted as

d(xsi , y
s
i ;x

t
j, y

t
j) = αc(xsi , x

t
j) + λtL(ysi , y

t
j), (5.6)

where the annotation s and t represent source domain and target domain, respectively. For

the classification task, c(·, ·) can be represented as L2 norm and L(·, ·) can be represented as

cross-entropy. α and λt are hyper-parameters serving as a coefficient to control the weight

between the contribution of feature distance and label distance. Since we only collect input

111

samples in the target domain, we design a surrogate function f(xtj) to replace the target

label ytj . In general, function f(·) works as a function generalization is a neural networks

context.

For the classifier in the learning context and referring to (5.5), a minimization formu-

lation can be denoted as

min
f,γ∈Π(µs,µt)

〈γ,Df〉F , (5.7)

where Df involves a classification loss representing all the pairwise costs d(·, ·). For better

discrimination results, the samples being paired share similar patterns and the same label

in the classification problem context. In [152], authors prove the minimization of (5.7)

equals to the minimization of the learning bound in domain adaptation problems. There

exists a limitation in [152]. γ can scale quadratically in size to the number of samples being

transported. In [11], this drawback is solved by transport a mini-batch of data each iteration.

However, [11] only considers the application of JDOT in the classification tasks. Thus, we

proposed our enc-dec JDOT to implement the regression task by replacing the classification

loss with mean squared error and carefully designing the data sample pairs (xsi , x
t
j) to make

it work in the seismic inversion scenario.

5.4 Proposed Methods

In this section, we first introduce the formulation of the proposed enc-dec JDOT in

Section 5.4.1. Then, in Section 5.4.2, we elaborate on how to solve the objective defined in

enc-dec JDOT.

112

C
o

n
v_

0

C
o

n
v_

1

C
o

n
v_

2

re
si

d
u

a
l

C
o

n
v_

0

C
o

n
v_

1

C
o

n
v_

2

re
si

d
u

a
l

D
e
co

n
v_

0
D

e
co

n
v_

0

re
si

d
u

a
l

re
si

d
u

a
l

D
e
co

n
v_

1
D

e
co

n
v_

1

D
e
co

n
v_

2
D

e
co

n
v_

2

OT
solver

Total Loss:

Source Model

Target Model

Figure 5.4: The overall framework of Enc-Dec-JDOT.

5.4.1 Encoder-Decoder Joint Distribution Optimal Transport (Enc-

Dec JDOT)

Speaking of the structure, our Enc-Dec JDOT model contains two parts: i) an en-

coding function e : x → z (e stands for “encoder”), which takes seismic measurements as

inputs and maps them into a latent spaceZ. ii) a decoding function or a generator g : z → y,

which generates corresponding velocity maps from the embedded latent space Z. The la-

tent representation z is the output of the encoding function e and the input of the decoding

function g. To make the model also works well on the unexploited dataset, we conduct the

optimal transport on the latent space Z as well as the output of the generator g, which is the

minimization of the 2D-Wasserstein distance between the source output and target output.

The solution can be formulated as follows

min
γ∈

∏
(µ1,µ2),f,g

∑
i

∑
j

γijd(e(xsi), y
s
i ; e(x

t
j), g(e(xtj))), (5.8)

where d(e(xsi), y
s
i ; e(x

t
j), g(e(xtj)))=αs

∥∥e(xsi)− e(xtj)∥∥ + λtL(ysi , g(e(xtj))), and αs and

λt are the hyper-parameters serving as the trade-off coefficients. From this formulation,

we can observe that we not only incorporate the dissimilarities inside the latent space, but

113

also the discrepancy in the output space of the generator g. By taking latent space into

account, the dissimilarity in the deep representation can lead the training towards model

compatibility since the noise in the input space such as the signal received on the surface

level of the receivers is ignored.

As aforementioned, we consider a unsupervised scenario where the generator loss in

the objective defined in (5.8) only relies on the target domain. This mechanism entirely

forgets the generator learnt on the source domain which will dramatically affect the robust-

ness of the model. To avoid such problem, we manually incorporate the loss defined on the

source domain, which leads to the final Enc-Dec-JDOT objective:

min
γ,g,e

1

ns

∑
i

Ls(y
s
i , g(e(xsi))) +

∑
i,j

γijαs
∥∥e(xsi)− e(xtj)∥∥+ λtL(ysi , g(e(xtj))). (5.9)

We will solve this optimization problem in a feasible memory and time complexity.

5.4.2 Solving Enc-Dec-JDOT

Referring to [11], solving the objective in (5.9) in deep JDOT structure, the opti-

mization can be conducted in two-steps approach, since we found there are two groups

of variables to be optimized: i) γ: related to the distribution coupling and ii) e,g related

to the deep networks parameters. In each iteration of mini-batch training of the Enc-Dec

networks, the optimization can be summarized as

• With fixed CNN parameters (ê, ĝ) and for each mini-batch, obtain the coupling

min
γ∈Π(µs,µt)

m∑
i,j=1

γij(αs
∥∥ê(xsi)− ê(xtj)∥∥+ λtLt(y

s
i , ĝ(ê(xtj)))) (5.10)

using the network simplex flow algorithm.

• With fixed coupling γ̂ obtained at the previous step, update the encoder e and de-

coder/generator g with stochastic gradient update for the following loss on the mini-

114

Figure 5.5: The plain data set (top) and their corresponding subsurface models (bottom)

batch:

1

m

m∑
i=1

Ls(y
s
i , g(e(xsi))) +

m∑
i,j=1

γ̂ij(αs
∥∥e(xsi)− e(xtj)∥∥+ λtLt(y

s
i , g(e(xtj)))).

(5.11)

This two-steps strategy aligns the source and target data and γ̂ performs label propagation

between source and target domains. The generator can generate authentic velocity maps

with both source latent representation and target latent representation as well.

Algorithm 4: Optimization of Enc-Dec-JDOT.
1: Initialize: The encoder networks e = Enc(·), the decoder networks g = Dec(·),

the source seismic input xs, the source velocity label ys, and target seismic
input xt

2: for every batch of inputs xsbatch, ysbatch, xtbatch do
3: with fixed networks parameters ê, ĝ, solve for γ in (5.10)
4: with fixed coupling γ̂ update the network parameters e and g with

ADAM [153] in (5.11)
5: end for

5.5 Experiments

5.5.1 Data Set

We create two data sets. First, a plain data set is created for the source model to train

on. The plain data set is simulated with three-layers plain subsurface. Each velocity model

contains 100 × 100 grid points. However, in order to increase the training speed and save

115

Figure 5.6: The noisy data set (top) and their corresponding subsurface models (bottom)

the storage space for the model, we resize the velocity model to 40×40 before feeding them

into the deep networks. The difference among different velocity maps in the plain data set

is the depth of each layer. In our simulation, the deeper in the subsurface, the higher the

velocity. Then, based on the plain data set, we create a noisy data set with every boundary

containing a certain slope. Generally, the noisy data set is more challenging to reconstruct

since each slope has a random angle although in a certain range. Thus, the noisy data set

contains more information for the learning model to infer.

By implementing forward modeling on velocity maps, we get corresponding seismic

measurements (as training inputs) which are collections of synthetic seismograms. For

both the plain data set and the noisy data set, we put one source in the middle along the

horizontal axis. The receivers are evenly and symmetrically distributed on both sides of

the source. The receiver interval is 10 m. We use a Ricker wavelet with a peak frequency

of 10 Hz as the source time function. A staggered-grid finite-difference scheme with a

perfectly matched layered absorbing boundary condition is utilized to generate synthetic

seismic reflection data. The velocity maps and corresponding seismic data in the plain data

set and noisy data set are demonstrated in Figs 5.5 and 5.6, respectively.

5.5.2 Experiment Settings

For training the source and target model, we collect 2, 000 data samples for training

and 50 for testing in the plain data set and the noisy data set, respectively. As aforemen-

116

tioned, in order to reduce the computational complexity and computing time, we resize the

original seismic data input from 100 × 100 to 40 × 40. To further reduce the input di-

mension, we normalize the input and cast it into grayscale images. For training the source

model, we set the training batch size of 16 and only fetch data samples from the plain data

set. Thus, the input size for training the source model is (40, 40, 1, 16). After several con-

volution operations in the encoder networks, we get a flattened embedding vector with size

(400, 16). The decoder networks translate the embedding vector to the velocity map with

the size back to (40, 40). We train the source model for 15 epochs. After training the source

model, we start to train the target model from the pretrained checkpoint. While training the

target model, the data samples from both the plain data set and the noisy data set will be fed

into the networks. The difference is that we take both input and the label from the plain data

set but only input from the noisy data set. Since the target model will be trained and tested

on the noisy data, this makes the task unsupervised learning. For how the input tensors are

flowing inside the networks, please refer to Fig. 5.4. We use ADAM optimizer [153] to

train the networks with the initial learning rate set as 1e-4. The deep networks have exactly

14, 923 trainable parameters trained end to end without other internal transformations. The

networks training is accomplished with a single Nvidia GTX 1070 GPU. The development

platform is TensorFlow Keras.

5.5.3 Evaluation Methods

The evaluation methods used in this study mainly consist of two components: the

qualitative comparison and the quantitative comparison.

• Qualitative Comparison: Basically, qualitative comparison demonstrates the visual

difference between two sets of velocity maps which are the reconstruction inference.

Since velocity maps generally use several blocks of color to represent different layers

(due to different wave propagation velocity inside the certain layer), the difference

117

s_pred

s_true

t_true

t_pred

(I) (II) (III) (IV) (V)

Figure 5.7: Groudtruth subsurface model and the inverted subsurface model generated by
the source model.

can be easily told by observing the distribution of the colored blocks. Moreover, this

comparison method can be investigated in detail to compare the misfit degree of the

interface and the velocity value which is indicated by the RGB value of the heat map.

• Quantitative Comparison: The numeric approach is utilized in quantitative compar-

ison. The reconstruction task is regarded as a regression task in the image domain.

The commonly used metrics for the regression task are mean squared error (MSE) and

mean absolute error (MAE). The MSE and MAE are denoted as 1
n

∑
i (vi − vi

∗)2 and

1
n

∑
i |vi − vi

∗|, respectively.

5.5.4 Qualitative Comparison

Firstly, we demonstrate the qualitative comparison of the source model on the plain

data set and the noisy data set, which is shown in Fig. 5.7. The columns (I) - (V) repre-

sent five different testing samples that are randomly drawn from the testing sets. The rows

118

“s true” and “t true” represent the label samples from the plain data set and the noisy data

set, respectively. For a certain column, we call it one type of data sample since the differ-

ence between the one from the plain data set and the one from the noisy data set is only the

slope of the interface. However, the depth of the interface is close which makes the adap-

tation easier. The rows “s pred” and “t pred” represent the reconstruction from the source

model by feeding the seismic data samples from the plain data set and the noisy data set,

respectively. By looking into all the prediction results on the data samples from the plain

data set, we are able to say the source model can reconstruct the velocity maps well, espe-

cially the depth of the interface. Referring to row “s pred”, we can observe some blurred

pixels and some undulation, but in general, the source model works on the plain data set.

Referring to row “t pred”, we have two observations. On one side, the source model has

some generalization capability that it can predict some of the slopes in the noisy data set

(e.g., row “t pred” column “(I)” and row “t pred” column “(II)”). On the other side, there

is still a difficulty for the source model to predict the ladders on the interface, which is the

main pattern difference between the plain data set and the noisy data set. This observation

demonstrates the lack of interpretation on the data set which the source model has never

“seen” before.

Secondly, we compare the target model performance with the source model using

qualitative comparison. Similar to the demonstration of the source model reconstruction,

we randomly draw another five data samples from the noisy testing data set. Since the

noisy data set is simulated on the basis of the plain data set, the comparison should be

more focused on if the model has grasped the pattern difference between the plain data

set and the noisy data set. Generally speaking, the source model can also work to some

extent on the noisy data set, which we already discussed in the last paragraph. However,

we can investigate the details in the velocity maps shown in Fig. 5.8. Rows (I) - (V)

represent five different testing data samples. Columns (a), (b), (c), and (d) represent the

label, source model prediction, target model prediction, and the velocity profile comparison

119

(a) (b) (c) (d)

(I)

(II)

(III)

(IV)

(V)

Figure 5.8: Qualitative comparison between the source model and target model on the noisy
data set.

between the former three velocity maps. With a general observation, we know that both

the source model and target model can successfully invert the velocity model. However,

after zooming in and looking at the details on the interface of the subsurface layer, we can

indicate that the target model presents a better reconstruction in terms of the subsurface

structure and geological interface. For example, the velocity map label in the row (III)

contains three obvious ladders on the interface. The source model prediction (in column

(II)) barely presents this difference with the plain data, the reason for which is apparent

that the source model never learns on the noisy data set. On the contrary, the target model

120

Table 5.2: Numeric Results of the Source Model and Target Model Inversion.

Data Set Plain Test Data Set Noisy Test Data Set

model name
metric

MSE MAE MSE MAE

Source Model 0.002137 0.010602 0.01385 0.02461
Target Model 0.002659 0.010250 0.00728 0.01726

(a) (b)

Figure 5.9: The training loss of the source and target model.

prediction (in column (III)) grasps this pattern difference and generates a somewhat blurred

but obvious “ladder” pattern.

From the velocity profiles at the vertical central axis shown in column (d), we can find

that the target model is better at the velocity recovery than the source model in most cases.

The curve by the target model is almost identical to the groundtruth while the source model

makes some minor bias more often. We can see that there is one sample that source model

has better performance than the target model, which might be resulted from insufficient

training.

5.5.5 Quantitative Comparison

In Table 5.2, we show the numeric results of source model inversion and target model

inversion by using MSE and MAE on both plain test set and noisy data set. One general

observation is that the source model works much better on the plain data set than the noisy

data set with MSE is 20 times larger and MAE is twice after the model migration. Another

121

observation is that the target model basically accomplishes in terms of 1) preserving the

ability of generalization on the plain data set, and 2) achieving progress on the noisy data

set while no supervised learning involved. Firstly, we can focus on the results on the plain

test data set. For both MSE and MAE measurements, the target model can achieve almost

the same performance without much degradation. The error increasing is totally acceptable.

Secondly, we observe that the target model shows the success of adaptation to the noisy data

set with an improvement in both MSE and MAE. The numeric results show this adaptation

scheme for transporting source domain knowledge to the target domain.

5.5.6 Networks Mechanism Analysis

The Enc-Dec JDOT basically designs a custom loss function in a way that the knowl-

edge of training the source model can be migrated to the target model by the OT solver

recalling in Fig. 5.4. Understanding the training process is crucial for figuring out what is

going on in the training procedure as well as a potential future improvement. In Fig. 5.9,

we demonstrate the source model and target model loss curves as well as the loss com-

ponents inside the total target model loss during training. From Fig. 5.9(a), we find that

the convergence behavior for the source and target model is similar at first several epochs.

When the loss curves are stabilizing, there is more undulation in the target model curve

than the source model curve. After this observation, we move on to the subfigure (b). We

find that there are also undulations for the alignment loss though in a relatively small range.

However, the small vibration in the intermediate layer might cause a larger variance in the

regression outputs. This observation might lead to a further research topic: how to choose

the intermediate layer (or layers) to guarantee a more stable training.

122

5.6 Conclusions

In this chapter, we investigate the domain adaptation problem in deep learning-based

seismic inversion. We found that few researchers have a focus on this topic which is yet of

significant demand in the oil-an-gas industry. In light of the lack of research on this specific

topic, we propose to utilize optimal transport as the tool to align the source domain and tar-

get domain for deep networks training, which is named Enc-Dec-JDOT. In our experiment,

the alignment of the intermediate layer feature along with the output alignment assists the

target model to achieve progress on a noisy data set which the deep networks have not ex-

ploited before. The key component of the proposed scheme is the design of a custom loss

function which incorporates the distance between the source domain and target domain in

the output layer with the distance in the intermediate layer. The distance is evaluated and

optimized by the optimal transport algorithm, which is simply a linear programming prob-

lem. The parameters in optimal transport work as hyperparameters for assistance in training

the deep networks. To validate the proposed framework, we create two self-proposed data

sets to compare the performance of the source model and the target model. The experiment

results show the target model can achieve progress on an unexploited data set. Our study

paves a promising way for any pre-trained deep learning-based model to adapt to similar

but unexploited data while reducing time and labor costs on obtaining training labels.

123

Chapter 6

Conclusion and Future Works

6.1 Conclusion Remarks

In this dissertation, we have successfully applied machine learning to various types

of industrial applications with latent space representation and manipulation. Based on the

results of the works in this dissertation, we can find the potential of utilizing latent space

for deep analysis and insightful understanding of different application scenarios. First, we

investigate a machine learning solution with latent space representation for a vehicle relay

problem. We propose a deep reinforcement learning framework in the LTE-V scenario for

virtually selecting the vehicle relay node. Specifically, the structure of the deep network

follows the deep Q-networks scheme. We build two deep Q-networks working as the actor-

critic mechanism, which helps a more stable training. For both actor networks and critic

networks, a few convolution layers are stacked for a latent space representation. Then, a

fully-connected layer is built to map the latent space into the Q-value space. Q values rep-

resent the value of the action under a certain state. The Deep Q-networks agent will move

the virtual relay according to the Q-value. Each move arises a reward (or punishment). We

train the agent with this feedbacks from the environment. With the proposed methods, we

can achieve an improvement in the relay performance by comparing it with other baseline

methods.

Secondly, we apply the machine learning model with latent space representation to

classifying cutting volume into different levels. In this model, we import well-preprocessed

video frames in a real-time manner streaming. By implementing automatic ROI selection,

we are able to let the model focus on a certain location in the video frames where cuttings

exist. We propose a model named VGG16-adaptation for solving the cutting volume clas-

sification task. By the above preprocessing and model adaptation, we successfully convert

124

the raw input into the latent space which contains the information needed for the classi-

fier. The evaluation results validate that the capability of our proposed model for delivering

promising results in a real-time manner.

Thirdly, we implement latent space manipulation for generating synthetic image pat-

terns to finally assist the invasive grass detection. In this task, the raw input is the image

set obtained by UAVs, which is not suitable for processing directly by the learning model.

Thus, we crop the large images into small patches and let model work on small patches first,

then merge them back into large full-size images. In practice, the volume of the data set is

limited. The data origins from several national parks, but still not enough to fulfill a model

with the best capability. Inspired by this limitation, we propose to use generative models

to generate synthetic data patterns. By experiments, we find out this data augmentation

works best when the synthetic patterns are of high fidelity. Thus, we convert the original

continuous latent space into a discrete latent space which contains more information about

the synthetic generation. We blend these high-fidelity synthetic grass patterns back into

the original background images. By this manipulation, we find out this data augmentation

scheme with discrete latent space representation helps the detection model best.

Finally, we bring the latent space manipulation technique for a domain adaptation

problem in deep learning-based seismic data inversion. The learning models in the seismic

data inversion scenario often encounter different data set by exploring different reservoirs.

The demand exists that we need the model which has been well-trained on the original

data set to be migrated to the data set we never saw before. To achieve so, we need a

domain adaptation technique to help reduce the gap between the source domain and the

target domain. We propose a learning framework that adopts optimal transport as a tool for

domain adaptation. This framework jointly learns the inputs, labels, and embedded vectors

in the latent space, which are all considered as components of the final loss function. The

finding in the experiment is the adapted target model can generate the desired velocity

output without feeding labels in the target domain. Meanwhile, the target model can also

125

work well on the source domain without forgetting the knowledge previously learned. On

the other hand, the source model trained on the source data set works well only on the

source domain, which shows the feasibility of the adaptation of the target model.

6.2 Future Works

• Future improvement on deep domain adaptation: Deep domain adaptation [154] is

an active research area today and it will bring a significant improvement in the gen-

eralization capability of the learning models. From the experiment of our work, we

still find several limitations and unknown knowledge which can be further explored:

– Define the task relatedness: In our study, we find out that the source domain

and target domain should be well-designed in order to be adapted. The domain

adaptation technique will not work on ill-defined data sets. The standard or at

least a relative general rule to measure the task relatedness should be further

studied.

– From one-step adaptation to multi-steps adaptation: In our study, we only im-

plement a one-step adaptation, which works on a simple scenario where the

source data is adapted to a simple noisy data set. We can further investigate a

more complex scenario where the adaptation gap is larger. In a more complex

scenario, a multi-steps mechanism may be needed to get the knowledge from

multiple pre-trained models.

– Achieve better performance on regression: the deep domain adaptation is mostly

studied on a classification related to a deep discriminative model. When it

comes to the regression problem, we have to consider the discrepancy to be

obtained from a more complex manifold which makes the model update more

difficult. We have to face the challenge that we might need to convert the origi-

126

nal large dimension (e.g., an image scale) to a smaller dimension by using some

transformation such as discriminator networks in GAN.

• Future exploration for solving unlabeled seismic data inversion by self-supervised

learning: Self-supervised learning [155] [156] is regarded as a type of unsupervised

learning since it needs no label but extracts “labels” implicitly from the input itself.

The basic idea of self-supervised learning contains two main procedures. First, we

need a pretext model to enrich the latent space representation. Second, from the

enriched representation, we train a downstream model for our final goal. This two-

steps process is similar to the transfer learning mechanism. For our specific problem,

we can detail our potential solution to answer the following concerns:

– Choose a pretext task: Since the overall workflow is a two-steps procedure, the

quality of the upstream process is fundamental to the performance of the final

goal. Thus, it requires us to further investigate the insight physics of the seismic

data. For example, the seismic data is in the time domain whose sequence can be

learned first. The time-series information might help to construct the structural

contents inside the subsurface model.

– Fine-tuning for the downstream task: This phase should be considered as a

transfer learning process, which requires much carefulness that the pretext model

weights are not getting hurt. There are a few techniques that can be tried for a

stable and effective transfer of the pretext weights to downstream, such as grad-

ual unfreezing, discriminative learning rates, and one-cycle training, etc.

– Consistency loss for multiple pretext representation: Same as the domain adap-

tation, we might incorporate multiple pretext models so that a more meaningful

and generalized latent space representation can be learned for the downstream.

For multiple pretext models, we hope the intermediate outputs should contain

similarity in the features. We can add a consistency loss to measure the distance

127

between those intermediate outputs so as to guarantee those models are trained

in the same direction.

128

References

[1] C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine learning, vol. 20,

no. 3, pp. 273–297, 1995.

[2] P. Krähenbühl and V. Koltun, “Efficient Inference in Fully Connected CRFs with

Gaussian Edge Potentials,” in Advances in Neural Information Processing Systems

24, J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger,

Eds., Granada, Spain, Dec. 2011.

[3] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and

P. Torr, “Conditional Random Fields as Recurrent Neural Networks,” in International

Conference on Computer Vision, Santiago, Chile, Dec. 2015.

[4] I. J. Goodfellow, “NIPS 2016 tutorial: Generative Adversarial Networks,” CoRR,

vol. abs/1701.00160, 2017. [Online]. Available: http://arxiv.org/abs/1701.00160

[5] D. H. Ballard, “Modular Learning in Neural Networks,” in Proceedings of the Sixth

National Conference on Artificial Intelligence, Seattle, WA, Jul. 1987.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing Atari with Deep Reinforcement Learning,” arXiv preprint

arXiv:1312.5602, 2013.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-Level Con-

trol Through Deep Reinforcement Learning,” Nature, vol. 518, no. 7540, pp. 529–

533, Jan. 2015.

[8] H. Huang, Z. Li, R. He, Z. Sun, and T. Tan, “IntroVAE: Introspective Variational

Autoencoders for Photographic Image Synthesis,” in Proceedings of the 32nd Inter-

129

http://arxiv.org/abs/1701.00160

national Conference on Neural Information Processing Systems, Montréal, Canada,

Dec. 2018.

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,

pp. 436–444, Feb. 2015.

[10] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press

Cambridge, 1998.

[11] B. B. Damodaran, B. Kellenberger, R. Flamary, D. Tuia, and N. Courty, “DeepJDOT:

Deep Joint Distribution Optimal Transport for Unsupervised Domain Adaptation,”

in ECCV - 15th European Conference on Computer Vision, Munich, Germany, Sep.

2018.

[12] S. Chen, J. Hu, Y. Shi, and L. Zhao, “LTE-V: A TD-LTE-Based V2X Solution for

Future Vehicular Network,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 997–

1005, Sep. 2016.

[13] G. Araniti, C. Campolo, M. Condoluci, A. Iera, and A. Molinaro, “LTE for Vehicular

Networking: a Survey,” IEEE Communications Magazine, vol. 51, no. 5, pp. 148–

157, May 2013.

[14] N. P. Affairs, “USDOT Releases 2016 Fatal Traffic Crash Data,”

https://www.nhtsa.gov/press-releases/usdot-releases-2016-fatal-traffic-crash-data.

[15] IEEE, “IEEE standard for information technology– local and metropolitan area

networks– specific requirements– part 11: Wireless lan medium access control (mac)

and physical layer (phy) specifications amendment 6: Wireless access in vehicular

environments,” IEEE Std 802.11p-2010, pp. 1–51, Jul. 2010.

130

[16] C. H. Lee, K. G. Lim, B. L. Chua, R. K. Y. Chin, and K. T. K. Teo, “Progressing

toward urban topology and mobility trace for vehicular ad hoc network (vanet),” in

IEEE Conference on Open Systems (ICOS), Langkawi, Malaysia, Oct. 2016.

[17] M. Amadeo, C. Campolo, and A. Molinaro, “Enhancing IEEE 802.11p/wave to pro-

vide infotainment applications in vanets,” Ad Hoc Networks, vol. 10, no. 2, pp. 253

– 269, Mar. 2012.

[18] Z. Hameed Mir and F. Filali, “LTE and IEEE 802.11p for vehicular networking: a

performance evaluation,” Journal on Wireless Communications and Networking, vol.

2014, no. 1, pp. 1–15, May 2014.

[19] N. H. T. S. Administration., “2012 Motor Vehicle Crashes: Overview,” https:

//crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811856.

[20] S. Zuther and K. Dietmayer, “360 ◦ environment sensing and signal processing for

an automotive pre-crash application,” in IEEE International Conference on Vehicular

Electronics and Safety (ICVES), Pune, India, Nov. 2009.

[21] A. Buchenscheit, F. Schaub, F. Kargl, and M. Weber, “A vanet-based emergency

vehicle warning system,” in IEEE Vehicular Networking Conference (VNC), Tokyo,

Japan, Oct. 2009.

[22] V. Milanés, S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe, and M. Naka-

mura, “Cooperative adaptive cruise control in real traffic situations,” IEEE Transac-

tions on Intelligent Transportation Systems, vol. 15, no. 1, pp. 296–305, Feb. 2014.

[23] C. Desjardins and B. Chaib-draa, “Cooperative adaptive cruise control: A reinforce-

ment learning approach,” IEEE Transactions on Intelligent Transportation Systems,

vol. 12, no. 4, pp. 1248–1260, Dec. 2011.

131

 https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811856
 https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811856

[24] J. Fietkau, “A street traffic simulation example project for MPI-based parallel com-

puting in Python,” https://github.com/jfietkau/Streets4MPI.

[25] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning with Double

Q-learning,” CoRR, vol. abs/1509.06461, 2015.

[26] D. Tian, J. Zhou, Z. Sheng, M. Chen, Q. Ni, and V. C. M. Leung, “Self-Organized

Relay Selection for Cooperative Transmission in Vehicular Ad-hoc Networks,” IEEE

Transactions on Vehicular Technology, vol. 66, no. 10, pp. 9534–9549, Oct. 2017.

[27] M. F. Feteiha and H. S. Hassanein, “Enabling Cooperative Relaying VANET Clouds

Over LTE-A Networks,” IEEE Transactions on Vehicular Technology, vol. 64, no. 4,

pp. 1468–1479, Apr. 2015.

[28] W. Song and X. Tao, “Analysis of a Location-Aware Probabilistic Strategy for Op-

portunistic Vehicle-to-Vehicle Relay,” in 2017 IEEE 86th Vehicular Technology

Conference (VTC-Fall), Toronto, Canada, Sep. 2017.

[29] D. Wang, P. Ren, Q. Du, L. Sun, and Y. Wang, “Security Provisioning for MISO Ve-

hicular Relay Networks via Cooperative Jamming and Signal Superposition,” IEEE

Transactions on Vehicular Technology, vol. 66, no. 12, pp. 10 732–10 747, Dec.

2017.

[30] M. Seyfi, S. Muhaidat, J. Liang, and M. Uysal, “Relay Selection in Dual-Hop Vehic-

ular Networks,” IEEE Signal Processing Letters, vol. 18, no. 2, pp. 134–137, Feb.

2011.

[31] X. Tang, P. Ren, and Z. Han, “Hierarchical Competition as Equilibrium Program

With Equilibrium Constraints Towards Security-Enhanced Wireless Networks,”

IEEE Journal on Selected Areas in Communications, vol. 36, no. 7, pp. 1564–1578,

Jul. 2018.

132

 https://github.com/jfietkau/Streets4MPI

[32] Q. Du, H. Song, and X. Zhu, “Social-Feature Enabled Communications Among De-

vices Toward the Smart IoT Community,” IEEE Communications Magazine, vol. 57,

no. 1, pp. 130–137, Jan. 2019.

[33] L. Ma, X. Huo, X. Zhao, and G. D. Zong, “Observer-based adaptive neural track-

ing control for output-constrained switched MIMO nonstrict-feedback nonlinear sys-

tems with unknown dead zone,” Nonlinear Dynamics, vol. 99, no. 2, pp. 1019–1036,

Jan. 2020.

[34] Y. Ge, S. Wen, Y. H. Ang, and Y. C. Liang, “Optimal Relay Selection in IEEE 802.16j

Multihop Relay Vehicular Networks,” IEEE Transactions on Vehicular Technology,

vol. 59, no. 5, pp. 2198–2206, Jun. 2010.

[35] R. Chai, Y. Qin, S. Peng, and Q. Chen, “Transmission Performance Evaluation and

Optimal Selection of Relay Vehicles in VANETs,” in IEEE Wireless Communica-

tions and Networking Conference (WCNC), San Francisco, CA, Mar. 2017.

[36] B. Yang, X. Sun, R. Chai, L. Cai, and X. Yang, “Game Theory based relay vehicle

selection for VANET,” in IEEE 24th Annual International Symposium on Personal,

Indoor, and Mobile Radio Communications (PIMRC), London, UK, Sep. 2013.

[37] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing sys-

tems, Lake Tahoe, Nevada, Dec. 2012.

[38] X. Ma, Z. Tao, Y. Wang, H. Yu, and Y. Wang, “Long short-term memory neural

network for traffic speed prediction using remote microwave sensor data,” Trans-

portation Research Part C: Emerging Technologies, vol. 54, no. 0, pp. 187 – 197,

May 2015.

133

[39] X. Xiong, J. Wang, F. Zhang, and K. Li, “Combining Deep Reinforcement Learning

and Safety Based Control for Autonomous Driving,” CoRR, vol. abs/1612.00147,

2016.

[40] H. V. Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning with Double

Q-Learning,” in Proceedings of the Thirtieth AAAI Conference on Artificial Intelli-

gence. Phoenix, Arizona: AAAI Press, Feb. 2016.

[41] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO–simulation of ur-

ban mobility: an overview,” in Proceedings of SIMUL, The Third International Con-

ference on Advances in System Simulation, Barcelona, Spain, Oct. 2011.

[42] O. Foundation, “OpenStreetMap,” https://www.openstreetmap.org.

[43] M. Rondinone, J. Gozalvez, J. Leguay, and V. Conan, “Exploiting context informa-

tion for V2X dissemination in vehicular networks,” in IEEE 14th International Sym-

posium on ”A World of Wireless, Mobile and Multimedia Networks” (WoWMoM),

Madrid, Spain, Jun. 2013.

[44] X. Zhu, Y. Li, D. Jin, and J. Lu, “Contact-Aware Optimal Resource Allocation for

Mobile Data Offloading in Opportunistic Vehicular Networks,” IEEE Transactions

on Vehicular Technology, vol. 66, no. 8, pp. 7384–7399, Aug. 2017.

[45] C. Ye, P. Wang, C. Wang, and F. Liu, “Mobility management for LTE-based hetero-

geneous vehicular network in V2X scenario,” in 2nd IEEE International Conference

on Computer and Communications (ICCC), Chengdu, China, Oct. 2016.

[46] K. Lee, Y. Yi, J. Jeong, H. Won, I. Rhee, and S. Chong, “Max-Contribution: On

Optimal Resource Allocation in Delay Tolerant Networks,” in IEEE INFOCOM,

San Diego, CA, Mar. 2010.

134

 https://www.openstreetmap.org

[47] H. Zhu, L. Fu, G. Xue, Y. Zhu, M. Li, and L. M. Ni, “Recognizing Exponential

Inter-Contact Time in VANETs,” in IEEE INFOCOM, San Diego, CA, USA, Mar.

2010.

[48] J. Zhou, D. Gao, and D. Zhang, “Moving Vehicle Detection for Automatic Traffic

Monitoring,” IEEE Transactions on Vehicular Technology, vol. 56, no. 1, pp. 51–59,

Jan. 2007.

[49] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, “Understanding Deep Neural Net-

works with Rectified Linear Units,” in International Conference on Learning Repre-

sentations, Vancouver, Canada, Apr. 2018.

[50] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and

D. Wierstra, “Continuous control with deep reinforcement learning,” CoRR, vol.

abs/1509.02971, 2015.

[51] W. A. Graves and M. D. Rowe, “Down hole cuttings analysis,” Nov. 2014, uS Patent

App. 14/363,264.

[52] V. Parmeshwar, J. Orban, and B. B. Arefi, “Shale shaker imaging system,” Jun. 8

2017, uS Patent App. 14/982,510.

[53] P. A. Torrione, “System and method for estimating cutting volumes on shale shak-

ers,” Mar. 2017, uS Patent App. 15/251,940.

[54] J. Dahl, C. J. Morgan, and M. E. Gillen, “In-situ downhole cuttings analysis,” Apr. 11

2017, uS Patent 9,617,851.

[55] I. R. Guilherme, A. N. Marana, J. P. Papa, G. Chiachia, L. C. Afonso, K. Miura,

M. V. Ferreira, and F. Torres, “Petroleum well drilling monitoring through cutting

image analysis and artificial intelligence techniques,” Engineering Applications of

Artificial Intelligence, vol. 24, no. 1, pp. 201–207, 2011.

135

[56] A. N. Marana, G. Chiachia, I. R. Guilherme, J. P. Papa, K. Miura, M. V. Ferreira,

and F. Torres, “An intelligent system for petroleum well drilling cutting analysis,” in

2009 International Conference on Adaptive and Intelligent Systems. IEEE, 2009,

pp. 37–42.

[57] N. Dhanachandra, K. Manglem, and Y. J. Chanu, “Image segmentation using K-

means clustering algorithm and subtractive clustering algorithm,” Procedia Com-

puter Science, vol. 54, pp. 764–771, 2015.

[58] L. Yang, S. Yang, P. Jin, and R. Zhang, “Semi-supervised hyperspectral image clas-

sification using spatio-spectral Laplacian support vector machine,” IEEE Geoscience

and Remote Sensing Letters, vol. 11, no. 3, pp. 651–655, 2013.

[59] P. Du, A. Samat, B. Waske, S. Liu, and Z. Li, “Random forest and rotation forest

for fully polarized SAR image classification using polarimetric and spatial features,”

ISPRS Journal of Photogrammetry and Remote Sensing, vol. 105, pp. 38–53, 2015.

[60] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[61] S. Routray, A. K. Ray, and C. Mishra, “Analysis of various image feature extraction

methods against noisy image: SIFT, SURF and HOG,” in 2017 Second International

Conference on Electrical, Computer and Communication Technologies (ICECCT).

IEEE, 2017, pp. 1–5.

[62] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,

pp. 436–444, 2015.

[63] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing sys-

tems, 2012, pp. 1097–1105.

136

[64] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[65] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detec-

tion with region proposal networks,” in Advances in neural information processing

systems, 2015, pp. 91–99.

[66] F. L.-F. Wauthier, “Learning from Subsampled Data: Active and Randomized Strate-

gies,” Ph.D. dissertation, UC Berkeley, 2013.

[67] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The missing

ingredient for fast stylization,” arXiv preprint arXiv:1607.08022, 2016.

[68] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training

by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[69] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, “Understanding Deep Neural

Networks with Rectified Linear Units,” CoRR, vol. abs/1611.01491, 2016. [Online].

Available: http://arxiv.org/abs/1611.01491

[70] L. Dogaru, “The Importance of Environmental Protection and Sustainable

Development,” Procedia - Social and Behavioral Sciences, vol. 93, pp. 1344 –

1348, Oct. 2013. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S1877042813034861

[71] J. Sandino, F. Gonzalez, K. Mengersen, and K. J. Gaston, “UAVs and Machine

Learning Revolutionising Invasive Grass and Vegetation Surveys in Remote Arid

Lands,” Sensors, vol. 18, no. 2, pp. 1–13, Feb. 2018. [Online]. Available:

https://www.mdpi.com/1424-8220/18/2/605

137

http://arxiv.org/abs/1611.01491
http://www.sciencedirect.com/science/article/pii/S1877042813034861
http://www.sciencedirect.com/science/article/pii/S1877042813034861
https://www.mdpi.com/1424-8220/18/2/605

[72] A. K. Maurya, D. Singh, and K. P. Singh, “Development of Fusion Approach for Es-

timation of Vegetation Fraction Cover with Drone and Sentinel-2 Data,” in IEEE In-

ternational Geoscience and Remote Sensing Symposium, Valencia, Spain, Jul. 2018.

[73] T. Kumpumäki and T. Lipping, “Effects of shadow correction on vegetation and

land cover classification from high resolution aerial images,” in IEEE International

Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, Jul. 2016.

[74] L. C. G. David and A. H. Ballado, “Vegetation Indices and Textures in Object-Based

Weed Detection from UAV Imagery,” in IEEE International Conference on Control

System, Computing and Engineering (ICCSCE), Penang, Malaysia, Nov. 2016.

[75] J. Sandino and F. Gonzalez, “A Novel Approach for Invasive Weeds and Vegeta-

tion Surveys Using UAS and Artificial Intelligence,” in International Conference

on Methods Models in Automation Robotics (MMAR), Miedzyzdroje, Poland, Aug.

2018.

[76] G. J. Hay and G. Castilla, “Geographic Object-Based Image Analysis (GEOBIA): A

New Name for a New Discipline,” Lecture Notes in Geoinformation and Cartogra-

phy, pp. 75–89, Jan. 2008.

[77] L. Pibre, M. Chaumon, G. Subsol, D. Lenco, and M. Derras, “How to Deal with

Multi-Source Data for Tree Detection Based on Deep Learning,” in IEEE Global

Conference on Signal and Information Processing (GlobalSIP), Montreal, Canada,

Nov. 2017.

[78] W. Li, H. Fu, and L. Yu, “Deep Convolutional Neural Network Based Large-Scale

Oil Palm Tree Detection for High-Resolution Remote Sensing Images,” in IEEE

International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth,

Texas, Jul. 2017.

138

[79] M. Dahmane, S. Foucher, M. Beaulieu, F. Riendeau, Y. Bouroubi, and M. Benoit,

“Object Detection in Pleiades Images Using Deep Features,” in IEEE International

Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, Jul. 2016.

[80] Y. Bengio, A. Courville, and P. Vincent, “Representation Learning: A Review and

New Perspectives,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[81] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional Networks and Applica-

tions in Vision,” in Proceedings of 2010 IEEE International Symposium on Circuits

and Systems, Paris, France, May 2010.

[82] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object Detection with Deep Learning:

A Review,” arXiv preprint arXiv:1807.05511, 2018.

[83] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Lecun, “Overfeat:

Integrated Recognition, Localization and Detection Using Convolutional Networks,”

in International Conference on Learning Representations (ICLR2014), CBLS, Banff,

Canada, Apr. 2014.

[84] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks,” Advances in Neural Information Pro-

cessing Systems, vol. 39, no. 6, pp. 1137–1149, Jun. 2016.

[85] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified,

Real-Time Object Detection,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, Las Vegas, NV, Jun. 2016.

[86] S. Ren, K. He, R. Girshick, and J. Sun, “Applying Faster R-CNN for Object De-

tection on Malaria Images,” in IEEE Conference on Computer Vision and Pattern

Recognition Workshops(CVPRW), Honolulu, HI, Jul. 2017.

139

[87] D. Ribli, A. Horváth, Z. Unger, P. Pollner, and I. Csabai, “Detecting and Classifying

Lesions in Mammograms with Deep Learning,” Scientific Reports, vol. 8, no. 1, pp.

1–7, Mar. 2018.

[88] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recog-

nition,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

Las Vegas, NV, Jun. 2016.

[89] K. Chen, X. Zhou, W. Xiang, and Q. Zhou, “Data Augmentation Using GAN for

Multi-Domain Network-Based Human Tracking,” in IEEE Visual Communications

and Image Processing (VCIP), Taichung, Taiwan, Dec. 2018.

[90] G. Wang, W. Kang, Q. Wu, Z. Wang, and J. Gao, “Generative Adversarial Net-

work (GAN) Based Data Augmentation for Palmprint Recognition,” in Digital Im-

age Computing: Techniques and Applications (DICTA), Canberra, Australia, Dec.

2018.

[91] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Transactions on

Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[92] A. Mikołajczyk and M. Grochowski, “Data Augmentation for Improving Deep

Learning in Image Classification Problem,” in International Interdisciplinary PhD

Workshop (IIPhDW), Sczcecin, Poland, May 2018.

[93] G. E. Hinton and R. R. Salakhutdinov, “Reducing the Dimensionality of Data with

Neural Networks,” Science, vol. 313, no. 5786, pp. 504–507, Jul. 2006. [Online].

Available: https://science.sciencemag.org/content/313/5786/504

[94] G. E. Hinton, A. Krizhevsky, and S. Wang, “Transforming Auto-Encoders,” in

ICANN, Heidelberg, Germany, Jun. 2011, pp. 44–51.

140

https://science.sciencemag.org/content/313/5786/504

[95] J. Li, A. Madry, J. Peebles, and L. Schmidt, “On the Limitations of First-Order

Approximation in GAN Dynamics,” in ICML, Stockholm, Sweden, Jul. 2018.

[96] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther, “Autoencoding

Beyond Pixels Using a Learned Similarity Metric,” in Proceedings of the 33rd

International Conference on International Conference on Machine Learning,

New York, NY, Jun. 2016. [Online]. Available: http://dl.acm.org/citation.cfm?id=

3045390.3045555

[97] J. Lucas, G. Tucker, R. Grosse, and M. Norouzi, “Understanding posterior collapse

in generative latent variable models,” in ICLR 2019 Workshop, New Orleans, LA,

May 2019.

[98] A. van den Oord, O. Vinyals, and K. Kavukcuoglu, “Neural Discrete Representation

Learning,” in Proceedings of the 31st International Conference on Neural Informa-

tion Processing Systems, Long Beach, CA, Dec. 2017.

[99] D. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” in International

Conference on Learning Representations (ICLR), Banff, Canada, Apr. 2014.

[100] J. Mairal, J. Ponce, G. Sapiro, A. Zisserman, and F. R. Bach, “Supervised Dictionary

Learning,” in NIPS, Vancouver, Canada, Dec. 2008.

[101] Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or Propagating

Gradients through Stochastic Neurons for Conditional Computation,” CoRR, vol.

abs/1308.3432, 2013. [Online]. Available: http://arxiv.org/abs/1308.3432

[102] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel Recurrent

Neural Networks,” CoRR, vol. abs/1601.06759, 2016. [Online]. Available:

http://arxiv.org/abs/1601.06759

141

http://dl.acm.org/citation.cfm?id=3045390.3045555
http://dl.acm.org/citation.cfm?id=3045390.3045555
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1601.06759

[103] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in IEEE Interna-

tional Conference on Computer Vision (ICCV), Venice, Italy, Oct. 2017.

[104] G. TensorFlow., “How to Retrain an Image Classifier for New Categories,” https:

//www.tensorflow.org/hub/tutorials/image retraining.

[105] Z. Huang, Z. Pan, and B. Lei, “Transfer Learning with Deep Convolutional

Neural Network for SAR Target Classification with Limited Labeled Data,”

Remote Sensing, vol. 9, no. 9, pp. 1–21, Aug. 2017. [Online]. Available:

http://www.mdpi.com/2072-4292/9/9/907

[106] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and

C. L. Zitnick, “Microsoft COCO: Common Objects in Context,” in The European

Conference on Computer Vision (ECCV), Zurich, Switzerland, Sep. 2014.

[107] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs

Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium,”

in Conference on Neural Information Processing Systems (NIPS), Long Beach, CA,

Dec. 2017.

[108] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-

han, V. Vanhoucke, and A. Rabinovich, “Going Deeper with Convolutions,” in IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, Jun.

2015.

[109] P. Soupios, I. Akca, P. Mpogiatzis, A. T. Basokur, and C. Papazachos,

“Applications of hybrid genetic algorithms in seismic tomography,” Journal of

Applied Geophysics, vol. 75, no. 3, pp. 479 – 489, Nov. 2011. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0926985111001790

142

https://www.tensorflow.org/hub/tutorials/image_retraining
https://www.tensorflow.org/hub/tutorials/image_retraining
http://www.mdpi.com/2072-4292/9/9/907
http://www.sciencedirect.com/science/article/pii/S0926985111001790

[110] Q. Guo, H. Zhang, F. Han, and Z. Shang, “Prestack Seismic Inversion Based on

Anisotropic Markov Random Field,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 56, no. 2, pp. 1069–1079, Feb. 2018.

[111] Z. Gao, Z. Pan, C. Zuo, J. Gao, and Z. Xu, “An Optimized Deep Network Rep-

resentation of Multimutation Differential Evolution and its Application in Seismic

Inversion,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 7,

pp. 4720–4734, Jul. 2019.

[112] Z. Wu and T. Alkhalifah, “Simultaneous inversion of the background velocity and the

perturbation in full-waveform inversion,” GEOPHYSICS, vol. 80, no. 6, pp. R317–

R329, Sep. 2015.

[113] D. Dagnino, V. Sallarès, and C. R. Ranero, “Waveform-Preserving Processing Flow

of Multichannel Seismic Reflection Data for Adjoint-State Full-Waveform Inversion

of Ocean Thermohaline Structure,” IEEE Transactions on Geoscience and Remote

Sensing, vol. 56, no. 3, pp. 1615–1625, Nov. 2018.

[114] Y. Lin, L. Huang, and Z. Zhang, “Ultrasound waveform tomography with the

total-variation regularization for detection of small breast tumors,” in Medical

Imaging 2012: Ultrasonic Imaging, Tomography, and Therapy, J. G. Bosch

and M. M. Doyley, Eds., vol. 8320, International Society for Optics and

Photonics. San Diego, CA: SPIE, Feb. 2012, pp. 13–21. [Online]. Available:

https://doi.org/10.1117/12.910765

[115] J. Virieux and S. Operto, “An overview of full-waveform inversion in exploration

geophysics,” Geophysics, vol. 74, no. 6, p. WCC1 (online), Dec. 2009. [Online].

Available: https://hal.archives-ouvertes.fr/hal-00457989

[116] A. Guitton, G. Ayeni, and E. Dı́az, “Constrained full-waveform inversion by model

reparameterization,” GEOPHYSICS, vol. 77, no. 2, pp. R117–R127, Mar. 2012.

143

https://doi.org/10.1117/12.910765
https://hal.archives-ouvertes.fr/hal-00457989

[117] Y. Ma and D. Hale, “Quasi-newton full-waveform inversion with a projected hessian

matrix,” GEOPHYSICS, vol. 77, no. 5, pp. R207–R216, Aug. 2012.

[118] K. T. Tran, M. McVay, M. Faraone, and D. Horhota, “Sinkhole detection using 2d

full seismic waveform tomography,” GEOPHYSICS, vol. 78, no. 5, pp. R175–R183,

Aug. 2013.

[119] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,

pp. 436–444, May 2015.

[120] P. Jiang, F. Gu, Y. Wang, C. Tu, and B. Chen, “DifNet: Semantic Segmentation

by Diffusion Networks,” in Proceedings of the 32nd International Conference on

Neural Information Processing Systems, Montréal, Canada, Dec. 2018.

[121] T. Wang, M. Liu, J. Zhu, A. Tao, J. Kautz, and B. Catanzaro, “High-Resolution

Image Synthesis and Semantic Manipulation with Conditional GANs,” in 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City,

UT, Jun. 2018.

[122] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image cap-

tion generator,” in 2015 IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), Boston, MA, Oct. 2015.

[123] T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, and X. He, “AttnGAN:

Fine-Grained Text to Image Generation with Attentional Generative Adversarial Net-

works,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion, Salt Lake City, UT, Jun. 2018, pp. 1316–1324.

[124] J. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image Translation

Using Cycle-Consistent Adversarial Networks,” in 2017 IEEE International Confer-

ence on Computer Vision (ICCV), Venice, Italy, Oct. 2017.

144

[125] Z. Yi, H. Zhang, P. Tan, and M. Gong, “DualGAN: Unsupervised Dual Learning for

Image-to-Image Translation,” in IEEE International Conference on Computer Vision

(ICCV), Venice, Italy, Oct. 2017.

[126] V. Jain and S. Seung, “Natural Image Denoising with Convolutional Networks,” in

Advances in Neural Information Processing Systems 21, D. Koller, D. Schuurmans,

Y. Bengio, and L. Bottou, Eds. Vancouver, Canada: Curran Associates,

Inc., Dec. 2008, pp. 769–776. [Online]. Available: http://papers.nips.cc/paper/

3506-natural-image-denoising-with-convolutional-networks.pdf

[127] D. Eigen, D. Krishnan, and R. Fergus, “Restoring an Image Taken through a Window

Covered with Dirt or Rain,” in IEEE International Conference on Computer Vision,

Sydney, Australia, Dec. 2013.

[128] M. Araya-Polo, J. Jennings, A. Adler, and T. Dahlke, “Deep-learning tomography,”

The Leading Edge, vol. 37, no. 1, pp. 58–66, Dec. 2018.

[129] J. Kim, J. K. Lee, and K. M. Lee, “Accurate Image Super-Resolution Using Very

Deep Convolutional Networks,” in IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), Las Vegas, NV, Jun. 2016.

[130] W. Li, F. Liu, L. Jiao, and F. Hu, “Multi-scale residual reconstruction neural network

with non-local constraint,” IEEE Access, vol. 7, pp. 70 910–70 918, May 2019.

[131] K. Gregor and Y. LeCun, “Learning Fast Approximations of Sparse Coding,” in Pro-

ceedings of the 27th International Conference on International Conference on Ma-

chine Learning, ser. ICML’10. Madison, WI, USA: Omnipress, Jun. 2010.

[132] K. Zeng, J. Yu, R. Wang, C. Li, and D. Tao, “Coupled Deep Autoencoder for Single

Image Super-Resolution,” IEEE Transactions on Cybernetics, vol. 47, no. 1, pp. 27–

37, Nov. 2017.

145

http://papers.nips.cc/paper/3506-natural-image-denoising-with-convolutional-networks.pdf
http://papers.nips.cc/paper/3506-natural-image-denoising-with-convolutional-networks.pdf

[133] Y. Wu, Y. Lin, and Z. Zhou, Inversionet: Accurate and efficient seismic-waveform

inversion with convolutional neural networks, Anaheim, CA, Aug. 2018, pp. 2096–

2100.

[134] S. Li, B. Liu, Y. Ren, Y. Chen, S. Yang, Y. Wang, and P. Jiang, “Deep-Learning

Inversion of Seismic Data,” IEEE Transactions on Geoscience and Remote Sensing,

vol. 58, no. 3, pp. 2135–2149, Dec. 2020.

[135] W. Lewis and D. Vigh, “Deep learning prior models from seismic images for full-

waveform inversion,” in SEG Technical Program Expanded Abstracts 2017, Hous-

ton, TX, Sep. 2017.

[136] Richardson, Alan, “Seismic full-waveform inversion using deep learning tools and

techniques,” 2018. [Online]. Available: http://arxiv.org/abs/1801.07232

[137] A. Van Den Oord, O. Vinyals et al., “Neural discrete representation learning,” in

Advances in Neural Information Processing Systems, Long Beach, CA, Dec. 2017.

[138] A. Razavi, A. van den Oord, and O. Vinyals, “Generating diverse high-fidelity im-

ages with vq-vae-2,” in Advances in Neural Information Processing Systems, Van-

couver, Canada, Dec. 2019.

[139] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep Convolutional Neural

Network for Inverse Problems in Imaging,” IEEE Transactions on Image Processing,

vol. 26, no. 9, pp. 4509–4522, Jun. 2017.

[140] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for

Biomedical Image Segmentation,” in Lecture Notes in Computer Science, vol. 9351,

Oct. 2015, pp. 234–241.

[141] C. Villani, Optimal transport: old and new. Springer Science & Business Media,

2008, vol. 338.

146

http://arxiv.org/abs/1801.07232

[142] Cayley, “On Monge’s “Mémoire sur la Théorie des Déblais et des Remblais.”,” Pro-

ceedings of the London Mathematical Society, vol. s1-14, no. 1, pp. 139–143, Nov.

1882.

[143] L. Kantorovitch, “On the Translocation of Masses,” Management Science, vol. 5,

no. 1, pp. 1–4, Oct. 1958.

[144] L. Rueschendorf, “The Wasserstein Distance and Approximation Theorems,” Prob-

ability Theory and Related Fields, vol. 70, pp. 117–129, Mar. 1985.

[145] N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy, “Optimal Transport for Do-

main Adaptation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 39, no. 9, pp. 1853–1865, Oct. 2017.

[146] N. Courty, R. Flamary, and D. Tuia, “Domain Adaptation with Regularized Optimal

Transport,” in Proceedings of the 2014th European Conference on Machine Learning

and Knowledge Discovery in Databases - Volume Part I, Berlin, Heidelberg, Sep.

2014.

[147] M. Perrot, N. Courty, R. Flamary, and A. Habrard, “Mapping Estimation for Dis-

crete Optimal Transport,” in Advances in Neural Information Processing Systems

(NeurIPS), Barcelona, Spain, Dec. 2016, pp. 4197–4205.

[148] I. Redko, A. Habrard, and M. Sebban, “Theoretical Analysis of Domain Adap-

tation with Optimal Transport,” Machine Learning and Knowledge Discovery in

Databases, pp. 737–753, Jan. 2017.

[149] Y. Yang, B. Engquist, J. Sun, and B. F. Hamfeldt, “Application of optimal transport

and the quadratic Wasserstein metric to full-waveform inversion,” GEOPHYSICS,

vol. 83, no. 1, pp. R43–R62, Jan. 2018.

147

[150] L. Métivier, R. Brossier, Q. Mérigot, E. Oudet, and J. Virieux, “Measuring the misfit

between seismograms using an optimal transport distance: application to full wave-

form inversion,” Geophysical Journal International, vol. 205, no. 1, pp. 345–377,

Feb. 2016.

[151] L. Métivier, R. Brossier, Q. Mérigot, E. Oudet, and J. Virieux, “An optimal trans-

port approach for seismic tomography: application to 3D full waveform inversion,”

Inverse Problems, vol. 32, no. 11, pp. 1–37, Sep. 2016.

[152] N. Courty, R. Flamary, A. Habrard, and A. Rakotomamonjy, “Joint Distribution Opti-

mal Transportation for Domain Adaptation,” in Proceedings of the 31st International

Conference on Neural Information Processing Systems, Red Hook, NY, Dec. 2017.

[153] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[154] B. Holländer, “Deep domain adaptation in com-

puter vision.” [Online]. Available: https://towardsdatascience.com/

deep-domain-adaptation-in-computer-vision-8da398d3167f

[155] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. Hinton, “Big Self-Supervised

Models are Strong Semi-Supervised Learners,” 2020.

[156] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum Contrast for Unsuper-

vised Visual Representation Learning,” 2019.

148

https://towardsdatascience.com/deep-domain-adaptation-in-computer-vision-8da398d3167f
https://towardsdatascience.com/deep-domain-adaptation-in-computer-vision-8da398d3167f

	Acknowledgements
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Machine Learning Basics
	Discriminative Models
	Generative Models

	Latent Space Basics
	The concept of latent space
	Latent Space Representation
	Latent Space Manipulation

	Dissertation Contributions and Organization

	Virtual Relay Selection in LTE-V: A Deep Reinforcement Learning Approach to Heterogeneous Data
	Related Work
	System Model
	Traffic and V2V Communication Topology
	Communication Model

	Problem Formulation
	Deep Q-Learning
	Data Preparation and Preprocessing
	Q-Learning
	Deep Q-Networks
	Double DQNs and Cost Function
	Exploration Policies

	Simulation Results and Discussions
	Simulation Settings
	Simulation Results

	Conclusion

	Classifying Cutting Volume at Shale Shakers in Real-Time Via Video Streaming Using Deep Learning Techniques
	Overview of the Real-Time Cutting Volume Monitoring System
	Methodologies
	Video Frames Extraction
	Region of Interest Proposal
	Randomized Subsampling Inside Region of Interest
	PCA Whitening Transformation
	Instance Normalization
	Adaptation of VGG-16 Networks

	Experiment and Performance Evaluation
	Conclusions

	Buffelgrass Detection by Unmanned Aerial Vehicle Monitoring with High-Fidelity Data Augmentation by Vector Quantised Generative Model
	Methods
	Data Description and Manual Augmentation
	Generate Synthetic Buffelgrass Pattern
	Inductive Transfer Learning
	Protocol for Buffelgrass Detection

	Experimental Results and Discussion
	Results for Synthetic Buffelgrass and Augmented Data Set Generation
	Results for Buffelgrass Detection with Different Augmentation Schemes

	Conclusions

	Unexploited Seismic Data Inversion by Joint Distribution Optimal Transport with Deep Encoder-Decoder Networks
	Related Works
	Deep Learning-Based FWI
	Autoencoder Network-Based Seismic Inversion
	Optimal Transport with Machine Learning and Seismic Inversion

	Deep Networks Structure
	Encoder
	Embedding Vector
	Decoder

	Optimal Transport for Domain Adaptation
	Optimal Transport
	Joint Distribution Optimal Transport

	Proposed Methods
	Encoder-Decoder Joint Distribution Optimal Transport (Enc-Dec JDOT)
	Solving Enc-Dec-JDOT

	Experiments
	Data Set
	Experiment Settings
	Evaluation Methods
	Qualitative Comparison
	Quantitative Comparison
	Networks Mechanism Analysis

	Conclusions

	Conclusion and Future Works
	Conclusion Remarks
	Future Works

	References

