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Abstract

This dissertation is mainly concerned with several advanced electromagnetic

modeling techniques for practical complex systems, which involve periodic analyses.

The focus is to reveal the physics of the electromagnetic wave interaction with the

complex structures, and also to arrive at improved computational algorithms.

This dissertation consists of three self-contained parts, each discussing one modeling

technique. Examples presented in this dissertation include (a) an analysis of conductor

surface-roughness effects, (b) a novel model for vertical interconnects (vias) and (c) a

leaky-wave study of a Fabry-Pérot resonant cavity antenna.

The first part investigates conductor surface roughness effects for stripline. An

equivalent rough-surface-impedance is extracted using a periodic full-wave analysis and

is then used for the modification of the transmission line per-unit-length parameter.

The second part proposes a semi-analytical analysis for massively-coupled vias with

arbitrarily-shaped antipads, based on the reciprocity theorem. The use of reciprocity

yields simple design formulas and is seen to greatly improve the computational

efficiency, due to the fast-converging mode-matching calculation.

The third part presents a leaky-wave study of a Fabry-Pérot cavity antenna made

from a patch array. The patch current densities are calculated using the array scanning

method. Based on this, a “leaky-wave current” is defined and calculated using residue

integration. In addition, the radiation properties of a large finite-size array (truncation

effects) are evaluated.

All three proposed models are verified by full-wave simulations and/or measure-

ments. Numerical results prove the effectiveness and accuracy of these models.
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Chapter 1

Introduction

1.1 Background

Electromagnetic analysis has changed the practice of electrical engineering in

recent years. Electromagnetic theory is well-established with Maxwell’s equations

and a complete solution to Maxwell’s equations can expedite many design processes

for electrical systems. Using computationally efficient approximations to Maxwell’s

equations, or electromagnetic modeling, one can solve Maxwell’s equations to obtain

a better understanding of a complex system.

This dissertation is mainly concerned with some advanced electromagnetic modeling

techniques for practical complex systems, especially those possessing a periodic or

quasi-periodic feature. The focus is to reveal the physics of the electromagnetic wave

interaction with complex structures, and thus to bring in physical insights, and finally

to arrive at an improved algorithm. Examples presented in this dissertation include

(a) an analysis of conductor surface roughness effects on stripline transmission lines,

(b) a model to estimate the radiation and coupling effects of vertical interconnects

(vias) and (c) a leaky-wave study of a Fabry-Pérot resonant cavity antenna using a

two-dimensional patch array.

The canonical problem in example (a) and example (c) involves a periodic/quasi-

periodic structure. Periodic numerical methods are used to analyze the electromagnetic

fields on these two structures. In example (a), the quasi-periodic rough conductor

surface is exposed to plane-waves, and the periodicity is preserved by applying a

periodic boundary condition (phase-delay walls). In example (c), the periodic patch

array is excited with a non-periodic source (a horizontal electric dipole), and the
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periodicity of each space harmonic is accounted for by a periodic Green’s function.

Example (b) solves the fields among a via array, a truncated periodic structure.

However, the proposed analysis is not limited by this periodicity and can handle any

arbitrary layout of vias.

1.1.1 Interconnect Modeling for High-Speed Circuits

Example (a) and (b) fall into the category of interconnect modeling for high-speed

integrated circuits. Figure 1.1 is a diagram of a typical high-speed link consisting of

horizontal interconnects (transmission lines) and vertical interconnects (vias).

RX

multi-layer 
vias

TX
rough-surface 

transmission lines

Figure 1.1. A typical high-speed link consisting of rough-surface transmission lines
and massively-coupled multi-layered vias [1].

High clock speed has given rise to serious signal integrity issues. Signal distortions,

i.e., attenuation, reflection, mode conversion, etc., are likely to occur when transmitting

through a stripline transmission line or a via interconnect. The signal-to-noise-ratio is

substantially lowered, making the links inappropriate for signal transmission. In order

to raise the throughput of such noisy links, active-circuit compensation techniques,

e.g., pre-emphasis and equalization [2], [3], are therefore used to flatten the roll-off

of the channels’ frequency responses. However, an optimum design of these signal

processing circuit blocks strongly relies on the behavior of the passive links themselves.

Therefore, an accurate, efficient and parametric model for the interconnect system is

highly demanded as a design tool.
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1.1.1.1 Conductor Surface Roughness Effects

During the printed circuit board (PCB) fabrication processes, the conductor foils

used to laminate the transmission lines, e.g., striplines, are usually roughened to

enhance the adhesion to the dielectric substrates. The theory of signals propagating

on a smooth stripline transmission line is classical [4]–[6]. In the absence of surface

roughness, dielectric loss scales with frequency and conductor loss scales with the

square root of frequency [7]. However, when the conductor surface is roughened,

the currents become concentrated into the roughness and have a longer path length,

creating a more lossy and dispersive system. These effects are not predicted by the

conventional skin-depth formula and they become significant for the high-frequency

components of a signal and have been shown to greatly degrade the signal [8]–[10].

Extensive studies on the extra losses and dispersion due to the conductor surface

roughness effects exist [11]–[16].

1.1.1.2 Massively-Coupled Vias

Vias provide vertical interconnections between stacked PCB layers with much

shorter and denser connectivity compared to conventional horizontal and bondwire

interconnects [17], [18]. A via presents one of the most significant impedance discon-

tinuities of an interconnect system. In the low frequency region, a via behaves like

an inductor. As the signal frequency increases, the radiation from the via barrels

(conducting pins) and the antipads (apertures) becomes strong and the accuracy of

using the simple inductor model starts to deteriorate [7].

For vias with circular antipads, the radiation and coupling mechanisms have been

studied extensively [19]–[33]. However, only a few papers address the arbitrarily-

shaped antipads [34]–[38]. For antipads with an irregular shape, the aperture field is

usually complicated and requires expensive numerical evaluation.
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1.1.2 Leaky-Waves on a Fabry-Pérot Antenna

Example (c) presents a leaky-wave study of a Fabry-Pérot resonant cavity antenna

made from patch arrays. In this dissertation, it is established that this Fabry Pérot

antenna is a good leaky-wave antenna because of a leaky-wave dominance.

The Fabry-Pérot resonant cavity antenna is used to obtain directive beams with a

simple source excitation, and a design using a periodic patch array is given in Figure 1.2,

radiating a pencil beam at broadside. The design considered in this dissertation is

also referred to as a “quasi-uniform” structure since it radiates through the lowest-

order space harmonic. The canonical problems addressed in the largest part of the

relevant literature are the interaction between periodic patches and plane waves, and

the determination of the dispersion features of the Bloch modes supported by the

periodic structure in the absence of sources [39]–[41]. However, the studies of the

non-periodically-excited periodic structures, as in the case of the Fabry-Pérot antenna

given in Figure 1.2, are scarce.

x 

y unit-cell 

z 

dipole 

Figure 1.2. A Fabry-Pérot resonant cavity antenna made of a periodic patch array.
This antenna is excited by a single x-directed electrical dipole inside the
substrate.
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Historical studies have shown that the Fabry-Pérot resonant cavity antenna

operates as a leaky-wave antenna [42]–[44]. The leaky-wave theory gives compact and

elegant explanations on the fundamental radiation mechanism, as well as antenna’s

near-field properties, e.g. currents, input impedance, etc.. In addition, for a leaky-

wave-dominant antenna, one can estimate the “truncation effects” of a large patch

antenna array.

1.2 Scope and Contributions of the Dissertation

In this dissertation, we present three novel electromagnetic models for the afore-

mentioned structures. The structures discussed include (a) a stripline transmission

line with a rough conductor surface, (b) a multilayer PCB with densely packed vias

and (c) a Fabry Pérot resonant cavity leaky-wave antenna.

1.2.1 A Model for Rough-Surface Stripline

We propose a model for a stripline transmission line with periodically roughened

conductor surfaces. The conductor surface roughness effects on signal propagation,

including signal attenuation and phase-delay, are analyzed.

A periodic structure model is introduced to approximate the surface roughness,

which in turn is represented in terms of an equivalent surface impedance due to the

size difference between the period and the wavelength. Two models, a periodic cavity

and a long waveguide, both of which can simulate an infinite periodic roughened

conductor surface, are proposed. The wavenumber for the fundamental Floquet mode

is extracted to calculate the equivalent surface impedance for the rough surface.

The equivalent surface impedance, which accounts for the rougher sides of the

conductors, is used to modify the per-unit-length transmission line parameters. Results

have shown that as the amplitude of the conductor surface roughness increases, the

conductor loss increases significantly, and the effective dielectric constant also increases

noticeably.
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1.2.2 A Model for Vias with Arbitrarily-Shaped Antipads

We propose a semi-analytical model for a dense layout of vias in an infinite

parallel-plate environment. An arbitrarily-shaped antipad configuration is addressed.

The network parameters for the multi-via structure are calculated based on the

reciprocity theorem, where a unit-strength magnetic testing ring frill is used to

compute the currents flowing on the surfaces of the via barrels. The motivation

for using reciprocity is to bypass the sophisticated computation of the radiation

from the irregular-shaped antipad aperture; instead, a much simpler field from the

reciprocal testing source is formulated. Also, the higher-order parallel-plate mode

radiation from this testing frill is highly localized and hence there is little interaction

among vias through higher-order modes. This rapidly-decaying field makes the mode-

matching computation converge very fast. Furthermore, the testing frill radiates an

omnidirectional reactive near field that can be expressed in a closed-form, making

the method computationally efficient. Numerical examples demonstrate the efficiency

and accuracy of the proposed algorithm.

1.2.3 A Leaky-Wave Study on a Fabry-Pérot Antenna

We present a leaky-wave study on a Fabry-Pérot resonant cavity antenna using a

patch array. A definition of a leaky-wave current is proposed as a residue integration

that corresponds to a leaky-wave pole on the “improper” Riemann sheet.

In order to study the leaky-wave dominance of this antenna, the surface current

densities — both the total currents and those due to leaky-wave radiations — are

computed, using the array-scanning method (ASM). ASM is favorable for the problem

of non-periodic excitations on a periodic structure. The non-periodic source is first

expanded in terms of its spacing-harmonic counterparts, and then synthesized through

a spectral integration.

The leaky-wave contribution is extracted by deforming the path into the complex
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plane to capture the residues corresponding to the leaky-wave poles on the “improper”

Riemann sheet. An asymptotic formula is thus derived using the method of steepest

descent. The leaky-wave current is shown to be dominant among the total current,

and hence the Fabry-Pérot antenna discussed in this dissertation turns out to be a

good leaky-wave antenna.

The calculation of the patch current then allows us to investigate the radiation

properties of a finite-size leaky-wave antenna assuming an “ideal absorber” is placed

at the array boundaries, and hence no reflection arising from the truncation. The

“truncation effects” are studied and radiation patterns are computed.

1.3 Dissertation Outline

This dissertation has three self-contained parts, each addressing one of the three

aforementioned periodic or quasi-periodic structures. The rest of this dissertation is

organized as follows.

Chapter 2 discusses the conductor surface roughness effects with the application

to stripline interconnects. We begin this chapter with a historical review of some

existing research. Next, we analyze the conductor surface roughness effects using

a periodic analysis, introducing two possible structures — a periodic cavity and a

long waveguide — to extract an equivalent rough surface impedance. This surface

impedance is then used to modify the per-unit-length RLGC parameters. At the end

of this chapter, we validate the proposed approach using numerical comparisons with

full-wave simulations and also measurements.

Chapter 3 presents a semi-analytical model for a vias with arbitrarily-shaped

antipads. We begin this chapter with a historical review of the existing models for

via interconnects. Next, we introduce the methodology using reciprocity, where the

port current formula is first derived by introducing a “testing” frill, followed by the

computation of the radiation from the testing frill that appears in the formulation.
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The efficiency of the proposed algorithm is then discussed and a closed-form expression

for the testing frill radiation is given. At this end of this chapter, numerical results

are compared with those from full-wave simulations.

Chapter 4 presents a leaky-wave study on a Fabry-Pérot resonant cavity antenna

with a two-dimensional patch array implementation. We begin this chapter with a

historical review of the existing research on the two-dimensional Fabry-Pérot leaky

wave antenna. Next we introduce the ASM formulation to compute the antenna

currents (the total currents), based on which a leaky-wave current is defined and

computed using a leaky-pole residue integration. Two asymptotic formulas for the

leaky-wave currents are then derived. Using the patch current densities, radiation

patterns are then calculated and the contribution of the leaky wave is evaluated. The

“truncation effects” under the “ideal absorber” assumption are next studied and the

radiation patterns from truncated patch arrays are computed.

Chapter 5 gives a summary of the main conclusions for the models presented in

this dissertation. In the end, we present some recommendations of the future works.
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Chapter 2

Conductor Surface Roughness Effects

Chapter 2 discusses the conductor surface roughness effects on signal propagation

on a stripline transmission line. The stripline is laminated using copper foils having

surface roughness. When the roughness on the copper foil is morphologically close

to a periodic structure, computing the voltage/current wave propagating on the

transmission line becomes a canonical problem in calculating the plane-wave interaction

with a periodic structure.

According to Floquet theory, a plane-wave incidence on a periodic structure excites

an infinite numbers of Floquet modes (space harmonics). When the periodicity of the

structure is substantially smaller than the wavelength of the incoming plane wave,

as in the case of copper foils used to make stripline transmission lines, the 0th-order

Floquet mode becomes dominant. The plane-wave-like 0th-order mode allows us to

replace the rough surface by an equivalent surface impedance boundary condition

enforced on a flat surface, so as to avoid the heavy computation of the fields on a

corrugated surface.

There are mainly two approaches to compute the fields on an infinite periodic

structure (from which the wavenumber of the 0th-order Floquet mode can be extracted).

The first approach is to apply periodic boundary conditions, using the fact that a

field on a periodic structure due to plane-wave excitation is also periodic. In the first

approach, the structure naturally extends to infinity because of the periodic boundary

conditions. The second approach is to use a finite yet large structure to “brute force”

the results for an infinite periodic structure.

We begin this chapter by a historical review of the existing research on the

surface roughness effects in Section 2.1. Section 2.2 discusses the analysis of the
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conductor surface roughness effects using a periodic analysis, introducing two possible

structures used to extract an equivalent rough surface impedance. In Section 2.3, the

rough surface impedance is used to modify the per-unit-length RLGC parameters.

Section 2.4 validates the proposed approach using a numerical comparison with full-

wave simulations and also measurements. Section 2.5 provides some conclusions and

comments on the proposed model.

2.1 Introduction

Printed circuit board (PCB) fabrication involves intensive laminating processes,

and the inner-layer adhesion between the metal foils and the substrate should be

strong enough to tolerate the arising thermal stresses. In order to enhance this

adhesion effect, the metal foils used to laminate the PCB substrates are intentionally

roughened. The roughness treatment usually creates foils having tooth-like protrusions

and the root-mean-square (RMS) of the “tooth” height varies from several to tens

of micrometers. This tooth height largely exceeds the skin-depth of the interconnect

metal, and indicates that the penetrating currents will be flowing inside the “teeth.”

Consequently, the currents become concentrated into the roughness and have a

longer path length, creating a more lossy and dispersive system. These effects are

not predicted by the conventional skin-depth formula. Therefore, a modification is

required in order to accurately analyze the conductor surface roughness effects.

Extensive studies on the effects of conductor surface roughness exist. One of

the most well-known methods is the one proposed by Hammerstad and Jensen [11],

introducing a multiplicative correction term to the attenuation constant of a smooth

conductor. It is based on Morgan’s model [45], where the author studied the increased

current path length on a corrugated surface with two-dimensional roughness. The

Hammerstad and Jensen formula and the Morgan’s model are considered to be accurate

only when the RMS value of the roughness is small (less than approximately 2 µm [7]),
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and is less applicable for PCB traces with a much rougher surface (up to 10 µm).

Also, these methods predict a saturation limitation that the maximum value of the

multiplicative factor is two, which is a non-physical effect.

Another category of research relies on the small perturbation theory (SPT). A

systematic research has been done in [46]. It was first introduced to the conductor

surface roughness analysis by Sanderson [12], using a 2-D periodic profile along the

direction of propagation. Gu et al. [13] then utilize SPT based on power spectrum

density (PSD) for a randomly roughened surface. The same SPT analysis is also

applied to calculate the surface impedance on the dielectric-conductor interface as

proposed by Holloway et al. [14], [47], and a metal-dielectric-dielectric interface, as

proposed by Koledintseva et al. [48]. However, these approaches require both the

amplitude and the slope of the roughness profiles to be small. This limitation makes

them less suitable to analyze the surface roughness effects for copper foils used to

laminate a stripline transmission line, where the dendritic profiles usually have large

slopes.

Ball-shape models are morphologically closer to the real-world PCB surface rough-

ness, as proposed by Hall et al. [15] where the protrusions are modeled as periodic

hemispheroids, and by Huray et al. [16] using the “snow-ball” model (multi-stage

spheres). A systematic study can be found in [49]. These models are based on purely

analytic methods, computing the scattering from a sphere with an impedance surface.

They are efficient to implement, but they both lack consideration of the mutual

coupling from the neighboring spheres, therefore underestimating the attenuation

effects of the surface roughness.

Besides the extra conductor loss that increases the attenuation, previous researchers

have also discovered that the surface roughness has influence on the phase constant.

Horn et al. [50] found that the effective dielectric constant increases due to the existence
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of conductor surface roughness, corresponding to a change in the surface reactance.

This extra surface reactance due to the surface roughness raises the measurement

error of the substrate dielectric property of the laminating substrate with the presence

of the conductor surface roughness effects. In order to correct the measured dielectric

properties, one can use the differential measurement technique [51].

2.2 Surface Impedance for Rough Conductors

2.2.1 Periodic Surface Roughness Parameters

In reality, the conductor surface roughness possesses a quasi-periodic morphology

(see Figure 2.1) with the periodicity, roughness shape, and roughness amplitude being

random variables. Here the term “quasi-periodic” indicates a small deviation from a

strictly-periodic structure, or a perturbed periodic structure. The interaction of the

roughened conductor with a plane wave, therefore, is a random process. In order to

extract the mean response of this random process, the conductor surface is taken to

be the unperturbed periodic structure.

Figure 2.1. Wyko optical profiler surface morphology and roughness measurements of
a treated half-ounce-copper foil [52].
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As can be seen from Figure 2.1, the copper foil roughness treatment procedure

creates a granular dendritic profile that is modeled as a periodic array of hemispheroids.

Figure 2.2 shows the periodic structure involved and the parameters required to

describe the periodic structure: the period Λr, the peak-to-valley roughness amplitude

(the hemispheroid height) Ar and the base radius rbase. These parameters are measured

using the scanning electron microscopy (SEM) on a slice of transversely-cut stripline

transmission line. The mean values of these parameters are obtained using the

SEM pictures taken on several samples. The conductivity of the hemispheroids and

the semi-infinite layer below them is taken as pure copper, with a conductivity of

σ = 5.8× 107 S/m. Practically the semi-infinite layer would be truncated to a finite

copper slab with thickness d of several skin-depths.

r

…
…

y

z

x

r

Ar

rbase

d

Figure 2.2. An infinite periodic structure used to represent the conductor surface
roughness.

Different copper foils are categorized by their roughness level, e.g., there are STD–

standard, VLP–very-low-profile, and HVLP–hyper-very-low-profile foils. Figure 2.3

shows a sample of the cross-sectional SEM picture for a stripline made with STD foil.

More detailed geometry dimensions for PCBs with various foils are listed in Table 2.1.
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Figure 2.3. SEM images for a stripline with STD foils, showing a cross-sectional view
of each stripline structure (left) and an expanded view of the central strip
conductor (right).

The roughness parameters obtained from SEM pictures of the test boards are listed

in Table 2.2. The standard roughness parameters [53] Rz (the average height difference

between the five highest peaks and the five lowest valleys in the roughness profile)

and Rrms (the root-mean-square average of the departures of the roughness profile

from the mean line) are also included.

Table 2.1. Macroscopic profile parameters of striplines with different copper foils.1

Foil type w1 w2 t h1 h2

STD 334.91 344.71 16.62 282.35 287.67

VLP 364.02 368.84 15.38 297.79 275.73

HVLP 327.27 331.71 15.42 290.44 292.64

1 All length units are in micrometers.

Table 2.2. Roughness parameters for different foils1

Foil type Ar Λr rbase Rz Rrms

STD 7.975 10.62 3.54 8.41 1.91

VLP 3.353 7.275 2.43 4.19 0.92

HVLP 1.604 4.685 1.56 2.29 0.44

1 All length units are in micrometers.
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The multilayer PCB laminating procedure uses two types of dielectric material:

the “core” and the “prepreg,” forming the lower and upper half of the substrate

respectively, as shown in Figure 2.3. The metal foils are chemically roughened on

surfaces (3) and (4) indicated in Figure 2.3 for adherence in the lamination process.

The peak-to-valley roughness amplitude Ar and period Λr are used on the rougher side

of the conductors [surface (3) and (4) in Figure 2.3], where the ratio of Ar/Λr > 0.3.

On the opposite smoother side of the foil [surfaces (1) and (2) in Figure 2.3], this

ratio is significantly smaller (typically Ar/Λr < 0.1), and the roughness contribution

from this side will be neglected.

2.2.2 Rough Surface Impedance

0

1

2

3

4

space 
harmonic  
number n

3r (much smaller than wavelength g)

z

Figure 2.4. Space-harmonics supported by a periodic structure with period Λr. The
nth-order space harmonic has a z-variation of e−jkznz and a wavenumber
of kzn = kz0 + 2πn/Λr.

According to Floquet theory [54], an infinite numbers of space harmonics (Floquet

modes) exist on a periodic structure (see Figure 2.4). The nth-order space harmonic
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has a z-dependence of e−jkznz, where

kzn = kz0 +
2πn

Λr

, (2.1)

and the wavenumber in y-direction is given by

kyn =
√
k2 − k2

zn, (2.2)

since all unit cells are in phase along the x-direction (kx0 = 0). It should be noted

that all higher-order variations along the x-direction with kxm = 2πm/Λr are ignored.

In the copper surface roughness problem where the period Λr is much smaller than

the guided-wave wavelength λg in the frequency range of interest, kyn is almost pure

imaginary except when n = 0. That is, all high-order Floquet modes are evanescent

except for the fundamental 0th-order Floquet mode. The field would only consist

of the fundamental mode and behave like a plane wave if the observation point is

sufficiently far away from the rough surface. Hence we can replace the corrugated

surface by proper enforcement of a flat impedance-type of boundary condition at

the rough interface to avoid expensive numerical computation of the microscopic

electromagnetic fields.

The transverse resonance technique (TRT) [5] can then be applied to calculate

the equivalent surface impedance. This can be done by introducing a piece of perfect

electrical conductor (PEC) and placing it parallel to the base of the rough surface.

The distance from the PEC surface to the base of the rough surface is s, and the

value of s is chosen so that the PEC insert is in the “plane-wave region.”

The y-variation of the fundamental Floquet wave can be treated as a section

of transmission line with length s as shown in Figure 2.5. The electric field of the

dominant mode is a TMy mode (non-zero Ey component), and hence the characteristic
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r

inZ Ar

Figure 2.5. Transverse-resonant equivalent circuit used to compute the equivalent
rough surface impedance. The y-variation of the fields is accounted for by
a transmission line with Z

TMy

0 and ky0.

impedance of this transmission line is the same as the TMy wave impedance. In the

TRT analysis, the rough surface impedance is the negative of the input impedance

looking up from the plane that coincides with the base of the roughness. It is therefore

given as

Zrough
s = Rrough

s + jXrough
s = −jZTMy

0 tan(ky0s), (2.3)

where ky0 =
√
k2 − k2

z0 and Z
TMy

0 = ky0/(ωε). kz0 is the extracted 0th-order Floquet

wavenumber.

It should be noted that the distance s from the rough surface can be much smaller

than the actual substrate thickness of the actual stripline, due to the evanescent

behavior of the higher-order Floquet waves. This small s helps reduce the simulation

domain dramatically. The minimum height of s can be calculated by limiting the
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magnitude of the first-order Floquet wave to a specific low threshold, e.g., e−16, after

a y-directed round-trip, which gives

e−2jky1(s−Ar) ≤ e−16, (2.4)

where ky1 =
√
k2 − (2π/Λr)2 ≈ −j2π/Λr, so that

s ≥ 4Λr

π
+ Ar. (2.5)

2.2.3 Fundamental Wavenumber kz0 Extraction

2.2.3.1 A Periodic Cavity

With proper periodic boundary conditions enforced, a periodic cavity can be used

to compute the wavenumber kz0 of the 0th-order Floquet mode. Figure 2.6 shows the

structure of such a cavity.

y

x

z

Ar

rbase

r

r
d

PMC

PMC

PEC

Slave

Master

s PECPMC PMC

Slave

Master

Figure 2.6. A periodic cavity used to extract the wavenumber kz0 with a top view
showing the boundary condition assignments. The z-directed periodicity
is accounted for by Eslave = Emastere

−jβΛr .
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The bottom wall of the cavity is taken as one unit-cell of the periodically roughened

conductor surface, with one hemispheroid copper ball residing on a copper slab. The

top wall of the cavity is made from PEC. The side walls are made from perfect

magnetic conductors (PMC), providing images of this single unit cell to create an

infinite periodic structure along the x-axis. The front wall is assigned as a master

boundary condition, and the rear wall is assigned as a slave boundary condition. The

fields on the master and slave walls satisfy the periodic relation Eslave = Emastere
−jβΛr ,

with β as a real number and a given priori. The complex wavenumber is then given

by kz0 = β − jα, where α is the unknown attenuation constant.

This structure is also referred to as a transmission line resonator [5]. The quality

factor Q of this resonator is given by Q = β/(2α). Therefore, at the resonant frequency

f = f ′ + jf ′′, the wavenumber kz0 can be calculated as

kz = β

(
1− j 1

2Q

)
, (2.6)

where the numerical value of f and Q can be obtained using a eigenmode solver.

In theory, the periodic cavity has an infinite number of eigenmodes. The 0th-order

Floquet mode should be the one having the smallest f ′.

2.2.3.2 A Long Waveguide

Practically speaking, it is also possible to use a long waveguide structure with

appropriate boundaries to “brute force” the infinite periodic structure. Figure 2.7

shows the geometry of such a waveguide.

The waveguide has the same structure and boundary condition assignments as

the periodic cavity, except it has no periodic boundary conditions (master and slave

boundary conditions). Being a finite structure, the reflection due to the aperiodic-

periodic-transition is inevitable. Therefore, instead of having only one unit-cell

modeled as in the periodic cavity structure, there are n unit-cells along the z-axis in
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Figure 2.7. A waveguide structure used to extract the wavenumber kz0 with a side
view showing the boundary condition assignments. There are n unit-cells
in the z-direction.

the waveguide, and the length of the waveguide is L = nΛr. When n gets large, e.g.,

n = 10, so that the reflection due to the aperiodic-structure discontinuity is negligible,

the fields inside this finite-length waveguide can be used to approximate those in an

infinite periodic waveguide.

This long waveguide is then excited using two rectangular waveguide ports on

the front (Port 1) and rear (Port 2) walls. We can extract the 0th-order Floquet

wavenumber kz0 by performing a full-wave simulation on this waveguide and evaluating

the scattering parameters at these ports. If Port 2 is short-circuited (rear wall made

of PEC), the reflection coefficient at Port 1 will be −1 (from the short circuit at

Port 2) multiplied by a round-trip propagation factor exp(−jkz02L) that accounts

for the length L. Indeed, this is equivalent to a waveguide having length of 2L. The

wavenumber can be calculated from the reflection coefficient (S11 parameter) as

kz0 = j
ln(−S11)

2L
. (2.7)
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It should be noted that the placement of the PEC and PMC walls ensures a

quasi-TEM mode in the waveguide that has Ey and Hx components, and this is the

mode that is incident from Port 1. Also, several Floquet modes propagate in the

waveguide and the reflection coefficient S11 actually accounts for all these modes. In

order to extract the 0th-order Floquet mode, the waveguide should be tall enough so

that all the other modes have, compared to the fundamental Floquet mode, negligible

contribution to the total fields. This height s is usually larger than the minimum

value characterized by Eq. (2.5).

2.2.3.3 Rough Surface Impedance Comparisons

Figure 2.8 shows the equivalent surface resistance Rrough
s = <{Zrough

s } for various

copper foils, namely HVLP, VLP and STD. Their roughness parameters are given

in Table 2.2. As the roughness amplitude increases, the surface resistance also

increases, making the foil more lossy.

Foil Type Cavity Waveguide

HVLP

VLP

STD

Smooth

Figure 2.8. Equivalent surface resistance for various copper foils with different surface
roughness using two structures, namely a periodic cavity and a long
waveguide.

In Figure 2.8, the numerical results using the periodic cavity and the long waveguide
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structure agree well with each other. However, the computational cost of the latter

approach is theoretically more than that of the former one. The cavity has only one

unit cell of the periodic structure, yet the waveguide has n unit-cells along z-direction.

Also, the height s of the waveguide is chosen larger than that of the cavity to reduce (a)

the reflection arising from the aperiodic-periodic-discontinuity and (b) the propagation

of the higher-order Floquet modes. Therefore, the periodic cavity model is preferred

over the long waveguide model as long as an eigenmode solver is available.

2.3 Per-Unit-Length Parameters Modification

From a macroscopic point of view, the real-world stripline structure with a rough

surface is the same as an ideal lossless stripline structure with smooth conductors,

except that the conductor surface is replaced by the equivalent rough surface impedance.

Therefore, the fields for the rough-surface stripline can be obtained by solving the ideal

structure first and then modifying the results corresponding to the surface impedance

boundary conditions.

2.3.1 Per-Unit-Length Parameters RLGC — Ideal Model

A multi-conductor transmission line (MTL) refers to a system containing (n+ 1)

conductors with the extra one being the return path of the n conductors. Figure 2.9

shows a multi-conductor stripline transmission line structure, where n strip conductors

run between two infinite ground planes in the z-direction and are separated from the

grounds by dielectric substrate layers. For convenience, the ground planes are labeled

as the 0th-conductor. The port voltage Vi is defined as the potential difference from

the ground to the ith-conductor. The port current Ii is defined as the current flowing

into the ith-conductor (1 ≤ i ≤ n).
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Figure 2.9. Definition of port voltage and current for a multi-conductor stripline
transmission line structure. The ground planes are labeled as the 0th-
conductor.

The classical Telegraphers equations for a MTL, using matrix notations, is


∂
∂z

[V ](z, t) = −[R][I](z, t)− [L] ∂
∂t

[I](z, t),

∂
∂z

[I](z, t) = −[G][V ](z, t)− [C] ∂
∂t

[V ](z, t),
(2.8)

where [Vn] and [In] are terminal voltages and terminal currents, respectively. Note

that the indices start from 1, because the 0th-conductor is the reference conductor

and I0(z, t) = −∑n
i=1 In(z, t).

The [R], [L], [G] and [C] are the per-unit-length (PUL) parameter matrices of

size (n × n). The equivalent circuit within an infinitesimal distance ∆z is shown

in Figure 2.10. The same equivalent circuit for a single-ended transmission line is

shown in Figure 2.11. The parameters can be derived using the integral form of

Maxwell equations [6], from which the propagation mode for a stripline transmission

line can be solved. Details of the propagation mode computation are discussed in

Appendix B.
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Figure 2.10. The per-unit-length equivalent circuit model for a (n + 1) conductor
stripline transmission line system. It is made of the per-unit-length
RLGC matrix parameters.

R z 

C z   G z 

 L z   Lext z  

z 

Figure 2.11. The per-unit-length equivalent circuit model for single-ended transmission
line.
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2.3.1.1 Per-Unit-Length Parameters LGC

The capacitance [C] matrix accounts for the electric energy stored in the substrate,

and is obtained by applying static potentials (voltages) and solving for the charges on

each conductor as

Cij =
Qi

Vj

∣∣∣∣
Vk 6=j=0

, (2.9)

where Qi is the total surface charge on the ith conductor when the jth conductor has a

voltage of Vj and all the other conductors are short-circuited. Referring to Figure B.2,

the total charge on the ith conductor is obtained using Qi =
∮
C
ρsdl, where ρs is from

a static MoM solution as shown in Appendix B.

The inductance [L] matrix accounts for the magnetic energy stored in the substrate

and can be found from capacitance matrix as

[L] = µ0µrε0[C0]−1, (2.10)

where [C0] is the capacitance matrix using an air substrate.

The conductance [G] matrix accounts for the loss from the displacement current

in the substrate. It can be computed from capacitance matrix [C] parameter as

[G] = ω tan δ[C]. (2.11)

2.3.1.2 Per-Unit-Length Parameters R and ∆L

The resistance [R] matrix accounts for the conductor loss and is directly calculated

from the Telegraphers equation as

Rij = −<
[
∂Vi/∂z

Ij

]∣∣∣∣
Ik 6=j=0

. (2.12)
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Since only the power dissipation is considered, the real part of the voltage loop integral

shown in Figure 2.12 should give zero (the reactive magnetic flux though is not zero).

In Figure 2.12, currents are only driven into the jth conductor, and all the other

conductors (excluding the ground 0th-conductor) have zero current flow. The same

amount of currents flow out through the 0th conductor, but with opposite direction,

that is, I0(z) = −Ij(z).

Ij(z)

I0(z)=–Ij(z)

Δz

+

Vi(z + Δz)

–

i

0

j

+

Vj(z + Δz)

–

Ii(z)=0

+

Vi(z)

–

+

Vj(z)

–

Path 1

Path 2

Figure 2.12. The integration path used to find the per-unit-length resistance from the
Telegrapher’s equation. The system is driven such that the only non-zero
excitation is Ij.

Referring to Figure 2.12, using the loop integral in the darker color (path 1) to

compute Rij , since there are no conduction loss along the ith conductor, Rij is simply

given as the ground resistance Rgnd. Using the loop integral in the lighter color (path

2) to compute Rjj and the conduction loss is from both the jth conductor (Rstrip)

and the ground. Hence, the expression for the elements in the PUL resistance [R]
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matrix is

Rij =

 Rstrip +Rgnd, i = j,

Rgnd, i 6= j.
(2.13)

The resistance for the strip Rstrip and the ground planes Rgnd can be computed

from the perturbation formula. Using Figure 2.13, based on the small perturbation

theory (SPT), the complex power entering the conductor PUL is

P =
1

2

∮
C

Zs|Jsz|2dl, (2.14)

where C is conductor surface boundaries. Zs is the surface impedance of the conductor,

defined by the ratio of the tangential E and H components. Jsz is the surface current

density on the conductors and can be computed from the surface charge density ρs as

Jszẑ = n̂×Ht =
1

η
n̂× ẑ× Et =

ρs
ηε

ẑ. (2.15)

Jsz

C

Figure 2.13. Surface current Jsz on the strip and the integration path C along the
strip boundaries.
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The power dissipated and trapped to the conductor region within ∆z from the

equivalent RLGC circuit (see Figure 2.11) is

P =
1

2
(R + jω∆L)|I|2 (2.16)

=
1

2
(R + jω∆L)

∣∣∣∣∣∣
∮
C

Jszdl

∣∣∣∣∣∣
2

,

where ∆L is the internal inductance that accounts for the stored magnetic energy

inside the conductors. The total inductance parameter L is then the sum of the

internal inductance and the external inductance calculated using Eq. (2.10), and that

is L = Lext + ∆L.

Equating Eq. (2.14) and Eq. (2.16) and using the relation between Jsz and ρs gives

R + jω∆L =

∮
C

Zs|ρs|2dl∣∣∣∣∮
C

ρsdl

∣∣∣∣2 . (2.17)

Strictly speaking, Zs is variant along the integral path C. However, when the

conductivity σ of the metal is sufficiently high that the electromagnetic wave penetrates

only a negligible distance, the value of Zs becomes weakly dependent on location, and

the conductor can be assumed to have an infinite extent. Based on this assumption,

the surface impedance can be computed using the classical skin-depth formula,

Z0
s =

√
πfµ

σ
(1 + j). (2.18)

The superscript “0” denotes the conductor is assumed to be smooth and infinite and

the value is obtained using the normal skin-depth formula.
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2.3.2 Per-Unit-Length Parameters Modification

As can be seen from the Figure 2.3, half of the conductor surfaces are rough and

the rest are smooth. Macroscopically, Jsz is evenly distributed on the rougher and

the smoother surfaces of the conductors. Based on this, we can define an effective

surface impedance as

Zeff
s = 0.5Zrough

s + 0.5Z0
s , (2.19)

where Z0
s is the surface impedance of a smooth conductor as given by Eq. (2.18).

Zrough
s is the equivalent rough surface impedance given by Eq. (2.3).

Plugging the value of Zeff
s into Eq. (2.17) and then we can obtain the modified R

and ∆L (the internal inductance). Table 2.3 lists the values of internal inductance

∆L for stripline with various copper foils, as well as the internal inductance ∆L0 for

a stripline with a smooth conductor. The external inductance Lext of the stripline

(accounting for the magnetic flux external to the conductor, i.e., in the substrate)

is also shown, which is calculated from the static field solver. The total inductance

L = Lext + ∆L) and the ratio of internal inductance to external inductance is also

included. It should be noticed that the internal inductance for the rough surface is

much larger than that for the smooth surface, thus creating a noticeable alteration in

the phase velocity.

Table 2.3. Comparison of inductances

Foil type ∆L1 ∆L0
1 ∆L/∆L0 Lext

1,2 ∆L/Lext

STD 13.13 0.71 18.40 274.91 4.78%

VLP 5.51 0.68 8.14 272.33 2.02%

HVLP 3.33 0.72 4.28 293.38 1.14%

1 The inductance units are nH/m.
2 Lext is computed by solving the static potential integral equation using MoM (See

Appendix B). The values of Lext are slightly different because the dimensions of
the three striplines are different.
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The frequency dependency of the G and C parameters are automatically accounted

for using the real-world substrate dielectric properties εr and tan δ. The R and ∆L

parameters will lose accuracy at low frequency, since the conductors can no longer

be characterized with a surface impedance. For the internal inductance ∆L at low

frequency, the method discussed in [55] is applied to calculate the value at DC.

The surface roughness has negligible effects at DC and is simply ignored, so the R

parameter at low frequency is taken as the DC value of a stripline with smooth surfaces.

At DC the resistance comes only from the strip conductor (since the infinitely wide

ground planes have zero resistance at DC), and the resistance per unit length is given

by the usual DC wire formula (R = 1/(σA), where A is the cross-sectional area of the

strip conductor). A simple linear interpolation in frequency is used to connect the

DC values of R and ∆L with the values at 73 MHz [56], in order to determine the

values at an in-between frequency. For frequencies over 73 MHz, the high-frequency

values are used.

The frequency-dependent transmission line per-unit-length RLGC parameters are

used to calculate the real-valued total attenuation constant αT as given by

αT + jβ =
√

(R + jωL)(G+ jωC), (2.20)

and they can be also used to compute the effective dielectric constant εeff
r as given by

εeff
r =

(
β

k0

)2

. (2.21)

The numerical value of αT and εeff
r calculated from the RLGC parameters extracted

using the approach presented in this chapter are referred to as the “proposed method”

in the results.
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2.4 Numerical Results and Discussions

In order to validate the proposed approach, comparisons have been made using a

numerical full-wave simulation as well as using several measurements. In comparison

with the full-wave simulation, a 2-D roughness structure is chosen with no z-variation,

since 3-D roughness profile is not calculable. In comparison with measurements,

striplines are laminated with practical copper foils having 3-D roughness.

2.4.1 Comparison with Full-Wave Simulations

In order to validate the rough surface impedance, we carried out full-wave sim-

ulations on a pair of edge-coupled inhomogeneous striplines, where the dielectric

constant for the “prepreg” is 3.3 and for the “core” is 3.5. The detailed dimensions

and associated electromagnetic parameters are given in Figure 2.14. The differential

characteristic impedance Zdiff
0 is 100 Ohms.

w1 = 127
t = 15

h2 = 119

ϵr1 = 3.3

ϵr2 = 3.5

tanδ = 0.002

tanδ = 0.002

s = 203σ = 5.8×107 S/m

w2 = 127

h1 = 119
"prepreg"

"core"

Figure 2.14. Cross-sectional dimensions and substrate dielectric properties for a pair
of edge-coupled striplines. The length unit used here is µm.

The entire cross-sectional plane is modeled in Ansys HFSS 15.0 for the full-wave

calculation, including the fine texture of the conductor surface roughness. The

numerical results will be compared against that using the proposed approach. Due

to the limitation of mesh density, we assumed that the ground planes are perfect

conductors and besides that, we performed a port solution (a 2-D solution) in HFSS.

And to be consistent with the chosen solution type, we used a 2-D “cylinder-like”
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Figure 2.15. The artificial “cylinder-like” roughness profile used in the HFSS port-
solution-type simulation.

roughness (see Figure 2.15); that is, the periodic cylinders are aligned along the z-axis

and periodic only along the x-axis. The current therefore is flowing parallel to the

grooves. Although this is not a realistic roughness, it serves as a good validation of

the proposed technique for treating the surface roughness problem. The roughness

parameters are chosen to be Λr = 1 µm, Ar = 1 µm, and rbase = 0.25 µm.

In the full-wave simulation, a total number of 128 periodic elements are modeled on

the surface of the trace, and within each period, the hemispherical cylinder representing

the roughness is meshed. There are overall 81797 tetrahedrons in the mesh and the

memory consumption for the “matrix assembly” is 4.25 GB. The average mesh size

inside the conductor is 1.21 µm and the total CPU time to run this simulation is

34 min/frequency point. These meshing data for the 2D solution actually predict

that if we want to run a 3D simulation for the same stripline, the total required

memory will become computational prohibitive. The memory and time consumption

for a 3D simulation will become even much more if the ground planes are also rough

conductors. In the proposed approach, on the other hand, the memory requirement
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for the surface impedance calculation using the periodic cavity is 33.7 MB while the

CPU time is only 2 seconds per frequency.

In the numerical test, we used two types of trace profiles: a matte (roughness) on

one side, and a matte on both sides of the trace. For the single-sided matte profile, the

effective surface impedance is the average of the smooth and rough surface impedance

as indicated by (Eq. (2.19)). For the double-sided matte case, it is simply the rough

surface impedance as given by (Eq. (2.3)).

Figure 2.16 shows the comparison of the attenuation constants, where the propa-

gation constant γ at the port from HFSS provides the full-wave result. The proposed

method provides consistent results with HFSS full-wave simulation and has the less

than 0.2 Np/m error for the attenuation constant.

proposed method

proposed method

Figure 2.16. The total attenuation constant αT comparison of the stripline with two
trace profiles, full-wave simulation vs. proposed method.

2.4.2 Comparison with Measurements

Three set of test vehicles are manufactured to validate the proposed method. They

have almost identical dielectric properties and similar cross-sectional geometries, with

different copper foils. The cross-sectional SEM picture for the PCB test vehicles is
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given in Figure 2.3, and the geometrical data is given in Table 2.1. The length L of

all the traces is 39.14 cm (15.41 inches).

Appendix C summarizes the method used to extract the substrate dielectric

properties in the presence of the conductor surface roughness. The dielectric constant

εr, or Dk, is extracted using the traveling wave transmission-line method from the S-

parameters of the smoothest foil (HVLP). The frequency dependence of the dissipation

factor tan δ, or Df, is extracted using the differential extrapolation method [51]. The

extracted dielectric properties of the substrate material are shown in Figure C.2.

Note that the “Dk” value appearing in Figure C.2 is directly calculated from

the phase-delay information of the PCBs with HVLP foil. It is actually an effective

dielectric constant εeff
r for this specific stripline laminated with HVLP foil. It averages

over the substrate cross section and is “contaminated” by the effects of surface

roughness for the HVLP foil. Hence the measured value is slightly greater than the

true εr value for the PCB substrate.

For maximum accuracy we need to pre-process the measured dielectric constant Dk

before using this to calculate the C parameter. This pre-processing step is referred to

as a “cleaning” of the Dk data. It removes the HVLP roughness effect, which changes

the phase velocity caused by the imaginary part of the effective surface impedance

Zeff
s of the HVLP foil. Hence, the “cleaned” Dk value is obtained by matching the

calculated εeff
r (obtained from the proposed approach applied to the stripline that was

used in the HVLP measurements of [51], using the calculated surface impedance of the

HVLP foil) to the measured Dk value data (identical to the [51]-extracted Dk). This

“cleaned” Dk can then be used for all of the foils. Figure 2.17 shows the extracted Dk

and Df data, both before and after the “cleaning” process given.

Figure 2.18 and Figure 2.19 show the roughness effects on the signal losses and

dispersion, respectively. The PCB with STD foil is used as an example. The “cleaned”
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(a) Dielectric constant εr, or Dk. The solid line is obtained using the traveling wave
transmission-line method from the S-parameters of the smoothest foil (HVLP). The
dashed line is the “cleaned” data by subtracting the surface roughness effects of a
HVLP foil.
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(b) Dissipation factor tan δ, or Df, extracted using the differential extrapolation
method [51].

Figure 2.17. Dielectric properties of the PCB test board substrate material.

Dk, along with αT corresponding to smooth conductors, are added for comparison. As

expected, the εeff
r values obtained from the proposed method agree well with the values

that are directly measured for the STD foil since it accounts for both the intrinsic

substrate dielectric properties and the roughness of the STD foil.

It can be observed that the existence of the conductor surface roughness increases

the effective dielectric constant, which is consistent with the argument in [50]. For a

stripline built with rough foils like STD (Rz = 8.41 µm), the roughness increased εeff
r
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Figure 2.18. The total attenuation constant αT for a single-ended stripline with STD
foil.
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Figure 2.19. The effective dielectric constant εeff
r for a stripline with STD foil.

by about 5% compared to the cleaned substrate Dk. The cleaned Dk value is almost

frequency independent, unlike the value taken directly from measurements with the

STD foil. The roughness also increased αT by 0.33 dB/in (1.5 Np/m), compared to
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that of a stripline with smooth conductors.

Figure 2.20 illustrates the comparison of the calculated attenuation constant with

measurement. The measured attenuation constant is extracted from the insertion loss

using ABCD parameters. For these single-ended striplines, the calculated attenuation

constant agrees with measurement to within 0.2 Np/m.
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Figure 2.20. Total attenuation constant αT . Proposed method vs. measurement.

2.5 Conclusions

In this chapter, a numerical method for a periodically roughened stripline trans-

mission line was given. The conductor surface roughness effects on signal propagation,

including signal attenuation and phase-delay, have been analyzed.

A periodic structure model was introduced to approximate the surface roughness,

which in turn was represented in terms of an equivalent surface impedance due to the

37



size difference between the period and wavelength. Two models, a periodic cavity and

a long waveguide that can simulate an infinite periodic roughened conductor surface,

were proposed. A full-wave simulation was performed on these two specially-designed

models built from the periodic structure, and the fundamental Floquet wavenumber

was extracted to calculate the equivalent surface impedance for the rough surface.

The effective surface impedance, which accounts for both the rougher and the

smoother sides of the conductors, was used to modify the per-unit-length transmis-

sion line parameters. Results have shown that as the amplitude of the conductor

surface roughness increases, the conductor loss increases significantly, and the effective

dielectric constant also increases noticeably.

38



Chapter 3

Modeling of Vias with Arbitrary-Shaped Antipads

Chapter 3 presents a semi-analytical model for densely-packed vias with arbitrarily-

shaped antipad. Vias are widely used for vertical miniaturization and integration in

multilayer printed circuit boards (PCBs) and packages [18]. A typical via consists of

a conducting pin (barrel) running vertically through layers, with apertures (antipads)

on each power/ground plate producing the isolation (see Figure 3.1). Each of the two

ends of a via perpendicularly contacts the signal traces or the power/ground planes.

ground via 

via barrels 

power/ground 
planes 

antipads 

single-ended via 

differential 
via pair 

signal traces 

Figure 3.1. A vertical cut of a six-layer PCB board with vias connecting signal traces
from the top to the bottom layer.

In practical design, the vias are placed in a periodic fashion to form a via array,

some of which are signal vias and the rest are grounding vias. This type of design

helps to reduce the crosstalk between vias by introducing closer return paths for the

currents on the signal barrels. It should be noted that the proposed via model is able
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to handle an arbitrary layout of vias, although a periodic arrangement is common.

We begin this chapter by a historical review of the existing models for via intercon-

nects in Section 3.1. Section 3.2 introduces the methodology using reciprocity, where

the port current formula is first derived. Next, the computation of the radiation from

the testing frill that appears in the port current formulation is given is Section 3.3.

The efficiency of the proposed algorithm is then discussed and a closed-form expression

for the testing frill radiation is given in Section 3.4. In Section 3.5, numerical results

are compared with those obtained using HFSS and the integral-equation approach.

Section 3.6 gives conclusions for the proposed semi-analytical model for dense vias

with arbitrarily-shaped antipads.

3.1 Introduction

In the past, a via discontinuity [see Figure 3.2(a)] has usually been modeled as

a π-network circuit with lumped elements [see Figure 3.2(b)]. Quasi-static analyses

were applied to extract these elements [21], [29]–[31], [57]–[59] However, the accuracy

of this circuit model deteriorates as the frequency increases [60], since the via barrels

and the antipads become good radiators as they excite the propagating parallel-plate

modes. This unintentional radiation becomes more significant in the higher frequency

region and generates serious electromagnetic interference (EMI) and gives rise to

signal integrity (SI) issues [61]. The lumped-element circuit model is inadequate for

analyzing these effects.

A hybrid-circuit model, also known as the “physical-based” model, was then

developed to study the high-frequency radiation/coupling mechanism [22], where a

frequency-dependent parallel-plate-impedance Zpp replaces the inductance to capture

the behavior of the parallel-plate modes (see Figure 3.2(c)). A methodology review is

given in [62], [63]. A similar idea can be found in [64], [65]. A via-plate capacitance

Cvia extraction based on higher-order vertical modes was introduced in [19], [26], [36].
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Figure 3.2. Existing models for a via discontinuity. The via traversing a pair of
plates shown in (a) is modeled with the lumped-element circuit (b) and a
“physical-based” hybrid-circuit (c).

Although this hybrid-circuit model does not consider the coupling of the antipad

apertures and is thus less accurate for densely packed via structures, it is flexible

enough to handle the edge reflection of finite-size parallel-plate pairs [66] and is

convenient to use in both frequency and time domain analyses with friendly interfaces

to SPICE-like solvers. Accuracy issues of this model are considered in [67], [68].

System-level applications can be found in [69], [70].

A rigorous scattering approach was also used to analyze the high-frequency effects

for via structures [20], [27], [28], [34], [35], [38], [71]–[76]. A progress review of this

category of methods can be found in [77]. In this set of approaches, the electric-field-

integral-equation (EFIE) is enforced on the surfaces of the via barrels: the incident

field from the antipad aperture radiation should cancel the scattered field from the

barrels and thus the induced via currents are computed. Due to the complexity of the

aperture radiation, many vertical and azimuthal modes are required for convergence,

especially when an antipad is located close to the barrels.
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In [78], we proposed a novel approach that takes advantage of reciprocity to

bypass the antipad aperture radiation calculation, with preliminary results given. A

reaction [79] is used to determine Yij, the element of the [Y ] matrix corresponding to

ports i and j in the via layout as shown in Figure 3.3, where the short-circuit current

at port i is “measured” using a unit-voltage magnetic ring frill at port i. The reaction

between the antipad aperture source on port j and the testing frill on port i is equal

to the negative of the current at the ring location on port i [80], which directly gives

Yij. From reciprocity this reaction is equal to the field of the testing frill integrated

over the aperture source on port j. Similar to the calculations in [34], [35], this can

be reduced to a line integral containing the surface charge density ρs at the port j

antipad.

port j 
2a 

h 

z 

 port i  

s 

b 

Figure 3.3. Multiple via structure. The configurations include differential/single-ended
signal vias as well as ground vias.

It is observed that the radiated field from the testing frill decays much faster than

that from the antipad aperture and only a couple of modes are enough for convergence,

even when the testing ring is close to the barrel. Based on this observation, we derive a

closed-form expression to compute the via coupling through the higher-order parallel-
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plate modes, which significantly increases the efficiency of the proposed algorithm. It

is also seen that the use of the reciprocity theorem is beneficial because the numerical

integration over the antipad is separated from solving the EFIE. Instead, it becomes

a post-processing step: this integral appears after an analytical calculation (radiation

due to the testing frill). This one-time numerical integral also helps to accelerate the

computation.

3.2 Port Current Formulation using Reciprocity

Consider a one-layer multi-via structure as depicted in Figure 3.3. Assume that

the power/ground plates have infinite extent and are perpendicular to the z-direction

and all metals are perfect electric conductors (PECs).

The radius of all via barrels is a and the substrate layer thickness is h. For a

shared-antipad, the outer radius is b and the separation between the center of the two

barrels (the pitch) is s. The substrate material is homogeneous with permittivity ε

and permeability µ.

We define ports on the antipads corresponding to barrels for the network parameter

Yij computation. These are ideal ports where a transverse-electromagnetic (TEM)

field excitation is assumed to exist in the aperture of the antipad. Hence, the exterior

feed network is effectively decoupled from the interior parallel-plate via system.

For practical structures where the vias are excited by microstrip/stripline traces

(see Figure 3.1), we can estimate the scattering parameters by shifting the reference

plane from the antipad to the transmission line input. For cases where the coupling

and radiation from the exterior feed network become important (or the TEM-port

assumption becomes inaccurate), the exterior feed network will need to be included

in the analysis of the system.

Yij is found by computing the port i current Ii when the voltage at port j is

Vj = 1 V, and all ports other than j are short-circuited. For port j, the aperture
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field is substituted by a magnetic surface current Ms in the antipad region and the

aperture is closed with a piece of perfect conductor using the equivalence principle.

This magnetic surface current is referred to as source A, namely MsA. It should be

noted that the shape of the antipad aperture is arbitrary, including single-ended vias

and multiple vias sharing the same antipad.

The scheme using the concept of reaction [79] is shown in Figure 3.4. A unit-

amplitude magnetic ring frill K = 1 V is used for the “measurement” of the current

Ii. This ring source is referred to as source B, namely KB. As it plays a similar role

as a “testing function” or “weighting function” in the method of moments (MoM)

formulation [81], it is also called a “testing” source. This testing frill B encircles the

barrel at port i along a path CB, where the subscript A or B is used to denote source

A or B, respectively.

source A 

I i

 port j 
KB 

MsA 

  source B 
 port i 

Figure 3.4. The current “measurement” scheme using the circuit reaction. Ii is
“measured” by a unit-amplitude magnetic ring source KB that encircles
the barrel at port i.
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From Ampere’s law and using KB = 1 V,

Ii =

∮
CB

(HA · dl) = KB

∮
CB

(HA · dl) (3.1)

=

∮
CB

(HA ·KB)dl = − < A,B >,

where the notation < A,B > represents the reaction of source A onto source B.

From the reciprocity theorem,

< A,B >=< B,A >= −
∫∫
SA

(HB ·MsA)dS, (3.2)

where SA is the antipad aperture at source A. Note that in the reciprocal reaction

< B,A > the radiating source is B and the aperture at port j has been closed with

PEC. The reactive near field from the higher-order parallel-plate modes due to source

B (the 1-V testing ring frill) is omnidirectional and is also much more localized than

that due to source A, and thus easier and faster to compute.

Assume the aperture field at port j is that of a TEM mode, which should be

accurate for electrically small antipads that are used in practical designs. Using the

equivalent magnetic current MsA = ẑ×∇ΦA, as well as HB = (1/µ)∇×AB,

Ii =
1

µ

∫∫
SA

(∇×AB) · (ẑ×∇ΦA)dS, (3.3)

which is then reduced to

Ii =
1

µ

∫∫
SA

[∇ · (AB × (ẑ×∇ΦA)) + AzB∇2ΦA]dS, (3.4)

where the last term in the resulting integrand is zero from the Laplace equation.
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Applying the 2-D divergence theorem,

Ii =
1

µ

∮
CA

n̂ · [AB × (ẑ×∇ΦA)]dl, (3.5)

where CA denotes the conductor boundaries at antipad A and n̂ is the horizontal unit

normal vector for path CA that points outward from the antipad region (towards the

metal) at the boundaries.

The formula is further simplified to

Ii = − 1

µ

∮
CA

[AzB(n̂ · ∇ΦA)]dl, (3.6)

where we recognize n̂ · ∇ΦA = (1/ε)ρsA. This yields the final formula for the port i

current Ii as

Ii = − 1

µε

∮
CA

AzB · ρsAdl, (3.7)

where AzB is the vector potential radiated by KB (with all barrels present but all

apertures shorted). It should be noted that an infinite parallel-plate environment

is assumed for the AzB calculation, though the analysis can be extend to consider

the reflection from the boundary of the parallel-plate waveguide using the methods

similar to those discussed in [27], [35], [66].

ρsA is the surface charge density on the boundaries of the antipad at port j when

Vj = 1 V. In practical designs where there exist pads (in order for vias to connect

to traces or other circuit components), the effects of the pads can be accounted for

by the ρsA calculation. It is well known that ρsA is the solution to the static integral
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equation

ΦA(ρ) = −
∮
CA

1

2πε
ln |ρ− ρ′|ρsA(ρ′)dl′, (3.8)

and the Dirichlet boundary condition is enforced at the antipad metal boundary. The

numerical results for ρsA are obtained from a static method of moments (MoM) [82]

solution. The details of the MoM formulation and implementation can be found in

Appendix B.

3.3 Radiation from the Testing Magnetic Ring Frill

The testing magnetic ring KB on port i sets up currents on all of the barrels [83],

[84]. In the coordinate system of any particular barrel p, a vertical modal expansion

for the magnetic vector potential radiated between the parallel-plates by barrel p is

expressed as

Ap,pz (ρ, φ, z) =
∞∑
l=0

Ap,p;lz (ρ, φ) cos(kzlz), (3.9)

where the index l corresponds to the order of the vertical mode and kzl = lπ/h to

match the PEC boundary conditions at the top/bottom plates. The superscript (p, q)

before the semicolon denotes the fields observed in the coordinate system of barrel p

due to the radiation from barrel q. Hence Ap,p;lz represents the lth-order fields from

self-radiation.

Allowing for all possible azimuthal modes of order n,

Ap,p;lz =
∞∑

n=−∞

cp;ln H
(2)
n (kρlρ)ejnφ, (3.10)

where k2
zl + k2

ρl = k2 and H
(2)
n (·) denotes the nth-order Hankel function of the second

kind. The unknown coefficient cp;ln represents barrel p radiation into the (n; l) mode
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and is to be determined.

The Graf’s addition theorem [85] is used to compute the mutual-radiation Ap,q;lz .

The theorem states that a displaced cylindrical harmonic is a linear superposition of

the undisplaced cylindrical harmonics, which allows for translating the vector potential

from the radiating barrel (displaced cylinder) to the observation barrel (undisplaced

cylinder).

Referring to Figure 3.5 where the translation from the source barrel q to the

observation barrel p is shown, in the coordinate system of barrel p with ρ < ρpq, with

the appropriate formula of the addition theorem, the mutual-radiation from barrel q is

Ap,q;lz =
∞∑

n=−∞

cq;ln H
(2)
n (kρlρ

′)ejnφ
′

=
∞∑

n=−∞

cq;ln

∞∑
m=−∞

H
(2)
n−m(kρlρpq)Jm(kρlρ)ej(n−m)φpqejmφ, (3.11)

where (ρ, φ) denotes the observation coordinate (barrel p); (ρ′, φ′) denotes the source

coordinate (barrel q) and ρ′ = ρ + ρpq.

barrel p barrel q 


pq

  

pq

x

y



Figure 3.5. Translating the radiation from barrel q (ρ′, φ′) into the coordinate system
of barrel p (ρ, φ).
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Including all P barrels in the via system, the total radiation in the coordinate

system of barrel p is then given by

Ap;lz (ρ, φ) =
P∑
q=1

Ap,q;lz = Ap,p;lz +
P∑
q=1
q 6=p

Ap,q;lz . (3.12)

The vector potential AzB is zero on the surface of all barrels except the one with

the testing magnetic ring current KB, which is labeled as barrel test. In the local

coordinates of barrel test, a Fourier expansion of this 1-V source at z = z′ in terms of

vertical harmonics is

M test
sφ =

∞∑
l=0

M test;l
sφ

=
∞∑
l=0

2 cos(kzlz
′)

h(1 + δl0)
cos(kzlz), (3.13)

where δl0 is the Kronecker delta. Using Etest = ρ̂ ×Mtest
s , the vector potential on

barrel test is

Atest;l
z =

jωµε

k2
ρl

M test;l
sφ . (3.14)

Limiting the azimuthal variations (−N < m,n < N) and performing mode-

matching on the surfaces of the barrels leads to a linear system for the unknown

coefficients cq;ln associated with all the barrels. Next, the φ-variation is removed by

multiplying e−jm
′φ on both sides of the resulting linear system and integrating over

any interval with length of 2π, and then dividing by 2π. This yields a matrix equation

[T p,q;lm,n ][cq;ln ] = [bp;lm ], (3.15)

as depicted in Figure 3.6.
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Figure 3.6. A graphical illustration of the linear system. The total system ma-
trix/vector is tiled up using the sub-matrices/sub-vectors shown in the
expanded views.

The [T ] matrix is used to translate the total vector potential among all the barrels.

The size of [T ] is ((2N + 1)× P )× ((2N + 1)× P ) where the non-zero elements are

 T p,p;lm,m = H
(2)
m (kρla),

T p,q;lm,n = Jm(kρla)H
(2)
n−m(kρlρpq)e

j(n−m)φpq .
(3.16)

A physical interpretation of T p,q;lm,n is a translation of the φ-harmonics, from the nth-

order one on barrel q to the mth-order one on barrel p, for the lth-order vector potential

component of AzB.

The [b] vector comes from the mode-matching boundary conditions. Since the

testing frill excitation is omnidirectional, only the 0th-order φ-harmonic on barrel test

50



is used, where

btest;l
0 =

2jωµε cos(kzlz
′)

k2
ρlh(1 + δl0)

. (3.17)

The unknown coefficient cq;ln can be solved from [c] = [T ]−1[b]. The lth-order vector

potential component of AzB is then computed by summing up the radiation from all

barrels. The total radiation field for all vertical modes in the parallel-plate system is

obtained by summing the fields for each lth-order mode (each mode being independent

of the others, as the vertical modes do not couple). Theoretically, the value of AzB is

calculable to any accuracy determined by the truncation of the vertical modes l ≤ L.

3.4 Algorithm Advantages

The main difference in the proposed algorithm based on reciprocity from other

existing methods is the sequential order of the numerical integration over the antipad

aperture: we move this numerical integration from a step where we compute the

incident field radiated by the aperture, as done in the usual EFIE approach, to a

post-processing step in the reaction calculation. The advantages of doing so are

summarized in the following.

3.4.1 Total-Field Formulation

The numerical integration over the source antipad is a part of the usual EFIE

approach, where an incident/scattered-field formulation is often assumed. In fact, it

appears in the calculation of the incident field from the antipad, and is re-computed for

all barrels and for all vertical and azimuthal modes. This involves extensive evaluation

of Bessel functions, i.e., Jm(·), H(2)
m (·), making the computation time-consuming. An

estimate of the number of calls of the Bessel functions required by an EFIE approach

which uses 1-D discretization and integration along the antipad boundary can be

found in Appendix E.

The proposed approach, on the other hand, is based on the total-field formulation.
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The right-hand-side vector [bp;lm ] is simply computed from the total AzB on the surfaces

of the via barrels, which is zero for all barrels except for the one with the testing frill,

and the nonzero entry for that barrel is given by Eq. (3.17). It is seen that the system

matrix [T p,q;lm,n ] used here is identical to that from the 1D-EFIE approach, and therefore

the main difference in computation cost compared to the EFIE approach arises from

calculating AzB along the antipad boundary, as is required by the post-processing

step Eq. (3.7). It should be noted that we only need to calculate AzB along the

outer boundary of the antipad, because the values for AzB along the inner boundaries

are already computed when we built the linear system Eq. (3.15) (as a part of the

right-hand-side vector evaluation). This highly reduces the amount of evaluations

for the Bessel functions, especially for structures with multiple vias sharing the same

antipad, where there are a lot of sampling points along the inner boundaries of the

antipad.

3.4.2 Fast Convergence

Using reciprocity, the fields radiated from the testing frill (source B), rather than

the antipad aperture (source A), is computed. A benefit of doing so is that the

higher -order parallel-plate mode radiation from the testing frill is much more localized,

and thus fewer parallel-plate modes are needed for convergence, compared to that

from an antipad. This is because the antipad has a larger size and an irregular shape

and is physically closer to the nearby barrels than the testing frill.

As a result, the testing frill “sees” fewer barrels than the antipad in terms of having

weaker mutual coupling and thus needing fewer harmonics. For sufficiently higher-order

vertical modes where the testing frill radiation is so localized that negligible currents

are induced on the surrounding barrels, the testing frill radiates as if there are no

other barrels present other than barrel test. It therefore produces an omnidirectional

field which can be computed using a closed-form expression.
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3.4.3 Closed-Form Expressions

When the radiation from the testing frill is much weaker at the antipad outer

boundary than the inner one, the numerical integration in Eq. (3.7) can be approxi-

mated to that along the inner boundary only (ρ = a). Also, when the higher-order

mutual-coupling between the testing frill and neighbor barrels is negligible, there is

no need to solve for the mode-matching coefficients cq;ln using the steps described in

Section II-B to find the higher-order mode contribution to the field AzB. Instead, an

analytical formula is derived by retaining only barrel test in the via system. These

situations arise when the antipad is on the same barrel as the testing frill. When the

testing frill is on the bottom ground plane where z′ = 0, the contribution from the

higher-order parallel-plate modes (for l1 and higher) is

Ahigh
zB ≈

2jωµε

h

∞∑
l=l1

1

k2
ρl

. (3.18)

Kummer’s transformation [85] is used to accelerate the convergence of the series.

If kzl � k, kρl ≈ −jkzl = −jlπ/h, and the following relation holds:

Ahigh
zB ≈

2jωµε

h

[
∞∑
l=l1

(
1

k2
ρl

+
h2

l2π2

)
−
∞∑
l=l1

h2

l2π2

]
(3.19)

≈ −2jωµεh

π2

(
π2

6
−

l1−1∑
l=1

1

l2

)
,

where l1 indicates the first higher-order mode. The value of l1 is determined using the

rule given in Appendix F. In Eq. (3.19) the last term appearing in the first line has

been rewritten using
∑∞

l=1(1/l
2) = π2/6, known as the Riemann ζ(2) function [86].

This infinite series converges very slowly, implying that a lot of vertical modes are

required to get the result accurately.

A similar expression is obtained when z′ = h. The sum of the lower- and higher-
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order results will give the total radiation AzB. The accuracy of Eq. (3.19) depends

on the correctness of kzl � k and the small field at the antipad outer boundary: a

thinner substrate, lower frequency, and larger antipad will make Eq. (3.19) a more

accurate expression.

3.5 Numerical Results and Discussions

Several multi-via structures are studied to evaluate the accuracy and efficiency of

the proposed method. A Matlab script is written based on the proposed algorithm.

The via layout parameters include (in millimeters): barrel radius a = 0.13, pitch

s = 1.00, antipad radius b = 0.38, layer thickness h = 0.31. These layout parameters

are shown in Figure 3.7. The substrate has εr = 4.0 and µr = 1.0. The admittance

matrix is estimated using the maximum number of vertical modes of L = 10 and a

maximum azimuthal variation N = 1 (three azimuthal modes).

a b

s

b

a = 0.13, s = 1.00, b = 0.38
h = 0.31, r = 4.0 (mm)

Figure 3.7. The layout parameters for a pair of differential vias, and single-ended via
with circular antipad, and a grounding via.

The same structures are also analyzed using our implementation of the 1D-EFIE

method. In the comparison with 1D-EFIE, we use the same number of vertical and

azimuthal modes as in the proposed method. They are also analyzed using Ansys
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HFSS 15.0 on a PC with an Intel Core i7 CPU and 8 GB memory. In HFSS, the

infinite plates are modeled using a pair of circular parallel plates with a radius of 6.35

mm terminated by a “radiation-only” boundary condition. The average edge length

for the tetrahedral mesh is 0.12 mm.

3.5.1 Single-Layer of Vias

3.5.1.1 Two Single-Ended Vias with Circular Antipads

For a single layer of two vias with circular antipads as shown in Figure 3.8, we

compare the proposed method with both analytical formulas and the physical-based

model [22]. The via-plate capacitance Cvia is extracted based on [19]. The accuracy of

the proposed closed-form expression Eq. (3.19) is also investigated. The mixed-mode

S-parameter comparison is shown in Figure 3.9 and Figure 3.10. The differential port

Pd1 is made of two single-ended port P1 and P3, with P1 being the positive end and

P3 being the negative end, and the definition for the differential pair Pd2 is similar to

Pd1.

+ – 

+ –

Figure 3.8. Two single-ended vias with circular antipads. Differential pair Pd1 com-
prises P1(+) and P3(-).

From Figure 3.9 and Figure 3.10, we can observe that the proposed approach

produces consistent results with the analytical formulas [80]. This is expected since

the only approximation in the proposed method (compared to analytical model) is
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Sdd(2,1) (dB)

Proposed

Analytical

Eq. ckt.

+ –

+ –

Figure 3.9. Insertion loss comparisons for differential mode signals: proposed method
vs. analytical method vs. equivalent circuit model. The proposed method
is using L = 600.

Proposed

Analytical

Sdd(1,1) (dB)

Eq. ckt.

+ –

+ –

Figure 3.10. Reflection coefficient comparisons for differential mode signals: proposed
method vs. analytical method vs. equivalent circuit model. The proposed
method is using L = 600.
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the numerical integral along the antipad boundary. In the proposed approach used to

generate the results, the antipad outer boundary is uniformly discretized into 90 line

segments. However, the equivalent circuit model gives results that deviates from the

other two, because the equivalent circuit model ignores the radiation effects of the

antipad.

3.5.1.2 Two Differential Pairs in a 5× 5 Via Array

A single layer of vias with a layout of a 5× 5 via array is shown in Figure 3.11.

Four differential ports are shown, with the odd-numbered ports 1 and 3 on the top

plate and the even-numbered ports 2 and 4 on the bottom plate. Port 2 is directly

below port 1 and port 4 is directly below port 3. The S-parameters evaluated using

the proposed method, the 1D-EFIE approach and HFSS are shown in Figure 3.12

and Figure 3.13, and the results using the closed-form expression Eq. (3.19) to

accelerate the calculation are also shown. It is seen that the closed-form expression is

accurate within the frequency range reported.

s 

b 

a 

Figure 3.11. A 5 × 5 via array structure. Differential ports 1 and 3 are associated
with the two shared-antipads on the top plate.

The convergence of the results with respect to the vertical mode upper bound L

is shown in Figure 3.14. The percent relative error of the S-parameters is estimated

using L up to 10. The reference for evaluating the relative error are the S-parameters
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Sdd(2,1) (dB)

Proposed method
HFSS

x

Closed-form
1D-EFIE

Frequency (GHz)

(a) Insertion loss amplitude comparison.

Sdd(2,1) (deg.)

Frequency (GHz)

(b) Insertion loss phase comparison.

Figure 3.12. Insertion loss comparisons for differential mode signals: proposed method
vs. HFSS vs. 1D-EFIE vs. closed-form Eq. (3.19).
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Sdd(1,1) (dB)

Proposed method
HFSS

x

Closed-form
1D-EFIE

(a) Reflection coefficient comparison.

Sdd(3,1) (dB)

Proposed method
HFSS

x

Closed-form
1D-EFIE

(b) Cross-talk comparison.

Figure 3.13. S-parameter comparisons for differential mode signals: proposed method
vs. HFSS vs. 1D-EFIE vs. closed-form Eq. (3.19).
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Figure 3.14. Percent relative error for S-parameters vs. L (the maximum number of
vertical modes). S∞ is the result when L = 6000.

calculated with L = 6000, labeled by S∞. It is observed that the reflection coefficient

converges much slower than the insertion loss and crosstalk. This is because the

reflection coefficient is much smaller compared to the insertion loss and thus more

vertical modes are required to achieve the same accuracy level. The crosstalk, on the

other hand, is also very small, but it only requires a few vertical mode to compute

because of the separation between the vias, which means that there is negligible

interaction due to higher-order vertical modes beyond the first few.

3.5.1.3 Eight Differential Pairs in a 8× 7 Via Array

Figure 3.15. An 8× 7 via array structure. Differential ports 1 through 16 are placed
at the shared antipads. The even-numbered ports are placed on the
bottom plate.
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Figure 3.15 depicts a single-layer 8 × 7 via array structure. The corresponding

differential S-parameter comparisons are shown in Figure 3.16 and Figure 3.17. Even

for this more complicated structure, the results from the proposed method agree well

with those obtained using HFSS and the 1D-EFIE method.

Sdd(2,1) (dB)

Proposed method
HFSS

x

1D-EFIE

(a) Insertion loss comparison.

Sdd(1,1) (dB)

Proposed method
HFSS

x

1D-EFIE

(b) Reflection coefficient comparison.

Figure 3.16. S-parameter comparisons for differential mode signals: proposed method
vs. HFSS and 1D-EFIE. The structure is a single-layer 8× 7 via array.
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Proposed method

HFSS

Sdd(7,9)
Sdd(1,7)

Sdd(1,15)
Sdd(1,9)

Figure 3.17. Cross-talk comparisons for differential mode signals: proposed method
vs. HFSS and 1D-EFIE. The structure is a single-layer 8× 7 via array.

3.5.2 Multiple Layers of Vias

3.5.2.1 Eight Differential Pairs in a 8× 7 Via Array

A seven-layer 8× 7 via array structure as shown in Figure 3.18 is analyzed next.

Each layer is assumed to have identical thickness h. The behavior of a multi-layer

via structure can be obtained by cascading the ABCD matrix of each single layer.

The corresponding S-parameters are plotted in Figure 3.19 and Figure 3.20. The

agreement with HFSS is quite good, verifying that the proposed method can be used

to treat multilayer structures through a direct cascading of the network parameters

obtained for each layer.

A comparison of the computational cost of the proposed approach, the 1D-EFIE

method and HFSS is given in Table 3.1. The recorded time is the average elapsed time

for generating the full network S-matrix for a single frequency point. It is observed

that the proposed method is very efficient compared to HFSS. It is also faster than the

1D-EFIE approach because of the use of reciprocity, which is explained by counting

the number of calls of the Bessel functions.
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(a) (b) 

Figure 3.18. A 7-layer multi-via structure made by cascading the single-layer structure
shown in Figure 3.15, showing (a) top view and (b) side view of the
layers.

Table 3.1. Comparison of the computational costs

Pairs Array
Size

HFSS
Memory
(MB)

HFSS
Time1(sec)

1D-EFIE
Time2(sec)

Proposed
Time1(sec)

1 3× 4 190 41 0.534 0.038

2 5× 5 365 110 2.243 0.117

8 8× 7 900 607 19.22 0.602

1 The recorded time is the average elapsed time for generating the full network
S-matrix for a single frequency point.

2 The time consumed by the 1D-EFIE method is evaluated based on our own
implementation of the method using Matlab.

The total number of calls of the Bessel functions required to compute the full

network S-matrix of the 8× 7 via array structure at a single frequency is 153168 for

the proposed method, and 4771536 for the 1D-EFIE method. Among these, 120960

calls are consumed by each of the lower order modes for the proposed approach, and

433776 for the 1D-EFIE approach. These numbers agree with the formulas given

in Appendix F. The efficiency and accuracy increases still further when using the

closed-form expression Eq. (3.19) for all of the vertical modes.
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Proposed method

HFSS

Sdd(2,1) (dB)

(a) Insertion loss comparison.

Sdd(1,1) (dB)

Proposed method

HFSS

(b) Reflection coefficient comparison.

Figure 3.19. S-parameter comparisons for differential mode signals: proposed method
vs. HFSS. The structure is a 7-layer 8 × 7 via array as shown in Fig-
ure 3.18.

3.6 Conclusions

In this chapter, an efficient analysis for vias with arbitrarily-shaped antipads in

infinite parallel-plate structures was discussed using the reciprocity theorem.

The proposed network Y -parameter formulation was based on a reaction computa-

tion that converges very fast and is easy to formulate. The numerical integration over

the antipad aperture was separated from the field calculation and was done only as a

post-processing step. Using the divergence theorem, this surface integral was reduced
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Proposed method

HFSS

Sdd(7,9)
Sdd(1,7)

Sdd(1,15)
Sdd(1,9)

Figure 3.20. Cross-talk comparisons for differential mode signals: proposed method vs.
HFSS. The structure is a 7-layer 8× 7 via array as shown in Figure 3.18.

to a line integral along the antipad outer boundary.

The efficiency and convergence of the proposed algorithm was also discussed. It

was shown that the use of reciprocity greatly improves the efficiency and provides

faster convergence compared with the usual EFIE approach.

With this semi-analytical approach, the simulation time is reduced by a factor

of over 1000 compared with HFSS and by a factor of over 20 compared with the

1D-EFIE approach, for the particular examples shown here.
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Chapter 4

Leaky-Waves on a Fabry Pérot Cavity Antenna

In Chapter 4, we propose a leaky-wave study on a Fabry-Pérot resonant cavity

antenna. The focus of this chapter is on examining the fundamental physics of the

leaky waves propagating on this structure, and establishing that the principle of

operation is indeed that of a leaky-wave antenna.

The structure considered in this chapter is a two-dimensional periodic patch

antenna array excited by a single Hertzian dipole. The fields on the antenna decay

slowly from the source and therefore a large number of patches are involved in the

full-wave calculation, making the numerical evaluation of the patch currents expensive.

To reduce the computational costs, we can use the array scanning method (ASM) [87].

ASM takes advantage of the fact that a non-periodic source can be expanded

into a Fourier series, which conforms to the periodic structure. Since the response of

a periodic structure to periodic sources is also periodic, it is possible to perform a

unit-cell analysis, e.g., the integral-equation method using a periodic Green’s function.

Based on the ASM formulation, we can then estimate the contribution of leaky waves,

which are defined by the residue integration corresponding to the leaky-wave poles.

Another topic this chapter is concerned with is the truncation effects of a finite-size

leaky-wave antenna, as opposed to the infinite antenna where reciprocity can be used

to compute the radiation pattern.

We begin this chapter by a historical review of the existing research on the two-

dimensional Fabry-Pérot leaky wave antenna in Section 4.1. Section 4.2 introduces

the ASM formulation to compute the antenna currents (the total currents), and based

on this the leaky-wave currents are extracted in Section 4.3 using a residue integration

of the leaky-wave poles. Two asymptotic formulas for the leaky-wave currents are
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then derived. Using the antenna current densities, the radiation pattern is then

evaluated in Section 4.4 and a leaky-wave dominance is observed. Section 4.5 discusses

the “truncation effects” of a finite-size leaky-wave antenna using a patch array and

radiation patterns are calculated. Section 4.6 concludes the analysis presented in this

chapter.

4.1 Introduction

source (e.g., a horizontal 
electrical dipole)

, 

ground plane

partially reflecting 
surface

h

p

z

x

Figure 4.1. A Fabry-Pérot resonant cavity antenna excited by a x-directed electrical
dipole inside the substrate. This antenna radiates a conical beam with a
scan angle of θp.

The Fabry-Pérot resonant cavity antenna is used to obtain directive beams with

a simple source excitation. Recently, this structure has attracted a lot of attention

in the microwave and millimeter-wave region due to its low fabrication complexity.

The name of the antenna comes from the Fabry-Pérot interferometer. A Fabry Pérot

antenna typically consists of a grounded substrate and a partially reflective surface

(PRS) on the top, and is excited with a single source, as shown in Figure 4.1. A

resonant cavity region is formed between the ground plane and the PRS. The PRS

exhibits an almost-total reflection which results in a small amount of power leakage

to space along the PRS interface. This slowly-attenuating interface field produces a
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large effective antenna aperture and hence such an antenna is capable of radiating a

highly directive beam.

It is well established that the Fabry-Pérot resonant cavity antenna operates as

a leaky-wave antenna, as the leakage through the PRS is attributed to leaky-wave

propagation. Leaky waves are guided waves that can be characterized by complex

wavenumbers, although the media involved are not necessarily lossy [42], [43]. The

physics of a leaky-wave antenna were first investigated in [44] and historic background

can be found in [88]–[90]. Although it is straightforward to use the reciprocity theorem

to evaluate the antenna’s far-field characteristics, the leaky-wave theory gives compact

and elegant explanations of the fundamental radiation mechanism, as well as the

antenna’s near-field properties, e.g., currents and input impedance, whenever the

leaky wave is dominant.

One of the historical limitations of leaky-wave antennas has been the inability to

scan through broadside. For uniform or quasi-uniform leaky-wave antennas where

the radiation occurs via the fundamental n = 0 mode, the leakage is from the guided

mode and the beam can only point in the forward direction. The use of periodic

structures helps to produce a beam that can point either in the backward or forward

direction, and scans through broadside as the frequency changes. However, a stopband

is normally encountered at broadside, where the beamwidth becomes very narrow and

the radiated power drops significantly. This limitation can be overcome by introducing

a novel metamaterial-inspired composite-right-hand-left-hand (CRLH) structure [91],

[92] or other periodic structures [93].

Broadside radiation, on the other hand, was implemented much earlier than the

concept of scanning through broadside, originating when the Fabry-Pérot leaky-wave

antenna was invented in 1956 [94]. The Fabry-Pérot structure is capable of producing

a broadside beam by exciting the structure in the middle, producing a radial leaky
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wave. Essentially, the conical beam closes up to produce a single broadside beam.

According to [95], maximum broadside radiation can be obtained when β = α and

narrowest broadside beam occurs when β = 0.518α. When β > α, the beam will split

to create a conical beam with a scan angle θp, as shown in Figure 4.1.

A periodic structure, also known as a frequency selective surface (FSS), is often

used as a PRS for the Fabry-Pérot antenna. When the period is small so that the

radiation occurs via the fundamental 0th-order space harmonic (Floquet wave), it

becomes a quasi-uniform structure and the analysis is similar to that of an antenna

using a uniform PRS. An array of conducting metal patches (or slots in a conducting

plane) is able to obtain similar behavior to that of a uniform PRS, near the resonant

frequency. The design of such PRS made of periodic structures was introduced in [39]–

[41], where the periodic structure is modeled as a sheet impedance in a transverse

equivalent network (TEN) and the equivalent sheet impedance can be obtained using

the reciprocity theorem.

The one-dimensional leaky wave has been studied extensively in the past [96]–[101].

A two-dimensional leaky-wave analysis, on the other hand, is generally considered

challenging where omnidirectional radiation is often assumed [102] for modeling

convenience. For a 2-D antenna made with FSS, the analysis becomes more difficult

due to the complex Floquet modes supported by the periodic structures.

The canonical problems addressed in the largest part in the relevant literature on

Fabry-Pérot cavity antennas with periodic structures are (a) the interactions with

plane waves, e.g., radiation pattern calculation, and (b) the dispersion features of

the Bloch modes in the absence of sources, e.g., the determination of the leaky-wave

poles. However, studies of periodic PRS structures interacting with dipole sources,

from which the patch current can be calculated, have been scare.

In [103], we proposed a leaky-wave analysis of a Fabry-Pérot cavity antenna with
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patch array configuration using the array-scanning method (ASM), which is an ideal

candidate to calculate the response of periodic structures from a single source. Based

on the ASM formulation, the leaky-wave contribution to the total radiated fields can

be extracted by a residue integration corresponding to the leaky-wave pole on the

“improper” Riemann sheet.

4.2 Patch Current Calculation

Consider a Fabry Pérot leaky wave antenna using a 2-D patch array implementation

as shown in Figure 4.2. The dimensions of this patch array include: the periodic

spacing is a along the x-axis and b along the y-axis. The patch length is L and the

patch width is W .

z

x

a

l

z

y

b

w

(b) (c)

dipole dipole

z

x

yunit-cell

(a)

h , 

Figure 4.2. Fabry-Pérot resonant-cavity antenna using a periodic metal patch array
as the PRS structure.
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For a desired resonant frequency of f0 = 12 GHz, on an air-substrate with

εr = µr = 1, the patch length is chosen to be roughly one-half of a guided wavelength

(L = 12.5 mm) in order to achieve significant reflection from the PRS. Narrow patches

(W = 1 mm) are used here, assuring that the currents are almost entirely in the

x-direction. The periods are then chosen as a = 13.5 mm and b = 3 mm. The value

of the substrate thickness is chosen as h = 13.33 mm [39] so that β ≈ α to have

maximum power density radiated at broadside [95].

4.2.1 Array-Scanning Method

The array-scanning method (ASM) is numerically efficient for the analysis of

periodic structures under non-periodic source excitation [104], especially when the

observation point is vertically close to the source [105] as in the case of the Fabry

Pérot cavity antenna depicted in Figure 4.2.

Unlike in the conventional spectral-domain approach [106] where plane-wave

expansion is used, in ASM, the single dipole is synthesized by a phased-array of

dipoles, with a phase difference of (kx0a+ ky0b), as shown in Figure 4.3. Hence, an

auxiliary periodic phased-array problem is solved first using the periodic spectral-

domain method of moments (MoM) approach.

(a) (b) 

a 

b 

Figure 4.3. A top view of patches and dipole source(s) associated with them. The
patch array is excited with (a) a single horizontal dipole and (b) a periodic
phased-array of dipoles.
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Once the auxiliary periodic problem is solved, a spectral integral is next used

for the source synthesis. According to ASM, the relation between the aperiodically-

excited fields Ψ [see Figure 4.3(a)] and the periodically-excited fields Ψ∞ with phasing

(kx0, ky0) [see Figure 4.3(b)] is given by

Ψ(x, y, z) =
ab

(2π)2

π/b∫
−π/b

π/a∫
−π/a

Ψ∞(kx0, ky0;x, y, z)dkx0dky0, (4.1)

where the superscript “∞” denotes the solutions to the auxiliary periodic phased-array

problem. Here the integration area is referred to as the Brillouin zone [107].

4.2.2 Auxiliary Periodic Problem

Consider the auxiliary periodic problem where the single dipole underneath patch

(0, 0) is replaced by a uniform phased-array of dipoles [see Figure 4.3(b)], with

magnitude (Il) and a progressive phase shift of −kx0a along the x-direction and of

−ky0b along the y-direction.

z 

x 

y 

a 

b 

patch (0, 0) 

dipole 

(x d, y d, z d) 

  

Figure 4.4. A unit cell of the periodic structure excited by periodic dipole excitations
as shown in Figure 4.3(b). The unit cell corresponding to patch (0, 0) is
shown.

The unit cell that contains the (0, 0) patch is shown in Figure 4.4. On the patch

surface, the tangential E-field should vanish. For narrow patches (W � L), the patch
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currents will be primarily in the-x direction. When the substrate is air, the E-field

due to the x-directed radiation is also mainly polarized in the x-direction. Hence, on

patch (0, 0), the electric-field-integral-equation (EFIE) becomes

−E∞x,patch = E∞x,dipole. (4.2)

The periodic spectral-domain MoM is used to find the patch currents of the

auxiliary periodic problem. We start from representing the unknown currents in terms

of basis functions Bi(x, y), such that

J∞sx,patch(x, y) =
∞∑
i=1

A∞00;iBi(x, y), (4.3)

where A∞00;i is the magnitude of the surface current density at the center of the patch

(0, 0). The basis function Bi(x, y) is chosen as

Bi(x, y) = cos

(
iπx

L

)
· 1/π√

(W/2)2 − y2
, (4.4)

so that the current density vanishes along the shorter edges and approaches infinity

along the longer edges. The subscript i accounts for the x-directed sinusoidal variations.

The corresponding spectral representation of this basis function is

B̃i(kxp, kyq) =
iπL

(
e−jkxpL/2 + cos(iπ)ejkxpL/2

)
(kxpL)2 − (iπ)2

J0 (kyqW/2) , (4.5)

where J0(·) denotes the Bessel function of zero order. The tilde field Ψ̃ is the spectral

counterpart of the spatial field Ψ.

The electric field on a periodic structure due to an x-directed surface current is
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given by [96]

E∞x (x, y, z) =
1

ab

∞∑
p=−∞

∞∑
q=−∞

J̃∞sx (kxp, kyqG̃xx(kxp, kyq; z)e−j(kxpx+kyqy), (4.6)

where a tilde over a variable denotes its spectral-domain counterpart. G̃xx is the

Green’s function inside the layer structure (with no patches present). Details regarding

calculating the layered-medium Green’s function can be found in Appendix D. The

double sum for p and q accounts for the infinite number of Floquet modes supported

by the periodic structure, having wavenumbers such

kxp = kx0 +
2πp

a
, kyq = ky0 +

2πq

b
. (4.7)

Applying a Galerkin testing scheme to Eq. (4.2), the EFIE is discritized into a

matrix equation as

[Z∞ij ][A∞00;j] = [R∞i ]. (4.8)

The patch (0, 0) current is then solved from [A∞00;j] = [Z∞ij ]−1[R∞i ]. Details regarding

generating the above linear system Eq. (4.8) can be found in Appendix D. It should be

noted that although the EFIE is enforced only on the (0, 0) patch, it is automatically

satisfied on all the other patches, due to the periodic electromagnetic fields.

4.2.3 ASM Integration

Using the phase-delay information of the scanned array, the current density on

patch (m,n) in the auxiliary periodic problem is (subscript i is suppressed here and

thereafter)

A∞mn(kx0, ky0) = A∞00(kx0, ky0)e−j(kx0ma+ky0nb). (4.9)
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Once the auxiliary periodic solution A∞mn is obtained, one can refer to ASM

[Eq. (4.1)] to find the solution under a single dipole excitation, as given by

AASM
mn =

ab

(2π)2

π/b∫
−π/b

π/a∫
−π/a

A∞mn(kx0, ky0)dkx0dky0, (4.10)

where AASM
mn represents the total surface current density sampled at the center of patch

(m,n), excited with a single dipole source.

It is observed that Bi(x, y) is an even function of y regardless of i and an even

function of x when i is odd, and vice versa. This yields a symmetry in the current

density A∞00. The current density A∞00 is an even function of ky0, where

A∞00(kx0,−ky0) = A∞00(kx0, ky0), (4.11)

and it can be even or odd depending on the number i of the x-directed basis functions,

where  A∞00(−kx0, ky0) = A∞00(kx0, ky0), i is odd,

A∞00(−kx0, ky0) = −A∞00(kx0, ky0), i is even.
(4.12)

This allows us to integrate over only the first quadrant of the Brillouin zone. Hence

the total current density at the center of patch (m,n) from ASM is

AASM
mn =

ab

π2

π/b∫
0

π/a∫
0

A∞00(kx0, ky0) cos(ky0nb) ·

 cos(kx0ma)dkx0dky0, i is odd,

−j sin(kx0ma)dkx0dky0, i is even.

(4.13)

There exists an infinite number of branch points, each accounting for the sign
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ambiguity of kz0pq for the (p, q)-th space-harmonic, where

kz0pq = ±
√
k2

0 − k2
xp − k2

yq. (4.14)

The integrand in Eq. (4.9) is evaluated such that the imaginary part of kz0pq

is always negative in order to satisfy the radiation condition as z → +∞. For an

air-substrate structure with no surface-wave poles, the function A∞00 is smooth and

easy to integrate, as is shown in Figure 4.5.

−π
a

π
a −π

b

π
b

0

50

kx0

ky0

dB| A∞
00 |

Figure 4.5. The amplitude of the ASM integrand A∞00 within the Brillouin zone. For
an air-substrate structure with no surface-wave poles, the function A∞00 is
smooth and easy to integrate.

4.3 Leaky-Wave Currents

4.3.1 Path Unfolding

The leaky-wave current is computed by deforming the original integration path (on

the real axis of kx0 and ky0) to capture the leaky-wave pole, which requires an infinite

path. “Path unfolding” is used to extend the integration path from the bounded

Brillouin zone to infinity.
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We start from the Fourier expansion

A∞00(kx0, ky0) =
∞∑

p=−∞

∞∑
q=−∞

a∞pq(kx0, ky0)

=
∞∑

p=−∞

∞∑
q=−∞

a∞00(kxp, kyq), (4.15)

where a∞00 is referred to as the fundamental Floquet function.

It is recognized that the integration interval got shifted right by 2πp/a after the

integration variable is replaced by kxp,

π/a∫
−π/a

a∞00(kxp, ky0)dkx0 (4.16)

=

π/a∫
−π/a

a∞00(kx0 + 2πp/a, ky0)dkx0

=

∫ π/a+2πp/a

−π/a+2πp/a

a∞00(kx0, ky0)dkx0,

and a similar interval shift condition holds for ky0.

Combining Eq. (4.10), Eq. (4.15) and Eq. (4.16), the integration path can therefore

be extended to infinity, such that

AASM
mn =

ab

(2π)2

∞∫
−∞

∞∫
−∞

a∞00(kx0, ky0)e−j(kx0ma+ky0nb)dkx0dky0. (4.17)

4.3.2 Capturing Leaky-Wave Poles

For any given real-valued ky0, there exist infinite numbers of branch-cuts, each

dividing the complex kx0-plane to a top Riemann sheet (Im{kz0pq} < 0, proper) and a

bottom Riemaan sheet (Im{kz0pq} > 0, improper). The branch points of the unfolded
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function a∞mn(kx0, ky0) are periodically spaced, such that

(kxb +
2πp

a
)2 + (ky0 +

2πq

b
)2 = k2

0. (4.18)

The branch-cuts emanating from these branch points are also periodically spaced.

When |ky0 + 2πq/b| < k0, kxb is located on the real axis and the branch cuts are

depicted in Figure 4.6. Otherwise, the branch points will be off the real axis and the

corresponding branch cuts will lie along the vertical lines kxb = 2πp/a. The original

integration path C along the real axis is also shown.

 0Re xk

 0Im xk

LW
0xk

LW
0xk

C

ESDP

Cp,0 Cp,-1Cp,+1

 

C



LW
( 1)xk 

LW
( 1)xk

Figure 4.6. Periodically placed singularities and integration paths in the complex
kx0-plane. The dotted paths are on the bottom sheet.

In Figure 4.6, all Floquet harmonics with number p and q share a single top sheet,

yet they each have an individual bottom sheet. The leaky-wave poles [42] of the

integrand, unlike the surface-wave poles, are located on the bottom sheets. Each one

bottom sheet has no more than one leaky-wave pole residing on it. These leaky-wave

poles are also periodically placed.
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Let kρ0 = k0 sin ζ, kx0 = kρ0 cos φ̄ and ky0 = kρ0 sin φ̄. The steepest-descent path

(SDP) [108] in the ζ-plane is then cos(ζ ′ − θ) cosh ζ ′′ = 1, θ being the observation

angle from the z-axis. On the metal patches where θ = π/2, it becomes the extreme

steepest-descent path (ESDP) [90]. For periodic function a∞mn, there are infinite

number of ESDPs placed periodically. Connect these ESDPs at infinity to create a

deformed path, and this path is referred to as path C ′ in Figure 4.6. According to

Cauchy’s theorem, we have
∫
C

=
∑∞

i=−∞
∫
Cp,i

+
∫
C′ , where Cp,i encircles the pole kLW

xi

clockwise.

Define the leaky-wave current ALW
mn on patch (m,n) as the integrals along Cp,i,

which is evaluated using residues,

ALW
mn =

ab

(2π)2

∞∫
−∞

∞∑
i=−∞

(−2πj) Res a∞00(kLW
xi , ky0)e−j(k

LW
xi ma+ky0b)dky0. (4.19)

Next, we change the order of the summation and the integration, and the result is

“folded” back to that using A∞00. Note that going back to use A∞00 also folds back the

integration path of ky0 to within the Brillouin zone (−π/b < ky0 < π/b), so that

ALW
mn = −jab

2π

π/b∫
−π/b

ResA∞00(kLW
x0 , ky0)e−j(k

LW
x0 ma+ky0nb)dky0, (4.20)

where the residue associated with the pole kLW
x0 is calculated as

ResA∞00(kLW
x0 , ky0) = lim

kx0→kLWx0
(kx0 − kLW

x0 )A∞00(kx0, ky0). (4.21)

Theoretically, we can exchange the order of the dkx0dky0 integration to obtain an
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alternative definition for the leaky-wave current, and that is

ALW
mn = −jab

2π

π/a∫
−π/a

ResA∞00(kx0, k
LW
y0 )e−j(kx0ma+kLWy0 nb)dkx0. (4.22)

However, a certain order is preferable for numerical purposes especially when the

observation point is close to the x-axis or the y-axis. For example when m = 0, we

should use kx0 as the outer integration variable and compute the residues of kLW
y0 .

4.3.3 Leaky-Wave Pole Loci

The definition of leaky-wave current given by Eq. (4.20) requires us to determine

the leaky-wave pole kLW
x0 in the complex kx0-plane. For any given real-valued ky0, the

location of the pole kLW
x0 (ky0) is numerically computed from solving det[Z∞mn(kx0, ky0)] =

0. The same step is used to evaluate kLW
y0 (kx0). The numerical values are obtained

using the root-find algorithm named the secant method.

It is worthwhile to discuss the rule to determine the sign of kz0pq, regarding

the branch-cuts appearing in Eq. (4.14). In evaluating Z∞mn(kx0, ky0) for ky0 that is

continuously moving on the real-axis to search for the pole in the complex kx0-plane,

we apply the “continuous tracking” rule for kz0pq. That is, we choose whichever sign

of kz0pq(k
now
y0 ) is closer to the kz0pq(k

previous
y0 ), where know

y0 is the continuous change

from kprevious
y0 . The purpose of using this rule is to have a continuous loci of poles.

Figure 4.7(a) shows the location of the leaky-wave poles as the outer variable changes.

On the other hand, the “physical wave” condition is used when computing a

residue. According to [90], [109], a pole does not contribute to a physically-excited

wave unless is captured when deforming to the SDP, or in the extreme case the ESDP

as in Figure 4.6. This is equivalent to say the physical choice of kz0pq is only improper

when it is a fast forward wave; otherwise it is proper.

Figure 4.7(b) shows magnitude of the residues corresponding to the leaky-wave
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poles as the outer integration variable moves on the real axis. It is interesting to

observe that the region for kLW
x0 to be physical (has non-zero residue) is |ky0| < k0,

and the region for kLW
y0 to be physical is |kx0| < 2π/a − k0. When ky0 > k0, no

space harmonic is improper and therefore the residue being captured is zero. When

kx0 > 2π/a − k0, on the other hand, βLW
y0 ≈ 0 shows a stop-band behavior. Inside

this region, we are unable to locate a leaky-wave pole using the secant method

(det[Z∞mn(kx0, ky0)] 6= 0), and therefore a zero residue is observed.

Figure 4.8 and Figure 4.9 show the leaky-wave currents using the definition

in Eq. (4.20) and in Eq. (4.22). The total current evaluated using ASM Eq. (4.10)

is also added for comparison. It can be seen that the leaky-wave currents are

approximately the same as the total currents on the centers of the patches along

the x-axis (E-plane) and the y-axis (H-plane). This indicates the Fabry Pérot cavity

antenna discussed here is a good leaky-wave antenna.

4.3.4 Asymptotic Formulas

We then derive an asymptotic formula for the leaky-wave currents. We start by

converting Eq. (4.20) to polar coordinate where kLW
x0 = kLW

ρ0 cos φ̄, dky0 = kLW
ρ0 cos φ̄dφ̄

and ResA∞00(kLW
x0 , ky0) = ResA∞00(kLW

ρ0 , φ̄)/ cos φ̄, and then

ALW
mn = −jab

2π

∞∫
−∞

ResA∞00(kLW
ρ0 , φ̄)e−jk

LW
ρ0 ρmn cos(φ̄−φmn)kLW

ρ0 dφ̄, (4.23)

where (ρmn, φmn) represents the center of patch (m,n). The definition of the angles

are depicted in Figure 4.10. In Eq. (4.23) the residue is now calculated in the kρ0

plane.

It should be noted that the integration interval for φ̄ extends to infinity. This

is analogous to the path we use for a simple homogeneous dielectric layer prob-

lem. A 0th-order Hankel function of the second kind is involved where H
(2)
0 (z) =
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Figure 4.7. Leaky-wave poles and corresponding residues.
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Figure 4.8. Comparison of currents at patch centers (along the x-axis): total (ASM)
currents vs. leaky-wave currents using Eq. (4.20).
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Figure 4.9. Comparison of currents at patch centers (along the y-axis): total (ASM)
currents vs. leaky-wave currents using Eq. (4.22).
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Figure 4.10. The cylindrical coordinate system used to derive the asymptotic formulas.

(1/π)
∫
C
e−jz cos(φ̄−φmn)dφ̄, and C is the path depicted in Figure 4.11. Hence we use

the same path for the φ̄-integration in Eq. (4.23) and it is labeled as the “Hankel”

path in Figure 4.11.

4.3.4.1 Method of Steepest Descent

An approximate leaky-wave current can be obtained in closed form by asymptoti-

cally evaluating the angular integral in closed form for large radial distances using

the saddle-point approximation. Write the integral in Eq. (4.23) as

ALW
mn =

∞∫
−∞

f(φ̄)eΩg(φ̄)dφ̄, (4.24)

where 
f(φ̄) = − jabkLWρ0

2π
ResA∞00(kLW

ρ0 , φ̄),

Ω = |kLW
ρ0 |ρmn,

g(φ̄) = −jej 6 kLWρ0 cos(φ̄− φmn).

(4.25)
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Figure 4.11. Integration path in φ̄-plane to compute the integral Eq. (4.23). It is

similar to the integral form of a H
(2)
0 function and therefore a “Hankel”

path is used.

The angular dependency of the components in f(φ̄) are shown in Figure 4.12. It

can be observed that both kLW
ρ0 (φ̄) and the corresponding residue ResA∞00(kLW

ρ0 , φ̄) are

slowly varying with respect to the angle φ̄. It is also noted that the only angular

dependency is from the cos(φ̄− φmn) term in the g(φ̄) function.

Therefore, the saddle-point is found by setting g′(φ̄) = 0, so that φ̄SP = φmn. The

steepest-descent path, as shown in Figure 4.11, passes the the saddle-point with a

departure angle

θSDP = −
6 g′′(φ̄SP)

2
+
π

2
=
π

4
−
6 kLW

ρ0

2
. (4.26)
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Figure 4.12. Leaky-wave poles and corresponding residues for different observation
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From the saddle-point approximation, we have

ALW,SP
mn = f(φ̄SP)eΩg(φ̄SP)

√
2π

Ω|g′′(φ̄SP)|e
jθSDP

= −jabk
LW
ρ0

2π
ResA∞00(kLW

ρ0 , φmn)

√
2πj

kLW
ρ0 ρmn

e−j(k
LW
ρ0 ρmn). (4.27)

4.3.4.2 Cylindrical Leaky-Wave Propagation

For an x-directed electrical dipole excitation, there will be one TMx leaky wave

propagating on the layered structure. In addition, the patch current mainly flows in

the x-direction for narrow patches. Hence we can derive a CAD formula for Jx as

ALW,CAD
mn = ATM(φmn)H

(2)
0 (kTM

ρ0 ρmn), (4.28)

where H
(2)
0 (·) is the zero-order Hankel function of the second kind and

kTM
ρ0 = kLW

ρ0 (φmn). (4.29)

Examining the asymptotic expression for the Hankel function with large argument,

and comparing that with the saddle-point asymptotic Eq. (4.27), we can obtain the

formula for the TMx leaky-wave amplitude as

ATM = −jab
2
kTM
ρ0 ResA∞00(kTM

ρ0 , φmn). (4.30)

A comparison of the asymptotic formulas is given in Figure 4.13. The exact

leaky-wave currents obtained from numerically calculating the φ̄-integration Eq. (4.23)

along the “Hankel” path (as given in Figure 4.11) is added for comparison. It is

observed that the asymptotic formulas are accurate when the observation point is

far from the source. This is because the field on the aperture just above the PRS is
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dominated by the leaky-wave fields, and hence the leaky-wave aperture field is a good

predictor of the far-field properties. The saddle-point approximation is able to give

accurate result even when the observation point is close to the source, e.g. on patch

(1, 0).
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Figure 4.13. Leaky-wave currents using asymptotic formulas Eq. (4.27) and Eq. (4.28).
The “exact” leaky-wave current is given by Eq. (4.23) through numerical
integration with respect to φ̄.

4.4 Radiation Pattern Calculation

The total radiation from the Fabry-Pérot cavity antenna consists of that from the

patch currents and the source dipole embedded in the substrate. The dipole radiation

can be found using the reciprocity theorem, where a p-directed testing dipole (Il)

is introduced in the far-field region. From reciprocity, the far-field p-component of

electric field sampled at the testing dipole location is equal to the x-component of that

sampled at the source dipole location, due to the radiation from the testing dipole,

which can be approximated by a plane-wave incidence. This is expressed as

EFF
p,dipole = Einc

x0 (1 + Γ)ej(kx0xd+ky0yd)

· sin(kPW
z1 (zd + h))

sin(kPW
z1 h)

, (4.31)
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where kPW
z1 =

√
k2

1 − k2
x0 − k2

y0. Einc
x0 is the incoming plane-wave from the testing

dipole and is sampled at the origin (the center of the (0, 0) patch),

Einc
x0 = −jωµ(Il)

4πr2
(p̂ · x̂), (4.32)

and the reflection coefficient Γ is that of the layered structure (in the absence of

patches), and this is given by Eq. (D.5).

The radiation due to the patch currents can be computed using different methods,

namely reciprocity and an array factor approach. The reciprocity approach allows

the patch array structure to be infinite and periodic, while the array factor approach

requires a finite-size array. For a fair comparison, the patch array size should be large

enough to model an infinite periodic structure.

4.4.1 Reciprocity

The radiation pattern for an infinite periodic patch array excited with a single

horizontal dipole can be computed using the reciprocity theorem, where a unit-strength

“testing” dipole (Il) is introduced in the far-field and the radiating fields from this

testing dipole are observed at the original excitation location.

Consider a p̂-directed testing dipole radiating in the far-field region; omitting the

details, the EFIE becomes

∞∑
n=1

Z∞ij A
PW
i = Einc

x0 (1 + Γ)B̃i(−kx0,−ky0), (4.33)

where Z∞ij is the same as in the auxiliary periodic phased-array problem, and APW
i

gives the patch current density due to plane-wave incidence. After solving for APW
i
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the radiation from the patches is

EFF,reciprocity
p,patch =

1

ab

∞∑
i=0

APW
i

∞∑
p=−∞

∞∑
q=−∞

G̃xx(kxp, kyq; zd)

· B̃i(kxp, kyq)e
−j(kxpxd+kyqyd). (4.34)

The radiation pattern calculated using reciprocity is shown in Figure 4.14. Five

basis functions are used in order to describe the x-variation of the current density

on each patch. The EFF,reciprocity
p,patch is evaluated at different frequencies. As is seen

from Figure 4.12 where βLW
ρ0 ≈ αLW

ρ0 , the power radiated at broadside is maximized.

This is seen in the pattern plot in Figure 4.14, from which we observe the broadside

power reaches the maximum at the resonance frequency f0 = 12 GHz.
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Figure 4.14. The radiation pattern using reciprocity. The far-field values are evaluated
at different frequencies. The antenna is optimized to deliver maximum
power density at broadside at 12 GHz.
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4.4.2 Array Factor

An array factor can also be used to find the radiation from the patch currents.

For the i-th order basis function, the array factor is

(AF)i =
∞∑

m=−∞

∞∑
n=−∞

Amn;ie
j(kx0ma+ky0nb), (4.35)

where Amn;i is the amplitude of the i-th order surface current density sampled at

the center of patch (m,n). The numerical value of Amn,i is obtained using ASM as

in Eq. (4.10).

The element pattern is simply that from a single rectangular patch antenna, where

EFF
i,p,element = Einc

x0 (1 + Γ)B̃i(kx0, ky0). (4.36)

The total radiation from the patch currents using array factor is then

EFF,AF
p,patch =

∞∑
i=1

EFF
i,p,element(AF)i. (4.37)

The radiation pattern using reciprocity and the array-factor are compared in Fig-

ure 4.15. In the array-factor approach, a 31× 121 patch array is used to represent

an infinite array. Here five basis functions on each patch are used in both methods.

It can be seen that the two patterns agree with each other, which demonstrates the

accuracy of the patch currents computed using ASM.

4.4.3 Cylindrical Leaky-Wave Radiation

There is only one leaky wave (TMx) propagating on the air-substrate Fabry Pérot

antenna. However, we can decompose this TMx wave into a TMz wave and a TEz wave.

The far-field pattern due to cylindrical leaky waves (a TEz and a TMz leaky-wave)

radiation can be found in [102], where CAD formulas for the radiation pattern are
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(a) E-plane pattern.
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(b) H-plane pattern.

Figure 4.15. The comparison of radiation patterns: reciprocity vs. array factor. In
the array factor calculation, the patch currents are obtained using ASM
(Eq. (4.10))
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given as

 Eθ = R(r) cosφ cos θ[ATMP (1)(kTM
ρ0 , θ) + ATEC(kTE

ρ0 , θ)],

Eφ = −R(r) sinφ[ATMC(kTM
ρ0 , θ) + ATEP (1)[kTE

ρ0 , θ)],
(4.38)

where the leaky-wave amplitudes AT and wavenumbers kT
ρ0 are extracted as we compute

the CAD leaky-wave current, using equations similar to Eq. (4.29) and Eq. (4.30).

R(r) accounts for the spherical-wave propagation and is

R(r) = −jωµ0

4πr
e−jk0r. (4.39)

For infinite structure, the auxiliary functions are calculated by

 P (1)(kρ0, θ) = 2j
kρ0
− 4jkρ0

k2ρ0−k20 sin2 θ
,

C(kρ0, θ) = −2j
kρ0
.

(4.40)

Figure 4.16 shows the comparison of the leaky-wave radiation patterns. The

results obtained from the array-factor approach are compared to those using the

CAD formula Eq. (4.38). In the array factor approach, the leaky-wave currents, as

given by Eq. (4.23), are taken as the patch currents. The radiation is sum of the

leaky-wave currents and the dipole source, and is therefore labeled as “LW + dipole”

in Figure 4.16. The results of using the array factor approach but based on the total

currents calculated from ASM is also added, and is labeled as “ASM + dipole”.

It is observed that the patterns agrees with each other near broadside, which

proves that the proposed design is a good leaky-wave antenna, where the leaky-wave

dominance is observed. However, the results using the leaky-wave currents to compute

the array factor is more accurate than those using the CAD formula Eq. (4.38),

especially near the end-fire region in the H-plane.
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Figure 4.16. The comparison of radiation patterns. The total currents (Eq. (4.10))
and the leaky-wave currents (Eq. (4.20)) are used to compute the array
factor. The CAD formula results are obtained using Eq. (4.38).
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4.5 Finite-Size Array

4.5.1 Truncation Effects

For a finite-size patch antenna array, the “natural truncation” refers to a structure

where the antenna array is taken as a finite size while the layered medium extends to

infinity. In the case of the design considered in this chapter with an air-substrate, this

natural truncated antenna is simply a finite-size patch array over an infinite ground

plane. The current densities of a large antenna array (121 patches in the E-plane, 31

patches in the H-plane) is obtained using Ansys Designer and the results are shown

in Figure 4.17.
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Figure 4.17. The normalized current density |Jsx| for a large antenna array. The finite
array simulated in Ansys Designer has the size of 121× 31 patches.

Assume “ideal absorber” are put surrounding a finite-size patch array as shown

in Figure 4.18. The “ideal absorber” is a material that is assumed to absorb all

incoming waves and and thus eliminate reflections from the array boundary. Under

this assumption, the patch currents should stay the same as for the infinite periodic

patch array. These are referred to as “ASM” and “leaky-wave” in Figure 4.17,

accounting for the total current and leaky-wave current, respectively. It can be seen
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finite array ideal absorber

complementary array

Figure 4.18. A finite-size patch antenna array terminated with an ideal absorber. The
currents on the finite array remains the same as those on an infinite
array.

that the results agrees reasonably well even at the array boundaries. This is because

the array is large enough that the leaky-wave decays very fast and becomes negligible

before it reaches the array boundaries. A weak reflection from the array boundary in

the E-plane is seen in Figure 4.17 for the results from Ansys Designer.

4.5.2 Radiation Pattern of a Finite Array

The patch currents obtained from ASM can be used to generate the radiation

pattern of a finite patch array. Two methods are considered here, namely the addition

method (“ASM + dipole”), and the subtraction method. In both methods, the patch

currents for the finite-size array are treated the same as those from an infinite patch

array.

4.5.2.1 Addition Method

The addition method uses the array factor by summing up the patch current

contributions (inside the absorber), plus the radiation from the embedded dipole

source. The radiation patterns obtained using this approach is shown in Figure 4.19,
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for different sizes of the antenna patch arrays. The pattern for an naturally-truncated

array (simulated using Ansys Designer) is added for comparison. It is expected that

the “ideal absorber” assumption is accurate especially when the array size is large,

yet it is still good to give reasonably results for small arrays.
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Figure 4.19. The radiation pattern of a finite-size array: addition method vs. Designer.
The addition method has the “ideal absorber” assumption.

4.5.2.2 Subtraction Method

In the subtraction approach, a complimentary structure (infinite minus finite-size

array) is considered. This complementary structure is shown in Figure 4.18 as the

array outside the absorber and extends to infinity. Due to leaky-wave dominance, the

currents on the complementary array can be predicted using the leaky-wave formula,

either in the strict form, as in Eq. (4.23) or the asymptotic form, as in Eq. (4.27)

and Eq. (4.30). The pattern for the finite array is then computed by subtracting the

fields radiated by the complementary array from the infinite array, whose pattern is

obtained using reciprocity.
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A comparison of the radiation patterns computed using the addition method

and the subtraction method is shown in Figure 4.20. The results from two methods

converge when the antenna array size becomes larger.
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Figure 4.20. The radiation pattern of a finite-size array: addition method vs. subtrac-
tion method.

4.6 Conclusions

In this chapter, a Fabry Pérot cavity antenna with a two-dimensional patch array

implementation was studied. The antenna surface current density was computed

numerically using the array scanning method (ASM).

Starting from the ASM formulation, we proposed the definition of leaky-wave

current as the contour integral surrounding the leaky-wave poles, which can be

calculated using a residue integration. The extracted leaky-wave current was then

compared with the total current calculated from ASM. A leaky-wave dominance was

observed. We then derived two asymptotic formulas for the leaky-wave currents using

the method of steepest descent and using the expected asymptotic form of a cylindrical
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wave.

We also performed a leaky-wave study on a finite-size leaky-wave antenna. An ideal

absorber was assumed to be placed at the array boundary to absorb the reflections.

The radiation patterns were calculated using the addition method and the subtraction

method. The patterns using the ideal absorber assumption were compared to that

using a natural truncation from a full-wave simulation.
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Chapter 5

Conclusions

5.1 Conclusions

In this dissertation, three advanced electromagnetic models were proposed. Ex-

amples presented in this dissertation include (a) an analysis of the conductor surface

roughness effects on stripline transmission lines, (b) a model to estimate the radiation

and coupling mechanism of massively packed vertical interconnects (vias) and (c) a

leaky-wave study of a Fabry-Pérot resonant cavity antenna using a two-dimensional

patch array. These structures are shown in Figure 5.1.

(a) (c)(b)

Figure 5.1. Structures considered in this dissertation: (a) a rough-surface conductor,
(b) a via array and (c) a 2-D leaky-wave antenna.

The first part of the dissertation was the study of the conductor surface roughness

effects, as discussed in Chapter 2. An equivalent rough surface impedance was

extracted using the periodic finite-element analysis. Two structures were analyzed to

extract this equivalent surface impedance, namely a long waveguide and an infinite

periodic cavity. This rough surface impedance was then used for the modification of

the transmission line per-unit-length parameters. The proposed model was validated

using both full-wave simulations and measurements.

The second part of the dissertation presented a semi-analytical model for massively-

coupled vias with arbitrarily-shaped antipads as proposed in Chapter 3. A novel
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model based on the reciprocity theorem was proposed. The use of reciprocity was

seen to greatly improve the efficiency, due to the fast-converging mode-matching

calculation. The proposed model was validated using full-wave simulations.

The third part of the dissertation was the study of a Fabry Pérot cavity antenna

with a 2-D patch array implementation in Chapter 4. The current density of the

antenna was calculated using the array scanning method. Based on this, the leaky-

wave contribution was extracted using a residue integration. In addition, the radiation

properties of a large finite-size array (truncation effects) was evaluated. The numerical

results were validated using reciprocity (assuming infinite periodic structure) and also

full-wave simulations.

5.2 Future Works

5.2.1 Conductor Surface Roughness Effects

In the proposed approach to compute the fundamental Floquet wavenumber kz0,

the constant-β eigenmode solver is used, where the eigenvalues are complex resonant

frequencies f = f ′ + jf ′′. It is suggested we apply analytic continuation, where the

f − β relation is first obtained assuming complex f through a polynomial curve-fit,

and the obtained polynomial representation of f is applied to a real-valued f ′ to

calculate a complex kz0.

Another possible approach is to directly solve the eigenmode problem with eigen-

value λ = e−jkz0Λr , and a preliminary discussion of this idea is given in Appendix A.

5.2.2 Via Modeling

In this dissertation, the parallel-plates modeling the ground-plane pairs were

assumed to have an infinite horizontal extent. However, we only have finite-size

parallel plates in practical PCBs and the infinite-plate assumption becomes less

accurate when the via barrels are located close to the plate boundaries. In order to

model the effects of a finite ground plane, we can use the PMC boundary conditions at

102



the plate boundaries, where the magnetic current densities on the PMC walls become

unknown and are integrated into the mode-matching calculations.

A more accurate modeling methodology, instead of using PMC walls, would be to

enforce an equivalent surface impedance boundary condition for the finite parallel-

plates. Since the dominant transmission mode is the 0th-order vertical mode, we can

estimate the reflection coefficient of this mode at a finite parallel-plate boundary, from

which an equivalent surface impedance can be extracted. Hence, both electric surface

current and magnetic surface current unknowns are associated with the parallel-plate

side walls and are related by this surface impedance boundary condition.
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nant cavity antennas,” in URSI Int. Symp. on Electromagn. Theory, Hiroshima,

2013, pp. 1091–1093.

[104] R. Qiang, J. Chen, F. Capolino, D. R. Jackson, and D. R. Wilton, “ASMFDTD:

A technique for calculating the field of a finite source in the presence of an

infinite periodic artificial material,” IEEE Microw. Wireless Compon. Lett.,

vol. 17, pp. 271–273, Apr. 2007.

[105] F. Capolino, D. R. Jackson, D. R. Wilton, and L. B. Felsen, “Comparison

of methods for calculating the field excited by a dipole near a 2-D periodic

material,” IEEE Trans. Antennas Propag., vol. 55, pp. 1644–1655, Jun. 2007.

[106] T. Itoh and R. Mittra, “Spectral-domain approach for calculating the dispersion

characteristics of microstrip lines,” IEEE Trans. Microw. Theory Techn., vol.

21, pp. 496–499, Jul. 1973.

[107] A. A. Oliner, “Radiating periodic structures: analysis in terms of k vs. β

diagrams,” in Short Course on Microwave Field and Network Techniques, New

York, 1963, pp. 1–32.

116



[108] C. M. Bender and S. A. Orszag, “Asymptotic expansion of integrals,” in Ad-

vanced Mathematics Methods for Scientists and Engineers, New York: McGraw-

Hill, 1978, ch. 6, p. 280.

[109] R. E. Collin, “Hertzian dipole radiating over a lossy earth or sea: Some early

and late 20th-century controversies,” IEEE Antennas Propag. Mag., vol. 46,

no. 2, Apr. 2004.

[110] D. R. Wilton, “Computational methods,” in Lectures on Computational Meth-

ods in Electromagnetics, 5, vol. c, 1981, pp. 1–54.

[111] J. Webb, “Edge elements and what they can do for you,” IEEE Transactions

on Magnetics, vol. 29, no. 2, pp. 1460–1465, Mar. 1993.

117



Appendix A

Periodic Finite Element Eigenvalue Analysis

Our goal is to solve the eigen-frequencies (cutoff) of a periodic cavity (see Fig-

ure A.1), which is obtained by solving the following vector wave equation



∇× (µ−1
r ∇× E)− k2

0εrE = −jωµ0J
i, r ∈ V,

n̂×H = 0, r ∈ S3, S4,

n̂× E = 0, r ∈ S5, S6,

E2 = e−jkz0ΛrE1,

(A.1)

which is referred to as the strong form [110].
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Figure A.1. A periodic cavity.
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We start from approximating the solution domain V by finite elements V e, where

V is divided into tetrahedral elements. We represent the vector electric field E as

E =
N∑
n=1

VnΩn, (A.2)

where Vn characterize the intensity of E along edge n and is to be determined.

Ωn are chosen to be edge-based basis functions [111] and ensure tangential continuity

and normal discontinuity across element boundaries. Each basis function has a unit

tangential component along edge n and linearly goes to 0 on the neighboring edges

and remains 0 beyond the neighboring edges. The positive direction of Ωn is assumed

to point from the smaller vertex index to a larger one.

A.1 Obtain the Weak Form

We use the basis function Ωm as a testing function to test the strong form, and

thus obtain the weak form

< Ωm;∇× (µ−1
r ∇× E) > −k2

0 < Ωm; εrE >= −jωµ0 < Ωm; Ji > . (A.3)

From ∇ · (A×B) = B · ∇ ×A−A · ∇ ×B, we have

< Ωm;∇× (µ−1
r ∇× E) >=< ∇×Ωm;µ−1

r ∇× E > (A.4)

−
∫
V

∇ · (Ωm × (µ−1
r ∇× E))dV,

in which the last term reduces to

∫
V

∇ · (Ωm × (µ−1
r ∇× E))dV =

∫
S

n̂ · (Ωm × (µ−1
r ∇× E))dS (A.5)

= −jωµ0

∫
S

n̂ · (Ωm ×H)dS = jωµ0

∫
S

Ωm · (n̂×H)dS,
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where n̂ is the outward normal of the surface S. Let Js = n̂×H, so that

∫
V

∇ · (Ωm × (µ−1
r ∇× E))dV = jωµ0

∫
S

Ωm · JsdS. (A.6)

We arrange the weak-form vector wave equation as given by

1

jωµ0

< ∇×Ωm;µ−1
r ∇× E > +jωε0 < Ωm; εrE > (A.7)

−
∫
S

Ωm · JsdS = − < Ωm; Ji >,

where the term
∫
S

Ωm · JsdS vanishes on surfaces S3, S4, S5, S6. On surfaces S1 and

S2, the following periodic boundary condition holds,

[V S2
n ] = λ[V S1

n ], [IS2
n ] = λ[IS1

n ], (A.8)

where λ = e−jkz0Λr .

Note that both [V ] and [I] are unknowns on surfaces S1 and S2, which requires

an extra set of equations. It is this λ-relation that provides this extra one set of

equations.

A.2 Eigenmode Formulation

To solve an eigenvalue problem, the excitation is set to be zero. The system of

equations further becomes


[Y V V
mn ] [Y V S1

mn ] 0 [Y V S2
mn ] 0

[Y S1V
mn ] [Y S1S1

mn ] [γS1S1
mn ] [Y S1S2

mn ] [γS1S2
mn ]

[Y S2V
mn ] [Y S2S1

mn ] [γS2S1
mn ] [Y S2S2

mn ] [γS2S2
mn ]





[V V
n ]

[V S1
n ]

[IS1
n ]

[V S2
n ]

[IS2
n ]


=


0

0

0

 , (A.9)
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where the elements in the system matrix can be evaluated by

 Ymn = 1
jωµ0

< ∇×Ωm;µ−1
r ∇×Ωn > +jωε0 < Ωm; εrΩn >,

γmn = − < Ωm; Ωn > .
(A.10)

Note that the superscript V denotes the basis functions inside the volume V as well

as on the PMC surfaces S3 and S4.

Clear the zero terms in the linear system (the periodic boundaries S1 and S2 do

not touch), and then we have


[Y V V
mn ] [Y V S1

mn ] 0 [Y V S2
mn ] 0

[Y S1V
mn ] [Y S1S1

mn ] [γS1S1
mn ] 0 0

[Y S2V
mn ] 0 0 [Y S2S2

mn ] [γS2S2
mn ]





[V V
n ]

[V S1
n ]

[IS1
n ]

[V S2
n ]

[IS2
n ]


=


0

0

0

 . (A.11)

Defining the unknown vector containing the voltages and currents as [X], we then

have an eigenvalue problem for λ such that [A][X] = λ[B][X], where



[A] =

 [Y V V
mn ] [Y V S1

mn ] 0

[Y S2V
mn ] 0 0

,

[B] = −

 0 [Y V S2
mn ] 0

[Y S1V
mn ] [Y S1S1

mn ]+[Y S2S2
mn ] [γS1S1

mn ]+[γS2S2
mn ]

.
(A.12)

The eigenvalue is λ = e−jkz0Λr , from which we can solve for a complex fundamental

Floquet mode wavenumber kz0. The corresponding eigenvector gives the eigenmode.
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A.3 System Matrix Evaluation

It is observed that a basis function Ωn extends to the adjacent tetrahedrons sharing

a common edge n. This makes it difficult to evaluate the Ymn and γmn. However, it is

much clearer if we consider it inside a tetrahedral element e with the local basis of

Ωe
ij, since all elements are non-overlapping. The subscript ij is associated with the

local indices of the element vertexes i and j and the superscript refers to the element

index e.

To parameterize the integral over a tetrahedron, we introduce a set of normalized

volume coordinates ξi = Vi/V
e, where Vi is the volume of the sub-tetrahedron that

consists of a point with arbitrary location and every vertex except for i. To limit the

arbitrary point inside the tetrahedral element e, we have
∑4

i=1 ξi = 1. Defining the

unit height vector ĥi that points to face i, we have

∇ξi = −ĥi/hi = (ljl × lkl)/(6V
e), i ∈ [1, 3], i 6= j 6= l, k > j. (A.13)

We note that the vector basis function Ωe
ij associated with edge ij should be

satisfy two conditions: (a) it should be normal to all edges except for edge ij, and (b)

it should have unitary tangential component along edge ij.

To satisfy condition (a), it is straightforward that the basis function may take the

form Ωe
ij = Cρaφ̂a, where (ρa, φa, za) is the local cylindrical coordinate in the shaded

plane that contains lij and is perpendicular to lkl, centered at vertex a, as shown

in Figure A.2. C is a constant to be determined. The curl of the basis is then found

by

∇×Ωe
ij = − 1

ρa

∂

∂ρa
(ρaΩ

e
ijφ)ẑa = 2Cẑa. (A.14)

Since the curl of the basis exists (to the lowest order), the basis function Ωe
ij used
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Figure A.2. The curl-conforming basis function. The shaded triangle Sa is perpen-
dicular to l14 that contains h2 and h3. The local cylindrical coordinate
(ρa, φa, za) is shown on the right.

here is also referred to as a curl-conforming basis.

We then use condition (b) to find the constant C. We note that when ρa = ha,

Ωe
ij = Chaφ̂a. In order to have unitary tangential component, C = 1/ha.

In the local area coordinates for Sa, ξi + ξj + ξa = 1. Hence, the basis function

can be calculated by

Ωe
ij = (ρa/ha)φ̂a = ẑa × ρa/ha (A.15)

= ẑa × (ξilj − ξjli)/ha

= (−ξiljĥj + ξjliĥi)/ha

= lij(ξi∇ξj − ξj∇ξi).

We can then calculate the element matrix using

∫
V e
ξα1 ξ

β
2 ξ

γ
3 ξ

δ
4dV =

3!V eα!β!γ!δ!

(α + β + γ + δ + 3)!
, (A.16)
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or

∫
Se
ξα1 ξ

β
2 ξ

γ
3dS =

2!Aeα!β!γ!

(α + β + γ + 2)!
. (A.17)

Hence,

< Ωe
ij; Ω

e
kl > = lijlkl

∫
De

(ξi∇ξj − ξj∇ξi) · (ξk∇ξl − ξl∇ξk)dD (A.18)

=
lijlklJ

eNdim!

(Ndim + 2)!
[(1 + δik)∇ξj · ∇ξl − (1 + δil)∇ξj · ∇ξk

− (1 + δjk)∇ξi · ∇ξl + (1 + δjl)∇ξi · ∇ξk],

with Ndim = 3 for tetrahedral elements (D = V ) and Ndim = 2 for triangular elements

(D = S). Je is the Jacobian of the element e, and Je = V e for tetrahedral elements

and Je = Ae for triangular elements.

Also, it is seen from Eq. (A.15) that ∇×Ωe
ij = 2lij(∇ξi ×∇ξj). Therefore

< ∇×Ωe
ij;∇×Ωe

kl > = 4lijlklJ
e[(∇ξi ×∇ξj) · (∇ξk ×∇ξl)]. (A.19)

σeijσ
e
klY

e
ij,kl is added to Ymn (similar for γmn) if m, n are edge DOF indices associated

with local edges ij and kl, receptively, of element e. σeij incorporates the sign accounting

for the reference choice of the direction of edge ij: σeij = 1 if the local edge ij is

parallel to the global edge m, and σeij = −1 if is anti-parallel to edge m. Globally, the

positive direction for edge m is pointed from the smaller index to the larger index.
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Appendix B

TEM Mode Field Calculation

It is well-known that for a wave-guiding structure like a transmission line shown

in Figure 2.9 with a guided mode propagating along z-direction, the electromagnetic

field can be written in the form E(x, y, z) = [t̂Et(x, y) + ẑEz(x, y)]e−jkzz,

H(x, y, z) = [t̂Ht(x, y) + ẑHz(x, y)]e−jkzz.
(B.1)

The subscript t represents the transverse field components and the subscript z repre-

sents the z-directed field components.

For ideal (lossless) transmission lines where the guided mode is a transverse-

electromagnetic (TEM) mode, both Ez and Hz are zero. In this case, the wavenumber

becomes kz = k0
√
µrεr, where k0 = ω

√
µ0ε0 is the wavenumber of free space. For a

TEM mode, the transverse electric field Et satisfies the following conditions,

 ∇ · Et = 0,

∇× Et = 0,
(B.2)

which are equivalent to the Laplace condition ∇2Φ = 0, where Φ is the static potential

and Et = −∇Φ.

Once we numerically solved for the static potential Φ(x, y), one can obtain the

transverse electromagnetic fields as

Et = −∇Φ, Ht =
1

η0

√
εr
µr

(ẑ× Et), (B.3)

where η0 =
√
µ0/ε0 is the wave impedance of free space.
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The transverse plane of a stripline transmission line structure used to solve the

Laplace equation ∇2Φ = 0 is shown in Figure B.1. The boundary condition for Φ is

the Dirichlet (or first-type) boundary condition on the conductor surfaces. We assume

the static potential is Φ = 1 V on the surface of the strip conductor and Φ = 0 V on

the ground planes and at a infinite distance away from the strip.

Ground, , Cout,  = 0 V

Strip, Cin,  = 1 V

Substrate , 

2  = 0

Figure B.1. The cross-sectional geometry of a stripline transmission line used to solve
the Laplace equation ∇2Φ = 0.

Note that the same Laplace equation also describes the static condition. Hence,

the static potential Φ can be written in an integral form that

Φ(ρ) = − 1

2πε0εr

∮
C

ln |ρ− ρ′|ρs(ρ′)dl′, (B.4)

where ρs is the surface charge density on the conductor boundary. Here ρ denotes

the observation coordinate system and ρ′ denotes the source coordinate system.

To obtain the numerical value of the surface charge density ρs, one can use MoM.

The boundary l′ is first discretized into N small segments and ρs(ρ
′) and Φ(ρ) are

represented by linear combinations of the basis functions (rectangular pulses) as shown
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in Figure B.2, so that

ρs(ρ
′) =

N∑
n=1

QnΠn(ρ′), (B.5)

Φ(ρ) =
N∑
m=1

VmΠm(ρ). (B.6)

Here the basis function is defined as

Πn(ρ) =

 1, ρ ∈ ln,

0, ρ /∈ ln.
(B.7)

Q1,
V1

Q2,
V2

...

Cout,  = 0 V

Cin,  = 1 V

Q3,
V3

Q4,
V4

l1 l2 l3 l4

Figure B.2. Boundaries discretization. Basis functions Πn(ρ) in the rectangular pulse
form are used to represent the unknown ρs and Φ.

Performing Galerkin’s test on Eq. (B.4) (multiplying both sides with the basis

function and then integrating along the entire boundary domain) yields a static

potential integral equation in a discretized matrix form,

[Smn][Qn] = [Vm], (B.8)
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where

Smn = − 1

2πε0εr

∫
ln

∫
lm

ln |ρ′n − ρm|Πn(ρ′n)Πm(ρm)dlmdln (B.9)

= − 1

2πε0εr

∫
ln

∫
lm

ln |ρ′n − ρm|dlmdln,

and

Vm =

∫
lm

Φ(ρm)Πm(ρm)Πm(ρm)dlm (B.10)

= Φ(ρm)lm.

The surface charge density ρs is then solved using [Qn] = [Smn]−1[Vm].

In order to obtain the numerical value for the matrix elements Smn for m 6= n,

one can perform the Gaussian-quadrature integral. And for m = n, there exists a

logarithm singularity that is integrable. An analytic formula for Smm is

Smm = − l2m
2πε

(ln lm − 1.5). (B.11)
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Appendix C

Measurement of Dielectric Properties

C.1 Existing Measurement Methods

The most popular way to measure the dielectric properties of a transmission line

is through its frequency response, e.g., the scattering parameter (S-parameter) S21. If

all ports of the transmission line are matched, the wavenumber kz on the transmission

line and the S21-parameter are related by

S21 = e−jkzL, (C.1)

where L is the length of the stripline and kz = β − jα, with α being the attenuation

constant and β being the phase constant. The wavenumber kz is related to the

complex dielectric constant εrc by

kz = ω
√
µ0ε0 ·

√
µrεrc =

2πf
√
µr

c0

√
εrc, (C.2)

where c0 = 299792458m/s is the speed of light in vacuum. Most laminating substrate

materials are non-magnetic and thus for usual calculations, µr = 1.0.

εr, or Dk, is the real part of εrc. It can be computed from the phase delay

information of the measured S-parameter as

Dk = <
[

c0

2πf
√
µr

lnS21

−jL

]2

. (C.3)

The loss tangent tan δ, or Df, is the ratio of the imaginary and real part of εrc,

and is computed from the measured dielectric attenuation αd (given that the whole
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system is low-loss) as

Df =
c0αd
πf
√
εr
. (C.4)

Usually the dielectric loss is not equal to the total loss, so the separation of

dielectric loss from the total loss is necessary.

For conductors having smooth surfaces, the loss separation is straight forward. The

dominant frequency components manifested in the insertion loss in the S-parameter

measurements in this frequency range are
√
ω, ω and ω2, so that

αT = K1

√
ω +K2ω +K3ω

2. (C.5)

In Eq. (C.5), the first term in frequency is attributed to the conductor loss αc,smooth

which simply scales with
√
ω, and the last two terms with ω and ω2 are attributed to

dielectric loss αd,smooth, indicating

 αc,smooth = K1

√
ω,

αd,smooth = K2ω +K3ω
2.

(C.6)

The frequency dependency of αT for a stripline with rough conductors can be also

expressed in the form of Eq. (C.5). When the conductor surface is rough, however,

the separation of dielectric loss becomes a difficult task because the conductor loss

does not purely scale with
√
ω.

For rough conductors, the conductor loss actually depends on all three terms on

the right-hand-side of Eq. (C.5) and is usually entangled with the dielectric loss in

most existing methods, which potentially gives larger Df values. In addition, the extra

loss due to roughness is closely related to the roughness level (roughness height, shape,

surface area, etc.) so that the extracted Df value will change for different copper foils,
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even with identical dielectric substrate. This is inconvenient in practical applications.

C.2 Differential Extrapolation Method

Recently, an experimental-based method to separate losses due to frequency-

dependent PCB dielectric laminates and conductors, including loss originating from

conductor roughness, has been proposed [51]. This method allows for the extraction

of a dissipation factor tan δ of a PCB dielectric from the loss contributions of the

copper foil roughness in the insertion loss for the PCB transmission line.

The approach requires at least three test samples with the same substrate, though

different copper foil roughness profiles (e.g., STD–standard, VLP–very-low-profile,

and HVLP–hyper-very-low-profile foils). A differential-extrapolation is used and is

briefly summarized.

In the differential extrapolation method, the total loss αT is recognized as three

types of losses. They are (a) conductor loss assuming the conductors are smooth

αc,smooth, (b) an extra conductor loss caused by surface roughness αc,rough and (c) the

dielectric loss αd. The expressions for these three losses are


αc,smooth = a

√
ω,

αc,rough = b
√
ω + cω + dω2,

αd,rough = eω + fω2,

(C.7)

where the unknowns e and f are to be solved to calculate the dielectric loss. Collecting

and combining terms gives the relations between the e, f and the K coefficients

in Eq. (C.5) as

 K2 = c+ e,

K3 = d+ f.
(C.8)

Two degrees of freedom e and f requires at least two equations. The equations
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1.496

4.014

Figure C.1. The extrapolations on (a) K2 and (b) K3 as functions of roughness height
Ar to zero using a smooth quadratic polynomial fit. When Ar = 0,
K2 = e = 1.496× 10−11 and K3 = f = 4.014× 10−23.
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describe the relationship between the K-coefficients and the roughness parameters

and can be constructed on two foils with different levels of roughness. Once the K

values are determined for two Ar, extrapolating the K−Ar functions to Ar = 0 yields

their values for smooth conductors. And for smooth conductors, αc,rough = 0, c and

d vanish, and then K2 = e and K3 = f . Therefore, the “cleaned from roughness”

dielectric loss is obtained.

We here give an example illustrating the differential extrapolation method. Three

striplines with identical dielectric substrate but various conductor surface roughness

height Ar are used to separate the losses. The values of the curve-fitting coefficients

are summarized in Table C.1 and the coefficients obtained by extrapolation of the K-

functions are shown in Figure C.1. These values are then substituted back in Eq. (C.7)

to calculate the frequency-dependent dielectric loss αd.

Table C.1. Differential extrapolation K-coefficients (αT = K1

√
ω +K2ω +K3ω

2)

Foil Type Ar (µm) K1 × 106 K2 × 1011 K3 × 1023

STD 7.0 1.386 3.399 -0.268

VLP 3.0 2.200 2.070 2.334

HVLP 1.5 2.309 1.745 3.192

Hence, the frequency dependence of the dissipation factor tan δ, or Df, is extracted.

Figure C.2 shows the dielectric properties of the substrate material. The dielectric

constant εr, or Dk, is extracted using the traveling wave transmission-line method

from the S-parameters of the smoothest foil (HVLP).
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Figure C.2. Dielectric properties of the PCB test board substrate material. Solid line:
dissipation factor tan δ, or Df. Dashed line: dielectric constant εr, or Dk.
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Appendix D

Spectral Periodic MoM Formulation

The electrical fields radiated from the periodic patches and dipoles are first

expanded into space-harmonics, namely


E∞x,patch = 1

ab

∞∑
i=1

A∞00;i

∞∑
p=−∞

∞∑
q=−∞

G̃xx(kxp, kyq; 0)B̃i(kxp, kyq)e
−j(kxpx+kyqy),

E∞x,dipole = 1
ab

∞∑
p=−∞

∞∑
q=−∞

G̃xx(kxp, kyq; zd)(Il)e
−j[kxp(x−xd)+kyq(y−yd)],

(D.1)

where A∞00;i measures the current intensity of at the center of patch (0, 0).

h

0

TZ

1

TZ

T

 1 1tanT T

in zZ jZ k h
I = 1 A

Figure D.1. The equivalent circuit to compute the spectral domain Green’s function
G̃xx. The impedance seen by the current source at the interface should
be Z0 ‖ jZ1 tan(kz1h).

The Green’s function relating J̃sx and Ẽx for a grounded dielectric slab structure

from TEN analysis is (z < 0)

G̃xx(kxp, kyq; z) =−
[

(kxp/kρ)
2

DTM(kz0pq)
+

(kyq/kρ)
2

DTE(kz0pq)

](
sin(kz1(z + h))

sin(kz1h)

)
, (D.2)

where DT corresponds to the net TMz or TEz wave-admittance at the dielectric-air
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interface (see Figure D.1), and is given by

DT(kz0) = Y T
0 (kz0)− jY T

1 (kz0) cot(kz1h), (D.3)

where

Y TM(kz0) =
ωε

kz0
, Y TE(kz) =

kz0
ωµ

. (D.4)

The wavenumber kz is computed from k2
z = k2 − k2

x − k2
y. The correct choice for kz0

and kz1 should both be the “proper” one: the one with negative imaginary part.

A reflection coefficient ΓT can also be computed as

ΓT =
jZT

1 tan(kz1h)− ZT
0

jZT
1 tan(kz1h) + ZT

0

. (D.5)

Apply Galerkin’s method, i.e., multiplying both sides of Eq. (4.2) with the basis

function Bj and then integrating over the surface area of patch (0, 0), the resulting

E-field integration equation (EFIE) is given by Eq. (4.8), where


Z∞ij = − 1

ab

∞∑
p=−∞

∞∑
q=−∞

G̃xx(kxp, kyq; 0)B̃i(kxp, kyq)B̃j(−kxp,−kyq),

R∞j = 1
ab

∞∑
p=−∞

∞∑
q=−∞

G̃xx(kxp, kyq; zd)B̃j(−kxp,−kyq)(Il)ej(kxpxd+kyqyd).
(D.6)
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Appendix E

EFIE Approach with 1-D Discretization

We briefly summarize the electric field integral equation (EFIE) approach using

1-D discretization and integration along the antipad boundary, similar to methods

described in [34], [35]. The goal is to solve for the induced via currents by enforcing the

EFIE (in terms of φ-harmonics) on the surface of the via barrels so that Asca
zl = −Ainc

zl ,

for each azimuthal n-mode and vertical l-mode.

The incident field onto barrel p due to the antipad aperture radiation at barrel q

is computed as

Ainc
zl = −jωµ

k2
ρl

ẑ · (∇× Fl). (E.1)

The electrical vector potential Fl due to Ml is given by

Fl = ε

∫∫
S′

Ml(ρ
′)Gl(ρ,ρ

′)dS ′, (E.2)

where ρ denotes the observation coordinate (barrel p) and ρ′ denotes the source

coordinate (barrel q). Ml is the l-order Fourier spectrum of the magnetic surface

current Ms located at z = z′ (used to represent the antipad at barrel q),

Ml(ρ
′, φ′) = dlMs =

2 cos(kzlz
′)

h(1 + δl0)
Ms. (E.3)

Gl(ρ,ρ
′) = (−j/4)H

(2)
0 (kρl|ρ − ρ′|) is the parallel-plate Green’s function. S ′ is the

antipad area related to barrel q.

Using the TEM port assumption (Ms = ẑ′×∇′Φ and ∇2′Φ = 0) and the fact that
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∇=−∇′, we have

∇× Fl = ẑ′εdl

∫∫
S′

∇′ · (Gl∇′Φ)dS ′. (E.4)

Applying the 2-D divergence theorem, we obtain the incident field expression,

Ainc
zl =

jωµdl
k2
ρl

∮
C′

ρs(ρ
′)Gl(ρ,ρ

′)dl′, (E.5)

as we recognize n̂′ · ∇′Φ = (1/ε)ρs, n̂′ being the outward normal of C ′ (the boundary

of S ′).

The scattered field from the barrel current radiation can be expressed by Eq. (3.10)

– Eq. (3.12). Hence, we can solve for the coefficients cq;ln using similar procedures as

discussed in Section II-B. In fact, we can use the identical system matrix [T p,q;lm,n ] as given

in Eq. (3.16), but a different right-hand-side. This is because of the incident/scattered-

field formulation. The new RHS vector [bp;lm ] has the expression of

bp;lm = − 1

2π

2π∫
0

Ainc
zl e
−jmφdφ, (E.6)

which is in the form of two line integrals and can be simplified using the property

∮
C

Gl(ρ,ρ
′)ejmφdl =

πaJm(kρla)

2j
H(2)
m (kρlρ

′
p)e

jmφ′p , (E.7)

where C is the boundary of via p, having a radius of a. Here ρ′p = ρ′ − ρp with ρp

being the center of via p. This gives the final formula for the RHS as

bp;lm =
ωµJm(kρla)cos(kzlz

′)

−2k2
ρlh(1 + δl0)

∮
C′

ρsH
(2)
m (kρlρ

′
p)e
−jmφ′pdl′. (E.8)
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It is noted the numerical integration above is along the antipad boundary, which

requires only a 1-D discretization.

The l-order current at barrel q is related to the cq;ln coefficient by taking the n = 0

surface current density and multiplying by 2πa,

Iq;lz =
j4cq;l0

µJ0(kρla)
, (E.9)

and the total port current is obtained by summing the components for each l-order

mode.
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Appendix F

Estimation of Bessel Function Calls

F.1 Calls of Bessel Functions for the Proposed Method

The proposed algorithm is a 2.5-D approach that requires many evaluations of the

Bessel functions, i.e., Jn(·), H(2)
n (·). We can therefore estimate the computational cost

based on the number of calls of the Bessel functions needed to generate the system of

equations Eq. (3.15). In the following, the total number of calls of the Bessel functions

required to generate the full S matrix at a single frequency point is evaluated.

For the lower-order vertical modes, we need to build the system matrix [T p,q;lm,n ]

to describe the interaction among via posts. Making use of the symmetry that

T q,p;lm,n = (−1)n−mT p,q;lm,n for p 6= q, it requires nlow
T calls of the Bessel functions where

nlow
T = P (2N + 1) + P (P − 1)(2N + 1)2. (F.1)

Once we have solved for the coefficients [cq;ln ], we can compute the testing frill

radiation AzB by sampling along the antipad outer boundary (the integration of

AzB along the inner boundary is already given by [bp;lm ]). It should be noted that for

multiple vias sharing one antipad, the calculation of AzB is required only once for

each antipad. Supposing we have Pout points along the outer boundary of the antipad,

this requires nlow
A calls of the Bessel functions for the AzB evaluated on all antipads,

nlow
A = P (2N + 1)PoutNantipad, (F.2)

where Nantipad is the number of antipads of the system.

For the higher-order vertical modes, on the other hand, it is not necessary to build
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the [T p,q;lm,n ] to compute AzB. Instead, we assume that the currents on all via barrels

are negligible except for the one where the testing frill is located (barrel test). This

assumption is valid as long as the ratio of the self-term and the mutual-term of the

[T ] matrix is large enough. Since barrel test radiates as if radiating alone in terms of

the higher-order modes, only the ctest;l0 coefficient contributes to the total radiation.

Hence the higher-order AzB calculation requires nhigh
A calls of the Bessel functions,

nhigh
A = PoutNsignal, (F.3)

where Nsignal is the number of signal vias (the vias that have an antipad associated

with them).

For vertical modes with even higher order such that the radiation for barrel test

is noticeable only along the boundary of barrel test Eq. (3.18), we do not need any

Bessel functions for the AzB evaluation.

In summary, the total calls ntotal of the Bessel functions required by the proposed

algorithm is

ntotal = Llow(nlow
T + nlow

A ) + Lhighnhigh
A , (F.4)

where Llow is the number of lower-order vertical modes l that satisfies

|H(2)
0 (kρla)|

|J0(kρla)H
(2)
0 (kρls)|

< tT , (F.5)

and Lhigh is the number of higher-order vertical modes l, with l outside the lower-order

range and satisfying

|H(2)
0 (kρla)|

|H(2)
0 (kρlb)|

< tT . (F.6)
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Here the threshold number tT is chosen to be a large number, e.g., tT = 104. kzl = lπ/h

is the vertical wavenumber and kρl =
√
k2 − k2

zl is the horizontal wavenumber.

F.2 Calls of Bessel Functions for 1-D EFIE

For the 1-D EFIE approach with the identical system matrix [T p,q;lm,n ], we have

the same nEFIE
T as given in Eq. (F.1). The right-hand-side incident-field vector is

computed from a 1-D integral along the antipad boundary (inner and outer boundary),

which is similar to what has been proposed in [34], [35], as

bp;lm =
ωµJm(kρla) cos(kzlz

′)

−2k2
ρlh(1 + δl0)

∮
C′

ρs(ρ
′
p, φ
′
p)H

(2)
m (kρlρ

′
p)e
−jmφ′pdl′, (F.7)

where (ρ′p, φ
′
p) is measured from the center of barrel p, and ρs is the surface charge

density at the boundary of the antipad. Assume there are Pin sample points along

the antipad inner boundaries and Pout along the outer boundaries. We then have

nEFIE
A = P (2N + 1)(Pout + Pin + 1)Nsignal, (F.8)

and the total calls nEFIE
total of Bessel functions required by the 1D-EFIE method is

nEFIE
total = (L+ 1)(nEFIE

A + nEFIE
T ). (F.9)

It should be noted that the above estimate is based on Eq. (F.7). Indeed, it is

possible to program the 1D-EFIE method more efficiently using similar techniques as

in the proposed approach. For example, one can use different formulations for different

vertical modes, and the Hankel functions used in Eq. (F.7) can also be stored to

reduce the number of calls. These were not done here in the given estimates, however.
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