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ABSTRACT

Suppose X is a Moore space. It is known that if X is submetriz- 

able, X has the j-link property for each positive integer j. If 

X admits a semimetric which is upper semi-continuous and continuous 

in one variable, then X has a v-normal development, a result due to 

H. Cook. We prove that if X is separable and X has a v-normal 

development, then X has the j-link property for each positive 

integer j. From this follow the corollaries: A Moore-closed 

space with a v-normal development is compact; and if X is a Moore 

space with a v-normal development then the closure of every condi

tionally compact subset of X is compact. We show that if j is an 

integer greater than 1, there is a Moore space which has the j-link 

property but not the j+l-link property.

Alster and Przymusifiski have defined regular submetrizability 

and H. Cook has given conditions under which a regularly submetriz- 

able Moore space admits a continuous semimetric. We introduce the 

stronger notion of normal submetrizability and show that a normally 

submetrizable space is completely regular. We also prove that if X 
2 

is a Moore space, X is normally submetrizable, and the diagonal 
2 

in X is closed in the metric topology, then X is continuously 

semimetrizable.
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INTRODUCTION

In this dissertation, we examine Moore spaces that are nonmetric 

but have metric-like properties. Semimetrics offer one indication 

of how close a Moore space is to being metric: X is a Moore space 

if, and only if, X is regular and X has an upper semi-continuous 

semimetric [3]; X is a metric space if X admits a uniformly 

continuous semimetric [14]. Between Moore and metric spaces lie 

those spaces with semimetrics that are continuous in one variable, 

upper semi-continuous and continuous in one variable, and continuous. 

For this reason, semimetrics appear throughout this dissertation, and, 

in Section 1, we consider in detail the v-normal development, a 

concept that arises in semimetrics.

A space X is submetrizable if there is a continuous one-to-one 

map of X onto a metric space. Thus, if T is the topology on X, 

some subcollection of T is a metric topology. Alster and Przymusi'hski 

[1] define regular submetrizability by relating T and the metric 

topology more closely. In Section 3, we introduce normal submetriz

ability, adding a still stronger condition to the relationship. What 

properties does T inherit from the metric topology? If X is sub

metrizable, T is Hausdorf; if X is regularly submetrizable, Tis 

regular; and if X is normally submetrizable, we prove that T is 

completely regular. In addition, F. G. Slaughter, Jr., observed 

that if X is a submetrizable space, X has the j-link property for 

each positive integer j. This property is of Interest in the examples 

of Sections 2 and 4. The examples show that if j > 1, a Moore space 

with the j-link property need not have the j+l-link property and 
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that there is a Moore space with the j-link property for each positive 

integer j which is not submetrizable.

Alster and Przymusifiski [1] prove that, assuming Martin's 

Axiom, if X is separable and regularly submetrizable and X is the 

sum of fewer than c compact sets, then for each positive integer n, 

Xn is normal. H. Cook [2] also assumes Martin's Axiom to show 

that a separable Moore space X which is the sum of fewer than c 

compact sets is regularly submetrizable if, and only if, X is 

continuously semimetrizable. Since normal submetrizability is stronger 

than regular submetrizability, we are able, in Theorem 8 of the last 

section, to relate the former to continuous semimetrizability 

without extra set-theoretic assumptions. Example T in this section 

is due to H. Cook. It is included to give insight into normal 

submetrizability and to show that the hypothesis of Theorem 8 is 

not a necessary condition for continuous semimetrizability.
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SECTION 1.

If X is a topological space, G is a collection of point sets 

covering X, and 0 is a point set, we denote by st-j (0,G) = st(0,G), 

the union of all point sets in G which intersect 0; if x is a point, 

st(x,G) = st({x},G); and if n is a positive integer, stn+^(0,G) = 

stn(st(0,G),G). A development for X is a sequence {Gn}”x^ such 

that for each positive integer n, Gn is an open cover of X and Gn+-| 

refines Gn, and if 0 is an open set and x is in 0, there is a positive 

integer m such that st(x,Gm) C 0. If for each positive integer n, 

Gn+-| C Gn, then {Gn}“x^ is a nested development. A Moore space 

is a regular space which admits a development.

Definition 1. If X is a topological space, j is a positive integer, 

and H is a family of open covers of X, the statement that H has the 

j-link property means that for each two points p and q of X, there 

is a cover H in H such that q is not in stj(p,H). The space X 

has the j-link property if there is a countable family H of open 

covers of X and H has the j-link property.

A space has the 1-1 ink property if, and only if, it has a 

G^-diagonal. Every Moore space has the 2-link property. If j is a 

positive integer, every Moore space with the j-link property has 

a development that has the j-link property. If a Moore space has 

the j-link property for every positive integer j, then it has a 

development having the j-link property for every positive integer j.



In Section 2, we show that if j is a positive integer greater than

1, a Moore space with the j-link property need not have the 

j+l-link property.

Definition 2. The statement that the development {Gn}n3:i for the 

space X is normal means that if n is a positive integer, p and 

q are points of X, and no element of Gn contains both p and q.

°q

then there are open sets Op and 0^ containing p and q respectively

such that no element of G intersects both 0 and n+1 p

Definition 3. The statement that the development {Gn}n=^ for 

the space X is v-normal means that if n is a positive integer and 

p is a point of X, st(p,Gn+1) C st(p,Gn).

A normal development for X is also a v-normal development.

A Moore space with a normal development has the 3-1 ink property [2], 

Example in Section 2 is a Moore space with a v-normal develop

ment. The space does not have the 3-link property, thus, it 

does not have a normal development.

Theorem 1. A separable Moore space with a v-normal development 

has the j-link property for each positive integer j.
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Proof. Suppose X is a Moore space, (G } is a v-normal develop

ment for X, (an|n is a positive integer} is a dense subset of X, and 

j is a positive integer greater than 1. Suppose each of k and n is 
kn a positive integer and define to be the collection of all sets b^ 

where 1 < i < j + 1, b^n - st(ak,Gn+j_1), b^^ - X - st(ak,Gn+1), and 

if 1 < m < j + 1, b^n = st(a.,Gn, . m) - st(a.,Gn, . m,9).

k nst(ak’Gn+j-l); if 1 - 1 - J + 1’ bi n st^ak’Gn+j-i+2^ “ and if

k np is a positive integer, 1 < p < i -2, then b- (? st(a. ,Gn. . ) - tf),l K n+j-p

and b^n fl bp0 * <j). It follows that if x is in st(ak,Gn+j.) and if q 

is a positive integer, 1 < q _< j +1, then stq(x,Hkn) C U^=1 b^n. 

Thus, st.(x,H. ) C st(a.,G ). Define H to be the collection of all j Kn k n
Hkn where each of k and n is a positive integer.

Suppose x and y are points of X. There is a positive integer 

n such that st(x,Gn) A st(y,Gn) = <j), and a positive integer k such

Then, x is in st(ak,Gn+j.) and stJ.(x,H|<n)

C st(a. ,G ). Since a. is not in st(y,G ), y is not in st(a. ,G„) and, 
k n k n k n

therefore, y is not in stj(x»Hkn). H has the j-link property.

H is countable, so X has the j-link property.

— — m k n+j-m k n+j-m+2'
knIf x is in X and x is not in b^ , let m be the least positive 

integer 1 such that x is not in st(ak,G..). If m <n, x eX - st(ak,Gn) 

c X - st(ak,Gn+1) = b^. If n < m, then x c st(a|<,Gm_1) - st(ak,Gm+1) 

k n
m+i- Thus, H. covers X. n+j-m+1 ’ kn

kn Suppose i is a positive integer. If 1 < i < j + 1, b^ c k l * * *

that ak is in st(x,Gn+j.).
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Definition 4. A topological space X is Moore-closed if X is a Moore 

space and X is closed in every Moore space in which it is embedded.

A subset M of a space X is conditionally compact provided that 

every infinite subset of M has a limit point in X. There exists a 

Moore space with a conditionally compact subset whose closure is 

not compact [11, p. 66]. J. W. Green [4] has shown that a noncompact 

Moore space that has a dense conditionally compact subset is Moore- 

closed. A Moore-closed space X with the 3-1 ink property is 

compact [5]. From this it follows, if a Moore space X has the 3-link 

property, then every conditionally compact subset of X has a compact 

closure [6]. G. M. Reed [12] proved that every Moore-closed space 

is separable. Then, it follows from Theorem 1 that a Moore-closed 

space with a v-normal development has the 3-link property and so, 

is compact. A second proof of this statement is included because 

we feel it will give the reader a better understanding of the v-normal 

development in Moore spaces.

Lemma. Suppose X is a Moore space, {z and {U }^x-| are 

sequences such that, if n is a positive integer, Un is an open set, 

zn is in Un, and Un+^ C Un. If no sequence {y such that, for 

each positive integer n, yn is in U , has a cluster point, then there 

is an embedding f of X into a Moore space in which {f(zn)}“=^ 

converges.

Proof. Suppose {Gn}nx] 15 a nested development for X. If m is a 

positive integer, there is a sequence with the property

that, if n is a positive integer, zn c D™ c Gm, D1^ C Un, and D™+1c
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D™. Let z = {X} and, for each positive integer n, 0n = [ U”=n Dj] 

U {z}. The sequence such that, for each positive integer

n, Hn = Gn U £0n} is a development for X U {z}. Suppose V is an open 

subset of X U {z}, z is in V, and x is a point of V different from 

z. Since x is not a cluster point of {xn)“_p there is a positive 

integer m such that 0mC V and if j > m, z^ is not in st(x,Gm). If 

j > m, z. £ D1" £ G„ and x is not in D1^; therefore, x is not in
— J j m j m

•"«2 = =m+i - cu;sm+1 d™*'] u <2} - [ u;=m+1 O u (2) 

[ Un=i Dn^ U {z}.= 0mC V - {x}. The space X U {z} is regular; 

hence, it is a Moore space. The identity map embeds X in X U <z} 

and {zn}”_^ has limit z.

Theorem 2. A Moore-closed space with a v-normal development is 

compact.

Proof. Suppose {Gn}”_^ is a v-normal development for the Moore- 

closed space X. The space X is separable since it is Moore-closed.

Suppose X is not perfectly separable. There is an uncountable subset

K of X with no limit point [11, p. 9]. If p is in K, there is a 

sequence {Rn(p)}“=1 such that p e Rn(p) £ Gn and Rn+1(p) CRn(p). 

There are sequences {Kn}”=0 and {xn}“=^ such that Kq = K and 

if n is a positive integer, xn e Ope:K n 1S a positive

integer, let Un = Up « Rn(P)* Suppose {yn}”=i is a sequence such 
n

that for each positive integer n, yn e Un; {yn}“_i has a cluster 

point y; and {xn}”_^ does not converge to y. There is a positive 

integer k and an integer j > k such that x. is not in st(y,G.). This
J K

contradicts the fact that y e U. C st(x.,G.) C st(x.,G. ,) C st(x.,G. ).
J J J J J • J K
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We have shown that if {xn}n:E-| does not converge, (xn}n_^ 

and {Un}”_-| satisfy the hypothesis of the lemma and X can be 

embedded in a Moore space in which the image of {xn}“=i converges. 

This is a contradiction since X is Moore-closed.

Let x denote the limit of £x . There are open sets V and 

W such that xeVCVCWCWCX - (KU {x}), and a sequence 

{pn}”_i such that for each positive integer n, pn is in Un - W.

We have shown that if {yn}”=i is a sequence such that for each

positive integer n, yfi e Un - W C Un and {yn}”=^ has a cluster

point y, then {xn}”_^ converges to y and so, y = x. Since y is

in S - W, no such sequence has a cluster point.

The sequences {pn}“=i and {Un - W}”x^ satisfy the hypothesis 

of the lemma; thus, it follows that X can be embedded in a Moore 

space in which the image of {p converges. Since X is Moore- 

closed, {pn}”_.i converges in X. This contradicts the fact that no 

sequence such as {pn}“_-] has a cluster point.

The space X is perfectly separable, metrizable [13, p. 8], and 

compact [4].

Corollary. If X is a Moore space with a v-normal development 

and M is a conditionally compact subset of X, then M is compact.

Proof. Suppose {Gn}”:c^ is a v-normal development for the Moore 

space X and M is a conditionally compact subset of X. If n is a posi

tive integer, let Hn be the collection to which U belongs if, and only 

if, there is a member 0 of Gn such that U = 0 A M. The sequence 

{Hn^-i is a v-normal development for M. If M is not compact, it is 

Moore-closed; thus, M is compact.
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2
Definition 5. If X is a Tg-space, a function d from X into the 

set of all real numbers is a semimetric provided that: if x 

is in X and y is in X, d(x,y) = d(y,x) > 0, and d(x,y) = 0, if, and 

only if, x = y; and the point p is a limit point of the subset C 

of X if, and only if, for each e > 0, there is a point x in C 

different from p such that d(p,x) < e. A Tg-space X is semimetriz- 

able if it has a semimetric.

A regular space admits an upper semi-continuous semimetric if, 

and only if, it is a Moore space [3], H. Cook [3] has shown that 

a space with an upper semi-continuous semimetric that is continuous 

in one variable has a v-normal development and that a space with 

a continuous semimetric has a normal development.

The Space K. The space K is a modification of Example N [2]. If 

we assume Martin's Axiom and the denial of the continuum hypothesis, 

N exists and is a subspace of K. These assumptions are not needed 

for the existence of K nor are they used in [2] to show that N has 

a semimetric continuous in one variable and that N has no v-normal 

development. In the construction of K and in the proof of Theorem 1, 

we use the methods used in [2],

The points of K are the points of the open upper half-plane 
2

in E together with the points of the x-axis, X. If p is in K - X 

and e is a positive number, R£(p) = {p}; if p = (x,0) is in X and e 

is a positive number, R (p) is the bounded component of the complement 
2

in E of the triangle with vertices (x + e,e), (x - e,e), and (x,0); 
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together with the point p. If n is a positive integer, Gfi = 

{Re(p)|p£K and e<l/n}. The sequence {Gn}“x-| is a development for
2 

the Moore space K. Define the function d from K into the set of 

all real numbers: if each of p = (x,y) and q = (u,v) is a point of

K, (1) d(p,q) = 0 if p = q; (2) if 0 < y < 1 and q is in the bounded 
2

component of the complement in E of the triangle with vertices

(x - y,0), (x + y,0), and (x,y), or if v = 0 and x - y < u < x + y, 

then d(p,q) = d(q,p) = y; (3) if d(p,q) is not defined by (1) or 

(2), then d(p,q) = d(q,p) = 1. The function d is a semimetric for 

K and d is continuous in one variable.

Theorem 3. The space K has no v-normal development.

Proof. Suppose is a v-normal development for K. There

is a positive integer and a subset A of X such that if p is in A, 

st(p,Hn)C R-](p) and the closure of A in the Euclidean topology on

X contains an interval, J. There is a positive integer m and a

subset B of J such that if p is in B, R-|/m(p) is contained in some 

element of Hn+^ and the closure of B in the Euclidean topology on 

X contains an interval. Then there is a point p = (x,0) of A and 

a sequence such that for each positive integer k, q^ = (x^,0),

q. is in B, and 0 < x. - x < 1/km. If k is a positive integer, the 

point z = (x + 3/4m,3/4m) and the point w^ = (x + l/2km,3/4km) are
CO

in R]/m(qk^ The se9uence {wk}k=l converges to p; thus, p is in

st(z,Hn+-]). The point z is not in st(p,Hn) C R^(p). Therefore, K 

has no v-normal development.

Because the space K is a Moore space, K has an upper semi-continuous 

semimetric. The semimetric d for K is continuous in one variable.
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However, since K has no v-normal development, K admits no semimetric 

that is both upper semi-continuous and continuous in one variable.
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SECTION 2.

The spaces Dj, Cj, and Vj.
3

than 1. In E , let P-], P2

Suppose j is a positive integer greater 

...» P. be j open half-planes such that

if 1 < i < j, P. - P. is the x-axis, X. The x-axis is the union of — — 1 1
point sets, Ap A2, .... Aj, such that if 1 < i £ j, every uncountable 

closed subset of X intersects A... [9]. Define

D,- = V. = [|Ji=1 Pi] U [1)^=9 Ai] U EA1 x 
y V III I I I

The space Dj. If 2 <_ i < j, e > 0, and a is in Ap Re(a) is 

the union of: the bounded component of P^ - J where J is the circle 

of radius e, containing a, lying in P^ U {a}; the bounded component 

of P. - K where K is the circle of radius e, containing a, lying in 

Pi U {a}; and {a}. If a is in A-, and e > 0, R£(a,0) is the union 

of {(a,0)} and the bounded component of the complement in P-| U {a} 

of the circle of radius e, containing a, lying in P^ U {a};

R£(a,l) is the union of {(a,l)} and the bounded component of the 

complement in P. U {a} of the circle of radius e, containing a, 

lying in Pj U {a}. If x is in U^-] Pj, there is an open subset 
3

of E with diameter less than e, containing x, that does not intersect 

X; let Re(x) denote the intersection of such a set with U j=-| Pp 

The collection (R£(x)|x e Dj and e > 0} is a basis for the topology 

on Dj. The sequence {Gn}“=-| such that if n is a positive integer, 

Gn = {R£(x)|x e Dj and 0 < e < 1/n}, is a development for the Moore 

space Dj, which is separable and locally connected. The space Dj has 

the j-link property.
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The space Vj. If 2 <_ 1 <_ j, e > 0, and a is in , N£(a) is

the set consisting of a and all the points of U » within e

of a, that lie on a line containing a and forming a 45-degree 

angle with the x-axis. If a is in and e > 0, N£(a,0) is the set

consisting of (a,0) and all points of P^, within e of a, that lie on

a line containing a and forming a 45-degree angle with the x-axis; 

N£(a,l) is the set containing of (a,l) and all points of Pj, within 

e of a, that lie on a line containing a and forming a 45-degree 

angle with the x-axis. If x is in U J=1 P1 and e > 0, N£(x) = {x}. 

The collection {N£(x)|x e Vj and e > 0} is a basis for the topology 

on Vj. The sequence {Gn}”x^ such that if n is a positive integer, 

Gn = {N£(x)[x e Vj and 0 < e < 1/n}, is a development for the Moore 

space Vj. The space Vj is metacompact, has the j-link property, 

and has a v-normal development. If j > 2, Vj is continuously 

semimetrizable.

The space Cj. The space Cj is a subspace of Dj. Let {Kn}”_^

be a sequence such that: K-] is a set whose only element is an

interval of X of length 1; and if n is a positive integer, K is

a collection of 2n intervals such that each interval in K has 
n+1

length l/3n, is a subset of some interval in K^, and contains

an endpoint of an interval in Kn. Let K = U^-] Kn and = 

n;., (u Kn). If k is an interval in K and i is an integer,

1 <_ i < j> p.-L, is the point of P. on the line perpendicular to X at 

the midpoint of k, at a distance from X equal to the length of k.

The space Cj = £p.k|k e K and 1 < i < j} U C ; Cj is separable.

locally compact, and has the j-link property.
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is an element H

D C suchand an uncountable

is a subset of

H,

of C.
J

of H, a

neither Dj,Theorem 4. If j is a positive integer greater than 1,

Proof. Suppose His a countable family of open covers

that has the j+l-link property. There

positive number 

that if a is in Xp 

of H, R (a,l) H C.
e1 J

not in st

and (a,l) is

and '■Vn-Z

Vj, nor Cj has the j+l-link property.

then R (a,0) fl C.
£1 J 

is a subset of some element of

((a,0),H). There are sequences {Xn}^=2

subset X-] of A-j

some element

such that if 2 < n < j: 0 < e < e ,,; X is an uncountable subset — — n n+l n
3 

of A„ and the closure in E of X and if a is in X„, then R (a) n n-I n’ en
D Cj is a subset of some element of H. There is a sequence

3
of points in the closure in E of Xj such that if i is a positive

3 ' 
integer, 1 _< i < j, xn is in Xfi and the distance in E from xfi to

x-| is less than £j/6. Then, fl R£ (xpO) intersects R£

C . fl R (x,, 1) intersects R (x .); and if 3 _< n £ j, C.flR (x ,) 
J ej £j 3 3 £j n"

intersects R£ (xn). It follows that (xpl) is in stj+^ ((xpO) ,H), 

which contradicts the fact x-| is in Xp The space Cj does not have 

the j+l-link property; hence, Dj does not. The proof that Vj does 

not have the j+l-link property is similar.

Since V2 does not have the 3-1 ink property, it has no normal 

development. Thus, V2 is an example of a Moore space with a v-normal 

development that has no normal development.



15

SECTION 3.

Definition 6. The statement that the space X is submetrizable 

means that there is a continuous one-to-one mapping of X onto a 

metric space [10].

Definition 7. The statement that the space X is regularly submetriz

able means that there is a continuous one-to-one mapping f of X 

onto a metric space such that if 0 is an open subset of X and p is 

a point of 0, there is an open subset U of X containing p such that 

the closure of f(U) is a subset of f(0)' [1].

Definition 8. The statement that the space X is normally submetriz

able means that there is a continuous one-to-one mapping f of X 

onto a metric space such that if H and K are mutually exclusive 

subsets of X and H and f(K) are closed, then there exist mutually 

exclusive subsets 0 and U of X containing H and K respectively 

such that f(0) and U are open.

In Definition 8, since f is one-to-one, f(0) and f(U) do not 

intersect and, because f(0) is open, f(U) does not intersect f(0). 

Thus, U C f (f(U)) C X - 0. Since f is continuous, U" C f"^(f(U)); 

therefore,

H C U C U C f"1 (fW) CX-OCX-K.

Submetrizable spaces are Hausdorff; regularly submetrizable 

spaces are regular. Normally submetrizable spaces, however, need 



16

not be normal, as Example T in Section 4 demonstrates. We show, 

in the corollary to Theorem 7, that normally submetrizable spaces 

are completely regular. F. G. Slaughter, Jr. has observed that 

submetrizable spaces have the j-link property for each positive 

integer j.

In the theorems that follow, we say the triplet (X,f,M) is a 

submetric, regular submetric, or normal submetric provided X is a 

topological space, M is a metric space, and f is a continuous 

one-to-one mapping of X onto M satisfying definition 6, 7, or 8 

respectively. Thus if the space'X is submetrizable, there exist 

f and M such that (X,f,M) is a submetric.'

Theorem 6. If (X,f,M) is a normal submetric, then (X,f,M) is 

a regular submetric.

Proof. Suppose (X,f,M) is a normal submetric, 0 is an open subset 

of X, and p is a point of 0. Since X - 0 and {p} are mutually 

exclusive subsets of X and X - 0 and f({p}) are closed, there are 

mutually exclusive subsets D and E of X containing containing 

X - 0 and {p} respectively such that f(D) and E are open. The 

point p is in the open set E and, as the closure of f(E) does not 

intersect f(X - 0) C f(D), the closure of f(E) is a subset of f(0). 

Thus, (X,f,M) is a regular submetric.

Theorem 7. If (X,f,M) is a normal submetric, H and K are mutually 

exclusive subsets of X, and f(H) and K are closed, then there is a 

continuous mapping g of X into [0,1] such that g(H) = 0 and g(K) = 1.
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Proof. Suppose (X,f,M) is a normal submetric, H and K are mutually 

exclusive subsets of X, f(H) and K are closed, and D is the set of 

all nonnegative dyadic rational numbers. There is an open subset 

Ug of X such that H C Ug C f"1(f(Ug)) C X - K. If t is in D and t > 1, 

Uj. = X. Define U-] = X - K. If n is a positive integer, there is a 

a collection ^2^1/2n I15 an 1nte9er anc* 0 5. i 5. 2n"^ -1} of open 

subsets of X such that if 1 is an integer and 0 <_ i £ 2n-^,

f (f(U2i/2n)) c U2i+l/2n C f (f^U2i+l/2n^ C U2i+2/2n*

Thus, if t is in D, there is an open subset Ut of X and if s and t 

are in D, s < t, then Us C U^. The function g from X into [0,1] 

defined by g(x) = inf[t|x e U^} is continuous [8]. Since H C Ug and 

K C X - Up g(H) = 0 and g(K) = 1.

Corollary. If (X,f,M) is a normal submetric, then X is completely 

regular.
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SECTION 4.

3
The space Z. If n is an integer, Pn is an open half-plane in E 

such that: each point of Pn has a positive third coordinate; Pn 

separates Pfi from Pn+^ in {(x,y,z)|(x,y,z) e E and z > 0}; 

Pfi - Pfi is the x-axis, X; and if n and m are integers, Pfi is not

P . Let w denote a point of X. The set X - {w} is the union of

a countable family {A-1i is an integer} of mutually exclusive point 

sets such that if i is an integer, every uncountable closed subset

of X intersects [9, p. 514]. Define.

Z = [{w} x (0, 1}] U UfP-j U A. |i is an integer).

If i is an integer, p is in P., and n is a positive integer, 

Rn(p) is the intersection of P^ and the bounded component of the
3 

complement in E of the sphere of radius 1/n with center p. If 1

is an integer, x is in , and n is a positive integer, Rn(x) 

is the union of: the bounded component of P. - S where S is 

the circle of radius 1/n containing x and lying in P.. U (x);

the bounded component of P^ - C where C is the circle of radius 1/n 

containing x and lying in P. U {x}; and {x}. If n is a positive
3 

integer and D is the bounded component of the complement in E 

of the sphere of radius 1/n with center w, then

Rn(w,0) = {(w,0)} U UEDU (Ji<_n(pi U A.)] and

Rn(w,l) = {(w,l)} U UEDU U^^Pi U A.)].

If n is a positive integer, Gn = {R.(p)|p e Z and 1 is an integer > n). 
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The collection G-, is a basis for the topology on Z and the sequence 

{Gn}“=-| is a development for Z.

The separable Moore space Z has the j-link property for each 

positive integer j. However, by an argument similar to Jones's [7] 

that his space Aoo is not completely regular at p, we can show that 

Z fails to be completely regular at (w,0) and at (w,l). Indeed, if 

f is a continuous real-valued function on Z, then f((w,0)) - 

f((w,l)). Thus, Z is not submetrizable. The technique used in [2] 

to show that the space C has no v-normal development can be used 

to argue that the subspace (P-| U ?£ U A-| U A£) of Z has no v-normal 

development; thus, Z has no v-normal development.

If a space Y is built using Younglove's method in [15], 

with Z as the first stage in the construction, Y will have the 

j-link property for each positive integer j and will be a separable, 

locally connected, complete Moore space on which every continuous 

real-valued function is constant.

The space Z - {(w,0)} is a submetrizable Moore space. It is 

not regularly submetrizable nor is it completely regular at (w,l); 

it has no v-normal development.
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SECTION 5.

2
Theorem 8. If X is a Moore space, (X ,f,M) is a normal submetric,

2
and the image under f of the diagonal in X is closed, then X is 

continuously semimetrizable.

Proof. Suppose {Gn}”=i is a development for the Moore space X, 
2

(X ,f,M) is a normal submetric, A denotes the diagonal, {(x,x)|x c X},and 

f(A) is closed. If n is a positive integer, V = |J p (g x g).
9etin

2
There is a symmetric open subset 0^ of X such that ACO^CV^ and 

2
0-] is not X . Suppose k is an integer greater than 1 and 0j<_^ is 

2
a symmetric open subset of X such that ACO^C V^. Since 

2 2f(A) and X - 0|<_^ are closed, there is an open subset W of X

such that AC W C f~^ (f(W)) C Define 0^ to be a symmetric

open subset of W fl containing A.. Thus, there is a sequence 

{0n}“=i such that if n is a positive integer, 0n is a symmetric open 

subset of Vn, A C 0n, and if n > 1, f”1(f(0n))C 0n_^. If (x,y) is 

2
in X - A, there is an integer k such that y is not in st(x,G|<);

hence, (x,y) is not in and, consequently, not in 0^. Therefore, 

n on - a.

It follows from Theorem 7 that if n is a positive integer, 
2

there is a continuous mapping gn of X into [0,1] such that 

9n(f"1(f(°n+1)) e 0 and gn(X - 0n) = 1. If (x,y) is in X2, 

define h(x,y) = l/2n gn(x,y). The function h is continuous

2 -1and maps X into [0,1]. If (x,y) is in h (0), then (x,y) is in
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D ”=i On = A. If (x,y) is in 0^ where k is an integer greater 

than 1, then if i is an integer, 0 < i £ k - 1, g^x.y) = 0. 

Thus, h(x,y) < Z~=k l/2n = l/2k"1 and h(0k) C [0,l/2k"1].

2
Define the continuous mapping d of X into [0,1] by: if (x,y) 

2
is in X , d(x,y) = 1/2 (h(x,y) + h(y,x)). We will show that d is

a semimetric on X .

The mapping d is symmetric and d(x,y) = 0 if , and only if, x = y. 

Suppose C is a subset of X and p is a limit point of C. Then, 

(p,p) is a limit point of {p} x C and if n is an integer greater 

than 1, there is a point y of C different from p such that (p,y) 

is in 0n. Since 0n is symmetric, (y,p) is in 0n and h(p,y) + 

h(y,p) < 2 (l/2n“1). Thus, d(p,y) < l/2n"1.

Suppose C is a subset of X and p is a point of X such that if 

n is a positive integer, there is a point xn in C different from

p and d(xn,p) < l/2n. If k is an integer greater than 1, g^CX^ - 0k) =

2 k1 and h(X - 0k) > 1/2 . Then, (xk,p) is in 0k C Vk and some region

in Gk contains both xk and p. Therefore, p is a limit point of C.

The mapping d is a continuous semimetric on X.

Example T, Theorem 9, the lemma, and Theorem 10 are due to

H. Cook.

2
The space T. Let Y = {(x,y)|(x,y) e E and y > 0} and let X denote

the x-axis. The set T = X U Y. If e > 0 and p is in X, R£(p) is

the bounded component of the complement in Y U {p} of the circle of 

radius e, containing p and lying in Y U {p}, together with the point p.
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If e > 0 and p is in T, S£(p) is the intersection of T and the
2

bounded component of the complement in E of the circle of radius e,
2

with center p, that lies in E . If e > 0 and p is in Y,

R£(p) = S£(p). The collection, {R£(p)|e > 0 and p e T}» is a basis

for the topology on T.

Theorem 9 [H. Cook]. The space T is normally submetrizable.

2
Proof. Let the set {(x,y)|(x,y) e E and y 0}, with the Euclidean 

metric be the space W and let g be the map from T onto W such that 

if p e T, g(p) = p. We show that the triplet (T,g,W) is a normal 

submetric.

Suppose H and K are mutually exclusive subsets of T and H and 

g(K) are closed. If p is in K fl X, there is a positive integer i 

such that R-]/-j (p) does not intersect H. Let Up denote the least 

such positive integer. If n is a positive integer, then

Kn = (p|p e K A X and np < n} and Un = |Jpe|< R1/2n(p);

the open subset U of T contains K„ and does not intersect H. n n
Suppose n is a positive integer, x is in W, and x is a limit 

point of g(Un). There is a sequence of points of Kfi such

that if k is a positive integer, the distance from x to 9(^i/2n^pk^ 

in W is less than 1/k. There is a point q of K D X such that g(q)

is a limit point of {g(P|<)|k is a positive integer}. Then, R1/n(q)C

Uk=l Rl/n^pk^ and g(Rl/2n(q)) conta1ns x- Thus nq < n and 9 is in

Kn. The point x is in g(R-jy^JqJT C g(Ri/n(q)) c w - g(H). The 

closure of g(Un) does not intersect g(H).
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The open set 0 = U^-] contains KH X and does not intersect 

H. Suppose y is a point of W in g(0) - g(0). Then, y is not in g(X), 

since g(0) A g(X) is a subset of the closed set g(K) fl g(0). The 

point y is in g(Y) and there is a positive integer n such that the 

distance from y to g(X) in W is greater than l/2n. Thus, y is not in

is a limit point of K in the Euclidean toplogy on X, then R 1/n (P) - (PJC

g( Uk=n V* The po1nt y * 1s 1n 9( U|J = U^i 9(Uk) C 

W - g(H). The open subset 0 of T contains K D X and g(0) contains 

no point of g(H).

The sets g(H) and g(K - (K A X)) are mutually separated. 

There is a subset V of T containing K - (K A X) such that g(V) is 

open and g(V) does not intersect g(H). Then, K C V U 0 and H C T - 

g"l (g(V U 0)), an open set. Then, V U 0 and T - g~\g.(V U 0)) are 

mutually exclusive subsets of T containing K and H respectively; 

g(T - g"\g(V U 0))) = W - g(V U 0) and V U 0 are open. The triplet 

(X,g,W) is a normal submetric.

Lemma. If (T,f,M) is a normal submetric, 0 is a subset of T, f(0)

is open, H is an uncountable subset of 0 A X, and e > 0, there is an 

uncountable subset K of H and a positive integer n such that: K is 

contained in a subinterval of X of length less than e; if x is in 

K, R-[/n(x) C 0; and the image under f of the closure of K in the 

Euclidean topology on X is contained in f(0") C f(0).

Proof. If m is a positive integer, Km = {x|x e H and R-|/m(x) C 0}.

There is a positive integer n and a subinterval J of X, of length 

less than e, such that Kn A J is uncountable. Let K = Kn A J. If p

U X£k Rl/n^x^’ and so» p e 0 and f(p) e f(°)-
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o
Theorem 10 [H. Cook]. T is not normally submetrizable.

2Proof. Suppose (T ,F,M) is a normal submetric. Define the function 

f on T by: if x is in T, f(x) = F(x,x). (T,f,f(T)) is a normal 

submetric. Since M is completely separable, there are subsets 

O-] and O2 of T such that f(O-j) and f(02) are open and each has 

diameter less than 1/2, 0^ D X and O2 D X are uncountable sets, 

and f(0-]) and f^) do not intersect. There exist uncountable 

sets K-| and each contained in a subinterval of X of length less 

than 1/2, such that if 1 = 1 or 2, C 0^ and the image under f 

of the closure of in the Euclidean topology on X is contained 

in TTOTT.

If n is a positive integer, Sn is the collection to which a belongs,

if, and only if, a is a sequence of length n and each term of a is 1

or 2. If n > 1 and a is in S p define a1 and a2 in Sn to be the

sequences such that if 1 <_ i <_ n - 1, a^i) = a2(i) = a(i) and a^n) = 1,

a2(n) = 2. Let 0 1 and 0 2 be subsets of 0 , each containing uncountablyOL OC 01
many points of K , such that f(0 1) and f(0 2) are open and each has Ot Ot Ct
diameter less than l/2n; and f(0 ,) does not intersect f(0 2). 

a a
There are uncountable sets K 1 and K 2, each contained in a subinterval a a
of X of length less than l/2n, such that if 1 is 1 or 2, K i C 0 ,• fl K , 

a1 a1 a
and the image under f of the closure of K^j in the Euclidean 

topology on X is contained in f(0^1)•

If n is a positive integer, Cn is the set to which x belongs if, 

and only if, there is an a in such that x is in the closure of

in the Euclidean topology on X. Let C = Dp-i cn* Suppose p is a
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limit point of f(C) in M. Then, p is in Uae$ f(0^) f°r each 

positive integer n. There are sequences {an}p=i and {xn}”=^ such 

that if n is a positive integer: is in Sn; p is in 7(0 7;

xn is in f(C) and, for each positive integer k >_ n, f~^(x^) is in 

the closure of K in the Euclidean topology on X; and p is a limit
an

point of {xn|n is a positive integer). Some subsequence of 

{f~\xn)}”_^ converges in the Euclidean topology on X to a point q 

in C. If n is a positive integer, p is in f(0 J" and, since
an

q is in the closure of K in the Euclidean topology on X, f(q) is 
Oln

in f(0 Thus, the distance from p to f(q) is no greater than 
“n

l/2n; p = f(q) and p is in f(C). The set f(C) is closed.

There is a sequence {An)”_^ such that: if n is a positive 

integer, An is an uncountable subset of C and every uncountable 

closed subset of f(C) intersects f(An); if i and j are positive 

integers, A^ does not intersect A^; and C = Un=i An*

Let C denote {(x,x) |x e C) and let

° [Upefln (R1/n(p) X R1/n(p))].

2 2The subsets C and T - D of T are mutually exclusive and F(C)
2 2and T - D are closed. Since (T ,F,M) is a normal submetric, there

2 2are mutually exclusive subsets E and V of T containing C and T - D 

respectively such that E and F(V) are open. Thus, F(E) C M - F(V) C F(D). 

If n is a positive integer, Qn = (p|p e 0 and R-|/n(p) x R-]/n(p) c E).

There is an integer k such that is uncountable. Then, A2|< contains 

a point x such that f(x) is a limit point of f(Q|<). Let 3 denote
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the ray in T perpendicular to X at the point x. Let y denote the

point of g at a distance of 3/4k from x in the Euclidean metric.

If n is a positive integer, wfi denotes the point of g at a distance 

of l/2nk from x in the Euclidean metric. In T, x is the limit of

There is a sequence of points of Qk such that if

n is a positive integer, R-|/|<(zn) contains both y and w^. Thus, 

(wn,y) is in R-j/i/Zh) x Ri/k^zn^ E* ^or eac*1 P021^76 integer n. 

The point (x,y) is the limit of the sequence {(wn,y)}”=^ in T^. Since 

F is continuous, F(x,y) is the limit of {F(wn,y), each term of 

which is in F(E). Thus, F(x,y) is in F(E) C F(D) and (x,y) is in D.

Since x is in A£k, 

fact that y is not

(p|(x,p) e D} 

in R1/2k(x).

- Ri/2k*xl- This contradicts the
2

T is not normally submetrizable.

The space S. The space S is the subspace of Z in Section 4 consisting 

of P-[ U ?£ U A] U A^ with the relative topology. The space S is a 

Moore space with no v-normal development (see Section 4, page 19). 

Therefore, S is not continuously semimetrizable. By arguments 

similar to those used in Theorems 9 and 10, it can be shown that S 
2

is normally submetrizable and S is not normally submetrizable.



EXAMPLE CHART

Additional properties
<u cn <a a.

K

D2

9

12

0

1

0

0

0

0

1

0

1

0

1

0

1

0

0

0

C2 12 1 0 0 0 Q 0 0 0

V2 12 0 1 0 0 0 0 0 0

Dj

C3

12 1 0 0 0 0 0 0 0

12 1 0 0 0 0 0 0 0

VJ 12 0 1 1 Q 0 0 0 0

Z 18 1 0 0 1 Q 0 0 0

Y 19 1 0 0 1 Q 0 0 0

Z-{(W,O)} 19 1 0 0 1 1 0 0 0

T 21 1 1 1 1 1 1 1 1

S 26 1 0 0 1 1 1 1 0

has semimetric continuous 1n one variable •

locally connected; does not have 3-link property

locally compact; does not have 3-link property

metacompact; does not have 3-link property

locally connected; does not have j+l-link property (j > 2) 

locally compact; does not have j+l-link property (j > 2)

metacompact; does not have j+l-link property (j > 2)

has two points that cannot be separated by a continuous 
real-valued function

every continuous real-valued function is constant

is not completely regular

2
T is not normally submetrizable

2
S is not normally submetrizable
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