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Abstract

Accelerators have been deployed on most major HPC systems. They are considered

to improve the performance of many applications. Accelerators such as GPUs have

an immense potential in terms of high compute capacity but programming these

devices is a challenge. OpenCL, CUDA and other vendor-specific models for acceler-

ator programming definitely offer high performance, but these are low-level models

that demand excellent programming skills; moreover, they are time consuming to

write and debug. In order to simplify GPU programming, several directive-based

programming models have been proposed, including HMPP, PGI accelerator model

and OpenACC. OpenACC has now become established as the de facto standard.

We evaluate and compare these models involving several scientific applications. To

study the implementation challenges and the principles and techniques of directive-

based models, we built an open source OpenACC compiler on top of a main stream

compiler framework (OpenUH as a branch of Open64). In this dissertation, we

present the required techniques to parallelize and optimize the applications ported

with OpenACC programming model. We apply both user-level optimizations in the

applications and compiler and runtime-driven optimizations. The compiler optimiza-

tion focuses on the parallelization of reduction operations inside nested parallel loops.

To fully utilize all GPU resources, we also extend the OpenACC model to support

multiple GPUs in a single node. Our application porting experience also revealed

the challenge of choosing good loop schedules. The default loop schedule chosen by

the compiler may not produce the best performance, so the user has to manually

try different loop schedules to improve the performance. To solve this issue, we
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developed a locality-aware auto-tuning framework which is based on the proposed

memory access cost model to help the compiler choose optimal loop schedules and

guide the user to choose appropriate loop schedules.
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Chapter 1

Introduction

1.1 Motivation

Recent years have seen a rise of massively-parallel supercomputing systems that

are based on heterogeneous architectures combining multi-core CPUs with General-

Purpose Graphic Processing Units (GPGPUs). While such systems offer a promising

performance with reasonable power consumption, programming accelerators in an

efficient manner is still a challenge. The existing low-level APIs such as CUDA and

OpenCL usually require users to be expert programmers and restructure the code

largely. Optimized kernels are written that are usually coupled with specific devices.

This leads to a less productive and more error prone software development process

that is challenging to be adopted by the rapidly growing HPC market.
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Recent approaches for programming accelerators include directive-based, high-

level programming models for accelerators. It allows the users to insert non-executable

pragmas and guide the compiler to handle low-level complexities of the system. The

major advantage of the directive-based approach is that it offers a high-level program-

ming abstraction thus simplifying the code maintenance and improving productivity.

As different directive-based programming models offer different feature sets, the

code portability therefore becomes a major issue. As a joint standardization between

CAPS, CRAY, PGI and NVIDIA, OpenACC was first released in November 2011,

which aims to provide a directive-based portable programming model for accelera-

tors. By using OpenACC, it allows the users to maintain a single code base that is

compatible with various compilers, while on the other hand, the code is also portable

across different possible types of platforms.

Our first attempt is to study the feasibility and applicability of these directive-

based models when they are applied to scientific applications consisting of varied

characteristics. These models allow programming without the need to explicitly

manage the data transfer between CPU and GPU, device start-up and shut-down to

name a few. We will explore three directive-based programming models, HMPP, PGI,

and OpenACC and assess the models using scientific applications. We compare and

contrast the performance achieved by these directives to that of the corresponding

hand-written CUDA version of the application. Besides these mainstream directive-

based models, there are some other research-based directive-based models including

hiCUDA [35], CUDA-lite [66], Mint [67], and OpenMPC [48], but the compiler im-

plementation for these models are not mature enough for evaluation.

2



Since OpenACC is a high-level directive-based model, the implementations of

this model usually translates it to a low-level model such as CUDA or OpenCL.

The low-level models like CUDA or OpenCL are language-based model, therefore it

is flexible for the user to apply any optimization they want. But this requires the

user to throughly understand the underlying architecture so that the applied opti-

mizations can utilize the architecture efficiently. The high-level model OpenACC is

directive-based, therefore it requires the compiler to apply those optimizations au-

tomatically. However, without enough information, the compiler is not able to do

the optimizations as well as the user who is an expert in both the ported application

and the architecture. Even though the compiler can apply some optimizations auto-

matically, it may not achieve the expected speedup as the compiler does not have a

full view of the whole application. Because of these reasons, the application ported

with OpenACC and CUDA usually have a performance gap. The goal of our work

is to apply both manual and automatic optimizations to optimize the performance

of OpenACC programs.

To understand OpenACC model throughly, we start to use it to port large appli-

cations. We chose the NAS Parallel Benchmarks (NPB) which is a well recognized

benchmark suite for evaluating current and emerging multi-core/many-core hardware

architectures. We present a set of optimization techniques to tune the application

performance. Besides those optimization techniques applied in the application level,

we also present the optimizations in compiler and runtime level. The optimizations

we focus on include the runtime library, reduction algorithm and multi-GPU. Fi-

nally, we focus on the loop scheduling auto-tuning optimization which aims to find

3



the optimal mapping from a nested loop to the GPU threads hierarchy.

1.2 Contributions and Dissertation Outline

In summary, to make the directive-based programming model for GPUs more mature

and broaden its impact in both academia and industry, several research issues are

addressed in this dissertation. Chapter 2 provides the background of the research

work in this dissertation. The contributions of this dissertation are as follows:

• In Chapter 3, we compare the features of different high-level directive-based

programming models for GPUs and the performance of applications using these

models.

• In Chapter 4, to understand the root cause of the performance of directive-

based model, we use NAS Parallel Benchmark (NPB) suite as example and

present a set of optimizations to tune the application performance. Most of

these optimizations are applied manually in the application level. We analyze

a number of choices and combinations of optimization techniques and study

their impact on application performance. We learn that poorly selected op-

tions or using system default options for optimizations may lead to significant

performance degradation. We also compare the performance of OpenACC NPB

with that of the well-tuned OpenCL and CUDA versions of the benchmarks to

present the reasoning behind the performance gap.

4



• In Chapter 5, we present the optimizations applied automatically in the com-

piler and runtime for OpenACC applications. We demonstrate how the runtime

tracks and manages all the data correctly and efficiently. We also propose and

demonstrate new compiler algorithms to parallelize the comprehensive reduc-

tion operations within three levels of parallelism. Our implementation covers

all possible reduction cases, reduction types and operand data types.

• In Chapter 6, we enable multi-GPU programming on single node by using two

approaches. First we explore and evaluate the OpenMP & OpenACC hybrid

model. Second, based on the disadvantages of the hybrid model approach,

we propose a set of new directives to extend the OpenACC model to support

multiple GPUs.

• In Chapter 7, we present a locality-aware auto-tuning framework for loop

scheduling that uses an analytical model to find the optimal loop schedule

which maps a nested loop to the GPU threads hierarchy. The framework ex-

tends the reuse distance model for GPU cache modeling.

In this dissertation, the related work is not in a separate chapter, it is discussed

in each chapter. Chapter 8 concludes this dissertation.
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Chapter 2

Background

In this chapter, we give the background of our research work. First, we give the

overview of the GPU architecture which is the platform our research based on. Sec-

ond, we give an overview of the directive-based programming models for GPUs,

including Hybrid Multicore Parallel Programming workbench (HMPP) [1], PGI ac-

celerator model [30] and OpenACC [10] which is the standard of high-level directive-

based programming model for accelerators. Third, since we use OpenMP & Ope-

nACC hybrid model in the multi-GPU research work, we also discuss the OpenMP

programming model which is the de facto standard of shared-memory system pro-

gramming.

6



Figure 2.1: Nvidia Kepler GPU archi-
tecture1

Figure 2.2: GPU threads hierarchy

2.1 Overview of GPU Architecture

GPU architectures differ significantly from that of traditional processors. We illus-

trate this using Nvidia Kepler GPU which is shown in Figure 2.1. Employing a Single

Instruction Multiple Threads (SIMT) architecture, NVIDIA GPUs have hundreds of

cores that can process thousands of software threads simultaneously. GPUs organize

both hardware cores and software threads into two-level of parallelism. Hardware

cores are organized into an array of Streaming Multiprocessors (SMs), each SM con-

sisting of a number of cores named as Scalar Processors (SPs). An execution of a

computational kernel, e.g. CUDA kernel, will launch a (software) thread grid. As

shown in Figure 2.2, a grid consists of multiple thread blocks whose shape could

be 1D, 2D, or 3D. And each thread block consists of multiple threads whose shape

could also be 1D, 2D, or 3D. The GPU is connected to the CPU by a PCI-E bus.

We also refer host to CPU and device to GPU. Since the host and the device are

1https://www.pgroup.com/lit/articles/insider/v2n1a5.htm
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separate, in the GPU execution model, the CPU needs to first move the input data

from CPU to GPU, then perform the computation within GPU, finally move the

output result back to CPU. When CPU moves data to GPU, it can only move to the

GPU DRAM as it is the only memory that can communicate with CPU. DRAM is

the largest (usually GB) but also the slowest memory in GPU. Like CPU, GPU also

has caches. Each SM has its own L1 cache (e.g. 16KB) and shared memory (e.g.

48KB) which are only accessible for the threads in this SM. All SMs share a unified

L2 cache (e.g. 1.5MB). The shared memory is a user programmable cache while L1

and L2 are cached automatically by the GPU system. Each GPU thread has its own

registers.

For programmers, the challenges to efficiently utilize the massive parallel capabil-

ities of GPUs are to map the algorithms onto thread hierarchy, and to lay out data on

both the global memory and shared memory to maximize coalesced memory access

for the threads. Using low-level programming models such as CUDA and OpenCL

to do this has been known as not only time consuming but also the software created

are not identical to its original algorithms significantly decreasing code readability.

8



Table 2.1: Major features comparison among different models

Features OpenACC HMPP PGI

Data

memory
allocation

acc malloc allocate acc malloc

memory free acc free release acc free

data
movement

copyin
copyout

copy

args[*].io=
in,out,inout

copyin
copyout

copy

synchronization
update device
update host

advancedload
delegatedstore

update device
update host

Computation

kernels
offloading

parallel
kernels

codelet&callsite region

loop
scheduling

gang
worker
vector

gridify
parallel
vector

loop
optimization

collapse
tile

auto

permute
distribute
fuse,unroll

jam,tile

unroll

2.2 Overview of High-level Directive-based Pro-

gramming Models

In this section, we provide details about three directive-based models that are being

evaluated in this dissertation. The major features among these models are summa-

rized in Table 2.1.

2.2.1 Hybrid Multicore Parallel Programming workbench

(HMPP)

HMPP is a directive-based programming model used to build parallel applications

running on manycore systems. It is a source-to-source compiler that can trans-

late directive-associated functions or code portions into CUDA or OpenCL kernels.
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In HMPP, the two most important concepts are “codelet” and “callsite” [1]. The

“codelet” concept represents the function that will be offloaded to the accelerator,

and “callsite” is the place to call the “codelet”. It is the programmer’s responsibility

to annotate the code by identifying the codelets and inform the compiler about the

codelets and where to call the same. In the steps of compilation, the annotated

code is parsed by the HMPP preprocessor to extract the codelets and to translate

the directives into runtime calls. The preprocessed code is then compiled and linked

to HMPP runtime with a general-purpose host compiler. If the accelerator is not

found or not available, the program execution can fall back to the original sequential

version. HMPP also supports the “region” directive which only offloads part of a

function into the accelerator and the “region” is a merge of codelet/callsite direc-

tives. The main issue with programming accelerators is the data transfer between

the accelerator and the host. HMPP offers many data transfer policies as part of

the optimization strategies. The user can manually control the data transfer, i.e.

transfer the data every time the codelet is called or transfer the data only during

the first time when the codelet is called. It can also be automatically decided by the

compiler.

HMPP also provides a set of directives to improve the performance by enhancing

the code generation. In the codelet, the user can put the read-only data into constant

memory, preload the frequently-used data into shared memory, or explicitly specify

the grid size in NVIDIA architecture. If the loop is so complex that the compiler is

not able to parse, the user can give some hints to the compiler that all iterations in

the loop are independent.

10



2.2.2 PGI Accelerator Model

PGI accelerator programming model contains a set of directives, runtime-library rou-

tines and environment variables [30]. The directives include data directives, compute

directives and loop directives. The compute directive specifies a portion of the pro-

gram to be offloaded to the accelerator. There is an implicit data region surrounding

the compute region, which means data will be transferred from the host to the accel-

erator before the compute region and be transferred back from the accelerator to the

host at the exit of compute region. Data directives allow the programmer to manu-

ally control where to transfer the data other than the boundaries of compute region.

The loop directives enable the programmer to control how to map loop parallelism

in a fine-grained manner. The user can add these directives incrementally so that

the original code structure is preserved. The compiler maps loop parallelism onto

the hardware parallelism using the planner [71]. PGI optimizes the data transfer

by “data region” directive and its clauses and be able to remove unnecessary data

copies. Using the loop scheduling directive, the user can add the data in the high-

est level of the data cache by using “cache” clause and this helps in improving the

data-access speed.

2.2.3 OpenACC Programming Model

OpenACC is an emerging GPU-based programming model that is working towards

establishing a standard in directive-based accelerator programming. As a joint stan-

dardization between CAPS, CRAY, PGI, and NVIDIA, OpenACC was first released
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in November 2011, which aims to provide a directive-based portable programming

model for accelerators. By using OpenACC, it allows the users to maintain a single

code base that is compatible with various compilers, while on the other hand, the

code is also portable across different possible types of platforms.

OpenACC is based on the use of pragmas or directives that allow the application

developers to mark regions of code for acceleration in a vendor-neutral manner. It

builds on top of prior efforts by several vendors (notably PGI and CAPS Enter-

prise) to provide parallel-programming interface for heterogeneous systems, with a

particular emphasis on platforms that are comprised of multicore processors as well

as GPUs. Among others, OpenACC is intended for use on the nodes of large-scale

platforms such as the Titan system at ORNL, where CPUs and NVIDIA GPUs are

used in concert to solve some of the nations most urgent scientific problems.

The OpenACC model is based on the PGI model, hence the former inherits most

of the concepts from the latter. However some of the differences are: unlike PGI’s

single “region” compute directive, OpenACC offers two types of compute directives

“parallel” and “kernels”. The directive “kernels” is similar to PGI’s “region” that

surrounds the loops to execute on the accelerator device. With the “parallel” direc-

tive, however, if there is any loop inside the following code block and the user does

not specify any loop scheduling technique, all the threads will execute the full loop.

OpenACC supports three levels parallelism: gang, worker and vector, while PGI only

defines two levels of parallelism: parallel and vector. Both OpenACC and PGI mod-

els allow the compute region to use the “async” clause to execute asynchronously

with the host computation and the user can synchronize these asynchronous activities
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with the “wait” directive. They also have a similar set of runtime library routines,

including getting the total number of accelerators available, getting & setting the

device type and number, checking & synchronizing the asynchronous activities and

starting up & shutting down the accelerator. Unlike PGI, OpenACC can allocate

and free a part of accelerator memory using acc malloc()and acc free() functions.

The OpenACC feature set includes pragmas, or directives, that can be used in

conjunction with C, C++, and Fortran code to program accelerator boards. Ope-

nACC can work with OpenMP to provide a portable programming interface that

addresses the parallelism in a shared memory multicore system as well as acceler-

ators. A key element of the interface is the parallel construct that launches gangs

that will execute in parallel. Each of the gangs may support multiple workers that

execute vector or SIMD constructs. A variety of clauses are provided that enables

conditional execution, controls the number of threads, specifies the scope of the data

accessed in the accelerator parallel region, and determines if the host CPU should

wait for the region to complete before proceeding with other work.

Suitable placement of data and careful management of required data transfer

between host and accelerator is critical for application performance on the emerging

heterogeneous platforms. Accordingly, there are a variety of features in OpenACC

that enables the application developer to allocate data and determine whether data

needs to be transferred between the configured devices. The features also enable

control this transfer, including the values to be updated on the host/accelerator by

copying current data values on the accelerator/host, respectively. These features are

complemented by a set of library routines to obtain device information or set device
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types, test for completion of asynchronous activities, as well as a few environment

variables to identify the devices that will be used.

OpenACC standard gives great flexibility to the compiler implementation. For

instance, different compilers can have different interpretation of OpenACC three level

parallelisms: coarse grain parallelism “gang”, fine grain parallelism “worker”, and

vector parallelism “vector”. On an NVIDIA GPU, PGI maps each gang to a thread

block, and vector to threads in a block and it just ignores worker; CAPS maps gang

to the x-dimension of a grid block, worker to the y-dimension of a thread block, and

vector to the x-dimension of a thread block; Cray maps each gang to a thread block,

worker to warp, and vector to SIMT group of threads.

2.2.4 OpenMP Programming Model

OpenMP is a high-level directive-based programming model for shared memory

multi-core platforms. The model consists of a set of directives, runtime library

routines, and environment variables. The user just needs to simply insert the di-

rectives into the existing sequential code, with minor changes or no changes to the

code. OpenMP adopts the fork-join model. The model begins with an initial main

thread, then a team of threads will be forked when the program encounters a par-

allel construct, and all other threads will join the main thread at the end of the

parallel construct. In the parallel region, each thread has its own private variables

and does the work on its own piece of data. The communication between different
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threads is performed via shared variables. In the case of a data race condition, differ-

ent threads will update the shared variable atomically. Starting from 3.0, OpenMP

introduced task concept [17] that can effectively express and solve the irregular par-

allelism problems such as unbounded loops and recursive algorithms. To make the

task implementation efficient, the runtime needs to consider the task creation, task

scheduling, task switching, and task synchronization, etc. OpenMP 4.0 released in

2013 includes support for accelerators.

2.3 Overview of Low-level Language-based Pro-

gramming Models

2.3.1 CUDA

CUDA, which stands for Compute Unified Device Architecture, is a parallel comput-

ing platform and a language-based programming model specific for NVIDIA GPUs.

A CUDA program is a unified source code including both host and device code. The

host code is pure ANSI C code and the device code is the extension of ANSI C which

provides some keyword for labeling data parallel functions called kernels. The host

code and device code are compiled separately. The host code is compiled by the

host’s standard C compiler and the device code is compiled by Nvidia compiler nvcc.

The host code is executed on the host and offloads the device code to be executed on

the device. CUDA provides both a low level driver API and a high level runtime API.

The programmer can use these APIs to manage the execution context environment,
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the device memory allocation and deallocation, the data movement between CPU

and GPU, the asynchronous data movement and kernel execution, etc. Since CUDA

is proprietary to NVIDIA, hence the performance of CUDA program is optimized for

NVIDIA GPU, but the disadvantage is that the same program cannot be migrated

to other vendor’s GPUs which has less portability.

2.3.2 OpenCL

OpenCL, which stands for Open Computing Language, is a language-based pro-

gramming model for heterogeneous platforms including CPUs, GPUs, digital-signal

processors (DSPs) and field-programmable gate arrays (FPGAs), etc. OpenCL is

an extension of ISO C99 and provides an API to control the platform and program

execution on the compute devices. Since OpenCL is an open standard, the benefit

of OpenCL is cross-vendor and cross-platform software portability. Unlike CUDA

model that has only one implementation in NVIDIA, OpenCL has implementations

in multiple vendors such as AMD, Apple, IBM, Intel, Nvidia, Qualcomm, and Sam-

sung.
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2.4 Summary

In this chapter, we give an overview of the GPU architecture and both the high-

level directive-based programming models and low-level language-based program-

ming models for GPUs. The high-level models are able to simplify the GPU pro-

gramming but at the cost of performance loss because it is not as flexible as the

low-level models. The low-level models allow the users to take advantage of the

hardware features by communicating to the driver and runtime directly. Therefore

they are more flexible for the users and provide more opportunities to manually

tune applications, but at the cost of steep learning curve and time-consuming devel-

opment. The following chapters try to evaluate the performance gap between the

directive-based model OpenACC and the low-level model CUDA and apply opti-

mizations within OpenACC to decrease the performance gap. Some research issue

like the loop scheduling tuning that exists in both OpenACC and CUDA will also

be addressed.
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Chapter 3

Experimental Analysis of Porting

Applications to GPU

In this chapter, we assess and evaluate three directive-based programming models,

HMPP, PGI, and OpenACC with respect to their run-time performance, program

complexity, and ease of use. We compare the performance obtained of the three

programming models with that of the native CUDA and the sequential version. The

OpenACC model is very attractive as it standardizes programming. To the best of

our knowledge, this is one of the very few work that systematically evaluates the

models. This work is one of the first to compare OpenACC with other programming

models. We have explored two vendor compilers supporting the OpenACC model.

To maintain confidentiality we will be referring to the 2 vendor compilers in this

chapter as OpenACC Compiler A and OpenACC Compiler B.

In this section, we evaluate three directive-based programming models using three
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scientific applications. The experimental platform is a server machine that is a

multicore system consisting of two NVIDIA C2075 GPUs. Configuration details are

shown in Table 3.1. We use the most recent versions for all the compilers being

discussed in this chapter. We use GCC 4.4.7 for all the sequential versions of the

programs as well as for the HMPP host compiler. We use -O3 as the compilation flag

for optimization purposes. As part of the evaluation process, we highlight several

features of the programming models, that is best suited for the characteristics of an

application. We compare the performances achieved by each of the models with that

of the sequential and CUDA versions of the code. We consider wall-clock time as the

evaluation measurement.

Table 3.1: Specification of experiment machine

Item Description
Architecture Intel Xeon x86 64
CPU socket 2
Core(s) per socket 8
CPU frequency 2.27GHz
Main memory 32GB
GPU Model Tesla C2075
GPU cores 448
GPU clock rate 1.15GHz
GPU global memory 5375MB

3.1 2D-Heat Equation (Stencil domain)

The formula to represent 2D-heat equation is explained in [59] and is given as follows:

∂T

∂t
= α(

∂2T

∂x2
+
∂2T

∂y2
)

19



where T is temperature, t is time, α is the thermal diffusivity, and x and y are points

in a grid. To solve this problem, one possible finite difference approximation is:

∆T

∆t
= α[

Ti+1,j − 2Ti,j + Ti−1,j
∆x2

+
Ti,j+1 − 2Ti,j + Ti,j−1

∆y2
]

where ∆T is the temperature change over time ∆t and i, j are indices in a grid.

At the beginning, there is a grid that has boundary points with initial temperature

and the inner points that need to update their temperature. Then each inner point

updates its temperature by using the previous temperature of its neighboring points

and itself. The temperature updating operation for all inner points in a grid needs

to last long enough which means many iterations is required to get the final stable

temperatures. In our program, the number of iterations is 20000, and we increase

the grid size gradually from 128*128 to 4096*4096. Figure 3.1 contains the code for

temperature updating kernel and the steps to call this kernel in the main program.

It is possible to parallelize the 2D heat equation using the most basic directives

from OpenACC, HMPP, and PGI. For example, we use the OpenACC model and

insert “#pragma acc kernels loop independent” before the nested loop inside the tem-

perature updating kernel. The main point to note with this algorithm is performance.

By profiling the basic implementation, we found that the data is transferred back

and forth in every main iteration step. The cost of data transfer is so expensive that

the parallelized code is even slower than the original native version. The challenging

task is executing the pointer-swapping operation. In iteration i, temp1 is the input

and temp2 stores the output data. Before proceeding to iteration i + 1, these two

pointers are swapped so that temp1 holds the output data in iteration i while temp2

will wait to store the output data in iteration i + 1. An intermediate pointer temp
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is needed to swap these two pointers. Since temp resides on the host while temp1

and temp2 reside on the accelerator, they cannot be swapped directly. The key is

how to swap these pointers inside the accelerator internally so that unnecessary data

transfer is removed.

While using the OpenACC model, we use the deviceptr data clause to specify

temp as a device pointer, i.e, the pointer will always remain on the accelerator side.

To avoid transferring the data during each step, data directive needs to be added

so that the data is transferred only before and after the main loops. After all the

iterations are completed we need to transfer data in temp1 instead of temp2 from

GPU to CPU since the pointers of temp1 and temp2 have been swapped earlier.

Inside the temperature-updating kernel, the nested loop is collapsed because every

iteration is independent. Using HMPP, we have considered copying the input and

output data just once by setting the data transfer policy of temp in and temp out

to manual. To ensure that the correct data is being accessed, we used HMPP’s data

mirroring directive so that we refer to arguments temp1 and temp2 with their host

addresses. Data mirroring requires data mirrors to be declared and allocated before

being used. HMPP could collapse the nested loop in the kernel by using “gridify(j,i)”

code generation directive. Figure 3.1 and Figure 3.2 show the code snippet using

both HMPP and OpenACC model.

Note that this application is sensitive to floating-point operations. We found

that the precision of the floating-point values of the final output temperature on

the GPU is different to the values on the CPU. This is due to Fused Multiply-Add

(FMA) [70], here the computation rn(X * Y + Z) occurs in a single step and rounded
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#pragma hmpp heat codelet, target=CUDA &

#pragma hmpp & , args[temp_in].io=in &

#pragma hmpp & , args[temp_out].io=inout &

#pragma hmpp & , args[temp_in,temp_out].mirror &

#pragma hmpp & , args[temp_in, temp_out].transfer=manual

void step_kernel(int ni, int nj, float tfac,

float *temp_in, float *temp_out) {

// loop over all points in domain (except boundary)

#pragma hmppcg gridify(j,i)

for (j=1; j < nj-1; j++) {

for (i=1; i < ni-1; i++) {

// find indices into linear memory

// for central point and neighbours

i00 = I2D(ni, i, j);

im10 = I2D(ni, i-1, j);

ip10 = I2D(ni, i+1, j);

i0m1 = I2D(ni, i, j-1);

i0p1 = I2D(ni, i, j+1);

// evaluate derivatives

d2tdx2 = temp_in[im10]-2*temp_in[i00]+temp_in[ip10];

d2tdy2 = temp_in[i0m1]-2*temp_in[i00]+temp_in[i0p1];

// update temperatures

temp_out[i00] = temp_in[i00]+tfac*(d2tdx2 + d2tdy2);

}

}

}

#pragma hmpp heat allocate, data["temp1"], size={ni*nj}

#pragma hmpp heat advancedload, data["temp1"]

#pragma hmpp heat allocate, data["temp2"], size={ni*nj}

#pragma hmpp heat advancedload, data["temp2"]

// main iteration loop

for (istep=0; istep < nstep; istep++) {

#pragma hmpp heat callsite

step_kernel(ni, nj, tfac, temp1, temp2);

// swap the temp pointers

temp = temp1;

temp1 = temp2;

temp2 = temp;

}

#pragma hmpp heat delegatedstore, data[temp1]

#pragma hmpp heat release

Figure 3.1: HMPP implementation of 2D-Heat Equation
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void step_kernel(...)

{

#pragma acc kernels present(temp_in[0:ni*nj], temp_out[0:ni*nj])

{

// loop over all points in domain (except boundary)

#pragma acc loop collapse(2) independent

for (j=1; j < nj-1; j++) {

for (i=1; i < ni-1; i++) {

// find indices into linear memory

// for central point and neighbours

i00 = I2D(ni, i, j);

im10 = I2D(ni, i-1, j);

ip10 = I2D(ni, i+1, j);

i0m1 = I2D(ni, i, j-1);

i0p1 = I2D(ni, i, j+1);

// evaluate derivatives

d2tdx2 = temp_in[im10]-2*temp_in[i00]+temp_in[ip10];

d2tdy2 = temp_in[i0m1]-2*temp_in[i00]+temp_in[i0p1];

// update temperatures

temp_out[i00] = temp_in[i00]+tfac*(d2tdx2 + d2tdy2);

}

}

}

}

#pragma acc data copyin(ni, nj, tfac) copy(temp1[0:ni*nj]) \

copyin(temp2[0:ni*nj]) deviceptr(temp)

{

for (istep=0; istep < nstep; istep++) {

step_kernel(ni, nj, tfac, temp1, temp2);

// swap the temp pointers

temp = temp1; temp1 = temp2; temp2 = temp;

}

}

Figure 3.2: OpenACC implementation of 2D-Heat Equation
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Figure 3.3: Application speedup with different models

once. Without FMA, rn(rn(X * Y) + Z) is composed of two steps and rounded

twice. So their results would be slightly different. In 2D-heat equation, this kind of

numerical difference will propagate with more iterations. To disable FMA, we used

the options “–nvcc-options -fmad=false” in HMPP and “-ta=nofma” in PGI. When

we used these compilation flags, the results of both HMPP and PGI are exactly the

same as that of the CPU. Figure 3.3 (a) shows performance results when different

programming models are applied on this application.

Let us consider the baseline (sequential) speedup to be 1 as shown in the Fig-

ure 3.3 (a). We see that for almost all the grid sizes, HMPP and PGI models perform

as close as 80% to that of the CUDA version. The CUDA code has been consid-

ered from [59]. OpenACC Compiler A and OpenACC Compiler B perform approxi-

mately 80% and 70% respectively to that of the CUDA version. For the smallest grid

size 256*256 considered, we see that neither the directive-based approaches nor the

CUDA version was able to perform better than the sequential version. This is due to

the fact that GPU is only suitable for massive computation purposes. For example,

we see that for the grid size 4096*4096, almost all of the directive-based approaches
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and CUDA model seem to achieve more than 100% to that of the sequential version.

3.2 Feldkamp-Davis-Kress (FDK) Algorithm (Im-

age Processing domain)

Computed Tomography (CT) has been widely used in medical industry to produce

tomographic images of specific areas of the body. It uses reconstruction technique

that reconstructs an image of the original 3D-object from a large series of two di-

mensional X-ray images. As a set of rays pass through an object around a single axis

of rotation, the produced projection data is captured by an array of detectors, from

which a Filtered Back-Projection method based on the Fourier Slice Theorem is typ-

ically used to reconstruct the original object. Among various filtered back-projection

algorithms, the FDK algorithm [31] is mathematically straightforward and easy to

implement. It is important that the acquired reconstruction effect is good, the goal

of this work is to speed up the reconstruction using directive-based programming

models.

Algorithm 1 shows the pseudo-code of the FDK algorithm, this is comprised of

three main steps: Weighting - calculate the projected data; Filtering - filter the

weighted projection by multiplying their Fourier transforms; Back-projection - back-

project the filtered projection over the 3D-reconstruction mesh. The reconstruction

algorithm is computationally intensive and it has biquadratic complexity (O(N4)),

whereN is the number of detector pixels in one dimension. The most time-consuming
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step of this algorithm is back-projection which takes more than 95% of the whole

algorithm. So we will concentrate on parallelizing the back-projection step.

Algorithm 1: Pseudo-code of FDK algorithm

Initialization;
foreach 2D image in detected images do

foreach pixel in image do
Pre-weight and ramp-filter the projection;

end

end
foreach 2D image in detected images do

foreach voxel in 3D reconstruct volume do
Calculate projected coordinate;
Sum the contribution to the object from all tilted fan beams;

end

end

We follow the approach from [44] for implementation purposes. The back-projection

has four loops. The three outermost loops will loop over each dimension of the out-

put the 3D object, and the innermost loop will access each of 2D-detected image

slices. First the code is restructured so that the three outermost loops are tightly

nested and then we can apply collapse clause from PGI and OpenACC and use gridify

clause from HMPP. The innermost loop is sequentially executed by every thread. All

detected images are transferred from CPU to GPU by using the copyin clause, and

the output 3D object (actually many 2D-image slices) are copied from GPU to CPU

using the copyout clause. In HMPP, the input/output property of detected images is

set as in and output object is set as out. To evaluate our implementations, we use the

3D Shepp-Logan head phantom data which has 300 detected images and the resolu-

tion of each image is 200*200. The algorithm produces 200*200*200 reconstructed
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cube. Note that this algorithm also has the same issue as 2D-heat conduction i.e.

the algorithm is sensitive to floating-point operations, so we disabled the FMA using

the compilation flags. This does not mean that the results using FMA are incorrect,

but just that we explore different implementation techniques while maintaining the

same computation strategy, such that the results are consistent; we will also be able

to make a fair comparison of results in this case. Figure 3.3 (b) shows the speedup

for different accelerator programming models compared to that of the sequential ver-

sion. A point to note is that the interval between the points in the Y-axis is small,

therefore their performances are actually close to each other. The performance of all

directive-based models (HMPP, PGI and OpenACC) are close to 90% of the CUDA

code, that was written by us from scratch.

3.3 CLEVER Clustering (Data Mining domain)

In this section, we will parallelize a clustering algorithm called CLEVER (CLus-

tEring using representatiVEs and Randomized-hill climbing) [29]. CLEVER is a

prototype-based clustering algorithm that seeks for clusters maximizing a plug-in

fitness function. Prototype-based clustering algorithms construct clusters by seeking

an ’optimal’ set of representatives-one for each cluster; clusters are then created by

assigning objects in the dataset to the closet cluster representatives. Like K-means

[53], it forms clusters by assigning the objects to a cluster with the closest represen-

tative. CLEVER uses a randomized-hill climbing to seek a good clustering, i.e. It

samples p solutions in the neighborhood of the current solution and continues this
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process until no better solutions can be found. Algorithm 2 shows the pseudo-code

of CLEVER program code. It starts with randomly selecting k’ representatives from

the dataset O where k’ is provided by the user. CLEVER samples p solutions in the

neighborhood of the current solution and chooses the solution s with the maximum

fitness value for q(s) as the new current solution provided there is an improvement

in the fitness value. New neighboring solutions of the current solution are created

by three operators: ”Insert” which inserts a new representative into current solu-

tion; ”Delete” which deletes an existing representative from current solution, and

”Replace” which replaces an existing representative with a non-representative. Each

operator is selected at a certain probability and the representatives to be manip-

ulated are chosen at random. To prevent premature convergence, CLEVER will

resample p∗ q more solutions in the neighborhood before terminating, where q is the

resampling rate. The description of CLEVER parameters are as follows [24]:

1. k’ : initial number of clusters

2. neighborhood-size: maximum numbers of operators applied to generate a solu-

tion in the neighborhood

3. p: sampling rate, number of samples that is randomly selected from the neigh-

borhood

4. q : resampling rate. If the algorithm fails to improve fitness with p and then

2 ∗ p solutions, then sampling size in the neighborhood would be increased by

factor q − 2

5. imax: maximum number of iterations in the algorithm
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Algorithm 2: Pseudo-code of CLEVER algorithm

Input: Dataset O, k’, neighborhood-size, p, q,imax
Output: Clustering X, fitness q(X), rewards for clusters in X

Current solution ← randomly selecting k’ representatives from O ;
while iterations ≤ imax do

Create neighbors of the current solution randomly using the given
neighborhood definition, and calculate their respective fitness;
if The best neighbor improved fitness then

Current solution ← best neighbor;
else

Neighborhood of current solution is re-sampled by generating more
neighbors;
if re-sampling leads to better solution then

Current solution ← best solution found by re-sampling;
else

Terminate returning the current solution;
end

end

end

We profile the CLEVER algorithm using GNU profiler before parallelizing the

same. Statistical information gathered shows that the most time-consuming portion

of the algorithm is the function that assigns objects to the closest representative

which computes and compares a lot of distances. The original code is written in

C++, this needed to be converted to C so that the algorithm could be supported

by PGI, HMPP, and OpenACC model. (A point to note is that HMPP recognizes

C++ code to an extent).

Since the data structure of the dataset is user-defined and the pointer operation

is quite complicated, the accelerator region cannot be parsed by the compiler. Hence,

the code is restructured so that it is relatively easier to be parsed by the compiler.

The directives also give hints to the compiler such that all the iterations in the loop
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are independent. Since the whole dataset is read-only, it is transferred to accelerator

before the kernel is called. We can achieve this using both PGI and OpenACC model

by using copyin() clause of data construct. We use the region directive of HMPP

model and set the data transfer policy of the dataset as atfirstcall so that it is copied

from the host to the accelerator only once. This will enable the dataset to stay in

the global memory of the accelerator even if the kernel is called many times.

We evaluated the three directive-based models on two datasets called L10Ovals

(Large 10Ovals) and Earthquake. The characteristics of these two datasets are shown

in Table 3.2 and Table 3.3, respectively. The L10Ovals dataset has natural clusters

representing L10Ovals containing 335,900 objects.

Earthquake dataset contains 330,561 earthquakes which are characterized by lat-

itude, longitude, and depth of the earthquake. The goal is to find clusters where

the variance of the earthquake depth is high; that is where shallow earthquakes are

co-located with deep earthquakes.

Figure 3.3 (c) shows the speedup of how the four different models react to these

two datasets. OpenACC Compiler A required a very long time to execute this algo-

rithm, hence we do not include the speedup in the graph. The reason may be that

the model is yet to provide an effective support to deal with pointer operations.

For L10Ovals dataset HMPP showed a speedup of 4.63x, which is very close

to that of the CUDA version, 5.04x. We have considered the CUDA version of

the algorithm from [24]. We noticed that among the OpenACC models, Ope-

nACC Compiler B showed a speedup of 1.58x, performing poorer to CUDA. For
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Table 3.2: L10Ovals dataset characteristics

Item Description
Data size 335,900 objects
Attributes <x, y, class label>
Distance Function Euclidean Distance
Plug-in Fitness Function Purity:

Percentage of objects belonging
to the majority class of
the cluster

Table 3.3: Earthquake dataset characteristics

Item Description
Data size 330,561 objects
Attributes <latitude, longitude, depth >
Distance Function Euclidean Distance
Plug-in Fitness Function High Variance:

Measures how far the objects in
in the cluster are spread
out with respect to earthquake depth

Earthquake dataset, the speedup achieved by HMPP, PGI, OpenACC Compiler B

were 29.99x, 29.65x and 29.32x, respectively, these are almost the same as that of

CUDA, which showed a speedup of 30.33x. Although L10Ovals and Earthquake have

almost the same number of objects in their datasets we still see a significant differ-

ence in performance. This is primarily due to the characteristics of each of these

datasets. L10Ovals has well defined and separated clusters therefore converges more

quickly. The L10Ovals clustering task takes 21 iterations whereas the earthquake

dataset clustering takes 216 iterations. Moreover the number of clusters searched in

the earthquake clustering experiment is much higher than the number of clusters in

L10Ovals experiment making it more time consuming to assign objects to clusters.
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Table 3.4 shows the execution time consumed in seconds by the different directive-

based models for three case studies. Results for the application 2D-Heat Equation

shows that the time consumed by directive-based models were significantly lower than

the time consumed by the serial version of the code. However the execution time for

the CUDA code still appears to be the best. We see that HMPP model performs

better than that of PGI and also that of OpenACC models. It could be due to

slightly better optimization strategies offered by HMPP compiler implementations.

Among the two OpenACC models, OpenACC Compiler A seems to perform better

than OpenACC Compiler B. With respect to FDK algorithm, we notice that almost

all the models perform similar to each other and in fact close to that of the CUDA

code. CLEVER application shows that HMPP model performs the best compared

to all other models. As mentioned earlier, we suspect that PGI compiler cannot

handle pointer operations very efficiently yet. OpenACC Compiler A model may

also have issues with the implementation of pointer operations. Hence the execution

time seems to be long.

To summarize, directive-based models have indeed shown promising results com-

pared to that of the CUDA version. In-depth research analysis of these models would

lead to better performance. An important point to note is that the OpenACC model

is still being constructed and the technical details may require fine tuning before we

could actually make a deeper comparative analysis.
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Table 3.4: Time(in sec) consumed by Serial, CUDA, HMPP, PGI and OpenACC
versions of the code, only for most time-consuming dataset

Applications Serial CUDA HMPP PGI OpenACC
A B

2D Heat 8922.81 59.13 60.78 72.74 75.65 84.76
FDK 363.50 8.99 10.40 9.71 9.39 10.04
CLEVER 116.15 23.04 25.08 101.51 - 73.31

3.4 Summary

This chapter evaluates some of the prominent directive-based GPU programming

models for three applications with different characteristics. We compare each of

these models and tabulate the performances achieved by these models. We see that

the performance is highly dependent on the application characteristics. The high-

level models also provide a high-level abstraction by hiding most of the low-level

complexities of the GPU platform. This makes programming easier leading to pro-

grammer productivity. We noticed that all the directive-based models performed

much better than that of the serial versions of the applications being evaluated. We

also observed that these models demonstrated performance results close enough to

that of the CUDA version of the applications. However, we had to write almost

different versions of the code before we could use a particular programming model,

especially while using HMPP and PGI. OpenACC solved this portability issue by

providing a single standard to be used to program GPUs.
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Chapter 4

Parallelization and Optimization

Strategies using Directive-based

Model

In this chapter, we discuss the parallelization strategies to port NAS Parallel Bench-

marks (NPB) [18] to GPGPUs using high-level compiler directives, OpenACC. NPB

are well recognized for evaluating current and emerging multi-core/many-core hard-

ware architectures, characterizing parallel programming models, and testing compiler

implementations. The suite consists of five parallel kernels (IS, EP, CG, MG, and

FT) and three simulated computational fluid dynamics (CFD) applications (LU, SP,

and BT) derived from important classes of aerophysics applications. Together they

mimic the computation and data move- ment characteristics of large scale computa-

tional CFD applications [18]. This is one of the standard benchmarks that is close
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to real world applications. We believe that the OpenACC programming techniques

used in this chapter can be applicable to other models such as OpenMP. Based on the

application requirements, we will analyze the applicability of optimization strategies

such as array privatization, memory coalescing, and cache optimization [79]. With

vigorous experimental analysis, we will then analyze how the performance can be

incrementally tuned. To the best of our knowledge, we are the first group to create

an OpenACC benchmark suite for the C programs in NPB. Four benchmarks in this

suite have been contributed to SPEC benchmark [43].

The performance of NPB benchmarks are well studied for conventional multi-

core processor based clusters. Results in [42] show that OpenMP achieves good

performance for a shared memory multi-processor. Other related works also include

NPB implementations of High-Performance Fortran (HPF) [32], Unified Parallel C

(UPC) [4] and OpenCL [60]. With high performance computing systems rapidly

growing, hybrid-programming models become a natural programming paradigm for

developers to exploit hardware characteristics. Wu et al. [72] discussed a hybrid

OpenMP + MPI version of SP and BT benchmarks. Pennycook et al. [57] de-

scribed the MPI+CUDA implementation of LU benchmark. The hybrid implemen-

tations commonly yield better performance if communication overhead is significant

for MPI implementation and if computation for a single node is well parallelized with

OpenMP. NAS-BT multi-zone benchmark was evaluated in [19] using OpenACC and

OpenSHMEM hybrid model.

Grewe et al. [34] presented a compiler-based approach that automatically trans-

late OpenMP program to optimized OpenCL code for GPUs and they evaluated
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all benchmarks in NPB suite. Lee et al. [50] parallelized EP and CG from NPB

suite using OpenACC, HMPP, CUDA, and other models and compared the perfor-

mance differences. But our implementation is different from theirs for these two

benchmarks.

4.1 Strategies

One of the main benefits of programming using a directive-based programming model

is achieving performance by adding directives incrementally and creating portable

modifications to an existing code. We consider the OpenMP version of NPB bench-

marks as the starting point. Steps to parallelize legacy code using OpenACC are:

1) Profile the application to find the compute intensive parts, which are usually

loops.

2) Determine whether the compute intensive loops can be executed in parallel.

If not, perform necessary code transformations to make the loops parallelizable, if

possible.

3) Prepend parallel/kernels directives to these loops. The kernels directive

indicates that the loop needs to be executed on the accelerator. Using the parallel

directive alone will cause the threads to run the annotated code block redundantly,

until a loop directive is encountered. The parallel directive is mostly effective for

non-loop statements.

4) Add data directives for data movement between the host and the device. This

directive should be used with care to avoid redundant data movement, e.g. putting
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data directives across multiple compute regions. Inside the data region, if the host

or device needs some data at the end of one compute region, update host directive

could be used to synchronize the corresponding data from the device to host, or

update device directive is used if the device needs some data from the host.

5) Optimize data structures and array access pattern to efficiently use the device

memory. For instance, accessing data in the global memory in a coalesced way, i.e.

consecutive threads should access consecutive memory address. This may require

some loop optimizations like loop permutation, or transforming the data layout that

will change the memory access pattern.

6) Apply loop-scheduling tuning. Most of the OpenACC compilers provide some

feedback during compilation informing users about how a loop is scheduled. If the

user finds the default loop scheduling not optimal, the user should optimize the

loop manually by adding more loop directives. This should lead to improvement in

speedup.

7) Use other advanced optimizations such as the cache directive, which defines

the variables to be cached by the kernel. Usage of the async clause will initiate data

movement operations and kernel execution as asynchronous activities, thus enabling

an overlap with continuous execution by the host CPU.

Some of the above steps need to be applied repeatedly along with profiling and

feedback information provided by compiler and profilers. The practices and op-

timization techniques applied vary depending on the original parallel pattern and

code structures of an application. Some of those techniques are summarized in the

following sections. While these techniques have been used for optimizing parallel
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for(k=0; k<N; k++){ for(k=0; k<N; k++){

for(j=0; j<N; j++){ for(j=0; j<N; j++){

for(i=0; i<N; i++){ for(i=0; i<N; i++){

A[j][i] = ... AX[k][j][i] = ...

} }

} }

} }

Figure 4.1: Array privatization example

program on CPUs, applying them on GPUs pose different challenges, particularly

when using them in large code bases.

4.1.1 Array Privatization

Array privatization makes different threads access distinct memory addresses, so

that different threads do not access the same memory address. It is a technique of

taking some data that is common or shared among parallel tasks and duplicating it

so that different parallel tasks can have a private copy to operate. Figure 4.1 shows

an example for array privatization. If we parallelize the triple-nested loop on the left

side of the figure using OpenMP for CPU and only parallelize the outermost loop,

each thread handles the inner two loops. The array A could be annotated as OpenMP

private clause to each thread, thus no modification is required to keep the memory

usage minimal and improve the cache performance. However, this is not the case with

OpenACC. In OpenACC, if the compiler still only parallelizes the outermost loop,

multiple threads will be reading and writing to the same elements of the array A. This

will cause data-race conditions, incorrect results, and potential crashes. An option

here is to use the OpenACC private clause which is described in [7]. However, if the

number of threads are very large, as typically in GPUs, it is very easy that all copies
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of the array exceed the total memory available. Even though sometimes the required

memory does not exceed the available device memory, it is possible that the assigned

number of threads is larger than the number of loop iterations, and in this case some

of the device memory will be wasted since some threads are idle. Also the life time

of variable within a private clause is only for a single kernel instance. This limits

our choice to apply loop-scheduling techniques since only the outermost loop can be

parallelized. If the triple nested loop can be parallelized and each thread executes

the innermost statements, thousands of threads still need to be created. Keeping

the array A private for each thread will easily cause an overflow of memory available

on the accelerator device. The right side of Figure 4.1 shows the array privatized

code that addresses this issue. This solution added another dimension to the original

array so that all threads can access different memory addresses of the data and no

data race will happen.

4.1.2 Loop Scheduling Tuning

When parallelizing loops using OpenACC, parallel/kernels directives are inserted

around the loop region. With the parallel directive, the user can explicitly specify

how the loop is scheduled by setting whether the loop is scheduled in the level of

gang, worker, or vector. With the kernels directive, however, loop scheduling is

usually left to the compiler’s discretion. Ideally, the compiler performs loop analysis

and determines an optimal loop scheduling strategy. Our simple experiments show

that, when using the kernels directive, the compiler makes good choices most of

the times. But the compiler often opts for the less-efficient loop scheduling when the
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#pragma acc kernels loop gang

80: for (k = 0; k <= grid_points [2]-1; k++) {

#pragma acc loop worker

81: for (j = 0; j <= grid_points [1]-1; j++) {

#pragma acc loop vector

82: for (i = 0; i <= grid_points [0]-1; i++) {

83: for (m = 0; m < 5; m++) {

84: rhs[m][k][j][i] = forcing[m][k][j][i];

85: }

86: }

87: }

88: }

Figure 4.2: Loop scheduling example

loop level is more than three. Figure 4.2 shows one of the scheduling techniques that

delivers efficient loop scheduling. However the default scheduling by some compiler

only applies to the loops in lines 82 and 83. The loops in line 80 and 81 are executed

sequentially. This default option is very inefficient since the two outer most loops

are not parallelized. Work in [65] discusses other loop scheduling mechanisms that

could be applied in this context.

4.1.3 Memory Coalescing Optimization

The speedup from the parallel processing capability of GPU can be tremendous

if memory coalescing is efficiently achieved. GPU has faster memory with unique

data-fetching and locality mechanisms. In CPU, only one thread fetches consecutive

memory data into the cache line, so the data locality is limited to only one thread. In

GPU, however, consecutive threads fetch consecutive memory data into the cache line

allowing better data locality. For instance, the code in Figure 4.2 is already optimized

for memory coalescing. The i loop is vectorized with the rightmost dimension of rhs

and forcing is i. In the original serial-code version, the memory-access pattern of rhs
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and forcing are rhs[k][j][i][m] and forcing[k][j][i][m], respectively. But for memory-

coalescing purposes, we need to reorganize the data layout so that the dimension

“m” is not on the farther right. Since C language is row-major, the right-most

dimension is contiguous in memory. We need the threads to access (i.e. the vector

loop) the right-most dimension. So after data-layout reorganization, the memory

access-pattern becomes rhs[m][k][j][i] and forcing[m][k][j][i].

4.1.4 Data Motion Optimization

Data transfer overhead is one of the important factors to consider when determin-

ing whether it is worthwhile to accelerate a workload on accelerators. Most of the

NPB benchmarks consist of many global variables that persist throughout the en-

tire program. An option to reduce data transfer will be to allocate the memory for

those global variables at the beginning of the program so that those data reside on

the device until the end of the program. Since some portion of the code cannot be

ported to the device, we could use update directive to synchronize the data between

the host and device.

4.1.5 Cache Optimization

NVIDIA Kepler GPU memory hierarchy has several levels of memory, including

global memory, then L2 cache for all SMs and the registers, L1 cache, shared memory,

and read-only data cache for each SM. In Kepler GPU, L1 cache is reserved only for

local memory accesses such as register spilling and stack data. Global loads are
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cached in L2 cache only [8]. Here the usage of both L1 and L2 is controlled by the

hardware and they are not manageable by the programmer. The shared memory

can be utilized by the cache directive in OpenACC. Although the read-only data

cache is also controlled by the hardware, the programmer can give some hints in

the CUDA kernel file to tell the compiler what the read-only data list is. Since

the read-only data cache is a device-specific memory, OpenACC does not have any

directive to utilize this cache. However, when the user specifies the device type

when using OpenACC, the compiler can perform some optimizations specific to the

specified device. We implemented this optimization in the compiler used so that the

compiler can automatically determine the read-only data in a kernel by scanning

all data in that kernel and then add “const restrict ” for all read-only data and

add “ restrict ” for other data that has no pointer alias issue. These prefix are

required in CUDA if the user wants the hardware to cache the read-only data [8].

This compiler optimization can improve the performance significantly if the read-only

data is heavily reused.

4.1.6 Array Reduction Optimization

Array reduction means every element of an array needs to do reduction. This is

supported in OpenACC specification which only supports scalar reduction. Different

programming models solve this issue differently. As seen in Figure 4.3, there are

several ways to solve the array reduction in array q in EP benchmark. In the OpenMP

version, each thread has its own private array qq to store the partial count of q, for

the purpose of reducing the overhead of atomic update of shared variables. Thus,
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array qq[4]

array qq[4]

array qq[4]

array q[4]

Thread 0

Thread 1

Thread 2

(a) OpenMP solution

array q[4]

…...NN 

iterations

q0 q1 q2 q3

(b) OpenACC solution 1

array q[4]

array qq[NN*4]

(c) OpenACC solution 2

Figure 4.3: Solutions of array reduction in EP benchmark.

each thread only needs to perform an atomic update on q with its own partial sum

qq. Since OpenACC does not support array reduction, Lee et al. [50] decomposed

the array reduction into a set of scalar reductions which is seen in Figure 4.3 (b).

This implementation is not scalable as it cannot handle large array reduction, and

the size of the result array must be known at compile time. Our solution, as seen

in Figure 4.3 (c), uses the array privatization technique to make a copy of q and

expand it by another dimension with size NN (declared as new variable qq). In this

way, each thread does its own work independently and writes the result into its own

portion of the global memory. Finally, each element of q can be obtained by doing

reduction just once with qq.

4.1.7 Scan Operation Optimization

The NAS IS benchmark has both inclusive and exclusive prefix-sum/scan opera-

tions. The inclusive scan takes a binary operator
⊕

and an array of N elements

[A0, A1, ..., AN−1] and returns the array [A0, (A0

⊕
A1), ..., (A0

⊕
A1

⊕
...
⊕

AN−1)].

Exclusive scan is defined similarly, but shifts the output and uses an identity value I
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as the first element. The output array is [I, A0, (A0

⊕
A1), ..., (A0

⊕
A1

⊕
...
⊕

AN−2)].

In scan loop, an element in the output array depends on its previous element,

and because of such data dependence, it cannot be parallelized by the loop di-

rective in OpenACC. To overcome such limitations, we provided some extensions

to the OpenACC standard. We introduced a new scan clause to the loop di-

rective followed by usage of recursive algorithm in [37] to handle the scan opera-

tion for arbitrary input array size. The proposed new directive format is #pragma

acc loop scan(operator:in-var,out-var,identity-var,count-var). We im-

plemented this optimization in OpenUH compiler. Our implementation also sup-

ports in-place scan in which the input and output array are the same. By default,

however, the scan is not in-place which means the input array and output array are

different. For inclusive scan, the identity value is ignored. For exclusive scan, the

user has to specify the identity value. For in-place inclusive scan, the user must pass

IN PLACE in in-var For in-place exclusive scan, the user must pass IN PLACE in

in-var and specify the identity value. The identity value must be the same as the

first value of the provided array.

4.2 Performance Evaluation

The experimental setup is a machine with 16 cores Intel Xeon x86 64 CPU with 32GB

main memory, and an NVIDIA Kepler GPU card (K20) with 5GB global memory.

We use OpenUH compiler to evaluate the performance of C programs of NPB on

GPUs. This open source compiler provides support for OpenACC 1.0 at the time
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Table 4.1: Comparing elapsed time for NPB-ACC, NPB-SER, NPB-OCL, and NPB-
CUDA (time in seconds), “-” implies no result due to “out of memory” issue. For
NPB-CUDA, only LU, BT, and SP are accessible. Data size increases from A to
C, ∼16x size increase from each of the previous classes. The “Techniques Applied”
numbers refer to the optimizations described in corresponding sections. Other than
listed techniques, we have optimized all of our OpenACC implementations including
using data-motion optimizations as well.

Benchmark EP CG FT IS
Data Size A B C A B C A B C A B C
NPB-SER 46.56 187.02 752.03 2.04 101.80 269.96 6.97 79.42 390.35 0.99 4.04 17.00
NPB-OCL 0.27 0.82 2.73 0.36 13.42 35.39 1.49 32.55 - 0.04 0.35 1.74
NPB-ACC 0.49 1.96 7.85 0.36 9.51 21.28 1.18 9.20 - 0.06 0.23 1.94
Techniques

Applied
3.1, 3.3, 3.6 3.5 3.1, 3.3 3.7

Benchmark MG LU BT SP
Data Size A B C A B C A B C A B C
NPB-SER 2.57 11.48 99.39 60.38 264.71 1178.97 93.14 387.51 1626.33 52.17 225.26 929.85
NPB-OCL 0.13 0.61 5.48 5.32 16.70 54.88 46.12 167.48 - 11.84 54.35 288.40
NPB-ACC 0.24 1.12 7.55 6.64 26.12 103.97 15.25 63.61 226.70 3.45 15.90 57.46
NPB-CUDA - - - 5.79 19.58 75.06 13.08 53.46 216.98 2.47 11.17 43.16
Techniques

Applied
3.1, 3.2, 3.5 3,1, 3.3, 3.5 3,1, 3,2, 3.3, 3.5 3,1, 3.2, 3.3

of writing this chapter. Although implementations for OpenACC 2.0 are beginning

to exist, they are not robust enough to be used to evaluate NPB-type benchmarks.

For evaluation purposes, we compare the performances of our OpenACC programs

with serial and third-party well-tuned OpenCL [60] and CUDA programs [3] (that

we had access to) of the NAS benchmarks. All OpenCL benchmarks run on GPU

rather than CPU. We used GCC 4.4.7 and -O3 flag for optimization purposes. The

CUDA version used by the OpenACC compiler is CUDA 5.5. The OpenCL codes

are compiled by GCC compiler and link to CUDA OpenCL library.

Table 4.1 shows the execution time taken by NPB-SER, NPB-OCL, and NPB-

ACC, which are the serial, OpenCL and OpenACC versions of the NPB benchmarks,

respectively. For the FT benchmark, OpenCL, and OpenACC codes could not exe-

cute for problem size Class C. The reason being, FT is memory limited; the Kepler
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Figure 4.4: NPB-ACC speedup over NPB-
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Figure 4.5: NPB-ACC performance im-
provement after optimization

card in use ran out of memory. Same to do with the OpenCL program for BT bench-

mark. However, this was not the case with OpenACC. The reason being: OpenCL

allocated the device memory for all the data needed in the beginning of the appli-

cation. With OpenACC program, different solver routines have different memory

coalescing requirements, as a result, different routines have different data layout.

For those data, OpenACC program only allocates the device memory in the begin-

ning of the solver routines and frees the device memory before exiting these routines.

This explains that the data in the OpenCL program are active throughout the full

application, but for the OpenACC program, some data is only active in some of the

routines, hence saving the requirement for the total-memory at a given time.

Figure 4.4 shows the speedup of NPB-ACC over NPB-SER for the benchmarks

that have been optimized. It is quite clear that all the benchmarks show significant

speedup, especially EP. This is because EP is an embarrasingly parallel benchmark

that has only few data transfers and our optimization technique enabled all the

memory accesses to be nicely coalesced. Most of the benchmarks observed increase-

in-speedup as the data problem size increased, except IS. This is because, IS uses
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buckets to sort an input integer array, the value of the bucket size is fixed as defined

in the benchmark, no matter what the data size is. As a result, when the data

size becomes larger, the contention to each bucket becomes more intense decreasing

the performance to quite an extent. However this does not affect the numerical

correctness due to atomic operations in place to prevent data races.

We measure the effectiveness of the potential optimizations applied in Figure 4.5

by comparing the baseline and the optimized versions of the benchmarks. The base-

line versions use only array privatization in order to parallelize the code and data

motion optimization to eliminate unnecessary data transfer overhead and not any

other optimizations discussed. The optimized versions exploit the optimizations dis-

cussed earlier.

IS benchmark demonstrates much improvement from the baseline version. This is

due to the scan operation discussed earlier. CG mainly benefits from cache optimiza-

tion, the rest of the optimizations all seem to have a major impact on the benchmark’s

performance. FT benchmark shows improvement due to Array of Structure (AoS)

to Structure of Array (SoA) transformation since the memory is not coalesced in

AoS data layout but coalesced in SoA data layout. Note that the execution time of

the three pseudo application benchmarks LU, BT, and SP are even less than 20% of

the time taken by the baseline version. LU and BT observed over ∼50% and ∼13%

of performance improvement using cache optimization, since both the benchmarks

extensively use read-only data.

LU, BT, and SP benchmarks benefit significantly from memory coalescing opti-

mizations since in the serial code the memory access is not coalesced at all for GPU
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Figure 4.6: NPB-ACC speedup over NPB-
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Figure 4.7: NPB-ACC performance com-
parison with NPB-CUDA

architecture. Memory coalescing requires explicit data layout transformation. We

observed that tuning loop scheduling is very crucial for MG, BT, and SP benchmarks

since these benchmarks have three or more levels of nested loops. The compiler could

not always identify the best loop scheduling option, requiring the user to intervene.

These analysis of benchmark results indicate that it is insufficient to simply insert

directives to an application no matter how simple or complex it is. It is highly

essential to explore optimization techniques, several of those discussed in this chapter,

to not only give the compiler adequate hints to perform the necessary transformations

but also perform transformations that can exploit the target hardware efficiently.

To evaluate our optimizations further, we compare the NPB-ACC with well-

tuned code written with the low-level languages OpenCL (NPB-OCL) and CUDA

(NPB-CUDA). Figure 4.6 and Figure 4.7 show the corresponding results. Figure 4.6

shows that the EP program using OpenACC is around 50% slower than that of the

OpenCL program. This is because the OpenACC version uses array privatization,

which increases the device memory in turn exceeding the available memory limit.
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Therefore we use the blocking algorithm to move data chunk by chunk into the device.

We launch the same kernel multiple times to process each data chunk. The OpenCL

program, however, uses the shared memory in GPU and does not need to use array

privatization to increase the GPU device memory, therefore it only needs to launch

the kernel once. Faster memory access through shared memory and reduced overhead

due to less number of kernel launches improved the results for OpenCL. Although

OpenACC provides a cache directive that has similar functionalities to CUDA’s

shared memory, the implementation of this directive within OpenACC compiler is

not technically mature enough yet. This is one of the potential areas where support

in OpenACC can be improved.

Performance of OpenACC programs of benchmarks BT and SP are much better

than that of the OpenCL programs. The reason is two-fold. First up, the OpenCL

program does not apply the memory coalescing optimization; memory accesses are

highly uncoalesced. Secondly, the program does not apply loop-fission optimization;

there are very large kernels. Although the large kernel contains many parallelizable

loops, they are only executed sequentially inside the large kernel. On the contrary,

the OpenACC program uses loop fission, thus breaking the large kernel into multiple

smaller kernels and therefore exposing more parallelism.

The OpenACC program for benchmark MG appears to be slower than that of the

OpenCL program. This is because former program uses array privatization, which

needs to allocate the device memory dynamically in some routines, however the latter

uses shared memory, which has faster memory access and no memory allocation

overhead. The OpenACC program for benchmark FT is faster than OpenCL, since
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OpenACC transforms the AoS to SoA data layout to enable memory coalescing.

The OpenACC program for benchmark LU is slower than OpenCL since the former

privatizes small arrays into the GPU global memory, but OpenCL uses the small

array inside the kernel as in they will be allocated in registers or possibly spilled to

L1 cache. The memory access from either register or L1 cache is much faster than

that from the global memory as used by OpenACC.

Figure 4.7 shows the normalized performance of NPB-ACC and NPB-CUDA.

We found CUDA programs for only the pseudo applications, i.e. LU, BT, and SP,

hence we have only compared OpenACC results of these applications with CUDA.

The result shows that OpenACC programs for LU, BT and SP benchmarks achieve

72%∼87%, 86%∼96% and 72%∼75% to that of the CUDA programs, respectively.

The range denotes results for problem sizes from CLASS A to C. We see that the

performance gap between CUDA and OpenCL is quite small. The reasoning for the

small performance gap is the same as that we have explained for the OpenCL LU

benchmark. It is quite evident that careful choice of optimization techniques for

high-level programming models can result in reaching performance very close to that

of a well hand-written CUDA code. We believe that as the OpenACC standard and

its implementation evolve, we might even be able to obtain better performance than

CUDA. Thus successfully achieving portability as well.
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4.3 Discussion

4.3.1 Programmability

Programming heterogeneous systems can be simplified using OpenACC-like directive-

based approaches. An expected advantage is that they help maintain a single code

base catering to multiple targets, leading to considerably lesser code maintenance.

However, in order to achieve good performance, it is insufficient to simply insert

annotations. The user’s intervention is required to manually apply certain code

transformations. This is because the compiler is not intelligent enough to determine

the optimal loop scheduling for accelerated kernels and optimize the data movement

automatically. With respect to memory-coalescing requirement, currently there is no

efficient mechanism to maintain different data layout for different devices, the user

has to change the data layout. There is no compiler support that can effectively uti-

lize the registers and shared memory in GPU that play an important role in GPUs.

Data movement is one of the most important optimization techniques. So far it has

been the user’s responsibility to choose the necessary data clause and to move data

around in order to get the best performance. If the compiler provides suitable hints,

this technique can prove to be quite useful.

4.3.2 Performance Portability

Achieving performance portability can be quite tricky. Different architectures de-

mand different programming requirements. Merely considering a CPU and a GPU;
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obtaining optimal performance from CPU largely depends on locality of references.

This holds good for GPUs as well, but the locality mechanism of the two architectures

are different. The amount of computation that a CPU and a GPU can handle also

differs significantly. It is not possible to maintain a single code base for two different

architectures unless the compiler automatically handles most of the optimizations

internally. Performance portability is not only an issue with just the architecture,

but also an issue that different compilers can provide a different implementation for

a directive/clause. Moreover the quality of the compilation matters significantly. For

example, the OpenACC standard allows the user to use either parallel or kernels

in the compute region. The kernels directive allows the compiler to choose the

loop-scheduling technique to be applied i.e. analyze and schedule each loop level to

gang/worker/vector. A compiler can use its own technique to schedule the loop

nest to nested gang, worker and vector; this is typically not part of the programming

model standard. As a result, the performance obtained using the kernels directive is

different for different compilers. On the contrary, the code that uses parallel loop

directive is more portable since this allows the user to have control over explicitly

adopting the loop scheduling. Also the transformations of the parallel directive by

most of the OpenACC compilers are similar.
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Chapter 5

Compiler and Runtime Driven

Optimizations

In Chapter 4 we have presented several parallelization and optimization techniques

that are required to obtain the high performance when using the directive-based

programming model OpenACC for GPUs. However, most of those techniques are

applied by the user. In the remaining chapters, we focus on the optimizations that

are applied automatically by the compiler and runtime. Since OpenACC is still in its

early stages, most of the existing OpenACC compilers are commercial ones such as

PGI and Cray compilers. The challenge with these commercial compilers is that it

is not straightforward to deal with the compile-time and runtime errors and explain

varying performance numbers between different compilers and even between differ-

ent versions of the same compiler [69]. So To study the implementation challenges

and the principles and techniques of directive-based model, we built an open source
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OpenACC compiler in a main stream compiler framework (OpenUH as a branch of

Open64). In this chapter we will present how the runtime is designed for OpenACC

directive-based programming model, and how the reduction algorithm is optimized

in the compiler [80].

5.1 Runtime

The OpenACC annotated source code is parsed by the compiler to extract the device

kernels and translate the OpenACC directives into runtime calls. Then two parts

of the code are generated: one part is the host code compiled by the host compiler,

another part is the kernel code compiled by the accelerator compiler. The runtime is

responsible for handling data movement and managing the execution of kernels from

the host side.

5.1.1 Runtime Library Components

The runtime library consists of three modules: context module, memory manager,

and kernel loader. The context module is in charge of creating and managing the

virtual execution environment. This execution environment is maintained along the

liftime of all OpenACC directives. All context and device related runtimes, such as

acc init() and acc shutdown(), are managed by this module.

The memory manager helps to control the data movement between the host

and device. The compiler translates the clauses in data and update directives into
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corresponding runtime calls in this module. OpenACC provides a present clause

that indicates the corresponding data list are already on the device, in order to avoid

unnecessary data movement. To implement this feature, the runtime creates a global

hash map that stores all the device data information. Whenever a compiler parses a

present clause, it will translate this clause to the runtime call to check if the data

list in the present clause are in the map. If the data exists in the map, then there is

no need for data movement. If the data does not exist in the map, the compiler will

issue a compilation error. Note that the data allocated from acc malloc() and the

data in the deviceptr clause do not have a corresponding host address since they

are only allowed to use on the device.

The global hash map maintained in the runtime can be used for both structured

data region and unstructured data directives. Each entry in the hash map includes

the host address, device address and the data size so that we can find the device

address given a host address or vice versa. The runtime maintains a region stack

to track the region chain and the new data created within each region. Figure 5.1

(a) shows an example OpenACC code and (b) shows the structure of the region

stack. The region stack can guarantee that the data list created at the entry of a

region (either data region or compute region) will be freed at the exit of the same

region. Whenever a new data region is encountered, a region pointer is pushed into

the region stack. If the regions are not nested, then they are pushed into the stack in

sequence. All the newly created data in the region level i are appended to a linked

list and then inserted into the hash map. The device memory is allocated for these

data and copied to the device as necessary (for copy and copyin clauses). At the
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#pragma acc data create (...) //data 0
{ // (0 )

#pragma acc data create (...) //data 1
{ // (1 )

#pragma acc data create (...) //data 2
{ // (2 )

#pragma acc parallel create (...)

{ // (3 )
} // (4 )
#pragma acc kernels create (...)

{ // (5 )
} // (6 )

} // (7 )
} // (8 )

} // (9 )

(a) OpenACC code example

data 0

data 1

data 2

kernels

data 0 data 0

data 1

data 0

data 1

data 2

data 0

data 1

data 2

parallel

data 0

data 1

data 2

data 0

data 1

data 0

data 0

data 1

data 2

(0) (1) (2) (3) (4)

(5) (6) (7) (8) (9)

(b) Region stack flow for the code in (a)

Figure 5.1: Runtime region stack structure

exit of a region, the runtime will pop the region pointer from the region stack, copy

the data from the device address to the host address (for copy and copyout clauses)

and free the data list created in that region.

The purpose of kernel loader module is to launch the specified kernel from the

host. After the kernel file is compiled by the accelerator compiler, the runtime

loads the generated file, setups the threads topology and pushes the corresponding

arguments list into the kernel parameter stack space, then launch the specified kernel.

Since different kernels have different number of parameters, a vector data structure

is created to store the kernel arguments to guarantee that the kernel argument size

is dynamic. Another work to do before launching a kernel is to specify the threads

topology. The compiler parses the loop mapping strategy and then generates the

corresponding thread topology. The recommended threads value in the topology is

described in section 5.1.2.
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5.1.2 Launch Configuration Setting

The launch configuration (or threads topology) is an important factor affecting ap-

plication performance. Since we map gangs to blocks in grid and vector into threads

within each block, the values of blocks and threads need to be chosen carefully. Too

many blocks and threads may generate potential scheduling overhead, and too few

threads and blocks cannot take advantage of the whole GPU hardware resources

such as cache and registers. The threads topology setting should consider expos-

ing enough parallelism in each multiprocessor and balancing the workload across all

multiprocessors. Different launch configurations affect the performance differently.

How to choose the appropriate launch configuration automatically by the compiler is

discussed in Chapter 7. In OpenUH, if the user did not specify the gang and vector

number, the default value will be used. The default vector size is 128 because the

Kepler architecture has quad warp scheduler that allows to issue and execute four

warps (32 threads) simultaneously. The default gang number is 224 since Kepler 20

GPU allows up to 16 thread blocks per SM and there are 14 SMs.

5.1.3 Execution Flow in Runtime

Figure 5.2 gives a big picture of the execution flow at runtime and Figure 5.3 shows

an example. In the beginning, acc init() is called to setup the execution context.

This routine can be either called explicitly by the user or implicitly generated by the

compiler. Next the data clauses will be processed. There are different kinds of data

clauses (e.g. copyin, copyout, and copy) and these data clauses may be in either
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acc_init()

(setup the context)

remaining data 

in data clause

Is data in 

the map

Allocate device 

memory for this data, 

and put it in the map

Copy this data from 

host to device

Move to the next 

data clause

Setup threads topology

Push kernel arguments

Load and launch kernel

Has reduction

Launch reduction 

algorithm kernel

More kernels
Copy result data from 

device to host

acc_shutdown()

(cleanup the context)

Yes

No

Yes

No

Yes

No

Yes

No

Figure 5.2: Execution flow with OpenACC runtime library

of data, parallel or kernels directive. The data list in the first data clause is

scanned and they are checked if in the global hash map. If they are not in the map,

then the device memory will be allocated for them and put them in the map. If the

data needs to be accessed from the device, for instance those in copyin or copy or

update device clauses, then they are transferred from the host to device. These

data clauses will be scanned and processed. The purpose of this step is to make

the data ready before launching the kernels. After the data is ready, we will setup

the threads topology and push the corresponding arguments to the kernel. So far

everything is ready and we can safely load and launch the kernel. If the kernel needs

to do some reduction operation, after this kernel is finished a separate reduction

algorithm kernel will be launched. The result data, for instance those in copyout or
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#pragma acc data copyin(A,B) copyout(C)

{

#pragma acc kernels loop

for(i=0; i<N; i++)

{

C[i] = A[i]+B[i];

}

}

(a) OpenACC code example

acc_init ();

is_present=accr_in_hashmap(B,&d_B ,0,N,4);

if(is_present == 0){

accr_malloc_on_device(B,&d_B ,N*4);

accr_memin_h2d(B, d_B , N*4);

}

is_present=accr_in_hashmap(A,&d_A ,0,N,4);

if(is_present == 0){

accr_malloc_on_device(A, &d_A , N*4);

accr_memin_h2d(A, d_A , N*4);

}

if(is_present == 0)

accr_malloc_on_device(C, &d_C , N*4);

is_present=accr_in_hashmap (&N,&d_N ,0,1,4)

;

if(is_present == 0){

accr_malloc_on_device (&N, &d_N , 4);

accr_memin_h2d (&N, d_N , 4);

}

accr_set_default_gang_vector ();

accr_push_kernel_param_pointer (&d_C);

accr_push_kernel_param_pointer (&d_B);

accr_push_kernel_param_pointer (&d_A);

accr_push_kernel_param_pointer (&d_N);

accr_launchkernel("__accrg_vecadd", "

vecadd.ptx");

accr_memout_d2h(d_C , C, N*4);

acc_shutdown ();

(b) Translated runtime calls by compiler

Figure 5.3: OpenACC execution flow example

copy or update host clauses, will be transferred from the device to host. Finally

acc shutdown() is called to release all the resources and destroy the context.
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5.2 Reduction Algorithm

5.2.1 Related Work

Reduction is a well known topic, in this section, we will discuss some of the existing

implementations of reduction operation in different programming models. Perform-

ing reduction is a challenge, different models may adopt different implementation

strategies.

Reduction in OpenMP: In OpenMP programming model, the threads are one

dimensional, hence there are not many use cases for reduction. Liao et al. [52] im-

plemented the OpenMP reduction in two steps in the OpenUH compiler. In the

first step, a reduction variable is substituted with a local copy in each thread to

participate in the reduction operation computation. In the second step, values of

local copies are combined into the original reduction variable protected by a critical

section. Before the critical section, a barrier is inserted to ensure that those private

reduction values are all ready. After the critical section, another barrier is inserted

to ensure the final reduction value is available after that barrier. The barrier here

is an expensive operation. So Nanjegowda et al. [55] tried to use tree barrier and

tournament barrier algorithms to improve the barrier performance. Their barrier

algorithms have complex control flows and therefore are not suitable for GPU archi-

tecture. Reduction in GCC compiler [6] is implemented by creating an array of the

type of the reduction variable so that it can be indexed by the thread id, then each

thread stores its reduction value into the array, finally the master thread iterates

over the array to collect all private reduction values and generate the final reduction
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value. These approaches cannot be applied to OpenACC since OpenMP has only

one level of parallelism but OpenACC has three levels of parallelism, and OpenACC

has no support for critical section.

Reduction in CUDA and OpenCL: Harris et al. [36] discussed seven differ-

ent reduction algorithms in CUDA. Their optimizations include global memory coa-

lescing to reduce memory divergence, shared-memory optimization avoiding shared

memory bank conflict, partial- and full-loop unrolling and algorithm cascading. They

analyzed the cost of each algorithm and compared the performance of all reduction

algorithms and achieved bandwidth close to the theoretical bandwidth. We have

leveraged some of these algorithms in our work. OpenCL uses different reduction

strategies. Catanzaro [5] took advantage of the associativity and commutativity

properties of reduction operation to restructure a sequential loop into reduction

trees and then used several strategies for building efficient reduction trees. They

observed that most of their parallel-reduction trees are very inefficient because of a

number of communication and synchronization required among threads. Better per-

formance can be achieved if much of the reduction is done serially. In both CUDA

and OpenCL, the reduction happens in at most two levels of parallelism: thread

blocks and threads within a block, but OpenACC reduction can happen in three lev-

els of parallelism: gang, worker, and vector, so these algorithms cannot be directly

applied in OpenACC reduction algorithm.

Reduction in OpenACC: Komoda et al. [45] proposed a new directive in

OpenACC to solve the array reduction problem and to overcome the limitation of
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Figure 5.4: GPGPU thread block hierarchy

supporting only scalar reduction in current OpenACC specification. The array re-

duction means that every element of an array needs to do reduction. Their array

reduction implementation can work on both single GPU and multi-GPU platform.

However, they do not mention the complexity of scalar reduction in OpenACC and

all the possible reduction usages. Our work in this dissertation focuses on the scalar

reduction in OpenACC standard.

5.2.2 Parallelism Mapping

OpenACC supports three levels of parallelism: coarse-grained parallelism “gang”,

fine-grained parallelism “worker” and vector parallelism “vector”. The programmer

can create several gangs and a single gang may contain several workers and a single

worker may contain several vector threads. The iterations of a loop can be executed

in parallel by distributing the iterations among one or multiple levels of parallelism

of GPGPU architectures. Mapping loops to the hardware in OpenACC is implemen-

tation dependent. Figure 5.5(a) shows a triple nested loop example that exhibits all

the three levels of parallelism. In this example, assume each loop can be executed in
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#pragma acc loop gang

for(k=k_start; k<k_end; k++){

#pragma acc loop worker

for(j=j_start; j<j_end; j++){

#pragma acc loop vector

for(i=i_start; i<i_end; i++){

...

}

}

}

(a) Loop nest example

k = blockIdx.x + k_start;

for(k=k; k<k_end; k+= gridDim.x){

j = threadIdx.y + j_start;

for(j=j; j<j_end; j+= blockDim.y){

i = threadIdx.x + i_start;

for(i=i; i<i_end; i+= blockDim.x){

...

}

}

}

(b) Compiler implementation

Figure 5.5: Loop nest example with OpenACC parallelisms

parallel, then k loop is distributed across all gangs, j loop is distributed across all

workers in a single gang, and i loop is distributed across all vector threads of one

worker.

Our OpenACC implementation is built on top of the SIMT execution model of

CUDA. Table 5.1 shows the CUDA terminologies that is used in our OpenACC

implementation. In OpenUH compiler, gang maps to a thread block, worker maps

to the Y-dimension of a thread block and vector maps to the X-dimension of a

thread block. Based on these definitions, the implementation details for the loop

nest discussed in Figure 5.5(a) is shown in Figure 5.5(b). Here we add the start

offset to the index of each level of threads so that the working threads start from

0 that effectively reduce the thread divergence. Another possible implementation

is to get the thread id and then determine whether the id is greater than the start

position and lesser than the end position in each loop level. In that case, the threads

whose ids are lesser than the start position will not participate in the computation

and will be idle all the time leading to thread divergence. In our implementation,

the threads in each loop level increase along with their own stride size, so that each
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Table 5.1: CUDA terminology in OpenACC implementation

Term Description

threadIdx.x thread index in X dimension of a thread block
threadIdx.y thread index in Y dimension of a thread block
blockDim.x no. of threads in X dimension of a thread block
blockDim.y no. of threads in Y dimension of a thread block
blockIdx.x block index in X dimension of the grid
gridDim.x no. of blocks in X dimension of the grid

thread processes multiple elements of the input data. This solves the issue of limited

number of threads availability in the hardware platform. Our implementation is

designed in a way that it is independent of the number of threads used in each loop

level [64]. However, the appropriate number of threads may enable coalesced memory

access and improve performance.

In the loop nest example, we assume that all the iterations are independent, but

most time the loop nest may contain reduction operation and the reduction may

appear anywhere on the loop nest. In the next section, we will discuss such cases

and how they are implemented in our OpenUH compiler.

5.2.3 Parallelization of Reduction Operations for GPGPUs

The reduction operation applied to a parallel loop uses a binary operator to operate

on an input array and generates a single output value for that array. Each thread has

its own local segments copy of the input array when the loop is distributed among

threads. The operation that consolidates the results from the thread-local copies of

the segments using the reduction operation is the issue that we are addressing in this
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dissertation. The approach to performing parallel reductions depends on how the

loop nests are mapped to the GPGPU’s thread hierarchy. Moreover, reduction oper-

ation always implies a barrier synchronization, this may introduce runtime overhead,

hence we need to be cautious to only include the synchronization when necessary.

Although most reduction operations are inherently not parallel, for those that

have the properties of associativity and commutativity [5], we are able to apply

the divide and conquer method to achieve parallel execution. That is, let us assume

there are three input variables, a1, a2, and a3, and the reduction operator ‘sum’ does

a1 + a2 + a3. The associativity of a binary operator is a property that determines

how operators of the same order of operations are grouped without using parentheses.

Since each reduction uses only one operator and this operator has equal precedence,

the operation can be grouped differently. For instance, (a1+a2)+a3 and a1+(a2+a3)

will deliver the same output as a1+a2+a3. The commutativity of a binary operator

is a property that changes the order of operations and does not change the result. For

instance, a3+a1+a2 and a2+a3+a1 will deliver the same output as a1+a2+a3. All

of the OpenACC reduction operators satisfy both associativity and commutativity

properties. So the reduction operations can be performed in any order as long as

it uses a single operator and includes all of the input data. These are the vital

properties that we will be applying in our implementation.
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#pragma acc parallel \

copyin(input) \

copyout(temp)

{

#pragma acc loop gang

for(k=0; k<NK; k++){

#pragma acc loop worker

for(j=0; j<NJ; j++){

int i_sum = j;

#pragma acc loop vector \

reduction (+: i_sum)

for(i=0; i<NI; i++)

i_sum+= input[k][j][i];

temp[k][j][0] = i_sum;

}

}

}

(a) OpenACC code

k = blockIdx.x;

for(k=k; k<NK; k+= gridDim.x){

j = threadIdx.y;

for(j=j; j<NJ; j+= blockDim.y){

i = threadIdx.x;

int i_sum = j;

/∗ pr i va t e f o r each vec to r ∗/
int i_sum_priv = 0;

for(i=i; i<NI; i+= blockDim.x)

i_sum_priv += input[k][j][i];

sbuf[threadIdx.x+threadIdx.y*blockDim.

x]= i_sum_priv;

__syncthreads ();

i_sum = reduce_vector(sbuf , j);

temp[k][j][0] = i_sum;

}

}

(b) Compiler implementation

Figure 5.6: Reduction in vector

5.2.3.1 Reduction in Single-level Thread Parallelism

The loop nest where a reduction operation is applied could be mapped to one or

multiple-level thread hierarchy. For example, OpenACC includes three-level of par-

allelisms: gang, worker, and vector, reduction can appear within any of these levels.

Let us first discuss the case where the reduction operation appears in only one level

of the parallelism.

Reduction only in vector Figure 5.6 shows an example of reduction occurring

only in vector, where the worker and gang loops (k and j ) can be executed in parallel,

whereas the vector loop (i) needs to perform reduction. There are different strate-

gies to parallelize this case, as seen in Figure 5.9. Figure 5.9(a) shows the data and

worker and vector threads laid out in one gang before doing reduction. Each row is

one worker that includes multiple vector threads. Since vector reduction happens in

each worker, each row needs to do reduction and finally each worker should have one
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#pragma acc parallel \

copyin(input) \

copyout(temp)

{

#pragma acc loop gang

for(k=0; k<NK; k++){

int j_sum = k;

#pragma acc loop worker \

reduction (+: j_sum)

for(j=0; j<NJ; j++){

#pragma acc loop vector

for(i=0; i<NI; i++)

temp[k][j][i]= input[k][j][i];

j_sum += temp[k][j][0];

}

temp[k][0][0] = j_sum;

}

}

(a) OpenACC code

k = blockIdx.x;

for(k=k; k<NK; k+= gridDim.x){

j = threadIdx.y;

int j_sum = k;

/∗ pr i va t e f o r each worker ∗/
int j_sum_priv = 0;

for(j=j; j<NJ; j+= blockDim.y){

i = threadIdx.x;

for(i=i; i<NI; i+= blockDim.x){

temp[k][j][i]= input[k][j][i];

}

j_sum_priv += temp[k][j][0];

}

if(threadIdx.x == 0)

sbuf[threadIdx.y] = j_sum_priv;

__syncthreads ();

j_sum = reduce_worker(sbuf , k);

}

(b) Compiler implementation

Figure 5.7: Reduction in worker

sum = 0;

#pragma acc parallel \

copyin(input) \

create(temp)

{

#pragma acc loop gang \

reduction (+: sum)

for(k=0; k<NK; k++){

#pragma acc loop worker

for(j=0; j<NJ; j++){

#pragma acc loop vector

for(i=0; i<NI; i++)

temp[k][j][i]= input[k][j][i];

}

sum += temp[k][0][0];

}

}

(a) OpenACC code

k = blockIdx.x;

sum = 0;

/∗ pr i va t e f o r each gang ∗/
int sum_priv = 0;

for(k=k; k<NK; k+= gridDim.x){

j = threadIdx.y;

for(j=j; j<NJ; j+= blockDim.y){

i = threadIdx.x;

for(i=i; i<NI; i+= blockDim.x){

temp[k][j][i]= input[k][j][i];

}

}

sum_priv += temp[k][0][0];

}

if(threadIdx.x == 0 &&

threadIdx.y == 0)

partial[blockIdx.x]= sum_priv;

(b) Compiler implementation

Figure 5.8: Reduction in gang
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Figure 5.9: Parallelization comparison for vector reduction. (a) includes the original
threads layout in a thread block. In (b), each vector thread works on each column
data and the reduction results are stored in the first row. In (c), each vector thread
works on each row data and the reduction results are stored in the first column. The
data inside the dashed rectangle are contiguous in memory.

reduction result. In this example, there are 4 workers and each worker has 4 vector

threads, so four vector reduction results should be generated. Since NVIDIA GPU

provides very low-latency shared memory, the reduction can be moved to the shared

memory to reduce the memory-access latency. We present two different implementa-

tion strategies in Figure 5.9(b) and (c). In both these strategies, each vector thread

first creates a private variable and does the partial reduction itself and then all the

partial private reduction values are stored into the shared memory. But how these

data are stored and which thread works on which data can have a significant impact

on the performance.

Figure 5.9(b) uses a strategy where the data and the threads layout are trans-

posed in the shared memory, so the reduction in every row of the original thread

block becomes the reduction in every column of the thread block and the final four
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threads

iterations

Figure 5.10: Interleaved log-step reduction. Synchronization is inserted after each
iteration and before the next iteration. Green represents active threads while the
grey represents inactive threads in each iteration.

reduction results are stored in the first row. This approach increases memory diver-

gence since the data that needed to use reduction are not stored contiguously in the

shared memory. This is because a warp is the smallest execution unit for GPGPUs

and instructions are SIMD-synchronous within a warp.

Figure 5.9(c) shows yet another approach which is implemented in OpenUH. In

this approach, the thread layout is the same as the data in the global memory and

the layout of the threads working on these data still keep the same. Therefore the

vector reduction happens in each row and the final reduction values are stored in

the first column of the shared memory. Thus, the data that needs to be reduced

are stored contiguously in the shared memory. Although memory divergence may

still happen, this issue could be solved by unrolling the last 6 iterations where the

reduction data size are 64, 32, 16, 8, 4, and 2. Actually in our implementation, we

unroll all iterations since the thread block size is limited to less or equal to 1024

threads in the hardware we are using. Vector size should be a multiple of the warp

size.

For both Figure 5.9(b) and (c), the vector threads in the shared memory do the

69



threadIdx.x

th
re

a
d

Id
x
.y

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

(a) Data and threads layout
in global memory

threadIdx.y

th
re

a
d

Id
x
.x

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

(b) One type data and
threads layout in shared
memory

threadIdx.x

th
re

a
d

Id
x
.y

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

(c) Another type data and
threads layout in shared
memory

Figure 5.11: Parallelization comparison for worker reduction. In (a), Threads in each
row is one worker, so four workers need to do reduction. In (b), four worker values
are in every row, so four rows have duplicate values and the final reduction is stored
in the first column. In (c), four worker values are only in the first row and following
three row threads are inactive, the final reduction is stored in the first element of the
first row.

reduction using the interleaved log-step reduction algorithm [36] seen in Figure 5.10.

A point to note is that the initial value of the variable that needs to be reduced

may have a different value for the private copy of that variable. For example, the

initial value of i sum in Figure 5.6(a) is j, but the initial value for the private copy

of the variable i sum priv for each thread is 0 (seen in Figure 5.6(b)). In most of the

implementations, the initial value is processed after the vector reduction algorithm

is done. For instance, the initial value is summed for + reduction or multiplied for

* reduction.

Reduction only in worker Figure 5.7(a) shows an example of reduction occur-

ring only in worker, where the gang and vector loops (k and i) can be executed in

parallel, whereas the worker loop (j loop) has to do the reduction. Again we present
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two parallelization strategies in Figure 5.11(b) and (c). In both implementations,

each worker creates a private variable and does the private partial reduction first,

then all the private reduction data computed by all workers will be stored into the

shared memory for the final reduction. But the next step they go to different paths.

In Figure 5.11(b), the original vertically layout workers are placed into the shared

memory horizontally. That is, the transposed threads work on the transposed data

elements in the shared memory. Only the first row in the shared memory contains the

useful data while the other rows have duplicate data as the first row. All rows need to

do the same interleaved log-step reduction algorithm as vector reduction, final worker

reduction results are stored in the first column of the shared memory. Since all rows

are the same, actually only the first element of the first row has the useful final

reduction result. The advantage of this approach is that the implementation follows

the worker reduction concept very strictly. But the disadvantage is that it consumes

a lot of shared memory which is a scarce resource in the GPGPU architecture, and

it needs to insert synchronization between each iteration in the reduction algorithm

because the workers are not consecutive or they are not warp threads.

The OpenUH compiler, however, employs another different strategy seen in Fig-

ure 5.11(c). First, the workers also need to do partial reduction by creating private

variable. Next the first vector thread of each worker stores the partial reduction into

the shared memory, then all the original vector threads of workers use the interleaved

log-step reduction algorithm to generate the final reduction result. Note that the

threads working on the shared memory data are the same as the threads working on

the global memory data, so no transpose happens here. Using this approach requires
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less threads and less shared memory so that we can leave more shared memory for

other more important computations. For instance, in the example of Figure 5.11(c),

only 4 threads are required to do the reduction and only the first row of the shared

memory is occupied. Also the advantage of this approach is that the vector threads

are warp threads, so we do not need synchronization in the last 6 iterations when

only the last warp threads need to the reduction.

Reduction only in gang The example of reduction only in gang is shown in

Figure 5.8(a), where the inner worker and vector loops (j and i) are executed in

parallel while the gang loop (k loop) has reduction. Since we map each gang to each

thread block in CUDA and there is no synchronization mechanism to synchronize

all thread blocks, the strategy of OpenUH is to create a temporary buffer (partial

in Figure 5.8(b)) with the size equal to the number of gangs, each block writes its

partial reduction into the specific entry of the buffer, then another kernel (the same

reduction kernel as the one in vector addition) is launched to do the reduction within

only one block. How to implement the partial reduction within each gang may be

different in different compilers. One approach is to divide the iterations all gangs need

to compute among all gangs equally, then each gang works on the assigned iterations.

OpenUH does not use such blocking algorithm, instead OpenUH considers all gangs

as a window, and this window slides through the iteration space. This is similar to the

round-robin scheduling algorithm. Essentially there is no difference between blocking

algorithm and window-sliding techniques in gang-partial reduction, but the window-

sliding technique is superior than blocking algorithm in vector-partial reduction since

it can enable memory coalescing. Memory coalescing is impossible in worker- and
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gang-partial reduction, but we still use window-sliding technique in both cases in

order to make the implementation consistent.

5.2.3.2 Reduction across Multi-level Thread Parallelism (RMP)

Section 5.2.3.1 focused on reduction occurring only in single-level parallelism. Al-

though we discuss each of the cases individually, there could be several combinations

of these cases, so some or all of these single cases could be grouped together. For

instance, in a triple nested loop, the outermost, the middle and the innermost loops

use gang, worker and vector reduction, respectively. Reduction can also occur on

different variables within different levels of parallelism. Multiple levels of parallelism

can happen within different loops or within the same loop. Next we will discuss all

these possibilities in detail.

#pragma acc parallel copyin(input) copyout(temp)

{

#pragma acc loop gang

for(k=0; k<NK; k++){

int j_sum = k;

#pragma acc loop worker reduction (+: j_sum)

for(j=0; j<NJ; j++){

#pragma acc loop vector

for(i=0; i<NI; i++)

j_sum += input[k][j]i];

}

temp[k] = j_sum;

}

}

Figure 5.12: Example of RMP in different loops

RMP in Different Loops Figure 5.12 shows an example of the same reduction

spanning across different levels of parallelism in different loops. In this example, the

j sum needs to perform reduction on both the worker and vector loops. The CAPS

compiler adds the reduction clause to both the worker and vector loops, failing which
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incorrect result is generated. This is also a favorable step since reduction occurs

in both worker- and vector-level parallelisms. The OpenUH compiler, however, is

smarter since it can automatically detect the position of the reduction variable and

the user just needs to add the reduction clause to the loop that is the closest to

the next use of that reduction variable. In this case, j sum is assigned to temp[k]

after the worker loop, so we add the reduction in the worker loop. If j sum is used

after the vector loop and inside the worker loop, then we add the reduction clause in

vector loop. CAPS compiler at times, also just needs to add the reduction clause to

the outer most loop, but only when all the inner loops are sequential. With respect

to the implementation, OpenUH compiler creates a buffer with the size equal to the

number of all threads that needs to do the reduction (workers * vector threads in

this example) and the buffer is stored in the shared memory. Each thread writes its

own partial reduction result into this buffer and continues the reduction operation in

the shared memory. The multi-levels of parallelisms can be of three scenarios: gang

& worker, gang & worker & vector, and worker & vector. For the former two cases,

a temporary buffer is created and all threads performing reduction operation write

their own private reduction into this buffer based on the unique id of each thread. The

buffer is allocated in the global memory since the reduction spans across gangs and

all gangs do not have the mechanism to synchronize. Another kernel that takes this

temporary buffer as input is launched and this kernel performs the vector reduction

to generate the final reduction value. Note that the reduction cannot span across

gang & vector without going through the worker.

An alternative approach is to perform the reduction in multi-level parallelism
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following the order of the parallelisms the reduction appear in. In the example of

Figure 5.12, each vector thread performs partial reduction and populates its own

private variable, then all vector threads perform the vector reduction with their

private reduction values. As a next step, each worker does the partial reduction

and populate its own private variable, then all workers do the worker reduction with

their private reduction values. Each worker’s private reduction value is the reduction

value of all vector threads within that worker. The final worker reduction value is the

private value for each gang. Since each gang has multiple workers, the final reduction

value would be different for each gang. Using this approach, the private variables

are different in worker and vector, the vector and worker reduction algorithms could

reuse the algorithms discussed in Section 5.2.3.1. This implementation converts the

same reduction in different loop levels into different reductions in different loop levels

so that the algorithms in Section 5.2.3.1 can be reused. OpenUH does not use this

implementation since this approach needs to perform reduction in multiple times and

therefore more synchronizations are required.

sum = 0;

#pragma acc parallel copyin(input)

{

#pragma acc loop gang worker vector \

reduction (+: sum)

for(i=0; i<NI; i++)

sum += input[i];

}

Figure 5.13: Example of RMP in the same loop

RMP in the Same Loop Figure 5.13 shows an example of reduction across

multi-level parallelism in the same loop. In the implementation, OpenUH creates a

buffer with the size equal to the size of the all threads that need to reduction (gangs

* workers * vector threads in this example), then each thread does its own partial
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reduction, and finally launch another kernel to do the reduction for all values in

the buffer. Again whether the buffer is stored in global memory or shared memory

depends on whether the reduction happens in gang parallelism. As long as gang

parallelism is involved, the buffer must be in global memory.

5.2.3.3 Special Reduction Considerations

Apart from the cases listed in Section 5.2.3.1 and Section 5.2.3.2, there are some

other special reduction cases. One of them is that the same reduction clause includes

multiple-reduction variables and these variables have different data types (e.g. int

and float). In this case, one way is to create a large shared memory space and

different sections of the shared memory are reserved for different reduction data

types. This implementation may face the shared memory size issue since too many

reduction variables may required more shared memory than the hardware limit.

OpenUH compiler, however, creates a shared-memory space with the size the same

as the largest required shared memory for a particular data type. For instance, if

there are “int” type reduction and the “double” type reduction in the same reduction

clause, then we just need to create a shared memory for the double-type reduction

because the required int-type reduction memory space is smaller than the required

shared memory for double-type reduction and these two reduction can share the

same shared memory space.

We implemented the different cases of reduction operation in both global and

shared memory. Although the implementation in global memory is similar to that

of the shared memory, the main difference is the memory-access latency. We created
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an implementation in the global memory primarily because the shared memory is

sometimes reserved for other computation, therefore there is not enough memory

space for performing reduction operations. Take the blocked matrix multiplication

for example, the matrix is divided into multiple blocks and the computation for each

block occurs inside the shared memory. Therefore if a reduction has to happen at

the same time, then we would need to move the reduction operation to the global

memory.

Another issue is the size of the iteration space and the size of threads. The

algorithm in [36] requires that both the iteration space and thread size be power of

2. We remove such a restriction in OpenUH. The restriction of the iteration space

size is removed in the algorithm as shown in Figure 5.5, because the threads window

slides through the iteration space. Although when the iteration space is not power

of 2, there will be some memory divergence within the iterations in the last window.

Therefore, the iteration space size in the interleaved log-step reduction algorithm is

decided by the thread size rather than the original iteration space size itself. Because

the log-step reduction algorithm inherently requires that the iteration space must be

power of 2, we need some additional steps before we could consider the algorithm,

when the threads size is not power of 2. For instance, if the threads size is 96, first we

need to get the previous power-of-2 number 64, then the first 32 threads will do the

reduction on the first 32 elements and the last 32 elements. Then the first 32 threads

will work on the first 32 elements and the middle 32 elements which is 64 elements

which has already satisfied the requirement of the log-step reduction algorithm. The

recommended vector threads size is multiple of warp size (32). Although the vector

77



threads size also could not be multiple of 32, the correctness will not be affected but

the performance will degrade significantly.

5.2.4 Performance Evaluation

The experimental platform has 24 Intel Xeon x86 64 cores with 32GB main memory,

and an NVIDIA Kepler GPU card (K20c) with 5GB global memory. We use OpenUH

compiler to evaluate our OpenACC reduction implementation. For a comparative

analysis, we also uses commercial OpenACC compilers CAPS 3.4.0 and PGI 13.10

compilers. CUDA 5.5 is used for all the three compilers. GCC 4.4.7 is used as the host

compiler for CAPS compiler. To easily compare the CPU result and GPU result, we

disable Fused Multiply Add (FMA) [70]. We use “-O3, -acc -ta=nvidia,cc35,nofma”

for the PGI compiler and “–nvcc-options -Xptxas=-v,-arch,sm 35,-fmad=false gcc

-O3” for the CAPS compiler. OpenUH compiler uses “-fopenacc” flag to compile

the given OpenACC program. And since OpenUH uses a source-to-source technique,

CUDA nvcc compiler is used to compile the generated kernel files and the flag passed

to nvcc compiler is “-arch=sm 35 -fmad=false”. The number of vector size is set to

128 since Kepler architecture has quad warp scheduler that allows to simultaneously

issue and execute four warps (32 threads). Threads within a thread block is limited

to 1024 threads due to which the number of workers is set to 8. All thread blocks

are scheduled on all streaming multiprocessors (SMs). Kepler has 13 SMs and one of

them is likely to be disabled [27], also each SM can support at most 16 thread blocks.

To keep all SMs busy we choose the number of gangs to be 12x16=192. We can set

the gang, worker, and vector using num gangs, num workers, and vector length
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clauses in OpenACC.

Since there are no existing benchmarks that could cover all the reduction cases,

we have designed and implemented a test suite to validate all possible cases of re-

duction including different reduction data types and reduction operations. The test

suite will check if a given reduction implementation passed or failed by verifying

the OpenACC result with the CPU result. If the values do not match, it implies

there is an implementation issue. We also measure the execution time of each of the

reduction cases, so if the compilers under evaluation can pass the test, we compare

their performances too. For all the test cases, we perform reduction using OpenACC

first and then on the CPU side, after which we compare if their results are the same.

When reduction occurs in one of the levels of parallelism, the other levels of paral-

lelisms has instructions being executed in parallel. Only the RMP in the same loop

uses one loop, the other reduction tests use triple nested loop. When one loop level

needs to do reduction, that loop iteration size is up to 1M and the other two loops

are 2 and 32 because of the memory limit of the hardware. Although we used triple

nested loop in experiments, the user can use collapse clause in OpenACC if the

loop level is more than three. We discuss the results of the most commonly used

reduction operators “+” and “*”; the implementation of other reduction operators

are almost the same. We also use a real world application to demonstrate “max”

reduction intrinsic.

Table 5.2 discusses the performance results of OpenUH, PGI, and CAPS compil-

ers while using the reduction test suite. We see that only OpenUH compiler passed

all of the reduction tests. CAPS compiler failed some of the tests of RMP in different
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loops. PGI compiler failed the summation reduction in worker, vector, and RMP

in gang & worker. It even failed to compile the RMP in gang & worker & vector.

Figure 5.14 shows the performance comparison of the three compilers. It is observed

that in gang or vector reduction, the performance of OpenUH compiler was more or

less the same as the CAPS compiler, and only in worker reduction it was slightly less

efficient than CAPS compiler. The performance of OpenUH was better than PGI

compiler for all reduction cases. We could not dive deeper into the analysis for the

obvious reason that CAPS and PGI are commercial compilers and we do not have

access to their underlying implementation details. Although the execution time here

was only several hundred milliseconds, it can still have an impact on a real-world

application. We discuss this later.

Although the test suite only included the reduction cases in triple nested loop

and one loop, they can be used in any levels of the loop. Apart from the test suite,

we also used some real-world benchmark applications: 2D-Heat Equation, matrix

multiplication, and Monte Carlo PI. Let us look into the evaluation details.

2D-Heat Equation is a type of stencil computation. The formula to represent

the 2D-heat equation is explained in [59]. In this application, there is a grid that

has boundary points and inner points. Boundary points have an initial temperature

and the temperature of the inner points need to be updated over iterations. Each

inner point updates its neighboring points and itself. The temperature updatin!htbp

operation for all inner points needs to last long enough to obtain the final stable

temperature. We added the temperature converge code in [59] so that we can know

when the convergence happens. The temperature was stable when the maximum
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Figure 5.14: Performance comparison of OpenACC compilers using reduction test
suite. Missing bars imply that the test failed. The symbol in square brackets indicates
the reduction operator. gw: gang worker; wv: worker vector; gwv: gang worker
vector; sgwv: same line gang worker vector
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Table 5.2: Performance results of OpenACC compilers using reduction test suite.
Time is in milliseconds. “F” stands for test FAILED, and “CE” stands for compile
time error. Except the “same line gang worker vector” uses only one loop, the
other reduction tests used triple nested loop where the outermost, middle, and the
innermost loops are gang, worker, and vector, respectively. The first column implies
the reduction position. For instance, “gang worker” means gang and worker loops
need to do reduction while the vector loop executes in parallel.

Reduction
Position

Reduction
Operator

Data Type

Int Float Double
OpenUH PGI CAPS OpenUH PGI CAPS OpenUH PGI CAPS

gang + 151.27 424.64 151.29 142.99 411.76 143.78 244.61 507.02 249.13
* 156.01 430.77 153.92 249.27 415.91 144.12 254.90 483.59 266.09

worker + 399.25 F 290.83 401.33 F 322.97 610.61 F 543.20
* 413.35 734.35 292.86 414.50 708.29 309.25 664.87 973.88 541.80

vector + 268.47 F 272.32 274.06 F 278.74 532.01 F 520.14
* 269.80 544.71 269.98 284.68 555.58 279.58 529.37 800.89 522.11

gang worker + 107.49 F F 115.10 F F 212.31 F F
* 113.36 356.00 102.50 104.44 357.50 108.53 223.30 463.34 217.15

worker vector + 50.58 298.33 F 54.85 304.82 F 107.75 347.90 F
* 51.20 209.72 56.82 52.75 314.60 52.46 105.97 349.44 95.78

gang worker vector + 8.77 CE F 7.66 CE F 7.65 CE F
* 8.15 232.84 5.50 5.61 CE 3.09 4.87 CE 3.82

same line
gang worker vector

+ 7.55 251.67 4.60 7.57 251.98 4.94 11.24 255.12 7.26

* 7.25 243.63 5.21 7.86 256.18 5.361 11.90 262.49 6.90

temperature difference for all data points in the grid between two consecutive itera-

tions gradually decreased from a large value to 0. So in every iteration, the program

needed to compute the maximum difference for all data points in the current iter-

ation and all data points in the previous iteration, which was a max reduction in

OpenACC. The code snippet is seen in Figure 5.16 (a), where temp1 is the tempera-

ture in the previous iteration and temp2 is the temperature in the current iteration.

All data points in the grid are traversed to get the maximum error. We have prior

experience working on the parallelization of the temperature updating kernel [74],

but in this chapter, we only focus on the maximum reduction. Figure 5.15 (a) shows
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Figure 5.15: Performance comparison for three applications. CAPS bar in (a) and
PGI bar in (b) are missing because they failed. The symbol in square brackets is the
reduction operator.

#pragma acc loop gang

reduction(max:error)

for (j=1; j < nj -1; j++)

{

#pragma acc loop vector

for (i=1; i < ni -1; i++)

{

i00 = j*ni + i;

error = fmax(error ,

fabs(temp1[i00] - temp2[

i00]));

}

}

(a) 2D-Heat Equation

#pragma acc loop gang

for (i = 0; i < n; i++){

#pragma acc loop worker

for (j = 0; j < n; j++){

c = 0.0;

#pragma acc loop vector

reduction (+:c)

for (k = 0; k < n; k++)

c+=A[i*n+k]*B[k*n +j

];

C[i*n+j] = c;

}

}

(b) Matrix Multiplication

#pragma acc loop gang

vector reduction (+:m)

for(i=0; i<n; i++)

{

//x [ i ]=2.0∗ rand ( ) /(
RANDMAX+1.0) −1.0;

//y [ i ]=2.0∗ rand ( ) /(
RANDMAX+1.0) −1.0;
if(x[i]*x[i] + y[i]*y[

i] < 1.0)

m++;

}

(c) Monte Carlo PI

Figure 5.16: Code snippet for three applications

the performance comparison between OpenUH and other two compilers. The perfor-

mance of the CAPS compiler is missing since the temperature difference generated

by this compiler increases gradually rather than a decrease, so the application can

never converge. We increase the grid size from 128x128 to 512x512 and we find

that OpenUH compiler is always better than PGI compiler. This demonstrates that

the performance of the reduction implementation will accumulate in an iterative

algorithm; we do not observe the signicant performance improvement in only one
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iteration.

Matrix Multiplication is a classic example in parallel programming. We con-

sider a naive matrix-multiplication case. Most developers usually only parallelize the

outer two loops and lets the third loop sequentially execute since the third loop has

data-dependence. However we can also parallelize the third loop because essentially

it just includes the “sum” reduction operations. The code snippet is seen in Fig-

ure 5.16 (b) and the performance comparison in seen in Figure 5.15 (b). Different

matrix sizes are chosen and the result shows that the performance of OpenUH is

more than 2x better than CAPS compiler. Since the reduction here happens only in

vector while PGI compiler failed, the vector reduction is seen in Figure 5.14 (c), the

PGI performance bar is not shown.

Monte Carlo PI is another example of using reduction. PI (π) can be computed

in different ways and one of them is to use the Monte Carlo statistical method. Given

a circle of the radis 1 is inscribed inside a square with side length 2, then the area of

the circle and the square are π and 4, respectively. Therefore the ratio of the area

of the circle to the area of the square (ρ) is π/4. The program picks points within

the square randomly and check whether the point is also inside the circle. This can

be determined by the formula x2 + y2 < 1, where x and y are the coordinates of the

point. Assume the number of data points within the circle is m and the number of

data points within the square is n, then ρ = m/n and we can obtain π = 4.0 ∗m/n.

The more data points sampled within the square, the more accurate the value of

π can be obtained. In the program, n is the total number of iterations of a loop

and inside the loop the coordinates of a data point x and y are randomly generated
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by calling rand() in C, and then checked whether x2 + y2 < 1. If yes, then m is

increased by 1. Therefore the computation of m is actually a reduction operation.

Since at the time of writing most compilers do not support function call inside an

OpenACC kernel region , we pre-generated the x and y values on the host and then

transferred them to the device to for m reducion. The code is in Figure 5.16 (c)

where the loop is one level and the computation is distributed to gang and vector

threads. For more accurate PI value, we try to sample as many points as we can. In

our Kepler architecture, the maximum global memory is 5 GB, so we use different

sampled data size 1 GB, 2 GB and 4 GB memory for this application. The results

comparison among different compilers is shown in Figure 5.15 (c). It is observed

that the performance of OpenUH is slightly better than CAPS compiler and much

better than PGI compiler. This result is consistent with the performance difference

while using the reduction test suite, although we just used gang and vector in one

loop instead of using gang, worker and vector in the test suite.

5.3 Summary

In this chapter, we presented the efficient runtime design which shows how to man-

age the execution context, data management, and kernel launch in the runtime. We

also present all possible reduction cases in OpenACC programming model, and the

underlying parallelization implementations in an open-source OpenACC compiler

OpenUH. We evaluated our implementation with a self-written reduction test suite
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and three real-world applications. We observed competitive performance while com-

paring OpenUH with the other two commercial OpenACC compilers. Unlike one of

the commercial compilers that needed to add the reduction clause in multiple-level

parallelism, OpenUH could intelligently detect the position where the reduction had

to occur and the user was only required to add the reduction clause once. A similar

reduction methodology can also be applied to other programming models such as

OpenMP 4.0. OpenMP demonstrates two levels of parallelism and it just needs to

ignore the worker if our implementation strategy is used.
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Chapter 6

Optimizations for Multiple GPUs

The previous chapters have demonstrated that using a single GPU can lead to ob-

taining significant performance gains. In this chapter, we discuss how to achieve

further performance speedup if we use more than one GPU. Heterogeneous proces-

sors consisting of multiple CPUs and GPUs offer immense potential and are often

considered as a leading candidate for porting complex scientific applications. Un-

fortunately programming heterogeneous systems requires more effort than what is

required for traditional multicore systems. Directive-based programming approaches

are being widely adopted since they make it easy to use/port/maintain application

code. OpenMP and OpenACC are two popular models used to port applications to

accelerators. However, neither of the models provides support for multiple GPUs.

A plausible solution is to use combination of OpenMP and OpenACC that forms

a hybrid model [73]; however, building this model has its own limitations due to

a lack of necessary compilers’ support. Moreover, the model also lacks support for
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direct device-to-device communication. To overcome these limitations, an alternate

strategy is to extend OpenACC by proposing and developing extensions that follow a

task-based implementation for supporting multiple GPUs [78]. We critically analyze

the applicability of the hybrid model approach and evaluate the proposed strategy

using several case studies and demonstrate their effectiveness.

6.1 Related Work

A single programming model is insufficient to provide support for multiple accelerator

devices; however, the user can apply hybrid model to achieve this goal. Hart et

al. [38] used Co-Array Fortran (CAF) and OpenACC and Levesque et al. [51] used

MPI and OpenACC to program multiple GPUs in a GPU cluster. The inter-GPU

communication in these work are managed by the Distributed Shared Memory (DSM)

model CAF or distributed-memory model MPI. Unlike these work, our work uses

OpenMP and OpenACC hybrid model. We also developed an approach that extends

the OpenACC model to support multiple devices in a single cluster node.

Other work that targets multiple devices include OmpSs [22] that allows the user

to use their own unique directives in an application so that the program can run on

multiple GPUs either on the shared-memory system or distributed-memory system.

StarPU [16] is a runtime library that schedules tasks to multiple accelerators. How-

ever, the drawback of these approaches is that both OmpSs and StarPU require the

user to manually write the kernel which is going to be offloaded to the accelerators.

Moreover their approach is not part of any standard thus limiting the usability.
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In this chapter, we have adopted a task-based concept by proposing extensions to

the OpenACC model to support multiple accelerators. Related work that uses task-

ing concept for GPUs include Chatterjee et al. [25] who designed a runtime system

that can schedule tasks onto different Stream Multiprocessors (SMs) in one device.

In their system, at a specific time, the device can only execute the same number of

thread blocks as the number of SMs (13 in Kepler 20c) thus limiting the performance.

This is because their system was designed for tackling load balancing issues among

all SMs primarily for irregular applications. Extensions to the OpenACC model was

proposed by Komoda et al. [45] to support multiple GPUs. They proposed directives

for the user to specify memory access pattern for each data in a compute region and

the compiler identifies the workload partition. It is complicated if the user has to

identify the memory-access pattern for all data, especially when the data is multi-

dimensional or accesses multiple-index variables. They also did not explain clearly

about how the data was managed when device-to-device communication is required.

In our extensions to the OpenACC model, we allow the user to partition the work-

load thus further simplifying the application porting which makes the multi-GPU

support general enough to cover most application cases.

6.2 Multi-GPU with OpenMP & OpenACC Hy-

brid Model

In this section, we will discuss strategies to explore programming multi-GPU using

OpenMP & OpenACC hybrid model within a single node. We will evaluate our
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strategies using three scientific applications. We study the impact of our approach

by comparing and analyzing the performances achieved by the hybrid model (multi-

GPU implementation) against that of a single GPU implementation.

The experimental platform is a multi-core server consisting of two NVIDIA Kepler

20Xm GPUs. The system itself has Intel Xeon x86 64 CPU with 24 cores (12 x

2 sockets), 2.5 GHz frequency and 62 GB main memory. Each GPU has 5 GB

global memory. We used CAPS OpenACC for S3D and PGI OpenACC for matrix

multiplication and 2D-heat equation. PGI compiler was not used for S3D since it did

not compile successfully. The 2D-heat equation program compiled by CAPS compiler

was extremely long so we do not show the result here. CAPS compiler does compile

the matrix multiplication program but we leave till later the performance comparison

with other compilers and only verify the feasibility of hybrid programming model. We

used GCC 4.4.7 as CAPS host compiler for all C programs. For a Fortran program,

we used PGI and CAPS (pgfortran as the host compiler of CAPS) to compile the

OpenACC code. We used the latest versions of CAPS and PGI compilers; 3.4.1 and

14.2 respectively. CUDA 5.5 was used for our experiments. The CAPS compiler

performs source-to-source translation of directives inserted code into CUDA code,

and then calls nvcc to compile the generated CUDA code. The flags passed to

CAPS compiler were “–nvcc-options -Xptxas=-v,-arch,sm 35,-fmad=false”, and the

flags passed to PGI compiler were “-O3 -mp -ta=nvidia,cc35,nofma”. We consider

wall-clock time as the evaluation measurement. We ran all experiments five times

and then averaged the performance results. In the forthcoming subsections, we will

discuss both single and multi-GPU implementations for the S3D Thermodynamics
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Figure 6.1: A multi-GPU solution using the hybrid OpenMP & OpenACC model.
Each OpenMP thread is associated with one GPU

application kernel, matrix multiplication and 2D-heat equation.

OpenMP was fairly easy to use, since all that the programmer needs to do is

to insert OpenMP directives in the appropriate places and if necessary, make minor

modifications to the code. The general idea of an OpenMP & OpenACC hybrid

model, as seen in Figure 6.1, is that we need to manually divide the problem among

OpenMP threads, and then associate each thread to a particular GPU. The best

case scenario is when the work in each GPU is independent of each other and does

not involve communication among GPUs. But there may be cases where the GPUs

will have to communicate with each other and this will involve the CPUs too. Dif-

ferent GPUs transfer their data to their corresponding host threads, these threads

then communicate or exchange their data via shared variable, and finally the threads

transfer the new data back to their associated GPUs. With the GPU Direct tech-

nique [9], it is also possible to transfer data between different GPUs directly without

going through the host. This has not been plausible in OpenMP & OpenACC hybrid

model so far, but in Section 6.3 we will propose some extensions to the OpenACC

programming model to accommodate this feature.
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6.2.1 S3D Thermodynamics Kernel

S3D [26] is a flow solver that performs direct numerical simulation of turbulent com-

bustion. S3D solves fully compressible Navier-Stokes, total energy, species, and mass

conservation equations coupled with detailed chemistry. Apart from the governing

equations, there are additional constitutive relations, such as the ideal gas equation

of state, models for chemical reaction rates, molecular transport, and thermodynamic

properties. These relations and detailed chemical properties have been implemented

as kernels or libraries suitable for GPU computing. Some research on S3D have been

done in [62] [51], but the code used is not accessible. For the experimental purpose

of our work, we only chose two separate and independent kernels of the large S3D

application, discussed in detail in [39].

!$acc data copyout(c(1:np), h(1:np)) copyin(T(1:np),...)

do m = 1, MR

call calc mixcp(np, nslvs, T, midtemp, ... , c)

call calc mixenth(np, nslvs, T, midtemp, ... , h)

end do

!$acc end data

Figure 6.2: S3D thermodynamics kernel in single GPU

We observed that the two kernels of S3D have similar code structures and their

input data are common. Figure 6.2 shows a code snippet of a single GPU implemen-

tation. Both the kernels, calc mixcp and calc mixenth are surrounded by a main loop

with MR iterations. Each kernel produces its own output result, but their results

are the same as that of the previous iteration. The two kernels can be executed

in the same accelerator sequentially while sharing the common input data, which

will stay on the GPU during the whole execution time. Alternatively, they can be
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also executed on different GPUs simultaneously since they are totally independent

kernels.

In order to use multi-GPU, we distribute the kernels to two OpenMP threads

and associate each thread to one GPU. Since we have only two kernels, it is not

necessary to use omp for, instead we use omp sections so that each kernel is lo-

cated in one section. Each thread needs to set the device number using the runtime

acc set device num(int devicenum, acc device t devicetype). Note that the device

number starts from 1 in OpenACC, or the runtime behavior would be implementation-

defined if the devicenum were to start from 0. To avoid setting the device number

in each iteration and make the two kernels work independently, we apply loop fis-

sion and split the original loop into two loops. Finally, we replicate common data

on both the GPUs. The code snippet in Figure 6.3 shows the implementation for

multi-GPU. Although it is a multi-GPU implementation, the implementation in each

kernel is still the same as that of a single GPU implementation. Figure 6.4 shows

the performance results of using single GPU and two GPUs. It was observed, two

GPUs almost always takes approximately half the time taken for a single GPU. This

illustrates the performance advantage of using multiple GPUs over single GPU.

6.2.2 Matrix Multiplication

With S3D, we had distributed different kernels of one application to multiple GPUs.

An alternate type of a case study would be where the workload of only one kernel is

distributed to multiple GPUs, especially if the workload is very large. We will use
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call omp set num threads(2)

!$omp parallel private(m)

!$omp sections

!$omp section

call acc set device num(1, acc device not host)

!$acc data copyout(c(1:np)) copyin(T(1:np),...)

do m = 1, MR

call calc mixcp(np, nslvs, T, ... , c)

end do

!$acc end data

!$omp section

call acc set device num(2, acc device not host)

!$acc data copyout(h(1:np)) copyin(T(1:np),...)

do m = 1, MR

call calc_mixenth(np, nslvs, T, ... , h)

end do

!$acc end data

!$omp end sections

!$omp end parallel

Figure 6.3: S3D thermodynamics kernel in multi-GPU using hybrid model

square-matrix multiplication as an illustration to explore this case study. We chose

this application since this kernel has been extensively used in numerous scientific

applications. This kernel does not comprise of complicated data movements and can

be parallelized by simply distributing work to different thread. We also noticed a

large computation to data movement ratio.

Typically matrix multiplication requires matrix A and matrix B as input, and

produces matrix C as the output. When multiple GPUs are used, we will use the

same number of threads as the number of GPUs on the host. For instance, if the

system has 2 GPUs, then we will launch 2 host threads. Then we partition matrix

A in block row-wise which means that each thread will obtain partial rows of matrix

A. Every thread needs to read the whole matrix B and produce the corresponding

partial result of matrix C. After partitioning the matrix, we use OpenACC to execute

the computation of each partitioned segment on one GPU.
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Figure 6.4: Performance comparison of S3D

Figure 6.5 shows a code snippet for the multi-GPU implementation for matrix

multiplication. Here we assumed that the number of threads could be evenly divided

by the square matrix row size. Since the outer two loops are totally independent, we

distribute the i loop into all gangs and the j loop into all vector threads of one gang.

We have used only 2 GPUs for this experiment, however more than 2 GPUs can be

easily used as long as they are available in the platform. In this implementation, we

assumed that the number of GPUs can be evenly divided by the number of threads.

We used different workload sizes for our experiments. The matrix dimension ranges

from 1024 to 8192. Figure 6.6 (a) shows the performance comparison while using one

and two GPUs. For all data size except 1024, the execution time with 2 GPUs was

almost half of that with only 1 GPU. For 1024*1024 as the matrix size, we barely saw

any benefit using multiple GPUs. This is possibly due to the overhead incurred due

to the creation of host threads and GPU context setup. Moreover the computation

was not large enough for two GPUs. When the problem size was more than 1024,

the multi-GPU implementation showed a significant increase in performance. In
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these cases, the computation was so intensive that the aforementioned overheads

were being ignored.

omp set num threads(threads);

#pragma omp parallel

{
int i, j, k;

int id, blocks, start, end;

id = omp get thread num();

blocks = n/threads;

start = id*blocks;

end = (id+1)*blocks;

acc set device num(id+1, acc device not host);

#pragma acc data copyin(A[start*n:blocks*n])\
copyin(B[0:n*n])\
copyout(C[start*n:blocks*n])

{
#pragma acc parallel num gangs(32) vector length(32)

{
#pragma acc loop gang

for(i=start; i<end; i++){
#pragma acc loop vector

for(j=0; j<n; j++){
float c = 0.0f;

for(k=0; k<n; k++)

c += A[i*n+k] * B[k*n+j];

C[i*n+j] = c;

}
}

}
}

Figure 6.5: A multi-GPU implementation of MM using hybrid model

6.2.3 2D-Heat Equation

We notice that in the previous two cases, the kernel on one GPU is completely

independent of the kernel on the other GPU. Now we will explore a case where there

is communication between different GPUs. One such interesting application is 2D-

heat equation. The formula to represent 2D-heat equation is explained in [59] and
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Figure 6.6: Performance comparison using hybrid model

is given as follows:

∂T

∂t
= α(

∂2T

∂x2
+
∂2T

∂y2
)

where T is temperature, t is time, α is the thermal diffusivity, and x and y are points

in a grid. To solve this problem, one possible finite difference approximation is:

∆T

∆t
= α[

Ti+1,j − 2Ti,j + Ti−1,j
∆x2

+
Ti,j+1 − 2Ti,j + Ti,j−1

∆y2
]

where ∆T is the temperature change over time ∆t and i, j are indexes in a grid. In

this application, there is a grid that has boundary points and inner points. Boundary

points have an initial temperature and the temperature of the inner points are also

updated. Each inner point updates its temperature by using the previous tempera-

ture of its neighboring points and itself. The operation that updates temperature for

all inner points in a grid needs to last long enough. This implies that many iterations

are needed before arriving at the final stable temperatures. In our program, the num-

ber of iterations is 20,000, and we increase the grid size gradually from 512*512 to

4096*4096. Our prior experience working on single GPU implementation of 2D-heat
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equation is discussed in [74]. Figure 6.7 shows the code snippet for the single GPU

implementation. Inside the kernel that updates the temperature, we distribute the

outer loop into all gangs and the inner loop into all vector threads inside each gang.

Since the final output will be stored in temp1 after pointer swapping, we just need

to transfer this data out to host.

Let us discuss the case where the application uses two GPUs. Figure 6.8 shows the

program in detail. In this implementation, ni and nj are X and Y dimension of the

grid (does not include boundary), respectively. As seen in Figure 6.9, we partitioned

the grid into two parts along Y dimension and run each part on one GPU. Before

the computation, the initial temperature is stored in temp1 h, and after updating

the temperature, the new temperature is stored in temp2 h. Then we swap the

pointer so that in the next iteration the input of the kernel points to the current new

temperature. Since updating each data point needs its neighboring points from the

previous iteration, two GPUs need to exchange the halo data in every iteration. The

halo data is referred to the data that needs to be exchanged by different GPUs. So far

by simply using high-level directives or runtime libraries, data cannot be exchanged

directly between different GPUs and the only workaround is to first transfer the data

from one device to the host and then from the host to another device. In 2D-heat

equation, different devices need to exchange the halo data, therefore the halo-data

updating would go through the CPU. Because different GPUs use different parts of

the data in the grid, we do not have to allocate separate memory for these partial

data, instead we just need to use private pointer to point to the different positions

of the shared variable temp1 h and temp2 h. Let tid represents the id of a thread,
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then that thread points to the position tid ∗ rows ∗ (ni + 2) of the grid (because it

needs to include the halo region) and it needs to transfer (rows+ 2) ∗ (ni+ 2) data

to the device where rows equals to nj/NUM THREADS. The kernel that updates

the temperature in the multi-GPU implementation is exactly the same as the one in

single GPU implementation.

void step kernel{...}
{

#pragma acc parallel present(temp in[0:ni*nj], temp out[0:ni*nj]) \
num gangs(32) vector length(32)

{
// loop over all points in domain (except boundary)

#pragma acc loop gang

for (j=1; j < nj-1; j++) {
#pragma acc loop vector

for (i=1; i < ni-1; i++) {
// find indices into linear memory

// for central point and neighbours

i00 = I2D(ni, i, j); im10 = I2D(ni, i-1, j);

ip10 = I2D(ni, i+1, j); i0m1 = I2D(ni, i, j-1);

i0p1 = I2D(ni, i, j+1);

// evaluate derivatives

d2tdx2 = temp in[im10]-2*temp in[i00]+temp in[ip10];

d2tdy2 = temp in[i0m1]-2*temp in[i00]+temp in[i0p1];

// update temperatures

temp out[i00] = temp in[i00]+tfac*(d2tdx2 + d2tdy2);

}
}

}
}

#pragma acc data copy(temp1[0:ni*nj]) copyin(temp2[0:ni*nj])

{
for (istep=0; istep < nstep; istep++) {

step kernel(ni, nj, tfac, temp1, temp2);

// swap the temp pointers

temp = temp1; temp1 = temp2; temp2 = temp;

}
}

Figure 6.7: Single GPU implementation of 2D-Heat Equation

Figure 6.6(b) shows the performance comparison of the different implementations,
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omp set num threads(NUM_THREADS);

rows = nj/NUM THREADS;

LDA = ni + 2;

// main iteration loop

#pragma omp parallel private(istep)

{
float *temp1, *temp2, *temp tmp;

int tid = omp get thread num();

acc set device num(tid+1, acc device not host);

temp1 = temp1 h + tid*rows*LDA;

temp2 = temp2 h + tid*rows*LDA;

#pragma acc data copyin(temp1[0:(rows+2)*LDA]) \
copyin(temp2[0:(rows+2)*LDA])

{
for(istep=0; istep < nstep; istep++){

step kernel(ni+2, rows+2, tfac, temp1, temp2);

/* all devices (except the last one) update the lower halo to the host */

if(tid != NUM_THREADS-1){
#pragma acc update host(temp2[rows*LDA:LDA])

}
/* all devices (except the first one) update the upper halo to the host */

if(tid != 0){
#pragma acc update host(temp2[LDA:LDA])

}
/* all host threads wait here to make sure halo data from all devices

have been updated to the host */

#pragma omp barrier

/* update the upper halo to all devices (except the first one) */

if(tid != 0){
#pragma acc update device(temp2[0:LDA])

}
/* update the lower halo to all devices (except the last one) */

if(tid != NUM_THREADS-1){
#pragma acc update device(temp2[(rows+1)*LDA:LDA])

}
temp tmp = temp1;

temp1 = temp2;

temp2 = temp tmp;

}
/*update the final result to host*/

#pragma acc update host(temp1[LDA:row*LDA])

}
}

Figure 6.8: Multi-GPU implementation with hybrid model - 2D-Heat Equation
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Figure 6.9: Multi-GPU implementation strategy for 2D-Heat Equation using the
hybrid model. Consider there are 3 GPUs (Device 0, 1, and 2). The grid in the left
has 6 rows (excluding boundaries, i.e. the top and the bottom rows). By splitting
the 6 rows into 3 parts, each GPU is expected to compute only 2 rows. However,
the computation for a data point requires the value of the neighboring points (top,
bottom, left, and right data points), hence simply considering 2 rows of the grid for
1 GPU is not enough. For GPU Device 0, the last row added already has the left,
top, and right data points, but lacks data points from the bottom, hence the bottom
row needs to be added, leading to 3 rows in total. For GPU Device 1, the first and
the second rows do not have data points from the top and the bottom, respectively,
hence requiring an addition of the top and bottom rows. This leads to 4 rows in total.
For GPU Device 2, the first row does not have data points from the top, requires
the addition of the top row. This leads to 3 rows in total. Another point to note is
that, values in the rows added need to be updated from other GPUs as indicated by
the arrows.
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i.e. single and multi-GPU implementations. While comparing the performances of

multi-GPU with single GPU, we noticed that there is a trivial performance difference

when the problem size is small. However, there is a significant increase in perfor-

mance using multi-GPU for larger grid sizes. With the grid size as 4096*4096, the

speedup of using two GPUs is around 2x times faster than the single GPU imple-

mentation. This is because as the grid size increases, the computation also increases

significantly, while the halo-data exchange is still small enough. Thus the ratio of

the computation/communication becomes larger. Using multi-GPU can be quite

advantageous to decompose the computation.

6.3 Multi-GPU with OpenACC Extension

We see that programming using multi-GPU using OpenMP & OpenACC hybrid

model shows significant performance benefits in Section 6.2. However there are some

disadvantages too in this approach. First, the users need to learn two different pro-

gramming languages which may impact the productivity. Second, in this approach

the device-to-device communication happens via the host bringing more unnecessary

data movement. Third, providing support for such hybrid model is a challenge for

compilers. Compiler A provides support for OpenMP and Compiler B provides sup-

port for OpenACC, as a result it is not straight forward for different compilers to

interact with each other. For instance, a Cray compiler does not allow OpenACC di-

rectives to appear inside OpenMP directives [2], therefore the examples in Figure 6.5

and Figure 6.8 are not compilable by the Cray compiler. CAPS compiler although
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provides support for OpenACC, still uses an OpenMP implementation from another

host compiler; this is also a challenge to follow and maintain. Ideally, one program-

ming model should provide support for multi-GPU. Unfortunately the existing Ope-

nACC standard does not yet provide support for multiple accelerator programming.

To solve these problems, we propose some extensions to the OpenACC standard in

order to support multiple accelerator devices.

6.3.1 Proposed Directive Extensions

The goal is to help the compiler or runtime realize which device the host will commu-

nicate with, so that the host can issue the data movement and kernel launch request

to the specific device. The new extensions are described as follows:

(1) #pragma acc parallel/kernels deviceid ( scalar-integer-expression )

This is to place the corresponding compute region into a specific device.

(2) #pragma acc data deviceid ( scalar-integer-expression )

This is the data directive extension for the structured data region.

(3) #pragma acc enter/exit data deviceid ( scalar-integer-expression )

This is the extension for unstructured data region.

(4) #pragma acc wait device ( scalar-integer-expression )

This is used to synchronize all activities in a particular device since by default the

execution in each device is asynchronous when multiple devices are used.

(5) #pragma acc update peer to ( list ) to device ( scalar-integer-expression )

from ( list ) from device( scalar-integer-expression )

(6) void acc update peer(void* dst, int to device, const void* src,
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int from device, size t size)

The purpose of (5) and (6) is to enable device-to-device communication. This is par-

ticularly important when using multiple devices, since in some accelerators device

can communicate directly with another device without going through the host. If the

devices cannot communicate directly, the runtime library can choose to first transfer

the data to a temporary buffer in the host, then transfer it from the host to another

device. For example, in CUDA implementation, two devices can communicate di-

rectly only when they are connected to the same root I/O Hub. If this requirement

is not satisfied, then the data transfer will go through the host. (Note: We believe

these extensions will address direct device-to-device communication challenge, how-

ever it also requires necessary support from the hardware. Our evaluation platform

did not fulfill the hardware needs, hence we have not evaluated the benefit of these

extensions quantitatively yet. Will do so as part of the future work.)

6.3.2 Task-based Implementation Strategy

We implement the extensions discussed in Section 6.3.1 in our OpenUH compiler.

Our implementation is based on the hybrid model of pthreads + CUDA. CUDA 4.0

and later versions simplify multi-GPU programming by using only one thread to

manipulate multiple GPUs. However, in our OpenACC multi-GPU extension im-

plementation, we use multiple pthreads to operate multiple GPUs and each thread

is associated with one GPU. This is because the memory allocation and free oper-

ations are blocking operations. If a programmer uses data copy/copyin/copyout

inside a loop, the compiler will generate the corresponding data memory allocation
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and transfer runtime APIs. Since the memory allocation is blocking operation, the

execution in multiple GPUs cannot be parallel. CUDA code avoids this by allocating

memory for all data first and then performs data transfer. In OpenACC, however,

this is unavoidable because all runtime routines are generated by the compiler and

the position of these routines cannot be randomly placed. Our solution is to create

a set of threads and each thread manages the context of one GPU which is shown in

Figure 6.10. This is a task-based implementation. Assume we have n GPUs attached

to a CPU host, initially the host creates n threads and each thread is associated with

one GPU. Each thread creates a empty First In First Out (FIFO) task queue which

waits to be populated by the host main thread. Depending on the directive type and

deviceid clause in the original OpenACC directive annotated program, the compiler

generates the task enqueue request for the main thread. The task here means any

command issued by the host and executed either on the host or on the device. For

example, memory allocation, memory free, data transfer, kernel launch, and device

to device communication, all of these are different task types.

The following are the definitions of the task structure and the thread controlling

a GPU (refer it to GPU thread). The task is executed only by GPU thread. A task

could be synchronous or asynchronous to the main thread. In the current implemen-

tation, most tasks are asynchronous except device memory allocation because the

device address is passed from a temporary argument structure, so the GPU thread

must wait for this to finish. Each GPU thread manages a GPU context, a task

queue and some data structures in order to communicate with the master thread.

Essentially this is still the master/worker model and the GPU threads are workers.
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GPU 1
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Task queue for thread 1

Task queue for thread n

Task queue for thread 2

Task queue for thread n-1

⁞ ⁞ 

Execute tasks

Push tasks

Figure 6.10: Task-based multi-GPU implementation in OpenACC. Ti(i = 1, 2, ...)
means a specific task

Algorithm 3 and algorithm 4 show a detailed implementation for the worker thread

and master thread, respectively.

To enable device to device communication, we must enable such peer-to-peer

access explicitly and this requires that all worker threads have created the GPU

contexts. So each worker first creates the context for the associated GPU, then it

waits until all workers have created the GPU contexts. The worker that is the last

one to create the context will broadcast to all worker threads so that they can start

to enable the peer-to-peer access. The worker then enters an infinite loop that waits

for the incoming tasks. When the task is ready in the FIFO task queue, it will fetch

the task from the queue head and execute that task. When there is no task available,

the worker just goes to sleep to save CPU resource. Whenever a master pushes a

task into the FIFO queue of a worker, it will signal that worker that the queue is
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not empty and the task is ready. If the master notifies that the worker be destroyed,

the worker will complete all pending tasks and then exit.

typedef struct _task_s

{

int type; //task type (e.g. memory allocation and kernel launch, etc.)

void* (*routine)(void*); // the task routine

_work_args *args; // point to the task argument

int work_done; // indicate whether the task is done

int async; // whether the task is asynchronous

struct _task_s *next; // next task in the task queue

} _task;

typedef struct

{

int destroyed; // whether this thread is destroyed

int queue_size; // the task queue size

pthread_t thread; // the thread identity

context_t *context; // the GPU context associated with this thread

int context_id; // the GPU context id

_task *queue_head; // head of the FIFO task queue

_task *queue_tail; // tail of the FIFO task queue

pthread_mutex_t queue_lock;

pthread_cond_t queue_ready; // the task queue is not empty and ready

pthread_cond_t work_done;

pthread_cond_t queue_empty;

} _gpu_thread;

6.3.3 Evaluation with Benchmark Examples

In this section, we will discuss how to port some of the benchmarks discussed in

Section 6.2 using the OpenACC extensions instead of using the hybrid model. The

programs using the proposed directives were compiled by OpenUH compiler with “-

fopenacc -nvcc,-arch=sm 35,-fmad=false” flag. We also compared the performance
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Algorithm 3: The worker algorithm for multi-GPU programming in OpenACC

Function worker routine
Create the context for the associated GPU ;

pthread mutex lock(...) ;
context created++;
while context created != num devices do

/* wait until all threads have created their contexts */

pthread cond wait(...);

end
pthread mutex unlock(...);

if context created == num devices then
pthread cond broadcast(...);

end

Enable peer access among all devices;

while (1) do
pthread mutex lock(cur thread→queue lock);
while cur thread→ queue size == 0 do

pthread cond wait(&cur thread→queue ready, &cur thread→
queue lock);
if cur thread→ destroyed then

pthread mutex unlock(&cur thread→ queue lock);
/* the context is blocked until the device has

completed all preceding requested tasks */

Synchronize the GPU context;
pthread exit(NULL);

end

end
/* fetch the task from the queue head */

cur task = cur thread→queue head;
cur thread→queue size−−;
if cur thread→queue size == 0 then

cur thread→queue head = NULL;
cur thread→queue tail = NULL;

else
cur thread→queue head = cur task→next;

end
pthread mutex unlock(&cur thread→queue lock);
/* execute the task */

cur task→routine((void*)cur task→args);
end 108



Algorithm 4: The master algorithm for multi-GPU programming in OpenACC

Function enqueue task xxxx
Allocate memory and populate the task argument;
Allocate memory and populate the task;
pthread mutex lock(&cur thread→queue lock);
/* push the task into the FIFO queue */

if cur thread→queue size == 0 then
cur thread→queue head = cur task;
cur thread→queue tail = cur task;
/* signal the worker that the queue is not empty and the

task is ready */

pthread cond signal(&cur thread→queue ready);

else
cur thread→queue tail→next = cur task;
cur thread→queue tail = cur task;

end
cur thread→queue size++;
pthread mutex unlock(&cur thread→queue lock);

/* if the task is synchronous */

if cur task→async == 0 then
pthread mutex lock(&cur thread→queue lock);
/* wait until this task is done */

while cur task→work done == 0 do
pthread cond wait(&cur thread→ work done, &cur thread→
queue lock);

end
pthread mutex unlock(&cur thread→ queue lock);

end
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with that of the CUDA version. All CUDA codes were compiled using “-O3 -

arch=sm 35 -fmad=false” flag.

for(d=0; d<num devices; d++)

{
blocks = n/num devices;

start = id*blocks;

end = (id+1)*blocks;

#pragma acc data copyin(A[start*n:blocks*n])\
copyout(C[start*n:blocks*n])\
copyin(B[0:n*n]) deviceid(d)

{
#pragma acc parallel deviceid(d)\

num gangs(32) vector length(32)

{
#pragma acc loop gang

for(i=start; i<end; i++){
#pragma acc loop vector

for(j=0; j<n; j++){
float c = 0.0f;

for(k=0; k<n; k++)

c += A[i*n+k] * B[k*n+j];

C[i*n+j] = c;

}
}

}
}

for(d=0; d<num devices; d++){
#pragma acc wait device(d)

}

Figure 6.11: A multi-GPU implementation of MM using OpenACC extension

Figure 6.11 shows a code snippet of multi-GPU implementation of matrix mul-

tiplication using the proposed OpenACC extensions. Using the proposed approach,

the user still needs to partition the problem explicitly into different devices. If there

is any dependence between devices, it is difficult for the compiler to do such anal-

ysis and manage the data communication. For the totally independent loop, we

may further automate the problem partition in compiler as part of the future work.

Figure 6.12 shows the performance comparison using different models. We can see

that the performance of manual CUDA version and OpenACC extension version are
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much better than that of the hybrid model. CAPS compiler seems did not performe

well using the hybrid-model implementation. The performance of the proposed Ope-

nACC extension version is the best and it is very close to the optimized CUDA

code. There are several reasons for this. First, the loop translation mechanisms from

OpenACC to CUDA in different compilers are different. Loop translation means the

translation from OpenACC nested loop to CUDA parallel kernel. In the translation

step, the OpenACC implementation in OpenUH compiler uses redundant execu-

tion model which has no synchronization between different OpenACC parallelism

like gang and vector. However, PGI compiler uses another execution model which

loads some scalar variables into shared memory in gang parallelism and then the

vector threads fetched them from shared memory. The detailed comparison between

these two loop translation mechanisms was explained in [76]. OpenUH compiler

does not need to do those unnecessary shared-memory stores and loads operations

and therefore reduces overhead. Second, we found that CAPS compiler used simi-

lar loop-translation mechanism as OpenUH. However, its performance is still worse

than the OpenUH compiler. The possible reason is that it has non-efficient runtime-

library implementation. Since CAPS itself does not provide OpenMP support, it

needs complex runtime management to interact with the OpenMP runtime in other

CPU compilers. This result demonstrates the effectiveness of our approach: not only

simplifies the multi-GPU implementation but also maintains high performance.

We also port the 2D-Heat Equation to the GPUs using the proposed OpenACC

directive extension. In the code level, the device-to-device communications are not

required to go through the host, instead the update peer directive can be used to
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Figure 6.12: Performance comparison for MM using multiple models. PGI and CAPS
compilers compile the hybrid model implementation

reduce the code complexity and therefore improve the implementation productivity.

Figure 6.13 shows the detailed multi-GPU implementation code using the OpenACC

extension and Figure 6.14 explains this implementation graphically. Compared to

the Figure 6.9 that uses the hybrid model, it is obvious to see that the data transfer

between devices is simpler. Figure 6.15 show the performance comparison using

different models. The performance of the hybrid model using CAPS compiler is not

shown because it is around 5x slower than PGI’s performance. When the grid size is

4096*4096, the execution time of OpenACC version is around 60 seconds faster than

the hybrid model and it is close to that of the optimized CUDA code. We notice

that there is almost no performance loss with our proposed directive extension.

112



for(d=0; d<num devices; d++){
#pragma acc enter data copyin(temp1_h[d*rows*LDA:(rows+2)*LDA]) device(d)

#pragma acc enter data copyin(temp2_h[d*rows*LDA:(rows+2)*LDA]) device(d)

}

for(istep=0; istep<nstep; istep++){
for(d=0; d<num_devices; d++)

step_kernel_(ni+2, rows+2, tfac, temp1_h+d*rows*LDA, temp2_h+d*rows*LDA)

}

/* wait to finish the kernel computation */

for(d=0; d<num_devices; d++){
#pragma acc wait device(d)

}
/* exchange halo data */

for(d=0; d<num_devices; d++){
if(d > 0){

#pragma acc update peer to(temp2_h[d*rows*LDA:LDA]) to_device(d)

from(temp2_h[d*rows*LDA:LDA]) from_device(d-1)

}

if(d < num_devices - 1){
#pragma acc update peer to(temp2_h[(d+1)*rows*LDA+LDA:LDA]) to_device(d)

from(temp2_h[(d+1)*rows*LDA+LDA:LDA]) from_device(d+1)

}
}

/* swap pointer of in and out data */

temp_tmp = temp1_h;

temp1_h = temp2_h;

temp2_h = temp_tmp;

}

for(d=0; d<num_devices; d++){
#pragma acc exit data copyout(temp1_h[(d*rows+1)*LDA:rows*LDA]) deviceid(d)

}

for(d=0; d<num_devices; d++){
#pragma acc wait device(d)

}

Figure 6.13: Multi-GPU implementation with OpenACC extension - 2D-Heat Equa-
tion
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6.4 Summary

This chapter explored the programming strategies of multi-GPU within a single node

using the hybrid model, OpenMP & OpenACC. We demonstrated the effectiveness

of our approach by exploring three applications of different characteristics. In the

first application where there were different kernels, each kernel was dispatched to one

GPU. The second application had a large workload that was decomposed into multi-

ple small sub-workloads, after which each sub-workload was scheduled on one GPU.

Unlike the previous two applications that consist of totally independent workloads on

different GPUs, the third application required some communication between different

GPUs. We evaluated the hybrid model with these three applications on multi-GPU

and noticed reasonable performance improvement. Based on the experience gath-

ered in this process, we have proposed some extensions to OpenACC in order to

support multi-GPU and implemented it using task-based strategy. By using the

proposed directive extension, we can simplify the multi-GPU programming while

obtaining better performance compared to the hybrid model. Most importantly, the

performance was close to that of the optimized manual CUDA code.
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Chapter 7

Locality-Aware Auto-tuning for

Loop Scheduling

In the porting of NPB benchmark suite to GPUs using OpenACC model, one op-

timization, we manually applied was loop-scheduling tuning. We manually tried

different loop schedules and chose the one that delivered the best performance. This

was tedious and very time-consuming because we had to run the application after

we tried each loop schedule and recorded its performance. In large applications that

have hundreds of kernels, it was impossible to do this. A better way to solve this

issue is to apply an auto-tuning technique to let the compiler automatically choose

an optimal loop schedule. Our goal is to achieve a reasonable performance improve-

ment when using the loop schedule chosen by our framework [75] and compare that

to the default loop schedule chosen by the compiler.
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7.1 Related Work

We used auto-tuning technique to find the optimal loop schedule. Several approaches

can be used for auto-tuning. Here, we grouped them into three categories: exhaustive

search, heuristics, and machine learning.

Exhaustive Search This approach searches all combinations of parameters to

find the best solution. At present there is no related work that solely uses exhaustive

search to find the best loop schedule, but there are related works that use this ap-

proach. Cui et al. [28] used auto-tuning technique to test the SGEMM and DGEMM

with different parameters to find the best performance on Fermi GPU architecture.

Their auto-tuner had two components, a code generator and an execution engine.

The code generator generated different matrix multiply kernels based on different

combinations of parameters. The execution engine then executed them and iden-

tified the best one. Montgomery et al. [54] used efficient search approach such as

direct search to identify the optimal loop schedule. Their approach executed the

kernels with different loop schedules. Grauer-Gray et al. [33] improved the per-

formance of applications using high-level language auto-tuning. The optimizations

that they applied included loop permutation, loop unrolling, loop tiling, and speci-

fying which loops to parallelize. They generated different transformed codes using a

python script which contained different combinations of unroll, tiling, permutation,

and parallelization transformations for a particular kernel.

Heuristics This approach uses an analytical model or algorithm to restrict the

search space. Lee et al. [47] presented a framework to automatically and efficiently
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map a nested loop to GPU. They targeted a high-level language such as Domain

Specific Language (DSL). The parameters that formed the search space included the

dimension of the nested loop, the block size, and the degree of parallelism which was

essentially the grid size. They applied hard constraints and soft constraints to restrict

the search space. In the soft constraints, they selected a set of commonly used GPU

optimizations such as memory coalescing and reduced thread branching and gave a

weight to each of them. A loop schedule was assigned a score based on the weight

of each soft constraint. For all thread schedules that satisfy the hard constraints,

they did an exhaustive search for all soft-constraint combinations, and found the

schedule with the best score. However, they did not explain what soft constraints

were considered and what score was assigned to each constraint. Another key factor

that was not considered by their model is the data locality.

Machine Learning There are two approaches that used machine learning. The

first approach constructed a knowledge base with optimized parameters for train-

ing benchmarks. This was used to predict the parameter of the new benchmark

using similar training benchmarks. For instance, Siddiqui et al. [61] presented how

to choose the optimal loop schedule and the gang-vector number within each loop

schedule. Their approach included two steps: firstly identify the loop schedule that

delivers the best performance with the compiler default settings; secondly tune the

gang-vector number using a brute force search. The learner recorded the best pa-

rameter for different problem sizes. When a new problem size was determined, the

Euclidian distance between the new problem size and the problem sizes in the training

set was calculated. The problem size with the least distance was chosen. The optimal
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and near-optimal parameter settings for the new problem size. This approach was

time consuming and not accurate. First, it was only used for different problem sizes

of the same application. Secondly, the loop schedule that gave the best performance

with the compiler default gang-vector number was not guaranteed to have better

performance than the loop schedule with other gang-vector number. Thirdly, brute

force search was used for the gang-vector number which is very time-consuming. The

second approach in machine learning is to build a machine learning model (e.g. tree)

based on selected features for all training benchmarks. This model is used to predict

the new benchmark. However, there is no related work on loop-scheduling research.

7.2 The Motivating Example

In Chapter 4, we saw how loop-scheduling tuning was applied manually. Manual

optimization is tedious and error-prone. The goal of this chapter is to apply the loop-

scheduling optimization automatically in the compiler. So far commercial compilers

have optimized this automatically, but their approaches are not effective. We tried

PGI 15.1 compiler for OpenACC programs with the default loop schedules chosen

by the compiler and the loop schedules chosen by manual optimization. The result

is seen in Figure 7.1. The time of the manually optimized schedules were normalized

to 1. It was observed that for Vecadd, Matvec, and Jacobi, the compiler’s default

schedule was around 10% slower than the optimized schedule. For Laplacian and

Wave13pt, the compiler’s default schedule was 20% - 30% slower. For Matmul,

the default schedule using parallel directive was greater than 200% slower than
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Figure 7.1: Loop scheduling comparison

Table 7.1: Loop scheduling in different cases

Code Parallel default Kernels default Manual Optimized

Vecadd gang/seq/vector seq/gang/gang vector gang/gang/vector

Matmul gang/vector/seq gang/gang vector/seq gang vector/gang vector/seq

Matvec gang vector gang vector gang vector

Jacobi gang/vector gang/gang vector gang/vector

Laplace gang/seq/vector seq/gang/gang vector gang/worker/gang vector

Wave gang/seq/vector seq/gang/gang vector gang/worker/vector

the optimized schedule. Table 7.1 shows the comparison between different loop-

schedules applied by the compiler and manually. Our goal was to choose an optimal

loop-schedule by the compiler with an analytical model, so that there is no need for

the user to try different loop schedule combinations.
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Figure 7.2: The framework of auto-tuning for loop scheduling

7.3 Loop Scheduling Auto-tuning

7.3.1 The Auto-tuning Framework

In this section, we describe our auto-tuning framework, the proposed analytical model

that enabled the identification of the appropriate loop schedule, and the launch

configuration used for each of the loop schedules. Figure 7.2 gives an overview of the

auto-tuning framework. The compiler generated multiple kernel files with different
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loop schedules. The loop schedule was chosen from a set of loop schedule patterns

which covers both double- and triple-nested loops. The framework chose a launch

configuration from the launch configuration search space which depended on the

iteration space of each loop. Then the framework generated a memory trace based

on the loop schedule and the launch configuration. This memory trace was used

in the GPU cache model. Until this step, the extracted memory trace defined the

sequential behavior of the program, since the loop iterations to GPU threads were

sequentially assigned. To simulate the GPU’s parallel execution model, the memory

references in the trace was reordered to reflect the GPU parallel execution. The order

of threads influences thread scheduling. In the GPU, a warp (the smallest execution

unit) defines a set of consecutive threads. If consecutive threads access consecutive

memory addresses, the memory accesses are coalesced. They are merged into fewer

memory transactions. Our model simulates the memory coalescing behavior of GPU

architecture. For instance, if the memory addresses, referenced by all threads in a

warp, are in one cache line, then memory access requests will be merged into one

memory request.

After memory requests were coalesced, the memory trace was fed into the memory

access cost model where a memory access cost was computed, with the cache model.

This process was repeated until the framework iterates over all loop schedules and

launch configuration space. Finally, the framework picked the optimal-loop schedule

and the corresponding launch configuration that had minimal memory access. The

compiler then recompiled the same program using the selected loop schedule. The

major components in this framework will be discussed in the following sub-sections:
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7.3.2 Loop Schedule Patterns

We only consider the double- and triple-nested loops. Note that the loop nest level

means the parallelizable loop nest. For instance, in the body of the parallelizable

loop nest, there could be another loop nest that is sequentially executed. In the

current GPU programming models such as OpenACC, the maximum level of the

parallelizable loop nest is three. If a nested loop has more levels to parallelize, it can

be collapsed into two or three loops. In the current implementation, the double- and

triple-nested loops were tested. We considered three types of loop schedules for both

types of loop nests. The notations used in the loop schedules are as follows:

• bx, by, and bz: denote X, Y, and Z dimension of the grid, respectively

• tx, ty, and tz: denote X, Y, and Z dimension of the thread block, respectively

• num bx, num by, and num bz: denote the size of X, Y, and Z dimension of the

grid, respectively

• num tx, num ty, and num tz: denote the size of X, Y, and Z dimension of the

thread block, respectively

The three loop schedules for the double-nested loop (x-loop for the inner loop

and y-loop for the outer loop) are:

• schedule 2 1: x-loop is mapped to the X-dimension of a thread block, and

y-loop is mapped to the X-dimension of the grid.

• schedule 2 2: x-loop is mapped to the X-dimension of both the thread block

and the grid, and y-loop is mapped to the Y-dimension of the grid.
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• schedule 2 3: x-loop is mapped to X-dimension of both the thread block and

the grid, and y-loop is mapped to the Y-dimension of both the thread block

and the grid.

These loop schedule directives are implicitly added by the compiler. The graphical

explanations for these loop schedules are seen in Figure 7.3, 7.4, and 7.5. The

detailed mapping functions from the loop iterations to GPU threads are seen in

Listing 7.3, 7.4, and 7.5. The purpose of schedule 2 2 is to overcome the limit of

GPU threads within one block. In both schedule 2 1 and 2 2, the threads computing

the outer loop are in different thread blocks, likely to be scheduled to different GPU

SMs (Streaming Multiprocessors). This may not exploit the data locality efficiently.

How can the data locality be improved? We consider the loop schedule 2 3 which

allows threads computing the outer loop iterations to remain in the same block

improving the data locality. For a triple-nested loop, a code example is seen in

Listing 7.2 and other similar loop schedules are designed. Because of the space limit,

we only illustrate the graphical representation for one loop schedule in Figure 7.6, in

which x-loop, y-loop, and z-loop refer to the inner-most loop, the middle loop, and

the outer-most loop, respectively. The loop schedule in Figure 7.6 means that the

x-loop is mapped to X-dimension of a thread block, y-loop is mapped to Y-dimension

of the same thread block, and z-loop is mapped to X-dimension of the grid.
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#pragma acc loop

for(j = jstart; j < jend; j++){

#pragma acc loop

for(i = istart; i < iend; i++){

......

}

}

Listing 7.1: Double nested loop

example

#pragma acc loop

for(k = kstart; k < kend; k++){

#pragma acc loop

for(j = jstart; j < jend; j++){

#pragma acc loop

for(i = istart; i < iend; i++){

......

}

}

}

Listing 7.2: Triple nested loop

example

#pragma acc loop bx(num_bx)

for(j = jstart; j < jend; j++){

#pragma acc loop tx(num_tx)

for(i = istart; i < iend; i++){

......

}

}

mapping function to CUDA:

j = jstart + blockIdx.x+ t ∗ gridDim.x, (t = 0, 1, ..., jend−jstart
gridDim.x

− 1)

i = istart + threadIdx.x+ t ∗ blockDim.x, (t = 0, 1, ..., iend−istart
blockDim.x

− 1)

Listing 7.3: Loop schedule 2 1

#pragma acc loop by(num_by)

for(j = jstart; j < jend; j++){

#pragma acc loop bx(num_bx) tx(num_tx)

for(i = istart; i < iend; i++){

......

}

}

mapping function to CUDA:

j = jstart + blockIdx.y + t ∗ gridDim.y
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(t = 0, 1, ..., jend−jstart
gridDim.y

− 1)

i = istart + threadIdx.x+ blockIdx.x ∗ blockDim.x+ t ∗ blockDim.x ∗ gridDim.x

(t = 0, 1, ..., iend−istart
blockDim.x∗gridDim.x

− 1)

Listing 7.4: Loop schedule 2 2
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Figure 7.3: Loop schedule 2 1
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#pragma acc loop by(num_by) ty(num_ty)

for(j = jstart; j < jend; j++){

#pragma acc loop bx(num_bx) tx(num_tx)

for(i = istart; i < iend; i++){

......

}

}

126



mapping function to CUDA:

j = jstart + threadIdx.y + blockIdx.y ∗ blockDim.y + t ∗ blockDim.y ∗ gridDim.y

(t = 0, 1, ..., jend−jstart
blockDim.y∗gridDim.y

− 1)

i = istart + threadIdx.x+ blockIdx.x ∗ blockDim.x+ t ∗ blockDim.x ∗ gridDim.x

(t = 0, 1, ..., iend−istart
blockDim.x∗gridDim.x

− 1)

Listing 7.5: Loop schedule 2 3

7.3.3 Thread Scheduling

The memory trace is defined for how the memory is accessed, which in turn is defined

for how the thread blocks are scheduled into different Streaming Multiprocessors

(SMs) and how the threads are scheduled within each SM. When the GPU launches

a grid of threads for a kernel, the grid is divided into ‘waves’ of thread blocks. For

example, let us assume there are 15 SMs. Each SM has two thread blocks hence 30

thread blocks in total. Thread block 0 and thread block 15 are assigned to SM 0.

Thread block 1 and thread block 16 are assigned to SM 1. If there was a scenario

with 60 thread blocks and each SM allows at most 2 blocks (30 blocks for 15 SMs),

we will need to assign these blocks into two waves; 30 thread blocks to the first wave

and the other 30 thread blocks to the second wave. We use a round-robin scheduling

mechanism to schedule the thread blocks to all SMs in all waves.

The equation to calculate the number of waves is given in Equation 7.1. The

number of waves is obtained by dividing the total number of thread blocks by the

active thread blocks per SM times the number of SMs. The active blocks per SM

is given in Equation 7.2. For instance, in Kepler GPU, the max threads per SM is
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Figure 7.7: Thread scheduling used in the auto-tuning framework

2048 and max thread blocks per SM is 16 and upon knowing the number of thread

blocks in the kernel, which is specified by the launch configuration, we can determine

the number of waves.

waves =
thread blocks

active blocks per SM ×#SMs
(7.1)

active blocks per SM =

min(max threads per SM/block size,max thread blocks per SM) (7.2)

Figure 7.7 shows the thread scheduling mechanism. It highlights two waves that

are scheduled within one SM. Each wave has two thread blocks; each thread block

has two warps; each warp has two threads; each thread has five memory accesses. We
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access the memory references in a round-robin manner. This memory access pattern

produces a memory trace.

7.3.4 Memory Access Cost Model

After memory coalescing, the memory trace is fed into the memory access cost model

which computes the memory access cost for a specific loop schedule and launch

configuration. The metric used in this model is presented as

Costmem =

#levels∑
i

(Ni × Li) (7.3)

where Ni means the number of transactions happened in level i of the memory

hierarchy, and Li means the latency of memory level i.

The rationale behind this metric is the memory hierarchy in GPU architecture

which is seen in Figure 7.8. When the kernel accesses a global memory address,

it loads that address from L1 cache. If the data is already in L1 cache, then the

access is a hit. If the data is not in L1 cache, then the access is a miss and it needs

to load the data from L2 cache. If the data is not in L2 cache, then it needs to

further load the data from DRAM. So the formula after expanding the Equation 7.3

is seen in Equation 7.4 which is the sum of the memory access cost from L1, L2, and

DRAM. The formula for calculating each individual cost is given in Equation 7.5,

Equation 7.6, and Equation 7.7. The ‘4’ in Equation 7.6 and Equation 7.7 explains

the number of global memory load transaction that is increased by 1 every 128 bytes

in L1 cache, but 4 every 32 bytes in L2 cache and DRAM. Since the memory access

latency orders from high to low - DRAM, L2 cache, and L1 cache, the goal is to
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access high-order memories as less as possible. In other words, we would like to

have few global loads and low L1 and L2 cache miss rates as possible. When there

is intra-thread data reuse or inter-thread data reuse, different loop schedules have

different cache miss rates, and finally the performance of the kernels using those loop

schedules would be different.

Costmem = MemL1 +MemL2 +MemDRAM (7.4)

MemL1 = global loads ∗ (1− L1 miss rate) ∗ L1 latency (7.5)

MemL2 = global loads ∗ L1 miss rate ∗ 4 ∗ L2 latency (7.6)

MemDRAM = global loads ∗ L1 miss rate ∗ L2 miss rate ∗ 4 ∗DRAM latency

(7.7)

The key factors of the model are to estimate the global memory loads, L1, and L2

cache miss rates. The reuse distance model [13] is used to estimate L1 and L2 cache

miss rates. It is a classic model to predict the cache misses in CPU applications.

The primary reasons for cache misses are cold/compulsory, conflict, and capacity

misses, famously termed as the 3C model. The cold miss occurs when there is no

data in the cache, no matter how big the cache is. The conflict miss usually occurs

in direct-mapped caches and set-associative caches. Two cache lines may map to

the same cache slot even though there may be empty slots. The capacity miss

happens when there are no more available slots in the cache. The reuse distance
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model assumes that a LRU replacement fully-associative cache is used. So it can

only predict cold miss and capacity miss.

To the best of our knowledge, there is no existing work that discusses L2 cache

modeling in GPU. We found a couple of other related work discussing GPU L1 cache

modeling. Tang et al. [63] applied the reuse distance theory to model the GPU L1

cache. However, there were a few weaknesses and limitations in their approach: (1)

they assumed only one thread block is active in one SM which is not true in the real

hardware; (2) they modeled the cold miss and conflict miss but did not model the

capacity miss, however, some research have shown that only a minority of the misses

are conflict misses in both CPU [20] and GPU [56]; (3) they validated their model

against a GPU simulator which is not a real hardware per se. Nugteren et al. [56] also

used the reuse distance to model GPU L1 cache. However, in their implementation,

all thread blocks were scheduled into only one SM which is not the case in a real
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hardware. Our thread scheduling mechanism overcomes the drawbacks of the above

two papers discussed.

The reuse distance theory can measure both spatial locality and temporal locality

if the distance is measured with cache line granularity. The spatial locality defines

that the nearby memory addresses are likely to be referenced again in the near future.

The temporal locality defines that the same data is likely to be referenced again in

the near future.

The spatial locality is reflected by the memory coalescing level in the GPU kernel.

If a GPU kernel has coalesced memory accesses, then it has better spatial locality

than the kernel that has uncoalesced memory accesses. This is because the coalesced

memory accesses allow the nearby data elements to be accessed at the same time the

current data is accessed.

The temporal locality is reflected by the loop schedule. Different loop schedules

pose different temporal locality since the execution order of the threads are different.
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Table 7.2: Reuse distance example. Assume cache line has 16 bytes and the cache
size is 32 bytes. The reuse distance is based on cache line granularity

address 0 8 16 96 8 16 17 104
cache line 0 0 1 6 0 1 1 6
reuse distance ∞ 0 ∞ ∞ 2 2 0 2
cache hit/miss miss hit miss miss miss miss hit miss

The reuse distance theory can effectively capture both the spatial locality and tem-

poral locality. Table 7.2 shows a reuse distance example. In this example, assume the

cache line has 16 bytes. If the data is firstly accessed or when a cold miss happens,

the reuse distance is recorded as ∞. The reuse distance is a metric that defines the

distinct memory accesses between the current memory access and the last access. If

the reuse distance is larger or equal to the total number of cache lines, then a data

reference is missed in the cache. The cache hit rate can be obtained by diving the

hits by the total number of hits and misses.

Although the classic reuse distance model can predict the cache miss rate in

the CPU, it cannot be simply applied as-is on the GPU since the architectures are

significantly different. The most important difference is that in GPU, the threads in

a warp execute in lock-step manner and therefore memory coalescing is important in

the memory accesses of a warp. If the memory addresses referenced by all the threads

in a warp are in a cache line, then the memory accesses are merged into one memory

access. Another difference is the parallel memory processing in GPU. Therefore in

our implementation, the L1 cache modeling includes the parallel memory processing.

We also compare it with the base implementation. The difference of the “Base” and

“Modeled” is seen in Figure 7.9. In the “Base” version, the memory coalescing is
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applied to the memory trace. Then the memory requests from different warps are

processed in order. If the memory requests in a warp are not coalesced, then they

are also processed in order within a warp. In the “Modeled” version, we also apply

memory coalescing, but we further add a timestamp. The timestamp is added to

the following warps and also added to the threads in the same warp if their memory

requests are not coalesced.

In the implementation of the reuse distance model, a key factor is the input

which is a memory trace. In our analytical model, the memory traces are different

for different loop schedules. This is because different loop schedules assign the loop

iterations into GPU threads differently, thus the memory traces are different, and

eventually the cache misses are different.

For the L2 cache modeling, we must first apply L1 cache modeling for all SMs and

record the cache misses in their individual list. Then the memory trace is processed

in round-robin manner which is similar to the description in Figure 7.7.

7.4 Performance Evaluation

The experimental platform is Intel Xeon processor E5520 with frequency 2.27 GHz

and 32 GB main memory and an Nvidia Quadro K6000 GPU card which uses K40

architecture. L1 and L2 cache sizes are 16 KB and 1.5 MB, respectively. The cache

line size for both L1 and L2 is 128 bytes. The proposed framework was implemented

within the OpenUH compiler. The actual L1 and L2 cache hit rates were obtained

from l1 cache global hit rate and l2 l1 read hit rate metrics in CUDA profiler called
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Figure 7.10: Data reuse patterns

nvprof and the actual global memory loads were obtained from gld transactions

metric. Our auto-tuning framework was evaluated with diverse benchmarks and a

machine learning algorithm called Support Vector Machine (SVM) [68].

7.4.1 Benchmarks

To evaluate our auto-tuning framework, we considered several benchmarks: two

synthetic benchmarks (x-reuse and y-reuse), four from kernelGen OpenACC Perfor-

mance Test Suite [12] (Matrix Multiplication, Jacobi, Laplacian and Divergence),

one from CUDA SDK (Matrix Transpose), and one from EPCC OpenACC bench-

marks [11] (Himeno). We tested different data reuse patterns using the two synthetic

benchmarks. Figure 7.10 shows these two benchmarks along with another pattern

i.e. xy-reuse, a classic Matrix Multiplication case. The “x” here refers to the inner

loop and “y” refers to the outer loop in a double-nested loop. In the x-reuse bench-

mark, the inner loop reuses the common data; while in the y-reuse benchmark, the

outer loop reuses the common data. The third case is the xy-reuse where both the

inner and the outer loop reuse some common data.
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Figure 7.11 shows the results for L1 cache hit modeling for some of the bench-

marks discussed above. Figure (a) and (b) are results for the two synthetic bench-

marks and Figure (c) and (d) are results for a couple of benchmarks from kernelGen

suite. Results for other benchmarks were quite similar, so we have not included

them in the dissertation. The results indicate that modeled result is more accurate

than the “Base” version since it takes into account the parallel memory processing.

Figure 7.11 (a) shows that the cache hit rates are high for all loop schedules. This

is because for all iterations in x loop, the data they share are in one row and in the

same contiguous memory section. Figure 7.11 (b) shows that the shared data are

in the same column and therefore they are not contiguous in memory. This leads

to relatively lower cache hit. Figure 7.11 (c), result of Matrix Multiplication, shows

that there is data reuse in both x and y loops and therefore the shape of cache hit

results seems like a combination of x-reuse and y-reuse. Figure 7.11 (d), result of

Jacobi shows that, the overall hit rate is slightly lesser than x-reuse. This is because

the data that the threads share are stencil-like. For instance, considering a 4-point

stencil, for different points, the data that the threads access are not in contiguous

memory locations. However, for a specific point, the data that the threads share are

still in contiguous memory location. As a result, the cache hit rates are still relatively

high. If the cache hit is high, the indication is that the threads take lesser time to

fetch the data from high-latency memory.

The GPU L2 cache modeling result is seen in Figure 7.12. We show the results

for partial benchmarks including Laplacian, Divergence, and Himeno. The results

indicate that some loop schedules have low L2 cache hit while others have high
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Figure 7.11: GPU L1 cache modeling

L2 cache hit. This illustrates the importance of choosing the right loop schedules.

The error percentage of the modeled L2 hit against the actual hit is only 4.37%,

13.72%, and 2.76% for Laplacian, Divergence , and Himeno, respectively. The low

error percentages indicate that our model can accurately capture the L2 locality for

different loop schedules.

Figure 7.13 shows the global memory loads of kernels in the four benchmarks

discussed in Figure 7.11. The plots show that the modeled loads (before kernel
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Figure 7.12: GPU L2 cache modeling

launch) were exactly the same as the actual loads (profiled results) thus indicating

that our proposed model was accurately predicting the memory loads. Figure 7.13

(b) indicates that for y-reuse synthetic benchmark, no matter what the loop schedule

is, the memory access appears to be fully coalesced leading to the same number of

global memory loads all the time. In the other three plots, the tallest bars indicate

that the loop schedules had fully uncoalesced memory accesses, while the shortest

bars indicate that the loop schedules had fully coalesced memory accesses, and the

bars between the tallest and the shortest bars indicate that the partial memory

coalescing occurred. Higher the global memory loads, higher the time taken by the

threads to process the memory requests.

Figure 7.14 shows several plots that demonstrate the close correlation of the

kernel performance and the memory access cost modeling. We use the coefficient

of determination R2 to measure the strength of the relationship between the kernel

performance and the memory access cost in our model. R2 is a popular indicator

on how well a variable can be used to predict the value of another variable. The

values of R2 range from 0 (poor indicator) to 1 (excellent predictor). The R2 value
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Figure 7.13: Global memory loads

for all benchmarks are listed in Table 7.3 and the average value was 0.93 indicating

the strong correlation between the kernel performance and the memory access cost

modeling. Based on the memory access cost modeling, an optimal or a sub-optimal

loop schedule was chosen by the framework. For all benchmarks tested, the speedup

of the loop schedule chosen by the model against the default loop schedule chosen by

the compiler are listed in Table 7.3. Since the memory access patterns in different

benchmarks were different, the achieved speedup were also different. This proves the
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Table 7.3: Evaluation results

Benchmark Source Nested Loop Type R2 Speedup
x-reuse synthetic double 0.927 1.0
y-reuse synthetic double 0.683 2.74

Matrix Multiplication Performance Test Suite double 0.913 1.03
Jacobi Performance Test Suite double 0.998 1.1

Laplacian Performance Test Suite triple 0.999 1.05
Divergence Performance Test Suite triple 0.999 0.96

Matrix Transpose CUDA SDK double 0.943 1.37
Himeno EPCC triple 0.994 1.09

effectiveness of the proposed framework.

7.4.2 Supprt Vector Machine (SVM)

Support Vector Machine (SVM) [68] is a classical machine learning algorithm to

perform classification and regression analysis. In this dissertation, we developed

the OpenACC version of SVM [77]. Sequential Minimal Optimization (SMO) [58]

is a popular algorithm used to solve the SVM QP problem by iteratively solving a

series of smaller QP subproblems with only two unknown variables that are solvable

analytically. Cao et al. [23] proposed the parallel SMO algorithm called PSMO to

parallelize SVM by distributing the dataset into multiple computing nodes. Herrero-

Lopez et al. [40] improved this algorithm and developed P2SMO algorithm for multi-

class classification. Our OpenACC implementation was based on the CUDA version

of P2SMO implementation. The CUDA SVM1 was compiled by nvcc compiler with

flag “-O3”. The OpenACC SVM was compiled by OpenUH compiler. The dataset

we used come from different sources. adult was from UCI [15] dataset, letter and

1https://code.google.com/p/multisvm/
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Figure 7.14: Plots demonstrating correlation of Performance vs Memory Access Cost
Modeling
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shuttle were from Statlog dataset [21]; both mnist [46] and usps [41] were hand-

written datasets used for text recognition. The characteristics of each dataset are

presented in Table 7.4 where C is the regularization parameter and γ is the stopping

parameter of the SMO algorithm.

Table 7.4: Characteristics of the experiment dataset

Dataset Training Samples Features Classes C γ
adult 32561 123 2 100 0.001
mnist 30000 780 10 10 0.125
usps 7291 256 10 100 0.001
letter 15000 16 26 100 0.001

shuttle 43500 9 7 100 0.001

Figure 7.15 (a) shows the kernel performance of ACC-SVM against CUDA-SVM.

It is seen that there is significant performance improvement after applying the loop

scheduling optimization enabled by our auto-tuning framework. The average kernel

performance speedup for all datasets was 1.92x. The kernel performance gap between

the two versions was 15.58%.
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Figure 7.15: Performance of ACC-SVM against CUDA-SVM
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Figure 7.15 (b) shows the total execution time of the application of ACC-SVM

against CUDA-SVM; this included the kernels time plus the data movement and the

host code time. The average speedup after the loop scheduling optimization for the

whole application was 1.23x. The application performance gap between ACC-SVM

with optimization and CUDA-SVM was 7.87%.

7.5 Summary

This chapter discussed the importance of auto-tuning loop scheduling for GPU com-

puting. We proposed an analytical model-based auto-tuning framework to identify

the optimal or sub-optimal loop schedule that is better than the default loop schedule

chosen by the compiler. The model used in the framework was locality-aware as it

could predict the cache locality for each loop schedule. The model also predicted the

total number of global memory loads and based on these information it computed

a memory access cost for each loop schedule. The framework iterated over all loop

schedule patterns and launch configuration space and picked the loop schedule with

the least memory access cost. We analyzed the proposed framework with multiple

benchmarks. The results indicated that the memory access cost modeling had strong

correlation with the kernel performance and the loop schedule picked by the frame-

work achieved 1.29x speedup over the default loop schedule chosen by the compiler.

We also evaluated the framework with SVM application, and the average kernel per-

formance speedup for all datasets was 1.92x , and the whole application speedup was

1.23x. For the future work, we will integrate more factors into the model to improve
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the prediction of the loop schedule.
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Chapter 8

Conclusions and Future Work

The GPU architecture has gained great success in almost last decade, but the GPU

programming is still challenging. In recent years, several high-level directive-based

programming models have emerged and they simplify the GPU programming while

maintaining the high performance. To solve the portability issue, OpenACC has been

selected as the standard among these models. Compared to low-level programming

models, the directive-based models bring lots of research opportunities to shrink the

performance gap between the applications using high and low level models. What

parallelization techniques and optimizations are required have not been sufficiently

studied in prior works. This dissertation tries to address these issues by applying

different parallelization techniques and optimizations, both manually by the user

and automatically in the compiler and runtime. The automatic optimizations focus

on the runtime library design and implementation, reduction algorithm and multi-

GPU extension. These approaches are implemented in an open source compiler.
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The evaluation of these approaches indicate that they are highly competitive to the

commercial compiler implementation and optimized implementation using low-level

model. We also focus on the locality-aware auto-tuning for loop scheduling which

tries to find an optimal mapping from a loop nest to GPU threads hierarchy. The

experiment has shown that the proposed framework is effective in choosing better

loop schedules than the default ones chosen by the compiler.

Both the profiling tool and debugging tool help the application developer to port

the applications to GPUs easily. The profiling tool is used to profile and trace data

collection. The debugging tool is used to identify the errors introduced by application

parallelization or the compiler. For both profiling and debugging, the user can use the

regular CPU tool for the host code and the GPU vendor provided tool for the device

code. To use a single tool for both purposes, there are some alternative approaches.

For the profiling, the user can use the library that supports the profiling interface

defined in OpenACC 2.5. For the debugging, the compiler may generate both CPU

version and device kernel for the same compute region and compare their results

to check whether there is any mismatch, and insert APIs to track the host-device

memory coherence at runtime [49]. Another possible solution is to make the compiler

offer a bit-wise reproducibility mode with respect to CPU execution [14].

In the future work, based on our application porting experiences, lots of research

still can be done to further simplify GPU programming and improve the perfor-

mance using directive-based model. In the computation part, it is still the user’s

responsibility to specify which computation regions are offloaded to the device. It is

possible that the compiler can do some analysis for all loop nests and then calculate
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the computational intensity (i.e. the ratio of floating point operations per memory

access) for each of the loop nests, and finally decide whether it is profitable to of-

fload those loop nests. In the data part, the programmer’s burden can be further

reduced if the compiler can analyze the definition and use of all data and give some

hints to the user on how the data directives should be added. Another challenging

data problem is the user-defined data type including the classes and structures in

C/C++ and derived types in Fortran. This is because the user-defined data that

involves pointer indirection requires deep copy instead of the shallow copy in the

current standard. The deep copy directives are being proposed and discussed by

the OpenACC committee. In addition, since one of the goals of OpenACC is the

portability among different types of accelerators, the current directives set does not

fully utilize all hardware features of GPU. Therefore the compiler may perform some

GPU specific optimizations when applying the loop transformation underneath. For

instance, to make better use of the user manageable cache/shared memory of GPU,

the application developer can use tile directive to partition a loops iteration space

into smaller blocks and use cache directive to load the tile block data into shared

memory. However the current compiler technique is still not mature yet to fully

exploit the shared memory and texture cache in GPU deep memory hierarchy. Once

these challenges are solved, the proposed loop scheduling auto-tuning framework can

be improved to evaluate the new transformed kernels.
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