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Abstract
Due to the dramatic increase in popularity of mobile devices in the past decade,

sensitive user information is stored and accessed on these devices every day. Se-

curing sensitive data stored and accessed from mobile devices, makes user-identity

management a problem of paramount importance. The tension between secu-

rity and usability renders the task of user-identity verification on mobile devices

challenging. Meanwhile, an appropriate identity management approach is missing

since most existing technologies for user-identity verification are either one-shot

user verification or only work in restricted controlled environments.

To solve the aforementioned problems, we investigated and sought approaches

from the sensor data generated by human-mobile interactions. The data are col-

lected from the onboard sensors, including voice data from microphone, accelera-

tion data from accelerometer, angular acceleration data from gyroscope, magnetic

force data from magnetometer, and multi-touch gesture input data from touch-

screen. We studied the feasibility of extracting biometric and behaviour features

from the onboard sensor data and how to efficiently employ the features extracted

to perform user-identity verification on the smartphone device. Based on the ex-

perimental results of the single-sensor modalities, we further investigated how to

integrate them with hardware such as fingerprint and Trust Zone to practically

fulfill a usable identity management system for both local application and remote

services control. User studies and on-device testing sessions were held for privacy

and usability evaluation.
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Chapter 1

Introduction

1.1 Motivation and Scope

Identity is a paramount product of human cognition that put forward the develop-

ment of our kind in multiple domains at different stages. When it comes to the era

of internet and mobile, identity management becomes one of the key problems that

need to be properly solved to ensure the privacy and security of people’s informa-

tion and communication. According to the market analysis in [7], there will be 640

million tablets and 1.5 billion smartphones in use globally by 2015. This increasing

ubiquity of mobile devices makes device access control and data security extremely

important. Furthermore, more and more sensitive information such as transaction

information for bank accounts, credit cards, trade secrets, etc., are passed through

mobile digital devices. While these new uses introduce more convenience and a

richer experience, they also create new privacy and security issues. In response,
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these devices have now become targets for hackers. We can see these trends active

in the market. From 2011 to 2012, mobile malware families ballooned by 58%

[64], 32% of which were used to steal information [64]. In January 2012 alone,

there were 32 million data breaches, of which 40% were caused by hackers [38].

However, the need for strong authentication on mobile is countered by the still-

clumsy input method of such devices and the different user expectations for inter-

action models, especially when compared to the standard authentication solutions.

As showed in a study of over 6,000,000 passwords, 91% of all user passwords

belong to a list of just 1,000 common passwords [3] (e.g., 8.5% users use either

“password” or “123456” as their passwords). Moreover, complex password of other

knowledge-based authentication solutions will violate usability, which make these

kind of solutions discarded by the mobile users.

Contemporary mobile user authentication technology has several limitations.

For example, most devices only provide login screen password security which needs

to be entered several times over the course of a day and cannot detect intrusions

after the device has been unlocked. As a result, there is a compelling need for

a complimentary on-demand authentication to ensure owner’s identity after lo-

gin stage. Explicit authentication mechanisms are not appropriate for continuous

authentication scenarios because they would lead to usability issues. In [34], au-

thors found that the most desirable user authentication method should be able to

implicitly and continuously perform user-identification in the background without

disrupting real-life user-device interactions.

2



On the other hand, in response to the aforementioned shockingly large num-

bers, there is a need to process sensitive information in a way that is independent

of a potentially infected operating system while monitoring physical events of the

device to detect possible physical unauthorized use. So the goal of our work is to

investigate and design implicit and continuous authentication approaches, which

employing the mature smartphone sensors to provide a higher security protection

and user experience to the mobile system.

To identify the identity of a people, the mobile device generally can only work

the same way as a human being: take advantage of the information collected from

human-mobile interaction, to acquire the knowledge of ”Something you are?”,

”Something you have?”, and ”Something you know?”. For human being, we collect

information from our eyes, our ears, and we can abstract and verify the knowl-

edge with our brains, while for the mobile devices, they collect the information

from the deployed sensors and analyzed our identity by their processors based on

pre-defined policies. There are many different ways to approach an identity veri-

fication on the mobile device. We do can employ specific and sophisticated tokens

to construct a robust identity verification based on the factor oh ”what you have?”.

We can also formulate a complex alphabetic, graphic, or other memory based iden-

tity verification approaches to ensure the factor of ”what you know” will not be

compromised. However, these approaches either request extra hardware, or ex-

tra efforts from the uses, which are not implicit and violate the usability of the

identification system.
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So the scope of our work is to use on-board sensors to sense user’s informa-

tion during the normal interactions, and analyze the user’s ”Something you are?”

information to perform implicit user-identity management. Those approaches in-

clude methods that analyzing the inputs from the touchscreen, microphone, and

motion-sensors. Furthermore, considering the requirement from usability aspect,

we move forward the identity management problem with a new question, ”have

the user been changed?”, and introduced an approach and framework integrated

the single-sensor modalities with fingerprint sensor and novel security and crypto

hardware, such as TrustZone, to increase the feasibility and performance of the

implicit mobile identity management both in applications and remote services.

1.2 Research Questions

Nowadays, a smartphone device has a set of powerful sensors that can be used

to collect users’ input data during the interactions as well as context information.

These specific data and context information raised a possibility to identify user’s

identity or provide clues to detect identity change in a more implicit and continu-

ous way. To make this possibility become reality, several research questions must

be answered to complete the design and implementation of a usable identity man-

agement framework.

• Does the sensor data collected from user-device interactions reflect user’s

biometric and behavioral features?
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This question is a fundamental question to all the approaches proposed for

employing the on-board sensor data to perform user-identity management,

and a positive answer to this question builds up the basic hypothesis to the

whole user-identity management framework. User-mobile device interac-

tions will generate data from several sensors, the touchscreen, the micro-

phone, and the motion-sensor. For the microphone, which is basically a

speaker-recognition problem. The feasibility of this solution has been proved

by a variety of researchers, publications, and realistic use cases. However,

the touchscreen and motion-sensor based user-identity verification remains

a relatively new domain and has not been fully investigated. To ensure the

effectiveness of the sensor-data-based identity management framework, we

have to first prove the feasibility of the touchscreen and motion-based identity

verification approaches, or at least alternatively, showing these two sensor

data could provide clues and context information on detecting user-identity

change, which could potentially help improving the performance of the whole

system.

• How to employ the sensor data to achieve best trade-off between privacy

protection improvement and usability enhancement in each modality?

Different from the previous question, which more relies on machine learn-

ing and pattern recognition techniques and approaches, this question trying

to reflect the feasibility of the identity management system in a different as-

pect, which is usability. For other user authentication and recognition system,

most likely the privacy protection improvement and usability enhancement
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are equally important to the system. However, in an implicit and continuous

user-identity management system, the usability would be a factor that plays

a more prominent role. Since its continuous attribute, identity verification

would be frequently performed during users’ interactions. So even a 10%

false reject rate would be a unbearable burden to the smartphone users. To

make the system work, investigation on how to lower the false reject rate

while keeping a reasonable false accept rate must be held. We will discuss

how we achieve this goal in both controlled and uncontrolled touchscreen

input data in Chapter 3.

• How to employ the sensor data to perform usable user-identity manage-

ment as a whole framework?

This question is a follow up question of the second question. What if the sin-

gle modality’s usability performance still cannot satisfy the requirement of an

implicit and continuous user-identity management system even after employ-

ing a set of false reject rate reduction measures? The smartphone user may

require a false reject rate that even below 1%, which is not achievable due to

the nature of the interaction data. In this case, we may need to change the

question from ”Something the user are?” to ”has the user changed?”. We may

also change the decision making approaches from ”block any unauthorized

users” to ”require re-authentication when sensitive information, application,

or action are accessed and performed”. Another possibility is to combine the

results from multiple sensors, even from very accurate sensors such as fin-

gerprint, to make the whole system works. Generally speaking, investigation
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on this question would provide an opportunity of making the system really

usable. In Chapter 4, and Chapter 7, we will discuss the approaches on ap-

plication management and integration, which investigated the answer to this

question.

1.3 Research Contributions

Herein, we make several contributions to the implicit and continuous mobile iden-

tity management field, as summarized in the following:

• We introduced the concept of on-demand user-identity verification and the

concept of device-leaving-hands event on the mobile system. Unlike the pre-

vious time-out based identity management schema, the proposed mechanism

and algorithm leverages the sensor input from human-mobile interaction and

evaluates the mobile user’s identity change. We prove these concepts using

quantitative approaches and experiments.

• We exploited the trade-off between security and usability in user-identity

verification on smartphone. We considered usability as a paramount fac-

tor when analyzing the performance of a security system. We designed the

identity management approaches based on the theory, ”The most desirable

user authentication method should be able to implicitly and continuously per-

form user-identification in the background without disrupting real-life natu-

ral user-device interactions.”. We proposed and designed a set of algorithms
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and policies to balance the trade-off between security and usability.

• We investigated the authentication approaches that employ biometric and

behavioral features extracted from touch gestures to identify user’s identity in

an uncontrolled environment. We proposed and designed algorithms to solve

the specific sequence data pattern matching problem. The algorithms include

touch to image transformation, sliding window and threshold schema, and

multi-level template database.

• We designed and conducted experiments to investigate the feasibility of em-

ploying the touchscreen usage data to perform user-identity verification. Over

200 subjects are invited for the data collection and on-device testing, and IRB

of the data collection and user experiments is filled and updated. During the

whole process, 140,000 touch gestures are collection from the touchscreen.

I carried out my research and implementation of the touch module in three

steps. We design and implement FAST, to evaluate the feasibility of touch-

based identification with both touch and finger motion data collected from

a designed digital glove. We then improve the touch-based identification by

a novel graphic feature that can better differentiate phone owner from the

others using touch gestures. After solving the above touch-based identity au-

thentication problems in controlled environment, we move on and developed

TIPS, a context-aware implicit user-identification system considering context

applications and performs identity verification in an uncontrolled environ-

ment using One Nearest Neighbor and Dynamic Time Warping. While to our

best knowledge, we are the first research team trying to solve the touch-based
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user authentication in an uncontrolled environment.

• To investigate the feasibility of speaker-recognition on smartphone device

and understanding its related usability issues, we designed and implemented

a unified speech-speaker recognizer (USR) framework that provides specific

response corresponding to different user-identity based on a customized iden-

tity management policy, which leveraging the speaker based identity verifica-

tion. We collected over 40,000 speech commands are collected from micro-

phone. To test the performance on real device, we developed an open-source

Android library for speaker-recognition. Besides of the accuracy, we also

carried out a comparison study of USR and the Google speech recognition

framework.

• For the motion-sensors on the smartphone device, we proposed two verifica-

tion methods, Statistical Method and Trajectory Reconstruction Method, to

extract specific features and verify user’s identity. We conduct experiments

a multi-session MDP motion database. We also showed evidence that veri-

fication performance can be affected by the user body movements, such as

walking. However, the investigation results on the motion-sensor based user-

identification showed that it is not satisfactory as touch and speech, and later

was served as a context information provider in the entire framework.

• To further take advantage of each single-sensor modality, we designed and

implemented the IdentityTracker and the Secure Session Service. For the

IdentityTracker, we designed an identity management scheme, a framework
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that not only tracks the user’s identity through the fingerprint sensors, it com-

bines these results with data from both the motion-sensors and interaction

inputs, including touchscreen usage and speech inputs, while concurrently

managing app-level access on smartphones in post-login stages. To evaluate

the performance of said system, we conducted two sessions of data collec-

tion and tested the trained model during the user’s natural use. Results have

shown that our approach improves user security by not granting app-level ac-

cess to unauthorized guest users while at the same time promoting usability

by greatly reducing the amount of unnecessary authentications for the smart-

phone’s owner. For the Secure Session Service, we designed a framework for

secure session-based applications, which leverages TrustZone and continuous

biometric authentication schemes, IdentityTracker. The framework designed

contributes to security heavily while not only maintaining, but improving

device usability and convenience for the user. We implement identity verifi-

cation schemes identifying its security properties and the results indicate our

solution is practical.

1.4 Outline of the Thesis

We organize the remainder of this thesis as follows. In Chapter 2, we provide

background knowledge and our approaches and briefly survey the related work

and organize them with regard to our approaches. In Chapter 3, 4, and 5, we

describe the approaches of employing single on-board sensor data, including the
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touchscreen input, speech command, and motion-sensor data for the mobile iden-

tity management respectively. In Chapter 6, we introduced an approach that in-

tegrated fingerprint sensor and Trust Zone with the other sensor approaches to

perform context aware user-identity management both local and remote. We con-

clude this thesis in Chapter 7.

Our published papers and their corresponding chapters:

• Chapter 3

– Tao Feng, Ziyi Liu, Kyeong-An Kwon, Weidong Shi, Bogdan Carbunar,

Yifei Jiang and Nhung Nguyen. “Continuous mobile authentication us-

ing touchscreen gestures”. The 12th annual IEEE Conference on Tech-

nologies for Homeland Security (HST 2012). [25]

– Xi Zhao, Tao Feng and Weidong Shi. “Continuous Mobile Authentica-

tion Using A Novel Graphic Touch Gesture Feature”. The IEEE Sixth In-

ternational Conference on Biometrics: Theory, Applications and Systems

(BTAS 2013). [73]

– Tao Feng, Jun Yang, Zhixian Yan, Emmanuel Munguia Tapia and Wei-

dong Shi. “TIPS: Context-Aware Implicit User Identification using Touch

Screen in Uncontrolled Environments”. The 15th International Work-

shop on Mobile Computing Systems and Applications (HotMobile 2014). [26]

• Chapter 4

– Tao Feng, Zhimin Gao, Dainis Boumber, Tzu-Hua Liu, Nicholas DeSalvo,
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Xi Zhao, Weidong Shi, “USR: Enabling Identity Awareness and Usable

App Access Control During Hand-free Mobile Interactions”, Sixth Inter-

national Conference on Mobile Computing, Applications and Services

(Mobicase 2014). [24]

• Chapter 5

– Tao Feng, Xi Zhao and Weidong Shi. “Investigating Mobile Device Picking-

up Motion as a Novel Biometric Modality”. The IEEE Sixth International

Conference on Biometrics: Theory, Applications and Systems (BTAS 2013). [28]

• Chapter 6

– Tao Feng, Xi Zhao, Nick DeSalvo, Zhimin Gao, Xi Wang and Weidong

Shi, “Security after Login: Identity Change Detection on Smartphones

Using Sensor Fusion”, 2015 IEEE International Symposium on Technolo-

gies for Homeland Security (HST 2015). [27]

– Tao Feng, Nicholas DeSalvo, Lei Xu, Xi Zhao, Weidong Shi, “Secure Ses-

sion on Mobile: An Exploration on Combining Biometric, TrustZone,

and User Behavior”, Sixth International Conference on Mobile Comput-

ing, Applications and Services (Mobicase 2014). [23]
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Chapter 2

Background and Related Works

Research of continuous and implicit mobile identity management draws from mul-

tiple areas. For the on-board sensor aspect, it includes implicit and continuous

identity authentication and touch-gesture-based user recognition under controlled

and uncontrolled environments, speech and speaker-recognition, motion-based

identity and activity recognition, and identity management. On the other hand,

the hardware requires background knowledge of fingerprint sensing as well as with

trust zone.

2.1 Implicit and Continuous Identity Authentication

In general, there are three kinds of user authentication approaches: “Something

you have”, “Something you know”, and “Something you are”. The approach of

“Something you have” relies on a smartcard, a USB thumb drive, or some other
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types of objects which users must have. Smartcards and USB drives must be phys-

ically inserted into the computer in order to authenticate the user. However, a

smartphone itself can be considered as a token of “Something you have”, and the

challenges are associated with lost control of the smartphone token itself.

The arts of the approach “Something you are” can be categorized into two

groups including implicit user-identification and multi-modality pattern classifi-

cation, especially, multi-modality biometrics.

For desktops, researchers in the past have explored the feasibility of applying

keystroke dynamics and typing patterns for user-identification. Keystrokes can be

continually sampled by intercepting output from a keyboard. Ailisto et al. [51]

used accelerometers in television remote controls to identify individuals. Cun-

toor et al. [18] and Gafurov et al. [30] experimented user-identification using gait

analysis and recognition. Koreman and Morris et al. [41] proposed a continuous

multi-modal based approach for user-identification. In [34], Jakobsson et al pro-

posed an implicit user authentication framework studied using recorded phone

call history and location for continuous user authentication. Shi et al. described a

multi-sensor based user authentication scheme that includes touchscreen as one of

the continuous user-identification modality [63].

Some research efforts were conducted on graphical authentication method that

uses the implicit drawing features to authenticate users. Jermyn, et al. [35]

proposed a technique – “Draw a secret (DAS)”. Users will draw a graph on a 2D-

grid, and the information about which grid is occupied and in which order will be

recorded. When trying to login, users will repeat the drawing. According to Jermyn
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et al., a relatively small grid is in fact secure enough. But according to Thorpe et

al.’s study [66], DAS’s security perhaps is not so good as once believed. In the real

world, people usually use signature to prove their identities. So it is natural that

Syukri et al. [65] proposed a similar method in the cyber world. In their scheme,

users need to draw their signatures with mouse, and system will normalize the data

and record them into a database. During authentication, the system will extract

the characteristics from the newly entered signature, and compare them with the

pre-stored version. Furthermore, Varenhorst, et al. [67] proposed a method of

drawing doodles rather than signatures. They used several methods to analyze the

data, including grid, speed, doodle variance and a combination of all the above

and achieved very high accuracy based on their evaluation.

There has been a body of literature on combining multiple biometric inputs to

produce aggregated user-identification results. In [33], Indovina et al. identified

that biometric integration can occur on the feature level, or at the score level. In

feature level integration, all of the initial features from measurements are grouped

together into a single feature vector for classification. Although the most informa-

tion is available at this point, feature-level integration suffers from the so-called

curse of dimensionality. Additionally, the features of some measurements may

not always be available. Furthermore, several implicit identity sensing approaches

have been proposed in the past that leverage the sensors on mobile devices such as

accelerometer [51], GPS [52], touchscreen [60,63], and microphone [47].

15



2.2 Touch-Based Identity Verification

2.2.1 Touch-Gesture-Based User Recognition under Controlled

Environments.

Touchscreen gestures, as a normal and widely used user-device interaction method,

have been recently used as a biometric modality for user-identity recognition and

verification. Feng et al. [25] extracted finger motion speed and acceleration of

touch gestures as features. Luca et al. [50] directly computed the distance between

gesture traces using the dynamic time warping algorithm. Sae-Bae et al. [61]

designed 22 special touch gestures for authentication, most of which involve all

five fingers simultaneously. They computed dynamic time warping distance and

Frechet distance between multi-touch traces. Frank et al. [29] studied the corre-

lation between 22 analytic features from touch traces and classified these features

using k-nearest-neighbors and Support Vector Machines. Shahzad et al. [62] pro-

posed to use touchscreen gestures as a secure unlocking mechanism at the login

screen. However, all prior works either require users to perform pre-defined touch

gestures, or the data being collected under controlled experimental environments

which might not be representative of natural user interactions. In our work [26],

we explore implicit real-time user-identification from data collected under more

natural uncontrolled environments.
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2.2.2 Motion-Sensor Enhanced Touch Gesture User Recognition.

Bo et al. [12] presented SilentSense, a framework to authenticate users silently

and transparently by exploiting the dynamics mined from users’ touch behavior

biometrics and the micro-movement of the device caused by users’ screen-touch

actions. Although implemented on the Android platform as a background service,

SilentSense does not explore the data variations in uncontrolled environments.

Furthermore, our TIPS approach can also leverage the application context to im-

prove performance. We did not employ motion-sensor data when authenticating

user-identity since it is power consuming and we wanted to focus on pure touch-

screen based user recognition in our work.

2.3 Speech and Speaker Recognition

2.3.1 Speech Application

The Android speech recognition API allows developers to integrate speech recogni-

tion directly into their applications. Since its release, numerous applications have

been developed that leverage speech recognition capabilities provided by the An-

droid platform. These applications include the voice dialer, voice search, voice

note, personal assistant (similar to Apple’s Siri), voice navigator, voice controlled

camera, voice commands, etc. Table 4.1 lists some smartphone applications that

use speech recognition. Many speech recognition applications allow a user to in-

teract with a mobile device hands free. They often provide a speech user interface

17



Voice Based Applications 

Speech Recognition Service 

Speech Recognition Server 

Speech Input 

Text Output 

Personal  

Assistant 

Voice  

Commands 

Voice  

Dialer 

Speech Input 

Text Output 

...... 

Speech Recognition API 

Figure 2.1: General mobile speech recognition framework
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that supports features such as waking up on voice commands, automatically post-

ing messages to Twitter and Facebook using speech-to-text, launching applications

based on voice commands, opening calendar, searching based on voice inputs (e.g.,

search contact list and automatically dial a person’s number), even controlling

mobile-device hardware, such as camera, using voices.

Though providing convenience to a mobile user, these speech-recognition based

applications are potentially vulnerable to malicious exploits. Almost none of these

applications we studied offers the capability to differentiate the speakers and en-

forces appropriate policies on who can interact and control a mobile device us-

ing speech. Things can get even worse when we dive deeper into the speech-

based API and scrutinize its security. In order to support hands free interac-

tions, activities triggered by speech can be launched while a mobile device is

locked in a secure mode. This means voice-based actions can take precedence

over the secure mode that requires a user to unlock a mobile device. By setting

the “FLAG SHOW WHEN LOCKED” flag, a user may bypass the lock screen and

interact with the mobile device when the device is still in a secure mode. To give a

concrete scenario, an imposter may post to a victim’s Twitter or Facebook account

using speech when the mobile device is in locked state.
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2.3.2 Speech-Recognition Framework

Figure 2.1 shows a general framework for current mobile speech recognition.

When user inputs a speech command to a speech application, the speech appli-

cation records its voice and calls the system speech recognition API to activate

a preset speech recognition service. The recorded wave file is then sent to the

speech recognition server through the speech recognition service running in the

background. After the speech recognition server transcribes the speech, it returns

the text of the command to the speech recognition service and the speech applica-

tions, and then the speech application follows the text command.

From the general mobile speech-recognition framework, two weaknesses are

obvious during the text command transfer from speech recognition service to sys-

tem speech recognition API:

• The text command is transferred without any consideration on which appli-

cation is calling the service and what is the feature of the application (where

usability can be promoted).

• The text command is sent without any authentication process, which leaves a

potential threat to the mobile system since the speech command will always

follow the text command (where privacy can be enhanced).
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2.4 Motion-Based Identity and Activity Recognition

Although physiological biometrics (i.e., retinal patterns [44], fingerprint [56], fa-

cial features [74]) could provide stable and accurate verification rate, behavioral

biometrics [69] have advantage over traditional biometric technologies due to their

non-obtrusive.

Prior research on mobile motion is focused on two aspects, activity recognition

and mobile motion-based user authentication. Some existing works have explored

user activity inference methods with accelerometer sensors [13], [45], [11]. In

[49], Lu et. al., proposed a continuous sensing engine for activity recognition

on mobile platform, which can robustly detect five common physical activities,

stationary, walking, cycling, running, and in a vehicle (i.e., car, bus). Yang et.

al., [70] also researched on activity recognition by exploiting the accelerometer

data. For mobile motion-based user authentication, [30] demonstrated an identity

verification method using gait data. In [75], authors modeled gesture patterns

through a continuous n-gram language model using a set of features constructed

from mobile sensors, where picking-up a mobile device from table is considered

as a task in the context sequence. Different from the aforementioned existing

works, to our best understanding, we [28] consider the process of MDP motion as

a biometric modality for user authentication.
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2.5 Identity Management

Multi-user mobile and other devices have been researched as a new topic for re-

cent years. In [38], Karlson et al. discussed the privacy and security issues when

users of smartphone lend their phone to other physical users. Mobile permission

management as a derivative research topic used to handle the privacy and secu-

rity problems then attracts researchers’ attention. Rofouei et al. [59] researched

on multi-user device-display interaction identity identification by using a group

of devices, including a Kinect camera, a multi-touch display and 2 accelerometer-

equipped phones (one visible). [46] also present xShare, a protection solution

to address privacy and security issues for the shared mobile scenario. However,

previous work focusing only on how to utilize permission management to improve

privacy and security, and ignores the potential usability promotion can achieved by

identity awareness.

2.6 Fingerprint Sensing With Trust Zone

TrustZone has been gaining more and more attention from the smartphone se-

curity commmunity. Korean researchers have built a TrustZone-based platform

for Android to prevent malware infections [10]. Also based upon TrustZone, Luo

Jing and his colleagues designed a dual operating system, one satisfying users’

application requirements and another acting as a secure OS providing specific

security services [36]. Martin Pirker and Daniel Slamanig proposed a platform

22



Client 

Application

TZAPI

TZAPI

Library

TZAPI

Driver

Secure Kernel

Monitor Secure Boot

Driver

API
Service API

Secure Session 

Service

Sign-on

Service

Normal World Secure World

Figure 2.2: The general software layout of TrustZone. Note that there is the secure
world and the normal world. Our approach places a transaction service within the
secure world.

framework on TrustZone that may be used for arbitrary applications requiring a

privacy-preserving online remote prepaid payment system suitable for micro as

well as macro payments [55]. However, neither system provides a concrete de-

sign of user authentications on TrustZone. Researchers from ETH Zrich suggested

utilizing TrustZone with a password to solve secure enrollment problem [53], but

password authentication would be useless if the phone is lost and the password

has been stolen.

Of the main components in fingerprint sensing with trust zone framework, as

shown in Fig. 2.2, TrustZone is the most crucial, as it controls the secure processing

of sensitive data. TrustZone is an extension to the SOC (system-on-a-chip) ARM

design covering everything from the processor to the memory to the peripherals.
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Using TrustZone design, the physical core is virtualized into two separate cores:

one of which is referred to as the “secure world,” and the other one is the “normal

world.” The secure world is used when processes will be interacting with or collect-

ing sensitive data. This could range from using the keyboard, fingerprint readers,

or extended to interactions with a bank app. In contrast, the normal world is used

when there is no sensitive data being processed. This could include things such

as playing games, taking pictures, etc. The apps that run in each respective world

can be chosen and defined as per what is deemed sensitive. These two modes are

completely isolated from each other to stop data leaks. Secure services that are run

can range from a complete operating system to trivial services. TrustZone achieves

this functionality through the novel addition of monitor mode. The monitor is used

as a faucet of communication between the two worlds. Because the system is only

as robust as the monitor, it must be sensitive to what is transferred between the

worlds. The monitor also handles the context switches between the two modes

which naturally gives it the responsibility of saving the state and switching safely

between the two modes. The way that a program will enter secure mode is by

throwing an exception. The exceptions that may trap to the monitor causing a

world switch are FIQ, IRQ, and external aborts. This effectively allows sensitive

processes to be run in this mode such that they are secure from any malware that

could be present within the normal world. This is the main motivation of the

TrustZone architecture.

The other critical component of this system, as seen in Fig. 2.3, is a biomet-

ric fingerprint sensor. As the main focus of this paper is not fingerprint sensor
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Figure 2.3: The general flow of processing a fingerprint

technology, this will not be addressed in depth. The type of fingerprint reader is

irrelevant. The sensor must first generate an image of the fingerprint. This can be

through either optical, capacitance, or ultrasonic means [54]. Optical sensors use

visible light to capture an image. This has major weaknesses in that if the finger is

dirty it can be difficult to retrieve a good image. Capacitive readers use capacitance

in order to generate an image using an array of sensors to detect the fingerprint.

Last but not least, ultrasonic readers use high frequency sound waves to generate

an image. Regardless of the way that the image is retrieved, it is first prepossessed

where the picture is enhanced and adapted so that feature extraction can gener-

ate more reliable identity traits from the user. After feature extraction, a feature

vector can be obtained containing discriminative properties (such as ridge ending,

bifurcation, and short ridges). The last step is to compare this vector with existing

templates where a matching score is generated. If this score is above a threshold,

the fingerprint is accepted as valid. If not, then it is rejected [54,57].
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Chapter 3

Touch-Gesture-Based Mobile User

Authentication in Controlled and

Uncontrolled Environment

Touchscreen gestures have recently gained popularity as a new ”biometric” signa-

ture for user authentication [25, 29, 61, 73]. This is because: (1) touch data is

indicative of two biometric features, i.e., the user hand geometry and muscle be-

havior. Such biometric characteristic variations have the potential to provide user

discrimination; (2) touch data can be easily accessed with very low overhead on

mobile devices nowadays.

We proceed in three steps to investigate on the touchscreen input based user-

identity verification problem. For the first step, we designed and implemented

FAST, to evaluate the feasibility of touch-based identification with both touchscreen
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(a) Flick (b) Pinch (c) Spread (d) Drag (e) Rotate

Figure 3.1: Example Multi-touch Gestures

input data and finger motion data. Then we improved the touch-based identifica-

tion solution with GTGF, a novel graphic feature that can better differentiate phone

owner from the others. After solving the above touch-based identity authentication

problems in a controlled environment, we move forward to solve the problem in

an uncontrolled environment in the background. So we designed and developed

TIPS, a context-aware implicit user-identification system considering application

context.

3.1 Touch-Gesture-Based User Authentication Prelim-

inary Study

Unlike PCs, touchscreen is the primary input medium on smartphones and tablets.

Multi-touch inputs embed behavior characteristics that are user specific and can

be used for detecting mobile users. We classify touch input into three categories:

touch gestures (e.g., flick, spread, pinch, drag, and tap) see Figure 3.1; virtual

typing (e.g, typing using a touchscreen based keyboard, entering a phone number

using touch); and touch-based drawing (e.g., drawing shapes using fingers). For
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Figure 3.2: FAST Design

each category, user specific features can be extracted from traces collected from a

device touchscreen.

We propose a touch-gesture-based user authentication system, FAST (Fingerges-

tures Authentication System using Touchscreen), that focuses on post-login user

authentication. Figure 3.2 shows a high-level diagram of the design. As long

as the smartphone is used, FAST authenticates the user continuously. After user

login, FAST continues to authenticate the mobile user in the background using in-

tercepted touch data from normal user-smartphone interactions. To achieve the

objective, FAST relies on gesture based smartphone owner detection. The detec-

tion approach is invoked on-demand whenever touch inputs are received and is

transparent to the smartphone user. Only when there is sufficient evidence that

the current user is not the smartphone owner, traditional user authentication is

activated.
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3.1.1 Touch Gestures

FAST collects selected touch gesture information including gesture type, X and Y

coordinates, directions of the finger motion, finger motion speed, pressure at each

sampled touch point and the distance between multi-touch points. In total, there

are 53 features for each touch gesture. We consider only the six most frequent

and useful gestures: down to up swipe, up to down swipe, left to right swipe,

right to left swipe, zoom-in, and zoom-out. Since a smartphone user may apply

different levels of touch pressure at different stages of a touch gesture FAST also

divides each gesture into three segments, (i) the beginning of a touch motion, (ii)

the main touch motion, which is the longest segment and (iii) the end of a touch

motion.

We have implemented an Android application that collects touch information

from touchscreen-equipped smartphones. In a preliminary user study, we have

collected the touch inputs of 7 users (three females and four males). Each user

was asked to perform a set of touch related tasks, including controlling the smart-

phone UI using flick-touch gesture (left-to-right flick, right-to-left flick), mobile

web browsing using pinch and spread-touch gestures, dragging icons and drawing

simple shapes using finger touch. Each task was repeated multiple times by the

same user.

Figure 3.3(a) shows sample spread-touch traces of the seven tested users. Each

subfigure cell contains plotted traces of one user. In each subfigure, traces from

different test trials are plotted using different colors. For each touch trace, the size
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(a) Sample Spread Profiles of Seven Users
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(c) Sample Flick Profiles of Seven Users

Figure 3.3: Sample Multi-touch Traces from Users
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of trace dots increases with the level of touch pressure.

Figure 3.3(b) contains pinch touch traces of the same seven tested users. Sim-

ilar to the plotted spread traces, each subfigure cell shows plotted traces of one

user. As indicated by Figure 3.3(a) and (b), each user has his/her own distinctive

spread-touch style. No two of the seven users share the exact same spread-touch

style. For the same user, there is a high degree of consistency that the same user ex-

hibits similar spread and pinch touch style. Though collected from different trials,

some of the spread-touch trace patterns of the same user match with one another

almost perfectly.

Figure 3.3(c) shows sample flick touch traces of the seven tested users. Differ-

ent from spread and pinch, a flick is a single finger gesture. Each subfigure cell

contains plotted traces of one user. In each subfigure cell, the horizontal-axis de-

notes screen location translation and the vertical-axis denotes time. Each cell of

figure 3.3(c) shows traces from different test trials using different colors. For each

trace, the size of the trace dots increases with level of touch pressure. By observing

the traces, one can find that for each trace, there was a finger acceleration stage, a

steady movement stage (middle section of each flick trace), and a de-acceleration

stage. FAST extracts steady touch pressure, minor/major ratio, steady finger mov-

ing speed, and acceleration/de-acceleration speed as features. The features are

defined in Table 3.1.

Furthermore, FAST complements touchscreen gesture information with infor-

mation collected from a digital sensor-glove. The glove provides X, Y, and Z axis

angular rate information, the yaw, pitch and roll of finger movements, for a total of
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Feature Definition
Touch pressure The touch pressure value of each touch point is acquired by

mobile system API, and it is a mean value between several
touch points.

Minor/major ratio The angular information calculated by the x and y axis values
of several consecutive touch points.

Finger moving speed The speed is calculated by the distance divided by the time du-
ration. The distance is the length from the start point to the
end point, while the time duration is the difference of times-
tamp between the starting point and end point.

Acceleration/de-
acceleration

The acceleration/de-acceleration is calculated by the speed dif-
ference divided by the time duration. The speed difference is
the speed change between the start point speed and the end
point speed, while the time duration is the difference of times-
tamp between the starting point and end point.

Mean of IMU sensor
reading

The mean value of a single degree of sensor readings, and 9
features for 9 degrees.

Minimum of IMU
sensor reading

The minimum value of a single degree of sensor readings, and
9 features for 9 degrees.

Maximum of IMU
sensor reading

The maximum value of a single degree of sensor readings, and
9 features for 9 degrees.

Standard deviation
of IMU sensor read-
ing

The standard deviation of a single degree of sensor readings,
and 9 features for 9 degrees.

Table 3.1: Features employed in FAST
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36 additional features.We use these features to validate and complement features

extracted from touch gesture for the user authentication process that occurs dur-

ing normal smartphone interactions. Our intuition is that additional insight can be

obtained by examining touchscreen traces and finger motion-sensor data together.

3.1.2 FAST: Putting It All Together

FAST collects, separates and stores the above three types of data, into two databases.

One database is used for training classifiers and the other for testing the trained

classifiers. Collected touch inputs are split between the two databases to avoid

over-fitting.

FAST uses the several machine learning classifiers to classify a smartphone user

based on her touch behavior. FAST uses the results of the classification to im-

prove smartphone security in the following scenario. In the post-login stage, FAST

extracts touch gesture and digital sensor-glove features and uses them to authenti-

cate the user.

Care must be taken to achieve the proper balance of the FAR and FRR val-

ues. During the post-login stage, due to the constant user monitoring and fre-

quent transparent authentication based on touch gestures and sensor-glove inputs,

a low FRR is the primary objective – during normal user-smartphone interactions,

usability is more important. This is because the frequency of the authentication

operations ensures a rapid detection of intruders even for larger FAR values.
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Touch-Sequence Length and Authentication Threshold. During the post-login

phase, FAST continuously monitors the authenticity of the mobile user in a user

transparent fashion. FAST achieves this by intercepting touch gestures inputs, and

strives to achieve a low FRR. However, a user’s touch gestures and corresponding

sensor-glove inputs may vary over time. Thus, a user authentication solution that

relies on just single input instances of touch gestures is unlikely to be reliable and

accurate.

Instead, FAST adopts an aggregated authentication approach where results

from a sequence of touch instances are combined. To control the quality of the

aggregated user verification performance, FAST uses two metrics: the Touch Se-

quence Length(TSL), the length of touch input sequences and (ii) the Authentica-

tion Threshold(AT), for aggregating results. The AT metric is used to provide the

lower bound on the touch sequence length: If the number of accepted touch inputs

during one sequence is below the threshold, FAST considers that the current user

is unauthorized and invokes an explicit authentication process.

3.1.3 The Equipment

To evaluate the ability of FAST to authenticate users, we have used the following

equippment.

Sensor-glove. We have created a digital sensor-glove with IMU digital combo

boards ITG3200/ADXL345. The glove provides 6 degrees of freedom and allows

34



6-degree IMU Sensor Board

(accelerometer and gyro)

Multiplexer

PCB

Adruino

Figure 3.4: The Sensor-Glove with 6-degree IMU Boards

us to collect fine-grained biometric information of finger movements. This includes

the three angle information: yaw, pitch, and roll, which is computed from the out-

put of the three accelerometers on the digital combo board. The ITG-3200 is a

single-chip, digital-output, 3-axis MEMS gyro IC. It outputs X-, Y-, and Z-Axis an-

gular rates with a sensitivity of 14.375 LSBs per /sec and a full-scale range of

2000/sec. The ITG-3200 has three internal 16-bit analog-to-digital converters.

The ADXL345 is a small 3-axis accelerometer with high resolution (13-bit) mea-

surement at up to 16 g.

Smartphone. We used several HTC Android smartphones (Sensation model) for

data collection. The model features a 4.3 inch capacitive S-LCD Gorilla glass touch-

screen with qHD (540960) resolution at 256.15 PPI. We have developed an An-

droid program for collecting touch gesture data from the HTC smartphones.
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3.1.4 Glove Data Collection

We have divided the participants in a user study into two groups: the users in one

group were equipped with a digital sensor-glove, the users in the other group were

not. All the participating users were asked to perform smartphone functionalities

using common touch gestures (i.e., zoom-in, zoom-out, spread). The participant’s

touch gesture data were collected and stored.

40 subjects participated in the study. 11 users first joined the experiment with

digital glove. However, for comparison, we have also collected their data without

wearing the digital glove. Furthermore, because in the common case, people using

smartphone were not wearing a digital glove, we collected the 40 subjects’ touch

gesture data without digital glove and stored in another database. The experi-

ment was conducted at University of Houston. Participants were provided with a

written consent form, including sections that describe the purpose of the study, its

duration, the right to withdraw from participation and to refuse participation, the

confidentiality of the information obtained and the use of research results. Partici-

pants were required to sign the form before participating in the experiment.

3.1.5 Results

3.1.5.1 Touch Gestures With Sensors

For multi-touch gestures involving two fingers, the set of touch-related features in-

clude, gesture types, sampled locations of the two fingers, directions of the touch
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Figure 3.5: The Comparison of Data with Sensor Features and Data without Sensor
Features

motion of the two fingers, time and pressure history of touch points, and the dis-

tances of the two touch points. Furthermore, with the help of the digital sensor-

glove, some more user specified biometric features can be acquired and applied

for user classification such as the X-, Y-, and Z-Axis angular rates of fingers when

performing touch gesture inputs. We applied the three algorithms, Random Forest,

J48 Decision Tree, and the Bayes Net on the collected touchscreen and sensor-glove

data. The performance results achieved are shown in Figure 3.5.

As indicated by Figure 3.5, for both data with additional sensor-glove infor-

mation and data without sensor-glove information, the Random Forest Classifier

always outperforms the other two classification algorithms in terms of FAR value.

However, the Bayes Net classifier always outperforms the other two in terms of the
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FRR metric. Since during the post-login stage, it is critical not to annoy the user

and interrupt normal smartphone interaction with explicit access control activated

by false rejection, we choose the Bayes Net classifier.

Furthermore, for all the three tested classifiers, the results achieved with the

sensor-glove information significantly exceed the results achieved without it. FAST

achieves a FAR of 11.96% and a FRR of 8.53% without external sensor information,

when applying the Bayes Net classifier for single touch gestures. When additional

sensor-glove information is present, FAST achieves a FAR of 2.15% and a FRR

of 1.63%. This suggests that touch gestures of different people and smartphone

touch gestures can be used as a source of information for user authentication.

Furthermore, this also indicates that the biometric information acquired from the

digital sensor-glove is helpful in authenticating the users when combined with the

touchscreen inputs.

3.1.5.2 Touch Gestures Without Sensors

We further continued the user study using the touch gesture data of the 40 partici-

pants when no additional sensor-glove information is available. We performed this

in order to simulate the normal user-to-smartphone interaction conditions.

We applied the same three algorithms, Random Forest, J48, and Bayes Net as

the classifiers. The results are shown in Figure 3.6. R, J, and B respectively stand

for Random Forest, J48 Decision Tree, and Bayes Net. The data sets are divided

according to the gesture types: DU, UD, LR, Rl, ZI, ZO and Total respectively stand
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Figure 3.6: The FAR and FRR of Different Algorithms and Gesture Types
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for, swipe from down to up (DU), swipe from up to down (UD), swipe from left

to right (LR), swipe from right to left (RL), zoom-in (ZI), zoom-out (ZO) and the

overall performance of all the combined gesture types (Total).

Figure 3.6 shows that the Random Forest classifier always performs better than

the other two classifiers in terms of FAR. However, in terms of FRR, it performs

worse than the Bayes Net. Although FAST can achieve, on average, a 14.02% FAR

and a 18.92% FRR using the Bayes Net classifier using limited data provided by a

single touch gesture, it is still not good enough for meeting the design requirement

of low FRR. Consequently, we proposed a sequence-based authenticate mechanism.

It is described below.

Gesture Sequence Based Authentication. Figure 3.7 shows the FAR and FRR

values achieved by FAST as a function of the Touch Sequence Length (TSL) metric.

The x-axis shows the TSL value of an authentication cycle and the y-axis shows the

best FAR and FRR values that can be achieved under the TSL. It shows that the best

FAR/FRR combination is achieved when the TSL is 7. Thus, we set TSL to 7.

Furthermore, Figure 3.8 shows the FAR and FRR values under an AT of 2

(FAR=21.54% and FRR=0.01%) and an AT of 3 (FAR=4.66% and FRR=0.13%).

Thus, both values are applicable for authentication purposes. Since the FAR of

AT=3 is significantly smaller than for AT=2, we choose AT=3. This means that

for every 7 valid touch gestures, if 3 or more gesture inputs are recognized as in-

puts from the authorized user, then this input sequence is accepted as being valid

– the user is authenticated. Otherwise, the input sequence is considered as an

unauthorized sequence.
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Figure 3.7: The FAR and FRR under different sequence length values.
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Figure 3.8: FAR and FRR of different sequence-based threshold values.

An FRR of 0.13% is equivalent to one wrong user logout every 800 touches

or about 1 hour of continuous system use. A FAR of 4.66% means that after 3

attempts, an unauthorized user will be still authorized with a probability of 0.01%.

Thus, FAST’s gesture sequence-based authentication mechanism provides strong

post-login security protection while significantly reducing user interruptions.

Furthermore, FAST uses a time threshold of sixty seconds to limit the valid time

window size of an unfinished gesture input sequence. This means that if a gesture

sequence is incomplete and there are no more gesture inputs for more than sixty

seconds, a new sequence will be created upon receipt of the next touch gesture

input with the unaccepted touch number of the previously incomplete sequence.
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This time threshold is set to protect the system in the case where an attacker con-

tinues to use the device left off by an authorized user who has already completed

several gesture inputs.

3.2 Touch-Gesture-Based User Authentication Using

A Novel Graphic Feature

3.2.1 Graphic Touch Gesture Feature

A touch trace is a series of x-y coordinates of finger touch points with pressure

values and time stamp. From each series, we can extract the time duration, the

length of touch traces, the directions and speeds of finger movements, and the

tactile pressures. All these extracted features imply the user’s hand geometry and

muscle behavior. In this section, we introduce a novel feature to convert a touch

trace into an image, where all aforementioned features can be represented in an

intuitive and explicit manner.

The first step is to extract the touch traces from the touchscreen outputs. All

captured points with their pressure over a threshold are read. Thus, a single finger-

tip touch trace is encoded as a series of N point samples Sn = (xn, yn, tn, pn), n ∈

1, 2, ..., N , where xn, yn is the touch coordinate, tn is the time stamp and the pres-

sure pn. Multiple fingertip gestures (i.e., Pinch, Spread) include multiple series of
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Figure 3.9: Examples of the GTGF extraction. The first row includes features of
five gesture traces from a single subject; and the second row includes features
of five traces from another subject. The movement and pressure dynamics can
be explicitly represented in GTGF. We can observe major variations on the image
pattern between two rows but minor variations within one rows.

Table 3.2: Gesture descriptions
Annotation Gesture Fingertips Touch type
DU Slide up Thumb or index finger Single
UD Slide down Thumb or index finger Single
LR Flick right Thumb or index finger Single
RL Flick left Thumb or index finger Single
ZI Pinch Thumb and index finger Multiple
ZO Spread Thumb and index finger Multiple

samples. Extracted traces are further filtered into one of the six predefined ges-

tures, as described in Tab. 3.2. The filtering is based on screen regions where the

traces start and end. In case of multiple fingertip gestures, the Euclidean distances

between two fingers at the start and end of traces are also used.

In order to normalize and register the traces with different number of points

and time intervals, we use cubic interpolation, as shown in Eq.3.1, to resample the

traces in terms of their x-y coordinate, time and pressure series so that all traces

have a fixed number of sampled points (e.g., 50).

44



F(fo, f1, f2, f3, t) = (−1

2
f0 +

3

2
f1 −

3

2
f2 +

1

2
f3)t

3

+(f0 −
5

2
f1 + 2f2 −

1

2
f3)t

2

+(−1

2
f0 +

1

2
f2)t+ f1 (3.1)

where t represents timestamp where to interpolate, fn represents the known sam-

ples at predefined time, F is the cubic interpolation function and outputs the inter-

polated value ft (i.e., x, y, p) at timestamp t. Cubic interpolation is chosen because

it is the simplest method that offers true continuity between the samples. After

normalization, a single touchtip trace Ŝ (i.e., UD, DU, LR, RL) is obtained consist-

ing of 50 samples or a multiple touchtip trace (i.e., ZI, ZO) is obtained consisting

of 100 samples, 50 samples of Ŝ and 50 samples of Ŝ ′. Each sample includes a pair

of x-y coordinates x̂, ŷ, a pressure value p̂ and a timestamp t̂. Note that the time

intervals between samples may vary since traces may have different time duration

but the same number of samples.

Ŝn = (x̂n, ŷn, t̂n, p̂n), n ∈ 1, 2, ..., 50

Ŝ ′n = (x̂′n, ŷ′n, t̂n, p̂
′
n), n ∈ 1, 2, ..., 50 (3.2)

After obtaining the Ŝ, we further convert the normalized traces into GTGF T .

This conversion needs to be conducted in a way that the discriminative power of

the original traces are preserved while the graphic features are easy to compute for

a mobile based platform. Thus, we create a zero-valued image template T with
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resolution set to 100 × 150. This size is a tradeoff between the feature ’discrim-

inability’ and computational efficiency.

For each sample Ŝn, we use a block Cn which has a width of three columns

to represent its information. The block is evenly divided into upper block Cp
n and

lower block Cd
n. In general, the upper subblock describes the x direction related

features exclusively, and the lower subblock describes the y direction related fea-

tures exclusively. The height Hp
n and the intensity of the upper and lower subblock

Ipn, Idn are the three important properties which are used to represent the tactile

pressure and the movement dynamics along x and y axes at the timestamp t̂n.

They are computed as:

Ipn = dIm ∗
Ux −∆x̂n

Ux

e (3.3)

∆x̂n = x̂n+1 − x̂n

Ibn = dIm ∗
Uy −∆ŷn

Uy

e (3.4)

∆ŷn = ŷn+1 − ŷn

Hp
n = dHc ∗

p̂n
Lp

e (3.5)

where de is the ceiling function fetching the nearest greater integer. Hc = 50, which

is half of the preset image height, Im = 128 is chosen because it evenly divides the

intensity space [0, 256] so that the sign and the absolute value of ∆xn and ∆yn

can be represented by intensity values. The ∆xn values below 128 imply the hand

moves to the right, and the values above 128 imply the hand moves to the left. The

∆yn values below 128 imply the hand moves up, and the values above 128 imply
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the hand moves down. The greater abs(Ipn − 128) or abs(Ibn − 128) is, the faster the

fingertip moves. Meanwhile, the greater Hp
n is, the harder the finger touches the

screen. We repeat Eq. 3.3,3.4,3.5 for all N samples on a trace so that all the block

Cn are computed. For multiple touchtip gestures, we create T and T ′ for S and S ′

respectively. In this way, the direction, the pressure and the dynamics of the traces

are directly encoded into the GTGF, as depicted in Fig. 3.9. The images within the

same row are quite similar with each other. But major differences can be observed

between two rows. The differences stems from the different user identities.

The extraction of GTGF has multiply benefits. First, original traces have dif-

ferent spacial topology and temporal duration. This causes difficulties in register-

ing the traces. The proposed GTGF solves this difficulty via resampling the traces

and fitting them into the graphic template T . Second, the dynamics is consid-

ered to be an important factors in other pattern recognition problems, i.e., facial

expression recognition [72] and speech recognition [31]. However, they are not

commonly considered in the touch-gesture-based authentication literature. The

proposed GTGF is able to represent the gesture dynamics in terms of movement

and pressure intuitively and explicitly. Third, due to the inhomogeneity between

location and pressure data, it is difficult to combine their discriminative power in

the feature level. However, extraction of GTGF takes both features into considera-

tion and fuse their discriminative power together.
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3.2.2 Score metrics and normalization

We use image processing techniques to compute the score between two images.

Since all the GTGF have the same dimension (the size of T ), the score metrics

can be computed directly on the images without extra processing and registration

steps.

The first score metric we use is based on the normalized cross correlation:

NC(a, b) =

〈
Ta

‖Ta‖
,

Tb

‖Tb‖

〉
(3.6)

where 〈·, ·〉 is the inner product and ‖·‖ is the L2 norm. The normalized cross

correlation described the similarity between two GTGF Ta and Tb. We get the

distance in the verification via Dn(a, b) = 1−NC(a, b).

The second score metric is L1 distance:

L1(a, b) =
∑
l∈T

|Ta − Tb| (3.7)

where l is the index of image pixels and T is the image template with the same

size as Ta and Tb.

The third score metrics is L2 distance:

L2(a, b) =

√∑
l∈T

(Ta − Tb)2 (3.8)

For touch gestures with multiple traces, scores from T , T ′ are summed to a

single score for authentication.

Each query gesture has a set of scores corresponding to query-target pair com-

parison. However, different queries may have different distributions of their score
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set. This affects the verification performance when setting the canonical thresh-

old for verification. Thus, we use the Z score normalization [14] to normalize

their score distributions into zero mean and unit variance. Their mean µ and the

standard deviation σ need to be pre-computed, D is a score value and Z is the

normalized score:

Z =
D − µ
σ

(3.9)

3.2.3 Data Acquisition

To collect user-touch gesture data, we developed an Android program which cap-

tures touch gestures using a standard API of Android system. When fingers con-

tacted the touchscreen, it started to record the trace by recording raw touch sam-

ples from the API. For each sample in a trace, an event flag (e.g., onDown, OnScroll,

onFling, Zoom), the absolute event time in ms, and the (x,y) coordinates and the

tactile pressure per contacted finger are captured.

We recruited 30 subjects for our study, of which 28 were right-handed, 24 had

touchscreen device experience. The data acquisition contains 6 sessions collected

over several weeks. In the first session for each subject, we explained the purpose

of the study and the usage of our data acquisition program. Then, the subjects

were left for 5 to 10 minutes to practice. After he/she can use the program in a

natural way, the subject provided 20 traces for each gesture in Tab. 3.2. Then the

following 5 sessions occurred with at least three days in-between two consecutive
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sessions. Subjects provided at least 20 traces per gesture during each session.

The touch gestures are performed in the way that the subjects feel natural and

comfort. Thus, subjects may vary in the manner they hold the phone (i.e., left-

hand holding vs right-hand holding, whole palm holding vs half palm holding),

the hand pose (palm down vs palm up) or the fingers used to perform the single

touch gesture (thumb vs index finger) or the finger orientation between sessions.

We name the dataset collected in the first session as XTOUCHv1 and the dataset

collected in the following sessions as XTOUCHv2. In our study, the XTOUCHv1 is

mainly utilized for the feature evaluation and authentication system design. The

XTOUCHv2 is mainly utilized in the research on inter-session authentication and

continuous authentication.

Equal Error Rate was mostly used as the evaluation criterion for our verification

experiments. It is the common value when the false acceptance rate (FAR) and the

false rejection rate (FRR) are equal. We opt to use it simply because it accounts for

the trade-off between FAR and FRR. Meanwhile, we also reported ROC curves in

some experiments for clarity purpose.

3.2.4 Experimental Results

Figure 3.10 depicts the results of grid search on the three dimensional parameter

space, including the relative movement upper bound Ux, Uy in the x, y directions

and the upper bound for the tactile pressure Lp. They vary in the range from 0.3

to 0.7, from 20 to 60 and from 30 to 70 on the Lp, Ux, Uy axes, respectively. For
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Figure 3.10: Results of grid search on the parameter space (Lp, Ux, Uy) on the
evaluation dataset XTOUCHv1, where Lp denotes pressure parameter, Ux denotes
speed parameter on x-axis and Uy denotes speed parameter on y-axis. Each sub-
figure is a slice on the Ux axis in the 3-dimensional parameter space, and the x, y
axes in all subfigures represent Lp and Uy axes in the parameter space. The color
represents the average Equal Error Rate for the six gestures under a set of param-
eter. The color of the figure presents the value of the Equal Error Rate. The lighter
the color, the higher the EER. Note that the same color in different subfigure may
represent different EER values according to the colormaps accompanied beside.
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% NS L1 L2 Mean
DU 14.18 8.83 9.66 10.89
UD 16.46 7.07 7.98 10.50
LR 16.82 12.02 12.61 13.82
RL 16.83 11.86 12.05 13.58
ZI 19.31 14.12 15.40 16.28
ZO 20.16 13.78 16.55 16.83

Mean 17.29 11.28 12.38

Table 3.3: Score metric comparison on user verification scheme. The Equal Error
Rate is presented in each blank as a criterion for user verification. NS stands for
the normalized cross correlation, L1 stands for L1 distance, and L2 for L2 distance.

the experiment setup, we randomly selected half portion of the traces per subject

per gesture from XTOUCHv1 dataset as gallery (target) set and used the other half

portion per subject per gesture from XTOUCHv1 dataset as probe (query) set. The

experiments were conducted six times for all gestures and ERR reported was com-

puted by averaging the ERRs from all the gestures. L1 distance was used as the

distance metrics. The variations on EER is from 11.28% to 12.14% and the best

EER has been achieved at 0.35, 20, 30 in parameter space. This demonstrated the

proposed GTGF feature is not sensitive to the parameter variations in the aforemen-

tioned tested range. Meanwhile, the parameters at which the best ERR is achieved

are adopted in the following experiments.

We evaluated the performance of GTGF with different score metrics, including

the L1 distance, L2 distance and the normalized cross correlation. We used the

same gallery and probe sets as the previous tests. Table 2 depicts the EER of au-

thentication using each gesture respectively and compares the different distance

52



% DU UD LR RL ZI ZO Mean
a 8.83 7.07 12.02 11.86 14.12 13.78 11.28
b 12.70 12.29 21.10 20.24 20.42 24.88 18.61
c 12.50 9.86 14.47 14.70 16.97 17.11 14.27

Table 3.4: Score metric comparison on user verification scheme. Index a, b, c
corresponds to three cases in Fig.3.11.

metrics. The gestures DU and UD achieve average EER below 11% but ZI and ZO

achieve average EER above 16%. For different distance metrics, the mean EERs

achieved by the L1 distance, the L2 distance and the normalized correlation are

11.28%, 12.38% and 17.29%. In general L1 distance performs better than the two

distance metrics. This implies that DU and UD gestures could have more discrima-

tive power than the other touch gestures and the L1 distance is more discriminable

than the other two metrics among subjects. In the following tests, we opt to adopt

the L1 distance as the distance metrics for our authentication scheme.

In order to evaluate the contribution of movement and pressure dynamics for

the feature’s discrimative power, we ’mute’ them respectively and conducted the

following tests on the XTOUCHv1 dataset. The gallery set and probe set were the

same as the previous tests. In the first test, we used the normal GTGF feature,

as in Fig. 3.11a. In the second test, we set the outer edge to be constant, as in

Fig. 3.11b. Only the intensity values, which represent movement dynamics, were

used for authentication. Then, in the third experiment, we set all image intensity

value to 128, as in Fig. 3.11c, so that only the outer edge, which represents tactile

pressure dynamics, were used for authentication. Results in Tab. 3 demonstrates
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Figure 3.11: Examples on extraction of GTGF. (a): The original GTGF; (b): The
pressure-muted GTGF; (c): The movement-muted GTGF.

that with only movement dynamics (row b), EER increased from 11.28 to 18.61

(over 64.9%); in case using only pressure dynamics (row c) EER increased from

11.28 to 14.27 (over 26.5%). Note that the poorer the authentication performs, the

more EER increases. Thus, the pressure dynamics has more distrinictive powever

compared to the movement dynamics in the touch-gesture-based authentication.

To explore the variance on the temporal factor of the authentication, we tested

our proposed method across five sessions in the XTOUCHv2 dataset. For each ges-

ture, we setup up five gallery sets and five probe sets, where gallery and probe sets

were obtained via randomly and evenly dividing the touch data in a session. Then,

we applied our proposed method on 25 combinations of gallery and probe pairs for

each gesture and depicted the results in Fig. 6. The six gestures correspond to the

six subplots respectively. First, EER of intra-session tests (bars on the diagonal) are

generally lower than the other inter-session tests (bars on the other positions). This

is consistent with the result in [29], the touch gestures from a user followed more

similar patterns within a session than those in mixed sessions. Second, a longer

time interval between the gallery and probe sessions does not necessarily result in
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a higher EER. Some intersession EERs tested on the first session gallery and the

fifth session probe are lower than some of other tests using the gallery and probe

sets with less time intervals. Thus, temporal interval between gallery and probe

is not the reason to the decreased intersession authentication performance. More

probably it is because the change of the manner users perform the touch gesture,

(i.e., left or right hands, hand poses, finger orientations). Third, the EERs of tests

on multiple touchtip gestures (i.e., ZI and ZO) have less variations compared to

the tests of the single touchtip gestures (i.e., DU, UD, LR, RL). When users perform

the multiple touchtip gestures, there are less variations on the manner how users

perform them. Since both hands and both thumb and index finger are involved in

these relative complex touch gestures, variations on the hand pose and used fin-

gertips are reduced. This results support our analysis that the manner in which the

users perform the touch gesture could probably be the reason for the decrease of

intersession authentication performance.

To assess the fusion strategy of gestures for continuous authentication, we

tested it on the whole XTOUCHv2. The gallery set per gesture is consisted of a com-

bination of the aforementioned five gallery sets, and the probe set per gesture is a

combination of the aforementioned five probe sets. After score computation and Z-

normalization, we can obtain one score matrix for each gesture. Then we fused the

multiple gestures using the sum rule, which is proved by Kitller et. al., [39] to be

superior in comparison of other rules, i.e., product, min, max, median rule. Figure

3.13 depicts a comparison of the Receiver Operating Characteristic (ROC) curves
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Figure 3.12: A depiction on the results of intersession authentication for different
gestures: (a) DU, (b) UD, (c) LR, (d) RL, (e) ZI, (f) ZO. The height of bars is the
Equal Error Rate, the X, Y axes are the session index and the bars with the same
color have the same gallery set.
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for different fusion schemes and methods: a) GTGF-A: fusion of the score matri-

ces of the six gestures computed from the proposed method; b) GTGF-S: fusion of

the score matrices of four single touchtip gestures computed from the proposed

method; c) TA-A: fusion of the score matrices of the six gestures computed from

the method in [29]; d) DM-A: fusion of the score matrices of the six gestures com-

puted from the method in [61]; e) GTGF-M: fusion of the score matrices of the two

multiple touchtip gestures computed from the proposed method. A Receiver oper-

ating characteristic (ROC) curve was created by plotting the true acceptance rate

(TAR) vs. false acceptance rate (FAR), at various threshold settings. Since the true

acceptance rate is equal to 100% substracting false rejection rate, the EER is the in-

tersection between a ROC curve and the black straight line connecting [0%,100%]

with [100%, 0%] in the figure. From Fig. 3.13, the EER are 2.62% (GTGF-A),

4.31% (GTGF-S), 6.07% (TA-A), 7.06% (DM-A) and 7.81% (GTGF-M). Comparing

different fusion schemes, the best performance has been achieved by fusing all six

gestures while the worst performance is obtained by fusing just two multiple fin-

gertip gestures, namely ZO, ZI. On one hand, as most of score-level fusion scheme,

combining more scores from different channels would probably increase the over-

all performance. GTGF-A scheme includes six gestures while GTGF-M includes only

two. On the other hand, gestures ZO,ZI themselves have a relative low discrimi-

native power compared to other gestures referred in Tab. 2. Furthermore, the

performance of the proposed method demonstrated a clear improvement over the

other methods in the scheme of combining all the six gestures. There are two rea-

sons for the improvement. First, compared with the method in [61], we adopted
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Figure 3.13: A comparison on ROC curves for different fusion schemes and meth-
ods.

the tactile pressure in our method, which contains extra clues on subject’s muscle

behavior. However, their method just ignored this information. Second, compared

to the work in [29] which extracted 22 static analytic feature values, the proposed

method includes movement dynamic and pressure dynamic of the touch gesture

during feature extraction.
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Figure 3.14: Performance of solutions in prior arts when applied on touch data collected
in uncontrolled environment. DU, UD, LR, RL, ZI, and ZO indicates slide up, slide down,
slide right, slide right, pinch, and spread, respectively. EER stands for equal error rate and
it measures how often the user is mis-identified where the False Match Rate(FMR) equals
False Non-Match Rate(FNMR).

3.3 Context-Aware Implicit User-Identification Using

Touch Screen in Uncontrolled Environments

However, most of the current work solve the identity recognition problem under

controlled environments. This means either users are required to perform pre-

defined touch gesture patterns or the touchscreen data is collected under moni-

tored laboratory environments. Thus, the collected touch data may not represent

the natural usage of mobile devices and these methods may only be applicable for

explicit identity recognition (e.g., at login screen). Due to these controlled condi-

tions, these methods might be unable to capture the most valuable characteristics

of touchscreen data for user-identity recognition implicitly and continuously.
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(a) User 1 (b) User 2 (c) User 3

Figure 3.15: Three users’ touch data in launcher applications

To justify our above hypothesis, we performed some experiments to evaluate

the state-of-the-art methods in [25] and [73] under an uncontrolled environment

using a touch dataset collected from users that are allowed to freely use the phone

(e.g., checking emails and browsing the web). The performance plot in Fig. 3.14

indicates that these methods work well in touch data collected under controlled

environments but fail to authenticate users under more natural conditions. The

solutions in [61] and [29] employ pre-defined touch gestures, and some of them

require users to use even five fingers which might be unnatural for users to perform.

Therefore, these methods for explicit authentication might be difficult to apply in

real-life situations for implicit and continuous identity recognition.
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3.3.0.1 Touch Data in Uncontrolled Environments

Users can freely interact with mobile devices using four types of touch gestures in

general: click, swipe, zoom-in, and zoom-out. In uncontrolled environments, the

real-world touchscreen usage behavior is not as stationary as the one in controlled

environments. The generated touch data becomes noisier and more unpredictable.

There are two fundamental types of variations during natural touchscreen usage:

Usage Behavior and Application Context.

3.3.0.1.1 Data Variation by Usage Behavior We implemented a background

service on several Android devices to implicitly collect touchscreen usage data.

Since the service is transparent to the device user, the collected touch data is nat-

ural and uncontrolled. Fig. 3.15 depicts three different users’ touchscreen data in

the launcher application collected over one week. The trace of the points reflect

the swipe gesture, whereas the size of the points represent the size of touch area

between users’ fingers and the screen surface. In addition, different usage time is

shown in different colors.

Fig. 3.15 shows that the touch data of different users has distinct motion pat-

terns, and the data from the same user is not always uniform. For example, a single

type of swipe gesture has significant variations in terms of location, direction, cur-

vature, length, and touch strength. By investigating the touch behavior of users,

we found that those variations might be caused by device holding patterns (e.g.,

left-hand vs. right-hand holding the device, operating the device with one hand vs.

both hands), user mobility patterns (the user is stationary, walking, or in traffic),
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(a) Launcher (b) Browser (c) Map

Figure 3.16: One user’s touch data in different applications

even caused by different usage behaviors over time and location (e.g., weekdays

at work vs. weekend at home) or longitudinal changes in user behavior over time

(e.g., touch data today vs. several months ago).

3.3.0.1.2 Data Variations by Application Context Users’ touch gesture pat-

terns are also strongly dependent on the current application being used and users’

goal within the application. For instance, if a user tries to perform a scroll down

operation while reading emails, the length of swipe gesture is mostly proportional

to the length of the email. However, other applications (e.g., map or browser) may

not share similar scroll down operations. Fig. 3.16 depicts the touchscreen data of

one user in launcher, browser, and map applications over one week. It can be seen
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that user’s touch patterns are significantly different and dependent on the running

applications. These observations encouraged us to develop context-aware user-

identification by analyzing backend information including running applications.

3.3.0.2 Research Questions and Contributions

Based on the data properties identified in uncontrolled environments, we raised

three new research questions that are relevant when building touchscreen based

user-identity recognition services in real-life applications.

1. How to deal with data variations in uncontrolled environments? As we

have identified in previous sections, the touchscreen data in uncontrolled

environments is noisier and non-stationary. This makes it difficult to apply

static pattern recognition methods that are not adaptive to users’ behavior

and data variations over time. Thus, selection of a representative set of train-

ing examples of touch data is an important prerequisite before extracting

useful features.

2. How to improve the accuracy of user-identity recognition? The informa-

tion contained in a single touch gesture example may be not enough to dis-

criminate one user from others since users may share similar touch gestures.

This problem causes the difficulty in achieving high accuracy and highlights

the importance of extracting highly discriminative features in combination

with adaptive recognition methods.

3. How to achieve real time recognition in practice? Since our goal is to
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develop algorithms that recognize user-identity in real time, on-device com-

putation complexity is extremely important. System performance measure-

ments must be considered to balance the trade-off between accuracy and

computational cost on device.

We introduce a novel Touch-Based Identity Protection Service (TIPS) that ad-

dresses the above questions to perform user implicit identification in real-time in

uncontrolled environments. Our main contributions are as follows:

• We study the characteristics of touch data in real-life uncontrolled environ-

ments and show that there are significant variations cannot be captured by

existing methods focused on controlled environments.

• We design the TIPS - a novel, implicit, continuous, context-aware user iden-

tify recognition service using the naturalized touchscreen data. TIPS lever-

ages a set of highly discriminant touchscreen data features as well as an adap-

tive sequential identification method.

• TIPS is implemented on the Android platform and evaluated extensively in

practice with 123 users (23 device owners and 100 guests) and over 23 dif-

ferent phones (8 Galaxy S3, 3 Galaxy S4, 12 Nexus 4). TIPS can achieve over

90% accuracy in continuous user-identity recognition in real-time.
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3.3.1 System Overview

Fig. 3.17 shows the high-level architecture overview for TIPS. TIPS collects the

touch gestures input data and running application context information from the

Multi-touch Driver and Running Application Context Listener respectively. The col-

lected raw data is then transferred to the Multi-touch Gesture Engine for data pre-

processing and feature extraction. In the training session, the pre-processed data

is combined with the running application context information to generate a Multi-

touch Data Library consisting of gesture templates, while in the authentication ses-

sion, the touch inputs are used to first locate the templates in the Multi-touch Data

Library, and then evaluated in the touch-gesture-based User Authentication Module.

The Touch-Gesture-Based User Authentication Module compares incoming touch ges-

tures with the templates in the Multi-touch Data Library and logs the result. When

a user tries to access an app, the system will use the App Library to check whether

the app allows unauthorized users. If it does not, the Application Access Control

will prompt a password dialog to request explicit password. Otherwise, no action

is performed unless there is a need to update the Multi-Touch Data Library due to

a misclassification (adaptive component).

3.3.2 Touch-Screen Data Features

Previous works on touch data based identity recognition under controlled environ-

ment only considers biometric features. In our work, we consider two new sets

of behavioral and contextual features to improve performance under uncontrolled
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Figure 3.17: Design of TIPS

environments.

3.3.2.1 Biometric Features

Previous studies have shown that users’ touchscreen data may have specific char-

acteristics in terms of biometric features such as swipe speed and contact size.

Swipe Speed, SSi, i ∈ {2, 3, ...,m}. reflects how fast a user performs a swipe

touch gesture. Although this feature might be affected by user’s current emotional

state or environment, it is usually determined by the users’ finger and hand mus-

cles. Assume the speed of the first point SS1 = 0, this feature can be calculated by

the following equations, the θs is the screen size adjust metric, and x, y, and t are

sensor readings of x-axis, y-axis, and timestamp:
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SSi =

√
∆x2i + ∆y2i

(ti − ti−1) ∗ θs
, i ∈ {2, 3, ...,m} (3.10)

∆x2i = (xi − xi−1)

∆y2i = (yi − yi−1)

θs =
√

(xmax − xmin)2 + (ymax − ymin)2

Points Curvature, PCi, i ∈ {2, 3, ...,m}. represents the curvature between two

consecutive touch points. Unlike the Swipe Curvature SC, which is most impacted

by human behavior factors, this feature is most affected by user’s hand and finger

geometry. For each touch gesture G, the initial PC1 = 0, and the rest are as shown

in Eq. 3.11. xi, yi, and xi−1, yi−1 are the x-axis and y-axis value of two consecutive

touch points.

PCi = arctan(
yi − yi−1
xi − xi−1

), i ∈ {2, 3, ...,m} (3.11)

Contact Size, CSi, i ∈ {1, 2, ...,m}. is the contact surface area between users’

finger and the touchscreen surface. The contact size value can be affected by how

hard the user touches the screen, therefore sometimes it is also used as an ap-

proximation of touch pressure. Different mobile models employ different system

readings to represent the contact size information. For instance, Samsung Galaxy

S3 and S4 use TOUCH MAJOR, TOUCH MINOR, and WIDTH MAJOR, while Nexus

4 employs PRESSURE and TOUCH MAJOR. The contact size feature CSi can be
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calculated from these readings using the equation below, where smax and smin rep-

resent the maximum and minimum contact size value that can be captured by the

touchscreen, and si is the contact size value of the touch gesture i.

CSi =
si − smin

smax − smin

, i ∈ {1, 2, ...,m} (3.12)

3.3.2.2 Behavioral Features

From Fig. 3.15, it can be seen that specific behavioral features, such as touch lo-

cation, swipe length, and swipe curvature are good indicators of users’ behavioral

patterns of interaction with mobile devices. We confirm this later in our experi-

mental evaluation. These behavioral features are determined not only by users’

touch behaviors, but also by the manner in which the users hold the mobile device.

(e.g., left-hand or right-hand holding, one hand vs. both hands.) We will explain

these behavioral features respectively.

Touch Location, TL indicates the swipe location preference. For instance,

when performing a vertical swipe gesture, some users like to do it on the left part

of the touchscreen, while some others may prefer the right part of the touchscreen.

We fractionalize the touchscreen into 16 areas, and assign values to each area of

the touchscreen, the value matrix VM is shown in the following matrix.
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VM =



(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 3) (1, 3) (2, 3) (3, 3)


,

By locating all the touch points Pi of a touch gesture G in these areas, we can

analyzing the touch location of G.

Swipe Length, SL represents the length of swipe gestures. This feature is

application dependent. For example, during a left-to-right screen scroll operation

in the launcher application, some users may swipe all the way on the touchscreen

while others may only swipe a short distance. The SL can be calculated by Eq.

3.13.

SL =

√
(xend − xstart)2 + (yend − ystart)2√
(xmax − xmin)2 + (ymax − ymin)2

(3.13)

SC = arctan(
yend − ystart
xend − xstart

) (3.14)

Swipe Curvature, SC is another useful feature which represents the slope of a

users’ swipe gestures. The value of SC is calculated by Eq. 3.14, where xstart and

ystart respectively means the start point’s x-axis and y-axis sensor reading, and xend

and yend respectively means the end point’s x-axis and y-axis sensor reading.
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3.3.2.3 Context Features

As stated in the previous section, the running application context is extremely im-

portant for identity recognition. Users’ touch gestures in the launcher application

are significantly different from the same users’ touch gestures in Email, Browser or

Map applications. To address this, we maintain different gesture templates for each

running application and perform adaptive classification. When a new application

is installed on the smartphone device and has been used by the smartphone user,

our system will automatically create a template database for this application and

save templates for training.

3.3.3 User-Identification Methods

In this section, we describe the details of our classification method employed to

address the three research questions in Section 3.3.0.2.

3.3.3.1 1NN-DTW

To perform user-identity recognition, we combine the One Nearest Neighbor (1NN)

classifier and Dynamic Time Warping (DTW). This allows us to capture the variety

of user’s touchscreen data by maintaining different gesture templates per applica-

tion and adapt them over time and user behavior.

Dynamic Time Warping is considered an efficient way to measure the similar-

ity between two time series. It works by computing the Euclidean distance between
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(a) DTW (b) 1NN

Figure 3.18: Simple illustration to DTW and 1NN

any two input sequences of feature vectors and finds the optimal sequence align-

ment using dynamic programming. A simple illustration of the alignment process

is shown in Fig. 3.18(a). The blue and green lines are two sequences. The black

lines between them are the distance value, and by summing the shortest distance

of each points on the two sequences, we can acquire the DTW distance of the two

sequence.

One Nearest Neighbor Classifier is a non-parametric method for classifying

objects based on the closest training example in the feature space. When applying

this method to our problem, we calculate the DTW distance between an incoming

touch input gesture (e.g., the green circle in Fig. 3.18(b)) and all candidate gesture

templates in the library. The label assigned to the incoming gesture is that of the

closest gesture template in the library according to the DTW distance (e.g., the red

triangle in Fig. 3.18(b)).
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3.3.3.2 Sequential Recognition

One way to recognize user’s identity is to always use the single newest incoming

gesture and compare it with the ones in the gesture template library as described

above. However, this approach would not capture the temporal correlation of con-

secutive gesture inputs under natural uncontrolled environments. In this paper, we

perform sequential user-identity recognition by first observing X number of consec-

utive gesture examples and accumulating their individual DTW distances (resulting

from each pair of gesture comparison). We call X the authentication length and use

it as a metric to define the number of most recent gestures used before providing

an identity recognition result.

Gestures within the authentication length will be normalized and aggregated.

Then the One Nearest Neighbor classifier is employed using the aggregated value

to recognize the identity of the new touch input sequence.

3.3.3.3 Multi-Stage Filtering with Dynamic Template Adaptation

Theoretically, 1NN classifier can achieve very good classification performance by

always comparing an incoming gesture with all the available template gestures

in the library. However, the computational cost might be unacceptable. Another

problem is that the template library must be updated with new training gestures

regularly to compensate for user’s gestural variations over time. To allow user

adaptation without increasing the size of the library or recognition delay, we em-

ploy a multi-stage filtering technique combined with dynamic template adaptation
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Figure 3.19: Illustration to the process of multi-stage filtering

to reduce the computational complexity while maintaining good performance.

Multi-Stage Filtering. To reduce the DTW distance calculation in each touch

gesture recognition process, we impose a multi-stage filtering hierarchy over swipe/zoom

gestures and click gestures. For swipe/zoom gestures, the hierarchy consists of

the following four levels: (1) running applications, (2) direction, (3) swipe/zoom

length, and (4) swipe/zoom curvature or slope. The changes of the order in the

hierarchy would not result in different sample selection result. Fig. 3.19 shows an

example of this hierarchy for a swipe input gesture in application B, with a direc-

tion of left-to-right, a swipe length of 100, and a slope of 30. For click gestures, the

hierarchy consists of just two levels: (1) running application and (2) click location.

The running application layer ensures that only gestures belonging to the same
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application are always compared. The direction layer further divides swipe/zoom

templates into four classes: left-to-right, right-to-left, up-to-down, and down-to-

up, while the click location further divides click templates into nine grid areas.

The swipe/zoom length and swipe/zoom curvature layer are employed to reduce

the variation caused by usage behavior following the direction layer. These two

layers guarantee that only swipe/zoom gestures with similar length and curvature

are compared. The above process helps reduce the number of templates a new

incoming gesture needs to be compared against, thus improving recognition delay.

Dynamic Template Adaptation. To prevent our template library from grow-

ing unbounded as user’s touchscreen usage behavior changes over time, we set a

threshold on the number of training examples for each application to limit the size

of the template database. When a new template adaptation request is detected

(misclassification), TIPS will verify if the size of the library exceeds the threshold.

If not, the new template will be added to the database directly. Otherwise, the

oldest template will be replaced by the new template to maintain a constant com-

putational complexity. If a touch gesture is recognized as an unauthorized input,

the service will ask for password when users try to access a sensitive or customized

application. A misclassification can be detected if the the user instantly inputs

correct password and accesses the application.
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3.3.4 Experiment and Results

We evaluated the TIPS on Android devices for many users with both offline training

and on-device real-time testing.

3.3.4.1 Experimental Setup

We implement TIPS as an Android background service that implicitly collects touch-

screen data and authenticates user-identity continuously. All the touch inputs and

application context are collected from system level. No information is provided by

application side so there is no need to modify each single application to acquire

the touch data. The TIPS app is installed by 23 smartphone users (14 males and

9 females) on their own primary phones (8 Samsung Galaxy S-III, 3 Galaxy S-IV

and 12 Nexus 4). In addition, we recruit 100 guest users (not phone owner) to

play with a subset of phones (13 phones) and the performance of real-time user

authentication.

The experiment is consisted of two main phases:

• Off-device Simulation Phase: We build off-device touchscreen data analysis us-

ing Matlab. The data is collected from 23 phones for 3 weeks, with triggered

TIPS service, as shown in Fig. 3.20(a). Each data sequence includes times-

tamp, the raw touch data, and the underlying running application. 23 users’

first week of touch data was used as training templates and the subsequent 2

weeks of data was employed as testing data.
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(a) Collection (b) Testing (c) Notifying

Figure 3.20: Hotservices developed for experiments

• On-device Testing Phase: We incorporate both online training and testing mod-

ule into the TIPS service. The on-device training session takes one week and

collects about 2000 touch gestures for each user. The user can customize the

mode (training or notification) and the authentication length parameter, see

Fig. 3.20(b). If the notification mode is selected, the authentication result

will be shown in real-time in the middle of the screen (Fig. 3.20(c)) and the

device will be locked if unauthorized user is detected. TIPS also logs authen-

tication results into a file on the device for on-device performance evaluation.
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Figure 3.21: Off-device simulation performance
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Figure 3.22: On-device testing accuracy

3.3.4.2 TIPS Off-device Simulation Results

In the simulation experiment, we evaluate the accuracy performance by setting

different authentication length. The authentication length indicates how many

touch inputs are employed for an identity authentication. A lager authentication

length may guarantee a higher accuracy, however it may also result a longer delay.

We employ two metrics, true positive and true negative, to represent the accu-

racy performance. True positive indicates that the portion of correctly recognized

authorized inputs to all authorized inputs, whereas true negative means that the

portion of correctly classified unauthorized inputs to all unauthorized inputs. We

also verify our intuition that one or few patterns would not be sufficient for touch-

based identity recognition in uncontrolled environments. We build a full template
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library and also merge similar templates to reduce the size of template library.

Fig. 3.21 shows the simulation results. The plot (a) presents the true positive

result under four different template database size settings. For instance, “All Tem-

plates” indicates results are being calculated using all templates collected in a week,

whereas “56% Templates” means 44% of the templates are eliminated by merging

them with similar templates. An interesting finding that support our hypotheses on

pattern representation is: as template size decreases, the accuracy also decreases.

This degradation is caused by the loss of information while reducing the number

of templates. Significant accuracy improvements can be found as authentication

length increased (for all cases with different templates database sizes). When the

authentication length is 8, the true positive and true negative for “All Templates”

already exceeds 90%. Therefore we set the authentication length to 8 in on-device

testing phase. We observe similar performance trend for the metric of true nega-

tive, as shown in Fig. 3.21 (b).

3.3.4.3 TIPS On-device Testing Results

After obtaining good performance results in the simulation phase, we implemented

the complete TIPS service (including both online training and notification modes)

on Android phones for on-device practical test. After implicitly logging the clas-

sification results for natural touchscreen usage data over one week for 13 mobile

device users, we computed the true positive rate. By requesting guest users to test

these mobile devices, we computed the true negative rate. We plot the true positive

and true negative rates in Fig. 3.22.
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For all users, a true positive rate of 91% or more and a true negative rate of

93% or more were achieved under uncontrolled environments in real time. The re-

sult accuracy performance is evaluated based on touch sequences that combines 8

touch gestures, which indicates that during 8 natural touch inputs, TIPS can verify

the identity of current user. Meanwhile, we also measured the power consumption

of TIPS. From the energy usage data collected, we found that the power consump-

tion of TIPS has an average value of 88 mW, and does not exceed 6.2% battery

usage. These encouraging results show the potential of this solution to perform

touch-based identity recognition in real-time and naturalistic usage.

3.3.4.4 TIPS Security and Usability Analysis

Although a 90% accuracy rate is not low for a machine learning problem, employ-

ing it in the real world may raise both security and usability concerns. Accepting

10% unauthorized input could be labelled as insecure, and rejecting 10% of the

owners inputs could be labelled unusable. However, TIPS is not aimed at replac-

ing explicit authentication mechanisms; instead, it is a complementary approach

protecting the system after the users explicit login.
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Chapter 4

Voice-Enabled Identity Awareness

and Usable App Access Control

The commercialization of Automatic Speech Recognition (ASR) technologies has

ushered in a new era of hands-free user-mobile device interactions. Unlike de-

vice adaptive interactions (e.g., touch gestures, typing), speech is a more intuitive,

inter-personal communication medium [43]. This, coupled with the release of

speech recognition services (e.g., Google Voice [37] and third party APIs [1, 4]),

explains the surge in popularity of speech-based applications.

However, the popularity of speech recognition exposes its users to privacy vul-

nerabilities. Research has mainly focused on accuracy (i.e., “what the user is speak-

ing”) but not on identity management (i.e., “who is speaking”). This can signifi-

cantly simplify the attackers task of accessing sensitive information e.g., confiden-

tial documents, emails, contact lists) stored on victim’s devices, or even allow the
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(a) Bypass the login (b) Remote garage door control

Figure 4.1: Potential violations from current speech recognition framework: (a)
passcode can be bypassed by Siri and Google Voice Actions, sensitive operations
(e.g., making phone calls, sending text messages, posting status) can be performed
as if in an unlocked status; (b) sensitive applications such as garage door control do
not have an identity authentication and opens to whomever holds the smartphone.

attacker to impersonate the user in highly sensitive operations (e.g., posting status

updates on social networks, initiating e-mail, SMS, or voice calls). Furthermore,

we have shown that Siri and Google Voice Actions [5,8] can bypass the login stage

authentication and follow requests of unauthorized users (see Figure 4.1). They

may even enable unauthorized remote control applications. Although there are

some app access control applications that may help improve user app security and

avoid the aforementioned problems, mostly they are not easy to use and configure.

This is due to the additional efforts of entering a password each time to access a

locked app, as well as management of the locked app list. In addition to protecting

user privacy, speech-based identity management can also promote mobile user ex-

periences by allowing users to customize their app access control and function by

voice commands.
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Table 4.1: Example Android applications that use speech recognition.
Application Features
Slyvi wake on voice, find places and get directions, update Twit-

ter and Facebook, car mode
Google voice
search

search your phone, the web, and nearby locations by
speaking, instead of typing. Call your contacts, get direc-
tions, and control your phone with voice Actions

Speaktoit Speaktoit uses natural language technology to answer
questions, find information, launch applications, and con-
nect user with various web services. It remembers users’
favorite places, services, and preferences.

Utter voice com-
mand

Utter voice command runs in the background. It does not
have a user-interface and controls the device using voice
commands. It supports drive mode and wake on voice
commands.

Voice remote con-
trol camera

User can remote control the camera inside a SmartPhone.
Responding to sounds, the camera works automatically
and a user can take a photo hands free.

Drive safely It reads text messages, SMS and emails aloud and lets you
respond by voice.

AVX It can remote control garage door respond by voice.

Previous work on speech recognition [19, 37, 42] and speaker-recognition [47,

48] has been applied on mobile devices, performing either implicit or explicit user

authentication. However, to the best of our knowledge, no prior work has been

jointly performed on mobile speaker and speech recognition to implement an iden-

tity awareness app access and function control framework.

We propose and implement a unified speech-speaker recognizer (USR) frame-

work that performs permission and response management based upon a customized

identity management policy. The USR framework consists of four main modules:
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(i) an application interface cooperating with mobile applications, (ii) a speaker-

recognition module for identity recognition, (iii) a speech recognition module tran-

scribing speech input, and (iv) an identity-management module supervising the re-

sponse to the applications according to the customized identity management policy.

USR relies on several factors to perform seamless identity based application man-

agement including user-identity, application privacy level, and application func-

tion class. In comparison to previous mobile operation permission management

applications, an essential feature of the proposed approach is its convenience. The

identity feature (i.e., speech) is implicitly captured without disrupting normal user-

mobile device interactions. In addition, it offers continuous post-login protection of

mobile devices during all the speech interactions, thus protecting sensitive mobile

device information and functions. The contributions of USR are the following:

• Designed and implemented a unified speech-speaker recognizer (USR) frame-

work that provides specific response corresponding to different user-identity

based on a customized identity management policy.

• Developed an open-source Android library for speaker-recognition.

• Conducted a comparison study of USR and the Google speech recognition

framework.

We designed USR framework to address the weakness of the current speech-

recognition-based API that recognizes speech without verifying the speaker, a solu-

tion that integrates speaker sensing and identity management with speech recog-

nition. A high-level diagram of the approach is presented in Figure 4.2. The
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Figure 4.2: Design of USR framework

approach extends the Android speech recognition API with speaker-recognition,

identity management support and access control. The new components include, an

application interface that detects context running application and responds to the

applications, an identity manager module that controls and enforces responding

policies to speech commands based on speaker’s identity, and a speaker-recognition

module.

4.1 Application Interface

The application interface has two core functions. The first function is to detect

which application is the owner of the microphone (e.g., personal assistant, voice

search, skype). We implement it by utilizing an Android System API, Activity-

ChangedListener, to capture application package name (e.g., ”com.skype.raider” for

Skype) in a background service. The application interface is then able to send the

package name to identity-management module to acquire the corresponding ap-

plication response policy for this application. Another important function of this

module is to react to the application based on the application response policy. For
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example, if the application response policy instructs the command is not allowed

to send to the application, the application interface will prevent the text output

from being send to the application.

4.2 Speech-Recognition Module

The speech recognition module consists of a voice recognizer service and a speech

recognition server. When USR framework is installed on the device, users can se-

lect our service in Android Voice Recognizer (See in Figure 4.3(a)). Users may

configure the settings of the voice recognizer service, speaker recognizer, identity

management policy, and other settings (sampling rate) by entering voice search.

The details are shown in Figure 4.3(b) and Figure 4.3(c). By default the service

connects to our speech recognition server, but the users can also connect to speech

recognition server they desire by entering into the server list (Figure 4.3(d)).

On the server side, considering the recognition accuracy, we choose Google

Speech Recognition Server as the speech recognition server and implement our

server as a proxy server to connect it. The reason we do not connect Google Speech

Recognition Server directly on the mobile side is that Google Speech Recognition

Server requires the voice data to be FLAC format, which is not a default encoding

method supported by Android system.
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(a) Voice recognizer

 

(b) USR framework setting

 

(c) USR framework setting continue
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Figure 4.3: USR framework setting on the Android device
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4.3 Speaker-Recognition Module

4.3.1 Speaker Recognizer Design

Methods involving a set of Mel Frequency Cepstral Coefficients (MFCCs) have been

dominant in the field of speaker-recognition in the past decades. Human percep-

tion of the frequency content of sounds follows a subjectively defined nonlinear

scale called the ”mel” scale [16] defined as,

fmel = 1125ln(1 +
f

700
) (4.1)

where f is the frequency in Hz. The calculation of MFCCSs can be summarized

in Figure 4.4.

When it comes to speaker-recognition, vectors consisting of MFCCs and some

features derived from them are used to build Gaussian Mixture Models (GMM)

[58]. More recently, they have also been used in classification schemes that in-

volve Support Vector Machines (SVM) [16] [71]. These methods have been very

effective for user verification, often having prediction accuracy of up to 95 percent,

with state-of-the-art speaker-recognition systems generally having Equal Error Rate

(EER) close to 0.
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Figure 4.4: MFCC calculation process

Generally speaking, the following technique is standard: MFCC features are ex-

tracted over a chosen frame length with a frame shift of about 1/2 its size to provide

for an overlap, then either their means and standard deviations or derivatives and

second derivatives are computed [21]. One particular property of the described

approach is that given the number of instances n and the number of features m for

almost any reasonable data set, the following property holds: n >> m. When SVM

classifier is applied to such problems, RBF or polynomial kernel is typically chosen

as they transform the feature vectors into higher dimensional space, increasing the

probability to find a suitable hyperplane to separate the classes. Unfortunately due

to performance and battery use considerations, using anything but a linear kernel

on a mobile device is simply not practical.
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As a part of this study, we developed an open-source Android library for speaker-

recognition. Figure 4.5 depicts a high-level diagram of the system. It consists of

a Java interface and three internal modules, written in C and C++: i) Feature

Extractor ii) Feature Pre-Processor iii) Classifier. For the purpose of feature ex-

traction, openSMILE: The Munich Versatile and Fast Open-Source Audio Feature

Extractor [20] has been ported to Android platform. openSMILE is capable of pro-

ducing output in various formats, which usually makes it directly compatible with

most machine-learning libraries, but in some cases, further processing of needed.

To address this issue, component ii) has been written. Finally, based on the findings

we will discuss further in this section, libSVM [15] has been re-compiled to work

on the Android platform, as well. It is worth noting that our software is highly

modular and extendable, allowing for extraction of various features or usage of

different classifiers or even using several classifiers at once, simply by editing the

text configuration file.

In our method, features are computed in 3 steps.

i) A set of Low-level descriptors (LLD) is extracted. The LLDs in question are:

Intensity, Loudness, 12 MFCC (Mel Frequency Cepstral Coefficients), Pitch (F0),

Probability of voicing, F0 envelope, 8 LSF (Line Spectral Frequencies),

Zero-Crossing Rate.
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Figure 4.5: Design of speaker-recognition module

ii) Delta regression coefficients are computed from these LLD’s.

iii) The following functions are applied to both the original LLDs and their delta

coefficients: Max./Min. values and their respective relative positions within input,

range, arithmetic mean, 2 linear regression coefficients, linear and quadratic

error, standard deviation, skewness, kurtosis, quartile 13, 3 inter-quartile ranges.

The first two steps are quite similar to the usual method, in fact, MFCCs are

computed in precisely the same manner. The remaining descriptors extracted are

common for emotion and speaker trait recognition, but some, such as F0 and LSF

have been proved useful in speaker-recognition. Step 3 results in 986 acoustic

features, but reduces the number of instances to one per PCM file. Thus, we are
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Figure 4.6: USR speaker-recognition Demo

dealing with a matrix where the inverse of the stated property of classical MFCC

features holds, namely, n << m.

To optimize our system for the smartphone environment, we propose a new

method of speaker-recognition that is based on statistical descriptors of fundamen-

tal speech features. This scheme is normally used for emotion recognition [20]

but not verification, so although the features themselves are not really new, their

application is. Since the scheme employs, in its first stage, a modified version of the

emobase feature set, proposed by Eyben et al., we named it Speaker Identification

Base, or SIDBase. The proposed method, when applied to a verification problem, is

almost twice faster and more power efficient than the traditional approach, while
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maintaining accuracy, true positive rate (TPR) and false accept rate (FAR) similar

to that of the state-of-the-art systems.

We take advantage of the increased number of dimensions and employ a linear

SVM which benefits from a large number of features without suffering from the

overfitting problem of most classifiers. Another reason to choose a Support Vector

Machine classifier is that it is a two-class classifier, and speaker-recognition is es-

sentially a binary problem, for which it is well-suited.

4.3.2 Speaker Recognizer in USR framework

The configuration of speaker-recognition can be found in Figure 4.3(c). Owner

can perform a set of operations, such as train model, clear trained model, change

owner’s identity on the mobile device, etc.

We employ a speaker-recognition demo application to demonstrate how it co-

operates with speech recognition module. When a user speaks ”Open Facebook”

to the demo application, the application will record the voice file and show wave

of input voice (Figure 4.6(a)). The voice file is then duplicated and processed in

parallel by speaker-recognition in local and speech recognition in remote. If the

user is the owner of the mobile, the application will show the transcribed result

as in Figure 4.6(b). Otherwise, the application will return no result and send
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the reject notice (e.g., ”Only phone owner can execute this command”, ”Are you

Kelvin(owner name)?”) to the user both in speech and text. (Figure 4.6(c)).

4.4 Identity-Management Module

The identity-management module can act according to the speaker-recognition re-

sults and the preset customized identity management policies. The owner of the

mobile can configure the identity management policies in the USR framework set-

ting (Figure 4.3(b)). All the applications have preset identity management policies

will show as a list in the setting (Figure 4.7(a)). The owner can add new appli-

cation to the management list (Figure 4.7(b)). For an application in the list, the

owner may modify the identity management policy to choose whose speech inputs

the application should respond to (Figure 4.7(c)). Currently, in our design, we

have three types of policies:

• Owner. In this setting, a speech-recognition-based mobile app only responds

to speech commands from a verified speaker;

• All. Under this setting, any user can access the app using speech without

authentication; and

• Tag. Tagging is a novel feature of our USR framework. Instead of policing

speech-based access to applications, it returns the recognized speech text

with an identity tag in front of it as a prefix.
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Figure 4.7: USR Identity Management
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For example, a user may label a hands-free voice dialer with Owner. When

detecting that an unverified user is accessing the application through speech com-

mands, the speaker identity manager will point out the current user is not the

owner of the mobile device and refuse to follow the speech commands. The sys-

tem will not affect speakers with verified identities as they can continue to interact

with the device hands free.

In another scenario, the owner labels a notepad with Tag, the application may

automatically record meeting minutes with identity if all the people in the meet-

ing have trained model on the device (Figure 4.7(d)). More importantly, this Tag

policy is intended to promote user experience by providing a identity awareness

interface. This interface is not limited to benefit one or two single applications,

but a general identity management interface for all the applications. A lot of sim-

ilar scenarios (e.g., posting group status on social network, automatically account

switching, etc) may also benefit from our interface. It can be inferred that this

identity awareness interface has a potential to greatly improve user experience.

4.5 Experiment and User Study

We conducted an empirical study in order to explore the benefits and limitations of

USR framework. As a baseline for comparison, we used Google Speech Recognizer,

a widely used and powerful speech recognizer which dominates the Android mar-

ket, and AppLock, a representation of current app access control approachs. The
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focus of the contrast experiment is not the speech recognition accuracy (because

we all use Google Speech Recognition Server), but rather the privacy protection

and user experience promoted by identity awareness as well as the extra instituted

cost.

4.5.1 Model Training

Before we conduct the user study, we first need to train the owner’s model on the

smartphone device. The owner users are provided a Nexus 4 smartphone with

one week for their everyday usage. They use the devices naturally and the USR

training module will implicitly record their voice commands and send to the USR

server. For each owner user, about 400 voice commands (average 20 times for 1

command, for 20 commands) is fairly enough for training a user’s model.

4.5.2 Participant

Sixteen participants (6 female, 10 male), between the ages of 21 and 45, were

recruited as mobile owner user. Another sixty subjects (24 female, 36 male), be-

tween the ages of 19 and 43 years, are enrolled as the guest users. We pre-trained

the model of all mobile owner users with the voice data collected from them as

positive samples. For the negative samples, we employed several voice data sets

from different sources, i) a LDC speech dataset [2] that was purchased, consist-

ing of 630 speakers of eight major dialects of American English, each reading ten

phonetically rich sentences; ii) an open source voice dataset ELSDSR [22], which
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contains voice messages from 22 speakers (10 female, 12 male), with ages from

24 to 63 included; and iii) a voice dataset collected from our previous data collec-

tion (12 volunteers with 6 female and 6 male). By considering speaker-recognition

performance variations caused by both dialects and accents, we selected subjects

from different countries and regions, including different dialects of American na-

tive speakers, Europeans, Chinese, Indians, etc.

All of the participants reported having used smart mobile devices, such as a

smartphone or tablet. 75% of the mobile owner users and 68.3% of the guest users

reported being familiar with voice operations on mobiles devices.

4.5.3 Design

We installed the USR framework on four Google Nexus 4 smartphones with all 16

mobile owner users’ model pre-trained on each device. The mobile owner users

take turns to use the mobile devices to perform operations following our experi-

ment procedures.

The experiment consisted of two different tasks for different user groups and

purposes. The first task is a privacy evaluation task. Both the mobile owner user

and the guest user are required to enroll in this task. The second task is usability

evaluation task, which is only conducted on the mobile owner users.
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4.5.3.1 T1-Privacy Evaluation Task

This task is utilized to evaluate the privacy protection enhancements of the USR

framework in comparison to the Google Speech Recognizer, which provides no

identity authentication. We first gave the participants a quick tutorial on voice op-

erations and voice applications. Then we demonstrated the security vulnerabilities

in Google Speech Recognizer by showing them how to bypass the login authenti-

cation and use some sensitive operations (e.g., post Facebook status, call, or send

SMS to someone). Furthermore, we showed them some sensitive applications that

can remotely control garage doors, automobiles, etc., all without identity authen-

tication.

After said introduction, we let the mobile owner users set the identity manage-

ment policy in the USR framework, and asked each guest user to speak at least ten

different voice commands to sensitive applications or perform sensitive operations

in both quiet and noisy environments. We collected the performance results of the

experiment and the execution times of the USR framework with controlled exe-

cution time using Google Speech Recognizer. An exit questionnaire and interview

were also required for both the mobile owner user and guest user.

4.5.3.2 T2-Usability Evaluation Task

To evaluate the usability promotion of the USR framework in comparison to the

Google Speech Recognizer plus AppLock, we first asked the mobile owner users to
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Figure 4.8: Speaker recognizer performance result

input voice commands in both quiet and noisy environments to their device to ac-

cess the apps they desire to use. We then asked the users to repeat the same action

by using the Speech Recognizer plus AppLock. After the comparison experiment,

we simulated a multi-user scenario that requires four mobile owner users to using

a notepad with Tag mode in the USR framework. Both the self-test scenario and

multi-user scenario were recorded. As in the previous task, the execution times

are also collected for cost evaluations. After the experiments, we introduced the

potential use case of multi-user scenarios to the mobile owner users, especially

highlighting its extensibility. The mobile owner users also complete an exit ques-

tionnaire and interview at the end of this task.
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4.5.4 Performance Evaluation

Figure 4.8 shows the speaker-recognition accuracy performance result of privacy

evaluation task and usability evaluation task. Even if we have implemented a

noisy filter in USR framework, our speaker recognizer performs as we intuitively

expected: in the quiet environment, all true positive, true negative, and accuracy

rate are better than noisy environment. However, on the other hand, an accuracy

of 95.83% also shows its ability in countering noise. Such a high accuracy rate is

also a guarantee to the stability of USR framework.

Table 4.2 depicts the average extra time cost of USR framework compare to

Google Speech Recognizer. Since the quiet environment is in our laboratory where

high speed wifi is provided, and the noisy environment is on the street where only

3G plan is available, the extra delay in noisy environment may come from the

network connection status and transmission rate. Another explicit trend we can

found is that, as the length of commands increase, the delay also increases. This

may result in two reasons: i) larger wave file further expose the low efficiency

of our server comparing to Google Speech Recognition server; and ii) speaker-

recognition for larger wave file will cost more time than small files. Since speaker-

recognition and speech recognition work parallel in USR framework, the speech

result maybe blocked by the speaker-recognition process. Although the for some

long sentences, USR framework may cost close to 50% extra time to process it, it is

still just a several seconds longer waiting time. Compared to the security it brings,

this cost is acceptable.
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Length of Com-
mand

Delay in
Noisy

Delay in
Quiet

1 to 3 words 25.18% 18.29%
4 to 6 words 35.92% 33.52%
6 and above 45.62% 39.12%

Table 4.2: Execution time delay comparing to Google Speech Recognizer

4.5.5 Questionnaires

After each task, we asked the participants to answer a post-study questionnaire

about the privacy protection enhancement and usability promotion of USR frame-

work for T1 and T2, using a 5-point Likert scale (1: Strongly Disagree and 5:

Strongly Agree). Since currently there is no similar framework that protects user

privacy or performs identity management during speech interactions, these Likert-

scale results are not meant to be directly compared with other previous approaches.

For the first task, Overall, the participants thought USR improved privacy pro-

tection during human-mobile speech interactions (47 guest users and 15 mobile

owner users Strongly Agreed, and 13 guest users and 1 mobile owner user Agreed)

and the extra time delay is acceptable (48 guest users and 14 mobile owner users

Strongly Agreed, 9 guest users and 2 mobile owner users Agreed, and 3 guest users

Neutral).
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Most of the users also thought a low rate false reject rate is acceptable consid-

ering enhanced privacy, also the Google Speech Recognizer plus Applock is more

annoying since it requires explicit password input all the time (11 mobile owner

users Strongly Agreed, 3 mobile owner users Agreed, 1 mobile owner user Neu-

tral, and 1 mobile owner user Disagreed). In particular, the participants all found

the Tag mode in identity management for multi-user scenarios very interesting (14

Strongly Agreed and 2 Agreed), and have potential to extend some useful applica-

tions (12 Strongly Agreed and 4 Agreed).

4.5.6 Interviews and Observations

The initial observations from the questionnaires indicated that smartphone users

admit the privacy enhancement and usability promotion by the USR framework. To

better understanding the detailed experience and feedback of the users, at the end

of the study, participants were asked to state their attitude towards USR framework

and why. Three of the mobile owner users stated that they had read the news about

how to use Siri or Google Voice Action to bypass mobile login procedures, two of

them are worried about the privacy vulnerabilities and have even disabled this

function. After experiencing our USR framework, they feel their privacy can be

properly preserved by it.

”I am impressed by the accuracy of USR framework. During the experiment of Task

1, seldom [guest] users can bypass the USR [framework] and control my device. Some

[guest] users even try to mimic my accent and voice, however they still failed.”-Mobile
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owner user 2

”Some apps are too sensitive, like a garage control application I saw the other day

[some one] can open the garage without any authentication. USR [framework] could

at least provide an extra protection to those [sensitive] apps.”-Mobile owner user 4

Although guest users are intend to simulate malicious intruders in Task 1, most

of them share similar opinion that USR framework offers sufficient privacy protec-

tion after failing to command mobile owners’ device for several times. Particularly,

one guest user thought the USR framework is really helpful and can be ported to

wearable devices, such as Google Glass, or Samsung Watch.

”I think this technology is useful because it implicit identify user during normal

speech interactions. Since wearable devices have become more and more popular, it

[USR framework] may be extend to broader usage scenarios.”-Guest user 22

However, different from the encouraging feedbacks on the privacy protection,

one mobile owner user considered the USR framework sacrifice too much usability

in his point of view.

”Although it [USR framework] protects my privacy on the mobile device, it makes

the system hard to operate for me. In a noisy environment, I was faulty recognized as

a guest user within ten commands a time, which means I have to repeat one command

in ten commands. I think this put extra burden on me.”-Mobile owner user 8, the

mobile owner user with worst performance rate and the only user to have a true

positive under noisy environment.
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Although current speaker recognizer performs good and designing a speaker

recognizer is part of our study, it is not the most critical part. The core contribu-

tion in this work is to first propose a unified speech-speaker recognizer framework,

whereas the speaker recognizer performance can be enhanced by further research-

ing on our own speaker recognizer or simply employ and integrate other available

advanced approaches. And comparing the other app access control approaches, it

does improved usability since it will only require explicit login when there is a false

alarm in USR - for AppLock, authentication takes place every time users try to open

an app.

Nevertheless, all mobile owner users are interested in the Tag mode in iden-

tity management for multi-user scenarios, and some are extremely attract by this

feature and provide us some constructive suggestions.

”Well, this idea is amazing. I can imagine several use scenarios now. It [Tag mode]

could be used for implicit identity switching, like implicit switch facebook account

when the command post facebook status comes from different user on a shared device.

Furthermore, unlike current single user status, it may help social network extending

some group activity or similar stuffs.”-Mobile owner user 2, a mobile owner user with

computer science background

In conclusion, participants appreciated the enhanced protection by USR frame-

work and admit it solves practical problem in real world. For most of them, the

sacrificed usability caused by USR (e.g., false reject rate or response delay) is ei-

ther not notable or acceptable. Specifically, all the users endorse the new Tag mode
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since its potential to providing fancy services.
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Chapter 5

Motion-Sensor-Based User-Identity

and Context Sensing

The useful gestures are performed when users interact with the phone via holding

the mobile devices in hand, moving the arm or/and changing hand pose. Though

users can create numerous gestures, the number of frequent gestures is small due to

the limited usage of the mobile devices. These common gestures generated during

the human-device interaction are shared by most of the users, which provides us an

opportunity to compare their motion patterns and conduct non-intrusive biometric

authentication. For example, one major usage of the smartphone is answering the

call, for this purpose users perform a gesture of picking up their phone, which is

referred as Mobile Device Picking-up (MDP) motion. Meanwhile, although Blue-

tooth headsets may avoid the MDP motion when answering a phone call, estimated

by [6], in 2015, there is still only a 45 million market for the Bluetooth headsets
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for all purpose of usage. Comparing it to the market of smartphone, it is easy

to understand most people (at least 95.8%) performs MDP motion when answers

phone call.

We investigate the MDP motion-based implicit mobile authentication via two

methods, a Statistical Method (SM), and a Trajectory Reconstruction Method (TRM).

For the SM, it first smoothes the sensor data by a low pass filter, then extract tempo-

ral and numerical features and apply verification algorithms on the features after

normalization and segmentation. While for the TRM, it adopts Kalman filter and

rotation matrix to reconstruct the MDP motion trajectories by utilizing the data

from multiple sensors, and verifies the users’ identity by score metrics calculated

by Discrete Frèchet Distance. We tested the proposed methods on two sets of MDP

motions, one stationary MDP motion(the user performs MDP motion sitting or

standing stationary), and one moving MDP motion(the user performs MDP motion

when walking).

For the motion-based identity verification, our main contributions are: (1) pro-

posed two verification methods, Statistical Method and Trajectory Reconstruction

Method, to extract specific features and verify user’s identity; (2) collected a multi-

session MDP motion database; and (3) provided evidence that verification perfor-

mance can be affected by the user body movements, such as walking.
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(a) (b) (c) (d)

(e)

Figure 5.1: Illustration of the feasibility of distinguishing user’s identity employing
MDP motion, (a), (b), and (c) are MDP traces from 3 right-handed user, (d) is a
trace from a left-handed user, (e) is a comparison among the 4 users’ traces.
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(a) Accelerometer data

(b) Gyroscope data

(c) Magetometer data

Figure 5.2: Illustration of the feasibility of distinguishing 3 user’s identity using
statistic features. Three smoothed 3 users’ data are represented respectively by red,
blue and green curves. U 1, U 2, and U 3 represent three different users, and Acc,
Gyyo and Mag respectively denotes Accelerometer, Gyroscope, and Magnetometer
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5.1 Evidence of Unique Biometric Qualities

When users pick up a mobile-device, they typically grab the phone from a surface

or a pocket, raise the arm and hold the phone near the ear. This process is user spe-

cific since the curvature of the movement trajectory curve in 3D space is affected by

the arm length and upper body morphology, the rotation of the phone is affected

by the muscles near the wrist and the speed is affected by the arm muscle behavior.

In such a way, the device motion during a specific task corresponds to the physio-

logical and behavioral biometric gleaned from users’ upper body morphology and

muscle movement of the arm. Fig. 5.1 shows the difference between MDP motions

for four people.

In Fig. 5.2, we demonstrate the smoothed accelerometer, gyroscope, and mag-

netometer data from three different users. The sensor data varies not only in

duration, but also in the numerical range along the curves. Consequently, after

normalization and segmentation, we can extract features including duration time,

mean, min value, max value and standard deviation. And based on these features,

we can perform user-identity management.

Furthermore, in Fig. 5.3, we show reconstructed trajectories from two users,

and explicit differences can be found from two users’ trajectories. The two trajec-

tories share the same starting points because when we transfer the trajectories from

local coordinate system to world coordinate system, we initialize the first position

as coordinate origin.

To record a mobile picking up motion movement, we employ motion-sensors
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Figure 5.3: Illustration of the feasibility of distinguishing 2 user’s identity using
trajectory reconstruction method. The red and blue trajectories respectively repre-
sents two users 10 MDP motion. We aligned them at the same point in a 3D space
and plot them.
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(a) Accelerometer raw data

(b) Gyroscope raw data

(c) Magetometer raw data

Figure 5.4: Collected 9-degree raw data from 3 types of mobile sensors when a
mobile device is stationary on a table. The acceleration data of z-axis has already
minus a 9.8(the gravity impact)
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such as 3-degree accelerometer, 3-degree gyroscope and 3-degree magnetometer

that are integrated with mobile devices. By employing the 9-degree sensor data,

from each mobile picking up motion, we can capture the 3-axes acceleration, 3-

axes ambient geomagnetic field, the 3-axes angular velocity for the device coor-

dinates and corresponding time stamp information. In this section, we show the

explicit differences of mobile picking up motion among different users caused by

arm geometry, mobile use habit and muscle behaviour. Further, based on the data

collected, we introduce two methods, a Statistical Method and a Trajectory Recon-

struction Method, to exploit the specific motion as a novel biometric modality.

5.2 Statistical Method

Different sensor data can reflect different motion features. Accelerometer data

can be used to depict the motion speed and direction change, gyroscope data and

magnetometer data show the rotation movement of wrist and the lift movement

of elbow and arm. Because the characteristics of each person’s motion varies,

by extracting and employing the statistic features from the sensor data, we can

perform user-identity management.

5.2.1 Statistic Features

Fig. 5.4 shows some raw data collected from the 9-degree sensors. Even if the mo-

bile is fully stationary on the table, obvious jittering noises still exist in the sensor
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data. We can reduce the effect of jittering noise by scaling down (x, y, z) readings

by using a moving-average filter of span L and factor M. In our experiment, the

M is set as 0.2, while L is set as 5. For each sensor reading element vi in sensor

reading vectors, x, y, andz, and n is the length of vector x, y, and z, its smoothed

value v′i will be calculated using the following equation:

v′i =
i+2∑

j=i−2

round[M ∗ vj], i ∈ {3, ..., n− 2.} (5.1)

After smoothing the raw data, we segment each motion trajectory into n seg-

ments. For each segment, we extract its duration time, mean value, variance, and

standard derivation as features for evaluation, and 28∗n features in total 28∗n fea-

tures(1 time duration feature, and respectively 9 features for the mean, standard

deviation, and the value domain size of the 9-degree sensors data in a segment).

And the features are defined in Table. 5.1.

5.2.2 Statistic Based Verification Algorithms

We evaluate the performance of our system using Support Vector Machine (SVM)

[17] algorithm. SVM classifiers are characterized by a decision surface that can be

written as a hyper-plane in a high dimensional space H. The mapping between the

input space and H is handled implicitly by means of a kernel function K, which is a

(generally nonlinear) symmetric scalar function of two input vectors. The decision

function can then be written as,
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Feature Definition
Time duration The time duration of a MDP motion. Its value equals to the

value of the timestamp at the end of the MDP motion minus
the timestamp at the beginning of the MDP motion.

Mean The mean value of a sequence of sensor reading in one de-
gree. For each degree of sensor reading, one mean feature is
extracted, so 9 mean features in total.

Standard deviation The standard deviation of a sequence of sensor reading in one
degree. For each degree of sensor reading, one standard devi-
ation feature is extracted, so 9 standard deviation features in
total.

Value domain size The value domain size of a sequence of sensor reading in one
degree. For each degree of sensor reading, one value domain
size feature is extracted, so 9 value domain size features in
total.

Table 5.1: Features definition

f(v) =
∑
j

αjyjK(sj,v) + b ≶ 0 (5.2)

where v is the input to be classified. The support vectors sj constitute a subset

of the training data which is determined through an optimization process. The

optimization also defines the weight αi; the yj are constant and have a value +1

for the support vectors of the ’accept’ class, −1 for those of the ’reject’ class. Finally,

b is fixed so that the hyper-plane in H cuts exactly halfway between the closest

training examples of the two antagonistic classes. This choice is optimal provided

that the training set is equally descriptive of both populations. In the case that one

class is poorly represented in the training set, we might want to compensate for

that by shifting the hyper-plane further away from its support vectors.
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5.3 Trajectory-Reconstruction Method

As explained by the Section 2.4, the motion trajectory varies from person to person

for congenital physical and acquired habits, which could provides effective bio-

metric features for user verification. To verify a user’s identity by trajectory based

method, two following steps are required: (i) reconstruct the motion trajectory;

and (ii) compute the distance of different trajectory using different distance func-

tions and perform verification.

5.3.1 Trajectory Reconstruction

Due to Einstein’s principle of equivalence [40], the collected acceleration data in-

cludes both the impact of motion acceleration and gravity acceleration. Thus, we

have to first use a low pass filter to isolate the contribution of the force of gravity in

3 axes as in Eq.5.3. The α is calculated as t/(t+ dT ), where t is the low-pass filter’s

time-constant, and the dT is the sampling rate. The force of gravity is substracted

from the acceleration as shown in Eq.5.4 to calculate the linear acceleration.

gravityi = α ∗ gravityi + (1− α) ∗ acci (5.3)

linacci = acci − gravityi (5.4)

where acci stands for acceleration raw data on i axis, and linacci stands for linear

acceleration on i axis.
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Because all the 9-degree sensor data we collected are in the device’s local co-

ordinates, it should be transferred into a canonical world coordinate system for

comparison. The rotation matrix RM is employed and formulated as,

RM =


Hx Hy Hz

Mx My Mz

Ax Ay Az


Hi, Mi, and Ai are calculated in Eq.5.5, where Ai stands for the gravity acceleration

of i axis, Ei stands for the geomagnetic field of i axis, and i+1 and i+2 stand for

the next and next next axis(for example, i+1 of y is z, i+2 of y is x).

Hi = Ei+1 ∗ Ai+2 − Ei+2 ∗ Ai+1

invH = 1.0/
√
H2

x +H2
y +H2

z

Hi = Hi ∗ invH

invA = 1.0/
√
A2

x + A2
y + A2

z

Ai = Ai ∗ invA

Mi = Ai+1 ∗Hi+2 − Ai+2 ∗Hi+1 (5.5)

As long as we have the rotation matrix, we can calculate the acceleration along

the world axis(WA) by multiply the acceleration along mobile axis(MA) with rota-

tion matrix RM :
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WA = RM ∗MA (5.6)

However, as mentioned before, the noise of the hardware sensors is not trivial

and could severely affect the correctness of the trajectory reconstruction. In order

to reconstruct the motion trajectory correctly, the noise of the raw data should be

eliminated. Here we adopt Kalman Filter [68] to solve the problem. We formulate

our system model and correction equation as Eq.5.7 and Eq.5.8.

xt+1 = A ∗ xt +Wt (5.7)

where xi = [xp, xv, xa, yp, yv, ya, zp, zv, za]
T , p(W ) ∼ N(0, Q) and

A =


m 0 0

0 m 0

0 0 m

 ,m =


1 T 0.5T 2

0 1 T

0 0 1


x̂t+1 = A ∗ xt+1 +Kt ∗ (Mk+1 −H ∗ xt+1) (5.8)

where

H =


n 0 0

0 n 0

0 0 n

 , n =


0 0 0

0 0 0

0 0 1


(xp, yp, zp) is the location of the mobile device in world coordinate system, (xv, yv, zv),

(xa, ya, za) are the velocity and acceleration of the mobile movement. A and H are

119



the process model and measurement model for Kalman filter. T is the time interval

between two continuous samplings, i is the index of samplings. W is the process

noise, white Gaussian noise with diagonal variance Q. x̂t+1 is the corrected sys-

tem state, Mk+1 is the measurement of the mobile location. Kt is the Kalman gain

calculated.

5.3.2 Trajectory-Distance Function and Decision Rule

After the trajectories are reconstructed, we can employ the Discrete Frèchet Dis-

tance [9] to calculate the distance between a pair of polygonal trajectories rep-

resenting mobile picking up motion sequences. Let S1 =< p1, p2, ..., pm > and

S2 =< q1, q2, ..., qn > be two polygonal trajectories, M = (pi, qi) be an order-

preserving complete correspondence between S1 and S2, and d(p, q) be a matching

cost between p and q, the following distances are defined as,

δD(S1, S2) = min
M

( max
(pi,qi)∈M

d(p, q)) (5.9)

For a training set Tt = S1, S2, ..., Sn, which comprises n trajectories of one user,

we rate each trajectory with a training score SCORES as following,

SCORES(Si) =
∑

j 6=i,tj∈M

δD(Si, Sj) (5.10)

We select the trajectory Si with the lowest SCORES as the model of this specific
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% 5 segments 10 segments 15 segments 20 segments Trajectory
MDPdt1 6.38 5.87 6.13 3.67 5.56
MDPdt2 8.67 5.06 5.32 3.93 8.72
MDPdt3 18.67 17.88 18.73 17.93 29.31

MDPdt1& MDPdt2 10.67 10.86 7.13 6.13 7.09
MDPdt1& MDPdt3 20.31 19.67 19.13 22.31 24.69

MDPdt1& MDPdt2& MDPdt3 20.67 17.32 19.32 18.96 24.34
Mean 14.23 12.78 12.62 12.08 16.62

Table 5.2: EER for different MDP motion dataset under different methods and
segmentation settings. 5 segments to 20 segments respectively stands for the
result of Statistical Method, while Trajectory stands for the result of Trajectory-
Reconstruction Method.

user. When a new trajectory St is input, we calculate the similarity score SCORET

by comparing the input trajectory St with the model trajectory Si,

SCORET (St) = δD(Si, St) (5.11)

5.4 Experiments and Results

5.4.1 Data Acquisition

To collect user motion data, we developed an Android program which simultane-

ously sampled accelerometer, gyroscope and magnetometer at 25Hz using a stan-

dard API of Android system. When a data collection procedure begins, a subject is

asked to pressing the ”Record” button when she/he is ready to perform the MDP

motion. The application will keep recording the raw multi-sensor data from the API
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until the button is released when the MDP motion is terminate. For each MDP mo-

tion sample, 3-axes acceleration, 3-axes ambient geomagnetic field, 3-axes angular

velocity, and corresponding timestamps are captured.

Thirty one participants were recruited for the study, of which 24 were inclined

to perform MDP motion with right hand. Their ages ranged from 20 to 45 years

old. Out of these, 20 were male. The data acquisition process had 3 sessions and

lasted over several weeks. The entire dataset has 930 samples (31 participants * 3

sessions * 10 data samples per session). Sessions differed with each other in terms

of date or body movements. In the first session, for each participant, we explained

the purpose of the study and how to use the data acquisition application. Then

the participant was asked to practice the experiment procedure for 5 to 10 times

to ensure that data was correctly collected and the MDP motion was natural. After

the participant finished the practice, she/he performed 10 times MDP motion dur-

ing stationary mode. For robustness evaluation, after one week, the participants

were asked to perform the same MDP motion for 10 times as the second session.

The third session was similar to the previous two sessions. One difference was

that in the third session, participants were asked to perform MDP motion when

she/he was walking. There was no restriction on which hand the participants hold

the mobile device or how the device was held by the participants, as natural as

possible to the participants. The dataset collected in session 1 to session 3 was

named respectively as MDPdt1 to MDPdt3. In our study, the MDPdt1 was mainly

utilized for feature evaluation and authentication system design. MDPdt2 and MD-

Pdt3 were mainly utilized for investigating robustness of the implemented motion
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based authentication across time. Equal Error Rate (EER) was used for evaluation

purpose, which can achieve balance between False Acceptance Rate(FAR) and False

Rejection Rate(FRR).

5.4.2 Experimental Result

Table 5.4 depicts the EER of authentication when different methods and segmenta-

tion settings are applied on different MDP motion dataset. For intra-session result

using SM, verification performance of MDPdt1 and MDPdt2 demonstrated compet-

itive results with EER respectively of 3.67% and 3.93%, while the performance of

MDPdt3, with a EER of 16.88%. The result of MDPdt1 and MDPdt2 are acceptable,

however the result of MDPdt3 is not encouraging. Such situation could be caused

by the extra body movement in MDPdt3. To test the real world performance of our

methods, in MDPdt3, we did not limit the walking pattern of the subjects, which

means uniform motion, variable motion, and changing directions are all accept-

able. Due to Einstein’s principle of equivalence, the accelerometer cannot separate

the MDP motion acceleration with the body movement. The accelerometer data

is not only useless for verification but also would cause negative impact on the

authentication for its noisy and incorrect features. This may also explains why the

performance of MDPdt3, unlike the result of MDPdt1 and MDPdt2, would not in-

crease as the number of segmentation grows: detailed segmentation features do

not provide extra useful features but noise.

Because the TRM is based on the Discrete Frèchet Distance of reconstructed
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traces, the noise of acceleration caused even severe impact on this method (the

EER of MDPdt3 increased to almost 30%). Meanwhile, the performance of TRM

is equally good but a slightly declined comparing to SM in the intra-session result

of MDPdt1 and MDPdt2. The declination may be caused by the Integrated Error

and Calculation Error when reconstructing the trajectory. Integrated Error mainly

comes from two sources, (1) integration time, and the (2) hardware drift. For the

integration time, the longer it is, the higher the error is. In our case, the integration

time is fixed and it is determined by the sampling rate (1s/25Hz = 40ms). For the

hardware drift, even if we employed Kalman filter to remove the drift and noise,

there might still remains minor noises. And the minor noises of acceleration and

velocity are amplified by the integration process. Calculation Error comes from the

complex matrix and trigonometric calculations explained by the Section 5.3.1. All

the aforementioned errors might lead to trajectory distortion and hence reduce the

accuracy the proposed method.

From the inter-session result employing SM, we can see a slightly decline on

EER in the combination of mixed MDPdt1& MDPdt2 comparing to the intra-session

result of separate MDPdt1 and MDPdt2. Behavioral inertia may contribute to this

phenomenon. In an intra-session data collection (e.g., MDPdt1 or MDPdt2), the

subjects is inclined to repeat her/his first MDP motion, which would lead a verifica-

tion performance enhancement. While for the inter-session of MDPdt1& MDPdt2,

because a week has passed, the usage habit and upper body morphology will play

a more important role than the behavioral inertia. The positive verification per-

formance of 6.13% EER demonstrates the proposed method is time constant. The
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verification performance on the mixed dataset of MDPdt1& MDPdt3 and MDPdt1&

MDPdt2& MDPdt3 still have the same acceleration noise problem with intra-session

result. Since the accuracy enhancement effect of behavioral inertia does not exist in

the inter-session experiment, the performance is even worse than the intra-session

result with MDPdt3.

Similar results can also be found in the TRM in column 6, Table 5.4. The EER of

mixed dataset of MDPdt1& MDPdt3 and MDPdt1& MDPdt2& MDPdt3 are 24.69%

and 24.34%. As explained, the reconstructed trajectory of stationary status and

walking status varies for the acceleration impact, verification employing Trajectory-

Reconstruction Method is not feasible since the EER is already as high as 24%.

To verify that the performance change related to MDPdt3 was caused by ac-

celeration, we conducted experiment without accelerometer data and the result

is shown in Table 5.3. The results in Table 5.3 are based on 6-degree sensor

data, including 3-axes ambient geomagnetic field, the 3-axes angular velocity. The

results suggest that although accelerometer data was removed, the performance

actually improved rather than declined. Compared with stationary session results,

the performance based on data of session 3 is not as good as the first two sessions

but still acceptable, which compliments TPM’s merit.
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% MDPdt1& MDPdt3 MDPdt1& MDPdt2& MDPdt3
5 segments 13.24 12.35
10 segments 13.67 13.67
15 segments 11.35 9.36
20 segments 10.27 9.62

Mean 12.13 11.25

Table 5.3: EER for different MDP motion datasets without accelerometer data un-
der and different segmentation settings.
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Chapter 6

An Integration of Context, Sensors

and TrustZone

We take advantage of previous research results and designed an integrated ap-

proach and framework, named as IdentityTracker for local and Secure Session Ser-

vice for remote service. In this Chapter, we first show its system overview, and

its local usage. Then we demonstrate its ability of solving identity management

problems during remote services, such as online payment.
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Figure 6.1: Design of IdentityTracker

6.1 System Overview

Fig. 6.1 dipicts the high-level architecture overview of IdentityTracker. There

are three main components in the IdentityTracker framework: A Touch Finger-

print Sensing Module, which employs the fingerprint sensor deployed on new-

generation smartphones, i.e., iPhone 6 and Galaxy S5, to identify the current users’

identity (by fingerprint verification); An app-level Just-in-time Access Control that

manages the access permissions based on configurations of the policy and the

current user-identity; And most importantly, a Fine-grained Activity Recognition

Module that employs touch, voice and motion-sensors on the smartphone devices

to detect device-leaving-hand events and monitor user-identity changes, and an

Identity-Confirmation Module that confirms user’s identity using touch and speech-

based user verification approaches. In normal-usage scenarios, when a user un-

locks the device with his/her fingerprint, the Touch Fingerprint Sensing Module de-

tects and logs the user’s identity. Once the identity is recognized, the Fine-grained
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Activity Recognition Module continues tracking the touchscreen usage data, voice

input data and the motion-sensor data to monitor and detect user-identity changes.

The Identity-Confirmation Module will keep tracking and confirming user’s iden-

tity using extracted input features. At anytime the current user of the smartphone

device may want to access a mobile application. The app-level Just-in-time Access

Control will check the current identity of the smartphone user as well as the policy

of the mobile application. If an application is not locked, no matter what identity

(of the current user), he/she can access it. Otherwise, the Just-in-time Access Con-

trol will react based on the identity of the current user: block the application if the

current user is a guest or grant access if it is the smartphone owner.

6.1.1 Fine-grained Activity Recognition Module

The Touch Fingerprint Sensing Module and the Just-in-time Access Control are ma-

ture technologies on smartphone devices. The highlight and key point of Identity-

Tracker is the Fine-grained Activity Recognition Module and the Identity-Confirmation

Module. To detect the device-leaving-hand events, we first define a set of subtle

gestures and their corresponding context user statuses as listed in Fig. 6.2. Since

we are solving identity-changing problems in the post-login stage, we only con-

sidered the device while in an unlocked state. Essentially, there are four statuses

when the smartphone device is in unlock state, which are respectively: On Table,

Use by Left Hand (of a user), Use by Right Hand (of a user), and Use by Both

Hands (of a user). There are four subtle gestures between these four status that
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Using by 

Right Hand

Using by 

Left Hand

On Table Device Pickup/ Drop-off

Using by Both Hands

Device Transfer 

Self/ Users

Face to Face 90 Degrees

Same Side

Figure 6.2: Subtle gestures for leaving-hand-events detection

trigger device-leaving-hand events, which respectively are Device Pickup from ta-

ble, Device Drop-off to table, Device Transfer between the same user’s hands, and

Device Transfer between different users’ hands. Concurrently, we need to take the

users’ status into consideration since the motion-sensor reading may be affected by

different user statuses. During normal usage, there are three main user statuses:

sitting, standing, and walking. While during Device-Transfer events between differ-

ent users, users may have different relative positions(i.e., Face to Face, 90 Degrees

or in the Same Side).

To analyze the aformentioned concepts, touch and motion data are processed

separately and then combined to predict the status or subtle gestures of the device.

IdentityTracker extracts touch trace information, including touch point location,
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angle and length, contact size, and speed information to analyze which hand the

user is using the device with. Similar to most activity recognition works, Identity-

Tracker also employs motion-sensors, such as the accelerometer and gyroscope, to

detect photo motion activities. The collected motion-sensor data is pre-processed

in frequency domain and value domain with a sliding window size of 16 sensor

readings. By employing SVM on the extracted features, Holding the Device, On

Table, or Device Transfer may be detected with ease in most cases. However, there

are some complicated scenarios, such as walking and Device Transfer between

different a user’s own hands. To solve the subtle gesture recognition in these com-

plicated scenarios, we can leverage those more accurate predictions (i.e., On Table,

Using with Right Hand, or context user status, such as walking) combined with the

transition map(Fig. 6.2) to analyze those hard to detect subtle gestures. In the

mean time, IdentityTracker can also utilize touch data to filter out some misclassi-

fied Device Transfer events (Since there is a touch event on the touchscreen, it is

not possible that the device is transferring, or the user cannot transfer the device

from right hand to right hand).

6.1.2 Identity-Confirmation Module

Fig. 6.3 shows the high-level architecture overview for Identity-Confirmation Mod-

ule. The Identity-Confirmation Module is mainly composed of two components: a

Touch-Verification Function and a Speech-Verification Function. Touch-Verification

Function and Speech-Verification Function respectively analyze all user’s inputs on

the smartphone device, including the touch inputs and speech inputs, and confirms
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User Identity 

Change Event

Figure 6.3: Design of IdentityValidator

the result from Fine-grained Activity Recognition Module. If the change of user-

identity change event detected by the Fine-grained Activity Recognition Module is

confirmed, the Identity-Confirmation Module will communicate with the Just-in-

time Access Control. The Just-in-time Access Control then react to the current user

based on the current user’s identity.

6.1.2.1 Touch-Verification Function

Touch-Verification Function (Fig. 6.4) collects the touch gestures input data and

running application context information from the Multi-touch Driver and Running

Application Context Listener respectively. The collected raw data are then trans-

ferred to the Multi-touch Gesture Engine for data pre-processing and feature ex-

traction. Then the pre-processed data are combined with the running application

context information to generate a Multi-touch Data Library consisting of gesture
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Figure 6.4: Touch Module

templates. The Touch-Gesture-Based User Authentication Module compares incom-

ing touch gestures with the templates in the Multi-touch Data Library to confirm

the current user’s identity and send the result to the Just-in-time Access Control.

6.1.2.2 Speech-Verification Function

The way user interacts with smartphones using speech can be categorized into

two classes, long conversations for telephone calls or recording, and short com-

mands for speech-based commands and messages. Besides the normal long con-

versation based speaker-recognition, a highlight of the Speech-Verification Func-

tion in IdentityTracker is that it engages in integrating speaker sensing and identity
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Figure 6.5: Design of Speech Module

management with speech recognition. A diagram of the approach is presented in

Fig. 6.5. The approach extends the Android speech recognition API with speaker-

recognition and identity management support. The new components include, an

application interface that detects context running application and responds to the

applications , an identity manager module that controls and enforces policies on

whose speech an application should respond to and how to respond, and a speaker-

recognition module.
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Figure 6.6: Process of the experiments

6.2 Experiment

We implement IdentityTracker as a background service that implicitly collects mo-

tion and touchscreen data, and logs the user’s identity when an attempt is made

to access to a locked application. The IdentityTracker app is installed on 33 smart-

phone users phones. The experiments consist of three sessions and the process is

shown in Fig. 6.6.
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Figure 6.7: Performance evaluation of IdentityTracker
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6.2.1 Data Collection and Data Clean

In the data collection session, IdentityTracker collects a set of phone usage data

from users. Users follows the instructions provided by IdentityTracker to perform

a set of gestures and operations. Those gestures and operations are predefined,

including phone operation on left hand, phone transfer from left hand to right

hand, phone operation on right hand,phone operation on both hands, and phone

transfer to another user. Although the gestures are predefined by IdentityTracker,

users have freedom to perform the gestures in their own ways. The collected data

are used to train a preliminary model. The model will be used for the next steps.

After the preliminary model is trained, we use it to classify user gestures and

display the results to users. Users are required to provide feedback to the system,

e.g., the correctness of the classification results. Users’ feedback will be used to

improve the primary model and generate a new model for the testing session. Al-

though IdentityTracker attempts to ask users to perform their natural usage during

the last data collection session, they may still be affected by the tasks we asked

they to perform. If we aim to perform device-leaving-hand events, detection in

uncontrolled environment, it needs to first receive a more accurate set of train-

ing data. However, since all the subtle gestures listed such as Device Transfers or

Device Pickups/Drop-offs happen in a very short time frame and any extra label

actions would interfere with the normal gestures. In response, we decided to first

train a model based on the data collected in the previous session, and employ it to

predict the current status or subtle gesture of the smartphone device and display

it on the smartphone device. If the prediction is correct, the data will be recorded
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and labeled, otherwise the user can click on the display panel and the data will be

labeled as misclassified and will not be used for final model training.

6.2.2 On-Device Testing Session

As long as IdentityTracker acquires the clean data in an uncontrolled environment,

it will train a new model based upon this new data set. After we install the new

model on the device, IdentityTracker will still authenticate user’s identity whenever

a locked app is being accessed using fingerprint authentication and logs ground

truth user-identity. In the mean time, the testing model will also output a pre-

diction result of current user’s identity. The IdentityTracker will match the two

user-identity results and log them for further evaluation.

6.3 Local Performance Evaluation

We evaluate the performance of our system in both security and usability aspects:

i) How many times has unauthorized app access been reduced in comparison to a

mobile system without app-level access control and how many unauthorized app

accesses has been granted; ii) How many instances of unnecessary authentication

have been reduced for the phone owners in contrast to a strict app-level access

control mechanism and how many instances of unnecessary authentication have

been requested.
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Fig. 6.7(a) shows the identity match log results of the on-device testing ses-

sion. The red bar represents the number of unauthorized accesses blocked by

IdentityTracker, while the blue bar marks the number of unauthorized access Iden-

tityTracker failed to detect. It is clear that in comparison to the mobile system

without app-level access control, IdentityTracker greatly reduces unauthorized ac-

cesses (above 90% of unauthorized access request were denied) and only very few

times was a guest user allowed access to a locked application.

Fig. 6.7(b) shows the usability enhancement results based upon the logged

results. In comparison to the mobile system with strict app-level access control that

requires authentication every time a user atempts to access to a locked application,

IdentityTracker alleviates the user’s burden of constant authentication when he/she

atempts to access a locked application (themselves). Above 85% of unnecessary

authentications may be reduced by IdentityTracker. Although IdentityTracker may

introduce a few unnecessary authentication events by falsely detecting a device-

leaving-hand event, it still promotes the usability.

6.4 Remote Services

In this section we provide detailed description of the proposed approach for trust

zone based mobile payment activity.

Approach overview: The online mobile payment scenario may be abstracted to

a tripartite interaction protocol. The three parties included are the User, Smart
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Distribute credential

Interaction to sign on a Web Service

Web Service Smart Phone User

Figure 6.8: A high-level overview of secure online mobile sign on service. Notice
that the phone acts as the hub between the user and the server, gathering informa-
tion from each entity and distributing information back to the web server.

Phone, and Web Service. The User wants to sign on the Web Service using a Smart

Phone. In response, the Web Service issues a credential (e.g., public/private key

pair) to the User, which is saved in the Smart Phone and protected with TrustZone.

The User submits their biometric information (e.g., fingerprint) to log in to the

Smart Phone system and the secure session. The mobile device utilizes motion-

sensors to detect user-identity changes and determines if the secure session should

be terminated or continued. When a new transaction takes place, the Smart Phone

checks the secure session status and uses saved credentials to authenticate himself

to the Web Service and complete the transaction.

Detailed description: The proposed system is constrained only by the architec-

ture of the processor used in said device as well as the availability of a fingerprint

biometric sensor. The processor used must be an ARMv6KZ or later application

profile architecture. The reason for this is that ARM architectures prior to these do

not have TrustZone implemented. Since TrustZone is hardware implemented there

are no other options for older devices which does not provide hardware support
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for it. Once this requirement has been satisfied, the system may be very sensi-

tive or lack some sensitivity as the process relies heavily upon the accuracy of the

fingerprint sensor and the technology therein. It is assumed that when using this

method, the quality of sensors will match the application i.e., an sensitive applica-

tion will require and utilize high quality sensors. Please note that this process is

session based, meaning, if the user requests three transactions, they will have to

verify their fingerprint only one time to begin the session given the user using the

device is constant.

As seen in Fig. 6.9, the software process is as follows: First the user will log on

to some sensitive apps such as a bank app to pay bills. This process remains the

same as is now. However, once the user requests a session, the device will throw

an FIQ exception to enter the secure mode. This exception will be handled by the

monitor, which verifies that the app has permission to run services in secure mode.

Upon validation, the monitor will complete the context switch into secure mode.

Now that the service is running inside the secure mode it will not be affected by

any malware infection that may be present inside the phone because once the con-

text switch has been made, the process is running independently and completely

isolated from everything within the normal mode. The application will now re-

quest the user to submit a fingerprint for verification. Because we are not leaving

secure mode to collect or process the fingerprint, it is still safe. This, if stolen by

hackers, could be detrimental because fingerprints are used in many settings to

verify a user. This fingerprint will be processed as is explained in the background

section. Once the fingerprint has been processed if the score generated is below a
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Figure 6.9: A depiction of the authentication process of a sign-on request. Black
ovals represent beginning or ending points, diamonds represent decisions, and
squares are general processes. The process begins as a request for a session from
the user made in normal mode. The system first enters the secure mode via an FIQ
exception. The program will verify the user by fingerprint. If incorrect, the process
will leave secure mode. If correct, the user is able to sign on the web service.
Once a sign on service is requested a nonce is retrieved from the web server. Once
received, the process will sign the nonce using the certificate stored in the secure
mode and send this back to the web server to complete the sign-on process. While
still in session the continuous identity verification will continue until another sign-
on service is requested and restart the process at the ”Retrieve Nonce” step. If while
waiting the device detects a user-switch event, the session will end automatically
or if the user requests the session to end.
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set threshold the verification will fail, service will end and the device will be con-

text switched back into normal mode. However, if the fingerprint matching score

is above the set threshold, the service will continue inside secure mode. The user

is now free to request transactions to be made. The requests will be processed and

for each request a nonce will be returned from the bank server. The nonce may

contain transaction information such as time, the value of the transaction, and the

recipient. Never leaving secure mode, the nonce will be signed using the certificate

that is also stored in the secure mode and esnd the signature to the bank server

to complete the transaction. Granted the user is the same and the session is con-

tinued, the fingerprint will not be required for subsequent transactions. However

if the session is ended by either the user or by the process due to detection of a

user-switching event, a new session must be started (requiring a fingerprint).

As seen in Fig. 6.10, the hardware process is as follows: Once the nonce has

been received and the FIQ exception is thrown, it will be trapped by the monitor

which, if a valid request, will carry out the context switch and pass the nonce via a

register write. The APB (AXI to Advanced Peripheral Bus Bridge) will then request

the I/O Controller enable the fingerprint sensor. Once complete, the processor will

generate the score. Assuming the score is above the threshold the processor will

generate the signature. The signature will be passed via a direct register write, and

sent to bank. Then the bank can verify and complete the transaction.
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Figure 6.10: The general hardware layout of TrustZone for our design. Note that
within the IO Controller we have a fingerprint sensor and touch panel which will
be protected by TrustZone.
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6.4.1 Unauthorized-Access Accountability Protections

In the case that an unauthorized user attempts to enter a secure session (we are

able to detect this when the fingerprint verification fails) we must take steps to

prevent further access and deter unauthorized users. Because of the methods cur-

rently employed in fingerprint verification forbid fingerprint recording due to pri-

vacy concern, we are not able to record the fingerprint directly. However to combat

the problem, in this process, when the fingerprint verification fails (which is obvi-

ously detectable) the gps coordinates are recorded with a time stamp and a picture

taken using the front camera to capture the user. This information is emailed to

specified users. In this way, immediate action may be taken to mitigate further and

subsequent unauthorized access attempts as well as deal with current issues. This

can greatly reduce the fraud that occurs in relation to the device as well as recover

lost assests in the case they are able to access the session.

6.4.2 Discussion

Of the advantages of this approach, the most substantial one is the fact that this

process uses a three-stage verification that may not be tampered with by any in-

fection located in the normal mode of the mobile device. This is achieved by con-

text switching into the secure mode. Once the nonce has been received from the

web server the context switch is completed. Regardless whether infections see the

nonce, it does no good without the certificate. So it is ok to possibly expose this
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to infections. Since after this time all infections have been isolated to the nor-

mal mode context (not in the secure mode). Thus, we may safely trust the secure

context now being used. The first stage of verification, which is the fingerprint

recognition, is also sensitive so it must be completed in TrustZone as well. Instead

of sending this data directly to the bank server and risking fingerprint data stolen

by hackers, we, as is the norm, use signature generation to verify the user to the

server, which completes the second stage of verification scheme. This certificate is

pertinent information and inasmuch must be stored in TrustZone as well. Then,

granted the user does not end the session, continuous implicit biometric verifica-

tion is utilized as well to further protect subsequent transactions within the session

(which remains in secure mode as well). This continuous verification will monitor

the users actions. In any case that the phone has possibly left the direct possession

of the user the session is closed automatically. Whether the release of the device

was intended or not. Throughout this whole process, no information is leaked to

normal mode.

Besides the inherent protection offered by TrustZone, implicit continuous bio-

metric verification, and fingerprint scanning technologies, there are a few other

strong advantages within this approach. Currently, if a password is used, even

with TrustZone, the hacker would be able to compromise the mobile device. While

they would not be able to retrieve the certificate because of TrustZone, the certifi-

cate could be used to verify themselves effectively rendering the system ineffec-

tive. However, our approach does not employ these means. Since we are using

fingerprint technology, the hacker would either have to have the person with them
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whose account they are trying to compromise present (who would naturally not al-

low this), or have collected a good fingerprint sample and replicate this fingerprint

in a manner that is able to trick the fingerprint sensor. Although only few hackers

would have this ability. Also it is important to note that since our method uses con-

tinuous implicit biometric verification rather than time as a session ending variable,

our process can correctly handle phone theft while intra-session cases that would

normally result in unauthorized use. Our method would end the session automat-

ically once detecting the phone transfer and in effect render the phone incapable

to carry out any subsequent web service sign-on request with a fingerprint.

When an unauthorized user attempted to access/start a secure session in the

phone takes in place, the current session, if one is ongoing would be ended and a

new fingerprint verification would be required to start another. The Unauthorized

Access Accountability Protections would record all data related to the denied access

and how many attempts have been made. This, after being emailed to the correct

user, would allow the device to be either recovered, or wiped as is per the norm.

However since we record not only the face but also the location and time they may

be used to apprehend the user and recover the device. This scheme also allows

for the use in situations where the device is unknowingly taken and put back.

Normally in this case the owner would not be aware of these attempts of that the

phone had been stolen or tampered with. With our method this event would be

recorded as well.
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Scenarios Definition
Baseline Baseline scenario with every new function disabled.
Protect-Voice In this scenario, only voice-based authentication is enabled.
Protect-Touch In this scenario, only touch-based authentication is enabled.
Protect-Motion In this scenario, only motion-based device status monitoring is

enabled.
Protect-All In this scenario, all the sensor based approaches are enabled.

Table 6.1: Scenarios in system overhead analysis.

Currently, mobile devices only have the ability to accomplish fingerprint read-

ing. As technology advances, the hardware in phones would increase in sophisti-

cation as well. Inasmuch, if finger vein verification was integrated into hardware

instead of fingerprint, the process would be much more robust. That said, finger-

prints, as previously stated, may be dirty and make verification difficult. Finger

vein scanning technology is not affected by the surface of the skin as veins are

below the surface [32]. The process is also much more secure, in that as veins

are hidden inside the body, there is little risk of forgery or theft [32]. While not

infallible, this approach can offer increased security for settings that require it.

6.5 System Overhead Analysis

In this section, we will discuss the computational and energy consumption over-

heads of the implemented system. The analysis was performed on Nexus 4. For

energy consumption analysis, we define different usage scenarios in Table 6.1.

In addition, we defined three usage modes to represent how busy a smartphone
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Mode Definition
Low In this mode, most of the time the smartphone device is not in-

teracting with the user, and the smartphone is not active longer
than 6 minutes per hour on average. The users may use the
smartphone to make short phone calls, send messages or read
emails.

Medium In this mode, the smartphone device is active for at least 5 min-
utes but less than 24 minutes per hour on average. The user
can access and use most of the installed apps except games.

High In this mode, the smartphone is active for longer than 24 min-
utes per hour on average. The users can access and use all the
installed apps.

Table 6.2: Usage modes in overhead analysis.

is. The details are shown in Table 6.2. We conducted experiments based on

both different scenarios and the usage modes as defined. The three modes in the

baseline scenario served as a baseline for overhead analysis. Overheads incurred by

the sensor based authentication were analyzed and compared against the baseline

scenario.

The overhead of the implemented system may be attributed to various sensor

based user authentication components and the overall security framework. When

computing overhead was measured, we used CPU and memory usage. For mea-

suring energy consumption overhead, we used measurements such as impact to

battery life, battery usage percentage, and power consumption value as metrics.

For each implemented process and module, we collected CPU and memory usage,

as well as disk read and write. The details are provided in the following subsec-

tions.
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Process Resource Consumption Level
Recording None None
Segmentation File read, CPU, Memory Low
Transferring to server Network Low
Receiving result Network Low
Perform Actions File Write Low

Table 6.3: Consumption in voice module process

6.5.1 Speech Analysis

6.5.1.1 Speech Processing Process

The speech-based module is invoked only when the system receives speech com-

mand inputs from the user. The speech-based module consumes very little power

when the user doesn’t interact with the device using speech or when the device is

not in hand-free mode.

When a user decides to interact with the device using speech commands, voice

data will be recorded. However, the voice recording process does not incur much

extra cost since it is supported by the speech recognition application, such as

Google voice, or Utter. After voice data is saved as a temporary file on the de-

vice, it will be processed and segmented into small chunks. These chunks will be

uploaded to the server through Http. After the server finishes speaker verification,

the outcome will be sent back to the smartphone. The speech-based module will

take proper actions based on the result. The resource usage of each step of the

speech processing module is shown in Table 6.3.
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6.5.1.2 Computational Overhead

Since resources used by the speech-based module are subject to the frequency of

speech-based interactions, we tested the system under different speech interaction

scenarios. Three settings were used, which were 5, 10, and 20 speech commands

per hour. In high usage mode, our evaluation was based on all of the three settings.

For low and medium usage modes, we only considered the setting of 5 speech

commands per hour. CPU usage information was collected during the tests. For

all the three different usage modes, even in the high usage mode under the setting

of 20 speech commands per hour, the CPU usage was still below 0.1%. So we

concluded that the speech-based module incur minimal extra CPU usage overhead.

6.5.1.3 Energy Consumption Overhead

For estimating energy consumption overhead, we applied the same settings as in

the computational overhead analysis. Fig. 6.11 shows battery life results under

different settings. As suggested by the results, the speech-based module doesn’t

significantly reduce battery life. Battery percentage data for each usage mode is

shown in Fig. 6.12, Fig. 6.13, and Fig. 6.14 respectively. For all the cases in-

cluding high and medium usage modes, energy consumption from speech-based

module was below 1% of the total energy consumption. According to the experi-

ment results, one can conclude that the speech-based module does not introduce

significant computational or power consumption overhead.
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Figure 6.11: The battery life of each usage mode under different settings. Voice
5, Voice 10, and Voice 20 respectively denote the setting of 5, 10, and 20 speech
commands per hour.
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Figure 6.12: Speech-based module power consumption in the low usage mode.
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Figure 6.13: Speech-based module power consumption in the medium usage
mode.
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Figure 6.14: Speech-based module power consumption in high usage mode.
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Process Resource Consumption Level
Waiting for input CPU Very low
Input reading CPU, Memory Low
Interpreting CPU, Memory Low
Sub-template locator CPU, File read Low
DTW distance calculation CPU, File read, Memory High
Sequential improvemnet CPU, Memory Low
Perform Actions File Write Low

Table 6.4: Resource overheads in touch-based data analysis.

6.5.2 Touch Analysis

6.5.2.1 Touch Analysis Process

The touch-based user verification and context module is implemented as a back-

ground service. When there is no touch interaction or the system is in locked state,

the background service will be in idle status, which consumers very litter power.

When user interacts with the smartphone using touches, the service will capture

touch inputs from the touchsceen sensor. After pre-processing, the background

service extracts features such as speed, contact size, curvature from the touch sen-

sor data. A sub-template database locator is used to locate a suitable sub-template

database for pattern matching. The pattern matching process executes the dynamic

time warping library to calculate the distance between input and the selected tem-

plates. In addition, it accumulates the DTW distance for sequential reduction of

false rejections. Then the system can act based on the touch analysis outcome. The

resource usage of each step is shown in Table 6.4.
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Mode Average Min Max
High-Average 2% 1% 3%
Video-Average 2.6% 2% 3%
Medium-Average 4.5% 3% 10%
Low-Average 2.9% 2% 4%
High-Max 12% 8% 2%
Video-Max 17.3% 16% 18%
Medium-Max 19% 11% 47%
Low-Max 19.2% 11% 2%

Table 6.5: CPU usage statistics for the touch-based background service.

6.5.2.2 Computational Overhead

The main computational overhead can be attributed to the DTW distance calcu-

lation. Table 6.5 shows the CPU usage statistics. Suffixes Average and Max in

Column Mode mean the average and maximum CPU usage in hours. High-Average

and High-Max respectively mean average CPU usage and maximum CPU usage in

each hour. According to the results, CPU usage on average is very low, below 5%.

However, the peak CPU usage is relatively higher sometimes. The peak CPU usage

occurs when there is a burst of touch inputs, in which case, touch pattern match-

ing has to be applied to all the input within a relatively short time period. Since

this kind of scenario happens only infrequently, the average CPU usage overhead

is small.
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Figure 6.15: Mobile battery life statistics under different usage modes with the
touch-based background service enabled or disabled.

6.5.2.3 Power Consumption Overhead

Fig. 6.15 shows battery life statistics under different pre-defined usage modes. The

overall impact on battery life was below 10%.

In certain usage scenarios (e.g. watching video, GPS navigation), the mobile

device may be in a state of high CPU usage but receive few or even no touch input

from the user. We investigated such high usage scenario using video playback as

an example. The battery life result is shown in Fig. 6.15. Comparison of power

consumption between normal usage mode and video playback mode is shown in

Fig. 6.16. As indicated by the results in Fig. 6.16, power consumption overhead

for the touch-based background service is correlated with the frequency that a user

interacts with the mobile device using touches.
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Figure 6.16: Comparison of power consumption between normal touch mode and
video mode.

Details of power consumption percentage are shown in Fig. 6.17. In video

playback mode, power consumption percentage dropped 2% when compared with

the normal touch usage cases. Regardless of the usage modes, power consump-

tion of the touch-based background service was relatively stable. For the high,

medium, and low usage mode, power consumption percentage remained around

10%. When a mobile device was in high usage mode (increased power consump-

tion), the impact on power consumption by the touch-based background service

is relatively small because its percentage is low. On the other hand, in low us-

age mode (low overall power consumption), the power consumption percentage

attributing to the touch-based background service is higher. However, consider-

ing that the overall power consumption is low, the actual energy consumed by the

touch-based background service is still acceptable.
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Figure 6.17: Touch module power consumption percentage in each mode

6.5.3 Motion Analysis

6.5.3.1 Motion Analysis Process

The motion sensor based context analysis is also a background service. For situa-

tion awareness and device state monitoring, the motion-based service continuously

records and analyzes the motion sensor data. The first step is to acquire the sensor

readings through system API and write the collected sensor data into a vector. Af-

ter the vector is filled, the system applies feature extraction to the sampled sensor

data according to a pre-defined sliding window. Then the extracted feature vector

is matched using a simple decision tree. The system uses the analysis results for

monitoring the smartphone state, determining context and detecting switch of user

identity. The resource usage of each step is shown in Table 6.6.
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Process Resource Consumption Level
Recording CPU, Memory Medium
Feature extraction CPU, Memory Low
Identity change detection CPU Low
Perform Actions File Write Low

Table 6.6: Resource overheads of the motion-based sensor data analysis service.

Mode Average Min Max
High-Average 1% 1% 1%
Medium-Average 1% 1% 1%
Low-Average 1% 1% 1%
High-Max 3% 3% 3%
Medium-Max 3.2% 3% 5%
Low-Max 3% 3% 3%

Table 6.7: CPU usage percentage of the motion-based sensor data analysis service.

6.5.3.2 Computational Overhead

The CPU usage is mainly caused by feature extraction and decision tree processing.

Table 6.7 shows CPU usage statistics. The average and max suffixes in Column

Mode are used to indicate the average and maximum CPU usage scenario in hours.

As suggested by the results, CPU usage of the motion-based sensor data analysis

service was relatively stable. Although this background process was active most of

the time, it was lightweight. The peak CPU usage was around 3%.
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Figure 6.18: Power consumption percentage of the motion-based sensor data anal-
ysis service in each mode.

Mode Average Min Max
High 6.7% 6.6% 6.8%
Medium 8.8% 8.6% 8.9%
Low 8.8% 8.6% 9.0%

Table 6.8: Power usage percentage of the motion-based sensor data analysis ser-
vice.

6.5.3.3 Power Consumption Overhead

Battery life statistics for the motion-based sensor analysis service are shown in the

Fig. 6.18. The impact on battery life was around 10% of the overall battery life.

Table 6.8 shows the min and max value of the power consumption usage caused

by the motion-based background service. The power consumption was relatively

stable at an acceptable level, below 10% of the overall power usage.
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Process Resource Consumption Level
Waiting for input CPU Very Low
Security level check File read, CPU Low
Identity change check File read Low
Perform Actions CPU Low

Table 6.9: Resource overheads of the application manager.

6.5.4 Overhead Analysis for the Overall System

6.5.4.1 Background Services

The implemented SenGuard system consists of multiple sensor based analysis com-

ponents mentioned previously, as well as an application manager. The application

manager is a background service. It is in idle status for most of the time and is acti-

vated only when a user attempts to access an application. When a smartphone user

tries to open an application, the application manager will first check the security

setting of the application. If the application does not require user authentication,

the application manager will return to the idle state. Otherwise, the application

manager will evaluate the current user identity based on the previous sensor in-

puts, contexts, and user authentication history. If the system is uncertain about

the user identity or there is a high likelihood that the current user identity has

changed, the user needs to be re-authenticated before access to the application is

granted. The resource usage of each step is shown in Table 6.10.
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Mode Average Min Max
High-Average 4.3% 4% 5%
Medium-Average 8% 7% 9%
Low-Average 2% 2% 2%
High-Max 23.3% 22% 24%
Medium-Max 52% 52% 52%
Low-Max 20.5% 18% 23%

Table 6.10: Overall CPU usage percentage.

6.5.4.2 Computational Overheads

The overall CPU usage is shown in Table. 6.10. The average CPU usage of the

implemented system is below 10%, which is in the same range as common com-

mercial apps with medium overhead. Note that peak CPU usage only represents

infrequent burst user interaction scenarios.

6.5.4.3 Power Consumption Overheads

The overall statistics on impacts to battery life are shown in Fig. 6.19. As in-

dicated by the results, the battery life was affected within 10%. Details of the

power consumption data are shown in Table 6.11. In the worst case scenarios,

the power consumption overhead was 17.5%. Given the definition that in the low

usage mode, a users interacts with their smartphone less than 5 minutes per hour,

the overall impact of SenGuard to battery hours is within acceptable range.
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Figure 6.19: Power consumption percentage in each mode.

Mode Average Min Max
High 9.3% 8.9% 9.8%
Medium 13% 12.4% 13.5%
Low 16.73% 15.2% 17.5%

Table 6.11: Overall power usage percentage.
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Chapter 7

Conclusion

7.1 Summary of Work

I have investigated the feasibility of employing on-board mobile sensors to perform

user-identity authentication, and based on the performance and experiment results

of each individual sensor modality, I proposed an implicit user-identity approach

integrating fingerprint sensor and Trustzone, which considering the trade-off be-

tween security and usability. The key contributions are summarized in this section.

7.1.1 Overall Research Contributions

The concept of on-demand user-identity verification and device-leaving-hands event

on the mobile system is been proposed and evaluated in this thesis. I compared

the novel schema with the previous time-out based identity management design,
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and proves the effectiveness of our approaches using quantitative approaches and

experiments. When designing the security system, I evaluate the usability of the

system and design the approaches based on the usability design theory ”The extent

to which a product can be used by specified users to achieve specified goals with

effectiveness, efficiency and satisfaction in a specified context of use.” I employ

quantitative approaches such as questionnaire to test the effectiveness, efficiency

and satisfaction of the proposed approaches and interaction flow. I am the first

three research teams that trying to use touch interaction data to identify user’s

identity and the first research team that investigated employing it to identify user’s

identity in the natural use. With quantitative approaches, I proved the feasibility

of proposed and designed algorithms. These algorithms include transforming the

touch input into images to prevent information loss for pattern matching, sliding

window and threshold schema to improve performance, and multi-level template

database to lower the consumption and improve the accuracy.

7.1.2 Touch-Based User-Identification

We presented FAST, GTGF, and TIPS, three different touch input based implicit

user-identity recognition approach. FAST as a preliminary investigation of touch-

based user-identification shows promising result. We further enhance the perfor-

mance of touch-based user-identification in a controlled environment by employ-

ing GTGF features. However, we found these two approaches are not suitable for

touch data in an uncontrolled environment. So we finally design and implement

TIPS, an implicit user-identity recognition service that employs touchscreen data
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in purely uncontrolled environments. TIPS analyzed real-life touch data as well as

underlying contextual information for continuous user authentication. With exten-

sive evaluation on the naturalized touch data collected from 23 phone owners and

service deployment to 13 of them with 100 guest users, TIPS showed its effective-

ness not only on offline simulation but also for on-device practical testing. TIPS is

always running in the background and checking touch data continuously. In the

future, we will leverage more contextual information to enhance TIPS’ sequential

model to build optimal duty-cycling, i.e., keeping “continuous” authentication as

well as decreasing the computational cost maximally.

7.1.3 Voice-Based User-Identity Management

For the voice-based user-identity management, we presented the USR framework,

a novel framework for integrating speaker-recognition based identity management

into current human-mobile speech interaction framework. The USR framework

employs many factors to perform seamless identity-based application management,

including user-identity, application privacy level, usable app access control, and ap-

plication function class. As a part of this study, we also contributed an open-source

Android library for speaker-recognition. To investigate the effectiveness and effi-

ciency of the technique, a controlled experiment was conducted comparing USR

framework with an established speech recognition technique, Google speech rec-

ognizer, and in addition, a representation of current app access control approaches,

Applock. The comparison study of these two frameworks shows that our unified
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speech-speaker recognizer framework can significantly improve upon existing prac-

tical problems in mobile privacy protection and improve user experience to some

extent.

7.1.4 Mobile Device Picking-Up Motion-Based User-Identification

We define a specific motion, mobile device picking-up motion, to detect user’s iden-

tity by employing motion-sensors’ data. We investigate the feasibility of a new

behavioral biometric modality based on MDP motion. We propose two novel meth-

ods, a Statistical Method that intuitively applies classification algorithms on the

smoothing sensor data; and a Trajectory-Reconstruction Method that reconstructs

the MDP motion trajectories, to perform user identification. We evaluate our pro-

posed methods on a multi-session MDP motion dataset from 31 subjects. From

the results, we found that the accuracy of the methods is declined in inter-session

tests. Furthermore, user movements(e.g. walking) highly impacted the accelerom-

eter data, and further decreased the inter-session results. To solve this, we have

to emphasize gyroscope and magnetometer data in case extra motion is detected.

Last, experimental results of MDP motion-based verification are encouraging and

point to the possibility of MDP motion-based biometric systems in real world ap-

plications.
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7.1.5 An Integration of Context, Sensors and TrustZone

Throughout we have introduced and further explained IdentityTracker: a frame-

work that not only tracks the user’s identity through the fingerprint sensors, it com-

bines these results with data from both the motion-sensors and interaction inputs,

including touchscreen usage and speech inputs, while concurrently managing app-

level access on smartphones in post-login stages. The idea focuses around motion

and touch data to detect device-leaving-hand events based upon a predefined set

of phone status, user status, and subtle gestures. To evaluate the performance of

said system, we conducted two sessions of data collection to collect and clean the

training data in both a controlled and uncontrolled environment. We then tested

the trained model during the user’s natural usage. Results have shown that our

approach improves user security by not granting app-level access to unauthorized

guest users while at the same time promoting usability by greatly reducing the

amount of unnecessary authentications for the smartphone’s owner. We have ex-

tended it as a novel method, Secure Session Service, for multi-stage verification of

identities in sensitive payments or otherwise sensitive sessions. Using this method,

we are able to isolate the sensitive data and processing functions from the regular

(normal mode) operating system and effectively isolate these processes from any

malware or malicious software present in the normal operating system. Because

of the monitor, we can safely and reliably trust the secure mode with sensitive

data and the processes of user verification. This three-stage verification method:

The first stage being the fingerprint, the second which is continuous user verifica-

tion, and the third, given the correct context, certificates used for signing which is

168



more secure than single-stage verifications that are found in the majority of current

session-based implementations. Moreover, if a phone is stolen while not in session,

the hacker is no longer able to retrieve certificates and other sensitive data or eas-

ily replicate the fingerprint as if a password and no TrustZone was used. However,

if inter-session the mobile device is still secure because a transfer will automati-

cally close the session. This session can only be reopened using a fingerprint. This

method is further strengthened by the use of a Unauthorized Access Accountabil-

ity Protections method that will record all instances of unauthorized attempts at

accessing a secure session, recording the picture of the imposters as well as the

location and time, and emailing this to the appropriate person. This framework al-

lows for protections for pre, during, and post events that may lead to unauthorized

accesses. However, there is much room to grow in terms of how secure the process

is as a whole with emerging technology in mobile devices as well as advancing

technology such as finger vein scanning and the addition of more sensors for more

accurate readings. While not impenetrable, this approach strengthens security in

todays information-stealing age.

7.2 Future Recommendations

To further improve the performance of the implicit user-identity management on

mobile devices, following are some of the future directions:

1. One of the potential approach is to investigate some other sensors on smart-

phone device, such as GPS, and signal sensor, to investigate the feasibility
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of employing location data, signal strength, and wifi access point to perform

user-identification or provide context information to support other modalities

user-identity verification.

2. With the rapid development of technology, wearable sensor now becomes

another new hot topic in ubiquitous computing. New wearable devices are

mostly sensor centered instead of computing centered, which provides poten-

tial for integration with the mobile device. The data from wearable sensors

could bring interesting new sensor data, such as electrocardiogram (ECG),

heart rate, pressure, and other specific features of human body, for implicit

user-identity management.

3. Better machine learning and pattern recognition algorithms are another method

to improve the performance. Online learning and Hidden Markov Chain

could be a good test for better exploiting the collected sensor data under

context-aware framework.

4. Finally, to have a better usability in implicit user-identity management, an

integration approach employing Dempster-Shafer theory(DS theory) could

be a possible way. The DS theory could provide an approach based on risks

of different scenarios and context, and makes decisions not based on single

or multiple biometric or behavioral recognition module. So the false alarm

rate could be well managed to make the whole system a usable approach.
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