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Abstract 

A stimulus (mask) reduces the visibility of another stimulus (target) when they are 

presented in close spatio-temporal vicinity of each other, a phenomenon called visual 

masking. Visual masking has been extensively studied to understand the dynamics of 

information processing in the visual system. Visual spatial attention is also known to 

modulate information processing and transfer within the visual system. Since both 

processes control the transfer of information from sensory memory to visual short-term 

memory (VSTM), a natural question is whether these processes interact or operate 

independently. Here, we modeled visual masking by using a statistical framework, and 

used this theoretical framework along with psychophysical experiments to determine 

whether and how masking and attention interact.   

In a psychophysical experiment, observers were asked to report the orientation of 

a target bar under three different masking paradigms. The distribution of response errors 

was modeled by using statistical mixture-models. Our results show that in all three types 

of masking, the reduction of a target’s signal-to-noise ratio (SNR) was the primary 

process whereby masking occurred. We interpret these findings as the mask reducing the 

target’s SNR (i) by suppressing or interrupting the signal of the target in para-/meta-

contrast, (ii) by increasing noise in pattern masking by noise, and (iii) a combination of 

the two in pattern masking by structure. 

Recent evidence suggests that the studies that reported interactions between 

masking and attention suffered from ceiling and/or floor effects. We investigated 

interactions between metacontrast masking and attention by using an experimental design 



ix 
 

in which saturation effects were avoided. In these experiments, attention was controlled 

either by set-size or by spatial pre-cues. We examined attention-masking interactions 

based on two types of dependent-variables: (i) the mean absolute response errors and (ii) 

the distribution of signed response errors. Our results show that both the voluntary 

(endogenous) and reflexive (exogenous) mechanisms of attention affect observers’ 

performance without interacting with masking. Statistical modeling of response errors 

suggests that attention and metacontrast masking exert their effects mainly through 

independent modulations of the guessing component of the mixture model. Taken 

together, our results suggest that visual masking and attention operate independently.   
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Chapter 1. Introduction 

1.1. Visual Masking 

Vision is an active process. We are surrounded by changing and moving stimuli 

and we are constantly processing information coming from an environment that includes 

both static and dynamic objects. One of the experimental tools used to study the 

dynamics of vision is visual masking. Visual masking is defined as the reduction in the 

visibility of one stimulus (target) by another stimulus (mask) when the mask is presented 

in the spatio-temporal vicinity of the target (Bachman, 1994; Breitmeyer & Ogmen, 

2006). Visual masking has largely been investigated as a phenomenon reflecting the 

spatiotemporal dynamics of the visual system, and various models have been developed 

to explain its mechanistic bases (see reviews: Bachman, 1994; Breitmeyer & Ogmen, 

2000, 2006; Enns & Di Lollo, 2000; Francis, 2000).  

Visual masking has also been used to control the duration for which stimulus 

information remains available to the observer. After its offset, the stimulus registers first 

in a relatively large-capacity memory, known as sensory (or iconic) memory (Averbach 

& Sperling, 1961; Haber, 1983; Sperling, 1960). The contents of the iconic memory 

decay rapidly (< 1000ms). Iconic memory has been shown to have two components: 

visible persistence and informational persistence (Coltheart, 1980). The visual system 

tends to keep a persisting residual image of a briefly flashed stimulus for a while 

(approximately 120 ms under daylight conditions) (Breitmeyer & Ogmen, 2006; 

Coltheart, 1980; Haber & Standing, 1970), and this phenomenon is known as visible 

persistence. The second component of iconic memory pertains to the information related 
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to stimulus (such as its shape, color, location, etc.) and it is not visible (Coltheart, 1980). 

Due to the limitations imposed by visible persistence, we would expect moving objects to 

be subject to a high amount of smear. For instance, if we take a camera shot of flowing 

traffic with a shutter speed that corresponds to the duration of visible persistence, the 

camera image will be highly blurred. However, under normal viewing conditions, we 

perceive a sharp and clear scene despite the smear that would be caused by visible 

persistence of visual stimuli. Our sharp and clear perception of a scene is the result of 

suppression of unwanted activity by the visual system that would otherwise create smear. 

The reduction of the blur of moving stimuli is known as motion deblurring (Burr, 1980). 

Visual masking has been proposed as the mechanism for motion deblurring (Chen, 

Bedell, & Ogmen, 1995; Ogmen, 1993; Purushothaman, Ogmen, Chen, & Bedell, 1998).  

The distribution of receptors in the retina is not uniform. In order to enjoy the 

high resolution of the fovea, we often make saccadic eye movements (3-4 times per 

second) to reposition the fovea with the location of interest in the environment. These eye 

movements cause shifts and distortions in the entire retinal image, yet we do not perceive 

(or are not aware of) the changes that occur during these eye movements (e.g., 

Bridgeman, Hendry, & Stark, 1975). Visual masking has been proposed as the 

mechanism for rendering invisible the changes across saccadic eye movements and smear 

due to saccades (Bridgeman et al., 1975; Burr, 2004; Raymond, 1910).  

1.2. Visual Memory  

A subset of the contents of iconic memory is transferred to a more durable store, 

visual short-term memory (VSTM). That VSTM is a different memory store than iconic 

memory has been supported by the findings that a visual mask can interfere with the 
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contents of iconic memory but not with those of VSTM (e.g., Averbach & Coriell, 1961; 

Gegenfurtner & Sperling, 1993; Haber, 1983; Loftus, Duncan, & Gehrig, 1992; Schill & 

Zetzsche, 1995). Therefore, visual masking allows us to suppress the iconic image of a 

stimulus so that VSTM can be investigated in isolation. Given this property, visual 

masking has also played a significant role in the studies of visual memory.  

The traditional view of VSTM is that, while it can store information for much 

longer times than iconic memory (a few seconds vs. a few hundred milliseconds), its 

capacity is severely limited. Most studies suggested a capacity limit of four to five items 

for VSTM (Cowan, 2000, 2005, 2010; Fukuda, Awh, & Vogel, 2010; Pasternak & 

Greenlee, 2005). Recent studies addressed whether VSTM stores its items in a fixed 

number of slots of equal resolution or uses a sharable resource that can be distributed 

among many items. Evidence for fixed slots came from studies of Zhang and Luck 

(2008) who used a statistical mixture model to decompose the distribution of errors into 

two components, a Gaussian distribution and a uniform distribution: 

𝑃𝐷𝐹 𝜀 =   𝑤! ∗ 𝐺 𝜇,𝜎 +    1− 𝑤! ∗ 𝑈,                                    (1-1) 

where PDF is the probability density function of errors,  𝜀, in observers’ responses; 

𝐺 𝜇,𝜎  is a Gaussian distribution with mean 𝜇 and standard deviation 𝜎;  and U is a 

uniform distribution over the interval defining the errors. The Gaussian term represents 

reports of items in VSTM and the uniform distribution represents guesses. The 

parameter  𝑤!   models the proportion of responses from memory while 1− 𝑤!  

represents the proportion of guesses. The mean of the Gaussian represents the accuracy 

with which items are stored in VSTM and the inverse of the variance represents the 

precision with which items are stored. If VSTM is composed of a fixed number of 
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discrete slots and the number of items to report is increased, the proportion of guesses 

should remain close to zero until all the slots are filled (i.e., the capacity of VSTM is 

reached) and increase thereafter. If the slots are of fixed precision, then the standard 

deviation should remain independent of the number of items. While initial studies gave 

support for discrete fixed-precision representations in VSTM (Fukuda et al., 2010; Zhang 

& Luck, 2008), more recent studies provided data favoring the shared-resource approach 

(e.g., Bays, Catalao, & Husain, 2009; van den Berg, Shin, Chou, George, & Ma, 2012). 

Notwithstanding these differences, we note here the usefulness of this statistical modeling 

approach, which allows the separation of quantitative (𝑤: proportion of items stored in 

memory) and qualitative (1/𝜎: precision with which items are stored) aspects of 

information encoding and storage. 

1.3. Spatial Attention 

Visual system is flooded with an enormous amount of information under normal 

viewing conditions. Only a subset of this information can be selected for further 

processing. Attentional mechanisms are responsible for enhancing the processing of the 

selected information (items, objects, etc.) and suppressing (or filtering out) the rest by 

allocating processing resources accordingly. The selection and filtering functions of 

visual attention have been investigated extensively and are well-documented (e.g., Chen 

et al., 2008; Gazzaley & Nobre, 2012; Palmer, 1990; Polk, Drake, Jonides, Smith, & 

Smith, 2008). In short, attention modulates the information transfer from sensory memory 

to VSTM and it has a significant role in maintenance of information in VSTM (Ogmen, 

Ekiz, Huynh, Bedell, & Tripathy, 2013; Reynolds & Chelazzi, 2004; Sreenivasan & Jha, 

2007; Tombu et al., 2011). Moreover, two types of attentional orienting have been 
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identified (Cheal & Lyon, 1991; Egeth & Yantis, 1997; Jonides, 1981; Müller & Rabbitt, 

1989; Nakayama & Mackeben, 1989; Posner, 1980; Weichselgartner & Sperling, 1987). 

Exogenous attention has often been described as controlled by the stimulus and, thereby, 

a reflexive mechanism. When we hear a loud bang or see a flash of light on a dark road, 

the visual systems automatically orients and deploys most of its resources for processing 

this information and acting upon it. Exogenous attention hence has a significant role in 

survival. Endogenous attention, however, is an internal allocation of resources to a 

predetermined region in the space, or to a particular feature. Due to this observer 

controlled nature of endogenous attention, it is slower. In other words, exogenous and 

endogenous attention differ from each other also in their temporal dynamics (Egeth & 

Yantis, 1997; Jonides, 1981; Wright & Ward, 2008).  

1.4. Common-Onset Masking and “Object Substitution” 

Although there have been many studies that directly or indirectly investigated the 

effect of attention on different types of visual masking (Argyropoulos, Gellatly, Pilling, 

& Carter, 2013; Boyer & Ro, 2007; Di Lollo, Enns, & Rensink, 2000; Filmer, 

Mattingley, & Dux, 2014; Hirose & Osaka, 2010; Ramachandran & Cobb, 1995; Shelley-

Tremblay & Mack, 1999; Smith, Ellis, Sewell, & Wolfgang, 2010; Smith, Ratcliff, & 

Wolfgang, 2004; Smith & Wolfgang, 2007; Tata, 2002), the findings reported in these 

studies have been contradictory. In common-onset masking, where the target and mask 

stimuli are presented at the same time but the mask duration is longer (i.e., turned off 

after the target is gone), it has been claimed that attention plays a crucial role (Di Lollo et 

al., 2000; Enns & Di Lollo, 1997; Hirose & Osaka, 2010). According to this approach, 

the masking effect occurs due to object substitution via reentrant processing in the brain. 
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This process is claimed to be triggered by a mismatch between the reentrant visual 

representation of the target and mask pair and the incoming lower level activity due to 

only the mask (since it is presented alone after target’s offset). As an experimental 

support for this hypothesis, Di Lollo, Enns, and Rensink (2000) showed that there is a 

significant interaction between mask-duration and set-size (the number of potential 

targets). Here, the assumption is that as set-size increases, attentional resources will have 

to be spread to more locations, thereby increasing the attentional load and, hence, the 

time it takes for attention to arrive at the target’s location. On the other hand, when set-

size is small, or the target just “pops out”, attention quickly focuses on this location, 

hampering the masking effect. Following a similar logic, Tata (2002) showed strong 

interactions between masking strength and set-size in metacontrast masking, where the 

target and mask are spatially non-overlapping, can onset at different times, and have the 

same durations. This finding was intriguing because it implied that metacontrast and 

common-onset masking might have a common mechanism as opposed to what Di Lollo 

and colleagues claimed. However, recent evidence shows that, in common-onset 

masking, masking strength and set size (i.e., attention), do not actually interact, and that 

previous studies suffered from ceiling and/or floor effects which led to inappropriate 

conclusions (Argyropoulos et al., 2013). This finding has been recently replicated by 

using an eight-alternative forced choice task (Filmer et al., 2014), providing further 

evidence against object-substitution theory. Pilling et al. (2014) employed a spatial cue to 

directly control spatial attention, and also reported an absence of interaction between 

attention and common-onset masking.  
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Although there are many computational models of attention, its relation with 

masking is addressed by only a few models. We now briefly review two prominent 

models of attention which also addresses the relationship between visual masking and 

attention.  

1.5. The Perceptual Template Model of Attention 

Dosher and Lu developed a theoretical and experimental framework to investigate 

potential mechanisms of attention (Lu & Dosher, 1998). According to this framework, 

three distinct mechanisms of attention can be differentiated experimentally by adding 

varying levels of noise to the visual stimuli. The Perceptual Template Model (PTM) 

consists of four stages and incorporates both additive and multiplicative noise sources. 

The first stage is a “perceptual template”, modeled as a filter tuned to the signal. This 

stage filters out some of the external noise that accompanies the desired signal. In the 

second stage, the output of the first stage is rectified and fed into a multiplicative 

Gaussian noise source with zero mean and a standard deviation proportional to the signal 

strength (i.e., its total energy). In the third stage, an independent Gaussian noise with zero 

mean and a constant standard deviation is added. The last stage is a standard signal 

detection (i.e., decision) process that is appropriate to the task and the stimuli.  

PTM can differentiate three distinct attention mechanisms each of which leads to 

a signature behavioral improvement in perceptual tasks. These mechanisms are (i) 

stimulus enhancement, (ii) external noise exclusion, and (iii) multiplicative noise 

reduction. There are both physiological and behavioral evidence in support of these 

mechanisms. For instance, at the neurophysiological level, attention has been shown to 

increase cellular response sensitivity (Reynolds & Chelazzi, 2004; Reynolds, Pasternak, 
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& Desimone, 2000), to sharpen tuning curves of orientation and spatial frequency 

selective cells (Haenny, Maunsell, & Schiller, 1988), and to shrink neuronal receptive 

fields thereby excluding unwanted information through intra- or inter-layer interactions 

(Desimone & Duncan, 1995). At the behavioral level, attention has been associated with 

reduction in decision uncertainty (Palmer, Ames, & Lindsey, 1993), enhancement of the 

attended stimuli (Lu & Dosher, 1998; Lu, Liu, & Dosher, 2000; Posner, Nissen, & 

Ogden, 1978), exclusion of external noise or distractors (Dosher & Lu, 2000a, 2000b; Lu 

& Dosher, 2000; Lu, Lesmes, & Dosher, 2002; Shiu & Pashler, 1994), and modulation of 

contrast-gain (Lee, Itti, Koch, & Braun, 1999).  

Figure 1-1 illustrates the model and how these three different mechanisms of 

attention can be distinguished from each other based on the equivalent-input-noise 

(Dosher & Lu, 2000b; Lu & Dosher, 1998, 2005) method. In this method, external noise 

with varying magnitudes is injected to the system along with a signal. The goal is to 

determine the internal noise of the system by analyzing performance as a function of 

external noise.  When performance is plotted as a function of external noise magnitude, 

two asymptotic regimes emerge: When external noise is much smaller than internal noise, 

only internal noise will limit performance. Hence, performance will be independent of 

external noise and it will follow a horizontal asymptote. On the other hand, when external 

noise is much larger than internal noise, performance will depend uniquely on external 

noise and will follow an oblique asymptote, which is proportional to external noise. The 

external noise at which performance transitions from the horizontal to the oblique 

asymptote provides an estimate of the internal noise of the system. By using this 

technique, one can distinguish between these three attentional mechanisms as follows. 
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Consider first the stimulus enhancement mechanism, which is obtained by amplifying the 

output of the perceptual template stage. This enhancement amplifies the signal and some 

of the external noise, since the perceptual template reduces but does not completely 

eliminate external noise. On the other hand, internal noise is left intact. Hence, 

performance along the oblique regime will not change because, here internal noise has no 

effect and external noise dominates, and attention amplifies not only the signal but also 

the external noise leaving the signal-to-noise ratio unaltered. On the other hand, one 

predicts an improvement for the performance in the horizontal regime: Here, although 

external noise is amplified, it is still negligible with respect to internal noise and the 

enhancement of the signal will improve the signal-to-noise ratio since the dominant noise 

(internal noise) remains constant whereas the signal becomes enhanced.  

Another potential mechanism of attention is external noise exclusion: Attention 

operates on the specificity of the perceptual template (i.e., the bandwidth of the filter) so 

that less external noise can enter the system. In contrast to the previous case, here one 

predicts no change in the horizontal asymptote regime and improved performance in the 

oblique asymptote regime: For the horizontal asymptote regime, external noise is already 

negligible with respect to the internal noise. Hence, reducing external noise further does 

not result in an improvement in performance. On the other hand, for the oblique regime, 

external noise is dominant, and hence a reduction of effective external noise by attention 

is predicted to improve performance. In fact, another simple way to explain this effect is 

to highlight that reducing external noise is equivalent to shifting the performance curve as 

a function of external noise to the right.  
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Figure 1-1 The Perceptual Template Model (Lu & Dosher, 2005). (a) Attention might enhance the signal, 
or (b) modulate the specificity of the perceptual template or (c) modulate multiplicative noise. 
See text for details. Reproduced from Lu & Dosher, 2005. 

 

The third potential mechanism of attention that can be distinguished by this 

paradigm is multiplicative noise reduction. It predicts increased performance (or 

decreased thresholds) in both low and high external noise conditions since attention 

reduces the gain of the multiplicative noise generator stage. If signal enhancement and 

external noise reduction mechanisms operate in parallel, the resultant change in 

thresholds will not be distinguishable from that due to multiplicative noise reduction 

mechanism alone. However, this potential pitfall can be overcome by measuring 
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thresholds at multiple performance criterion levels (Lu & Dosher, 2004). A higher level 

of threshold performance will not change the effect of attention in signal enhancement or 

external noise exclusion mechanism but it will lead to a smaller effect of attention in 

multiplicative noise reduction mechanism. Therefore, Dosher and Lu suggested and 

employed multiple performance criteria when measuring thresholds in order to fully 

distinguish these three mechanisms. Although there is empirical evidence for the first two 

mechanisms, there have been no findings in favor of the third mechanism (Dosher & Lu, 

2000a, 2000b; Eckstein, Thomas, Palmer, & Shimozaki, 2000; Lu & Dosher, 1998; Lu et 

al., 2002, 2000; Palmer, Verghese, & Pavel, 2000; Pestilli & Carrasco, 2005; Yeshurun & 

Carrasco, 1998).  

As we have mentioned before, there are two broad categories of spatial cueing, 

namely central and peripheral cueing. Central cues are generally presented at the locus of 

fixation and signals the location of the target stimulus in a way that requires 

interpretation. For example, when an arrow is used, the observer has to interpret the 

direction of the arrow to infer the cued location. Central cueing is claimed to activate 

voluntary or endogenous attention mechanisms. Peripheral cues are generally presented 

at the periphery, at or close to the spatial location of the stimulus and hence they indicate 

the location of the stimulus directly in spatial representations without necessitating 

interpretive processes. These cues are said to activate the reflexive, or exogenous, 

attention mechanisms. Lu and Dosher (2000) found that endogenous attention works by 

external noise exclusion whereas exogenous attention invokes both external noise 

exclusion and signal enhancement mechanisms. Ling and Carrasco (2006), however, 
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showed that both types of attention increase contrast sensitivity in both high- and low-

noise conditions. 

PTM also addresses the mask-dependent cueing effects, where spatial cueing of a 

location increases performance only when the target stimulus is masked (e.g., (Lu & 

Dosher, 1998, 2000; Lu et al., 2002; Smith & Wolfgang, 2004, 2007). According to this 

model, masking increases the external noise. In their studies, Dosher, Lu, and colleagues 

used only noise masks with short target-mask stimulus onset asynchronies (SOA) 

(Dosher & Lu, 2000a, 2000b; Lu & Dosher, 1998, 2000; Lu, Jeon, & Dosher, 2004; Lu et 

al., 2002). At small SOAs, target and mask falls within the temporal- integration window 

and, their activities fuse together (integration masking). This, as assumed by Dosher, Lu, 

and colleagues, effectively decreases the target SNR by increasing external noise. Other 

types of masks and long SOAs are not addressed by PTM. However, by making several 

assumptions, we can still draw predictions for metacontrast masking with a range of 

SOAs. 

As we mentioned before, PTM predicts that external noise exclusion is the 

mechanism underlying endogenous attention effects. Under the external noise exclusion 

scenario, PTM predicts large attentional effects when external noise is large. If the 

mask’s effect is to add noise to the stimulus, then more noise should be added when 

masking is strong. Accordingly, the effect of attention should be strong when masking is 

strong and weak when masking is weak, hence there should be interactions between 

attention and masking. 
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1.6. The Integrated System Model of Attention 

Smith and colleagues developed the integrated system model (ISM) to explain 

spatial cueing effects on accuracy and reaction time in detection tasks (Smith & 

Wolfgang, 2004 – early version, no explicit VSTM layer; Smith & Ratcliff, 2009 – 

VSTM stage is added; Smith et al., 2010 – final version). The main assumption of the 

model is that attention affects the rate of information transfer from sensory level to 

VSTM (Carrasco & McElree, 2001). The model assumes two separate mechanisms for 

integration (short SOAs) and interruption (intermediate and long SOAs) masks regardless 

of the spatial layout of them. For integration masking, the model assumes that mask 

reduces the effective contrast of the visual stimulus. For interruption masking, it is 

assumed that the processing of the visual stimulus is terminated prematurely by the mask 

(i.e., informational persistence Coltheart, 1980 is interrupted) and hence, the information 

about the stimulus is not available for further processing stages.  

The model consists of three parts: (i) Sensory response stage, (ii) VSTM stage, 

and (i) a sequential diffusion process for decision making (Figure 1-2). In the sensory 

response layer, the transient characteristics of a visual stimulus are encoded by multiple 

spatiotemporal filters. The sensory response function is space-time separable. The 

amplitude is a function of stimulus contrast. An integration mask reduces the effective 

contrast of the visual stimulus. The critical parameters of the temporal response filter are 

the rise and decay time constants of the filter depending on whether there is a delayed 

mask or not. When the stimulus is not masked, the activity-related stimulus is subject to 

relatively slower iconic decay. When the stimulus is backward-masked, the decay is more 

rapid.  
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In the VSTM layer, sensory information is accumulated into a more durable form, 

which is immune to visual masking (Phillips, 1974). VSTM trace formation is governed 

by shunting differential equations, which were previously used to model VSTM trace 

growth (Busey & Loftus, 1994) and other visual phenomena (Grossberg, 1988; Ogmen, 

Breitmeyer, & Melvin, 2003; Sperling & Sondhi, 1968; H. R. Wilson & Cowan, 1973). 

The rate of the VSTM trace growth is determined by an attention gain parameter. The 

model assumes that the attention gain parameter is larger when the stimulus is attended 

whereas it is smaller when the stimulus is unattended (Smith, 2000). The asymptote of 

the VSTM trace, which corresponds to the strength of the representation of the stimulus 

and determines the accuracy of detection, depends on the stimulus strength (e.g., contrast) 

and whether it is masked or not. Therefore, ISM also addresses the relationship between 

visual masking and attention. When attention gain is high and stimuli are unmasked, then 

the VSTM trace will quickly approach its asymptote (i.e.,𝑣 ∞ = lim
!→!

𝑣(𝑡)) whereas 

when attention gain is low and stimuli are masked, it will take more time for VSTM to 

reach its plateau, which will be lower than v(∞). The critical assumption here is that 

masking and attention strongly interact, again based on mask-dependent cueing effects 

found in earlier studies.  

The last layer is the decision layer that is a sequential diffusion process. Noisy 

successive samples of VSTM trace are accumulated to make a decision. There are two 

different noise sources to achieve variability within and between trials. Within trial noise 

is a Gaussian white noise and introduces moment-to moment perturbations to the VSTM 

trace. Between-trial noise contributes to trial-to-trial variability. As soon as the VSTM 
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trace reaches one of the boundaries of the diffusion process, a decision is made and the 

first boundary cross determines the reaction time (RT) of a certain trial.  

 

Figure 1-2 a. The Integrated System Model as in Smith et al. (2010). b. Sensory response of a stimulus. If it 
is masked by an integration mask, effective contrast of the stimulus is reduced. If it is masked by 
an interruption mask, stimulus response is truncated. Reproduced from Smith et al., 2010. 

 

According to the integrated system model, the mask dependent cuing effect arises 

from an interaction between attention gain and informational persistence. When there is 

no mask, both the contrast and duration of the sensory response is intact and so is the 

VSTM strength (i.e., the asymptote). In addition, attending the stimulus (i.e., a larger 

attention gain) increases the rate of the VSTM trace growth but does not affect the VSTM 

strength. Therefore, when there is no mask, perceptual accuracy is not affected although 

RT is smaller for attended stimulus. When there is an integration mask, the effective 

contrast of the stimulus is reduced and hence, the VSTM growth is slower and it reaches 

a lower plateau. Integration masking and attention interact as follows: The attention gain 

parameter is unaffected by the presence of an integration mask when the stimulus is 

attended, whereas it is further reduced by integration masking when the stimulus is 
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unattended. This leads to a mask-dependent cueing effect in accuracy of detection. The 

model implicitly assumes that interruption masks do not directly interact with attention. 

When there is an interruption mask, the sensory response of the visual stimulus is 

prematurely truncated and hence, VSTM strength is low. Moreover, the presence/absence 

of an interruption mask does not change attention gain. When both integration and 

interruption masks are applied to a stimulus, suppressive effects of masks combine and 

mask-dependent cueing effects in both accuracy and RT become even larger.  

To summarize, according to ISM, mask-dependent cuing effect found both with 

integration and interruption masking types can be attributed to a common process: VSTM 

transfer. The integration mask slows down the rate of VSTM transfer by modulating 

attention gain and effective contrast of the stimulus, while an interruption mask 

terminates it prematurely by truncating sensory response to the stimulus (Smith et al., 

2010). Crucially, ISM employs interacting masking and attention mechanisms, therefore 

it predicts larger attentional benefits when a stimulus is masked compared to when it is 

unmasked. Likewise, the stronger the masking is, the larger the attentional effects will be.  

1.7. General Objectives 

In summary, the relations between visual masking and sensory (iconic) memory, 

and the relations between sensory memory and attention have been studied extensively in 

various contexts. The third leg of the trivet, upon which a complete understanding of 

visual perception in a dynamic environment can be established, is the relationship 

between visual masking and attention. Although there are few studies investigating this 

relationship for common-onset masking, the true nature of masking-attention link still 
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remains poorly understood due to contradicting reports. In addition, whether and how 

other types of masking and attention interact is still not known.    

Given the importance of visual masking, both as an experimental tool and as a 

mechanism of normal vision, the broad goal of this dissertation is to further our 

understanding of masking phenomena and its relation to visual spatial attention. 

Specifically, we adopted the statistical models used to unravel the relationship between 

visual memory and attention, and we investigated how masking occurs, and whether and 

how different types of spatial attention (endogenous and exogenous) interact with visual 

masking. 

In the first part of the study, we investigated how mask-related activities might 

influence the target-related ones from a statistical point of view. In contrast to existing 

mechanistic models (Bridgeman, 1971, 1978; Francis, 2000; Ogmen, 1993; Weisstein, 

1968, 1972), our statistical approach provides a descriptive understanding of masking. 

We modeled the distribution of response errors of human observers in three different 

visual masking experiments, namely para-/meta-contrast masking, pattern masking by 

noise, and pattern masking by structure. Following scenarios may occur during visual 

masking: (i) Mask activity may “interfere” with the encoding of a target and cause 

decreased precision in observer’s reports. (ii) Mask activity may reduce a target’s signal-

to-noise ratio (SNR) without interfering with its encoding precision. (iii) Decreased 

performance due to masking may result from the confusion or “misbinding” of a mask’s 

features with those of the target, when they are similar as in the case of pattern masking 

by structure. We adopted statistical models described before, which have been used 
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previously in studies of visual short-term memory, to capture response characteristics of 

observers under masking conditions to determine which scenario occurs. 

In the second part, we investigated the effect of attention on metacontrast 

masking, and the interactions, if any, between them by varying the set size and Stimulus 

Onset Asynchrony (SOA), the time difference between the target and mask onsets. Then, 

we utilized a similar statistical approach described above to capture response 

characteristics of observers whose attention is manipulated by varying set-sizes. Similar 

scenarios as discussed above may take place under various attention conditions except 

that incorrect identity binding may occur because of the distractors instead of mask 

elements. An important point that should be addressed here is a possible change in the 

‘winning model’ parameters as set size changes and whether there is an interaction 

between model parameters obtained for different set size conditions as a function of 

SOA. In other words, our aim is to reveal the dependencies, if any, between the quantity 

and quality of information that gets through the masks and varying attentional loads. 

It has been known that exogenous and endogenous cues lead to different 

performance characteristics as a function of Cue Target Onset Asynchrony (CTOA), the 

time difference between the cue and target onsets. In the last part, we investigated the 

timing and dynamics of spatial attention and visual masking. To do so, we took 

advantage of different time courses of endogenous and exogenous orienting, and we 

varied both SOA and CTOA. In this part, we kept the set size the same across conditions 

in contrast to the second part of the study. Again, we did statistical modeling based on 

observer’s response errors and determine if there is any interaction between model 

parameters for different CTOA values in exogenously and endogenously cued conditions. 
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1.8. Specific Aims 

1.8.1. Part I – A Statistical Perspective to Visual Masking 

How can target and mask interactions be characterized from the statistical point of 

view? We tested the following hypotheses: 

Hypothesis 1: The reduction of visibility of the target is due to an “interference” 

on target encoding by the mask activity, resulting in decreased precision in observer’s 

reports.  

Hypothesis 2: The reduced visibility of the target results from decreased signal-to-

noise ratio (SNR) caused by the mask activity resulting in increased rate of guesses in 

subjects’ responses without interfering with the encoding precision of the target stimulus.  

Hypothesis 3: Masking is caused by the incorrect identity binding of a feature of 

the mask to the target stimulus. 

1.8.2. Part II – Interactions between Spatial Attention and Visual Masking 

First, we looked at the effect of set-size on metacontrast masking strength. 

Second, we determined whether there is an interaction between set-size and metacontrast 

masking by comparing performance for different set-size conditions as a function of 

SOA. Here we tested the following hypothesis: 

Hypothesis 4: Attention and metacontrast masking are independent processes; 

hence, there should be no interaction between these two. 

Third, we characterized observers’ responses to understand how the effect of 

attention and the interaction, if any, between attention and masking are reflected in the 



20 
 

quantity and quality of information present in the brain. The hypotheses listed in Part I 

were also tested here with one exception. Incorrect identity binding described in 

Hypothesis 3 was now due to distractor items rather than mask elements. 

1.8.3. Part III – Temporal Dynamics of the Effect of Endogenous and Exogenous 

Attention on Visual Masking 

Attentional allocation can be controlled by changing set size (Part II). However, 

there are two limitations of controlling attentional allocation this way. First, it does not 

allow us to investigate the temporal dynamics of attentional allocation. Second, since 

observers have to attend to the entire display at the beginning of each trial and the target 

is indicated by the onset of a mask, the task employs both endogenous and exogenous 

attention. It has been known that endogenous and exogenous attention have different 

temporal dynamics and hence, one cannot tease apart their relative contribution to 

stimulus encoding accuracy and precision in the brain with such a task. Here, we directly 

controlled the allocation of attention by using a spatial cue indicating the location of the 

target among distractors. In separate experiments, we used endogenous and exogenous 

cues. This allowed us to examine the timing of attentional allocation and the difference 

between endogenous and exogenous attention. We investigated whether there is an 

interaction between cue timing and visual masking by comparing performances for 

different CTOA conditions as a function of SOA for exogenous and endogenous cueing. 

Then, we tested the following hypotheses: 

Hypothesis 5: Endogenous attention and metacontrast masking are independent 

processes; hence, there should be no interaction between the two. 
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Hypothesis 6: Exogenous attention and metacontrast masking are independent 

processes; hence, there should be no interaction between the two. 

In order to characterize the target-mask interactions, if any, we used the same 

statistical models described above for different cue-types and CTOA conditions. After 

determining the statistical model that explains best the behavioral data, we looked at 

whether there is an interaction between model parameters obtained for different cue types 

and CTOA values. Finally, comparison of the best models and associated model 

parameters for different cue types allowed us to determine statistical signatures of 

endogenous and exogenous cueing. 
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Chapter 2. A Statistical Perspective to Visual Masking1 

2.1. Introduction 

Visual masking is defined as the reduction in visibility of one stimulus (target) by 

another stimulus (mask) when the mask is presented in the spatio-temporal vicinity of the 

target (Bachmann, 1984; Breitmeyer & Ogmen, 2006). Visual masking has largely been 

investigated as a phenomenon reflecting the spatiotemporal dynamics of the visual 

system, and various models have been developed to explain its mechanistic bases 

(reviews: Bachmann, 1984; Breitmeyer & Ogmen, 2000, 2006; Enns & Di Lollo, 2000; 

Francis, 2000). Visual masking has also been used as an experimental tool, often to 

control the duration for which stimulus information remains available to the observer. 

After its offset, the stimulus registers first in a relatively large-capacity memory, known 

as iconic or sensory memory (Averbach & Sperling, 1961; Haber, 1983; Sperling, 1960). 

The contents of the iconic memory decay rapidly, within a few hundred milliseconds. A 

subset of the contents of iconic memory is transferred to a more durable store, visual 

short-term memory (VSTM). That VSTM is a different memory store than iconic 

memory has been supported by the findings that a visual mask can interfere with the 

contents of iconic memory but not with those of VSTM (e.g., Averbach & Coriell, 1961; 

Gegenfurtner & Sperling, 1993; Haber, 1983; Loftus et al., 1992; Schill & Zetzsche, 

1995). Given this important criterion, visual masking has played a significant role in 

studies of visual memory. 

                                                
1 All of the findings reported in this chapter have been already published (Agaoglu, et al., 2015).  
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The traditional view of VSTM is that, while it can store information for much 

longer times than iconic memory (few seconds vs. few hundred milliseconds), its 

capacity is severely limited. Most studies suggested a capacity limit of 4 to 5 items for 

VSTM (Cowan, 2000, 2005, 2010; Fukuda et al., 2010; Pasternak & Greenlee, 2005). 

Recent studies addressed whether VSTM stores its items in a fixed number of slots of 

equal resolution or uses a sharable resource that can be distributed among many items. 

Evidence for fixed slots came from studies of Zhang and Luck (2008) who used a 

statistical mixture model to decompose the distribution of errors into two components, a 

Gaussian distribution and a uniform distribution:
 

𝑃𝐷𝐹 𝜀 =   𝑤! ∗ 𝐺 𝜇,𝜎 +    1− 𝑤! ∗ 𝑈,                                (2-1) 

where PDF is the probability density function of errors,  ε, in observers’ responses; 

  𝐺 𝜇,𝜎  is a Gaussian distribution with mean μ,  and standard deviation σ;  and U is a 

uniform distribution over the interval defining the errors. The Gaussian term represents 

reports of items in VSTM and the uniform distribution represents guesses. The parameter 

  𝑤!   models the proportion of responses from memory while 1− 𝑤!  represents the 

proportion of guesses. The mean of the Gaussian represents the accuracy with which 

items are stored in VSTM and the inverse of the variance represents the precision with 

which items are stored. If VSTM is composed of a fixed number of discrete slots and the 

number of items to report is increased, the proportion of guesses should remain close to 

zero until all the slots are filled (i.e., the capacity of VSTM is reached) and increase 

thereafter. If the slots are of fixed precision, then the standard deviation should remain 

independent of the number of items. A second version of this model assumes that 

resources can be shared among the slots; in this case, the standard deviation should 
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remain independent of the number of items when set-size exceeds the number of slots. 

While initial studies gave support for discrete fixed-precision representations in VSTM 

(Fukuda et al., 2010; Zhang & Luck, 2008), more recent studies provided data favoring 

the shared-resource approach (e.g., Bays et al., 2009; van den Berg et al., 2012). 

Notwithstanding these differences, we note here the usefulness of this statistical modeling 

approach, which allows the separation of quantitative (w: proportion of items stored in 

memory) and qualitative (1/σ: precision with which items are stored) aspects of 

information encoding and storage. Since a visual mask deteriorates the contents of iconic 

memory and hence affects what can be transferred into VSTM, our goal in this study was 

to characterize how masks affect the quality and quantity of information by using a 

similar modeling technique.  

In particular, given the parameters of the statistical model in Equation (2-1), we 

wanted to consider the following scenarios: 1) The mask may lead to a reduction in the 

weight of the Gaussian term (equivalently an increase in the weight of the Uniform term, 

since these two add to unity) without affecting the standard deviation or the mean of the 

Gaussian. This case may be interpreted as the mask reducing the signal-to-noise ratio 

(SNR) of the target signal without affecting the encoding quality of the target2. Since 

signal and noise are intertwined in the SNR, a priori we cannot tell whether the reduction 

in SNR occurs via a reduction in signal strength, via an increase in noise strength, or via a 

combination of both. We will call this case the “SNR effect”. 2) The mask’s activity may 

                                                
2 Performance depends both on the strength of the target signal, captured by the weight of the 

Gaussian, and the encoding quality of the target signal, captured by the mean and the standard deviation of 
the Gaussian. When we refer to signal-to-noise ratio, we are referring to the relative weights of the target 
Gaussian and the uniform distributions. While one may also consider the accuracy and precision limits (i.e. 
the mean and the standard deviation, respectively, of the Gaussian) to stem also from noise processes, our 
use of noise in this manuscript refers exclusively to that underlying the relative weights of the target 
Gaussian and the uniform distribution. 
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“interfere” with the target’s encoding and cause a change in the mean and/or the standard 

deviation of the Gaussian term. We will call this case the “interference” effect. 3) Finally, 

by using an extension of the aforementioned model, we will also assess whether the 

decrease in performance due to masking results from the confusion or misbinding of the 

mask’s features with those of the target, when the target and mask are similar as in the 

case of pattern masking by structure. Since masking is not a unitary phenomenon 

(reviews: Bachmann, 1984; Breitmeyer & Ogmen, 2006), we separately analyzed para-

/meta-contrast masking, pattern masking by noise, and pattern masking by structure (see 

Figure 2-1).  

2.2. General Methods 

2.2.1. Participants 

Five observers (three naïve observers and the authors SA and MA; two female, 

three male) participated in the study. The age of the participants ranged from 26 to 39 

years and all participants had normal or corrected-to-normal vision. The work was carried 

out in accordance with the Code of Ethics of the World Medical Association (Declaration 

of Helsinki). Experiments followed a protocol approved by the University of Houston 

Committee for the Protection of Human Subjects. Each observer gave written voluntary 

informed consent before the experiments.  

2.2.2. Apparatus 

Visual stimuli were created using the ViSaGe card manufactured by Cambridge 

Research Systems. Stimuli were displayed on a 22-in. CRT monitor. Resolution was set 
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to 800x600 and the refresh rate was 100 Hz. Observers were at a distance of 1 m from the 

screen. In order to help observers to keep a stable gaze, a fixation cross at the center of 

the screen and a head/chin rest were provided. Behavioral responses were recorded via a 

joystick. We devoted 100 trials to each stimulus onset asynchrony (SOA) separating the 

onset of the target from that of the mask, in order to obtain a satisfactory number of data 

points for statistical tests. The entire experiment required 15 sessions, with 5 separate 

sessions for each masking type. The order of the sessions for different masking types was 

randomized in order to minimize order effects. To assess baseline target visibility, twenty 

trials in which only the target was presented were interleaved in every session. Practice 

trials were run to familiarize the observers with the task and the settings of the 

experiments.  

2.2.3. Stimuli 

The target and the mask were presented at a 6-deg horizontal eccentricity in the 

right half of the display while the observers fixated at the center of the screen. 

Background luminance was 40 cd/m2. The target was an oriented bar, 1 deg long and 0.1 

deg wide (Figure 2-1a). The luminance of the target differed for each type of masking 

and exact values will be specified in respective sections. The mask (Figure 2-1b-d) was 

either a non-overlapping ring (para-/meta-contrast) or a random dot pattern (masking by 

noise) or 3 bars with the same dimensions as the target but varying in orientation 

(masking by structure). 
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Figure 2-1 Stimuli Configurations. a) Target b) Para-/Meta-contrast Mask c) Noise Mask d) Structure 
Mask. 

 

Figure 2-2 shows an example of the stimuli sequence. Each trial started with a 

fixation cross. The duration of the fixation cross was randomly chosen from the values 

between 0.5 sec and 1 sec. For positive SOA values, the target was shown first, followed 

by a blank interval determined by the SOA value. For negative SOA values, the order 

was reversed. Observers were asked to give their responses by adjusting via a joystick the 

orientation of a bar shown 1500 ms after the offset of the stimulus at the center of the 

screen. No feedback was provided to the subjects. The initial orientation of the response 

bar was randomly chosen among the values ranging from 0 to 179 deg. The resolution of 

the adjustment via joystick was 1 deg of orientation. 

Para-/meta-contrast masking and pattern masking by structure typically generate 

Type-B masking functions (maximum masking occurs at a positive SOA value) whereas 

pattern masking by noise generates Type-A functions (maximum masking occurs at 

SOA=0) (Breitmeyer & Ogmen, 2006). Since we focused on different parts of masking 

functions for Type-A and Type-B, we employed different SOA values for different mask 

types. The durations of the target and the mask were 10 ms. 
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Figure 2-2 Example of sequence of stimuli. For positive SOA values (as depicted), the mask followed the 
target. For negative SOA values, the order was reversed. The duration of the blank interval 
between the target and the mask presentations was determined by the SOA.   

 

2.2.4. Analysis 

To obtain masking functions, we transformed each observer’s orientation settings 

at each SOA for the three types of masks used here, by first computing response errors. 

Error values were calculated as the difference between the actual and the reported angles. 

Error values ranged from -90 to 90 deg. Transformed performance (Ogmen et al., 2013) 

was then calculated as 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 1−    |!""#"  !"#$%|
!"

  .                            (2-2) 

When the observer produces no errors, error angle will be zero, resulting in a 

Transformed Performance value of 1. When the observer purely guesses, the average of 

the absolute value of error angles will be 45 deg. The corresponding Transformed 
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Performance will be 0.5. Hence, transformed performance is a linear transform that 

converts errors to a probability-like measure such that transformed performance values of 

0.5 and 1 correspond to chance and perfect performance, respectively.  

2.2.5. Statistical Models 

We adopted statistical models that have been used previously in modeling VSTM 

(Bays et al., 2009; Zhang & Luck, 2008). In pattern masking by noise and para-/meta-

contrast masking paradigms, we analyzed two different models to explain the masking 

effect. The first model (Gaussian3) suggests that the masking effect is caused by the 

“interference” of the mask signal with the target signal in such a way that the encoding 

precision and/or accuracy for the target signal is hampered. Decreased stimulus encoding 

precision is reflected by the increased variability of behavioral responses. A Gaussian 

distribution (Figure 2-3a) is used to model this effect (the Gaussian model will be 

referred to as the G model). The mean of the Gaussian distribution converts to a measure 

of the accuracy of the system; i.e., the closer the mean to 0 the more accurate the system. 

The reciprocal of the standard deviation of the Gaussian distribution reflects the encoding 

precision of the system. In the second model, Gaussian + Uniform (the GU model), an 

increased guess rate caused by a drop in the target’s SNR is also considered. The 

increased guess rate is modeled by the weight of the uniform distribution as shown in 

Figure 2-3b. The GU model is a weighted sum of Gaussian and Uniform distributions 

(Equation 2-3): 

𝑃𝐷𝐹 𝜀 =   𝑤! ∗ 𝐺 𝜇,𝜎 +    1− 𝑤! ∗ 𝑈.                                   (2-3) 
                                                
3 One might argue that modeling a circular data with a regular Gaussian may not be appropriate. 

However, in early model simulations, we used both “wrapped” (or circular) Gaussians, also known as von 
Mises distribution, as well as regular Gaussians. We found virtually no difference between the two, and 
hence, we used regular Gaussians for the rest of our analyses for simplicity. 
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In pattern masking by structure, since the mask elements share structural 

properties of the target, there is a possibility to report one of the mask elements, e.g., the 

one that has the closest angle to the target angle or the closest location to the target 

location, instead of the target stimulus. In this case, the masking effect would be caused 

by incorrect identity binding and it is modeled by an extra Gaussian distribution shown in 

Figure 2-3c. If the source of this extra Gaussian component is the mask element which 

has the closest angle to the target angle, then the model is “Gaussian + Uniform + Closest 

Angle,” and it will be referred to as the GUCA model. If misbinding is caused by the 

mask element which is closest to the target location, i.e., its nearest neighbor, then the 

model is “Gaussian + Uniform + Nearest Neighbor,” and it will be referred to as the 

GUNN model. In this case, the PDF is a weighted sum of target Gaussian and non-target 

Gaussian distributions and the Uniform distribution (Equation 2-4) (Bays et al., 2009). 

We call this model “the Misbinding model,” given by 

𝑃𝐷𝐹 𝜀   =   𝑤!𝐺 𝜇! ,𝜎! + 𝑤!"𝐺 𝜇!" ,𝜎!" + (1− 𝑤! − 𝑤!")𝑈(−𝜋/2,𝜋/2),                            

(2-4) 

where subscripts T and NT denote target and non-target parameters, respectively. Note 

that the models come from an embedded family, i.e., two or more PDFs are embedded 

into a family of PDFs that are indexed by one or more parameters (Kay, 2005). Given the 

different number of parameters in each model, an adjustment for the number of 

parameters is needed for comparing model performances. For instance, the Misbinding 

model contains the components of the GU model, and the same relationship is valid for 

the GU and G models, too. These relationships allowed us to identify potential 

contributions of different mechanisms; if adding a new component to the model enhances 
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model performance (how well the model explains the experimental data), then it would 

imply presence of a mechanism modeled by this new component.  

 

Figure 2-3 Statistical Models tested in this study. a) Gaussian b) Gaussian + Uniform c) Gaussian + 
Uniform + Misbinding Terms 

 

2.2.6. Model Fitting and Model Comparison 

We used two different techniques to determine model parameters and to compare 

different models. In the first technique, we used the Least-Mean-Squares (LMS) 

approach to find the best fitting parameters and the adjusted-R2 criterion to select the 

model that explains the data best. The results of these analyses are presented in Appendix 

A. As a second approach, we used the Bayesian Model Comparison (BMC) technique 

(Mackay, 2004; Wasserman, 2000). We present the BMC technique and its results in the 
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main text of the manuscript. Overall, the two techniques produced very similar results, 

thereby indicating that both our parameter determination and our model selection process 

were robust.  

Each model 𝑚! produces a predicted error distribution p(ε|𝑚!,θ), where ε is a 

vector of observed response errors, and θ is a vector of model parameters. For each 

model, we calculated the likelihood of finding observed response errors, averaged over 

free parameters: 

L(𝑚!)  ≜  p(ε|𝑚!)  =   𝑝(𝜀|𝑚! ,𝜃)𝑝(𝜃|𝑚!)𝑑𝜃  =   𝑝 𝜀! 𝑚! ,𝜃!
!!! 𝑝 𝜃 𝑚! 𝑑𝜃,    (2-­‐5)  

where N represent the number of trials and εi represents the error in the ith trial. It is 

convenient to take the logarithm of Equation (2-5) in order to compute it numerically. 

Equation (2-5) can be rewritten as 

ln  L(𝑚!)  =  ln  Lmax(𝑚!)  +  ln[   𝑒𝑥𝑝(ln 𝐿(𝑚!|𝜃)− ln 𝐿!"#(𝑚!))𝑝 𝜃 𝑚! 𝑑𝜃],                (2-­‐6)  

where ln  L(𝑚!|θ)   = 𝑙𝑛  (𝑝 𝜀! 𝑚! ,𝜃!
!!! , and Lmax(𝑚!)  =  max(L(𝑚!|θ)).  Parameters 

corresponding to Lmax(𝑚!) can be regarded as the Maximum Likelihood Estimation 

(MLE) of the model parameters for model 𝑚!. Subtracting   Lmax(𝑚!) ensures that the 

exponential in the integrand is of order 1 and thereby, avoids numerical problems (Ester, 

Zilber, & Serences, 2015; Mackay, 2004; van den Berg, Shin, et al., 2012). Since we do 

not have an a priori reason to do otherwise, we used a uniform distribution over a 

plausible range of parameters for the parameter prior distributions (see Table 2-I). For G 

and GU models, the priors were a one- and two-dimensional uniform distributions, 

respectively:  
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𝑝 𝜃 𝑚! = U(𝜃!,!"#,𝜃!,!"#)!
!!! ,                                         (2-7) 

where U(a,b) represents a uniform distribution over the interval [a,b], k represents the 

number of free parameters in the model 𝑚!, and 𝜃!,!"#  and  𝜃!,!"# represent the 

minimum and maximum boundaries for the tth free parameter. For GUCA and GUNN 

models, both of which have four free parameters, the probabilities over parameter space 

were again uniform distributions; but the prior was not simply a hypercube with n=4, 

(i.e., a product of four independent uniform distributions), since not all model parameters 

are independent for these models. To be more specific, the sum of wtarget and wnon-target 

cannot exceed 1. If the range for wtarget is [0,1], the corresponding range for wnon-target can 

only be [0,1- wtarget]. In other words, the support of the probability function is the 

triangular region consisting of the non-negative space with 𝑤!"#$%! + 𝑤!"!!!"#$%! ≤ 1. 

Since all other parameters are independent, the joint prior for the GUCA and GUNN 

models can be expressed as a product of three independent uniform distributions and a 

triangular distribution. For the parameter µT, the mean of the target Gaussian, we chose 

𝜇! = 0, corresponding to a Dirac delta function as prior. This was motivated by the 

following: In visual masking, there is no a priori reason to expect a significant bias for 

the mean of the Gaussian (in contrast, in visual crowding for instance, such systematic 

trends can be expected (see for example: Ester et al., 2015; van den Berg, Johnson, 

Anton, Schepers, & Cornelissen, 2012)). Indeed, in our approach using the 

LMS+adjusted R2 method, we found that the mean of the Gaussian is not significantly 

different from zero (see Appendix A.) Therefore, in the following analyses, the target 

Gaussians were centered on target orientations (i.e., zero mean in error space), which 

decreased the number of free parameters in all models.  
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Table 2-I Range of parameters used for BMC. Note that in a separate analysis for para/meta-contrast 
masking and pattern masking by noise, we used step sizes of 0.1 for the standard deviation of 
the Gaussian, and 0.002 for the weight of the Uniform but the results were not affected. 

 

Considering these priors, Equation (2-6) becomes  

ln  L(m)  =  ln  Lmax(m)  –   ln  (𝑅!)!
!   +  ln[   𝑒𝑥𝑝(ln 𝐿(𝑚|𝜃) − ln 𝐿!"#(𝑚)) 𝑑𝜃],  4        (2-8) 

where Rj represents the size of the range for the jth free parameter. We approximated the 

integral by a Riemann sum with at least 50 bins in each parameter dimension (we also 

repeated the analysis for G and GU models with 500 bins in each parameter dimension 

and verified that the results with 50 bins are sufficiently robust). We refer to the 

performance metric given in Equation (2-8) as BMC. The difference between BMC from 

two different models is equivalent to the log of their likelihood ratios.  

2.2.7. Analysis of Model Parameters 

After determining the best model in explaining the statistics of observers’ 

response errors, we sought to find how different model parameters change as a function 

of SOA. The reasoning behind this analysis was to determine which one of the scenarios 

listed in the Introduction section best accounts for the visual masking phenomenon. We 

examined the model parameters that yielded Lmax to see how they vary as a function of 

                                                
4 For a more detailed derivation of this results, please see Appendix E. 
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SOA and compared the results to the masking functions in order to assess whether they 

correlate well with masking. We report traditional ANOVA results as well as Bayes 

factors for this analysis. Bayes factor analyses were done in the programming language R 

using the “BayesFactor” package developed by Rouder et al. (available for download at 

bayesfactorpcl.r-forge.r-project.org, see also for reference Rouder, Morey, Speckman, & 

Province, 2012). We also quantified the correlation between the model parameters and 

the masking strengths by calculating Pearson R coefficients. Masking strength is 

calculated as the difference between baseline performance, when the target is presented 

alone, and the performance when the target and mask are presented together. A strong 

correlation between a parameter and the masking strength would suggest a critical role 

for this parameter for explaining how masking occurs. 

2.3. Experiments 

2.3.1. Para- Metacontrast Masking 

2.3.1.1. Methods 

In para-meta-contrast masking, we tested two statistical models, namely G and 

GU, as mentioned before. The G model states that the masking effect occurs due to an 

“interference” by the mask signal on the target signal so as to impair stimulus-encoding 

precision for the target. This prediction will be reflected as an increased variability in an 

observer’s responses. On the other hand, the GU model takes an additional mechanism 

into account, which amounts to “a reduction of target SNR by the mask signal. According 

to this model, a decrease in target SNR will lead to an increase in the guess rate (modeled 
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by an increasing weight of the uniform distribution and a decreasing weight for the 

Gaussian distribution; note that these two weights add to unity). 

General methods and procedures were followed. Specific to para-/meta-contrast 

experiment, the target luminance was either 25 cd/m2 or 30 cd/m2 depending on the 

observer. The value was chosen to yield a considerable drop in performance due to 

masking (at least 15% transformed performance drop from baseline). In para-meta-

contrast masking, SOA values were -100, -50, -10, 0, 20, 40, 50, 60, 80, 110, 150, 200 

ms. The mask was a non-overlapping ring having 1.1 deg inner and 1.4 deg outer 

diameters, respectively, as shown in Figure 2-1b. The luminance of the mask was 5 

cd/m2.  

2.3.1.2. Results and Discussion 

Mean error distributions for several SOA values are given in Figure 2-4. 

Distribution of response errors follows a Gaussian-like distribution at SOA values where 

visual masking is weak or absent (i.e., SOA < 0 ms or SOA > 60 ms). However, at SOA 

values where there is strong masking (e.g., SOA = 40 ms), the tails of the error 

distribution increases, indicating the involvement of a uniform component.  

In order to quantitatively assess these qualitative observations, we fitted 

observers’ response errors with the statistical models described before. We used Bayesian 

Model Comparison (BMC) to compare model performances. This method returns the 

average log-likelihood of each model over the selected parameter space (see Table 2-I) 

given the observed response errors. We then averaged the log-likelihoods across all 

SOAs for each observer and subtracted the average likelihood of the G model from that 

of GU model (see Table B-I in Appendix B for individual BMC differences and 
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corresponding Bayes factors). In this notation, a difference of Δ means that the observed 

responses are, on average, 𝑒∆ times more likely under the GU model. 

Figure 2-4 Mean error distributions and GU model fits in para/meta-contrast masking. Best fitting GU 
models are shown with solid blue lines. Model fits are generated by using the model parameters 
averaged across observers. Error bars represent SEM across observers (n=5). 

 

Pooled across SOAs, the GU model outperformed the G model for all observers in 

para/meta-contrast masking experiment. Averaged across observers, log-likelihoods (i.e., 

BMCs) were 10.6 ± 3.9 units larger for the GU model. This corresponds to ~40,000-to-1 

odds favoring the GU model. According to Jeffrey’s scale of interpretation (Jeffreys, 
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1998), this corresponds to a “decisive evidence” for the GU model and indicates that in 

the present study “guessing” was an essential part of para/meta-contrast masking. Next, 

we extracted the model parameters of the GU model that resulted in the maximum 

average log-likelihood for each observer. We sought to find correlations between 

masking functions (more specifically, masking strengths, defined as the differences 

between performances with and without the masks). Figure 2-5 shows para/meta-contrast 

masking functions (Figure 2-5A), corresponding average masking strengths (Figure 2-

5B), average model parameters for the best fitting (GU) model (Figure 2-5C and 2-5D), 

and the correlations of each model parameter with masking strengths.  

Masking functions along with the average baseline performance of all observers 

are shown in Figure 2-5A. The horizontal axis shows the SOA between target and mask 

stimuli, whereas the vertical axis represents the transformed performance. As expected, 

performance shows typical Type-B U-shaped patterns with dips occurring at positive 

SOA values. In other words, the masking strength, defined as the drop in performance 

from baseline, reaches its maximum at a positive SOA (Figure 2-5B).  

The standard deviation of the Gaussian in the GU model increases as SOA values 

approach 50ms (where masking is most effective) and then decreases to a plateau (Figure 

2-5C). A one-way ANOVA confirms a significant effect of SOA on standard deviation 

(F(11,44)=5.259, p<0.001; Bayes factor: 618 ± 0.4%). The weight of the uniform 

distribution also shows a significant change with SOA (F(11,44)=14.680, p<0.0001; 

Bayes factor: 1.4E+9 ± 1.6%). Visual comparison of model coefficients (Figure 2-5C and 

2-5D) with masking strengths (Figure 2-5B) reveals that the standard deviation of the 

Gaussian term and the weight of the Uniform term do correlate with masking strengths, 
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the latter having a stronger correlation than the former. Pearson’s R coefficients confirm 

these qualitative observations. We found that both the standard deviation of Gaussian and 

the weight of Uniform in the GU model strongly correlate with the masking strength (one 

sample t-test results show p<0.0001 for both parameters).  

Figure 2-5 A. Para/meta-contrast masking functions for each observer. B. Mean masking strengths. Model 
parameters are presented here for only the winning GU model. C. The standard deviation of the 
Gaussian. D. The guess rate. E. Correlation of model parameters with masking strengths.  

Stronger correlation between the weight of the Uniform distribution and the 

masking strength indicates that, as the masking strength increases, observers tend to 

guess more, suggesting that the target SNR is reduced by the mask activity in the visual 

system. Our results also suggest that the “interference” of the mask signal with the target 

signal, which is manifested by the increased standard deviation of the Gaussian term in 

the model and also by the significant correlation with the masking strength, is also 

present. 
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2.3.2. Pattern Masking by Noise 

2.3.2.1. Methods 

Similar to para-/meta-contrast masking, we tested two statistical models namely G 

and GU as mentioned before. The general methods and procedures were identical to para-

/meta-contrast masking experiments. Specific to the pattern masking by noise 

experiment, the target luminance was 25 cd/m2 for all observers. In pattern masking by 

noise, SOA values were -100, -70, -50, -30, -10, 0, 10, 30, 50, 70, 100, 150 ms. The noise 

mask, as shown in Figure 2-1c, was composed of 70 randomly located disks (diameters 

ranging from 0.2 deg to 0.3 deg), which could overlap and were confined to 2x2 deg area. 

We made sure that the noise masks did not have bias in any particular orientation, by 

obtaining 2D Fourier transforms of 100 randomly generated masks. Visual inspection of 

the magnitude and phase responses revealed no significant peaks or dips, hence no biases 

in any orientation. The luminance of the disks composing the mask was 5 cd/m2. 

2.3.2.2. Results and Discussion 

Mean error distributions for several SOA values are given in Figure 2-6. 

Distribution of response errors follows a Gaussian-like distribution at SOA values where 

visual masking is weak or absent (i.e., SOA < -30 ms or SOA > 30 ms). At SOA values 

where masking is strongest (e.g., SOA = 0 ms), performance is near chance and the 

distribution of errors is uniform.  
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Figure 2-6 Mean error distributions and GU model fits in pattern masking by noise. Best fitting GU models 
are shown with solid blue lines. Model fits are generated by using the model parameters 
averaged across observers. Error bars represent SEM across observers (n=5). 

 

The GU model outperformed the G model for all observers in noise masking (see 

Table B-I in Appendix B for individual BMC differences and corresponding Bayes 

factors). Averaged across observers, log-likelihoods (i.e., BMCs) were 6.4 ± 3.5 units 

larger for the GU model. This corresponds to ~600-to-1 odds favoring the GU model. 

According to Jeffrey’s scale of interpretation (Jeffreys, 1998), this corresponds to 

“decisive evidence” for the GU model and indicates that “guessing” is an essential part of 
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pattern masking by noise. Individual masking functions along with the average baseline 

performance of all observers are shown in Figure 2-7. The horizontal axis again 

represents the SOA between target and mask stimuli whereas the vertical axis shows the 

transformed performance. As expected (Breitmeyer & Ogmen, 2006), performance shows 

a Type-A masking function with the strongest masking occurring at 0 ms SOA (Figure 2-

7B).  

Figure 2-7 A. Masking functions in pattern masking by noise for each observer. B. Mean noise masking 
strengths. Model parameters are presented here for only the winning GU model. C. The 
standard deviation of the Gaussian. D. The guess rate. E. Correlation of model parameters with 
masking strengths.  

 

Figure 2-7C and 2-7D show model parameters against SOA values. Standard 

deviations of the Gaussian in the GU model appears to change as a function of SOA 

(Figure 2-7B and 2-7C); however, a one-way ANOVA of standard deviations yielded no 

significant effect of SOA (F(11,44)=1.775, p=0.088; Bayes Factor: 1.2 ± 1.1%). 

Consistently, we found no significant correlation (average R = 0.220, one sample t-test: 

p=0.294) between standard deviation and masking strength. In contrast, as with para-

/meta-contrast masking, guess rate strongly correlates with the masking strength (Figure 
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2-7B – 2-7D): The stronger the masking effect, the higher the guess rate, reflected in the 

weight of the uniform component in the GU model. This SOA-dependent modulation of 

“guessing”, i.e., the weight of the Uniform, is highly significant (F(11,44)=59.130, 

p<0.0001; Bayes Factor: 11.5E+20 ± 2.7%). Correlation of the weights with the masking 

strength was also highly significant for all observers (p<0.0001). 

In summary, these results suggest that pattern masking by noise exerts its effect 

mainly by reducing the SNR of the target. Since the mask consists of noise, it is 

reasonable to assume that SNR is reduced by increasing the noise that co-exists with the 

target signal. 

2.3.3. Pattern Masking by Structure 

2.3.3.1. Methods 

In pattern masking by structure, the mask elements share structural properties of 

the target. Therefore, the possibility of observers’ reporting one of the mask elements 

instead of the target stimulus cannot be discounted. For instance, the mask element that 

has the closest angle to the target angle, or the one that has the closest location to the 

target location may be reported by mistake. In this case, the masking effect, which is 

caused by incorrect feature binding, i.e. misattribution of orientation of a mask element to 

the target is modeled by an extra Gaussian distribution. In addition to the G and GU 

models, we tested two different misbinding models, namely Closest Angle (GUCA) and 

Nearest Neighbor (GUNN) for pattern masking by structure. These models have a 

separate Gaussian term in addition to the Gaussian and Uniform components. In the 

GUCA model, the mean of the second Gaussian term is determined by the mask element 
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that has the closest angle to the target orientation whereas it is determined by the mask 

element that is the nearest neighbor of the target bar in the GUNN model.  

Figure 2-8 Mean error distributions and GU model fits in pattern masking by structure. Best fitting GU 
models are shown with solid blue lines. Model fits are generated by using the model parameters 
averaged across observers. Error bars represent SEM across observers (n=5). 

 

The general methods and procedures were identical to previous experiments. 

Specific to the current experiment, the target luminance was 5 cd/m2 for all observers. In 

this experiment, SOA values were -100, -50, -10, 0, 20, 40, 50, 60, 80, 110, 150, 200 ms. 

The mask shown in Figure 2-1d, was composed of 3 randomly oriented bars with the 
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same size as the target. Mask elements were randomly located inside a 2x2 deg virtual 

rectangle. The mask luminance was either 10 cd/m2 or 20 cd/m2 depending on the 

observer. The value was chosen to yield a considerable drop in performance due to 

masking (at least 25% transformed performance drop from baseline). 

2.3.3.2. Results and Discussion 

Mean error distributions in pattern masking by structure for several SOA values 

are given in Figure 2-8. The response errors follows a Gaussian-like distribution with 

varying standard deviations at all SOA values. At SOA values where masking is strongest 

(e.g., 10 ms < SOA < 50 ms), the increased tails of the distribution suggest the 

involvement of a uniform component.  

Figure 2-9A plots individual masking curves and average baseline performance 

against SOAs. Across the entire SOA range, performance shows Type-B U-shaped 

patterns with dips occurring at positive SOAs. However, as expected (Breitmeyer & 

Ogmen, 2006), at positive SOAs (backward masking) the functions tended to approximate 

a J-shape more than a U-shape (compare results of Figure 2-9A to those of Figure 2-5A). 

Figure 2-10 shows individual as well as average BMC differences for all model 

types (see Table B-I in Appendix B for individual BMC differences and corresponding 

Bayes factors). For all observers, the GUCA and GUNN models performed much better 

than the G model. However, the GU model, once again, outperformed all other model 

types. The average BMC difference between the GU and G models was 10.2 ± 3.1, which 

corresponds to ~27,000-to-1 odds decisively favoring the GU model. The following 

discussion on model parameters focuses on this model. 
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The standard deviation of the Gaussian term and the weight of the uniform 

distribution in the GU model are plotted against SOA in Figure 2-9C – 2-9D. The effect 

of SOA on standard deviations failed to reach significance (F(11,44)=1.515, p=0.160; 

Bayes factor: 0.7 ± 0.5% ). The weight of the uniform distribution changed significantly 

with SOA (F(11,44)=18.020, p<0.0001; Bayes factor: 12.4E+10 ± 0.8%). We found a 

weak but significant correlation between the standard deviation of the Gaussian and the 

masking strength (R=0.322 ± 0.113, one-sample t-test: p=0.003). On the other hand, we 

found a strong correlation between the weight of the uniform distribution and the 

masking strength (R=0.870 ± 0.033, one-sample t-test: p<0.0001). Hence, it should be 

noted that a major factor in producing a masking effect is a reduction in SNR because the 

weight of the Uniform term strictly follows the masking strength whereas the standard 

deviation of the Gaussian does not. Therefore, these findings suggest that pattern masking 

by structure also occurs, from a statistical point of view, primarily due to the reduction of 

target SNR and only partly, if at all, to the interference of the target signal with the mask-

related activity. 
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Figure 2-9 A. Masking functions in pattern masking by structure for each observer. B. Mean noise masking 
strengths. Model parameters are presented here for the GU model. C. The standard deviation of 
the Gaussian. D. The guess rate. E. Correlation of model parameters with masking strengths.  

 

Figure 2-10 Average log-likelihood (BMC) differences between the models tested for each observer. All 
differences are computed by subtracting the BMC of the G model from all other model types. 
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2.4. General Discussion 

In this study, we adopted a statistical point of view to investigate interactions 

between target- and mask-related activities within the context of visual masking. We 

modeled the distribution of the response errors of human observers in three different 

visual masking experiments, namely para-/meta-contrast masking, pattern masking by 

noise, and pattern masking by structure. Table 2-II summarizes the results. In all masking 

types, the GU model was the winning model, showing that a single statistical model was 

able to capture the response characteristics of the observers in three different masking 

types. We now discuss how one can interpret the parameters of the statistical model in 

terms of underlying mechanisms of masking.  

Table 2-II Summary of the results. The results about the mean of the Gaussian are taken from Appendix A. 

 

In our LMS + adjusted R2 based analysis, we did not find any systematic change 

in the means of the Gaussian term in the model (Appendix A), indicating no bias for any 

target orientation in any of the masking types. Hence, the mask did not interfere with the 

accuracy of target encoding. Whereas bias was not found in the masking experiments 

here, it is worth discussing the implications of finding a bias as we would expect biases in 

Masking type
Winning model
Parameters µg σg wᵤ µg σg wᵤ µg σg wᵤ
Dependence on SOA û ü ü û û ü û û ü
Correlation with 
masking strength

o ++ +++ o o +++ o + +++

Interpretation
signal 

interference
SNR ↓ SNR ↓

signal 
interference

SNR ↓

µg: mean of gaussian, σg: standard deviation of gaussian, wᵤ: weight of uniform (guess rate)

o : no correlation, + : weak positive correlation, ++ : positive correlation, +++ : strong positive correlation

Para-/meta-contrast Masking by noise Masking by structure
GU GU GU
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two masking related phenomena. First, in feature attribution or feature inheritance, 

features of the target are transposed to the mask (Ağaoğlu, Herzog, & Ogmen, 2012; 

Enns, 2002; Herzog & Koch, 2001; Hofer, Walder, & Groner, 1989; Ogmen, Otto, & 

Herzog, 2006; Otto, Ogmen, & Herzog, 2006, 2008; Stewart & Purcell, 1970; Werner, 

1935; A. E. Wilson & Johnson, 1985). Hence, if observers were to report features of the 

mask, one would expect systematic biases that are congruent with the features of the 

target.  Second, in masked-priming studies (Ansorge, Klotz, & Neumann, 1998; Klotz & 

Neumann, 1999; Schmidt, 2002; Vorberg, Mattler, Heinecke, Schmidt, & Schwarzbach, 

2003), observers are asked to make speeded responses to the mask (rather than the 

target). The congruence of a target’s features with those of the mask produces faster 

responses. Hence, again one may expect target-congruent biases if observers were to 

report features of the mask. Biases would be expected as well if this modeling were to be 

applied to other visual phenomena, such as visual after-effects and crowding (Ester et al., 

2015; van den Berg, Johnson, et al., 2012). However, the finding that the target 

orientations were reported without any bias in the present study was an expected 

consequence of the way we designed our mask stimuli, in that they did not have any 

systematic orientation bias. 

When masking is very strong, as we observed here in the case of SOA = 0 ms in 

structure masking by noise, observers guess and the finding that the error distribution is 

uniform becomes trivial. However, there is no a priori reason to expect that, when 

masking strength is reduced, a uniform distribution will play a major role in explaining 

masking. In fact, due to the choice of stimulus parameters used in this study, observers 

are at chance only for SOA = 0 ms in pattern masking by noise, but not in para-/meta-
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contrast masking and pattern masking by structure. Therefore, the fundamental role 

identified for the uniform distribution in this study is supported by the analysis of all the 

data points that are above chance level. 

In all masking types studied here, an increase in the weight of the Uniform 

distribution (and equivalently a decrease in the weight of the Gaussian term) correlated 

most strongly with masking strengths (see Table 2-II). Since the changes in the weights 

of the Gaussian and Uniform terms are interpreted as changes in the target SNR, the 

masking effects mainly manifest themselves as a reduction of target SNR. While in the 

statistical model, decreases in signal strength and increases in noise are intertwined, we 

can speculate on the individual changes in signal strength and in noise based on the 

assumption that noise is most effective when it is integrated with the target signal. 

Accordingly, an increase in the noise component of SNR would be most effective at 0 ms 

SOA when target and mask temporal integration is maximal. Based on this assumption 

we suggest that: 

1.  In metacontrast, relatively weak masking occurs at 0 ms SOA and maximum 

masking occurs at positive SOA (U-shaped Type-B), implying that masking 

occurs mainly by the reduction of the signal in the SNR, with the mask 

interrupting or suppressing the strength of the target activity.  

2.  In pattern masking by noise, maximum masking occurs at 0 ms SOA (Type-A), 

implying that masking occurs mainly by an increase in the noise component of the 

SNR. 



51 
 

3.  In pattern masking by structure, one obtains strong masking at 0 ms SOA and 

maximum masking at positive SOA (J-shaped Type-B), implying that masking 

occurs both by increases in noise and decreases in signal of the SNR. 
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Chapter 3. Interactions between Spatial Attention and Visual 

Masking5 

3.1. Introduction 

Visual masking is defined as the reduction of visibility of one stimulus (target) by 

another stimulus (mask) when the mask is presented in the spatio-temporal vicinity of the 

target (Bachman, 1994; Breitmeyer & Ogmen, 2006). Visual masking has largely been 

investigated as a phenomenon reflecting the spatiotemporal dynamics of the visual 

system, and it provides a useful tool to study differences between nonconscious stimulus- 

and conscious percept-dependent visual processing.  Several types of masking depending 

on the spatiotemporal characteristics of the stimuli have been identified. When the target 

is followed by the mask in time, it is referred to as backward masking whereas when the 

mask precedes the target, it is called forward masking. Moreover, when the target and 

mask onsets coincide but the mask outlasts the target, it is called common-onset masking. 

In terms of spatial properties, backward masking is referred to as metacontrast masking 

when the target and mask stimuli do not spatially overlap.  

In terms of information processing, it is known that visual masks can suppress, or 

“erase,” the contents of sensory (or iconic) memory, which is a large capacity and rapidly 

decaying store (Averbach & Sperling, 1961; Haber, 1983; Sperling, 1960). The control of 

the contents of sensory memory by masking mechanisms has two important functional 

implications: First, since the contents of sensory memory are encoded in retinotopic 

                                                
5 All of the finding reported here have recently been submitted for publication.  
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coordinates, based on the duration of the visible-persistence component of sensory 

memory, moving objects should appear highly smeared. Empirical and computational 

evidence shows that, by suppressing the contents of sensory memory, visual masking 

mechanisms play an important role in establishing the clarity of our vision for moving 

objects (Chen et al., 1995; Noory, Herzog, & Ogmen, 2015; Ogmen, 1993; 

Purushothaman et al., 1998). Second, a subset of the contents of sensory memory is 

transferred to a more durable but low-capacity store, called visual short-term memory 

(VSTM) (Atkinson & Shiffrin, 1971; Averbach & Sperling, 1961). One of the 

distinguishing properties of VSTM from sensory memory is its immunity to visual 

masking (e.g., Averbach & Coriell, 1961; Gegenfurtner & Sperling, 1993; Haber, 1983; 

Loftus, Duncan, & Gehrig, 1992; Schill & Zetzsche, 1995). Hence, visual masking plays 

an important functional role in controlling which information will be available for 

transfer to VSTM.  

Another process known to control the transfer of information from sensory 

memory to VSTM is attention (e.g., Gegenfurtner & Sperling, 1993; Makovski & Jiang, 

2007; Ogmen, Ekiz, Huynh, Bedell, & Tripathy, 2013; Palmer, 1990; Sreenivasan & Jha, 

2007; Tombu et al., 2011). Since both attention and visual masking control (i.e., 

modulate) the transfer of information from sensory memory to VSTM, a natural question 

is whether these processes operate independently or they interact with each other. From a 

theoretical point of view, determining whether these two processes interact or not can 

contribute to our understanding of how information is transferred from sensory memory 

to VSTM. From an empirical point of view, this understanding is especially important 

when one wants to compare findings from different studies of VSTM, which employ 
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different types of masks or masks with different strengths. If, indeed, masking and 

attention interact, reconciliation or comparison of findings across different studies will 

require one to take into account the interaction effects.  

Determining whether masking and attention interact also has important 

implications on theories of visual masking. Selective attention has facilitative, as well as 

inhibitory, effects in almost all perceptual tasks and regardless of criterion contents 

(Posner, 1980; Smith et al., 2004). However, many early theoretical models of masking 

do not include a term or a mechanism for the effects of attention, implying that these 

models assume that attention and masking are independent processes (e.g., Bachmann, 

1984; Bruno G Breitmeyer & Ganz, 1976; Bridgeman, 1971; Francis, 2000; Ogmen, 

1993; Weisstein, Ozog, & Szoc, 1975). This does not necessarily mean that these models 

dismiss the role of attention. Attention can be incorporated to these models largely as an 

add-on process, which adds to the masking strength, or reduces it, depending on the locus 

of attention or attentional load. In fact, Michaels and Turvey (1979) incorporated 

attention in their model as an independent process working in conjunction with spatial 

inhibitory processes.  

On the other hand, at least one theory of visual masking considers attention as an 

essential component and predicts interactions between masking and attention (Di Lollo et 

al., 2000; Enns & Di Lollo, 1997). In a common onset masking paradigm, Enns and Di 

Lollo (1997) used a diamond shaped stimulus as target and four surrounding dots as 

mask. They found that the four-dot mask can produce strong masking effects when the 

stimuli were viewed peripherally and when attention could not be focused on a certain 

target location (i.e., with set sizes larger than one). Enns and Di Lollo attributed these 
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effects to higher-level processes of object substitution. Here, the assumption is that, as 

set-size increases, attentional resources will have to be spread over more locations, 

thereby increasing the attentional load and, hence, the time it takes for focused attention 

to arrive at the target’s location. On the other hand, when set-size is small or when the 

target just “pops out”, attention quickly focuses on this location. If attention arrives to the 

location of the target before re-entrant signals feedback to the target’s location, the 

observer will be able to perceive and identify the target. On the other hand, if re-entrant 

signals arrive at the target’s location before attention, a mismatch between the reentrant 

visual representation of the target-mask pair and the incoming lower level activity due to 

mask alone (since it is presented alone after target’s offset) will occur. In this case, the 

mask-only representation will substitute in perception the early activities generated by the 

target-mask pair. In summary, interaction between attention and masking is an essential 

ingredient of the object substitution theory. This prediction was supported by significant 

interaction effects found in their study (Di Lollo et al., 2000; Enns & Di Lollo, 1997).  

Reports of interactions between masking and attention have not been limited to 

the common-onset masking paradigm, but also included metacontrast masking 

(Ramachandran & Cobb, 1995; Shelley-Tremblay & Mack, 1999; Tata, 2002).  Hence, a 

question arises as to whether all theories of masking should include attention as an 

essential component. 

However,  more recent evidence shows that, in common-onset masking with four-

dot masks, masking strength and set size (i.e., attention), do not actually interact, and that 

previous studies suffered from ceiling and/or floor effects which led to artifactual  

appearance of interactions (Argyropoulos et al., 2013). This finding has been recently 
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replicated by using an eight-alternative forced-choice task (Filmer et al., 2014), providing 

further evidence against the attention account of object-substitution theory. Pilling et al. 

(2014) also employed a spatial cue to directly control spatial attention, and also reported 

no interaction. Filmer, Mattingley, and Dux (2015) have also demonstrated strong 

common-onset masking for the attended and foveated targets, which strongly contradicts 

the object-substitution account of common-onset masking. Given these findings, we have 

examined whether the reported interactions between attention and metacontrast may also 

be artifacts of ceiling and /or floor effects. The objective of the present study was to 

investigate whether metacontrast masking and attention interact by using an experimental 

design in which saturation and floor effects are avoided. We asked observers to report the 

orientation of a target bar when presented with other randomly tilted distractor bars. By 

adjusting stimulus parameters for each observer such that both the ceiling and floor effect 

are avoided, we investigated the relationship between masking and attention at two 

different levels: (i) in mean absolute response errors and (ii) in distribution of signed 

response errors. Our results show that although attention affects observer’s performance, 

its effect does not interact with masking. Statistical modeling of response errors suggest 

that attention and masking exert their effects by independently modulating the probability 

of “guessing” behavior.   

3.2. Methods 

3.2.1. Participants 

Seven observers participated in this study (three female, four male; ages from 24-

28).  Five of them were naïve as to the purpose of the experiment. Participants reported 
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normal or corrected-to-normal vision and gave written informed consent before the 

experiments. All experiments were carried out in accordance with the Code of Ethics of 

the World Medical Association (Declaration of Helsinki), and followed a protocol 

approved by the University of Houston Committee for the Protection of Human Subjects. 

3.2.2. Apparatus 

Visual stimuli were created using the ViSaGe and VSG2/5 cards manufactured by 

Cambridge Research Systems. Stimuli were displayed on a 22-in. CRT monitor with a 

refresh rate of 100 Hz and display resolution of 800 by 600 pixels.  The distance between 

the display and the observer was 1 m, and a head/chin rest was utilized to restrict 

movements of the observer. Observers responded via a joystick after each trial. 

3.2.3. Stimuli and Procedures 

In each trial, several oriented bars equidistant from the display center were 

presented briefly (10 ms). Any one of the bars could potentially be the target stimulus, 

and the target was specified by the mask location. In other words, only one mask stimulus 

was presented and its location cued which oriented bar is the target. The other bars will 

be referred to as distractors from now on. The task of the observers was to report the 

orientation of the target bar. Figure 3-1 illustrates the stimuli and procedures. A trial 

starts with a black (0 cd/ m2) fixation spot at the center of a blank white screen (60 

cd/m2). After a random time interval (500-1000 ms), an array of randomly oriented bars 

at equal eccentricities was presented around an imaginary circle (with a radius of 6 deg). 

After an SOA interval (0 – 200 ms), a spatially non-overlapping mask stimulus (a ring) 

was presented. In separate blocks, a small square (rather than a mask) indicating the 
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location of the target bar was presented in some of the trials. The trials where a small 

square was presented were considered as the baseline trials. The duration of the target 

and mask was 10 ms (one frame). The luminance of the target and mask was adjusted 

individually for each observer to avoid floor and ceiling effects. Once the target-mask 

sequence was presented and turned off, a randomly oriented (response) bar was displayed 

at the center of the screen, and observers adjusted its orientation (illustrated by red arrows 

in Figure 3-1) via a joystick to match the target bar’s orientation. The response bar stayed 

on the display until observers were satisfied with their responses and the next trial began 

with another button press. In separate block of trials, we presented an array with two or 

six oriented bars. Varying the set size allowed us to determine the effect of attention and 

its interaction, if any, with masking.  

Figure 3-1 Time course of the stimuli. The target array was followed either by (A) a mask stimulus (a ring), 
or by (B) a small square (a post-cue) which were presented for 10 ms. The task of the observers 
was to report the orientation of the masked (or probed) bar. 



59 
 

We defined response errors as the difference between the actual and reported 

orientations. Error values ranged from -90 to 90 deg. We obtained masking functions 

after transforming response errors to a probability like measure such that performance 

values of 0.5 and 1 correspond to chance and perfect performance, respectively. We  

calculated transformed performance (Ogmen et al., 2013) as 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 1−    |!""#"  !"#$%|
!"

  .                         (3-1) 

When the observer can report the orientation of the target bar veridically, then 

error angle will be zero, which corresponds to a transformed performance value of 1. 

When the observer randomly guesses, the absolute value of the response error will be 

distributed uniformly within the range of 0 and 90 deg. Hence, the average of the 

absolute value of error angles will be 45 deg with the corresponding Transformed 

Performance value equal to 0.5.  

For the purpose of this study, ceiling and floor effects must be avoided. The floor 

can be defined as the chance level, which corresponds to 0.5 transformed performance 

(see Equation 3-1), and the ceiling can be defined as the maximum performance an 

observer can possibly achieve in the absence of a mask. Thus, one has to determine the 

ceiling level (i.e., baseline performance in the absence of a mask) for each and every 

observer by presenting the target stimulus only. However, since we present an array of 

oriented bars rather than a single one, one needs to specify which one of them is the 

target without affecting its visibility. Moreover, obtaining the baseline performance at a 

single SOA may not be appropriate, since there may be additional confounding factors 

(such as memory leakage especially at long SOAs). Therefore, we presented a small 
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square (0.2 deg x 0.2 deg) as a cue in the spatial vicinity of the target bar at each SOA. 

This way we had a separate baseline performance for each SOA, and we made sure that 

the ceiling effect is avoided at each SOA.  

Before the actual experiments, we first trained the observers with two or three 

blocks of trials with all conditions to make sure that they became familiar with the 

experiment and the setup so as to stabilize their performance and minimize changes due 

to learning. In order to avoid the ceiling and floor effects described above, we adjusted 

two parameters: the target luminance and the mask luminance. The criteria that we used 

to obtain the target and mask luminance values were as follows: 

C1) The maximum performance with masking must be significantly lower 

than the baseline performance (the ceiling) when set size is two. 

C2) The minimum performance with masking must be significantly higher 

than chance level (the floor, i.e., 0.5 transformed performance). 

Based on pilot experiments and our previous studies on metacontrast masking, we 

carried out a power analysis to select the number of trials per SOA for masking and 

baseline (i.e., without a mask) conditions. Power analysis is necessary to assess Type-I 

errors (i.e., probability of falsely rejecting a null hypothesis). Therefore, we determined 

the number of trials required to reject the null hypothesis (i.e., the transformed 

performances with and without a mask are equal) by a two-sample t-test with a power 

level larger than 0.7. This analysis yielded roughly 200 trials per SOA value in total. 

Therefore, each observer ran 125 masking trials and 75 baseline trials per SOA. Table 3-I 

summarizes the target-mask luminance pairs for all observers as well as the results of 

statistical tests to verify that the aforementioned criteria (C1 and C2) are met. 
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Table 3-I The target, mask, and cue luminance values in cd/m2 (and Weber contrasts) for each observer. 
The background was set to 60 cd/m2 for all observers. The results of t-tests used to determine 
whether criteria C1 and C2 are met are also listed.  

	
  
Luminance	
  (Contrast)	
   Statistical	
  Criteria	
  

Observer	
   Target	
   Mask	
   Cue	
   C1	
  (ceiling)	
   C2	
  (floor)	
  

AK	
   39.5	
  (-­‐0.34)	
   6	
  (-­‐0.9)	
   30	
  (-­‐0.50)	
   t(190.3)	
  =	
  -­‐1.68;	
  p	
  =	
  0.047	
   t(124)	
  =	
  3.96;	
  p	
  <	
  0.001	
  

CBK	
   20	
  (-­‐0.67)	
   0	
  (-­‐1.00)	
   21	
  (-­‐0.65)	
   t(183.1)	
  =	
  -­‐2.97;	
  p	
  =	
  0.002	
   t(124)	
  =	
  4.34;	
  p	
  <	
  0.001	
  

EK	
   48	
  (-­‐0.20)	
   0	
  (-­‐1.00)	
   48	
  (-­‐0.20)	
   t(190.3)	
  =	
  -­‐1.86;	
  p	
  =	
  0.032	
   t(124)	
  =	
  4.05;	
  p	
  <	
  0.001	
  

FG	
   49.5	
  (-­‐0.18)	
   6.5	
  (-­‐0.89)	
   17	
  (-­‐0.72)	
   t(192.5)	
  =	
  -­‐2.18;	
  p	
  =	
  0.015	
   t(124)	
  =	
  3.74;	
  p	
  <	
  0.001	
  

GQ	
   42	
  (-­‐0.30)	
   10	
  (-­‐0.83)	
   22	
  (-­‐0.63)	
   t(181)	
  =	
  -­‐3.16;	
  p	
  <	
  0.001	
   t(124)	
  =	
  3.3;	
  p	
  <	
  0.001	
  

MNA	
   42	
  (-­‐0.30)	
   15	
  (-­‐0.75)	
   20	
  (-­‐0.67)	
   t(153.4)	
  =	
  -­‐4.49;	
  p	
  <	
  0.001	
   t(124)	
  =	
  4.71;	
  p	
  <	
  0.001	
  

SA	
   47.5	
  (-­‐0.21)	
   0	
  (-­‐1.00)	
   25	
  (-­‐0.58)	
   t(193.2)	
  =	
  -­‐3;	
  p	
  =	
  0.002	
   t(124)	
  =	
  2.26;	
  p	
  =	
  0.013	
  

 

Since masking strength is observer-dependent, the same set of parameters for all 

observers may not avoid floor and ceiling effects. For this reason, we adjusted target and 

mask luminance values individually for each observer to make sure that the data were 

free of floor and ceiling effects. Moreover, changing target and mask luminance does 

alter the location of maximum masking and may even result in Type-A (i.e., maximum 

masking at 0 ms SOA and monotonic increase in performance for positive SOAs) or 

Type B (i.e., maximum masking at a positive SOA and minimal or no masking at 0 ms 

SOA and beyond 300 ms SOA) masking functions depending on the observer. Therefore, 

the luminance values should be adjusted for each observer separately in order to produce 

Type-B masking functions, a prominent signature of metacontrast masking, for each 

observer. In order to capture the “U-shaped” masking functions from each and every 

observer, we needed to select a different set of SOA values.  
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Table 3-II The regression models used to fit transformed performances and the winning model parameters. 
The models are sorted based on number of parameters.  

ID Regression Model 

M1 Y = β0 + ε 

M2 Y = β0 + β1 τ + ε 

M3 Y = β0 + β1 n + ε 

M4 Y = β0 + β1 τ n + ε 

M5 Y = β0 + β1 τ2	
  + ε  

M6 Y = β0 + β1 τ2	
  n + ε  

M7 Y = β0 + β1 τ + β2 n + ε  

M8 Y = β0 + β1 τ + β2 τ n + ε  

M9 Y = β0 + β1 n + β2 τ n + ε  

M10 Y = β0 + β1 τ2 + β2 n + ε  

M11 Y = β0 + β1 τ2 + β2 τ2	
  n + ε  

M12 Y = β0 + β1 n + β2 τ2	
  n + ε  

M13 Y = β0 + β1 τ + β2 τ2 + ε  

M14 Y = β0 + β1 τ + β2 n + β3 τ n + ε  

M15 Y = β0 + β1 τ2 + β2 n + β3 τ2 n + ε  

M16 Y = β0 + β1 τ + β2 τ2 + β3 n + ε 

M17 Y = β0 + β1 τ + β2 τ2 + β3 τ n + ε 

M18 Y = β0 + β1 τ + β2 τ2 + β3 τ2 n + ε 

M19 Y = β0 + β1 τ + β2 τ2 + β3 n + β4 τ n + ε 

M20 Y = β0 + β1 τ + β2 τ2 + β3 n + β4 τ2 n + ε 

M21 Y = β0 + β1 τ + β2 τ2 + β3 n + β4 τ n + β5 τ2 n + ε 

τ	
  :	
  SOA,	
  n : Set size, ε	
  :	
  Error	
  term.	
  

Once we established a set of parameters which satisfied all the criteria given 

above, we analyzed transformed performance of each observer separately (within-subject 

analysis). We fitted a series of linear and polynomial regression models to pin down the 

presence/absence of contributions of the main factors and their interactions. Table 3-II 
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lists all regression models used to fit the data. We used Bayesian Information Criterion 

(BIC) and Adjusted R2 metrics for selecting the best model. Both metrics resulted in 

similar, if not identical, model selections for all observers. Both metrics penalize the 

models with more free parameters. Absolute values of BICs are not meaningful, therefore 

one needs to look at differences between BICs from different models. A BIC difference 

of x between model A and model B (i.e., x = BICA - BICB) corresponds to e-x –to-1 odds 

favoring model A. Therefore, the smaller the BIC, the better the model performs. 

According to Jeffreys’ scale of interpretation (Jeffreys, 1998), an odds ratio lower than 

one (i.e., e-x < 1) supports the null hypothesis, whereas an odds ratio larger than one (i.e., 

e-x > 1) supports the alternative hypothesis. Values larger than 100 (e-x > 100) are 

considered as a sign of “decisive evidence” against the null hypothesis, and similarly, 

values smaller than 0.01 (i.e., e-x < 0.01) are interpreted as “strong evidence” against the 

alternative hypothesis. 

3.2.4. Statistical Modeling of Response Errors 

We examined the distribution of response errors of observers to understand how 

attention and masking exert their effect on performance. We adopted the statistical 

models that have been previously used in modeling VSTM (Bays et al., 2009; Zhang & 

Luck, 2008) and several visual phenomena such as crowding (Ester et al., 2015) and 

masking (Agaoglu, Agaoglu, Breitmeyer, & Ogmen, 2015; Harrison, Rajsic, & Wilson, 

2014). The simplest model is a single Gaussian (referred to as the G model from now on) 

whose mean and standard deviation may be modulated by attention and/or masking. The 

mean of Gaussian represents how accurately the target orientation is encoded by the 

visual system. Nonzero values indicate observer bias in responses. The mean of the target 
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Gaussian was set to zero, i.e., centered on target orientation. This was motivated by our 

recent study on masking where we found that the mean of the Gaussian is not 

significantly different from zero (Agaoglu et al., 2015). Therefore, in the following 

analyses, the target Gaussians were centered on target orientations (i.e., zero mean in 

error space). The reciprocal of standard deviation represents how precisely the stimulus 

falling onto retina is encoded by the visual system.  In other words, decreased stimulus 

encoding precision is reflected by the increased variability of behavioral responses.  

In the second model, Gaussian + Uniform (the GU model), the additional 

Uniform component represents the “guess rate”. The increased guess rate is modeled by 

the weight of the uniform distribution. The GU model is a weighted sum of Gaussian and 

Uniform distributions (Equation 3-2), 

𝑃𝐷𝐹 𝜀 =   𝑤! ∗ 𝐺 𝜇,𝜎 +    1− 𝑤! ∗ 𝑈,                                    (3-2) 

where 𝑃𝐷𝐹 𝜀  represents the distribution of response errors, and 𝑤!  represents the 

weight of the Gaussian term with mean and standard deviation given as 𝜇  and  𝜎. 

Since the stimulus display consists of multiple oriented bars, observers may report 

the orientation of one of the non-target bars, e.g., the one that has the closest angle to the 

target angle (the GU + Closest Angle model or in short, the GUCA model), or the closest 

location to the target location (the GU + Nearest Neighbor or in short, the GUNN model), 

instead of the target bar. The contribution of this incorrect identity binding errors can be 

captured by another Gaussian term in the model. In consequence, the PDF of response 

errors can be written as a weighted sum of the target Gaussian, non-target Gaussian, and 

a uniform component (Equation 3-3) (Bays et al., 2009).  
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𝑃𝐷𝐹 𝜀   =   𝑤!𝐺(𝜇! ,𝜎!)   +   𝑤!"𝐺(𝜇!" ,𝜎!")   +   (1−   𝑤!   − 𝑤!")𝑈(−𝜋/2,𝜋/2),  (3-3) 

where subscripts T and NT represent target and non-target parameters, respectively.  

3.2.5. Model Fitting and Model Comparison 

We used the Bayesian Model Comparison (BMC) technique (Mackay, 2004; 

Wasserman, 2000) for selecting the best fitting model. Each model 𝑚! produces a 

conditional probability  𝑝(𝜀|𝑚! ,𝜃), where ε is a vector of observed response errors, and θ 

is a vector of model parameters. For each model, we calculated the probability of finding 

observed response errors, averaged over free parameters: 

L(𝑚!)  ≜  p(ε|𝑚!)  =   𝑝(𝜀|𝑚! ,𝜃)𝑝(𝜃|𝑚!)𝑑𝜃  =   𝑝 𝜀! 𝑚! ,𝜃!
!!! 𝑝 𝜃 𝑚! 𝑑𝜃,    (3-­‐4)  

where N represents the number of trials and εi represents the error in the ith trial. It is 

convenient to take the logarithm of Equation (3-4) in order to compute it numerically. 

Equation (3-4) can be rewritten as 

ln  L(𝑚!)  =  ln  Lmax(𝑚!)  +  ln[   𝑒𝑥𝑝(ln 𝐿(𝑚!|𝜃)− ln 𝐿!"#(𝑚!))𝑝 𝜃 𝑚! 𝑑𝜃],          (3-­‐5)  

where ln  L(𝑚!|θ)   = 𝑙𝑛  (𝑝 𝜀! 𝑚! ,𝜃!
!!! , and Lmax(𝑚!)  =  max(L(𝑚!|θ)).  Parameters 

corresponding to Lmax(𝑚!) can be regarded as the Maximum Likelihood Estimation 

(MLE) of the model parameters for model 𝑚!. Subtracting   Lmax(𝑚!) ensures that the 

exponential in the integrand is of order 1 and thereby, avoids numerical problems (Ester 

et al., 2015; Mackay, 2004; van den Berg, Shin, et al., 2012). We used uniform priors for 

all parameters over plausible ranges (see Table 3-II).  

Considering these priors, Equation (3-5) becomes  
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ln  L(m)  =  ln  Lmax(m)  − ln  (𝑅!)!
! +  ln[   𝑒𝑥𝑝(ln 𝐿(𝑚|𝜃)− ln 𝐿!"#(𝑚))𝑑𝜃],        (3-­‐6)  

where 𝑅! represents the size of the range for jth free parameter. We approximated the 

integral by a Riemann sum with at least 50 bins in each parameter dimension (see Table 

3-III). The performance metric given in Equation (3-6) will be referred to as the BMC. 

The difference between the BMCs from two different models is equivalent to the 

logarithm of likelihood ratios of them. Therefore, a model with larger BMC is a better 

model. We used Jeffrey’s scale of interpretation for comparing BMCs from different 

models. A BMC difference of x between model A and model B corresponds to ex-to-1 

odds favoring model A. 

Table 3-III Range of parameters used for BMC. We repeated the analysis with step sizes of 0.1 for standard 
deviation of the Gaussian, and 0.002 for the weight of the Uniform for the GU model but the 
winning model and the model parameters were not affected by this change. 

 

3.2.6. Analysis of Model Parameters 

After selecting the best fitting model, we sought to find how different model 

parameters change with SOA and set size. The motivation behind this analysis was to 

understand whether and how masking and attention affect the statistics of observer 

responses. After determining the winning model, we created 500 different data sets (for 

each observer separately) by resampling the response errors by replacement, and fitted 
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the winning model to these data sets. We present here the means and standard errors for 

model parameters obtained from this bootstrap analysis. Next, we fitted the regression 

models listed in Table 3-II to see the contributions of SOA, set size, and their interactions 

to model parameters.   

In order to determine whether masking strength and different model parameters 

are related or not, we also quantified the correlation between model parameters and 

masking function for each set-size by calculating Pearson R coefficients. A strong 

correlation would suggest a critical role for that parameter in accounting for masking 

effects, and a change in correlation with set size would suggest an interaction between 

attention and masking. 

3.3. Results 

3.3.1. Psychophysics 

Figure 3-2 shows results from all observers. The vertical axes represent the 

transformed performance while the horizontal axes represent SOA between the target and 

mask (or cue in the baseline conditions) stimuli. Open and filled symbols correspond to 

the baseline and masking conditions, respectively. Circles and squares plot the results for 

set-size of 2 and 6, respectively. Consider first the baseline data6. Our goal in collecting 

the baseline data was to ensure that the masking data did not have any ceiling effect 

(criterion C1, see Methods). For each observer, we performed a two-sample t-test 

between baseline and masking conditions at an SOA value where minimum masking 

occurs (e.g., typically 0 ms SOA with set size 2). For all observers, transformed 

                                                
6 See Appendix for the regression analysis of the baseline data. 
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performance was significantly smaller in masking condition (p<0.05). In addition to 

ceiling effects, we have also checked our data for floor effects (criterion C2, see 

Methods) by performing a one-sample t-test against the chance level (i.e., 0.5 

transformed performance) at SOA values where masking is strongest. We confirmed that 

transformed performance was significantly larger than the chance level (p<0.05) for all 

observers even when masking is strongest. Table 3-I lists the target-mask luminance pairs 

which allowed us to avoid ceiling and floor artefacts for each observer, as well as the 

results of the t-tests. Taken together, these results show that our masking data are free of 

ceiling and floor effects.  

3.3.2. Do Attention and Masking Interact? 

We fitted a series of polynomial regression models (in addition to the standard 

linear regression models) to each observer’s data to determine whether SOA and set size 

and their interaction have any significant contribution to transformed performance. 

Figure 3-2 (the right column) shows pairwise model comparison results based on the BIC 

metric. Greenish colors represent equivalent performances whereas blue and red colors 

represent better and worse model performances, respectively. As evident from Figure 3-2, 

the models with quadratic and linear SOA terms perform better than any of the standard 

regression models. This is to be expected since type-B functions’ U-shape is better 

captured by a quadratic term than a linear term. The key aspect of this analysis was to 

determine whether models with interaction terms would perform better than those 

without interaction terms. The model M16 was the best model for each and every 

observer who participated in the present study. This model consists of linear SOA and set 

size terms as well as a quadratic SOA term but does not have any interaction term. 
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Therefore, our analysis indicates that SOA (i.e., masking) and set size (i.e., attentional 

load) do not interact.  

3.3.3. Modeling 

Next, we examined the distribution of response errors of each observer by using 

the BMC technique (see Methods). Figure 3-3 (the leftmost column) shows BMC 

differences between every combination of model pairs for each observer. Among the four 

models tested, the GU model was the winning model for all observers; it has the highest 

BMC value. Averaged across observers, the BMC of the GU model was 27.2, 2.9, and 

3.4 larger than the G, GUCA, and GUNN models, respectively. These differences 

correspond to ~6E+11-to-1, ~18-to-1, and ~30-to-1 odds, all favoring the GU model. 

According to Jeffreys’ scale of interpretation (Jeffreys, 1998), these odds correspond to 

“decisive evidence” favoring the GU model. Therefore, further analyses were done on 

model parameters of the GU model. 

Figure 3-3 also shows the model parameters for the winning GU model for all 

observers (the second and third columns). There is no discernable pattern that is 

consistent across all observers in the dependence of standard deviations on SOA and set-

size (Figure 3-3, the second column). On the other hand, the weight of the uniform 

component has clear and consistent pattern in all observers (Figure 3-3, the third 

column). The weight parameter changes as a function of SOA following an inverse-U 

function, which reflects the shape of Type-B metacontrast functions. These inverse-U 
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 Figure 3-2 The left column shows transformed performance for each observer against SOA. The right 
column shows pairwise BIC differences7 between regression models listed in Table 3-II in 
explaining transformed performances.  

                                                
7 A square with coordinates (x,y) on each plot represents BIC difference between model x and y 

(i.e., BICMy - BICMx). The smaller the BIC, the better the model performs, therefore negative values (i.e., 
cooler colors) represent better model performance. Model M16 was the best model for all observers. Note 
that adding more terms to model M16 does not improve model performance, which is evident by dark blue 
bands formed in the lower left quadrant of each plot. 
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functions appear to be shifted vertically as a function of set-size, mirroring attentional 

affects found in the transformed performance data. In order to quantify these informal 

observations, we fitted a series of regression models listed in Table 3-II (see Methods for 

details).  

Pairwise comparison results of all regression models are given in the two rightmost 

columns of Figure 3-3. For the standard deviation parameters, the model M21 (with the 

following factors: SOA, SOA2, set size, SOA x set size, and SOA2 x set size) 

outperformed all other regression models (21st rows in in each panel in the fourth column 

of Figure 3-3) for observers CBK, FG, and SA. For observers AK, EK, and GQ, models 

M1, M4, and M2 were the best ones, respectively. However, almost all BIC differences 

were within the range of [-2, 2], suggesting that the differences between the models were 

not significant and all models performed equally well (or equally poorly). For observer 

MNA, the model M8 appeared to be the best of all, suggesting significant roles for SOA 

and set size as well as their first order interaction. In sum, these findings support the 

aforementioned informal observations that there is no clear or consistent trend across 

observers in the dependence of the standard deviation parameter on SOA and set-size. In 

our previous work (Agaoglu et al., 2015), we found that both the standard deviation of 

the Gaussian and the weight of the uniform distribution in the GU model correlated with 

the metacontrast function. The correlation of the weight parameter was higher than the 

correlation of the standard deviation. In the current study, the best regression model for 

the standard deviation had a main factor of SOA in five out of seven observers, which 

suggests a significant role for standard deviation of the Gaussian term in explaining 
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metacontrast masking, consistent with the previous finding. However, this dependence 

did not show a consistent pattern across observers and hence may be related to individual 

observer-dependent variations. On the other hand, as we mentioned above and discuss 

below in more details, the weight parameter appears to reflect a more general property 

that is common across all observers.  

The weight of the uniform component in the GU model showed an inverse U-

shaped pattern which was consistent across observers. In three (AK, MNA, and SA) of 

seven observers, M16 performed best, indicating no interaction between SOA and set 

size. Interestingly, in the remaining four observers (CBK, EK, FG, and GQ), the best 

regression model was either M19 or M21, both of which have interaction term(s). The 

interaction between quadratic SOA term and set size is most apparent in observer CBK 

(the second row and third column in Figure 3-3). However, for observers EK, FG, and 

GQ, even though the best regression model is M21, the model M16, which does not have 

any interaction terms, performs equally well according Jeffrey’s scale of interpretation. In 

fact, regressions of the weight of uniform based on adjusted R2 metric revealed that M16 

is the best regression model for all observers but CBK and EK. Besides, qualitatively, 

interaction between SOA and set size is not very apparent for these observers. Therefore, 

we conclude that, although there is some evidence for interactions between masking and 

attention when the analysis is carried out through the weight of the uniform distribution 

in the GU model, the evidence for this interaction is neither consistent across observers, 

nor strong. Hence, in the light of the analysis carried out directly on transformed 

performance, we conclude that attention and metacontrast masking do not interact. Table  
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Figure 3-3 The first column from left represents the BMC differences between every combination of model 
pairs8. The second and third columns show the parameters of the winning GU model9. The 
fourth and fifth columns show BIC differences between pairs of regression models. 

                                                
8 In order to have the same color notation (i.e., cooler colors mean better model performance and 

hotter colors mean worse model performance) as in Figure 3-2, we flipped the sign of BMC differences. 
The GU model outperforms all others for all observers. 

9 The second column shows the standard deviation of the Gaussian in the GU model as a function 
of SOA, and the third column shows the weight of the Uniform component in the GU model. The red lines 
represent set size 2 condition whereas the blue lines represent set size 6 condition. Error bars represent 
standard errors obtained by bootstrapping (see Methods). 
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3-IV summarizes the best regression models in capturing the change in model parameters 

as a function SOA and set size, for each observer. 

 

Table 3-IV The winning regression model for each parameter and observer. 

Observer Gsigma Uweight 

AK M1 M16 

CBK M21 M21 

EK M4 M19 

FG M21 M21 

GQ M2 M19 

MNA M8 M16 

SA M21  M16 

 

Another way to understand how model parameters and masking functions are 

related is to compute the correlation between each model parameter and masking 

functions. Figure 3-4 shows individual correlation coefficients as well as the average 

across observers. The weight of the Uniform in the GU model strongly correlates with 

masking functions, and set size does not change the strength of this correlation (one 

sample t-tests, p < 0.0001; Bayes factor > 7x105, in favor of strong correlation). 

Interestingly, the standard deviation of the Gaussian in the GU model correlates with 

masking function in set size 2 condition (one sample t-test: t6=-2.50, p=0.046; Bayes 

factor (correlation/no correlation) = 2.01) but this correlation vanishes in set size 6 

condition (one sample t-test: t6=-0.67, p=0.53; Bayes factor = 0.42.) We will discuss 

these findings in the next section. 
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Figure 3-4 The correlation between model parameters and masking functions for each set size condition. 
The correlation coefficients for individual observers as well as average across observers are 
shown. The red and blue bars represent set size 2 and 6 conditions, respectively. 

 

3.4. Discussion 

The visual system constantly receives an overwhelming amount of information. 

Due to capacity limitations, it becomes necessary to select and/or enhance relevant 

information while suppressing irrelevant information for the task at hand.  These 

attentional effects can be quantified experimentally with tasks that require the observer to 

detect, discriminate, or recognize a given object. In spatial cueing paradigms, attentional 

resources are directed to specific spatial locations and performance at cued and uncued 

locations are compared. In visual search paradigms, the “attentional load” is manipulated 

by means of different number of distractor objects/features (see review Carrasco 2011 for 

a detailed taxonomy of attentional effects). Visual masking has also been shown to 

control the quantity and quality of information transfer from sensory memory to short-

term memory. An intuitive question is whether these two processes that control the 
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transfer of information from sensory memory to short-term memory operate 

independently or interact.  

In this study, we asked observers to report the orientation of a target bar randomly 

selected from a set of bars presented in the display. Since the target bar was indicated by 

a metacontrast mask or a peripheral post-cue, we assumed that by increasing the set size, 

observers spread their attention to more locations thereby reducing attentional benefits at 

individual locations. We found strong evidence against interactions between metacontrast 

masking and attentional mechanisms. Our results showed that mean absolute response-

errors in orientation judgments are independently influenced by masking strength (a 

function of SOA) and attentional load (a function of set size).  

As mentioned in the Introduction section, while some models of masking view 

attention as an integral component of masking effects, others view it as an independent 

add-on process. In particular, the object-substitution model of masking, which was 

derived from the common-onset masking experimental paradigm, posited interactions 

between masking and attention and provided empirical evidence in support of this 

prediction. Other studies provided empirical evidence for masking-attention interactions 

in metacontrast masking (Ramachandran & Cobb, 1995; Shelley-Tremblay & Mack, 

1999; Tata, 2002) raising the possibility that these interactions could be an essential 

component of all masking types. However, recent studies, using the common-onset 

masking paradigm, showed that the interaction between masking and attention was an 

artifact of ceiling/floor effects and provided evidence against the prediction of the object 

substitution model (Argyropoulos et al., 2013; Filmer et al., 2014, 2015; Pilling et al., 

2014). A goal of our study was to examine whether the interaction between attention and 
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masking in metacontrast could also be a result of floor/ceiling effects. By avoiding 

floor/ceiling effects, we showed strong evidence against masking and attention 

interactions in metacontrast masking. In the light of this finding, we now discuss previous 

studies that reported interactions between these two processes. 

Ramachandran and Cobb (1995) used a row of three disks (central one being the 

target) and a column of four flanking disks (two above and two below the target disk). 

They asked observers to give a visibility rating for the target disk on a scale of 0 to 5. 

They found stronger masking when observers attended the column of disks which 

constituted the mask compared to when they attended the row of disks that included the 

target. The authors interpreted this finding as an interaction between attention and 

backward masking. However, it is very likely that the interaction reported by 

Ramachandran and Cobb was a result of ceiling effect: When observers attended the row 

of disks containing the target, visibility ratings were high, and for some SOA values, 

were very close to 5 (the maximum value).  

Tata (2002) reported similar findings and interpretations with metacontrast 

masking. He used elements similar to Landolt Cs and asked observers to report the 

orientation of the masked one. He varied set-size to control the attentional load and found 

significant interactions between set-size and masking. However, as in Ramachandran and 

Cobb’s study, performances in Tata’s experiments also suffered from ceiling effects: For 

short and long SOAs (e.g., 0 ms and 240 ms), discrimination performance in all set-size 

conditions was in the range of 90-95% correct whereas at intermediate SOA values, 

performance dropped significantly and diverged. The ceiling effect was rather more 

obvious in this study because with a set-size of one, there was essentially no masking at 
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all (performance as a function of SOA formed a flat line at about 95% correct), whereas 

at set-size of eight, there was strong masking with a typical type-B masking function.   

Another study that investigated metacontrast masking and attention also showed 

significant interactions (Shelley-Tremblay & Mack, 1999). In inattentional blindness 

studies, meaningful stimuli were found to be more resistant to inattentional blindness 

than neutral stimuli. This was interpreted as meaningful stimuli automatically attracting 

additional attentional resources compared to neutral stimuli. Following this logic, 

Shelley-Tremblay & Mack (1999) manipulated attention by using meaningful (happy-

face icon, individual name) vs neutral stimuli (inverted face icon, scrambled face icon, 

neutral words, annulus). They found that targets consisting of happy-faces and one’s own 

name were more resistant to masking than scrambled variants of them (facial features 

within a happy-face icon or letters in one’s name were randomly located) and meaningful 

stimuli used as masks exerted stronger masking effects than neutral masks. More 

importantly, their data indicated significant interactions between target/mask 

manipulations and SOA. The interpretion of these data in favor of interactions is subject 

to two important caveats: First, baseline performance for each type of stimulus (i.e., 

without a mask) was not measured; therefore one cannot judge the strength of masking 

and/or the presence of a ceiling effect. Second, in the experimental design, target or mask 

type covaries with attentional manipulation. This is especially important given that 

changes in the target or mask type, not only in terms of low-level parameters (e.g., 

luminance), but also in terms of higher-level organization, are known to affect 

metacontrast masking functions (e.g., Dombrowe, Hermens, Francis, & Herzog, 2009; 

Sayim, Manassi, & Herzog, 2014; Williams & Weisstein, 1981). For example, in two 
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studies (A. Williams & Weisstein, 1978; M. C. Williams & Weisstein, 1981), target and 

mask configurations are manipulated in terms of their three-dimensional appearance and 

connectedness. Both of these factors affected metaconstrast functions; connectedness 

influencing mainly the strength of masking whereas depth influencing mainly the timing 

of masking. Similar types of influences would be expected in the case of Shelley-

Tremblay’s & Mack ‘s stimuli: Given the cognitive significance of happy faces and one’s 

own name, it is likely that they are processed faster than neutral stimuli, suggesting shifts 

in the timing of metacontrast, hence interaction effects. In summary, because the target or 

the mask type covaried with the attentional manipulation, it is not clear whether the 

interaction found in Shelley-Tremblay & Mack (1999) is due to target and mask types 

based on figural, Gestalt, or “object superiority” effects, or to attention itself.   

3.4.1. Effects of Attention and Masking on Signal and Noise 

Although attentional effects are very well established with various visual tasks, 

there is no consensus about its mechanistic bases. Based on psychophysical, 

neurophysiological, and neuroimaging data, many computational models of attention 

have been proposed. Proposals include signal enhancement, external noise reduction, 

distractor exclusion, change in decision criteria and/or spatial uncertainty, normalization 

of pre-attentive activity by attention/suppression fields, increase in information transfer to 

VSTM, accelerating information processing, sharpening of tuning curves, modulating 

contrast and/or response gains, and many more (e.g., Carrasco & McElree, 2001; 

Carrasco, Penpeci-Talgar, & Eckstein, 2000; Carrasco, 2011; Desimone & Duncan, 1995; 

Dosher & Lu, 2000a, 2000b; Eckstein, 1998; Herrmann, Montaser-Kouhsari, Carrasco, & 

Heeger, 2010; Lee, Itti, Koch, & Braun, 1999; Lu & Dosher, 1998; John Palmer, 1994; 
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Pestilli, Ling, & Carrasco, 2009; Reynolds & Heeger, 2009; Smith, Ellis, Sewell, & 

Wolfgang, 2010; Smith, Lee, Wolfgang, & Ratcliff, 2009; Smith & Ratcliff, 2009). These 

processes are not mutually exclusive and can work in parallel with different contributions 

in different stimulus/task conditions. For instance, in precuing of location, the effects of 

cue-validity can be explained primarily by external noise reduction when there is high 

amount of noise in the stimuli whereas signal enhancement accounts for attentional 

effects in low external noise conditions (Dosher & Lu, 2000a; Lu & Dosher, 1998). 

Modulating contrast and response gains have been associated with endogenous (i.e., 

central cueing), and exogenous (i.e., peripheral cueing) attention, respectively (Herrmann 

et al., 2010; Pestilli et al., 2009).  What do our results imply in terms of signal and noise 

modulation by attention and masking? Our data suggest that masking reduces the target 

signal-to-noise ratio (SNR) whereas decreasing attentional load increases it and their 

effects simply add up. A simple interpretation of our results is that the metacontrast mask 

reduces the strength of the target signal thereby reducing SNR whereas attention 

enhances signal strength, given that our target is presented under low noise conditions. 

Given the lack of interactions between metacontrast and attention, these signal 

enhancement and reduction modulations by masking and attention take place as 

independent additive effects.  

3.4.2. Implications for Models of Attention 

Lu and Dosher developed a theoretical and experimental framework to investigate 

potential mechanisms of attention (Lu & Dosher, 1998). According to this framework, 

three distinct mechanisms of attention can be differentiated experimentally by adding 

varying levels of noise to the visual stimuli. The Perceptual Template Model (PTM) 
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consists of four stages and incorporates both additive and multiplicative noise sources. 

The first stage is a “perceptual template”, modeled as a filter tuned to the signal. This 

stage filters out some of the external noise that accompanies the desired signal. In the 

second stage, the output of the first stage is rectified and fed into a multiplicative 

Gaussian noise source with zero mean and a standard deviation proportional to the signal 

strength (i.e., its total energy). In the third stage, an independent Gaussian noise with zero 

mean and a constant standard deviation is added. The last stage is a standard signal 

detection (i.e., decision) process that is appropriate to the task and the stimuli.  

PTM can differentiate three distinct attention mechanisms each of which leads to 

a signature behavioral improvement in perceptual tasks. These mechanisms are (i) 

stimulus enhancement, (ii) external noise exclusion, and (iii) multiplicative noise 

reduction. There are both physiological and behavioral evidence in support of these 

mechanisms. For instance, at the neurophysiological level, attention has been shown to 

increase cellular response sensitivity (Reynolds & Chelazzi, 2004; Reynolds et al., 2000), 

to sharpen tuning curves of orientation and spatial frequency selective cells (Haenny et 

al., 1988), and to shrink neuronal receptive fields thereby excluding unwanted 

information through intra- or inter-layer interactions (Desimone & Duncan, 1995). At the 

behavioral level, attention has been associated with reduction in decision uncertainty 

(Palmer et al., 1993), enhancement of the attended stimuli (Lu & Dosher, 1998; Lu et al., 

2000; Posner et al., 1978), exclusion of external noise or distractors (Dosher & Lu, 

2000a, 2000b; Lu & Dosher, 2000; Lu et al., 2002; Shiu & Pashler, 1994), and 

modulation of contrast-gain (Lee et al., 1999).  
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There are two broad categories of spatial cueing, namely central and peripheral 

cueing. Central cues are generally presented at the locus of fixation and signal the 

location of the target stimulus in a way that requires interpretation. For example, when an 

arrow is used, the observer has to interpret the direction of the arrow to infer the cued 

location. Central cueing activates voluntary, or endogenous, attention mechanisms. 

Peripheral cues are generally presented at or close to the spatial location of the stimulus 

and hence they indicate the location of the stimulus directly in spatial representations 

without necessitating interpretive processes. These cues activate the reflexive, or 

exogenous, attention mechanisms. Lu and Dosher (2000) found that endogenous attention 

works by external noise exclusion whereas exogenous attention invokes both external 

noise exclusion and signal enhancement mechanisms. 

We will consider whether PTM can explain our findings. In our experiment, we 

have manipulated set-size to control attention. In this case, the main type of attention in 

effect would be endogenous attention, since observers spread their attention voluntarily to 

more locations as set-size increases. PTM predicts that external noise exclusion is the 

mechanism underlying endogenous attention effects. Under the external noise exclusion 

scenario, PTM predicts large attentional effects when external noise is large. If the 

mask’s effect is to add noise to the stimulus, then more noise should have been added 

when masking is strong (e.g., Lu, Jeon, & Dosher, 2004). Accordingly, the effect of 

attention should be strong when masking is strong and weak when masking is weak, 

hence there should be interactions between attention and masking. This does not agree 

with our results.  



83 
 

Several studies reported that cuing improves sensitivity in simple detection tasks 

when stimuli are presented with masks but not when stimuli are presented in the absence 

of masks (e.g., Lu & Dosher, 1998, 2000; Lu et al., 2002; Smith & Wolfgang, 2004, 

2007). Smith and colleagues developed the integrated system model (ISM) to explain 

these findings (Smith & Wolfgang, 2004 – early version, no explicit VSTM layer; Smith 

& Ratcliff, 2009 – VSTM stage is added; Smith et al., 2010 – final version). The main 

assumption of the model is that attention affects the rate of information transfer from 

sensory memory to VSTM (Carrasco & McElree, 2001) . Crucially, ISM incorporates 

interacting masking and attention mechanisms and predicts larger attentional benefits 

when a stimulus is masked compared to when it is unmasked. Likewise, the stronger the 

masking is, the larger the attentional effects will be. Hence, both the aforementioned 

empirical findings and the predictions of ISM appear to be at odds with our findings: Our 

baseline data, which correspond to no mask conditions, show clear effects of attention 

and we found no interactions between attention and masking. However, it is important to 

point out that the experimental paradigms leading to different results are fundamentally 

different: Lack of attentional effects for unmasked stimuli were found for simple 

detection tasks (or equivalently for easy discrimination tasks, such as horizontal vs 

vertical) that are mainly limited by contrast, rather than by the similarity of stimulus 

alternatives. This is clearly not the case in our study, wherein observers are required to 

report as accurately as possible the orientation of the target line. Hence, we found the 

classical set-size effect in our no-mask baseline conditions, in agreement with other 

studies ( e.g., John Palmer, 1994). It is well known that the magnocellular pathway and 

its associated transient mechanisms have very different contrast responses compared to 
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parvocellular pathway and its associated sustained mechanisms (Croner & Kaplan, 1995; 

Kaplan & Shapley, 1986). Simple detection and easy discrimination tasks can be carried 

out by both transient and sustained mechanisms, whereas difficult fine-discrimination 

tasks are likely to necessitate sustained mechanisms. Hence, both task difficulty and the 

contrast level are expected to influence the mechanistic criterion contents, i.e., which 

mechanisms, sustained or transient, will contribute to performance. Given that attention is 

also known to influence transient and sustained mechanisms in different ways, the 

interaction effects that emerge from data may be due to changes in criterion contents. In 

fact, this is a major challenge for any study, including ours, seeking to analyze 

interactions of masking with other processes. Masking is not a unitary phenomenon and 

different criterion contents can lead to drastically different masking functions. In order to 

mitigate this issue, in this study we sought to analyze interactions based on a complete 

type-B metacontrast function comparing identical masking conditions (i.e., identical 

SOAs) while modulating attention via set-size.  

To summarize, masking and attention are both involved in information processing 

and transfer at multiple stages of visual processing. Determining their relationships can 

help us reach a richer and more integrated understanding of visual information 

processing. Previous studies showed significant interactions between different types of 

masking and attention. However, in most of these studies, findings suffered from 

methodological artifacts and/or could be interpreted by alternative accounts (rather than 

artefactual mask-attention interaction). Here, we investigated the relationship between 

metacontrast masking and attention based on two performance measures: (i) mean 

absolute response-errors (empirical), (ii) distribution of signed response-errors 
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(modeling). We found strong evidence against interactions between attention and 

metacontrast masking for both performance measures. As mentioned above, neither 

masking nor attention is a unitary phenomenon, and hence additional studies are needed 

to establish firmly the relations between types of masking and attention.  
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Chapter 4. Temporal Dynamics of the Effect of Endogenous 

and Exogenous Attention on Visual Masking10 

4.1. Introduction 

The visual system is flooded with an enormous amount of information under 

normal viewing conditions. Only a subset of this information can be selected for further 

processing. Attentional mechanisms are responsible for enhancing the processing of the 

selected information (items, objects, etc.) and suppressing (or filtering out) the rest by 

allocating the available processing resources accordingly. The selection and filtering 

functions of visual attention have been investigated extensively and are well-documented 

(e.g., Chen et al., 2008; Gazzaley & Nobre, 2012; Palmer, 1990; Polk et al., 2008). In 

short, attention modulates the information transfer from sensory memory to VSTM and it 

has a significant role in the maintenance of information in VSTM (Ogmen et al., 2013; 

Reynolds & Chelazzi, 2004; Sreenivasan & Jha, 2007; Tombu et al., 2011). Moreover, 

two distinct types of attentional orienting have been identified (Cheal & Lyon, 1991; 

Egeth & Yantis, 1997; Jonides, 1981; Müller & Rabbitt, 1989; Nakayama & Mackeben, 

1989; Posner, 1980; Weichselgartner & Sperling, 1987): Exogenous attention has often 

been described as controlled by the stimulus and, therefore, referred to as a reflexive 

mechanism. When we hear a loud bang or see a flash of light on a dark road, the visual 

system automatically deploys most of its resources for processing this information. 

Hence, exogenous attention has a significant role in survival. Endogenous attention, on 

                                                
10 All of the findings reported in this chapter will be submitted for publication as a journal paper. 

Therefore, the style and the content follow the journal guidelines. 
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the other hand, is a voluntary, rather than reflexive, allocation of resources to a 

predetermined region in the space, to a particular feature, or to an object.  

Peripheral cues (presented at or around the target stimulus) have been claimed to 

activate exogenous attention whereas central cues (generally presented at or near fovea) 

are said to trigger endogenous attention mechanisms. Peripheral cues directly specify the 

target location whereas central cues are conceptual in the sense that they need to be 

cognitively processed and interpreted to determine where and how to deploy attentional 

resources. Due to these differences, exogenous attention reaches its maximum 

effectiveness at shorter cue-target onset asynchronies (CTOA) (100-120 ms depending on 

the task and the stimuli) compared to endogenous attention, which may require about 300 

ms to reach its maximum effectiveness (e.g., Ling & Carrasco, 2006; Remington, 

Johnston, & Yantis, 1992). Moreover, exogenous attention effects decrease and disappear 

completely after 300-400 ms whereas endogenous attention benefits show a 

monotonically increasing trend as a function of CTOA and can be maintained as long as 

are needed for the task (Cheal & Lyon, 1991; Kröse & Julesz, 1989; Müller & Rabbitt, 

1989; Nakayama & Mackeben, 1989; see review: Carrasco, 2011). Due to these 

differences in time courses, exogenous and endogenous attention have been also called as 

transient and sustained attention respectively (Egeth & Yantis, 1997; Jonides, 1981; 

Nakayama & Mackeben, 1989; Wright & Ward, 2008).  

Endogenous attention and exogenous attention can result in similar perceptual 

changes (e.g., Hikosaka, Miyauchi, & Shimojo, 1993). Both types of attention have been 

shown to increase spatial resolution (Carrasco & Barbot, 2015; Yeshurun & Carrasco, 

1998)  and reduce temporal resolution (Yeshurun & Levy, 2003) at the attended location, 
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and affect performance in various behavioral tasks such as visual search (e.g., Carrasco & 

McElree, 2001), crowding (Montaser-Kouhsari & Carrasco, 2009; Yeshurun & Rashal, 

2010), and acuity (Montagna, Pestilli, & Carrasco, 2009). Suzuki and Cavanagh (1997) 

showed that both types of attention distort the representation of position at the attended 

location. On the other hand, they can also result in distinct perceptual effects. The effect 

of exogenous attention on conjunction search (based on the conjunction of multiple 

features) is larger than on simple search (based on a single feature) whereas endogenous 

attention yields equivalent improvements (Briand & Klein, 1987). Dosher and Lu, in a 

series of studies, showed that endogenous attention operates only under high-noise 

conditions whereas exogenous attention benefits can be found under both low-noise and 

high-noise conditions (Dosher & Lu, 2000a, 2000b; Lu & Dosher, 1998, 2000). Ling and 

Carrasco (2006), however, showed that both types of attention increase contrast 

sensitivity in both high- and low-noise conditions. Moreover, modulating contrast and 

response gains of neuronal responses have been associated with endogenous and 

exogenous attention, respectively (Herrmann et al., 2010; Pestilli et al., 2009). Due to 

varying differences and similarities in temporal dynamics and perceptual changes they 

produce, there seems to be no consensus about the underlying neural mechanisms of 

these two types of attention. The view that the neural networks underlying endogenous 

and exogenous attention overlap to some extent but are independent, has been supported 

by many studies (Carrasco, 2011) with one exception. Peelen et al. (2004) used both 

central and peripheral cues in a functional neuroimaging study, and reported that the 

same large-scale neural network (a fronto-parietal network consisting of premotor cortex, 

posterior parietal cortex, medial frontal cortex and right inferior frontal cortex) mediates 
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both types of attention. Nevertheless, whether masking has the same relationship with 

these two types of attention remains to be established empirically. 

Attentional allocation of resources can also be controlled by changing set size 

rather than by a spatial cue, as we have shown in Chapter 3. However, there are two 

limitations of controlling attentional allocation this way. First, it does not allow us to 

investigate the temporal dynamics of attentional benefits. Second, since observers had to 

attend to the entire display in the beginning of each trial and the target was indicated by 

the onset of a mask, the task employs both endogenous and exogenous attention. Due to 

different temporal dynamics of the two types of attention, one cannot tease apart their 

contributions on performance. Moreover, differential contributions from different 

attention mechanisms might have shadowed a potential interaction between metacontrast 

masking and attention in Chapter 3. Here, we investigated the relationship between 

metacontrast masking and these two different types of attention separately by presenting 

either central or peripheral cues in different blocks. By adjusting the stimulus parameters, 

we again made sure that the ceiling/floor artifacts are avoided for all observers. Finally, 

we used the same statistical modeling approach to determine whether endogenous and 

exogenous attention give rise to similar changes in the distribution of response errors. 

4.2. Methods 

4.2.1. Participants 

Six observers (three male, three female; ages range from 24 to 32) took part in 

this study and four of them were naïve as to the purpose of the study. All participants had 

normal or corrected-to-normal vision, and gave written informed consent before the 
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experiments. All experiments were carried out in accordance with the Code of Ethics of 

the World Medical Association (Declaration of Helsinki).  We followed a protocol 

approved by the University of Houston Committee for the Protection of Human Subjects. 

4.2.2. Apparatus 

Stimuli were created using the ViSaGe and VSG2/5 cards manufactured by 

Cambridge Research Systems. A 22-in. CRT monitor with a refresh rate of 100 Hz and a 

display resolution of 800 by 600 pixels was used to present the visual stimuli. Observers 

sat at a distance of 1 m from the display. In order to restrict movements of the observer, a 

head/chin rest was used. Responses from observers after each trial were collected via a 

joystick. 

4.2.3. Stimuli and Procedures 

In order to investigate the interactions between metacontrast masking and the two 

types of attention described above, we used either a central cue (endogenous attention 

experiment) or a peripheral cue (exogenous attention experiment) in separate blocks. The 

task of the observers was to report the orientation of a target bar indicated by the pre-cue 

at the beginning of each trial. The stimulus sequences for both cueing types are given in 

Figure 4-1. Each trial started with a fixation point on an otherwise blank gray (60 cd/m2) 

screen. After a random delay (500-1000 ms), a black (10 cd/m2) pre-cue (an arrow at the 

center in the endogenous attention blocks, or a 0.3 deg square at 3.0 deg eccentricity in 

the exogenous attention blocks) was shown for 50 ms, indicating the target location. 

After a variable CTOA, an array of six (endogenous) or four (exogenous) oriented bars 

was presented for 10 ms around an imaginary circle centered on the fixation point so that 
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all bars had the same retinal eccentricity. In the endogenous attention blocks, the 

eccentricity of each bar was 6 deg whereas in the exogenous attention blocks, the 

eccentricity of each bar was 5 deg. In contrast to the experiments in Chapter 3, all 

oriented bars were followed by a metacontrast mask (a ring with inner and outer 

diameters of 1.1 deg and 1.4 deg, respectively) after a variable delay. This variable delay 

between the onsets of the bar and the mask arrays will be referred to as stimulus onset 

asynchrony (SOA) in the following text. Within the same block, the mask array was not 

presented in some trials, and the performance in these trials served as the baseline 

performance level for each cueing condition. Once the stimulus sequence was presented, 

observers reported the orientation of the bar indicated by the central cue in the 

endogenous attention condition whereas they reported the orientation of the bar indicated 

by another cue (i.e., the post-cue) which appeared at the end of each trial in the 

exogenous attention condition, by adjusting the orientation of a central bar via a joystick. 

In other words, in the endogenous attention experiment, the central cue had 100% 

validity. In the exogenous attention experiment, however, the peripheral cue was not 

informative of the target location (25% validity). This ensured that any potential 

contribution from endogenous attention mechanisms is minimized. There was no time 

limitation on the response, and observers initiated the next trial by another button press. 

In the endogenous attention experiment, three CTOA values (0, 200, and 500 ms) were 

used whereas in the exogenous attention experiment, only two CTOAs were used; 0 ms 

and a CTOA between 80 ms and 120 ms (specific values for each subject were as 

follows: 120 ms for ATB, 80 ms for EB, 100 ms for FG, 80 ms for GQ, 100 ms for 

MNA, and 80 ms for SA), where the effect of exogenous attention is largest, as 
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determined by the pilot studies. In both cueing conditions, five SOA values were used for 

each observer.  

 

Figure 4-1 The stimulus sequences for both the endogenous (top) and exogenous (bottom) attention 
conditions.  

In both experiments, each block started and ended with 10 consecutive baseline 

trials. Moreover, different SOAs were interleaved in the remaining trials within a block. 

In each block, the same CTOA was used. In other words, cue timing was blocked 

whereas target and mask timing was randomized. Each combination of CTOA and SOA 

values as well as the baseline conditions were run 100 times.  In total, each observer 

completed 1800 trials ([5 SOA + 1 baseline] x 3 CTOA = 18 conditions) in the 

endogenous attention experiment, and 1200 valid trials ([5 SOA + 1 baseline] x 2 CTOA 

= 12 conditions) out of roughly 4800 trials (i.e., 25% validity) in the exogenous attention 

experiment.  

As in the previous chapters, in order to obtain masking functions, response errors 

were transformed to a probability-like measure via Equation (4-1) (Ogmen et al., 2013).  

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 1−    |!""#"  !"#$%|
!"

  .                         (4-1) 
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Moreover, as for the set-size experiment in Chapter 3, the target and mask 

luminances were adjusted for each observer to avoid floor/ceiling artifacts. In short, we 

used two criteria to select the target-mask luminance pairs: C1) the luminance pairs 

which resulted in significant differences between masked and unmasked (baseline) 

performance, and C2) the luminance pairs which resulted in significant differences 

between masked performance and the chance level, for all SOAs. Moreover, the SOAs 

were also selected for each observer separately so that typical type-B masking functions 

can be captured. Table 4-I lists the target and mask luminances, as well as the results of t-

tests used to check whether both criteria listed above were met, for all observers. 

4.2.4. Statistical Analyses and Modeling 

The analyses of transformed performance and the statistical modeling of the 

distribution of signed response errors were identical to those in Chapter 3. In the 

exogenous attention condition, only the trials where the peripheral cue correctly indicated 

the target location (i.e., valid trials) were included in the analyses. 

4.2.5. Predictions 

As we mentioned in the Introduction section, endogenous and exogenous 

orienting have been known to have different time courses in enhancing target processing 

(see review: Ward, 2008). Figure 4-2A illustrates the time courses and the predicted 

outcomes for the experiments presented here. When either type of cue is shown 

simultaneously with the target item (i.e., CTOA = 0 ms), both cues are ineffective (Cheal 

& Lyon, 1991; Kröse & Julesz, 1989; Müller & Rabbitt, 1989; Nakayama & Mackeben, 

1989). However, as the time separation between the cue and the target is increased, the 
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Table 4-I The target, mask, and cue luminance values in cd/m2 (and corresponding Weber contrasts) for 
each observer. The background luminance was set to 60 cd/m2 for all observers. The results of 
t-tests used to determine whether criteria C1 and C211 are met are also listed.  

Endogenous 

 Luminance (Contrast) Statistical Criteria 

Observer Target Mask Cue C1 (ceiling) C2 (floor) 

ATB 43 (-0.28) 15 (-0.75) 10 (-0.83) t(150.7) = -2.18; p = 0.016 t(99) = 4.11; p < 0.001 

EB 12.5 (-0.79) 30 (-0.5) 10 (-0.83) t(164.8) = -2.22; p = 0.014 t(99) = 6.15; p < 0.001 

FG 46 (-0.23) 18 (-0.7) 10 (-0.83) t(145.5) = -2.73; p = 0.004 t(99) = 8.27; p < 0.001 

GQ 46 (-0.23) 0 (-1) 10 (-0.83) t(141.6) = -2.53; p = 0.006 t(99) = 3.92; p < 0.001 

MNA 42 (-0.3) 20 (-0.67) 10 (-0.83) t(142.6) = -2.19; p = 0.015 t(99) = 5.86; p < 0.001 

SA 47 (-0.22) 18 (-0.7) 10 (-0.83) t(138.6) = -2.94; p = 0.002 t(99) = 7.72; p < 0.001 

 

Exogenous 

 Luminance (Contrast) Statistical Criteria 

Observer Target Mask Cue C1 (ceiling) C2 (floor) 

ATB 44 (-0.27) 10 (-0.83) 30 (-0.5) t(167.7) = -2.23; p = 0.013 t(99) = 6.26; p < 0.001 

EB 40.5 (-0.32) 12 (-0.8) 30 (-0.5) t(181.5) = -1.87; p = 0.031 t(99) = 5.24; p < 0.001 

FG 46 (-0.23) 18 (-0.7) 30 (-0.5) t(180.6) = -2.5; p = 0.007 t(99) = 6.26; p < 0.001 

GQ 46.5 (-0.22) 6 (-0.9) 30 (-0.5) t(125.3) = -2.9; p = 0.002 t(69) = 4.34; p < 0.001 

MNA 43.5 (-0.28) 30 (-0.5) 30 (-0.5) t(137) = -2.34; p = 0.01 t(99) = 6.68; p < 0.001 

SA 48 (-0.2) 30 (-0.5) 30 (-0.5) t(134.6) = -3.81; p < 0.001 t(99) = 3.73; p < 0.001 

 

facilitatory effect of exogenous attention increases first, peaking around 100-120 ms, and 

then decreases back to no facilitation at long CTOAs (Cheal & Lyon, 1991; Kröse & 

Julesz, 1989; Müller & Rabbitt, 1989; Nakayama & Mackeben, 1989). For endogenous 

attention, the facilitatory effect increases monotonically and reaches a plateau after a 

certain CTOA (Cheal & Lyon, 1991; Kröse & Julesz, 1989; Müller & Rabbitt, 1989; 

Nakayama & Mackeben, 1989). Here, we investigated whether different types of 

attentional orienting interact with metacontrast masking. If there is no interaction, then 
                                                
11 Note that we used two-sample t-tests with unequal variances for testing for C1, and one-sample 

t-tests against chance level (0.5) for testing for C2. 
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masking functions (i.e., transformed performance as a function of SOA) should simply 

shift vertically up or down depending on CTOA. More specifically, masking functions 

should shift upward with increasing CTOA for the case of endogenous cueing whereas it 

should shift up first, and then shift down to its no facilitation levels for exogenous cueing 

(see Figure 4-2B). However, since we used only two CTOAs in the exogenous attention 

condition, our data can only show an upward vertical shift from zero CTOA to 100 ms 

CTOA. On the other hand, any other pattern of results such as a change in maximum 

deviation in masking strength as a function of SOA with CTOA (Figure 4-2C), or a shift 

of the dip of the masking functions with CTOA (Figure 4-2D), or any combination of 

these two changes would indicate an interaction between attention and masking.  

4.3. Results 

Figure 4-3 shows the experimental results for both cueing types for all observers. 

The vertical axes represent the transformed performance while the horizontal axes 

represent SOA between the target and mask arrays. The dotted lines represent baseline 

conditions where the mask array was not presented. The markers and dashed lines 

represent empirical data whereas the solid lines indicate the best fitting regression 

models. Different colors represent different CTOAs. The baseline data were collected to 

ensure that the masking data did not have any ceiling effect (criterion C1, see Methods). 

For each observer, we performed a two-sample t-test between the baseline and masking 

conditions at an SOA where masking is the weakest, i.e., the transformed performance is 

the highest. Moreover, we did a one-sample t-test between the chance level (0.5 

transformed performance) and the masking conditions at an SOA and CTOA pair where 

the transformed performance is the lowest (typically, zero CTOA and an intermediate 
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SOA), to ensure that floor effects are also avoided (criterion C2, see Methods). Table 4-I 

summarizes the results of all t-tests as well as the target and mask luminances which 

allowed us to avoid ceiling and floor artifacts for each observer. In short, both criteria 

were met for all observers, and our masking data are free from ceiling and floor artifacts. 

 

Figure 4-2 (A) The time courses of effects of exogenous (solid line) and endogenous (dashed line) cueing 
(Ward, 2008). The blue and red arrows indicate endogenous and exogenous cues, respectively. 
(B) The predicted outcomes assuming no interaction between attention and masking.  
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Figure 4-3 The transformed performance in the (A) endogenous and (B) exogenous attention conditions for 
all CTOAs and SOAs12. (C) The baseline performance (averaged across observers) as a 
function of CTOA in both conditions. Error bars represent ±SEM across observers (n=6). 

 

For both types of attention and for all observers, except EB, masking functions 

seem to be shifted vertically with changes in CTOA, consistent with the predictions of no 

                                                
12The horizontal axes represent SOA and the vertical axes represent transformed performance (see 

Methods). Different colors represent different CTOA conditions. The dotted horizontal lines indicate 
baseline (i.e., without masks) performance. The markers and the dashed lines represent empirical data 
whereas the solid lines show the regression model which fits the data best. Each panel shows data from a 
single observer. The initials of each observer and the best regression model (see Table 3-II) are given on 
top of each panel. Error bars represent ±SEM across trials (n=100). Note that only the validly cued trials 
are included both conditions, which correspond to 100% and 25% of the trials in the endogenous and 
exogenous attention conditions, respectively. 
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interaction between masking and attention. To confirm this qualitative assessment, we 

fitted a series of polynomial regression models (see Table 3-II in Chapter 3) to individual 

data to quantify the effects of SOA (masking), CTOA (attention), and their various 

interactions. The best model was selected based on the BIC metric (the lower the BIC, 

the better the model) which pits model likelihoods against each other after taking into 

account the number of parameters. The pairwise BIC differences are given Figure 4-4. 

Greenish colors represent equivalent model performance whereas blue and red colors 

represent better and worse model performance, respectively. Figure 4-3 also shows the 

best model fits (solid lines). For four out of six observers, the best model was M16 in the 

endogenous attention condition. This model has a linear SOA and CTOA terms as well as 

a quadratic SOA term but no interaction term. For observers EB and FG, the best model 

was M19, which has an additional interaction term. In the exogenous attention condition, 

for all observers except EB, M16 was again the best regression model. For EB, M19 

again performed best. Note that although the best regression model was M19 for EB in 

both attention conditions, and for FG in the endogenous attention condition, the BIC 

differences between M16 and M19 were within ±2 indicating that these two models 

actually performed equally well. In sum, our results suggest that metacontrast masking 

and attention do not interact regardless of the type of cueing used. 
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Figure 4-4 The BIC differences between each pair of the regression models listed in Table 3-II in Chapter 
3. (A) Endogenous attention condition. (B) Exogenous attention condition.  

 

Perceptual improvements as a result of spatial pre-cueing have been reported to be 

contingent upon presence of masks (e.g., Lu & Dosher, 1998, 2000; Lu et al., 2002; 

Smith & Wolfgang, 2004, 2007; Smith, 2000). In order to test whether the effect of 

cueing is limited to the cases where masks were presented in our experiments, we 

analyzed the transformed performance in the baseline conditions (see Figure 4-3C). 

Although we did not control for ceiling and floor effects in the baseline conditions, we 

found a significant improvement in transformed performance with increasing CTOA in 

the endogenous attention condition. A one-way repeated measures ANOVA yielded a 

significant main effect of CTOA (F2,10=8.060; p=0.008; ηp
2=0.617). Although there was 

an increasing trend in performance with CTOA, a paired t-test between performance at 

zero CTOA and ~100ms CTOA in the exogenous attention condition did not reach 

significance (t(5)=2.451; p=0.058).  
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4.3.1. Modeling 

We examined the distribution of signed response-errors by using the BMC 

technique. The same models that were used in Chapter 3 were used. In short, the G model 

has only a Gaussian term, the GU model is a weighted sum of a Gaussian and a Uniform 

distribution. The GUCA and GUNN models have an additional Gaussian term, which 

represents “misbinding” behavior (i.e., reporting the orientation of a non-target object). In 

the GUCA model, misbinding is caused by the non-target bar which has the closest angle 

to the target’s orientation. In the GUNN model, misbinding is modeled as stemming from 

the nearest neighbors of the target bar. The rationale for using these models is given in 

Chapter 3. Among these models, the GU model was the winning model for all observers 

in both types of attention manipulations. Averaged across observes, the BMC of the GU 

model in the endogenous attention condition was larger by 13.1, 1.9, and 3.4 than that of 

the G, GUCA, and GUNN models, respectively. These differences correspond to 5.0E+5-

to-1, 6.7-to-1, and 30.0-to-1 odds, in favor of the GU model, and suggest a “decisive 

evidence” favoring the GU model (Jeffreys, 1998). Similarly, in the exogenous attention 

condition, the BMC of the GU model was 14.3, 2.1, and 3.2 larger than that of the G, 

GUCA, and GUNN models, respectively. These BMC differences correspond to 1.6E+6-

to-1, 8.2-to-1, and 24.5-to-1 odds, all favoring the GU model. Next, we analyzed the 

model parameters of the GU model to determine whether any interaction between 

metacontrast masking and attention exists. Since the Gaussian and the Uniform 

components in the GU model represent different processes (stimulus encoding and 

guessing), examination of model parameters have the potential to tease apart different 

relationships between these processes and attention. 
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Figure 4-5 Pairwise BMC differences between the statistical models tested. A square with coordinates (x,y) 
on each plot represents the BMC difference13 between model y and x.  

 

Figure 4-6 shows the model parameters for the winning GU model as a function 

of SOA and CTOA in both the endogenous (Figure 4-6A) and exogenous (Figure 4-6B) 

attention conditions. There is no discernable pattern of changes in the standard deviation 

of the Gaussian term. The weight of the Uniform component, however, depicts an 

entirely different picture. First, it tightly follows the (inverted) shape of masking 

functions, indicating that metacontrast masking exerts its effect by increasing the weight 

of the Uniform component (i.e., guessing). Second, the effect of pre-cueing at different 

temporal distances to the target array (i.e., CTOAs) is also reflected in the weight 

parameter as an overall increase/decrease at all SOAs. At zero CTOA, where spatial pre-

cueing virtually has no effect on performance, the weight parameter is largest for all 

SOAs and observers in both types of attention. As CTOA increases, more attentional 
                                                
13 In order to have the same color notation (i.e., cooler colors mean better model performance and 

hotter colors mean worse model performance) as in Figure 4-4, we flipped the sign of the BMC differences. 
For both types of attention and for all observers, the GU model performs best in explaining the distribution 
of signed response errors, as indicated by the darkest blue color at the (G, GU) coordinate in all panels.  
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resources are deployed at the target location, which decreases the weight of the Uniform 

component. More importantly, these opposing effects of metacontrast and attention seem 

to be operating independently since the weight functions (i.e., the weight of the Uniform 

component as a function of SOA) undergo vertical shifts with CTOA.  

 

Figure 4-6 The parameters of the winning GU model for all observers in the (A) endogenous and (B) 
exogenous attention conditions. In each part, first rows represent the standard deviation of the 
Gaussian whereas the second rows represent the weight of the Uniform component.  

These informal evaluations of the results were confirmed by the statistical tests 

where we fitted model parameters with a series of polynomial regression models. Figure 

4-6 also shows the best fitting regression model on top of each panel. For all observers, 
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the best regression model to capture the changes in the standard deviation of the Gaussian 

term is different. The inconsistency across observers suggests that masking strength and 

attentional benefits are not directly reflected in the standard deviation of the Gaussian in 

the GU model. The changes in the weight of the Uniform term are best captured by the 

regression model M16 for four out of six observers in the endogenous attention condition. 

For the observers EB and FG, the best regression model was M19 and M21, respectively. 

The model M19 has an additional SOAxCTOA interaction term compared to M16, and 

the model M21 has both SOAxCTOA and SOA2xCTOA interaction terms (see Table 3-II 

in Chapter 3 for a complete list of all regression models). In the exogenous attention 

condition, the best regression model for the weight of the Uniform term was M16 for 

three out of six observers. Consistently, the best model for observer FG was again M21. 

However, for observer EB, there was no interaction between SOA and CTOA in the 

exogenous attention condition. Moreover, for observers MNA and SA, the best regression 

models were M20 and M21, respectively. Both M20 and M21 contain a quadratic SOA 

and CTOA interaction, which suggest a masking strength-dependent effect of attention. 

This is apparent in the SOA-dependent drops in the weight parameter with an increase in 

CTOA for these observers (Figure 4-6B, Uweight). Interestingly, we found such 

interactions neither for the weight parameter in the endogenous attention condition, nor 

for the transformed performance in both attention conditions.  
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Figure 4-7 The correlations between masking functions and the GU model parameters for the (A) 
endogenous and (B) exogenous attention conditions. The top row represents the standard 
deviation of the Gaussian whereas the bottom row represents the weight of the Uniform.  

 

In order to determine how well the changes in transformed performance are 

reflected in the model parameters, we carried out a correlation analysis, where we 

computed the Pearson’s R coefficient between masking functions and each model 

parameter separately. Figure 4-7 shows the individual and average correlation 

coefficients for both attention conditions. Different colors represent different CTOAs. 

Consistently, we found very strong correlations between the weight of the Uniform and 

the masking functions in all CTOAs. This suggests that regardless of the level of 

attentional resources on the target bar, the transformed performance can be closely 

captured by the changes in the weight of the Uniform term. The standard deviation of the 

Gaussian term is not correlated with performance when CTOA is zero, and hence, there is 

no attentional benefits. However, interestingly, in both types of spatial pre-cueing, the 

correlations tend to increase with increasing CTOA. A one-way repeated measures 
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ANOVA in the endogenous attention condition did not yield a significant main effect of 

CTOA on the correlations between masking functions and the standard deviation 

parameter (F2,10=3.824; p=0.058; ηp
2=0.433). However, a paired t-test between CTOA 0 

and CTOA 500 ms conditions revealed a significant improvement in correlations 

(t(5)=2.824, p=0.037). Although there was an increasing trend with CTOA in the 

exogenous attention condition as well, this difference was not significant (t(5)=2.361, 

p=0.065).  

4.4. Discussion 

The visual system is overwhelmed by an enormous amount of information 

coming through the retina. Since the computing resources available to the brain are 

limited, they must be used efficiently. Spatial attention comes into play to achieve this 

feat by selecting a relevant subset of information and filtering out or suppressing the rest. 

In other words, it controls the quality and quantity of information transfer from sensory 

input to visual short-term memory (VSTM). Visual masking also plays an important role 

in the transfer of information from sensory memory to VSTM. In fact, many studies on 

VSTM have used visual masks to control the information available to the observer, and to 

isolate processes devoted only to VSTM. However, this approach neglects the possibility 

of interactions between masking and attention mechanisms. If the mechanisms 

underlying these two visual phenomena interact, the results of studies where both spatial 

pre-cues and visual masks are used, need re-interpretation.  

Earlier studies on masking and attention relations indeed showed significant 

interactions between the two (Di Lollo et al., 2000; Enns & Di Lollo, 1997; 
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Ramachandran & Cobb, 1995; Shelley-Tremblay & Mack, 1999; Smith et al., 2010; 

Smith & Wolfgang, 2004, 2007; Tata, 2002). In common-onset masking, where the target 

and mask onsets coincide but the mask outlasts the target, Enns and Di Lollo (1997) 

showed that attentional benefits due to a spatial pre-cue or reduced set-size strongly 

depend on mask duration. Similarly, by using metacontrast masks, Tata (2002) showed 

that increasing set size results in an SOA-dependent impairment of performance. 

However, most of these studies suffered from ceiling/floor effects and other 

methodological artefacts (see Discussion in Chapter 3). For instance, in Tata’s 

experiments, there was essentially no masking at all for set size one; percentage of 

correct responses as a function of SOA formed a flat line at around 95%. However, for 

larger set sizes, they found strong masking effects, and therefore, this led the author to 

conclude that attention and metacontrast masking interact.   

 Evidence from recent studies where these artefacts were avoided, suggests that 

mechanisms underlying common-onset masking and attention are indeed independent 

(Argyropoulos et al., 2013; Filmer et al., 2014, 2015; Pilling et al., 2014). Here, we 

sought to determine whether the same relationship holds for metacontrast masking and 

attention. In Chapter 3, we varied the set size and SOA to control the attentional load and 

masking strength, respectively. There are two caveats with this methodology. First, the 

temporal dynamics of attention and mask interactions cannot be examined by solely 

manipulating set size. Second, since which one of the oriented bars is the target was 

unknown to the observers in the beginning of each trial, they had to attend to the entire 

display. Moreover, the target bar was indicated by the onset of a mask. Therefore, the 

task employed both endogenous and exogenous attention. Differential contributions from 



107 
 

endogenous and exogenous attention mechanisms might have obscured a potential 

interaction between metacontrast masking and attention in Chapter 3. Here, we 

investigated the relationship between metacontrast masking and these two different types 

of attention separately by using spatial pre-cues. The task of the observers was again to 

report the orientation of the cued bar. We kept the set size fixed, and varied the CTOA 

between the pre-cue and the target array and the SOA between the target and mask 

arrays. We found that for both attention types, the mean absolute errors are affected by 

CTOA equally at all SOA values. In other words, masking functions underwent vertical 

shifts with changes in CTOA, indicating that metacontrast masking and attention arise 

from independent processes. Interestingly, when we further examined the distribution of 

signed response errors, we found interactions for some of the observers: Two (three) out 

of six observers in the endogenous (exogenous) attention condition showed significant 

interactions between CTOA and the guess rate (i.e., the weight of the Uniform 

distribution). Taken together, these results suggest that although there might be weak 

interactions between metacontrast masking and attention mechanisms, any joint effect of 

the two can be well estimated by independent and additive processes. 

4.4.1. Implications for Models of Attention 

Next, we will discuss whether and how our results can be explained by two 

prominent models of attention in the literature, namely the Perceptual Template Model 

(PTM) developed by Lu and Dosher (1998), and the Integrated System Model (ISM) 

developed by Smith and colleagues (Smith & Wolfgang, 2004 – early version, no explicit 

VSTM layer; Smith & Ratcliff, 2009 – VSTM stage is added; Smith et al., 2010 – final 

version). These models are selected since they also address visual masking and its 
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proposed interactions with attention. In short, PTM can distinguish three attention 

mechanisms that have distinct signatures on behavioral improvements in perceptual tasks. 

According to PTM, attention enhances visual stimuli, removes external noise, and 

reduces multiplicative internal noise. These mechanisms can work in tandem or 

separately depending on the stimulus configuration and the amount of noise in the 

stimuli. ISM assumes that attention affects the rate of information transfer from sensory 

memory to VSTM (Carrasco & McElree, 2001). Masks either truncate sensory 

information prematurely, before it is fully transferred to VSTM, or add noise to the 

stimulus, which in turn, slows down the rate at which encoded stimulus information 

becomes available for later stages of processing (Smith et al., 2010). Moreover, ISM also 

assumes that masking and attention mechanisms interact, and hence, predicts larger 

attentional benefits when a stimulus is masked compared to when it is unmasked. 

Likewise, the stronger the masking is, the larger the attentional effects will be (see 

Sections 1.5 and 1.6 for a detailed review of these models). 

One way masking and attention are related in PTM is that the mask adds noise 

through temporal integration at the stage of the perceptual template, where stimulus 

enhancement mechanism of attention also operates. Moreover, in a series of studies, 

Dosher and Lu showed that external noise exclusion is the mechanism underlying 

endogenous attention effects whereas both external noise exclusion and stimulus 

enhancement are in play when exogenous attention operates (Dosher & Lu, 2000a, 

2000b; Lu & Dosher, 1998, 2000).  Therefore, PTM predicts that the amount of external 

noise added due to the mask will decrease with increasing SOA, hence a Type-A masking 

function. PTM further predicts that the effect of attention should be large when external 
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noise is large compared to the signal. Hence, it predicts that the effect of attention should 

be largest at SOA=0 and should decrease with increasing SOA. These predictions clearly 

do not hold for our findings. We obtained Type-B masking functions with an increasing, 

rather than decreasing masking effects as SOA increases from zero. Furthermore, we 

found that the effect of both endogenous and exogenous pre-cues, measured by mean 

absolute errors in orientation judgments, is virtually the same across all SOAs. Based on 

Type-B shape of masking functions, one could speculate that, by some unspecified 

mechanism, the metacontrast mask adds external noise in an SOA-dependent manner, 

i.e., less noise at very short and long SOAs and more noise at intermediate SOAs where 

masking is strongest. According to this scenario, an increase in CTOA should lead to 

larger drops in performance at intermediate SOAs compared to short and long SOAs. 

This is equivalent to a statistical interaction between SOA2 and CTOA. Although changes 

in masking functions with CTOA are not in line with this assumption, we found such 

interactions in statistical models of response errors. Revealed by statistical modeling of 

the distribution of signed response-errors, rather than just the mean absolute errors, the 

interaction between SOA2 and CTOA was evident in the frequency of random guessing 

behavior for two observers in the endogenous attention condition, and for three observers 

in the exogenous attention condition. In sum, although the underlying neurophysiological 

mechanism is unspecified at this time, our finding that there might be modest interactions 

between metacontrast masking and attention can be explained from PTM. 

ISM makes predictions similar to those of PTM. However, as mentioned before, 

ISM directly incorporates interacting masking and attention mechanisms. For instance, it 

predicts that there will be no effect of attention in the absence of masks. However, our 
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baseline data, which correspond to no mask conditions (see Figure 4-3C), show clear 

effects of attention and we did not find strong evidence in favor of interactions between 

attention and masking: our masking data showed modest interactions only in the 

distribution of responses but not in mean performance.   

4.4.2. Implications for Masking Models 

Attention has facilitative and inhibitory effects in almost all perceptual tasks 

(Posner, 1980; Smith et al., 2004). However, many early models of visual masking do not 

address the effects of attention on masking, and mostly assume that attention and 

masking are independent processes (e.g., Bachmann, 1984; Breitmeyer & Ganz, 1976; 

Ogmen, 1993). These models can be extended straightforwardly to include attention as an 

add-on process, which adds to the masking strength or reduces it. Michaels and Turvey’s 

model (1979) included attention as an independent process, which modulates spatial 

inhibitory projections.  

At least one theory of visual masking puts more weight on attention (Di Lollo et 

al., 2000; Enns & Di Lollo, 1997). In a common onset masking paradigm, Enns and Di 

Lollo (1997) showed that four-dot masks can produce strong masking when the stimuli 

were viewed peripherally and when attention was diffused to more than one spatial 

location. Enns and Di Lollo interpreted these effects as a result of higher-level processes 

of object substitution. In summary, interaction between attention and masking is an 

essential ingredient of the object substitution theory. This prediction was supported by 

significant interactions found in their study (Di Lollo et al., 2000; Enns & Di Lollo, 

1997). However, more recent evidence shows that their results suffered from ceiling/floor 

artifacts, and that masking and attention do not interact (Argyropoulos et al., 2013; 
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Filmer et al., 2014; Pilling et al., 2014). Another strong contradiction to the object 

substitution theory comes from a study by Filmer, Mattingley, and Dux (2015). They 

found strong masking effects for attended and foveated targets. Consistent with these 

recent reports, here showed that metacontrast masking and attention weakly interact but 

they can be treated as independent additive processes since this interaction was not 

apparent in the average performance. 

According to the dual-channel models of masking, each stimulus generates a fast 

transient and a slow sustained activity in separate pathways (channels) (e.g., Breitmeyer 

& Ogmen, 2006). Visual masking can be explained by inter-channel and/or intra-channel 

inhibition depending on the stimulus configuration and relative strengths of target and 

mask.  In the context of PTM, inhibition of the target activity due to a mask can be 

considered as an attenuation after target signal is filtered by the perceptual template, or an 

increase in the internal additive noise. In other words, rather than adding external noise, 

metacontrast masking might be operating at the same stage as signal enhancement 

mechanism of attention. Equivalently, both processes might be modulating the internal 

additive noise independently. If this assumption holds (i.e., mask does not add external 

noise but modulate internal additive noise), then the primary attention mechanism at play 

should be signal enhancement. Our results that attention increases target SNR whereas 

metacontrast reduces it independently are consistent with this line of reasoning. To be 

more specific, these findings suggest that metacontrast masking and signal enhancement 

mechanism of attention do not interact.  

It would be interesting to see whether this finding holds for the cases where there 

is high external noise in the stimuli. For example, noise plus metacontrast masks (i.e., 
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compound masks) can be used in conjunction with spatial cues to test whether masking 

and external noise exclusion mechanism of attention also do not interact. 
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Chapter 5. Summary and Conclusions 

A stimulus (mask) reduces the visibility of another stimulus (target) when they are 

presented in close spatio-temporal vicinity of each other, a phenomenon called visual 

masking. Visual masking has been extensively studied to understand dynamics of 

information processing in the visual system. Another process known to modulate 

information processing and transfer within the visual system is visual spatial attention. 

Since both visual masking and visual attention control the transfer of information from 

sensory memory to VSTM, a natural question is whether these processes interact or 

operate independently. From a theoretical point of view, determining whether these two 

processes interact or not can contribute to our understanding of how information is 

transferred from sensory memory to VSTM. From an empirical point of view, this 

understanding is especially important when one wants to compare findings from different 

studies of VSTM, which employ different types of masks or masks with different 

strengths. If, indeed, masking and attention interact, reconciliation or comparison of 

findings across different studies will require one to take into account the interaction 

effects. 

Many models have been proposed to explain masking and attention, however, 

very few of them addresses the relation between the two. Throughout this dissertation, we 

aimed to first use a statistical modeling technique to assess the distribution of behavioral 

responses when a target stimulus is masked, and then we sought to determine whether 

and how masking and attention interact based on this approach.  
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In Chapter 2, we adopted a statistical point of view, rather than a mechanistic one, 

to investigate how mask-related activities might influence target-related ones within the 

context of visual masking. We modeled the distribution of response errors of human 

observers in three different visual masking paradigms, namely para-/meta-contrast 

masking, pattern masking by noise, and pattern masking by structure. We adopted 

statistical models, which have been used previously in studies of visual short-term 

memory, to capture response characteristics of observers under masking conditions. We 

tested the following hypotheses (see Specific Aims). Hypothesis 1: Mask activity may 

“interfere” with the encoding of a target and cause decreased precision in observers’ 

reports. Hypothesis 2: Mask activity may reduce a target’s signal-to-noise ratio (SNR) 

without interfering with its encoding precision. Hypothesis 3: Decreased performance 

due to masking may result from the confusion or “misbinding” of a mask’s features with 

those of the target, when they are similar as in the case of pattern masking by structure. 

Among these three hypotheses, our results clearly reject the third hypothesis. Although 

the evidence from statistical modeling speaks against the second hypothesis, we cannot 

still reject it due to significant correlations between encoding precision and masking 

strength. In addition, we found strong support for the second hypothesis. More 

specifically, our results show that, in all three types of masking, the reduction of a 

target’s SNR (indicated by the increase in guess-rate) was the primary process whereby 

masking occurred. A significant decrease, which was correlated with masking strength, in 

the precision of the target’s encoding was observed in para-/meta-contrast and pattern 

masking by structure, but not in pattern masking by noise. We interpret these findings as 

the mask reducing the target’s SNR (i) by suppressing or interrupting the signal of the 
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target in para-/meta-contrast, (ii) by increasing noise in pattern masking by noise, and 

(iii) by a combination of the two in pattern masking by structure. 

Recent evidence on the relation between masking and attention suggests that 

studies that reported strong interactions between these two processes suffered from 

ceiling and/or floor effects. The objective of Chapter 3 and Chapter 4 was to investigate 

whether metacontrast masking and attention interact by using an experimental design in 

which saturation effects are avoided. In Chapter 3, we tested the following hypothesis. 

Hypothesis 4: Attention and metacontrast masking are independent processes. We asked 

observers to report the orientation of a target bar randomly selected from a display 

containing either 2 or 6 bars. The mask was a ring that surrounded the target bar. 

Attentional load was controlled by set-size and masking strength by the stimulus onset 

asynchrony between the target bar and the mask ring. We investigated interactions 

between masking and attention by analyzing two different aspects of performance: (i) the 

mean absolute response-errors and (ii) the distribution of signed response-errors. In 

contrast to previous studies, our results do not reject the null hypothesis (i.e., Hypothesis 

4), and show that attention affects observers’ performance without interacting with 

masking. Statistical modeling of response errors suggests that attention and metacontrast 

masking exert their effects by independently modulating the probability of “guessing” 

behavior.  

Modulating attentional load via varying set size may engage both the voluntary 

(endogenous) and reflexive (exogenous) mechanisms of attention. In Chapter 4, we used 

spatial pre-cues to test whether or not there is a significant interaction between masking 

and endogenous (Hypothesis 5) or exogenous (Hypothesis 6) attention. Observers were 
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asked to report the orientation of a bar, which was cued by either a central cue (i.e., an 

arrow) or a peripheral one (i.e., a small square in the vicinity of the target location). We 

manipulated the temporal distance between the cue onset and target-array onset (CTOA) 

to investigate mask-attention relations over time. As expected, the effect of attention was 

apparent at different CTOAs for endogenous and exogenous attention. However, our 

results show that endogenous and exogenous attention cannot be dissociated solely based 

on mean absolute errors or distribution of signed response-errors. Moreover, our results 

accept the null hypotheses expressed above, and once again suggest that metacontrast 

masking and attention do not interact at the level of mean absolute response errors.  

Overall, these results add to the growing body of evidence that metacontrast 

masking and attention do not interact, at least in a way that it would require re-

interpretation of studies that employed various types of masks and spatial cues. In other 

words, metacontrast masking and attention can be safely considered as mostly 

independent processes, and their joint effects can be well estimated by a simple addition 

of their individual effects on a perceptual task. Nevertheless, both visual masking and 

attention are not unitary processes. For instance, masking of surface properties is 

different from masking of contour properties. Further, the same level of reduction in 

visibility can be obtained through completely different neural mechanisms under different 

stimuli configurations and tasks. Similarly, computational, psychophysical, and 

neuroimaging studies show that attentional effects might stem from distinct mechanisms 

depending on the task demands and spatiotemporal properties of the stimuli. Therefore, it 

is necessary to determine the relationship between masking and attention in different 

contexts and criterion contents, and with various tasks. 
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Chapter 6. Future Directions 

Visual masking and attention are not unitary phenomena. Their effects depend on 

various spatiotemporal parameters of the stimuli as well as on cognitive requirements of 

the task. Early studies showed significant interactions between two types of masking 

(common-onset masking and metacontrast masking) and attention. However, most of 

these studies suffered from ceiling/floor artefacts. Recent studies on common-onset 

masking revealed the absence of interaction between masking and attention. In this 

dissertation, we showed that the same is true for metacontrast masking and attention. 

However, it remains to be established whether this relationship holds for other masking 

types and attention. Feature-based and object-based attentional benefits are also well 

established. The underlying mechanisms of these processes differ at least partially from 

those of spatial attention. Therefore, how masking and feature-based or object-based 

attention interact also need to be investigated. 

Earlier studies, which showed significant interactions between attention and 

masking employed either simple detection tasks or easy discrimination tasks. However, 

in all experiments in this dissertation, the task was to report the orientation of a target bar 

as accurately as possible (with steps of 1 degree of angle). This can be categorized as a 

difficult discrimination task. The effects of attention and masking are known to depend 

on task difficulty. Simple detection tasks for instance are limited by luminance contrast 

whereas fine-grained discrimination tasks require information about multiple attributes of 

the stimuli since it depends on stimulus similarity. It is well known that the 

magnocellular pathway and its associated transient mechanisms have very different 
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contrast responses compared to parvocellular pathway and its associated sustained 

mechanisms (Croner & Kaplan, 1995; Kaplan & Shapley, 1986). Simple detection and 

easy discrimination tasks can be carried out by both transient and sustained mechanisms, 

whereas difficult fine-discrimination tasks are likely to necessitate sustained mechanisms. 

Therefore, it would be informative to see if interaction between masking and attention 

depends on task requirements. Recognition based on conjunction of multiple features in 

the presence of masks needs to be investigated under different levels of task difficulty, 

(i.e., by modulating the number of features required to uniquely describe the target item) 

with and without deploying attentional resources on the locus of the target location. 

The current models of attention, which also address its relation to masking, 

inherently assume that there are strong interactions between these two processes. In light 

of the evidence presented here and recent studies on common-onset masking, these 

models need revisions. It would be interesting to investigate whether and how these 

models (e.g., PTM by Dosher, Lu, and colleagues, and ISM by Smith and colleagues) can 

be updated to accommodate these recent findings.  

Models of visual masking have mostly remained agnostic as to how attention and 

masking work in tandem. However, this does not necessarily mean that these models 

argue against any potential modulation of masking effect by attention. Attention can be 

added as an add-on process to most of these models. In fact, Michaels and Turvey’s 

model employs attention as an independent add-on process. One of the most 

comprehensive and detailed model of masking is the dual-channel model (Breitmeyer & 

Ganz, 1976; Ogmen, 1993). This model is based on empirical findings on characteristics 

of different types of cells in the retina and throughout the visual pathways. Since our 
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results suggest that masking and attention mostly do not interact, it would be interesting 

to see how attention can be added to this neural network model of masking. Depending 

on which level(s) of processing in the visual processing hierarchy attention can modulate, 

the dual-channel model predicts different outcomes. For instance, if attention modulates 

only the sustained channel (or the transient channel), its effect will be different for 

backward and forward masking. From this point of view, attention might be interacting 

with forward masking but not backward masking. These points need further 

experimentation and quantitative modeling. 

Finally, neuroimaging studies are needed to determine whether the lack of 

interaction between masking and attention is also evident in the functionally active 

networks in the brain. It might be that attention and masking might arise from completely 

independent or overlapping networks. In the latter case, careful analysis of single cell 

recordings or event-related potentials to delineate the temporal dynamics of mask-

attention relations within a particular cortical region, would be much needed. For 

instance, attention is shown to sharpen the orientation tuning and increase contrast gain of 

some cortical cells. By measuring firing rates as a function of time while manipulating 

attention by spatial cues and modulating mask strength, one can distinguish the effects of 

masking and attention, and whether their effects interact at the neural level, or not. 
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Appendices 

Appendix A 

Here we demonstrate the robustness of our results by employing another model 

fitting approach and model comparison metric. We fitted each model by using the LMS 

technique, which minimizes the squared sum of errors between the model prediction and 

the actual data. We, then, evaluated the performance of each model by using adjusted R2 

coefficients. Adjusted R2 is a standard unbiased model selection criterion and takes the 

number of parameters and the number of samples into account so that models with 

varying number of parameters can be pitted against each other (Ebbeler, 1975 review: 

Hocking, 1976). Calculation of adjusted R2 in terms of coefficient of determination (R2) 

is given in Equation (A-1). 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑  𝑅!   = 1− 1− 𝑅! !!!
!!!!!

    ,                                 (A-1)     

where n is the sample size (100 trials per SOA) and p is the number of parameters in the 

model.  

Due to circular nature of the error values (-90 to 90 deg), using a wrapped 

Gaussian (von Mises distribution) function is more appropriate than using a standard 

Gaussian function. However, when the standard deviation of the Gaussian is small, the 

difference between single and wrapped Gaussians is negligible (Shooner, Tripathy, 

Bedell, & Ogmen, 2010). The Probability density function of a wrapped Gaussian in the 

context of this study can be expressed as 
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𝑓 𝜀, 𝜇,𝜎 = !
!

exp !(!!!!!!"#)
!

!!!

!

!!!!
,                                      (A-2) 

where ε is response error, μ and σ are mean and standard deviation of a standard 

Gaussian, k represents the number of wrappings, and 𝛾  is a normalization factor. When 

k=0, Equation (A-2) becomes equivalent to a standard Gaussian. The operation described 

by Equation (A-2) is nothing but adding shifted Gaussians centered on multiples of ±180 

deg and normalizing such that area under the curve within ±90 deg error values summed 

to unity. We picked two different wrappings (k=0: standard Gaussian and k=10) to test if 

wrappings have any effect on adjusted R2. 

Given that the optimization algorithm can be trapped in a local minimum due to 

multi-dimensionality of the parameter space (2-, 3-, and 6-dimensional for the G, GU, 

and Misbinding models, respectively), we ran the model simulations 200 times for each 

number of wrappings with randomly chosen initial parameters. We picked the optimum 

parameters, which resulted in the largest adjusted R2 coefficients, because the larger the 

adjusted R2 coefficients are, the better the model performs. 

After determining the best model based on adjusted R2 metric, we quantified the 

correlation between the model parameters (mean and standard deviation of the Gaussian 

term, the weight of the Uniform component) and the masking strengths by calculating 

Pearson R coefficients. A strong correlation between a parameter and the masking 

strength would suggest a critical role for this parameter for explaining how masking 

occurs.  
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Para- /Meta-contrast Masking 

The GU model performs better than the G model according to adjusted R2 values 

(Figure A-1), consistent with model selection by using BMC. The mean of the Gaussian, 

which represents bias in orientation judgments, if any, shows no systematic pattern of 

change as a function of SOA as revealed by a one-way ANOVA (F(11,44)=0.914, 

p=0.536, ηp
2=0.186) (Figure A-2A). However, the standard deviation of the Gaussian in 

the GU model increases as SOA values approach 50ms (where masking is most effective) 

and then decreases to a plateau (Figure A-2B). A one-way ANOVA confirms a 

significant effect of SOA on standard deviation (F(11,44)=4.056, p<0.001, ηp
2=0.504). 

Last but not the least, the weight of the uniform distribution shows significant change 

with SOA: F(11,44)=13.601, p<0.001, ηp
2=0.773) (Figure A-2C). Visual comparison of 

model coefficients (Figure A-2A - A-2C) with masking strengths (Figure A-2D) reveals 

that the mean of the Gaussian term does not correlate with masking strength but the 

standard deviation of the Gaussian term and the weight of the Uniform term do, the latter 

having stronger correlation than the former. Pearson’s R coefficients confirm these 

qualitative observations. Figure A-2E depicts Pearson’s R coefficients averaged across 

observers for each model parameter. R coefficients for mean did not reach significance 

(t(4)=0.310, p=0.772) whereas those for standard deviation and weight were highly 

significant (standard deviation: t(4)=10.150, p<0.001; weight: t(4)=73.722, p<0.00001). 

Furthermore, the weight of the Uniform was more strongly correlated with the masking 

strength than the standard deviation of the Gaussian (paired t-test: t(4)=6.104, p=0.004). 
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Figure A-1 Adjusted R2 values obtained from G and GU models averaged across all observers. G 
represents the Gaussian model whereas GU stands for the Gaussian+Uniform model. Error 
bars in the average data represent ±SEM, n=5. 

 

 

Figure A-2 Parameters of the winning model (GU) for para-/meta-contrast masking. A) Mean of the 
Gaussian. B) Standard deviation of the Gaussian. C) Weight of the Uniform. D) Masking 
strengths. E) Correlations between model parameters and masking strengths.  
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Pattern Masking by Noise 

The GU model is the winning model also for pattern masking by noise as 

indicated by the adjusted R2 values (Figure A-3). Figure A-4 shows model parameters 

against SOA values. Means of the Gaussian in the GU model again neither show a 

systematic change with SOA (F(11,44)=0.615, p=0.806, ηp
2=0.133) nor significant 

correlation with masking strength (t(4)=1.111, p=0.329) (Figure A-4A, A-4D-E). 

Standard deviation of the Gaussian in the GU model shows changes that resemble the 

changes in the masking strength (Figure A-4B and A-4D) and there is indeed a relatively 

weak but significant quadratic trend (F(1,4)=8.805, p=0.041, ηp
2=0.688). However, only 

two of the five observers show this trend and a one-way ANOVA of standard deviation 

yielded no significant effect of SOA (F(11,44)=1.350, p=0.231, ηp
2=0.252).. More 

importantly, Pearson’s R did not differ significantly from zero (t(4)=1.968, p=0.121) 

indicating a rather poor correlation between changes in standard deviation and masking 

strength. In contrast, as with para-/meta-contrast masking, guess rate correlates strongly 

with the masking strength (Figure A-4C – A-4E): The stronger the effect, the higher the 

guess rate, reflected in the weight of the uniform component in the GU model (Figure A-

4C – A-4D). This SOA-dependent modulation is significant (F(11,44)=17.764, p<0.001, 

ηp
2=0.773). Correlation of the weights with the masking strength was also highly 

significant (t(4)=33.140, p<0.00001).  
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Figure A-3 Adjusted R2 values obtained from G and GU models averaged across all observers for pattern 
masking by noise.  G represents the Gaussian model whereas GU stands for the 
Gaussian+Uniform model. Error bars in the average data represent ±SEM, n=5.  

 

 

Figure A-4 Parameters of the winning model (GU) in pattern masking by noise. A) Means, and B) Standard 
deviations of the Gaussian. C) Weight of the Uniform. D) Masking strengths. E) Correlations 
between model parameters and masking strengths. Error bars represent ±SEM, n=5. 
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Pattern Masking by Structure 

Model performance is shown in Figure A-5. Once again, the GU model 

outperforms all other models. The mean and standard deviation of the Gaussian term and 

weight of the uniform distribution in the GU model are plotted against SOAs in Figure A-

6A – A-6C. Consistently, we observe neither any systematic change in the means with 

SOA (F(1,4)=0.930, p=0.521, ηp
2=0.189) nor strong correlation with the masking 

strength (Pearson’s R = -0.237±0.438), ruling out the possibility of any orientation bias 

and any relation to a masking effect. We found a significant effect of SOA on the 

standard deviation (F(1,4)=2.640, p=0.011, ηp
2=0.398). Finally, the weight of the uniform 

distribution also changed significantly with SOAs (F(1,4)=13.140, p<0.001, ηp
2=0.767). 

The changes in both the standard deviation and the weight of the uniform distribution 

with SOA correlate well with those of the masking strength (Figure A-6B – A-6E) 

(Pearson’s R for the standard deviation of the Gaussian = 0.584±0.062; for the weight of 

the Uniform = 0.923±0.062). However, it should be noted that a major factor in 

producing a masking effect is probably due to a reduction in SNR because the weights of 

the Uniform term more strictly follow the masking strengths (paired t-test between 

Pearson’s R for the standard deviation of the Gaussian term and the weight of the 

Uniform: t(4)=7.874, p=0.001). Therefore, these findings suggest that pattern masking by 

structure also occurs, from a statistical point of view, primarily due to the reduction of 

target SNR and only partly due to the interference of the target signal with the mask 

related activity.  
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In summary, regardless of whether we take the LMS+adjusted R2 or the MLE+BMC 

approach, the results are almost identical, confirming that our findings are robust and not 

prone to error due to limitations of the methodology used.  

 

Figure A-5 Adjusted R2 values obtained from G (Gaussian), GU (Gaussian+Uniform), GUCA (Misbinding 
– Closest Angle), and GUNN (Misbinding – Nearest Neighbor) models in pattern masking by 
structure. Error bars represent ±SEM, n=5. 
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Figure A-6 Parameters of the GU model in pattern masking by structure. A) Means, B) Standard deviations 
of the Gaussian. C) Weight of the Uniform distribution. D) Masking strengths.  E) Correlations 
between model parameters and masking strengths. Error bars represent ±SEM, n=5. 
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Appendix B 

Table B-I shows the results of the BMC analyses for the experiments in Chapter 

2. Individual BMC differences and corresponding Bayes factors are tabulated. 

Table B-I BMC differences of all models from G model and corresponding Bayes factors in all masking 
types and for each observer are tabulated. 

 

 

 

 

 

 

 

 

 

 

 

ΔBMC Bayes Factor ΔBMC Bayes Factor
Observer GU-G GU/G GU-G GU/G GU-G GUCA-G GUNN-G GU/G GUCA/G GUNN/G
SA 10.26 28684 1.39 4 9.02 6.16 5.54 8237 471 255
MNA 16.80 19681194 8.93 7523 14.19 11.13 10.63 1450658 68312 41168
FG 8.27 3909 4.88 132 8.08 5.26 4.55 3244 193 94
GJ 6.50 663 6.40 603 7.08 4.53 3.77 1190 93 43
MI 11.11 66838 10.24 27974 12.59 9.53 9.12 294355 13790 9096

Average 10.59 39633 6.37 583 10.19 7.32 6.72 26704 1514 827

Para-/Meta-contrast Masking Masking by Noise
ΔBMC Bayes Factor

Masking by Pattern
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Appendix C 

We analyzed whether the parameter estimates of mixture models are reliable with 

the size of our data set in all experiments. First, as discussed in Chapter 2, two different 

techniques arrived at similar results. Moreover, in order to assess the reliability of our 

results with the given data size, we conducted the following simulation studies: First, we 

synthesized data from a single Gaussian (using the same number of data points as in the 

empirical data) whose standard deviation changes as a function of different conditions (to 

simulate different SOAs in the experiments). We then fitted the G and GU models to the 

synthetic data and we analyzed the BMC differences.  We repeated this process (data 

generation and fitting) multiple times (N>100) and in all cases, model selection based on 

BMC differences successfully picked the G model as the winning model. An example is 

shown in Figure C-1. The leftmost panel shows the standard deviation of the Gaussian, 

that was used to generate the synthetic data (solid line) as well as the standard deviation 

of the Gaussian in the fitted GU model (markers). Right next to this, the weight of the 

uniform in the GU model is shown. There seems to be an overestimation of the weights at 

certain conditions (i.e., SOAs), however, this does not affect adversely the model 

selection process. In the third panel from left, actual and estimated standard deviations of 

the Gaussian in the G model are plotted. As expected they nicely match. Finally, in the 

rightmost panel, the BMC differences averaged across “synthetic subjects” (GU-G) are 

given. All points are below zero, indicating that the generated data is less likely to be 

drawn from a GU distribution.  
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 Figure C-1 Model fitting and model comparison by using synthetic data. See text for detailed explanations. 

 

 

Figure C-2 Model fitting and model comparison by using synthetic data generated from a GU model with 
varying standard deviation for the Gaussian term as a function of SOA, and a constant weight 
for the Uniform component. See text for details. 

 

Second, we synthesized data from a GU model with different weights of the 

Uniform component. We considered two different scenarios: (i) varying standard 
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deviation for the Gaussian term as a function of SOA, and a constant weight for the 

Uniform component (Figure C-2), (ii) a constant standard deviation for the Gaussian, and 

a varying weight for the Uniform (Figure C-3). We present two cases from each scenario 

to demonstrate that the usage of mixture models along with Bayesian model comparison 

techniques is warranted. The slight overestimation of the weight of the Uniform 

component at certain SOAs (depicted as “conditions” in the figures here) does not hinder 

selection of the correct source of the data at hand. In fact, whenever there is an 

overestimation, likelihood of the GU model dramatically decreases, as indicated by huge 

drops in BMC differences in the rightmost panels.  

 

Figure C-3 Model fitting and model comparison by using synthetic data generated from a GU model with a 
constant standard deviation for the Gaussian, and a varying weight for the Uniform. See text for 
details. 
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Appendix D 

Analysis of Baseline Data in the Set Size Experiment (Chapter 3) 

Although we did not control the stimulus parameters to avoid ceiling effects in the 

baseline conditions, we performed a series of regression analyses on observers’ 

performance in the baseline conditions using the models shown in Table 3-II. An ideal 

performance ceiling for the baseline conditions can be the performance with set size of 

one. However, we did not have this condition and hence, there might be ceiling effects 

for some of the observers, which could underestimate a potential effect of set size and 

SOA, and could give rise to spurious interaction effects. Table D-I summarizes the 

winning regression model for each observer. The fits of the winning models are shown by 

dashed lines in Figure 3-2 (the first column). In agreement with previous studies (Ogmen 

et al., 2013;Huyhn et al., in press), we found a main effect of set size for six of seven 

observers. In fact, the observer for which set size was not present in the best model (SOA 

and set size interaction alone was sufficient to fit data), was SA who is one of the authors 

and extremely trained on orientation judgment tasks. Therefore, failure to find an effect 

of set size for this observer might be due to the ceiling effect. Similarly, for five 

observers, a model with SOA term resulted in best fits. An effect of SOA in the baseline 

condition can be interpreted as (i) a memory effect, or (ii) a weak masking effect due to 

post-cue, or (iii) a combination of the two. Interestingly, for six observers, the best model 

included either or both of the interactions we investigated (i.e., SOA x set size or SOA2 x 

set size). However, BIC differences between models with and without interactions terms 

were small (±2), indicating that interaction terms did not add much to the quality of fits. 
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See Figure D-1 for BIC differences between all regression models in the baseline 

condition. 

Table D-I The best regression models for all observers in explaining the transformed performance. 

 
Best Regression Model 

Observer Baseline Masking 
AK M7 M16 

CBK M21 M16 
EK M9 M16 
FG M16 M16 
GQ M20 M16 

MNA M21 M16 
SA M4 M16 

Figure D-1 BIC differences between pairs of regression models listed in Table 3-II. Each panel represents 
a different observer. All notations are the same as in Figure  4-2. 

 



154 
 

Appendix E 

Here, we show the derivation of the BMC metric which was used to select the 

best performing model. Each model 𝑚! produces a predicted error distribution 

𝑝(𝜺|𝑚! ,𝜽), where 𝜺 is vector of observed response errors, and 𝜽 is a vector of model 

parameters. For each model 𝑚!, the likelihood of finding the observed errors averaged 

over model parameters is given by, 

𝐿 𝑚! ≜   𝑝 𝜺 𝑚! =    𝑝 𝜺 𝑚! ,𝜽 𝑝 𝜽 𝑚! 𝑑𝜽  ,                               (E-1) 

where 𝑝 𝜽 𝑚!  represents the prior distributions for model parameters. Assuming that 

each response error is independent, (E-1) can be re-written as, 

𝐿 𝑚! =      [ 𝑝 𝜀! 𝑚! ,𝜽 ]!
!!! 𝑝 𝜽 𝑚! 𝑑𝜽,                               (E-2) 

where N represents the number of trials, and 𝜀! represents the error in the ith trial. The 

maximum likelihood of a model within a parameter space is defined as, 

𝐿!"# 𝑚! =   max𝜽 𝐿 𝑚!|𝜽 .                                          (E-3) 

To ensure that the integrand is of order 1 and thereby, to avoid numerical problems 

(Ester, Zilber, & Serences, 2015; Mackay, 2004; van den Berg, Shin, et al., 2012), we 

multiple and divide (E-2) by (E-3) to get (E-4) given below. 

𝐿 𝑚! =      [ 𝑝 𝜀! 𝑚! ,𝜽 ]!
!!!

!!"# !!

!!"# !!
𝑝 𝜽 𝑚! 𝑑𝜽.                 (E-4) 

It is convenient to take the logarithm of (E-4). 

ln 𝐿 𝑚! = ln   [ 𝑝 𝜀! 𝑚! ,𝜽 ]!
!!!

!!"# !!

!!"# !!
𝑝 𝜽 𝑚! 𝑑𝜽 .                 (E-5) 
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Since 𝑥 = ln(𝑒!), (E-5) can be re-written as, 

ln 𝐿 𝑚! = ln exp  (ln  {[ 𝑝 𝜀! 𝑚! ,𝜽 ]!
!!!

!!"# !!

!!"# !!
})𝑝 𝜽 𝑚! 𝑑𝜽 .      (E-6) 

ln 𝐿 𝑚! = ln exp  [ln 𝐿 𝑚!|𝜽 + ln 𝐿!"# 𝑚! − ln 𝐿!"# 𝑚! ]  𝑝 𝜽 𝑚! 𝑑𝜽 , 

(E-7) 

where 𝐿 𝑚!|𝜽 = 𝑝 𝜀! 𝑚! ,𝜽!
!!! . Since 𝑒!!! = 𝑒!𝑒!!, (E-7) can be re-written as, 

ln 𝐿 𝑚! = ln exp  [ln 𝐿 𝑚!|𝜽 − ln 𝐿!"# 𝑚! ] exp[ln 𝐿!"# 𝑚! ]𝑝 𝜽 𝑚! 𝑑𝜽 . 

(E-8) 

Since exp ln 𝐿!"# 𝑚! =   𝐿!"# 𝑚! ,  and since 𝐿!"# 𝑚!  is independent of 𝜽, it can 

be taken out of the integral. 

ln 𝐿 𝑚! = ln 𝐿!"# 𝑚! exp  [ln 𝐿 𝑚!|𝜽 − ln 𝐿!"# 𝑚! ]𝑝 𝜽 𝑚! 𝑑𝜽 . 

(E-9)  

Since ln (xy) = ln (x) + ln (y), 

ln 𝐿 𝑚! = ln   𝐿!"# 𝑚! + ln exp  [ln 𝐿 𝑚!|𝜽 − ln 𝐿!"# 𝑚! ]𝑝 𝜽 𝑚! 𝑑𝜽 . 

(E-10) 

Since we do not have an a priori reason to do otherwise, we used uniform priors for all 

model parameters. In mathematical terms, this can be expressed as follows. 

𝑝 𝜽 𝑚! =    𝑈(𝜃!,!"#,𝜃!,!"#)!
!!! ,                          (E-11) 
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where U(a,b) represents a uniform distribution over the interval [a,b], k represents the 

number of free parameters in the model 𝑚!, and 𝜃!,!"# and 𝜃!,!"# represent the minimum 

and maximum boundaries for the tth free parameter. Since probability density function of 

a uniform random variable X ~U(a,b) is given by, 

 𝑓 𝑥 =
!
!
, 𝑥 ≤ 𝑏  𝑎𝑛𝑑  𝑥 ≥ 𝑎
0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

,                                         (E-12) 

where 𝑅 = 𝑏 − 𝑎 , represents the range of X, (E-11) can be re-written as 

 𝑝 𝜽 𝑚! =   
!
!!

!
!!! , [𝜃!,!"#,𝜃!,!"#]!

!!!

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
.                              (E-13) 

Substituting (E-13) to (E-10) yields,  

ln 𝐿 𝑚! = ln   𝐿!"# 𝑚! + ln exp  [ln 𝐿 𝑚!|𝜽 − ln 𝐿!"# 𝑚! ](
1
𝑅!
)

!

!!!

𝑑𝜽
!"#

, 

(E-14) 

ln 𝐿 𝑚! = ln   𝐿!"# 𝑚! + ln
1
𝑅!

!

!!!

exp  [ln 𝐿 𝑚!|𝜽 − ln 𝐿!"# 𝑚! ]𝑑𝜽
!"#

, 

(E-15) 

ln 𝐿 𝑚! = ln   𝐿!"# 𝑚! + ln
1
𝑅!

!

!!!

+ ln exp  [ln 𝐿 𝑚!|𝜽 − ln 𝐿!"# 𝑚! ]𝑑𝜽
!"#

, 

(E-16) 
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and, finally, 

ln 𝐿 𝑚! = ln   𝐿!"# 𝑚! − ln 𝑅!

!

!!!

+ ln exp  [ln 𝐿 𝑚!|𝜽 − ln 𝐿!"# 𝑚! ]𝑑𝜽
!"#

, 

(E-17) 

where the integral is taken over a volume defined by the ranges of free parameters.  

ln 𝐿 𝑚!  given in (E-17) was taken as the BMC metric throughout this dissertation. For 

each statistical model 𝑚!, we computed (E-17) and compared against each other. 

 

 


